1
|
Galipeau Y, Cooper C, Langlois MA. Autoantibodies in COVID-19: implications for disease severity and clinical outcomes. Front Immunol 2025; 15:1509289. [PMID: 39835117 PMCID: PMC11743527 DOI: 10.3389/fimmu.2024.1509289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Few pathogens have historically been subjected to as intense scientific and clinical scrutiny as SARS-CoV-2. The genetic, immunological, and environmental factors influencing disease severity and post-infection clinical outcomes, known as correlates of immunity, remain largely undefined. Clinical outcomes of SARS-CoV-2 infection vary widely, ranging from asymptomatic cases to those with life-threatening COVID-19 symptoms. While most infected individuals return to their former health and fitness within a few weeks, some develop debilitating chronic symptoms, referred to as long-COVID. Autoimmune responses have been proposed as one of the factors influencing long-COVID and the severity of SARS-CoV-2 infection. The association between viral infections and autoimmune pathologies is not new. Viruses such as Epstein-Barr virus and cytomegalovirus, among others, have been shown to induce the production of autoantibodies and the onset of autoimmune conditions. Given the extensive literature on SARS-CoV-2, here we review current evidence on SARS-CoV-2-induced autoimmune pathologies, with a focus on autoantibodies. We closely examine mechanisms driving autoantibody production, particularly their connection with disease severity and long-COVID.
Collapse
Affiliation(s)
- Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Curtis Cooper
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
2
|
Bigdeli A, Ghaderi-Zefrehei M, Lesch BJ, Behmanesh M, Arab SS. Bioinformatics analysis of myelin-microbe interactions suggests multiple types of molecular mimicry in the pathogenesis of multiple sclerosis. PLoS One 2024; 19:e0308817. [PMID: 39775333 PMCID: PMC11684644 DOI: 10.1371/journal.pone.0308817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 07/30/2024] [Indexed: 01/11/2025] Open
Abstract
Multiple sclerosis (MS) is a devastating autoimmune disease that leads to the destruction of the myelin sheath in the human central nervous system (CNS). Infection by viruses and bacteria has been found to be strongly associated with the onset of MS or its severity. We postulated that the immune system's attack on the myelin sheath could be triggered by viruses and bacteria antigens that resemble myelin sheath components. An in-silico bioinformatics approach was undertaken in order to identify viral and bacterial antigens that resemble myelin oligodendrocyte glycoprotein (MOG) and myelin basic protein (MBP). To this end, we simultaneously analyzed both protein structures and amino acid sequences from viral and bacterial proteins and compared them to MOG and MBP. Possible associations between MBP and human parvovirus B19 (HPV-B19) and adeno-associated virus 4 (AAV-4) capsid protein structures were identified. MBP and MOG were associated with antigens from different viruses and bacteria, including Aspergillus species, Lactobacillus, Burkholderia, Clostridium, Schizosaccharomyces, SARS-CoV-2, and some gut flora metabolites. We also identified similarities between MBP and MOG proteins and bile salt hydrolase (BSH), glycosyltransferase (WcfQ), and Wzy enzymes. Identical amino acids between MBP and BSH at the active site, and protected amino acids in MOG aligning with WcfQ and Wzy enzymes were observed. Overall, our results offer valuable insights into the role of different viral and bacterial protein antigens in MS pathogenesis and suggest the possibility of identifying new therapeutic targets using in silico bioinformatics approaches. Our proposed approach could also likely be adapted for other CNS diseases in order to develop new biological insights and treatments.
Collapse
Affiliation(s)
- Ali Bigdeli
- Department of Biophysics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Bluma J. Lesch
- Department of Genetics, Department of Obstetrics, Gynecology & Reproductive Sciences, and Yale Cancer Center, Yale School of Medicine, New Haven, CT, United States of America
| | - Mehrdad Behmanesh
- Department of Molecular Genetics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - S. Shahriar Arab
- Department of Biophysics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Puspitasari M, Wardhani Y, Sattwika PD, Wijaya W. Patterns of kidney diseases diagnosed by kidney biopsy and the impact of the COVID-19 pandemic in Yogyakarta, Indonesia: A single-center study. World J Nephrol 2024; 13:100087. [PMID: 39723352 PMCID: PMC11572650 DOI: 10.5527/wjn.v13.i4.100087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/25/2024] [Accepted: 10/20/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND Glomerular diseases rank third among the causes of chronic kidney disease worldwide and in Indonesia, and its burden continues to increase, especially regarding the sociodemographic index. Kidney biopsy remains the gold standard for the diagnosis and classification of glomerular diseases. It is crucial for developing treatment plans, determining the degree of histologic changes, and identifying disease relapse. AIM To describe the patterns of biopsy-proven kidney diseases in adult patients. METHODS We retrospectively reviewed the demographic, histopathologic, clinical, and laboratory data of 75 adult patients with biopsy-proven kidney diseases at our institution recorded from 2017 to 2022. RESULTS Among the patients, 43 (57.3%) were females, and the mean age was 31.52 years ± 11.70 years. The most common histopathologies were lupus nephritis (LN) (33.3%), minimal change disease (MCD) (26.7%), and focal segmental glomerulosclerosis (10.7%). LN (41.7%) was frequently diagnosed in women and MCD (28.1%) in men. The most common cause of nephritic syndrome was LN (36.7%) and of nephrotic syndrome was MCD (40%). CONCLUSION Different kidney disease patterns were observed in different sexes, age categories, clinical syndromes, and biopsy dates relative to the coronavirus disease 2019 pandemic.
Collapse
Affiliation(s)
- Metalia Puspitasari
- Department of Internal Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Yulia Wardhani
- Department of Internal Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Prenali Dwisthi Sattwika
- Department of Internal Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Clinical Epidemiology and Biostatistics Unit, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Radcliffe Department of Medicine, University of Oxford, Oxford OX39DU, Oxfordshire, United Kingdom
| | - Wynne Wijaya
- Department of Internal Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Department of Oncology, University of Oxford, Oxford OX37DQ, Oxfordshire, United Kingdom
| |
Collapse
|
4
|
Guerri F, Junet V, Farrés J, Daura X. MMPred: a tool to predict peptide mimicry events in MHC class II recognition. Front Genet 2024; 15:1500684. [PMID: 39722794 PMCID: PMC11669352 DOI: 10.3389/fgene.2024.1500684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
We present MMPred, a software tool that integrates epitope prediction and sequence alignment algorithms to streamline the computational analysis of molecular mimicry events in autoimmune diseases. Starting with two protein or peptide sets (e.g., from human and SARS-CoV-2), MMPred facilitates the generation, investigation, and testing of mimicry hypotheses by providing epitope predictions specifically for MHC class II alleles, which are frequently implicated in autoimmunity. However, the tool is easily extendable to MHC class I predictions by incorporating pre-trained models from CNN-PepPred and NetMHCpan. To evaluate MMPred's ability to produce biologically meaningful insights, we conducted a comprehensive assessment involving i) predicting associations between known HLA class II human autoepitopes and microbial-peptide mimicry, ii) interpreting these predictions within a systems biology framework to identify potential functional links between the predicted autoantigens and pathophysiological pathways related to autoimmune diseases, and iii) analyzing illustrative cases in the context of SARS-CoV-2 infection and autoimmunity. MMPred code and user guide are made freely available at https://github.com/ComputBiol-IBB/MMPRED.
Collapse
Affiliation(s)
- Filippo Guerri
- Anaxomics Biotech, Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Valentin Junet
- Anaxomics Biotech, Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Xavier Daura
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, Spain
| |
Collapse
|
5
|
Chen J, Wei C, Huang S, Wu S, He R, Chen T, Qin X, Wei W, Qin B, Wu S, Zhu J, Huang C, Feng S, Zhou Z, Zhang B, Xue J, Mo S, Zhou C, Qin Y, Zhan X, Liu C. Elucidating the causal nexus between antibody-mediated immunity and autoimmune diseases: Insights from bidirectional mendelian randomization, gene expression profiling, and drug sensitivity analysis. Int Immunopharmacol 2024; 142:113027. [PMID: 39216119 DOI: 10.1016/j.intimp.2024.113027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE This study aimed to elucidate the causal relationships between antibodies and autoimmune diseases using Mendelian randomization (MR). METHODS Data on 46 antibodies were obtained from genome-wide association studies (GWAS). Autoimmune disease data were sourced from the FinnGen consortium and the IEU OpenGWAS project. Inverse-variance weighted (IVW) analysis was the primary method, supplemented by heterogeneity and sensitivity analyses. We also examined gene expression near significant SNPs and conducted drug sensitivity analyses. RESULTS Antibodies and autoimmune diseases exhibit diverse interactions. Antibodies produced after Polyomavirus infection tend to increase the risk of several autoimmune diseases, while those following Human herpesvirus 6 infection generally reduce it. The impact of Helicobacter pylori infection varies, with different antibodies affecting autoimmune diseases in distinct ways. Overall, antibodies significantly influence the risk of developing autoimmune diseases, whereas autoimmune diseases have a lesser impact on antibody levels. Gene expression and drug sensitivity analyses identified multiple genes and drugs as potential treatment options for ankylosing spondylitis (AS), with the AIF1 gene being particularly promising. CONCLUSIONS Bidirectional MR analysis confirms complex causal relationships between various antibodies and autoimmune diseases, revealing intricate patterns of post-infection antibody interactions. Several drugs and genes, notably AIF1, show potential as candidates for AS treatment, offering new avenues for research. Further exploration of the underlying mechanisms is necessary.
Collapse
Affiliation(s)
- Jiarui Chen
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Cheng Wei
- Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, People's Republic of China; Key Laboratory of Molecular Pathology in Tumors of GuangxiHigher Education Institutions, Baise, Guangxi, 533000, People's Republic of China
| | - Shengsheng Huang
- Spine Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Shaofeng Wu
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Rongqing He
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Tianyou Chen
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xiaopeng Qin
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Wendi Wei
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Boli Qin
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Songze Wu
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jichong Zhu
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Chengqian Huang
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Sitan Feng
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Zhongxian Zhou
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Bin Zhang
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Jiang Xue
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Sen Mo
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Chenxing Zhou
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Yingying Qin
- Emergency Department, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, People's Republic of China
| | - Xinli Zhan
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Chong Liu
- Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
6
|
Lalani S, Knudsen J, Kenney J, Hober D, DiPersio CM, Gerber A. A novel microRNA promotes coxsackievirus B4 infection of pancreatic β cells. Front Immunol 2024; 15:1414894. [PMID: 39697323 PMCID: PMC11652211 DOI: 10.3389/fimmu.2024.1414894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/17/2024] [Indexed: 12/20/2024] Open
Abstract
The epidemiological association of coxsackievirus B infection with type 1 diabetes suggests that therapeutic strategies that reduce viral load could delay or prevent disease onset. Moreover, recent studies suggest that treatment with antiviral agents against coxsackievirus B may help preserve insulin levels in type 1 diabetic patients. In the current study, we performed small RNA-sequencing to show that infection of immortalized trophoblast cells with coxsackievirus caused differential regulation of several miRNAs. One of these, hsa-miR-AMC1, was similarly upregulated in human pancreatic β cells infected with coxsackievirus B4. Moreover, treatment of β cells with non-cytotoxic concentrations of an antagomir that targets hsa-miR-AMC1 led to decreased CVB4 infection, suggesting a positive feedback loop wherein this microRNA further promotes viral infection. Interestingly, some predicted target genes of hsa-miR-AMC1 are shared with hsa-miR-184, a microRNA that is known to suppress genes that regulate insulin production in pancreatic β cells. Consistently, treatment of coxsackievirus B4-infected β cells with the hsa-miR-AMC1 antagomir was associated with a trend toward increased insulin production. Taken together, our findings implicate novel hsa-miR-AMC1 as a potential early biomarker of coxsackievirus B4-induced type 1 diabetes and suggest that inhibiting hsa-miR-AMC1 may provide therapeutic benefit to type 1 diabetes patients. Our findings also support the use of trophoblast cells as a model for identifying microRNAs that might be useful diagnostic markers or therapeutic targets for coxsackievirus B-induced type 1 diabetes.
Collapse
Affiliation(s)
- Salima Lalani
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Joseph Knudsen
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - James Kenney
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, United States
| | - Didier Hober
- Laboratoire de Virologie ULR3610, Univ Lille, Centre Hospitalier Universitaire de Lille, Lille, France
| | - C. Michael DiPersio
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, United States
- Department of Surgery, Albany Medical College, Albany, NY, United States
| | - Allen Gerber
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, United States
- Department of Neurology, Castle Point Medical Center, Wappingers Falls, NY, United States
| |
Collapse
|
7
|
Brisse M, Ly H. Human Primary Macrophages Can Transmit Coxsackie B4 Virus to Pancreatic Cells In Vitro. J Med Virol 2024; 96:e70102. [PMID: 39614711 DOI: 10.1002/jmv.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Affiliation(s)
- Morgan Brisse
- Viral Immunity and Pathogenesis Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA
| |
Collapse
|
8
|
Hu F, Li X, Liu K, Li Y, Xie Y, Wei C, Liu S, Song J, Wang P, Shi L, Li C, Li J, Xu L, Xue J, Zheng X, Bai M, Fang X, Jin X, Cao L, Hao P, He J, Wang J, Zhang C, Li Z. Rheumatoid arthritis patients harbour aberrant enteric bacteriophages with autoimmunity-provoking potential: a paired sibling study. Ann Rheum Dis 2024; 83:1677-1690. [PMID: 39084885 DOI: 10.1136/ard-2024-225564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVES Viruses have been considered as important participants in the development of rheumatoid arthritis (RA). However, the profile of enteric virome and its role in RA remains elusive. This study aimed to investigate the atlas and involvement of virome in RA pathogenesis. METHODS Faecal samples from 30 pairs of RA and healthy siblings that minimise genetic interferences were collected for metagenomic sequencing. The α and β diversity of the virome and the virome-bacteriome interaction were analysed. The differential bacteriophages were identified, and their correlations with clinical and immunological features of RA were analysed. The potential involvement of these differential bacteriophages in RA pathogenesis was further investigated by auxiliary metabolic gene annotation and molecular mimicry study. The responses of CD4+ T cells and B cells to the mimotopes derived from the differential bacteriophages were systemically studied. RESULTS The composition of the enteric bacteriophageome was distorted in RA. The differentially presented bacteriophages correlated with the immunological features of RA, including anti-CCP autoantibody and HLA-DR shared epitope. Intriguingly, the glycerolipid and purine metabolic genes were highly active in the bacteriophages from RA. Moreover, peptides of RA-enriched phages, in particular Prevotella phage and Oscillibacter phage could provoke the autoimmune responses in CD4+ T cells and plasma cells via molecular mimicry of the disease-associated autoantigen epitopes, especially those of Bip. CONCLUSIONS This study provides new insights into enteric bacteriophageome in RA development. In particular, the aberrant bacteriophages demonstrated autoimmunity-provoking potential that would promote the occurrence of the disease.
Collapse
Affiliation(s)
- Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xin Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Kai Liu
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, shanghai, China
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanpeng Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yang Xie
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Chaonan Wei
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Shuyan Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jing Song
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Ping Wang
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Lianjie Shi
- Department of Rheumatology and Immunology, Peking University Shougang Hospital, Beijing, China
| | - Chun Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jing Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Liling Xu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jimeng Xue
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xi Zheng
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Mingxin Bai
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xiangyu Fang
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xu Jin
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Lulu Cao
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Pei Hao
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, shanghai, China
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Chiyu Zhang
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, shanghai, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
9
|
Yang Y, Li L, Tian J, Ma L, Wu Y, Luo Q, Luo Y. Delayed immune-related adverse events profile associated with immune checkpoint inhibitors: a real-world analysis. Front Pharmacol 2024; 15:1453429. [PMID: 39588146 PMCID: PMC11586162 DOI: 10.3389/fphar.2024.1453429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/29/2024] [Indexed: 11/27/2024] Open
Abstract
Background Immune-related adverse events (irAEs) typically occur within 3 months of initiating immune-checkpoint inhibitors (ICIs), which has been extensively documented. But the clinical profiles of late-onset irAEs remain inadequately characterized. Therefore, this study aims to quantify the correlation between delayed irAEs and ICIs, and to delineate the profiles of delayed toxicities associated with ICIs using data from the Food and Drug Administration Adverse Event Reporting System (FAERS). Methods Data from the January 2011 to December 2023 in FAERS database were extracted. Four signal detection indices, reporting odds ratio (ROR), proportional reporting ratio (PRR), Bayesian confidence propagation neural network (BCPNN) and multi-item gamma Poisson shrinker (MGPS), were employed to evaluate the associations between ICIs and delayed irAEs. Results A total of 147,854 cases were included in this study, of which 3,738 cases related to delayed irAEs were identified. Generally, 8 signals at System Organ Class (SOC) level were found to be associated with ICIs. Males had a slightly higher reporting frequencies for respiratory disorders (ROR975 = 0.95) and blood and lymphatic system disorders (ROR025 = 1.22), but lower reporting frequencies for immune system disorders (ROR025 = 1.16). Three monotherapy (anti-PD-1, anti-PD-L1 and anti-CTLA-4) were all associated with significant increasing gastrointestinal disorders (ROR025 = 1.66, 1.16, 1.99) and metabolism disorders (ROR025 = 2.26, 1.74, 3.13). Anti-PD-1 therapy exhibited higher rates of respiratory toxicities (ROR025 = 1.46 versus 0.82) and skin toxicities (ROR025 = 1.27 versus 0.94) compared with anti-CTLA-4 therapy. At PT levels, pneumonitis (ROR025: from 11.85 to 29.27) and colitis (ROR025: from 2.11 to 24.84) were the most notable PT signals associated with all three ICI regimens. For outcomes of delayed irAEs, gastrointestinal disorders showed the highest proportion (51.06%) of death. Conclusion Our pharmacovigilance analysis indicates that a small percentage of patients receiving ICIs therapy experience delayed irAEs, which are challenging to manage and may result in severe consequences. Prompt identification and intervention of these delayed irAEs are crucial in clinical practice.
Collapse
Affiliation(s)
- Yana Yang
- Nursing Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linman Li
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Tian
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linwen Ma
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yaoxin Wu
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Luo
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Yan Luo
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
10
|
James SA, Joshua IA. Charting Peptide Shared Sequences Between 'Diabetes-Viruses' and Human Pancreatic Proteins, Their Structural and Autoimmune Implications. Bioinform Biol Insights 2024; 18:11779322241289936. [PMID: 39502449 PMCID: PMC11536397 DOI: 10.1177/11779322241289936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/21/2024] [Indexed: 11/08/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic syndrome characterized by hyperglycaemia, polydipsia, polyuria, and weight loss, among others. The pathophysiology for the disorders is complex and results in pancreatic abnormal function. Viruses have also been implicated in the metabolic syndrome. This study charted peptides to investigate and predict the autoimmune potential of shared sequences between 8 viral species proteins (which we termed 'diabetes-viruses') and the human pancreatic proteins. The structure and immunological relevance of shared sequences between viruses reported in DM onset and human pancreatic proteins were analysed. At nonapeptide mapping between human pancreatic protein and 'diabetic-viruses', reveal 1064 shared sequences distributed among 454 humans and 4288 viral protein sequences. The viral results showed herpesviruses, enterovirus (EV), human endogenous retrovirus, influenza A viruses, rotavirus, and rubivirus sequences are hosted by the human pancreatic protein. The most common shared nonapeptide was AAAAAAAAA, present in 30 human nonredundant sequences. Among the viral species, the shared sequence NSLEVLFQG occurred in 18 nonredundant EVs protein, while occurring merely in 1 human protein, whereas LGLDIEIAT occurred in 8 influenza A viruses overlapping to 1 human protein and KDELSEARE occurred in 2 rotaviruses. The prediction of the location of the shared sequences in the protein structures, showed most of the shared sequences are exposed and located either on the surface or cleft relative to the entire protein structure. Besides, the peptides in the viral protein shareome were predicted computationally for binding to MHC molecules. Here analyses showed that the entire 1064 shared sequences predicted 203 to be either HLA-A or B supertype-restricted epitopes. Fifty-one of the putative epitopes matched reported HLA ligands/T-cell epitopes majorly coming from EV B supertype representative allele restrictions. These data, shared sequences, and epitope charts provide important insight into the role of viruses on the onset of DM and its implications.
Collapse
Affiliation(s)
- Stephen A James
- Department of Biochemistry, Kaduna State University, Kaduna, Nigeria
- School of Data Sciences, Centre of Bioinformatics, Perdana University, Kuala Lumpur, Malaysia
| | - Istifanus A Joshua
- Department of Community Medicine, College of Medicine, Kaduna State University, Kaduna, Nigeria
- Department of Community Medicine, College of Health Sciences, Federal University Wukari, Wukari, Nigeria
| |
Collapse
|
11
|
Chen LM, Li JB, Wu R. Predictors of COVID-19 severity in autoimmune disease patients: A retrospective study during full epidemic decontrol in China. Heart Lung 2024; 68:272-278. [PMID: 39142089 DOI: 10.1016/j.hrtlng.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Early identification of risk factors for adverse COVID-19 progression in patients with autoimmune diseases is crucial for patient management, but data on the Chinese population are scarce. OBJECTIVES The purpose of this study was to identify predictors of severe COVID-19 in patients using blood cell ratios, such as the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), systemic immune-inflammation index (SII), and other inflammatory markers. METHODS A retrospective study of 855 patients (746 females; median age 49 years) with autoimmune diseases and concurrent COVID-19 was conducted from December 2022 to February 2023 at the Rheumatology and Immunology Department of the First Affiliated Hospital of Nanchang University. Disease severity was assessed according to the 8th edition of the National Health Commission of the People's Republic of China's COVID-19 Diagnosis and Treatment Guidelines. The clinical classification criteria group mild and moderate cases as nonsevere cases and severe and critical cases as severe cases. A multivariate logistic regression model was established to evaluate the relationships between COVID-19 severity and demographic characteristics, comorbidities, medication use, and laboratory findings. RESULTS The PLR, NLR, and SII were significantly greater in the severe COVID-19 group than in the nonsevere group (all P < 0.05). In addition to classical independent clinical risk factors, increases in the PLR (OR: 1.004, 95 % CI: 1.001∼1.007, p = 0.001), NLR (OR: 1.180, 95 % CI: 1.041∼1.337, p = 0.010), and SII (OR: 0.999, 95 % CI: 0.998∼1.000, p = 0.005) were identified as risk factors for severe COVID-19 in patients with autoimmune diseases. After adjusting for clinical risk factors, the PLR (AUC: 0.592 vs. 0.865; P < 0.05), NLR (AUC: 0.670 vs. 0.866; P < 0.05), and SII (AUC: 0.616 vs. 0.864; P < 0.05) demonstrated higher predictive values. CONCLUSION Early prediction of severe COVID-19 in patients with autoimmune diseases can be achieved using the NLR, PLR, and SII.
Collapse
Affiliation(s)
- Li-Ming Chen
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No 17 Yongwaizheng Street, Donghu District, Nanchang City, Jiangxi Province, 330006, China
| | - Jian-Bin Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No 17 Yongwaizheng Street, Donghu District, Nanchang City, Jiangxi Province, 330006, China
| | - Rui Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No 17 Yongwaizheng Street, Donghu District, Nanchang City, Jiangxi Province, 330006, China.
| |
Collapse
|
12
|
Mahin A, Chikmagalur Ravindra S, Ramesh P, Naik P, Raju R, Keshava Prasad TS, Abhinand CS. Unveiling Actin Cytoskeleton Role in Mediating Chikungunya-Associated Arthritis: An Integrative Proteome-Metabolome Study. Vector Borne Zoonotic Dis 2024; 24:753-762. [PMID: 38717066 DOI: 10.1089/vbz.2024.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Background: Chikungunya is a zoonotic disease caused by the Chikungunya virus (CHIKV), primarily transmitted to humans through infected Aedes mosquitoes. The infection is characterized by symptoms such as high fever, musculoskeletal pain, polyarthritis, and a rash, which can lead to severe complications such as encephalitis, meningitis, and even fatalities. While many disease manifestations resemble those of other viral infections, chronic arthritis caused by CHIKV is unique, and its molecular mechanisms remain ill-defined. Materials and Methods: Proteomics data from both cellular and patient levels of CHIKV infection were curated from PubMed and screened using inclusion and exclusion criteria. Patient serum proteomics data obtained from PRIDE underwent reanalysis using Proteome Discoverer 2.2. Enrichment and protein-protein interaction network analysis were conducted on differentially expressed proteins from both serum and cellular datasets. Metabolite data from CHIKV-infected patients were further retrieved, and their protein binding partners were identified using BindingDB. The protein-metabolite interaction pathway was further developed using MetaboAnalyst. Results: The proteomics data analysis revealed differential expression of proteins involved in critical host mechanisms, such as cholesterol metabolism and mRNA splicing, during CHIKV infection. Consistent upregulation of two actin cytoskeleton proteins, TAGLN2 and PFN1, was noted in both serum and cellular datasets, and their upregulations are associated with arthritis. Furthermore, alterations in purine metabolism were observed in the integrative proteome-metabolome analysis, correlating with cytoskeletal remodelling. Conclusion: Collectively, this integrative view sheds light on the involvement of actin cytoskeleton remodeling proteins and purine metabolic pathways in the development of arthritis during CHIKV infection.
Collapse
Affiliation(s)
- Althaf Mahin
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to Be University), Mangalore, India
| | - Sourav Chikmagalur Ravindra
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to Be University), Mangalore, India
- Department of Biosciences, Mangalore University, Mangalore, India
| | - Poornima Ramesh
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to Be University), Mangalore, India
| | - Prashantha Naik
- Department of Biosciences, Mangalore University, Mangalore, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to Be University), Mangalore, India
| | | | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to Be University), Mangalore, India
| |
Collapse
|
13
|
Marzi L, Mega A, Turri C, Gitto S, Ferro F, Spizzo G. Immune Checkpoint Inhibitors in the Pre-Transplant Hepatocellular Carcinoma Setting: A Glimpse Beyond the Liver. Int J Mol Sci 2024; 25:11676. [PMID: 39519230 PMCID: PMC11547112 DOI: 10.3390/ijms252111676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the third leading cause of cancer-related death worldwide. Liver transplantation (LT) is the best therapy for most patients with non-metastatic HCC. In recent years, the management of patients with HCC has considerably changed, thanks to the improvement of molecular biology knowledge and the introduction of immunotherapy. To date, systemic therapy is authorized in the Western world only in patients with advanced HCC. However, this therapy could not only stabilize the tumour disease or improve survival but could display excellent response and lead to downstaging of the tumour that finally permits LT. There are increasing reports of patients that have performed LT after pretreatment with immune checkpoint inhibitors (ICIs). However, due to the intrinsic mechanism of ICIs, graft rejection might be favoured. In addition, chronic adverse effects affecting other organs may also appear after the end of therapy. This review aims to evaluate the readiness and outcomes of LT in patients with advanced HCC who have previously undergone treatment with ICIs. It seeks to identify the challenges, risks, and benefits associated with this conversion therapy. The integration of ICIs into the treatment paradigm for advanced HCC necessitates a nuanced approach to LT. While early evidence supports the feasibility of LT following ICIs therapy, there is an urgent need for standardized guidelines and more extensive longitudinal studies to optimize patient selection, timing, and post-transplant management.
Collapse
Affiliation(s)
- Luca Marzi
- Department of Gastroenterology, Bolzano Regional Hospital (SABES-ASDAA), 39100 Bolzano-Bozen, Italy; (A.M.); (C.T.)
| | - Andrea Mega
- Department of Gastroenterology, Bolzano Regional Hospital (SABES-ASDAA), 39100 Bolzano-Bozen, Italy; (A.M.); (C.T.)
| | - Chiara Turri
- Department of Gastroenterology, Bolzano Regional Hospital (SABES-ASDAA), 39100 Bolzano-Bozen, Italy; (A.M.); (C.T.)
| | - Stefano Gitto
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy;
| | - Federica Ferro
- Department of Radiology, Bolzano Regional Hospital (SABES-ASDAA), 39100 Bolzano-Bozen, Italy;
| | - Gilbert Spizzo
- Department of Internal Medicine, Oncologic Day Hospital, Hospital of Bressanone (SABES-ASDAA), 39042 Bressanone-Brixen, Italy;
| |
Collapse
|
14
|
Maguire C, Wang C, Ramasamy A, Fonken C, Morse B, Lopez N, Wylie D, Melamed E. Molecular mimicry as a mechanism of viral immune evasion and autoimmunity. Nat Commun 2024; 15:9403. [PMID: 39477943 PMCID: PMC11526117 DOI: 10.1038/s41467-024-53658-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Mimicry of host protein structures, or 'molecular mimicry', is a common mechanism employed by viruses to evade the host's immune system. Short linear amino acid (AA) molecular mimics can elicit cross-reactive antibodies and T cells from the host, but the prevalence of such mimics throughout the human virome has not been fully explored. Here we evaluate 134 human-infecting viruses and find significant usage of linear mimicry across the virome, particularly those in the Herpesviridae and Poxviridae families. Furthermore, host proteins related to cellular replication and inflammation, autosomes, the X chromosome, and thymic cells are enriched as viral mimicry targets. Finally, we find that short linear mimicry from Epstein-Barr virus (EBV) is higher in auto-antibodies found in patients with multiple sclerosis than previously appreciated. Our results thus hint that human-infecting viruses leverage mimicry in the course of their infection, and that such mimicry may contribute to autoimmunity, thereby prompting potential targets for therapies.
Collapse
Affiliation(s)
- Cole Maguire
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Chumeng Wang
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Akshara Ramasamy
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Cara Fonken
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Brinkley Morse
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Nathan Lopez
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Dennis Wylie
- Center for Biomedical Research Support, The University of Texas at Austin, Austin, TX, USA
| | - Esther Melamed
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
15
|
Ramirez GA, Calabrese C, Secci M, Moroni L, Gallina GD, Benanti G, Bozzolo EP, Matucci-Cerinic M, Dagna L. Infection-Associated Flares in Systemic Lupus Erythematosus. Pathogens 2024; 13:934. [PMID: 39599487 PMCID: PMC11597141 DOI: 10.3390/pathogens13110934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is characterised by generalised immune dysfunction, including infection susceptibility. Infection-associated flares (IAFs) are common and might rapidly self-resolve, paralleling infection resolution, but their specific clinical phenotype is poorly understood. Therefore, we screened 2039 consecutive visits and identified 134 flares, defined as a loss of the lupus low disease activity state (LLDAS), from 1089 visits at risk spanning over multiple follow-up years, yielding an average yearly LLDAS deterioration rate of 17%. Thirty-eight IAFs were isolated from the total flares and were mostly related to bacterial and herpesvirus infections. When compared to other flares (OFs; n = 98), IAFs showed no milder patterns of organ involvement and similar rates of long-term damage accrual, as estimated by conventional clinimetrics. Arthritis in IAFs was more severe than that in OFs [median (interquartile range) DAS-28 2.6 (2.3-4.1) vs. 2.0 (1.6-2.7); p = 0.02]. Viral IAFs were characterised by atypically lower levels of anti-DNA antibodies (p < 0.001) and possibly abnormally high complement levels when compared to flares of different origin. These data suggest that IAFs are of comparable or even higher severity than OFs and may subtend distinct pathophysiological mechanisms that are poorly tackled by current treatments. Further research is needed to confirm these data.
Collapse
Affiliation(s)
- Giuseppe A. Ramirez
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy; (C.C.); (M.S.); (L.M.); (G.D.G.); (G.B.); (E.P.B.); (M.M.-C.); (L.D.)
- Faculty of Medicine, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Chiara Calabrese
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy; (C.C.); (M.S.); (L.M.); (G.D.G.); (G.B.); (E.P.B.); (M.M.-C.); (L.D.)
- Faculty of Medicine, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Marta Secci
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy; (C.C.); (M.S.); (L.M.); (G.D.G.); (G.B.); (E.P.B.); (M.M.-C.); (L.D.)
- Faculty of Medicine, Università degli Studi di Cagliari, Strada Provinciale 8, 09042 Monserrato (CA), Italy
| | - Luca Moroni
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy; (C.C.); (M.S.); (L.M.); (G.D.G.); (G.B.); (E.P.B.); (M.M.-C.); (L.D.)
- Faculty of Medicine, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Gabriele D. Gallina
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy; (C.C.); (M.S.); (L.M.); (G.D.G.); (G.B.); (E.P.B.); (M.M.-C.); (L.D.)
- Faculty of Medicine, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Giovanni Benanti
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy; (C.C.); (M.S.); (L.M.); (G.D.G.); (G.B.); (E.P.B.); (M.M.-C.); (L.D.)
- Faculty of Medicine, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Enrica P. Bozzolo
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy; (C.C.); (M.S.); (L.M.); (G.D.G.); (G.B.); (E.P.B.); (M.M.-C.); (L.D.)
| | - Marco Matucci-Cerinic
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy; (C.C.); (M.S.); (L.M.); (G.D.G.); (G.B.); (E.P.B.); (M.M.-C.); (L.D.)
- Faculty of Medicine, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy; (C.C.); (M.S.); (L.M.); (G.D.G.); (G.B.); (E.P.B.); (M.M.-C.); (L.D.)
- Faculty of Medicine, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| |
Collapse
|
16
|
Grach SL, Dudenkov DV, Pollack B, Fairweather D, Aakre CA, Munipalli B, Croghan IT, Mueller MR, Overgaard JD, Bruno KA, Collins NM, Li Z, Hurt RT, Tal MC, Ganesh R, Knight DTR. Overlapping conditions in Long COVID at a multisite academic center. Front Neurol 2024; 15:1482917. [PMID: 39524912 PMCID: PMC11543549 DOI: 10.3389/fneur.2024.1482917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Background Many patients experience persistent symptoms after COVID-19, a syndrome referred to as Long COVID (LC). The goal of this study was to identify novel new or worsening comorbidities self-reported in patients with LC. Methods Patients diagnosed with LC (n = 732) at the Mayo Long COVID Care Clinic in Rochester, Minnesota and Jacksonville, Florida were sent questionnaires to assess the development of new or worsening comorbidities following COVID-19 compared to patients with SARS-CoV-2 that did not develop LC (controls). Both groups were also asked questions screening for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), generalized joint hypermobility (GJH) and orthostatic intolerance. 247 people with LC (33.7%) and 40 controls (50%) responded to the surveys. Results In this study LC patients averaged 53 years of age and were predominantly White (95%) women (75%). The greatest prevalence of new or worsening comorbidities following SARS-CoV-2 infection in patients with LC vs. controls reported in this study were pain (94.4% vs. 0%, p < 0.001), neurological (92.4% vs. 15.4%, p < 0.001), sleep (82.8% vs. 5.3%, p < 0.001), skin (69.8% vs. 0%, p < 0.001), and genitourinary (60.6% vs. 25.0%, p = 0.029) issues. 58% of LC patients screened positive for ME/CFS vs. 0% of controls (p < 0.001), 27% positive for GJH compared to 10% of controls (p = 0.026), and a positive average score of 4.0 on orthostatic intolerance vs. 0 (p < 0.001). The majority of LC patients with ME/CFS were women (77%). Conclusion We found that comorbidities across 12 surveyed categories were increased in patients following SARS-CoV-2 infection. Our data also support the overlap of LC with ME/CFS, GJH, and orthostatic intolerance. We discuss the pathophysiologic, research, and clinical implications of identifying these conditions with LC.
Collapse
Affiliation(s)
- Stephanie L. Grach
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Daniel V. Dudenkov
- Department of General Internal Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Beth Pollack
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - DeLisa Fairweather
- Department of General Internal Medicine, Mayo Clinic, Jacksonville, FL, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Jacksonville, FL, United States
| | - Chris A. Aakre
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Bala Munipalli
- Department of General Internal Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Ivana T. Croghan
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
- Division of Quantitative Health Sciences, Rochester, MN, United States
| | - Michael R. Mueller
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Joshua D. Overgaard
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Katelyn A. Bruno
- Department of General Internal Medicine, Mayo Clinic, Jacksonville, FL, United States
- Department of Cardiovascular Medicine, University of Florida, Gainesville, FL, United States
| | - Nerissa M. Collins
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Zhuo Li
- Department of Biostatistics, Mayo Clinic, Jacksonville, FL, United States
| | - Ryan T. Hurt
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Michal C. Tal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Ravindra Ganesh
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Dacre T. R. Knight
- Department of General Internal Medicine, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
17
|
Grandinetti R, Mussi N, Pilloni S, Ramundo G, Miniaci A, Turco E, Piccolo B, Capra ME, Forestiero R, Laudisio S, Boscarino G, Pedretti L, Menoni M, Pellino G, Tagliani S, Bergomi A, Antodaro F, Cantù MC, Bersini MT, Mari S, Mazzini F, Biasucci G, Suppiej A, Esposito S. Pediatric acute-onset neuropsychiatric syndrome and pediatric autoimmune neuropsychiatric disorder associated with streptococcal infections: a delphi study and consensus document about definition, diagnostic criteria, treatment and follow-up. Front Immunol 2024; 15:1420663. [PMID: 39512340 PMCID: PMC11540630 DOI: 10.3389/fimmu.2024.1420663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024] Open
Abstract
Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcal Infections (PANDAS) and Pediatric Acute-onset Neuropsychiatric Syndrome (PANS) are broad diagnoses that encompass a range of sudden-onset neuropsychiatric symptoms in children, which can include obsessive-compulsive disorder (OCD), tics, anxiety, emotional instability, and cognitive difficulties. Unlike PANDAS, PANS is not strictly linked to group A streptococcal infections but can be triggered by various infectious or environmental factors. Lights and shadows remain upon the management of children with PANS and PANDAS and there is no clear consensus regarding definition, diagnostic criteria, treatment, and follow-up. The aim of the present study was to evaluate the level of agreement on PANS and PANDAS definition, diagnostic criteria, treatment and follow-up and to assess on the basis of recent studies whether there is a need to modify the current recommendations used by primary care pediatricians and hospital pediatricians in clinical practice in order to improve outcomes. Using the Delphi method, this consensus provides shared indications on PANS and PANDAS management in pediatric age, based on the most updated literature. This work represents, in our opinion, the most complete and up-to-date information on the diagnosis of PANS and PANDAS, as well as consensus statements about several aspects of clinical care. Undoubtedly, more randomized and controlled trials are needed in the pediatric population to better define the best management, also in terms of adequate follow-up examinations and period of observation.
Collapse
Affiliation(s)
- Roberto Grandinetti
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Nicole Mussi
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simone Pilloni
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Greta Ramundo
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Angela Miniaci
- Pediatric Clinic, IRCCS Azienda Ospedaliera Universitaria di Bologna, Bologna, Italy
| | - Emanuela Turco
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Benedetta Piccolo
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maria Elena Capra
- Pediatrics and Neonatology Unit, Department of Medicine and Surgery, University of Parma, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Roberta Forestiero
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Serena Laudisio
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giovanni Boscarino
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Laura Pedretti
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Martina Menoni
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | - Andrea Bergomi
- Primary Care Pediatricians, Azienda Unit Sanitaria Locale (AUSL) Modena, Modena, Italy
| | - Francesco Antodaro
- Primary Care Pediatricians, Azienda Unit Sanitaria Locale (AUSL) Modena, Modena, Italy
| | - Maria Cristina Cantù
- Primary Care Pediatricians, Azienda Unit Sanitaria Locale (AUSL) Parma, Parma, Italy
| | - Maria Teresa Bersini
- Primary Care Pediatricians, Azienda Unit Sanitaria Locale (AUSL) Parma, Parma, Italy
| | - Sandra Mari
- Primary Care Pediatricians, Azienda Unit Sanitaria Locale (AUSL) Parma, Parma, Italy
| | - Franco Mazzini
- Primary Care Pediatricians, Azienda Unit Sanitaria Locale (AUSL) Romagna, Forlì-Cesena, Italy
| | - Giacomo Biasucci
- Pediatrics and Neonatology Unit, Department of Medicine and Surgery, University of Parma, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | | | - Susanna Esposito
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
18
|
Wu Y, Zhang Z, Wang X, Liu X, Qiu Y, Ge X, Miao Z, Meng X, Peng Y. Virome analysis provides new insights into the pathogenesis mechanism and treatment of SLE disease. Front Cell Infect Microbiol 2024; 14:1484529. [PMID: 39512588 PMCID: PMC11540821 DOI: 10.3389/fcimb.2024.1484529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction This study aimed to investigate the virome diversity of the SLE disease and the association between viral infections and the disease. Methods SLE-related RNA-Seq data were retrieved from public databases. A rigorous computational workflow was employed to identify the human viruses. Differential expression analysis and functional enrichment analysis were conducted in R. Results We identified ten human virus species from 826 RNA-Seq samples of human blood, comprising 688 SLE patients and 138 healthy controls. Eight of the ten virus species exhibited higher positive rates in SLE patients compared to healthy controls, with Human betaherpesvirus 5 (HHV5) having the highest positive rate (4.1%) and being exclusively detected in SLE samples. The virus abundances were low and comparable in both SLE patients and healthy controls. Analysis of the antiviral interferon-stimulated genes (ISGs) in samples showed higher ISG expression levels in HHV4 and HHV5-positive samples compared to virus-negative samples. Several genes that were up-regulated in SLE patients were further up-regulated after HHV5 infection, and they were mainly enriched in immune response-related biological processes. Additionally, the expression levels of several marker genes of SLE severity were compared between HHV5-positive and virus-negative SLE patients, suggesting that HHV5 infection may be associated with aggravated SLE disease. Discussion We found that SLE patients are more susceptible to viral infections than healthy individuals. Viral infections, such as HHV5, may be associated with aggravated SLE disease. This study deepens our understanding of the association between viruses and SLE and provides new insights into prevention and control of the disease.
Collapse
Affiliation(s)
- Yifan Wu
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, China
| | - Zhiyuan Zhang
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, China
| | - Xinglian Wang
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, China
| | - Xun Liu
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, China
| | - Ye Qiu
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, China
| | - Xingyi Ge
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, China
| | - Zhichao Miao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Xiangxian Meng
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, China
| | - Yousong Peng
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha, China
| |
Collapse
|
19
|
Szczawińska-Popłonyk A, Popłonyk N, Awdi K. Down Syndrome in Children: A Primary Immunodeficiency with Immune Dysregulation. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1251. [PMID: 39457216 PMCID: PMC11506678 DOI: 10.3390/children11101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/06/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
Background: The multisystemic features of Down syndrome (DS) in children are accompanied by immunodeficiency, making them susceptible to infections and immune dysregulation with autoimmune, allergic, inflammatory, and hematological complications. This study was aimed at a better understanding of the abnormalities within the B and T cell compartments and their correlations with clinical immunophenotypes. Methods: Medical records of 35 DS children were retrospectively reviewed, referring to clinical symptomatology including history of infections, immune dysregulation disorders, and humoral and cellular immune response. Results: While the etiology of respiratory tract infections included typical viral and bacterial pathogens, SARS-CoV2-induced inflammatory disease and syndromic immunodeficiency contributed significantly to the deterioration of the clinical course. Allergic diseases in the form of asthma, allergic rhinitis, and alimentary allergy were the most frequent manifestations of immune dysregulation and were followed by autoimmune disorders, such as Crohn's disease, celiac disease, autoimmune thyroiditis, and alopecia, as well as inflammatory disorders, balanitis xerotica obliterans and lymphadenopathy, and a hematological disorder of myelopoiesis. Deficiency of serum immunoglobulin levels, reduced numbers of naïve B cells, and non-switched memory B cells along with low naïve T helper cells and significantly reduced regulatory T helper cells were the most prominent immune abnormalities. Conclusions: The loss of naïveté in B and T lymphocyte compartments with a deficiency of regulatory T cells may be underpinning pathomechanisms for the skewed immune response. The clinical immunophenotype in DS is complex and represents syndromic primary immunodeficiency with immune dysregulation.
Collapse
Affiliation(s)
- Aleksandra Szczawińska-Popłonyk
- Department of Pediatric Pneumonology, Allergy and Clinical Immunology, Institute of Pediatrics, Poznań University of Medical Sciences, Szpitalna 27/33, 60-572 Poznań, Poland
| | - Natalia Popłonyk
- Student Scientific Society, Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | - Karina Awdi
- Student Scientific Society, English Division, Poznań University of Medical Sciences, 61-701 Poznań, Poland
| |
Collapse
|
20
|
Valbon SF, Lebel ME, Feldman HA, Condotta SA, Dong M, Giordano D, Waggoner SN, Melichar HJ, Richer MJ. Type I interferon induced during chronic viral infection favors B-cell development in the thymus. Immunol Cell Biol 2024; 102:801-816. [PMID: 39009814 PMCID: PMC11444890 DOI: 10.1111/imcb.12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
Chronic viral infections cause thymic involution yet the potential for broader, longer-term impact on thymic composition remains unexplored. Here we show that chronic, but not acute, lymphocytic choriomeningitis virus infection promotes a unique population of immature B cells in the thymus. We show that chronic viral infection promotes signals within the thymus, including the expression of B-cell activating factor (BAFF), that favor the maturation of this population as these cells acquire expression of CD19 and immunoglobulin M. Mechanistically, type I interferon (IFN-I), predominantly IFNβ, signals to thymic hematopoietic cells, strongly delaying T-cell development at the earliest precursor stage. Furthermore, IFN-I signaling to the nonhematopoietic compartment provides a second signal essential to favor B-cell differentiation and maturation within the thymus. Importantly, chronic infection yields changes in the B-cell population for at least 50 days following infection, long after thymic atrophy has subsided. Thus, the inflammatory milieu induced by chronic viral infection has a profound, and long-lasting, effect on thymic composition leading to the generation of a novel population of thymic B cells.
Collapse
Affiliation(s)
- Stefanie F Valbon
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Department of Microbiology, Immunology and Infectious Disease, University of Montreal, Montreal, QC, Canada
| | - Marie-Eve Lebel
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - H Alex Feldman
- Center for Autoimmune Genomics & Etiology, Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stephanie A Condotta
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
- Cooperative Center for Excellence in Hematology, Indiana University School of Medicine, Indianapolis, IN, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mengqi Dong
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Daniela Giordano
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Stephen N Waggoner
- Center for Autoimmune Genomics & Etiology, Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Heather J Melichar
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Martin J Richer
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
- Cooperative Center for Excellence in Hematology, Indiana University School of Medicine, Indianapolis, IN, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
21
|
Guacci P, Ballabio C, Folegatti A, Giancotti L, Scordo A, Pensabene L, Parma B, Selicorni A, Luini C, Agosti M, Salvatore S. No COVID-19 pandemic impact on incidence and clinical presentation of celiac disease in Italian children. Acta Paediatr 2024; 113:2282-2287. [PMID: 38801140 DOI: 10.1111/apa.17296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
AIM We aimed to evaluate the impact of Coronavirus Disease-19 (COVID-19) pandemic on the incidence and clinical presentation of celiac disease (CD) in children. METHODS The diagnoses of CD were compared between the COVID-19 pandemic (from April 2020 to March 2022) and the pre-pandemic period (from April 2018 to March 2020) in three Italian Paediatric Gastroenterology centres (Varese, Como, Catanzaro). Electronic patient records were reviewed and additional information were collected through parental interview. The diagnosis of CD was made according to ESPGHAN criteria. SARS-CoV-2 infection was diagnosed based on pre-vaccination positive serum antibodies or nasopharyngeal swabs. Z test and chi-square were used for statistical analysis. RESULTS The overall number of paediatric diagnosis of CD did not differ between the two years pre-pandemic and pandemic periods (177 and 172 cases) in the three Italian participating centres. Clinical presentation of CD was also similar throughout the study periods. SARS-CoV-2 infection has been documented in 10.6% of children but only in 5.8% of these occurred before CD diagnosis. CONCLUSION Different to what reported for other autoimmune diseases, the incidence and presenting symptoms of CD in our paediatric population did not change during the COVID-19 pandemic compared to the previous 2 years.
Collapse
Affiliation(s)
- Pietro Guacci
- Pediatric Department, Hospital 'F. Del Ponte', University of Insubria, Varese, Italy
| | - Claudia Ballabio
- Department of Pediatrics, Mariani Foundation Center for Fragile Children, ASST-Lariana, Sant'Anna Hospital, San Fermo della Battaglia, Como, Italy
| | - Alice Folegatti
- Pediatric Department, Hospital 'F. Del Ponte', University of Insubria, Varese, Italy
| | - Laura Giancotti
- Department of Surgical and Medical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Alessia Scordo
- Department of Surgical and Medical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Licia Pensabene
- Department of Surgical and Medical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Barbara Parma
- Department of Surgical and Medical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Angelo Selicorni
- Department of Pediatrics, Mariani Foundation Center for Fragile Children, ASST-Lariana, Sant'Anna Hospital, San Fermo della Battaglia, Como, Italy
| | - Chiara Luini
- Pediatric Department, Hospital 'F. Del Ponte', University of Insubria, Varese, Italy
| | - Massimo Agosti
- Pediatric Department, Hospital 'F. Del Ponte', University of Insubria, Varese, Italy
| | - Silvia Salvatore
- Pediatric Department, Hospital 'F. Del Ponte', University of Insubria, Varese, Italy
| |
Collapse
|
22
|
Dijana P, Marin P, Šimac P, Ana V, Katarina B, Katarina G, Leida T. Antineutrophil cytoplasmic antibody positivity incidence before and during COVID-19 pandemic. Rheumatol Int 2024; 44:1935-1940. [PMID: 38656608 DOI: 10.1007/s00296-024-05596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Affiliation(s)
- Perković Dijana
- Division of Rheumatology and Clinical Immunology, Department of Internal medicine, University hospital of Split, Šoltanska 1, Split, Croatia
- Department of Internal Medicine, School of Medicine, University of Split, Šoltanska 2, Split, Croatia
| | - Petrić Marin
- Division of Rheumatology and Clinical Immunology, Department of Internal medicine, University hospital of Split, Šoltanska 1, Split, Croatia.
| | - Petra Šimac
- Division of Rheumatology and Clinical Immunology, Department of Internal medicine, University hospital of Split, Šoltanska 1, Split, Croatia
| | - Vodanović Ana
- Division of Rheumatology and Clinical Immunology, Department of Internal medicine, University hospital of Split, Šoltanska 1, Split, Croatia
| | - Borić Katarina
- Division of Rheumatology and Clinical Immunology, Department of Internal medicine, University hospital of Split, Šoltanska 1, Split, Croatia
| | - Gugo Katarina
- Department of Medical Laboratory Diagnostics, University hospital of Split, Šoltanska 1, Split, Croatia
| | - Tandara Leida
- Department of Medical Laboratory Diagnostics, University hospital of Split, Šoltanska 1, Split, Croatia
- Laboratory Diagnostics Department, School of Medicine, University of Split, Šoltanska 2, Split, Croatia
| |
Collapse
|
23
|
Ingvarsson J, Grut V, Biström M, Berg LP, Stridh P, Huang J, Hillert J, Alfredsson L, Kockum I, Olsson T, Waterboer T, Nilsson S, Sundström P. Rubella virus seropositivity after infection or vaccination as a risk factor for multiple sclerosis. Eur J Neurol 2024; 31:e16387. [PMID: 39023088 DOI: 10.1111/ene.16387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a demyelinating disease affecting millions of people worldwide. Hereditary susceptibility and environmental factors contribute to disease risk. Infection with Epstein-Barr virus (EBV) and human herpesvirus 6A (HHV-6A) have previously been associated with MS risk. Other neurotropic viruses, such as rubella virus (RV), are possible candidates in MS aetiopathogenesis, but previous results are limited and conflicting. METHODS In this nested case-control study of biobank samples in a Swedish cohort, we analysed the serological response towards RV before the clinical onset of MS with a bead-based multiplex assay in subjects vaccinated and unvaccinated towards RV. The association between RV seropositivity and MS risk was analysed with conditional logistic regression. RESULTS Seropositivity towards RV was associated with an increased risk of MS for unvaccinated subjects, even when adjusting for plausible confounders including EBV, HHV-6A, cytomegalovirus and vitamin D (adjusted odds ratio [AOR] = 4.0, 95% confidence interval [CI] 1.8-8.8). Cases also had stronger antibody reactivity towards rubella than controls, which was not seen for other neurotropic viruses such as herpes simplex or varicella zoster. Furthermore, we observed an association between RV seropositivity and MS in vaccinated subjects. However, this association was not significant when adjusting for the aforementioned confounders (AOR = 1.7, 95% CI 1.0-2.9). CONCLUSIONS To our knowledge, these are the first reported associations between early RV seropositivity and later MS development. This suggests a broadening of the virus hypothesis in MS aetiology, where molecular mimicry between rubella epitopes and human central nervous system molecules could be an attractive possible mechanism.
Collapse
Affiliation(s)
- Jens Ingvarsson
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Viktor Grut
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Martin Biström
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Linn Persson Berg
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pernilla Stridh
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jesse Huang
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lars Alfredsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Tim Waterboer
- Division of Infections and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Staffan Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Peter Sundström
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| |
Collapse
|
24
|
Pepino C, Malerba F, Biagioli V, D’Ambrosio T, Zampatti N, Canzoneri F, Ferro J, Crocco M. SARS-CoV-2 Vaccination Coverage in Italian Children with Celiac Disease. J Clin Med 2024; 13:5851. [PMID: 39407910 PMCID: PMC11477183 DOI: 10.3390/jcm13195851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Celiac disease (CD) is the most common multisystemic autoimmune disorder affecting the pediatric population. However, little data is available regarding SARS-CoV-2 vaccination coverage in pediatric patients with CD. This study aims to evaluate the adherence to national recommendations for SARS-CoV-2 vaccination in children and adolescents with CD and its variation over time. Methods: We retrospectively analyzed medical charts and electronic registry records of SARS-CoV-2 vaccination of patients aged 0-19 years diagnosed with CD in a tertiary center. The vaccination coverage was evaluated according to age groups (young children, children, and adolescents), considering the patients' eligibility for vaccination at different times. Results: Among the 172 patients enrolled, 44.8% received at least one dose of the SARS-CoV-2 vaccine, showing no significant differences compared to the Italian population of similar age. Vaccination coverage demonstrated a progressive reduction after an initial peak (up to 65.5% in December 2021) concomitant with a gradual extension of vaccinable eligibility and falling SARS-CoV-2 infections. Histological diagnosis and the presence of other associated autoimmune diseases were associated with higher levels of adherence to vaccination. Conclusions: Adherence to the SARS-CoV-2 vaccination in young Italian children with CD was very low, while it was better in adolescents and patients with other associated autoimmune diseases. Vaccine hesitancy remains a concern, particularly among those diagnosed using the biopsy-sparing approach. Hesitancy increased during the pandemic period, suggesting the need for ongoing efforts to improve adherence to SARS-CoV-2 vaccination recommendations.
Collapse
Affiliation(s)
- Carlotta Pepino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health, University of Genova, 16100 Genova, Italy; (C.P.); (F.M.); (V.B.); (N.Z.); (F.C.)
| | - Federica Malerba
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health, University of Genova, 16100 Genova, Italy; (C.P.); (F.M.); (V.B.); (N.Z.); (F.C.)
- Paediatric Clinic, University of Ferrara, 44124 Ferrara, Italy;
| | - Valentina Biagioli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health, University of Genova, 16100 Genova, Italy; (C.P.); (F.M.); (V.B.); (N.Z.); (F.C.)
| | | | - Noemi Zampatti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health, University of Genova, 16100 Genova, Italy; (C.P.); (F.M.); (V.B.); (N.Z.); (F.C.)
| | - Francesca Canzoneri
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health, University of Genova, 16100 Genova, Italy; (C.P.); (F.M.); (V.B.); (N.Z.); (F.C.)
| | - Jacopo Ferro
- Pathology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Marco Crocco
- Pediatric Gastroenterology and Endoscopy Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| |
Collapse
|
25
|
Li J, Li B. EBNA-1 antibody and autoimmune rheumatic diseases: A Mendelian Randomization Study. Heliyon 2024; 10:e37045. [PMID: 39286141 PMCID: PMC11402932 DOI: 10.1016/j.heliyon.2024.e37045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Background Numerous studies have investigated a possible correlation between Epstein-Barr virus (EBV) and autoimmune rheumatic diseases (ARDs). However, establishing a cause-and-effect relationship remains a challenging endeavor. This study employs Mendelian randomization to examine the impact of EBV nuclear antigen-1 antibody (EBNA-1) antibody levels on the susceptibility to nine distinct ARDs, including rheumatoid arthritis (RA), primary Sjogren's syndrome (PSS), systemic lupus erythematosus (SLE), undifferentiated reactive arthritis (UA), systemic sclerosis (SSc), adult-onset Still's disease (AOSD), psoriatic arthritis (PsA), dermatomyositis (DM), and ankylosing spondylitis (AS). Methods The researchers applied a two-sample Mendelian randomization approach, utilizing online data from separate cohorts of European descent. We drew upon data from GWAS related to EBNA-1 antibody levels and the nine autoimmune-related disorders. Our primary analyses predominantly relied on the Inverse Variance Weighted methodology, complemented by a range of sensitivity assessments. Results Our analysis revealed significant direct associations between EBNA-1 antibody levels and the risk of developing PSS (95 % CI: 0.44 to 0.85, p = 0.003), PsA (95 % CI: 0.36 to 0.99, p = 0.044), AS (95 % CI: 0.07 to 0.88, p = 0.031), and UA (95 % CI: 0.56 to 0.96, p = 0.025). These results remained consistent through comprehensive sensitivity analyses. However, no clear associations were found for the other specified conditions. Conclusions Our findings provide compelling evidence that EBNA-1 antibody levels play a role in developing ARDs. These findings enhance our understanding of ARD pathogenesis and hold substantial promise for developing potential treatment strategies.
Collapse
Affiliation(s)
- Jinjiao Li
- Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Bao Li
- Qilu Medical University, Zibo, 255000, Shandong Province, China
| |
Collapse
|
26
|
Georgopoulos AP, James LM. Immunogenetic profiles of 9 human herpes virus envelope glycoproteins. Sci Rep 2024; 14:20924. [PMID: 39251790 PMCID: PMC11385983 DOI: 10.1038/s41598-024-71558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Human herpes viruses (HHV) are ubiquitous and have been implicated in numerous long-term health conditions. Since the association between viral exposure and long-term health impacts is partially influenced by variation in human leukocyte antigen (HLA) genes, we evaluated in silico the binding affinities of 9 HHV envelope glycoproteins with 127 common HLA Class I and Class II molecules. The findings show substantial variability in HHV binding affinity across viruses, HLA Class, HLA genes, and HLA alleles. Specific findings were as follows: (1) the predicted binding affinities of HHVs were characterized by four distinct groupings-[HHV1, HHV2], [HHV3, HHV4, HHV5], [HHV6A], [HHV6B, HHV7, HHV8]-with relatively lower binding affinities for HHV1, HHV2, and HHV6a compared to other HHVs; (2) significantly higher binding affinity was found for HLA Class I relative to Class II; (3) analyses within each class demonstrated that alleles of the C gene (for Class I) and DRB1 gene (for Class II) had the highest binding affinities; and (4) for each virus, predicted binding affinity to specific alleles varied, with HHV6a having the lowest affinity for HHV-HLA complexes, and HHV3, HHV4, and HHV5 having the highest. Since HLA-antigen binding is the first step in initiating an immune response to foreign antigens, these relative differences in HHV binding affinities are likely to influence long-term health impacts such that the cells infected with viruses associated with higher binding affinities across common HLA alleles may be more reduced in numbers, thereby lowering the potential for long-term sequelae of their infections.
Collapse
Affiliation(s)
- Apostolos P Georgopoulos
- The HLA Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis VAMC, One Veterans Drive, Minneapolis, MN, 55417, USA.
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA.
- Institute for Health Informatics, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Lisa M James
- The HLA Research Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis VAMC, One Veterans Drive, Minneapolis, MN, 55417, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
27
|
Giménez-Orenga K, Martín-Martínez E, Oltra E. Over-Representation of Torque Teno Mini Virus 9 in a Subgroup of Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Pilot Study. Pathogens 2024; 13:751. [PMID: 39338942 PMCID: PMC11435283 DOI: 10.3390/pathogens13090751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic disorder classified by the WHO as postviral fatigue syndrome (ICD-11 8E49 code). Diagnosing ME/CFS, often overlapping with fibromyalgia (FM), is challenging due to nonspecific symptoms and lack of biomarkers. The etiology of ME/CFS and FM is poorly understood, but evidence suggests viral infections play a critical role. This study employs microarray technology to quantitate viral RNA levels in immune cells from ME/CFS, FM, or co-diagnosed cases, and healthy controls. The results show significant overexpression of the Torque Teno Mini Virus 9 (TTMV9) in a subgroup of ME/CFS patients which correlate with abnormal HERV and immunological profiles. Increased levels of TTMV9 transcripts accurately discriminate this subgroup of ME/CFS patients from the other study groups, showcasing its potential as biomarker for patient stratification and the need for further research into its role in the disease. Validation of the findings seems granted in extended cohorts by continuation studies.
Collapse
Affiliation(s)
- Karen Giménez-Orenga
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | | | - Elisa Oltra
- Department of Pathology, School of Medicine and Health Sciences, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain
| |
Collapse
|
28
|
Arévalo-Cortés A, Rodriguez-Pinto D, Aguilar-Ayala L. Evidence for Molecular Mimicry between SARS-CoV-2 and Human Antigens: Implications for Autoimmunity in COVID-19. Autoimmune Dis 2024; 2024:8359683. [PMID: 39247752 PMCID: PMC11380714 DOI: 10.1155/2024/8359683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
As for other viral diseases, the mechanisms behind the apparent relationship between COVID-19 and autoimmunity are yet to be clearly defined. Molecular mimicry, the existence of sequence and/or conformational homology between viral and human antigens, could be an important contributing factor. Here, we review the accumulated evidence supporting the occurrence of mimicry between SARS-CoV-2 and human proteins. Both bioinformatic approaches and antibody cross-reactions have yielded a significant magnitude of mimicry events, far more common than expected to happen by chance. The clinical implication of this phenomenon is ample since many of the identified antigens may participate in COVID-19 pathophysiology or are targets of autoimmune diseases. Thus, autoimmunity related to COVID-19 may be partially explained by molecular mimicry and further research designed specifically to address this possibility is needed.
Collapse
Affiliation(s)
| | - Daniel Rodriguez-Pinto
- Department of Health Sciences Faculty of Health Sciences Universidad Técnica Particular de Loja, Loja 110108, Ecuador
| | - Leonardo Aguilar-Ayala
- Department of Health Sciences Faculty of Health Sciences Universidad Técnica Particular de Loja, Loja 110108, Ecuador
| |
Collapse
|
29
|
Osyodlo GV, Husieva SA, Svicharova SV, Savichan KV. Autoimmune Hemolytic Anemia Associated with COVID-19 Infection in a Patient with High Cardio-metabolic Risk. Mil Med 2024; 189:e2274-e2279. [PMID: 38015753 DOI: 10.1093/milmed/usad446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023] Open
Abstract
The article analyses data on the occurrence of hematological abnormalities in severe acute respiratory syndrome 2 infection. Among these hematological abnormalities, the majority of patients develop a hypercoagulable state associated with thromboembolic complications and poor prognosis. Approximately one-third of patients with severe acute respiratory syndrome 2 infection are diagnosed with mild to severe thrombocytopenia. Another hematological autoimmune disease observed in patients with coronavirus disease 2019 is autoimmune hemolytic anemia. A clinical case with the development of autoimmune hemolytic anemia in the setting of coronavirus infection was described. The diagnosis was based on the presence of anemia, reticulocytosis, a significant decrease in haptoglobin levels, and a positive antiglobulin test (Coombs test). Given the comorbidity, the risks of adverse effects of severe coronavirus disease were high, despite this, it was possible to achieve clinical and hematological remission of autoimmune hemolytic anemia by prescribing pathogenetic therapy with anti-CD-20 monoclonal antibody (rituximab), recombinant erythropoietin and glucocorticoid hormones. This clinical case demonstrates the possibility of successful treatment of patients with severe hemolytic anemia. Special attention should be paid to the discrepancy between the severity of the condition and objective data. This case demonstrates the need for a more in-depth approach to each patient with anemia associated with coronavirus disease infection, namely, in the presence of anemic syndrome, it is imperative to include a full range of laboratory tests.
Collapse
Affiliation(s)
- Galyna V Osyodlo
- Military Therapy Department, Ukrainian Military Medical Academy, Kyiv 01010, Ukraine
| | - Svitlana A Husieva
- Military Therapy Department, Ukrainian Military Medical Academy, Kyiv 01010, Ukraine
| | - Svitlana V Svicharova
- Military Therapy Department, Ukrainian Military Medical Academy, Kyiv 01010, Ukraine
| | - Kyrylo V Savichan
- Military Therapy Department, Ukrainian Military Medical Academy, Kyiv 01010, Ukraine
| |
Collapse
|
30
|
Xu Y, Yang Z, Wang T, Hu L, Jiao S, Zhou J, Dai T, Feng Z, Li S, Meng Q. From molecular subgroups to molecular targeted therapy in rheumatoid arthritis: A bioinformatics approach. Heliyon 2024; 10:e35774. [PMID: 39220908 PMCID: PMC11365346 DOI: 10.1016/j.heliyon.2024.e35774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
1Background Rheumatoid Arthritis (RA) is a heterogeneous autoimmune disease with multiple unidentified pathogenic factors. The inconsistency between molecular subgroups poses challenges for early diagnosis and personalized treatment strategies. In this study, we aimed to accurately distinguish RA patients at the transcriptome level using bioinformatics methods. 2Methods We collected a total of 362 transcriptome datasets from RA patients in three independent samples from the GEO database. Consensus clustering was performed to identify molecular subgroups, and clinical features were assessed. Differential analysis was employed to annotate the biological functions of specifically upregulated genes between subgroups. 3Results Based on consensus clustering of RA samples, we identified three robust molecular subgroups, with Subgroup III representing the high-risk subgroup and Subgroup II exhibiting a milder phenotype, possibly associated with relatively higher levels of autophagic ability. Subgroup I showed biological functions mainly related to viral infections, cellular metabolism, protein synthesis, and inflammatory responses. Subgroup II involved autophagy of mitochondria and organelles, protein localization, and organelle disassembly pathways, suggesting heterogeneity in the autophagy process of mitochondria that may play a protective role in inflammatory diseases. Subgroup III represented a high-risk subgroup with pathological processes including abnormal amyloid precursor protein activation, promotion of inflammatory response, and cell proliferation. 4Conclusion The classification of the RA dataset revealed pathological heterogeneity among different subgroups, providing new insights and a basis for understanding the molecular mechanisms of RA, identifying potential therapeutic targets, and developing personalized treatment approaches.
Collapse
Affiliation(s)
- Yangyang Xu
- Guizhou Medical University, Guiyang City, Guizhou Province, China
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Zhenyu Yang
- Jinan University, Guangzhou, Guangdong Province, China
- Xuzhou New Health Hospital, North Hospital of Xuzhou Cancer Hospital, Xuzhou City, Jiangsu Province, China
| | - Tengyan Wang
- Guizhou Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Guiyang City, Guizhou Province, China
| | - Liqiong Hu
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Songsong Jiao
- Jinan University, Guangzhou, Guangdong Province, China
| | - Jiangfei Zhou
- Jinan University, Guangzhou, Guangdong Province, China
| | - Tianming Dai
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Zhencheng Feng
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Siming Li
- Guizhou Medical University, Guiyang City, Guizhou Province, China
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Qinqqi Meng
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
31
|
Burlaka I, Mityuryayeva I, Sevastiian O, Kachula I. Onset of Type I Diabetes Followed by Scleroderma Syndrome in a Child After the COVID-19: A Case Report. Glob Pediatr Health 2024; 11:2333794X241276356. [PMID: 39219561 PMCID: PMC11365024 DOI: 10.1177/2333794x241276356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/10/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Morphea, is a chronic inflammatory disease of the dermis and subcutaneous tissue. Research has indicated a connection between morphea and Type I Diabetes (T1D). COVID-19 can cause autoimmune diseases like scleroderma, T1D, systemic lupus erythematosus, and others. A 12-year-old girl with type 1 diabetes who was on insulin therapy was brought into the clinic for a metabolic evaluation. The patient had induration, skin hardness, and cutaneous erythema upon inspection. The onset of T1D was following a mild COVID-19 infection. Signs of morphea merged 3 months after the onset of T1D. Known as "long-term COVID," this sickness phase that follows the acute stage of COVID-19 is most likely the result of autoimmune activation. As this patient under evaluation reveals, COVID-19 has been demonstrated in the literature to cause the production of autoantibodies and to either cause or worsen autoimmune disorders in people who have a genetic susceptibility.
Collapse
|
32
|
McClelland AC, Benitez SJ, Burns J. COVID-19 Neuroimaging Update: Pathophysiology, Acute Findings, and Post-Acute Developments. Semin Ultrasound CT MR 2024; 45:318-331. [PMID: 38518814 DOI: 10.1053/j.sult.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
COVID-19 has prominent effects on the nervous system with important manifestations on neuroimaging. In this review, we discuss the neuroimaging appearance of acute COVID-19 that became evident during the early stages of the pandemic. We highlight the underlying pathophysiology mediating nervous system effects and neuroimaging appearances including systemic inflammatory response such as cytokine storm, coagulopathy, and para/post-infections immune mediated phenomena. We also discuss the nervous system manifestations of COVID-19 and the role of imaging as the pandemic has evolved over time, including related to the development of vaccines and the emergence of post-acute sequalae such as long COVID.
Collapse
Affiliation(s)
| | - Steven J Benitez
- Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Judah Burns
- Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
33
|
Rodriguez‐Nava G, El Kamari V, Chang H, Egoryan G, Bonilla HF. New-onset sarcoidosis in a patient with long COVID. Clin Case Rep 2024; 12:e9186. [PMID: 39130813 PMCID: PMC11316136 DOI: 10.1002/ccr3.9186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 06/04/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Long COVID, often following SARS-CoV-2 infection, may stem from sustained inflammation, overlapping with autoimmune diseases like sarcoidosis. Though specific treatments lack, this link could shape future diagnostic and therapeutic methods.
Collapse
Affiliation(s)
- Guillermo Rodriguez‐Nava
- Division of Infectious Diseases and Geographic Medicine, Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| | - Vanessa El Kamari
- Division of Infectious Diseases and Geographic Medicine, Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| | - Harvey Chang
- Department of PathologyMemorial Medical CenterModestoCaliforniaUSA
| | - Goar Egoryan
- Division of Oncology, Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| | - Hector F. Bonilla
- Division of Infectious Diseases and Geographic Medicine, Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
- Stanford Post‐Acute COVID‐19 Syndrome ClinicStanford Health CareStanfordCaliforniaUSA
- Stanford Myalgic Encephalomyelitis/Chronic Fatigue Syndrome ClinicStanford Health CareStanfordCaliforniaUSA
| |
Collapse
|
34
|
Asakura M, Mizutani Y, Shima S, Kawamura Y, Ueda A, Ito M, Mutoh T, Yoshikawa T, Watanabe H. Elevated cerebrospinal fluid IgG index in herpes simplex encephalitis post-HSV-1 clearance: A preliminary study. J Med Virol 2024; 96:e29850. [PMID: 39119996 DOI: 10.1002/jmv.29850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Herpes simplex encephalitis (HSE) is an acute form of encephalitis that can lead to poor neurological outcomes. Although the exact pathogenesis of HSE remains elusive, recent reports suggest a significant role for postinfectious immune-inflammatory processes in the central nervous system (CNS). This study aimed to clarify the association between CNS autoimmune responses and clinical presentation in patients with HSE, focusing on cerebrospinal fluid (CSF) characteristics, particularly the IgG index. We retrospectively analyzed 176 consecutive patients suspected of having aseptic meningitis /encephalitis for chronological changes in CSF findings and clinical presentations. These patients underwent PCR screening for herpesviruses (HV) in their CSF. We identified seven patients positive for herpes simplex virus type 1 (HSV-1), 20 patients positive for varicella-zoster virus, and 17 patients who met the criteria for aseptic meningitis but were PCR-negative for HV. Patients in the HSV-1-positive group exhibited a significant increase in the IgG index at the time of PCR-negative conversion compared with on admission (p = 0.0156), while such a change was not observed in the other two groups. Additionally, all patients in the HSV-1-positive group tested negative for anti-neural autoantibodies in CSF and serum samples collected approximately 3 weeks after onset. This study, therefore, highlights that CSF IgG index elevation occurs even after PCR-confirmed HSV-1 clearance, which might indicate immunopathogenesis that is independent of antibody-mediated mechanisms.
Collapse
Affiliation(s)
- Mao Asakura
- Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yasuaki Mizutani
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Sayuri Shima
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yoshiki Kawamura
- Department of Pediatrics, Fujita Health University Okazaki Medical Center, Okazaki, Aichi, Japan
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Akihiro Ueda
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Mizuki Ito
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Tatsuro Mutoh
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Fujita Health University Central Japan International Airport Clinic, Tokoname, Aichi, Japan
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Hirohisa Watanabe
- Department of Neurology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
35
|
Morozov S, Batskikh S. Reactivation of hepatitis B virus infection - an important aspect of multifaceted problem. World J Gastroenterol 2024; 30:3193-3197. [PMID: 39086636 PMCID: PMC11287409 DOI: 10.3748/wjg.v30.i26.3193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/28/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024] Open
Abstract
In this editorial we comment on the article published in the recent issue of the World Journal of Gastroenterology. We focus specifically on the problem of occult hepatitis B virus (HBV) infection, that is a result of previous hepatitis B (PHB) and a source for reactivation of HBV. The prevalence of PHB is underestimated due to the lack of population testing programs. However, this condition not only complicate anticancer treatment, but may be responsible for the development of other diseases, like cancer or autoimmune disorders. Here we unveil possible mechanisms responsible for realization of these processes and suggest practical approaches for diagnosis and treatment.
Collapse
Affiliation(s)
- Sergey Morozov
- Department of Gastroenterology, Hepatology and Nutrition, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow 115446, Russia
| | - Sergey Batskikh
- Department of Hepatology, Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow 111123, Russia
| |
Collapse
|
36
|
Yasmeen F, Pirzada RH, Ahmad B, Choi B, Choi S. Understanding Autoimmunity: Mechanisms, Predisposing Factors, and Cytokine Therapies. Int J Mol Sci 2024; 25:7666. [PMID: 39062908 PMCID: PMC11277571 DOI: 10.3390/ijms25147666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Autoimmunity refers to an organism's immune response against its own healthy cells, tissues, or components, potentially leading to irreversible damage to vital organs. Central and peripheral tolerance mechanisms play crucial roles in preventing autoimmunity by eliminating self-reactive T and B cells. The disruption of immunological tolerance, characterized by the failure of these mechanisms, results in the aberrant activation of autoreactive lymphocytes that target self-tissues, culminating in the pathogenesis of autoimmune disorders. Genetic predispositions, environmental exposures, and immunoregulatory disturbances synergistically contribute to the susceptibility and initiation of autoimmune pathologies. Within the realm of immune therapies for autoimmune diseases, cytokine therapies have emerged as a specialized strategy, targeting cytokine-mediated regulatory pathways to rectify immunological imbalances. Proinflammatory cytokines are key players in inducing and propagating autoimmune inflammation, highlighting the potential of cytokine therapies in managing autoimmune conditions. This review discusses the etiology of autoimmune diseases, current therapeutic approaches, and prospects for future drug design.
Collapse
Affiliation(s)
- Farzana Yasmeen
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Rameez Hassan Pirzada
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Bilal Ahmad
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Bogeum Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| |
Collapse
|
37
|
Tsay GJ, Zouali M. Cellular pathways and molecular events that shape autoantibody production in COVID-19. J Autoimmun 2024; 147:103276. [PMID: 38936147 DOI: 10.1016/j.jaut.2024.103276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/26/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
A hallmark of COVID-19 is the variety of complications that follow SARS-CoV-2 infection in some patients, and that target multiple organs and tissues. Also remarkable are the associations with several auto-inflammatory disorders and the presence of autoantibodies directed to a vast array of antigens. The processes underlying autoantibody production in COVID-19 have not been completed deciphered. Here, we review mechanisms involved in autoantibody production in COVID-19, multisystem inflammatory syndrome in children, and post-acute sequelae of COVID19. We critically discuss how genomic integrity, loss of B cell tolerance to self, superantigen effects of the virus, and extrafollicular B cell activation could underly autoantibody proaction in COVID-19. We also offer models that may account for the pathogenic roles of autoantibodies in the promotion of inflammatory cascades, thromboembolic phenomena, and endothelial and vascular deregulations.
Collapse
Affiliation(s)
- Gregory J Tsay
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan
| | - Moncef Zouali
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| |
Collapse
|
38
|
Kollecker T, Nistal M, Waltz V, Ehard F, Moellers M, Gundling F. [Takayasu arteritis after COVID-19 infection in a 26-year-old female patient with Crohn's disease]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:1042-1047. [PMID: 38417807 DOI: 10.1055/a-2187-9295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Extraintestinal manifestations, e.g. of the skin, joints or liver, are frequently found in Crohn's disease. We report about a 26-year-old female patient with longstanding Crohn's disease, who was admitted to our hospital with suspicion of an acute attack with suggestive symptoms and increased significantly inflammatory parameters. Shortly before, symptomatic COVID-19 disease (SARS-CoV-2 variant omicron) had been made. Comprehensive endoscopic and imaging diagnostics ruled out active Crohn's disease. However, inflammatory thickening of the aortic arch was seen, and a diagnosis of Takayasu arteritis (type II b) was made. Steroid therapy resulted in a rapid and sustained improvement of clinical symptoms. The occurrence of Takayasu arteritis is extremely rare outside Japan. An coincidence has been described in chronic inflammatory bowel diseases and is discussed as a possible extraintestinal manifestation. The occurrence of immune-mediated disease after COVID-19 disease has been described and may be triggered by the infection. Patients with inflammatory bowel disease may represent a special risk population.
Collapse
Affiliation(s)
| | | | - Volker Waltz
- Ambulantes rheumatologisches Behandlungszentrum Obermain, Germany
| | - Florian Ehard
- Institut für Radiologie, Bamberg Hospital, Bamberg, Germany
| | - Mark Moellers
- Institut für Nuklearmedizin, Bamberg Hospital, Bamberg, Germany
| | | |
Collapse
|
39
|
Kombe Kombe AJ, Fotoohabadi L, Nanduri R, Gerasimova Y, Daskou M, Gain C, Sharma E, Wong M, Kelesidis T. The Role of the Nrf2 Pathway in Airway Tissue Damage Due to Viral Respiratory Infections. Int J Mol Sci 2024; 25:7042. [PMID: 39000157 PMCID: PMC11241721 DOI: 10.3390/ijms25137042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Respiratory viruses constitute a significant cause of illness and death worldwide. Respiratory virus-associated injuries include oxidative stress, ferroptosis, inflammation, pyroptosis, apoptosis, fibrosis, autoimmunity, and vascular injury. Several studies have demonstrated the involvement of the nuclear factor erythroid 2-related factor 2 (Nrf2) in the pathophysiology of viral infection and associated complications. It has thus emerged as a pivotal player in cellular defense mechanisms against such damage. Here, we discuss the impact of Nrf2 activation on airway injuries induced by respiratory viruses, including viruses, coronaviruses, rhinoviruses, and respiratory syncytial viruses. The inhibition or deregulation of Nrf2 pathway activation induces airway tissue damage in the presence of viral respiratory infections. In contrast, Nrf2 pathway activation demonstrates protection against tissue and organ injuries. Clinical trials involving Nrf2 agonists are needed to define the effect of Nrf2 therapeutics on airway tissues and organs damaged by viral respiratory infections.
Collapse
Affiliation(s)
- Arnaud John Kombe Kombe
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Leila Fotoohabadi
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Ravikanth Nanduri
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Yulia Gerasimova
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
| | - Maria Daskou
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Chandrima Gain
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Eashan Sharma
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Wong
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Theodoros Kelesidis
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.J.K.K.)
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
40
|
Ishihara R, Watanabe R, Shiomi M, Katsushima M, Fukumoto K, Yamada S, Okano T, Hashimoto M. Exploring the Link between Varicella-Zoster Virus, Autoimmune Diseases, and the Role of Recombinant Zoster Vaccine. Biomolecules 2024; 14:739. [PMID: 39062454 PMCID: PMC11274381 DOI: 10.3390/biom14070739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The varicella-zoster virus (VZV) is a human neurotropic herpes virus responsible for varicella and herpes zoster (HZ). Following primary infection in childhood, VZV manifests as varicella (chickenpox) and enters a period of latency within the dorsal root ganglion. A compromised cellular immune response due to aging or immunosuppression triggers viral reactivation and the development of HZ (shingles). Patients with autoimmune diseases have a higher risk of developing HZ owing to the immunodeficiency associated with the disease itself and/or the use of immunosuppressive agents. The introduction of new immunosuppressive agents with unique mechanisms has expanded the treatment options for autoimmune diseases but has also increased the risk of HZ. Specifically, Janus kinase (JAK) inhibitors and anifrolumab have raised concerns regarding HZ. Despite treatment advances, a substantial number of patients suffer from complications such as postherpetic neuralgia for prolonged periods. The adjuvanted recombinant zoster vaccine (RZV) is considered safe and effective even in immunocompromised patients. The widespread adoption of RZV may reduce the health and socioeconomic burdens of HZ patients. This review covers the link between VZV and autoimmune diseases, assesses the risk of HZ associated with immunosuppressant use, and discusses the benefits and risks of using RZV in patients with autoimmune diseases.
Collapse
Affiliation(s)
- Ryuhei Ishihara
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Ryu Watanabe
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Mayu Shiomi
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Masao Katsushima
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Kazuo Fukumoto
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Shinsuke Yamada
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Tadashi Okano
- Center for Senile Degenerative Disorders (CSDD), Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Motomu Hashimoto
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan
| |
Collapse
|
41
|
Wang C, Jiang H, Chen S, Zhao Y, Li J, Huang C, Zhou Y, Wang Q, Tian X, Li M, Zeng X, Zhao Y, Wu C, Zhao J. Exploring the impact of acute viral exposure on clinical characteristics and antibody profiles in antiphospholipid syndrome: a study in CAPSTONE. Clin Exp Med 2024; 24:130. [PMID: 38888664 PMCID: PMC11189343 DOI: 10.1007/s10238-024-01400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
The relationship between antiphospholipid syndrome (APS) and acute viral infection, such as SARS-CoV-2, is unclear. This study aims to assess symptoms, antiphospholipid antibody (aPL) fluctuations, and complication risks in APS patients infected with SARS-CoV-2. APS patients from Peking Union Medical College Hospital during the COVID-19 outbreak (October-December 2022) were included. Age- and gender-matched APS patients without infection served as controls. Data on demographics, symptoms, treatments, and serum aPL levels were analyzed. Of 234 APS patients, 107 (45.7%) were infected with SARS-CoV-2. Typical symptoms included high fever (81.3%), cough/expectoration (70.1%), and pharyngalgia (52.3%). Age- and gender-based matching selected 97 patients in either infected or uninfected group. After infection, anti-β-2-glycoprotein I-IgG (aβ2GP1-IgG) increased from 4.14 to 4.18 AU/ml, aβ2GP1-IgM decreased from 9.85 to 7.38 AU/ml, and anticardiolipin-IgA (aCL-IgA) significantly increased with a median remaining at 2.50 APLU/ml. Lupus anticoagulants and other aPLs remained stable. Arterial thrombosis incidence increased from 18 (18.6%) to 21 (21.6%), while venous thrombosis incidence did not change. Additionally, 7 (6.5%) patients presented either new-onset or worsening thrombocytopenia, characterized by a significant decline in platelet count (no less than 10 × 109/L) within two weeks of SARS-CoV-2 infection, all of which recovered within 2 weeks. Acute SARS-CoV-2 infection may induce or worsen thrombocytopenia but does not substantially increase thrombotic events in APS. The process of SARS-CoV-2 infection was related to mild titer fluctuation of aβ2GP1-IgG, aβ2GP1-IgM and aCL-IgA in APS patients, necessitating careful monitoring and management.
Collapse
Affiliation(s)
- Chuhan Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Hui Jiang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Siyun Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Yuan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Jun Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Can Huang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China
- National Clinical Research Center of Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Yangzhong Zhou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China
- National Clinical Research Center of Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China
- National Clinical Research Center of Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China
- National Clinical Research Center of Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China
- National Clinical Research Center of Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China
- National Clinical Research Center of Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Yan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China
- National Clinical Research Center of Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Chuancong Wu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China.
- Department of Rheumatology and Immunology, Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China.
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, 100730, China.
- National Clinical Research Center of Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, 100730, China.
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, 100730, China.
| |
Collapse
|
42
|
Kettunen P, Koistinaho J, Rolova T. Contribution of CNS and extra-CNS infections to neurodegeneration: a narrative review. J Neuroinflammation 2024; 21:152. [PMID: 38845026 PMCID: PMC11157808 DOI: 10.1186/s12974-024-03139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Central nervous system infections have been suggested as a possible cause for neurodegenerative diseases, particularly sporadic cases. They trigger neuroinflammation which is considered integrally involved in neurodegenerative processes. In this review, we will look at data linking a variety of viral, bacterial, fungal, and protozoan infections to Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis and unspecified dementia. This narrative review aims to bring together a broad range of data currently supporting the involvement of central nervous system infections in the development of neurodegenerative diseases. The idea that no single pathogen or pathogen group is responsible for neurodegenerative diseases will be discussed. Instead, we suggest that a wide range of susceptibility factors may make individuals differentially vulnerable to different infectious pathogens and subsequent pathologies.
Collapse
Affiliation(s)
- Pinja Kettunen
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Taisia Rolova
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
43
|
Corona K, Saripada JAI, Wermine K, Seavey S, Figueira BT, LaHaye JJ, Yoshiyasu Y, Daram S, McKinnon B. Risk of COVID-19 in pediatric population and the effects of COVID-19 vaccination: A retrospective cohort study. Auris Nasus Larynx 2024; 51:481-487. [PMID: 38520981 DOI: 10.1016/j.anl.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVE Prior studies have demonstrated the adverse effects of upper respiratory infections on the pediatric population, such as increased risk for acute otitis media (AOM). Other studies have noted decreased otitis media complaints during the COVID-19 pandemic. This project aims to identify whether individuals who tested positive for COVID-19 at the Emergency Department (ED) visit had an increased risk of developing severe complications. Additionally, we will study whether vaccination helped decrease following COVID-19 complications. METHODS Utilizing the TriNetX database, we obtained de-identified electronic medical records for children under five and 6-10 years old from 2020-2023 in the United States. The study population was propensity-matched for gender, index age, and comorbidities. Complications within eight weeks of the ED visit were compared between COVID-19 vaccinated and unvaccinated children. Risk ratio was used to measure associations between our groups. A p-value less than or equal to 0.05 was considered significant. RESULTS After propensity matching, a total of 211,138 children were identified. Within eight weeks after the ED visit, unvaccinated children <5 years old who tested negative for COVID-19 had a 30 % relative risk reduction for AOM, 52 % for sinusitis, 76 % for multisystem inflammatory system (MIS), 17 % for acute respiratory failure, and 37 % for septic shock when compared to those with a positive COVID-19 result (p ≤ 0.05). Unvaccinated 6-10 years old children who tested negative for COVID-19 had an 18 % risk reduction for AOM, 44 % reduction for sinusitis, 63 % reduction for MIS, and 42 % for acute respiratory failure (p ≤ 0.05) compared to those that tested positive for COVID-19. Vaccinated children with positive COVID-19 results have no significant risk of AOM or acute respiratory failure. Additionally, children 6-10 years old with positive COVID-19 results did not have a substantial risk of sinusitis. CONCLUSION COVID-19's effects require continued investigation in children. This study showed that there are some increased risks of severe complications following this viral infection.
Collapse
Affiliation(s)
- Kassandra Corona
- School of Medicine, University of Texas Medical Branch, Galveston, TX, USA.
| | | | - Kendall Wermine
- Department Surgery, Baylor Scott & White All Saints, Fort Worth, TX, USA
| | - Sydney Seavey
- School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Joshua J LaHaye
- Department of Otolaryngology, LSU Health Sciences Center, New Orleans, LA, USA
| | - Yuki Yoshiyasu
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, TX, USA
| | - Shiva Daram
- Department of Otolaryngology, University of Texas Medical Health Science Center, Houston, TX, USA
| | - Brian McKinnon
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
44
|
Shi W, Lin Q, Zhang M, Ouyang N, Zhang Y, Yang Z. HERPES SIMPLEX VIRUS-1 SUSCEPTIBILITY AS A RISK FACTOR FOR SEPSIS, WITH CYTOMEGALOVIRUS SUSCEPTIBILITY ELEVATING SEVERITY: INSIGHTS FROM A BIDIRECTIONAL MENDELIAN RANDOMIZATION STUDY. Shock 2024; 61:894-904. [PMID: 38662585 DOI: 10.1097/shk.0000000000002351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT Objective: We conducted a two-sample bidirectional Mendelian randomization (MR) study to investigate the causal relationships between herpes viruses and sepsis. Methods: Publicly available genome-wide association study data were used. Four viruses, HSV-1, HSV-2, EBV, and CMV, were selected, with serum positivity and levels of antibody in serum as the herpes virus data. Results: In forward MR, susceptibility to HSV-1 was a risk factor for sepsis. The susceptibility to CMV showed a severity-dependent effect on sepsis and was a risk factor for the 28-day mortality from sepsis, and was also a risk factor for 28-day sepsis mortality in critical care admission. The EBV EA-D antibody level after EBV infection was a protective factor for 28-day sepsis mortality in critical care admission, and CMV pp28 antibody level was a risk factor for 28-day sepsis mortality in critical care admission. No statistically significant causal relationships between HSV-2 and sepsis were found. No exposures having statistically significant association with sepsis critical care admission as an outcome were found. In reverse MR, the sepsis critical care admission group manifested a decrease in CMV pp52 antibody levels. No causal relationships with statistical significance between sepsis exposure and other herpes virus outcomes were found. Conclusion: Our study identifies HSV-1 susceptibility as a sepsis risk, with CMV susceptibility elevating severity. Varied effects of EBV and CMV antibodies on sepsis severity are noted. Severe sepsis results in a decline in CMV antibody levels. Our results help prognostic and predictive enrichment and offer valuable information for precision sepsis treatment.
Collapse
Affiliation(s)
- Wenjun Shi
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiao Lin
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meng Zhang
- Department of General Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nengtai Ouyang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yin Zhang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhengfei Yang
- Department of Emergency Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
45
|
Wei Y, Guo J, Meng T, Gao T, Mai Y, Zuo W, Yang J. The potential application of complement inhibitors-loaded nanosystem for autoimmune diseases via regulation immune balance. J Drug Target 2024; 32:485-498. [PMID: 38491993 DOI: 10.1080/1061186x.2024.2332730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
The complement is an important arm of the innate immune system, once activated, the complement system rapidly generates large quantities of protein fragments that are potent mediators of inflammation. Recent studies have shown that over-activated complement is the main proinflammatory system of autoimmune diseases (ADs). In addition, activated complements interact with autoantibodies, immune cells exacerbate inflammation, further worsening ADs. With the increasing threat of ADs to human health, complement-based immunotherapy has attracted wide attention. Nevertheless, efficient and targeted delivery of complement inhibitors remains a significant challenge owing to their inherent poor targeting, degradability, and low bioavailability. Nanosystems offer innovative solutions to surmount these obstacles and amplify the potency of complement inhibitors. This prime aim to present the current knowledge of complement in ADs, analyse the function of complement in the pathogenesis and treatment of ADs, we underscore the current situation of nanosystems assisting complement inhibitors in the treatment of ADs. Considering technological, physiological, and clinical validation challenges, we critically appraise the challenges for successfully translating the findings of preclinical studies of these nanosystem assisted-complement inhibitors into the clinic, and future perspectives were also summarised. (The graphical abstract is by BioRender.).
Collapse
Affiliation(s)
- Yaya Wei
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jueshuo Guo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Tingting Meng
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ting Gao
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yaping Mai
- School of Science and Technology Centers, Ningxia Medical University, Yinchuan, China
| | - Wenbao Zuo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
46
|
James LM, Tsilibary EP, Wanberg EJ, Georgopoulos AP. Negative Association of Cognitive Performance With Blood Serum Neurotoxicity and Its Modulation by Human Herpes Virus 5 (HHV5) Seropositivity in Healthy Women. Neurosci Insights 2024; 19:26331055241258436. [PMID: 38827247 PMCID: PMC11143810 DOI: 10.1177/26331055241258436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/15/2024] [Indexed: 06/04/2024] Open
Abstract
Identification of early influences on cognitive decline is of paramount importance in order to stem the impacts of decrements in cognitive functioning and to potentially intervene. Thus, here we focused on 132 healthy adult women (age range 26-98 years) to (a) determine whether factors circulating in serum may exert neurotoxic effects in vitro, (b) evaluate associations between serum neurotoxicity and cognitive performance, and (c) assess the influence of human herpes virus (HHV) seroprevalence and other factors on apoptosis and cognitive performance. The results documented that the addition of serum from healthy adult women to neural cell cultures resulted in apoptosis, indicating the presence of circulating neurotoxic factors in the serum. Furthermore, apoptosis increased with age, and was associated with decreased cognitive performance. Stepwise regression evaluating the influence of 6 HHVs on apoptosis and cognitive function revealed that only HHV5 (cytomegalovirus; CMV) seropositivity was significantly associated with apoptosis and cognitive decline, controlling for age. These findings document neurotoxic effects of serum from healthy women across the adult lifespan and suggest a unique detrimental influence associated with CMV seropositivity.
Collapse
Affiliation(s)
- Lisa M James
- The Healthy Brain Aging Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Effie-Photini Tsilibary
- The Healthy Brain Aging Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Erik J Wanberg
- The Healthy Brain Aging Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Apostolos P Georgopoulos
- The Healthy Brain Aging Group, Brain Sciences Center, Department of Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
47
|
Adewuyi EO, Porter T, O'Brien EK, Olaniru O, Verdile G, Laws SM. Genome-wide cross-disease analyses highlight causality and shared biological pathways of type 2 diabetes with gastrointestinal disorders. Commun Biol 2024; 7:643. [PMID: 38802514 PMCID: PMC11130317 DOI: 10.1038/s42003-024-06333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Studies suggest links between diabetes and gastrointestinal (GI) traits; however, their underlying biological mechanisms remain unclear. Here, we comprehensively assess the genetic relationship between type 2 diabetes (T2D) and GI disorders. Our study demonstrates a significant positive global genetic correlation of T2D with peptic ulcer disease (PUD), irritable bowel syndrome (IBS), gastritis-duodenitis, gastroesophageal reflux disease (GERD), and diverticular disease, but not inflammatory bowel disease (IBD). We identify several positive local genetic correlations (negative for T2D - IBD) contributing to T2D's relationship with GI disorders. Univariable and multivariable Mendelian randomisation analyses suggest causal effects of T2D on PUD and gastritis-duodenitis and bidirectionally with GERD. Gene-based analyses reveal a gene-level genetic overlap between T2D and GI disorders and identify several shared genes reaching genome-wide significance. Pathway-based study implicates leptin (T2D - IBD), thyroid, interferon, and notch signalling (T2D - IBS), abnormal circulating calcium (T2D - PUD), cardiovascular, viral, proinflammatory and (auto)immune-mediated mechanisms in T2D and GI disorders. These findings support a risk-increasing genetic overlap between T2D and GI disorders (except IBD), implicate shared biological pathways with putative causality for certain T2D - GI pairs, and identify targets for further investigation.
Collapse
Affiliation(s)
- Emmanuel O Adewuyi
- Centre for Precision Health, Edith Cowan University, Joondalup, 6027, Western, Australia.
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, 6027, Western, Australia.
| | - Tenielle Porter
- Centre for Precision Health, Edith Cowan University, Joondalup, 6027, Western, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, 6027, Western, Australia
- Curtin Medical School, Curtin University, Bentley, 6102, Western, Australia
| | - Eleanor K O'Brien
- Centre for Precision Health, Edith Cowan University, Joondalup, 6027, Western, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, 6027, Western, Australia
| | - Oladapo Olaniru
- Department of Diabetes, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| | - Giuseppe Verdile
- Curtin Medical School, Curtin University, Bentley, 6102, Western, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western, Australia
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, Joondalup, 6027, Western, Australia.
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup, 6027, Western, Australia.
- Curtin Medical School, Curtin University, Bentley, 6102, Western, Australia.
| |
Collapse
|
48
|
Alves Abrantes JJP, Veríssimo de Azevedo JC, Fernandes FL, Duarte Almeida V, Custódio De Oliveira LA, Ferreira de Oliveira MT, Galvão De Araújo JM, Lanza DCF, Bezerra FL, Andrade VS, Araújo de Medeiros Fernandes TA, Fernandes JV. Viruses as a potential environmental trigger of type 1 diabetes mellitus (Review). Biomed Rep 2024; 20:81. [PMID: 38628629 PMCID: PMC11019645 DOI: 10.3892/br.2024.1770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/07/2023] [Indexed: 04/19/2024] Open
Abstract
The etiopathogenesis of type 1 diabetes mellitus (T1DM) is a complex multifactorial process that involves an intricate network of genetic, epigenetic, immunological, and environmental factors. Despite the advances in recent years, some aspects of the mechanisms involved in triggering the disease are still unclear. Infections with certain viruses have been suggested as possible environmental triggers for the autoimmune process that leads to selective and progressive destruction of pancreatic β-cells and insufficiency of insulin production, which is its hallmark. In this review, advances in knowledge and evidence that suggest the participation of certain viruses in the mechanisms of disease initiation and progression are described. It has been accepted that environmental factors, including viruses, can initiate and possibly sustain, accelerate, or slow down the autoimmune process and consequently damage insulin-producing pancreatic β-cells. Although the role of these agents, especially human enteroviruses, has been exhaustively studied as the most likely triggers of the activation of autoimmunity that destroys pancreatic islets and leads to T1DM, certain doubts remain. Clinical epidemiological and experimental studies in humans and animals provide consistent and increasing evidence that persistent viral infections, especially with human enteroviruses and rotavirus infections, are associated with an increased risk of the disease in individuals genetically predisposed to autoimmunity.
Collapse
Affiliation(s)
| | | | - Fernando Liberalino Fernandes
- Department of Biomedical Sciences, Rio Grande do Norte State University, Mossoró, Rio Grande do Norte 59607-360, Brazil
| | - Valéria Duarte Almeida
- Department of Biomedical Sciences, Rio Grande do Norte State University, Mossoró, Rio Grande do Norte 59607-360, Brazil
| | | | | | - Josélio Maria Galvão De Araújo
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil
| | - Daniel Carlos Ferreira Lanza
- Laboratory of Applied Molecular Biology, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil
| | - Fabiana Lima Bezerra
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil
| | - Vania Sousa Andrade
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil
| | | | - José Veríssimo Fernandes
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil
| |
Collapse
|
49
|
Yang Y, Zhang H, Xiao X, Guo M. Identification of EPSTI1 as a new potential biomarker for SLE based on GEO database. Clin Rheumatol 2024; 43:1531-1540. [PMID: 38507132 DOI: 10.1007/s10067-024-06881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with highly heterogeneous. The aim of this study is to find the key genes in peripheral blood mononuclear cells (PBMCs) of SLE patients and to provide a new direction for the diagnosis and treatment of lupus. METHODS GSE121239, GSE50772, GSE81622, and GSE144390 mRNA expression profiles were obtained from the website of Gene Expression Omnibus (GEO), and differential expressed genes (DEGs) analysis was performed by R. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to elucidate signaling pathways for the DEGs. Real-time qPCR (RT-qPCR) was used to verify the key gene EPSTI1 in PBMCs of SLE patients. Finally, the correlation analysis and ROC curve analysis of EPSTI1 for SLE were performed. RESULTS A total of 12 upregulated DEGs were identified, including MMP8, MX1, IFI44, EPSTI1, OAS1, OAS3, HERC5, IFIT1, RSAD2, USP18, IFI44L, and IFI27. GO and KEGG pathway enrichment analysis showed that those DEGs were mainly concentrated in the response to virus and IFN signaling pathways. Real-time qPCR (RT-qPCR) revealed that EPSTI1 was increased in PBMCs of SLE. EPSTI1 was positively correlated with SLEDAI score in SLE patients. Besides, EPSTI1 was positively correlated with T cell activation- or differentiation-associated genes (BCL6 and RORC). Furthermore, ROC analyses proved EPSTI1 may have diagnostic value for SLE. CONCLUSION Together, EPSTI1 was found to be a potential biomarker for SLE, closely related to T cell immune imbalance. Key Points • EPSTI1 expression was significantly increased in PBMCs of SLE patients. • EPSTI1 was positively correlated with disease activity and T cell activation- or differentiation-associated genes in SLE patients. • EPSTI1 might have a good diagnostic value for SLE.
Collapse
Affiliation(s)
- Yiying Yang
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
- Postdoctoral Research Station of Basic Medicine, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Huali Zhang
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
| | - Xiaoyu Xiao
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
| | - Muyao Guo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China.
| |
Collapse
|
50
|
Keski-Säntti N, Waltimo E, Mäkitie A, Hagström J, Söderlund-Venermo M, Atula T, Haglund C, Sinkkonen ST, Jauhiainen M. Viral DNA in submandibular gland tissue with an inflammatory disorder. J Oral Microbiol 2024; 16:2345941. [PMID: 38711909 PMCID: PMC11073405 DOI: 10.1080/20002297.2024.2345941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024] Open
Abstract
Background The etiology behind different types of chronic sialadenitis (CS), some of which exhibit IgG4 overexpression, is unknown. Further, IgG4-related disease (IgG4-RD) commonly affects the submandibular gland, but its relationship to IgG4-overexpressing CS, and the antigen triggering IgG4 overexpression, remain unknown. Materials and Methods By qPCR, we assessed the presence of 21 DNA-viruses causing IgG4 overexpression in submandibular gland tissue from patients with IgG4-positive and IgG4-negative CS. Healthy submandibular glands and glands with sialolithiasis without CS were used as controls. We examined the distribution of HHV-7, HHV-6B and B19V DNA, within virus PCR-positive tissues with RNAscope in-situ hybridization (RISH). Results We detected DNA from seven viruses in 48/61 samples. EBV DNA was more prevalent within the IgG4-positive samples (6/29; 21%) than the IgG4-negative ones (1/19; 5.3%). B19V DNA was more prevalent within the IgG4-negative samples (5/19; 26%) than the IgG4-positive ones (4/29; 14%). The differences in virus prevalence were not statistically significant. Of the IgG4-RD samples (n = 3) one contained HHV-6B DNA. RISH only showed signals of HHV-7. Conclusions None of the studied viruses are implicated as triggering IgG4-overexpression in CS. Although our results do not confirm viral etiology in the examined conditions, they provide valuable information on the prevalence of viruses in both diseased and healthy submandibular gland tissue.
Collapse
Affiliation(s)
- Noora Keski-Säntti
- Department of Virology, University of Helsinki, Helsinki, Finland
- Otorhinolaryngology – Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- The Doctoral Programme in Clinical Research, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Elin Waltimo
- The Doctoral Programme in Clinical Research, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Antti Mäkitie
- Otorhinolaryngology – Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jaana Hagström
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Oral Pathology and radiology, University of Turku, Turku, Finland
- Research Programs Unit, Translational Cancer Medicine, University of Helsinki, Helsinki, Finland
| | | | - Timo Atula
- Otorhinolaryngology – Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- Research Programs Unit, Translational Cancer Medicine, University of Helsinki, Helsinki, Finland
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Saku T. Sinkkonen
- Otorhinolaryngology – Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maria Jauhiainen
- Department of Virology, University of Helsinki, Helsinki, Finland
- Otorhinolaryngology – Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- The Doctoral Programme in Clinical Research, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|