1
|
Huang F, Liu F, Zhen X, Gong S, Chen W, Song Z. Pathogenesis, Diagnosis, and Treatment of Infectious Rhinosinusitis. Microorganisms 2024; 12:1690. [PMID: 39203531 PMCID: PMC11357447 DOI: 10.3390/microorganisms12081690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Rhinosinusitis is a common inflammatory disease of the sinonasal mucosa and paranasal sinuses. The pathogenesis of rhinosinusitis involves a variety of factors, including genetics, nasal microbiota status, infection, and environmental influences. Pathogenic microorganisms, including viruses, bacteria, and fungi, have been proven to target the cilia and/or epithelial cells of ciliated airways, which results in the impairment of mucociliary clearance, leading to epithelial cell apoptosis and the loss of epithelial barrier integrity and immune dysregulation, thereby facilitating infection. However, the mechanisms employed by pathogenic microorganisms in rhinosinusitis remain unclear. Therefore, this review describes the types of common pathogenic microorganisms that cause rhinosinusitis, including human rhinovirus, respiratory syncytial virus, Staphylococcus aureus, Pseudomonas aeruginosa, Aspergillus species, etc. The damage of mucosal cilium clearance and epithelial barrier caused by surface proteins or secreted virulence factors are summarized in detail. In addition, the specific inflammatory response, mainly Type 1 immune responses (Th1) and Type 2 immune responses (Th2), induced by the entry of pathogens into the body is discussed. The conventional treatment of infectious sinusitis and emerging treatment methods including nanotechnology are also discussed in order to improve the current understanding of the types of microorganisms that cause rhinosinusitis and to help effectively select surgical and/or therapeutic interventions for precise and personalized treatment.
Collapse
Affiliation(s)
- Fujiao Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Fangyan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Xiaofang Zhen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Shu Gong
- The Public Platform of Cell Biotechnology, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China
| | - Wenbi Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China
- Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Luzhou 646000, China
| |
Collapse
|
2
|
Gilbert-Girard S, Piret J, Carbonneau J, Hénaut M, Goyette N, Boivin G. Viral interference between severe acute respiratory syndrome coronavirus 2 and influenza A viruses. PLoS Pathog 2024; 20:e1012017. [PMID: 39038029 PMCID: PMC11293641 DOI: 10.1371/journal.ppat.1012017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/01/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024] Open
Abstract
Some respiratory viruses can cause a viral interference through the activation of the interferon (IFN) pathway that reduces the replication of another virus. Epidemiological studies of coinfections between SARS-CoV-2 and other respiratory viruses have been hampered by non-pharmacological measures applied to mitigate the spread of SARS-CoV-2 during the COVID-19 pandemic. With the ease of these interventions, SARS-CoV-2 and influenza A viruses can now co-circulate. It is thus of prime importance to characterize their interactions. In this work, we investigated viral interference effects between an Omicron variant and a contemporary influenza A/H3N2 strain, in comparison with an ancestral SARS-CoV-2 strain and the 2009 pandemic influenza A/H1N1 virus. We infected nasal human airway epitheliums with SARS-CoV-2 and influenza, either simultaneously or 24 h apart. Viral load was measured by RT-qPCR and IFN-α/β/λ1/λ2 proteins were quantified by immunoassay. Expression of four interferon-stimulated genes (ISGs; OAS1/IFITM3/ISG15/MxA) was also measured by RT-droplet digital PCR. Additionally, susceptibility of each virus to IFN-α/β/λ2 recombinant proteins was determined. Our results showed that influenza A, and especially A/H3N2, interfered with both SARS-CoV-2 viruses, but that SARS-CoV-2 did not significantly interfere with A/H3N2 or A/H1N1. Consistently with these results, influenza, and particularly the A/H3N2 strain, caused a higher production of IFN proteins and expression of ISGs than SARS-CoV-2. SARS-CoV-2 induced a marginal IFN production and reduced the IFN response during coinfections with influenza. All viruses were susceptible to exogenous IFNs, with the ancestral SARS-CoV-2 and Omicron being less susceptible to type I and type III IFNs, respectively. Thus, influenza A causes a viral interference towards SARS-CoV-2 most likely through an IFN response. The opposite is not necessarily true, and a concurrent infection with both viruses leads to a lower IFN response. Taken together, these results help us to understand how SARS-CoV-2 interacts with another major respiratory pathogen.
Collapse
Affiliation(s)
| | - Jocelyne Piret
- Research Center of the CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Julie Carbonneau
- Research Center of the CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Mathilde Hénaut
- Research Center of the CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Nathalie Goyette
- Research Center of the CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Guy Boivin
- Research Center of the CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
3
|
Ishikawa H, Kuno Y, Yokoo T, Nagashima R, Takaki T, Sasaki H, Kohda C, Iyoda M. In vitro investigation of the effects of Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 exopolysaccharides on tight junction damage caused by influenza virus infection. Lett Appl Microbiol 2024; 77:ovae029. [PMID: 38521981 DOI: 10.1093/lambio/ovae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 03/25/2024]
Abstract
It is a problem that influenza virus infection increases susceptibility to secondary bacterial infection in lungs leading to lethal pneumonia. We previously reported that exopolysaccharides (EPS) derived from Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 (OLL1073R-1) could prevent against influenza virus infection followed by secondary bacterial infection in vitro. Therefore, the present study assessed whether EPS derived OLL1073R-1 protects the alveolar epithelial barrier disfunction caused by influenza virus infection. After A549 cells treated with EPS or without EPS were infected influenza virus A/Puerto Rico/8/34 (IFV) for 12 h, the levels of tight junction genes expression and inflammatory genes expression were measured by reverse transcription polymerase chain reaction. As results, EPS treatment could protect against low-titer IFV infection, but not high-titer IFV infection, followed by suppression of the increased expression of inflammatory cytokine gene levels and recovery of the decrease in the expression level of ZO-1 gene that was caused by low-titer IFV infection, leading to an improvement trend in the barrier function. Our findings showed that EPS derived from OLL1073R-1 could inhibit low-titer IFV infection leading to maintenance of the epithelial barrier function through the suppression of inflammatory cytokine genes expression.
Collapse
Affiliation(s)
- Hiroki Ishikawa
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Yoshihiro Kuno
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8555, Japan
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Takehiro Yokoo
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, Hachioji, Tokyo, 192-0919, Japan
| | - Ryuichi Nagashima
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8555, Japan
- Division of Immunology, Department of Biosciences, Kitasato University School of Science, Sagamihara, Kanagawa, 252-0373, Japan
| | - Takashi Takaki
- Division of Electron Microscopy,Showa University, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Hiraku Sasaki
- Department of Health Science, Faculty of Health and Sports Science, Juntendo University, Inzai, Chiba, 270-1695, Japan
| | - Chikara Kohda
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Masayuki Iyoda
- Department of Microbiology and Immunology, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8555, Japan
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Shinagawa-ku, Tokyo, 142-8666, Japan
| |
Collapse
|
4
|
Rowe T, Davis W, Wentworth DE, Ross T. Differential interferon responses to influenza A and B viruses in primary ferret respiratory epithelial cells. J Virol 2024; 98:e0149423. [PMID: 38294251 PMCID: PMC10878268 DOI: 10.1128/jvi.01494-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/02/2023] [Indexed: 02/01/2024] Open
Abstract
Influenza B viruses (IBV) cocirculate with influenza A viruses (IAV) and cause periodic epidemics of disease, yet antibody and cellular responses following IBV infection are less well understood. Using the ferret model for antisera generation for influenza surveillance purposes, IAV resulted in robust antibody responses following infection, whereas IBV required an additional booster dose, over 85% of the time, to generate equivalent antibody titers. In this study, we utilized primary differentiated ferret nasal epithelial cells (FNECs) which were inoculated with IAV and IBV to study differences in innate immune responses which may result in differences in adaptive immune responses in the host. FNECs were inoculated with IAV (H1N1pdm09 and H3N2 subtypes) or IBV (B/Victoria and B/Yamagata lineages) and assessed for 72 h. Cells were analyzed for gene expression by quantitative real-time PCR, and apical and basolateral supernatants were assessed for virus kinetics and interferon (IFN), respectively. Similar virus kinetics were observed with IAV and IBV in FNECs. A comparison of gene expression and protein secretion profiles demonstrated that IBV-inoculated FNEC expressed delayed type-I/II IFN responses and reduced type-III IFN secretion compared to IAV-inoculated cells. Concurrently, gene expression of Thymic Stromal Lymphopoietin (TSLP), a type-III IFN-induced gene that enhances adaptive immune responses, was significantly downregulated in IBV-inoculated FNECs. Significant differences in other proinflammatory and adaptive genes were suppressed and delayed following IBV inoculation. Following IBV infection, ex vivo cell cultures derived from the ferret upper respiratory tract exhibited reduced and delayed innate responses which may contribute to reduced antibody responses in vivo.IMPORTANCEInfluenza B viruses (IBV) represent nearly one-quarter of all human influenza cases and are responsible for significant clinical and socioeconomic impacts but do not pose the same pandemic risks as influenza A viruses (IAV) and have thus received much less attention. IBV accounts for greater severity and deaths in children, and vaccine efficacy remains low. The ferret can be readily infected with human clinical isolates and demonstrates a similar course of disease and immune responses. IBV, however, generates lower antibodies in ferrets than IAV following the challenge. To determine whether differences in initial innate responses following infection may affect the development of robust adaptive immune responses, ferret respiratory tract cells were isolated, infected with IAV/IBV, and compared. Understanding the differences in the initial innate immune responses to IAV and IBV may be important in the development of more effective vaccines and interventions to generate more robust protective immune responses.
Collapse
Affiliation(s)
- Thomas Rowe
- Centers for Disease Control and Prevention, Influenza Division, Atlanta, Georgia, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - William Davis
- Centers for Disease Control and Prevention, Influenza Division, Atlanta, Georgia, USA
| | - David E. Wentworth
- Centers for Disease Control and Prevention, Influenza Division, Atlanta, Georgia, USA
| | - Ted Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Michon M, Müller-Schiffmann A, Lingappa AF, Yu SF, Du L, Deiter F, Broce S, Mallesh S, Crabtree J, Lingappa UF, Macieik A, Müller L, Ostermann PN, Andrée M, Adams O, Schaal H, Hogan RJ, Tripp RA, Appaiah U, Anand SK, Campi TW, Ford MJ, Reed JC, Lin J, Akintunde O, Copeland K, Nichols C, Petrouski E, Moreira AR, Jiang IT, DeYarman N, Brown I, Lau S, Segal I, Goldsmith D, Hong S, Asundi V, Briggs EM, Phyo NS, Froehlich M, Onisko B, Matlack K, Dey D, Lingappa JR, Prasad MD, Kitaygorodskyy A, Solas D, Boushey H, Greenland J, Pillai S, Lo MK, Montgomery JM, Spiropoulou CF, Korth C, Selvarajah S, Paulvannan K, Lingappa VR. A Pan-Respiratory Antiviral Chemotype Targeting a Host Multi-Protein Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2021.01.17.426875. [PMID: 34931190 PMCID: PMC8687465 DOI: 10.1101/2021.01.17.426875] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present a novel small molecule antiviral chemotype that was identified by an unconventional cell-free protein synthesis and assembly-based phenotypic screen for modulation of viral capsid assembly. Activity of PAV-431, a representative compound from the series, has been validated against infectious virus in multiple cell culture models for all six families of viruses causing most respiratory disease in humans. In animals this chemotype has been demonstrated efficacious for Porcine Epidemic Diarrhea Virus (a coronavirus) and Respiratory Syncytial Virus (a paramyxovirus). PAV-431 is shown to bind to the protein 14-3-3, a known allosteric modulator. However, it only appears to target the small subset of 14-3-3 which is present in a dynamic multi-protein complex whose components include proteins implicated in viral lifecycles and in innate immunity. The composition of this target multi-protein complex appears to be modified upon viral infection and largely restored by PAV-431 treatment. Our findings suggest a new paradigm for understanding, and drugging, the host-virus interface, which leads to a new clinical therapeutic strategy for treatment of respiratory viral disease.
Collapse
Affiliation(s)
- Maya Michon
- Prosetta Biosciences, San Francisco, CA, USA
| | | | | | | | - Li Du
- Vitalant Research Institute, San Francisco, CA, USA
| | - Fred Deiter
- Veterans Administration Medical Center, San Francisco, CA, USA
| | - Sean Broce
- Prosetta Biosciences, San Francisco, CA, USA
| | | | - Jackelyn Crabtree
- University of Georgia, Animal Health Research Center, Athens, GA, USA
| | | | | | - Lisa Müller
- Institute of Virology, Heinrich Heine University, Düsseldorf, Germany
| | | | - Marcel Andrée
- Institute of Virology, Heinrich Heine University, Düsseldorf, Germany
| | - Ortwin Adams
- Institute of Virology, Heinrich Heine University, Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Heinrich Heine University, Düsseldorf, Germany
| | - Robert J. Hogan
- University of Georgia, Animal Health Research Center, Athens, GA, USA
| | - Ralph A. Tripp
- University of Georgia, Animal Health Research Center, Athens, GA, USA
| | | | | | | | | | - Jonathan C. Reed
- Dept. of Global Health, University of Washington, Seattle, WA, USA
| | - Jim Lin
- Prosetta Biosciences, San Francisco, CA, USA
| | | | | | | | | | | | | | | | - Ian Brown
- Prosetta Biosciences, San Francisco, CA, USA
| | - Sharon Lau
- Prosetta Biosciences, San Francisco, CA, USA
| | - Ilana Segal
- Prosetta Biosciences, San Francisco, CA, USA
| | | | - Shi Hong
- Prosetta Biosciences, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - John Greenland
- Veterans Administration Medical Center, San Francisco, CA, USA
- University of California, San Francisco, CA, USA
| | - Satish Pillai
- Vitalant Research Institute, San Francisco, CA, USA
- University of California, San Francisco, CA, USA
| | - Michael K. Lo
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joel M. Montgomery
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Carsten Korth
- Institute of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| | | | | | - Vishwanath R. Lingappa
- Prosetta Biosciences, San Francisco, CA, USA
- University of California, San Francisco, CA, USA
| |
Collapse
|
6
|
Petpiroon N, Netkueakul W, Sukrak K, Wang C, Liang Y, Wang M, Liu Y, Li Q, Kamran R, Naruse K, Aueviriyavit S, Takahashi K. Development of lung tissue models and their applications. Life Sci 2023; 334:122208. [PMID: 37884207 DOI: 10.1016/j.lfs.2023.122208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
The lungs are important organs that play a critical role in the development of specific diseases, as well as responding to the effects of drugs, chemicals, and environmental pollutants. Due to the ethical concerns around animal testing, alternative methods have been sought which are more time-effective, do not pose ethical issues for animals, do not involve species differences, and provide easy investigation of the pathobiology of lung diseases. Several national and international organizations are working to accelerate the development and implementation of structurally and functionally complex tissue models as alternatives to animal testing, particularly for the lung. Unfortunately, to date, there is no lung tissue model that has been accepted by regulatory agencies for use in inhalation toxicology. This review discusses the challenges involved in developing a relevant lung tissue model derived from human cells such as cell lines, primary cells, and pluripotent stem cells. It also introduces examples of two-dimensional (2D) air-liquid interface and monocultured and co-cultured three-dimensional (3D) culture techniques, particularly organoid culture and 3D bioprinting. Furthermore, it reviews development of the lung-on-a-chip model to mimic the microenvironment and physiological performance. The applications of lung tissue models in various studies, especially disease modeling, viral respiratory infection, and environmental toxicology will be also introduced. The development of a relevant lung tissue model is extremely important for standardizing and validation the in vitro models for inhalation toxicity and other studies in the future.
Collapse
Affiliation(s)
- Nalinrat Petpiroon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Woranan Netkueakul
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Kanokwan Sukrak
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Thailand Network Center on Air Quality Management: TAQM, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chen Wang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Yin Liang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Mengxue Wang
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Yun Liu
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Qiang Li
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Rumaisa Kamran
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Keiji Naruse
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan
| | - Sasitorn Aueviriyavit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Ken Takahashi
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ward, Okayama 700-8558, Japan.
| |
Collapse
|
7
|
Volpe S, Irish J, Palumbo S, Lee E, Herbert J, Ramadan I, Chang EH. Viral infections and chronic rhinosinusitis. J Allergy Clin Immunol 2023; 152:819-826. [PMID: 37574080 PMCID: PMC10592176 DOI: 10.1016/j.jaci.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Viral infections are the most common cause of upper respiratory infections; they frequently infect adults once or twice and children 6 to 8 times annually. In most cases, these infections are self-limiting and resolve. However, many patients with chronic rhinosinusitis (CRS) relay that their initiating event began with an upper respiratory infection that progressed in both symptom severity and duration. Viruses bind to sinonasal epithelia through specific receptors, thereby entering cells and replicating within them. Viral infections stimulate interferon-mediated innate immune responses. Recent studies suggest that viral infections may also induce type 2 immune responses and stimulate the aberrant production of cytokines that can result in loss of barrier function, which is a hallmark in CRS. The main purpose of this review will be to highlight common viruses and their associated binding receptors and highlight pathophysiologic mechanisms associated with alterations in mucociliary clearance, epithelial barrier function, and dysfunctional immune responses that might lead to a further understanding of the pathogenesis of CRS.
Collapse
Affiliation(s)
- Sophia Volpe
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Joseph Irish
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Sunny Palumbo
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Eric Lee
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Jacob Herbert
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Ibrahim Ramadan
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Eugene H Chang
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz.
| |
Collapse
|
8
|
Li Y, Liu HY, Yang MJ, Liu D, Song JQ, Lao Z, Chen Y, Yang Y. Preparation of eicosavalent triazolylsialoside-conjugated human serum albumin as a dual hemagglutinin/neuraminidase inhibitor and virion adsorbent for the prevention of influenza infection. Carbohydr Res 2023; 532:108918. [PMID: 37586142 DOI: 10.1016/j.carres.2023.108918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
A triazolylsialoside-human serum albumin conjugate was prepared as a multivalent hemagglutinin and neuraminidase inhibitor using a di-(N-succinimidyl) adipate strategy. Matrix-Assisted Laser Desorption/Ionization-Time of Flight-Mass Spectrometry (MALDI-TOF-MS) indicated that five tetravalent sialyl galactosides were grafted onto the protein backbone resulting in an eicosavalent triazolylsialoside-protein complex. Compared with monomeric sialic acid, molecular interaction studies showed that the synthetic pseudo-glycoprotein bound tightly not only to hemagglutinin (HA)/neuraminidase (NA) but also to mutated drug-resistant NA on the surface of the influenza virus with a dissociation constant (KD) in the 1 μM range, attributed to the cluster effect. Moreover, this glycoconjugate exhibited potent antiviral activity against a broad spectrum of virus strains and showed no cytotoxicity towards Human Umbilical Vein Endothelial Cells (HUVECs) and Madin-Darby canine kidney (MDCK) cells at high concentrations. Further mechanistic studies demonstrated this multivalent sialyl conjugate showed strong capture and trapping of influenza virions, thus disrupting the ability of the influenza virus to infect host cells. This research lays the experimental foundation for the development of new antiviral agents based on multivalent sialic acid-protein conjugates.
Collapse
Affiliation(s)
- Yang Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Han-Yu Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Ming-Jiang Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Dong Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Jia-Qi Song
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Zhiqi Lao
- Department of Medical Laboratory, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, 518020, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China.
| | - Yue Chen
- Department of Medical Laboratory, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong, 518020, China.
| | - Yang Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China.
| |
Collapse
|
9
|
Wilson JL, Akin E, Zhou R, Jedlicka A, Dziedzic A, Liu H, Fenstermacher KZJ, Rothman RE, Pekosz A. The Influenza B Virus Victoria and Yamagata Lineages Display Distinct Cell Tropism and Infection-Induced Host Gene Expression in Human Nasal Epithelial Cell Cultures. Viruses 2023; 15:1956. [PMID: 37766362 PMCID: PMC10537232 DOI: 10.3390/v15091956] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Understanding Influenza B virus infections is of critical importance in our efforts to control severe influenza and influenza-related diseases. Until 2020, two genetic lineages of influenza B virus-Yamagata and Victoria-circulated in the population. These lineages are antigenically distinct, but the differences in virus replication or the induction of host cell responses after infection have not been carefully studied. Recent IBV clinical isolates of both lineages were obtained from influenza surveillance efforts of the Johns Hopkins Center of Excellence in Influenza Research and Response and characterized in vitro. B/Victoria and B/Yamagata clinical isolates were recognized less efficiently by serum from influenza-vaccinated individuals in comparison to the vaccine strains. B/Victoria lineages formed smaller plaques on MDCK cells compared to B/Yamagata, but infectious virus production in primary human nasal epithelial cell (hNEC) cultures showed no differences. While ciliated epithelial cells were the dominant cell type infected by both lineages, B/Victoria lineages had a slight preference for MUC5AC-positive cells, and B/Yamagata lineages infected more basal cells. Finally, while both lineages induced a strong interferon response 48 h after infection of hNEC cultures, the B/Victoria lineages showed a much stronger induction of interferon-related signaling pathways compared to B/Yamagata. This demonstrates that the two influenza B virus lineages differ not only in their antigenic structure but also in their ability to induce host innate immune responses.
Collapse
Affiliation(s)
- Jo L. Wilson
- W. Harry Feinstone, Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.L.W.); (E.A.); (R.Z.); (A.J.); (A.D.); (H.L.)
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elgin Akin
- W. Harry Feinstone, Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.L.W.); (E.A.); (R.Z.); (A.J.); (A.D.); (H.L.)
| | - Ruifeng Zhou
- W. Harry Feinstone, Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.L.W.); (E.A.); (R.Z.); (A.J.); (A.D.); (H.L.)
| | - Anne Jedlicka
- W. Harry Feinstone, Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.L.W.); (E.A.); (R.Z.); (A.J.); (A.D.); (H.L.)
| | - Amanda Dziedzic
- W. Harry Feinstone, Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.L.W.); (E.A.); (R.Z.); (A.J.); (A.D.); (H.L.)
| | - Hsuan Liu
- W. Harry Feinstone, Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.L.W.); (E.A.); (R.Z.); (A.J.); (A.D.); (H.L.)
| | - Katherine Z. J. Fenstermacher
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (K.Z.J.F.); (R.E.R.)
| | - Richard E. Rothman
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (K.Z.J.F.); (R.E.R.)
| | - Andrew Pekosz
- W. Harry Feinstone, Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA; (J.L.W.); (E.A.); (R.Z.); (A.J.); (A.D.); (H.L.)
| |
Collapse
|
10
|
Sun H, Li H, Tong Q, Han Q, Liu J, Yu H, Song H, Qi J, Li J, Yang J, Lan R, Deng G, Chang H, Qu Y, Pu J, Sun Y, Lan Y, Wang D, Shi Y, Liu WJ, Chang KC, Gao GF, Liu J. Airborne transmission of human-isolated avian H3N8 influenza virus between ferrets. Cell 2023; 186:4074-4084.e11. [PMID: 37669665 DOI: 10.1016/j.cell.2023.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/08/2023] [Accepted: 08/08/2023] [Indexed: 09/07/2023]
Abstract
H3N8 avian influenza viruses (AIVs) in China caused two confirmed human infections in 2022, followed by a fatal case reported in 2023. H3N8 viruses are widespread in chicken flocks; however, the zoonotic features of H3N8 viruses are poorly understood. Here, we demonstrate that H3N8 viruses were able to infect and replicate efficiently in organotypic normal human bronchial epithelial (NHBE) cells and lung epithelial (Calu-3) cells. Human isolates of H3N8 virus were more virulent and caused severe pathology in mice and ferrets, relative to chicken isolates. Importantly, H3N8 virus isolated from a patient with severe pneumonia was transmissible between ferrets through respiratory droplets; it had acquired human-receptor-binding preference and amino acid substitution PB2-E627K necessary for airborne transmission. Human populations, even when vaccinated against human H3N2 virus, appear immunologically naive to emerging mammalian-adapted H3N8 AIVs and could be vulnerable to infection at epidemic or pandemic proportion.
Collapse
Affiliation(s)
- Honglei Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Han Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qi Tong
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qiqi Han
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiyu Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Haili Yu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaqi Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jizhe Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Riguo Lan
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guojing Deng
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Haoyu Chang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yajin Qu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Juan Pu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yipeng Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yu Lan
- Chinese National Influenza Center (CNIC), NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Dayan Wang
- Chinese National Influenza Center (CNIC), NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yi Shi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - William J Liu
- Chinese National Influenza Center (CNIC), NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Kin-Chow Chang
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Chinese National Influenza Center (CNIC), NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Jinhua Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Wilson JL, Akin E, Zhou R, Jedlicka A, Dziedzic A, Liu H, Fenstermacher KZ, Rothman R, Pekosz A. The Influenza B Virus Victoria and Yamagata Lineages Display Distinct Cell Tropism and Infection Induced Host Gene Expression in Human Nasal Epithelial Cell Cultures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.551980. [PMID: 37577630 PMCID: PMC10418153 DOI: 10.1101/2023.08.04.551980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Understanding Influenza B virus infections is of critical importance in our efforts to control severe influenza and influenza-related disease. Until 2020, two genetic lineages of influenza B virus - Yamagata and Victoria - circulated in the population. These lineages are antigenically distinct but differences in virus replication or the induction of host cell responses after infection have not been carefully studied. Recent IBV clinical isolates of both lineages were obtained from influenza surveillance efforts of the Johns Hopkins Center of Excellence in Influenza Research and Response and characterized in vitro . B/Victoria and B/Yamagata clinical isolates were recognized less efficiently by serum from influenza-vaccinated individuals in comparison to the vaccine strains. B/Victoria lineages formed smaller plaques on MDCK cells compared to B/Yamagata, but infectious virus production in primary human nasal epithelial cell (hNEC) cultures showed no differences. While ciliated epithelial cells were the dominant cell type infected by both lineages, B/Victoria lineages had a slight preference for MUC5AC-positive cells, while B/Yamagata lineages infected more basal cells. Finally, while both lineages induced a strong interferon response 48 hours after infection of hNEC cultures, the B/Victoria lineages showed a much stronger induction of interferon related signaling pathways compared to B/Yamagata. This demonstrates that the two influenza B virus lineages differ not only in their antigenic structure but in their ability to induce host innate immune responses.
Collapse
Affiliation(s)
- Jo L Wilson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Pediatric Allergy and Immunology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Elgin Akin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Ruifeng Zhou
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Anne Jedlicka
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Amanda Dziedzic
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Hsuan Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | | | - Richard Rothman
- Adult Emergency Department, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
12
|
Diray-Arce J, Fourati S, Doni Jayavelu N, Patel R, Maguire C, Chang AC, Dandekar R, Qi J, Lee BH, van Zalm P, Schroeder A, Chen E, Konstorum A, Brito A, Gygi JP, Kho A, Chen J, Pawar S, Gonzalez-Reiche AS, Hoch A, Milliren CE, Overton JA, Westendorf K, Cairns CB, Rouphael N, Bosinger SE, Kim-Schulze S, Krammer F, Rosen L, Grubaugh ND, van Bakel H, Wilson M, Rajan J, Steen H, Eckalbar W, Cotsapas C, Langelier CR, Levy O, Altman MC, Maecker H, Montgomery RR, Haddad EK, Sekaly RP, Esserman D, Ozonoff A, Becker PM, Augustine AD, Guan L, Peters B, Kleinstein SH. Multi-omic longitudinal study reveals immune correlates of clinical course among hospitalized COVID-19 patients. Cell Rep Med 2023; 4:101079. [PMID: 37327781 PMCID: PMC10203880 DOI: 10.1016/j.xcrm.2023.101079] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/31/2023] [Accepted: 05/16/2023] [Indexed: 06/18/2023]
Abstract
The IMPACC cohort, composed of >1,000 hospitalized COVID-19 participants, contains five illness trajectory groups (TGs) during acute infection (first 28 days), ranging from milder (TG1-3) to more severe disease course (TG4) and death (TG5). Here, we report deep immunophenotyping, profiling of >15,000 longitudinal blood and nasal samples from 540 participants of the IMPACC cohort, using 14 distinct assays. These unbiased analyses identify cellular and molecular signatures present within 72 h of hospital admission that distinguish moderate from severe and fatal COVID-19 disease. Importantly, cellular and molecular states also distinguish participants with more severe disease that recover or stabilize within 28 days from those that progress to fatal outcomes (TG4 vs. TG5). Furthermore, our longitudinal design reveals that these biologic states display distinct temporal patterns associated with clinical outcomes. Characterizing host immune responses in relation to heterogeneity in disease course may inform clinical prognosis and opportunities for intervention.
Collapse
Affiliation(s)
- Joann Diray-Arce
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA; Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Slim Fourati
- Emory School of Medicine, Atlanta, GA 30322, USA
| | | | - Ravi Patel
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Cole Maguire
- The University of Texas at Austin, Austin, TX 78712, USA
| | - Ana C Chang
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ravi Dandekar
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Jingjing Qi
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brian H Lee
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patrick van Zalm
- Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Schroeder
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Ernie Chen
- Yale School of Medicine, New Haven, CT 06510, USA
| | | | | | | | - Alvin Kho
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jing Chen
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA; Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Annmarie Hoch
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA; Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Carly E Milliren
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA
| | | | | | - Charles B Cairns
- Drexel University, Tower Health Hospital, Philadelphia, PA 19104, USA
| | | | | | | | - Florian Krammer
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lindsey Rosen
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20814, USA
| | | | - Harm van Bakel
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Wilson
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Jayant Rajan
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Hanno Steen
- Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Walter Eckalbar
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Chris Cotsapas
- Yale School of Medicine, New Haven, CT 06510, USA; Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | | | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Matthew C Altman
- Benaroya Research Institute, University of Washington, Seattle, WA 98101, USA
| | - Holden Maecker
- Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | - Elias K Haddad
- Drexel University, Tower Health Hospital, Philadelphia, PA 19104, USA
| | | | | | - Al Ozonoff
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA; Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Patrice M Becker
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20814, USA
| | - Alison D Augustine
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20814, USA
| | - Leying Guan
- Yale School of Public Health, New Haven, CT 06510, USA
| | - Bjoern Peters
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | |
Collapse
|
13
|
Gao N, Rezaee F. Airway Epithelial Cell Junctions as Targets for Pathogens and Antimicrobial Therapy. Pharmaceutics 2022; 14:2619. [PMID: 36559113 PMCID: PMC9786141 DOI: 10.3390/pharmaceutics14122619] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Intercellular contacts between epithelial cells are established and maintained by the apical junctional complexes (AJCs). AJCs conserve cell polarity and build epithelial barriers to pathogens, inhaled allergens, and environmental particles in the respiratory tract. AJCs consist of tight junctions (TJs) and adherens junctions (AJs), which play a key role in maintaining the integrity of the airway barrier. Emerging evidence has shown that different microorganisms cause airway barrier dysfunction by targeting TJ and AJ proteins. This review discusses the pathophysiologic mechanisms by which several microorganisms (bacteria and viruses) lead to the disruption of AJCs in airway epithelial cells. We present recent progress in understanding signaling pathways involved in the formation and regulation of cell junctions. We also summarize the potential chemical inhibitors and pharmacological approaches to restore the integrity of the airway epithelial barrier. Understanding the AJCs-pathogen interactions and mechanisms by which microorganisms target the AJC and impair barrier function may further help design therapeutic innovations to treat these infections.
Collapse
Affiliation(s)
- Nannan Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children’s, Cleveland, OH 44195, USA
| |
Collapse
|
14
|
Ding G, Shao Q, Yu H, Liu J, Li Y, Wang B, Sang H, Li D, Bing A, Hou Y, Xiao Y. Tight Junctions, the Key Factor in Virus-Related Disease. Pathogens 2022; 11:pathogens11101200. [PMID: 36297257 PMCID: PMC9611889 DOI: 10.3390/pathogens11101200] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Tight junctions (TJs) are highly specialized membrane structural domains that hold cells together and form a continuous intercellular barrier in epithelial cells. TJs regulate paracellular permeability and participate in various cellular signaling pathways. As physical barriers, TJs can block viral entry into host cells; however, viruses use a variety of strategies to circumvent this barrier to facilitate their infection. This paper summarizes how viruses evade various barriers during infection by regulating the expression of TJs to facilitate their own entry into the organism causing infection, which will help to develop drugs targeting TJs to contain virus-related disease.
Collapse
Affiliation(s)
- Guofei Ding
- Department of Fundamental Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Qingyuan Shao
- Department of Fundamental Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Haiyan Yu
- Reproductive Center, Taian Central Hospital, Tai’an 271000, China
| | - Jiaqi Liu
- Department of Fundamental Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Yingchao Li
- Department of Fundamental Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Bin Wang
- Department of Fundamental Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Haotian Sang
- Department of Fundamental Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Dexin Li
- Department of Fundamental Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Aiying Bing
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an 271016, China
- Correspondence: (A.B.); (Y.H.); (Y.X.)
| | - Yanmeng Hou
- Department of Fundamental Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (A.B.); (Y.H.); (Y.X.)
| | - Yihong Xiao
- Department of Fundamental Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (A.B.); (Y.H.); (Y.X.)
| |
Collapse
|
15
|
Gao N, Raduka A, Rezaee F. Respiratory syncytial virus disrupts the airway epithelial barrier by decreasing cortactin and destabilizing F-actin. J Cell Sci 2022; 135:jcs259871. [PMID: 35848790 PMCID: PMC9481929 DOI: 10.1242/jcs.259871] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/11/2022] [Indexed: 01/26/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection is the leading cause of acute lower respiratory tract infection in young children worldwide. Our group recently revealed that RSV infection disrupts the airway epithelial barrier in vitro and in vivo. However, the underlying molecular pathways were still elusive. Here, we report the critical roles of the filamentous actin (F-actin) network and actin-binding protein cortactin in RSV infection. We found that RSV infection causes F-actin depolymerization in 16HBE cells, and that stabilizing the F-actin network in infected cells reverses the epithelial barrier disruption. RSV infection also leads to significantly decreased cortactin in vitro and in vivo. Cortactin-knockout 16HBE cells presented barrier dysfunction, whereas overexpression of cortactin protected the epithelial barrier against RSV. The activity of Rap1 (which has Rap1A and Rap1B forms), one downstream target of cortactin, declined after RSV infection as well as in cortactin-knockout cells. Moreover, activating Rap1 attenuated RSV-induced epithelial barrier disruption. Our study proposes a key mechanism in which RSV disrupts the airway epithelial barrier via attenuating cortactin expression and destabilizing the F-actin network. The identified pathways will provide new targets for therapeutic intervention toward RSV-related disease. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Nannan Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Andjela Raduka
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children's, Cleveland, Ohio 44195, USA
| |
Collapse
|
16
|
Chen Q, Langenbach S, Li M, Xia YC, Gao X, Gartner MJ, Pharo EA, Williams SM, Todd S, Clarke N, Ranganathan S, Baker ML, Subbarao K, Stewart AG. ACE2 Expression in Organotypic Human Airway Epithelial Cultures and Airway Biopsies. Front Pharmacol 2022; 13:813087. [PMID: 35359837 PMCID: PMC8963460 DOI: 10.3389/fphar.2022.813087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an acute respiratory disease with systemic complications. Therapeutic strategies for COVID-19, including repurposing (partially) developed drugs are urgently needed, regardless of the increasingly successful vaccination outcomes. We characterized two-dimensional (2D) and three-dimensional models (3D) to establish a physiologically relevant airway epithelial model with potential for investigating SARS-CoV-2 therapeutics. Human airway basal epithelial cells maintained in submerged 2D culture were used at low passage to retain the capacity to differentiate into ciliated, club, and goblet cells in both air-liquid interface culture (ALI) and airway organoid cultures, which were then analyzed for cell phenotype makers. Airway biopsies from non-asthmatic and asthmatic donors enabled comparative evaluation of the level and distribution of immunoreactive angiotensin-converting enzyme 2 (ACE2). ACE2 and transmembrane serine proteinase 2 (TMPRSS2) mRNA were expressed in ALI and airway organoids at levels similar to those of native (i.e., non-cultured) human bronchial epithelial cells, whereas furin expression was more faithfully represented in ALI. ACE2 was mainly localized to ciliated and basal epithelial cells in human airway biopsies, ALI, and airway organoids. Cystic fibrosis appeared to have no influence on ACE2 gene expression. Neither asthma nor smoking status had consistent marked influence on the expression or distribution of ACE2 in airway biopsies. SARS-CoV-2 infection of ALI cultures did not increase the levels of selected cytokines. Organotypic, and particularly ALI airway cultures are useful and practical tools for investigation of SARS-CoV-2 infection and evaluating the clinical potential of therapeutics for COVID-19.
Collapse
Affiliation(s)
- Qianyu Chen
- Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, VIC, Australia
- ARC Centre for Personalized Therapeutics Technologies, University of Melbourne, Parkville, VIC, Australia
| | - Shenna Langenbach
- Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, VIC, Australia
- ARC Centre for Personalized Therapeutics Technologies, University of Melbourne, Parkville, VIC, Australia
| | - Meina Li
- Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, VIC, Australia
- ARC Centre for Personalized Therapeutics Technologies, University of Melbourne, Parkville, VIC, Australia
| | - Yuxiu C. Xia
- Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, VIC, Australia
| | - Xumei Gao
- Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, VIC, Australia
- ARC Centre for Personalized Therapeutics Technologies, University of Melbourne, Parkville, VIC, Australia
| | - Matthew J. Gartner
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia
| | - Elizabeth A. Pharo
- CSIRO, Health and Biosecurity Business Unit, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Sinéad M. Williams
- CSIRO, Health and Biosecurity Business Unit, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Shawn Todd
- CSIRO, Health and Biosecurity Business Unit, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Nadeene Clarke
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, VIC, Australia
| | - Sarath Ranganathan
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, VIC, Australia
- Department of Pediatrics, Melbourne Medical School, University of Melbourne, Parkville, VIC, Australia
| | - Michelle L. Baker
- CSIRO, Health and Biosecurity Business Unit, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia
- WHO Collaborating Centre for Reference and Research on Influenza at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Alastair G. Stewart
- Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, VIC, Australia
- ARC Centre for Personalized Therapeutics Technologies, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
17
|
Singh P, Pal K, Chakravraty A, Ikram S. Execution and viable applications of face shield "a safeguard" against viral infections of cross-protection studies: A comprehensive review. J Mol Struct 2021; 1238:130443. [PMID: 33867574 PMCID: PMC8035530 DOI: 10.1016/j.molstruc.2021.130443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/27/2021] [Accepted: 04/05/2021] [Indexed: 12/16/2022]
Abstract
Face shield are the unmistakable plastic gatekeepers secures eyes and face, simpler to wear and a group of specialists state face shields may supplant masks as an increasingly agreeable and progressively successful obstacle to COVID-19. Face shields are useful in stopping respiratory droplets from speading from the wearer to others. The droplets, which come into contact with the shield, are quickly spread over a large area, both transversely and vertically, over the shield, but with a shrinking concentration of droplets, as opposed to face masks, which appear to slide under the nose of the wearer or, worse, collapse entirely off the shield. Hence, a face- shield can be considered as personal protective equipment (PPE), which is a first line of resistance, utilized by the clinicians and forefront health workers for protection against the infectious body fluid and aerosols. Face-shields are mainly fabricated using polycarbonate material, because of their excellent optical transparency in UVA-visible-IR spectrum and mechanical properties. The goal of this article is to provide researchers working in the same area, as well as health and industrial staff, with a detailed analysis of the usage of face shields against bioaerosols and the need for personal security. The reviews main focus on the background of the face shield, provide assistance in the selection, its design and structure, applications, advantages and disadvantages. Lastly, people's view about the usage of face shield as it becomes an essential part of human beings like an accomplice during this current pandemic situation.
Collapse
Affiliation(s)
- Preeti Singh
- Bio/Polymers Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Kaushik Pal
- Laboratório de Biopolímeros e-Sensores, Instituto de Macromoléculas, Universidade Federal do Rio de Janeiro (LABIOS/IMA/UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Archana Chakravraty
- Bio/Polymers Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Saiqa Ikram
- Bio/Polymers Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
18
|
Animal Models Utilized for the Development of Influenza Virus Vaccines. Vaccines (Basel) 2021; 9:vaccines9070787. [PMID: 34358203 PMCID: PMC8310120 DOI: 10.3390/vaccines9070787] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/25/2022] Open
Abstract
Animal models have been an important tool for the development of influenza virus vaccines since the 1940s. Over the past 80 years, influenza virus vaccines have evolved into more complex formulations, including trivalent and quadrivalent inactivated vaccines, live-attenuated vaccines, and subunit vaccines. However, annual effectiveness data shows that current vaccines have varying levels of protection that range between 40–60% and must be reformulated every few years to combat antigenic drift. To address these issues, novel influenza virus vaccines are currently in development. These vaccines rely heavily on animal models to determine efficacy and immunogenicity. In this review, we describe seasonal and novel influenza virus vaccines and highlight important animal models used to develop them.
Collapse
|
19
|
Schweitzer KS, Crue T, Nall JM, Foster D, Sajuthi S, Correll KA, Nakamura M, Everman JL, Downey GP, Seibold MA, Bridges JP, Serban KA, Chu HW, Petrache I. Influenza virus infection increases ACE2 expression and shedding in human small airway epithelial cells. Eur Respir J 2021; 58:2003988. [PMID: 33419885 PMCID: PMC8378143 DOI: 10.1183/13993003.03988-2020] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Patients with coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demonstrate high rates of co-infection with respiratory viruses, including influenza A (IAV), suggesting pathogenic interactions. METHODS We investigated how IAV may increase the risk of COVID-19 lung disease, focusing on the receptor angiotensin-converting enzyme (ACE)2 and the protease TMPRSS2, which cooperate in the intracellular uptake of SARS-CoV-2. RESULTS We found, using single-cell RNA sequencing of distal human nondiseased lung homogenates, that at baseline, ACE2 is minimally expressed in basal, goblet, ciliated and secretory epithelial cells populating small airways. We focused on human small airway epithelial cells (SAECs), central to the pathogenesis of lung injury following viral infections. Primary SAECs from nondiseased donor lungs apically infected (at the air-liquid interface) with IAV (up to 3×105 pfu; ∼1 multiplicity of infection) markedly (eight-fold) boosted the expression of ACE2, paralleling that of STAT1, a transcription factor activated by viruses. IAV increased the apparent electrophoretic mobility of intracellular ACE2 and generated an ACE2 fragment (90 kDa) in apical secretions, suggesting cleavage of this receptor. In addition, IAV increased the expression of two proteases known to cleave ACE2, sheddase ADAM17 (TACE) and TMPRSS2 and increased the TMPRSS2 zymogen and its mature fragments, implicating proteolytic autoactivation. CONCLUSION These results indicate that IAV amplifies the expression of molecules necessary for SARS-CoV-2 infection of the distal lung. Furthermore, post-translational changes in ACE2 by IAV may increase vulnerability to lung injury such as acute respiratory distress syndrome during viral co-infections. These findings support efforts in the prevention and treatment of influenza infections during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Kelly S Schweitzer
- Dept of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Taylor Crue
- Dept of Medicine, National Jewish Health, Denver, CO, USA
| | - Jordan M Nall
- Dept of Medicine, National Jewish Health, Denver, CO, USA
| | - Daniel Foster
- Dept of Medicine, National Jewish Health, Denver, CO, USA
| | - Satria Sajuthi
- Dept of Pediatrics, National Jewish Health, Denver, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | | | - Mari Nakamura
- Dept of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Gregory P Downey
- Dept of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Max A Seibold
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Dept of Pediatrics, National Jewish Health, Denver, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - James P Bridges
- Dept of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Karina A Serban
- Dept of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Hong Wei Chu
- Dept of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Both authors contributed equally as lead authors and supervised the work
| | - Irina Petrache
- Dept of Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Both authors contributed equally as lead authors and supervised the work
| |
Collapse
|
20
|
Abstract
The apical junctional complexes (AJCs) of airway epithelial cells are a key component of the innate immune system by creating barriers to pathogens, inhaled allergens, and environmental particles. AJCs form between adjacent cells and consist of tight junctions (TJs) and adherens junctions (AJs). Respiratory viruses have been shown to target various components of the AJCs, leading to airway epithelial barrier dysfunction by different mechanisms. Virus-induced epithelial permeability may allow for allergens and bacterial pathogens to subsequently invade. In this review, we discuss the pathophysiologic mechanisms leading to disruption of AJCs and the potential ensuing ramifications. We focus on the following viruses that affect the pulmonary system: respiratory syncytial virus, rhinovirus, influenza viruses, immunodeficiency virus, and other viruses such as coxsackievirus, adenovirus, coronaviruses, measles, parainfluenza virus, bocavirus, and vaccinia virus. Understanding the mechanisms by which viruses target the AJC and impair barrier function may help design therapeutic innovations to treat these infections.
Collapse
Affiliation(s)
- Debra T Linfield
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Andjela Raduka
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Mahyar Aghapour
- Institute of Medical Microbiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA.,Center for Pediatric Pulmonary Medicine, Cleveland, Ohio, USA
| |
Collapse
|
21
|
Marsh GA, McAuley AJ, Brown S, Pharo EA, Crameri S, Au GG, Baker ML, Barr JA, Bergfeld J, Bruce MP, Burkett K, Durr PA, Holmes C, Izzard L, Layton R, Lowther S, Neave MJ, Poole T, Riddell SJ, Rowe B, Soldani E, Stevens V, Suen WW, Sundaramoorthy V, Tachedjian M, Todd S, Trinidad L, Williams SM, Druce JD, Drew TW, Vasan SS. In vitro characterisation of SARS-CoV-2 and susceptibility of domestic ferrets (Mustela putorius furo). Transbound Emerg Dis 2021; 69:297-307. [PMID: 33400387 DOI: 10.1111/tbed.13978] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/21/2020] [Accepted: 01/03/2021] [Indexed: 12/21/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an emerging virus that has caused significant human morbidity and mortality since its detection in late 2019. With the rapid emergence has come an unprecedented programme of vaccine development with at least 300 candidates under development. Ferrets have proven to be an appropriate animal model for testing safety and efficacy of SARS-CoV-2 vaccines due to quantifiable virus shedding in nasal washes and oral swabs. Here, we outline our efforts early in the SARS-CoV-2 outbreak to propagate and characterize an Australian isolate of the virus in vitro and in an ex vivo model of human airway epithelium, as well as to demonstrate the susceptibility of domestic ferrets (Mustela putorius furo) to SARS-CoV-2 infection following intranasal challenge.
Collapse
Affiliation(s)
- Glenn A Marsh
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Alexander J McAuley
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Sheree Brown
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Elizabeth A Pharo
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Sandra Crameri
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Gough G Au
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Michelle L Baker
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Jennifer A Barr
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Jemma Bergfeld
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Matthew P Bruce
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Kathie Burkett
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Peter A Durr
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Clare Holmes
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Leonard Izzard
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Rachel Layton
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Suzanne Lowther
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Matthew J Neave
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Timothy Poole
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Sarah-Jane Riddell
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Brenton Rowe
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Elisha Soldani
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Vittoria Stevens
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Willy W Suen
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Vinod Sundaramoorthy
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia.,School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Mary Tachedjian
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Shawn Todd
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Lee Trinidad
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Sinéad M Williams
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Julian D Druce
- Victorian Infectious Diseases Reference Laboratory (VIDRL), The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Trevor W Drew
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia
| | - Seshadri S Vasan
- Australian Centre for Disease Preparedness (ACDP), Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC, Australia.,Department of Health Sciences, University of York, York, YO10 5DD, UK
| |
Collapse
|