1
|
Bruni A, Castellana C, Dajti E, Barbara G, Marasco G, Maida M, Serviddio G, Facciorusso A. Epidemiological, diagnostic, therapeutic and prognostic impact of hepatitis B and D virus infection on hepatocellular carcinoma: A review of the literature. Virology 2024; 600:110273. [PMID: 39454228 DOI: 10.1016/j.virol.2024.110273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) accounts for >90% of primary liver cancer cases, and chronic infections with hepatitis B virus (HBV) and hepatitis D virus (HDV) are major contributors. METHODS A comprehensive literature review was conducted using the MEDLINE (PubMed) database, focusing on studies related to HBV, HDV, and HCC. RESULTS HBV contributes to HCC through mechanisms like viral integration into the host genome, chronic inflammation, and immune modulation, leading to genomic instability and altered cell signaling. HDV exacerbates HBV-induced liver damage, accelerating fibrosis and cirrhosis, and significantly increasing HCC risk. Antiviral therapies and vaccinations have majorly reduced the burden of HBV-related HCC, but HDV remains challenging to treat due to limited therapeutic options. Emerging treatments like Bulevirtide showed promising results. CONCLUSION This review highlights the critical impact of HBV and HDV co-infections on HCC development, emphasizing the need for more effective therapeutic strategies. While advances in antiviral therapies have reduced the incidence of HBV-related HCC, the high burden of HDV-related complications persists. Future research should focus on improving treatments for HDV and understanding its unique contribution to HCC pathogenesis.
Collapse
Affiliation(s)
- Angelo Bruni
- Department of Medical and Surgical Sciences, Università di Bologna, Bologna, Italy
| | - Chiara Castellana
- Gastroenterology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elton Dajti
- Department of Medical and Surgical Sciences, Università di Bologna, Bologna, Italy; Gastroenterology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanni Barbara
- Department of Medical and Surgical Sciences, Università di Bologna, Bologna, Italy; Gastroenterology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanni Marasco
- Department of Medical and Surgical Sciences, Università di Bologna, Bologna, Italy; Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marcello Maida
- Department of Medicine and Surgery, University of Enna 'Kore', Enna, Italy; Gastroenterology Unit, Umberto I Hospital, Enna, Italy
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Antonio Facciorusso
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
2
|
Yang X, Wang H, Yu C. The Mechanism of APOBEC3B in Hepatitis B Virus Infection and HBV Related Hepatocellular Carcinoma Progression, Therapeutic and Prognostic Potential. Infect Drug Resist 2024; 17:4477-4486. [PMID: 39435460 PMCID: PMC11492903 DOI: 10.2147/idr.s484265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors globally. Prominent factors include chronic hepatitis B (CHB) and chronic hepatitis C (CHC) virus infections, exposure to aflatoxin, alcohol abuse, diabetes, and obesity. The prevalence of hepatitis B (HBV) is substantial, and the significant proportion of asymptomatic carriers heightens the challenge in diagnosing and treating hepatocellular carcinoma (HCC), necessitating further and more comprehensive research. Apolipoprotein B mRNA editing catalytic polypeptide (APOBEC) family members are single-stranded DNA cytidine deaminases that can restrict viral replication. The APOBEC-related mutation pattern constitutes a primary characteristic of somatic mutations in various cancer types such as lung, breast, bladder, head and neck, cervix, and ovary. Symptoms in the early stages of HCC are often subtle and nonspecific, posing challenges in treatment and monitoring. Furthermore, this article primarily focuses on the established specific mechanism of action of the APOBEC3B (A3B) gene in the onset and progression of HBV-related HCC (HBV-HCC) through stimulating mutations in HBV, activating Interleukin-6 (IL-6) and promoting reactive oxygen species(ROS) production, while also exploring the potential for A3B to serve as a therapeutic target and prognostic indicator in HBV-HCC.
Collapse
Affiliation(s)
- Xiaochen Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Huanqiu Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Chengbo Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
3
|
Kazi IA, Jahagirdar V, Kabir BW, Syed AK, Kabir AW, Perisetti A. Role of Imaging in Screening for Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:3400. [PMID: 39410020 PMCID: PMC11476228 DOI: 10.3390/cancers16193400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Primary liver cancer is among the most common cancers globally. It is the sixth-most common malignancy encountered and the third-most common cause of cancer-related death. Hepatocellular carcinoma (HCC) is the most common primary liver malignancy, accounting for about 90% of primary liver cancers. The majority of HCCs occur in patients with underlying cirrhosis, which results from chronic liver diseases such as fatty liver, hepatitis B and hepatitis C infections, and chronic alcohol use, which are the leading causes. The obesity pandemic has led to an increased prevalence of nonalcoholic fatty liver disease (NAFLD), which leads to nonalcoholic steatohepatitis and could progress to cirrhosis. As HCC is among the most common cancers and occurs in the setting of chronic liver disease in most patients, screening the population at risk could help in early diagnosis and management, leading to improved survival. Screening for HCC is performed using biochemical marker testing such as α-fetoprotein (AFP) and cross-sectional imaging. It is critical to emphasize that HCC could potentially occur in patients without cirrhosis (non-cirrhotic HCC), which can account for almost 20% of all HCCs. The lack of cirrhosis can cause a delay in surveillance, which could potentially lead to diagnosis at a later stage, worsening the prognosis for such patients. In this article, we discuss the diagnosis of cirrhosis in at-risk populations with details on the different modalities available for screening HCC in patients with cirrhosis, emphasizing the role of abdominal ultrasounds, the primary imaging modality in HCC screening.
Collapse
Affiliation(s)
- Irfan A. Kazi
- Department of Radiology, University of Missouri Columbia, Columbia, MO 65212, USA;
| | - Vinay Jahagirdar
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Bareen W. Kabir
- Department of Internal Medicine, University of Missouri Columbia, Columbia, MO 65212, USA;
| | - Almaan K. Syed
- Blue Valley Southwest High School, Overland Park, KS 6622, USA;
| | | | - Abhilash Perisetti
- Division of Gastroenterology and Hepatology, Kansas City Veteran Affairs, Kansas City, MO 64128, USA
| |
Collapse
|
4
|
Guan Y, Li J, Sun B, Xu K, Zhang Y, Ben H, Feng Y, Liu M, Wang S, Gao Y, Duan Z, Zhang Y, Chen D, Wang Y. HBx-induced upregulation of MAP1S drives hepatocellular carcinoma proliferation and migration via MAP1S/Smad/TGF-β1 loop. Int J Biol Macromol 2024; 281:136327. [PMID: 39374711 DOI: 10.1016/j.ijbiomac.2024.136327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 09/12/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), has a significantly higher risk of recurrence. However, the exact mechanism by which HBV prompts HCC recurrence remains largely unknown. In this study liver microarray test revealed significant upregulation of microtubule associated protein 1S (MAP1S) in metastatic HCC compared to control. MAP1S knockdown suppressed growth of HCCLM3 cells in vitro and in vivo. Mechanistically, HBV-encoded X protein (HBx) upregulates MAP1S, which enhances microtubule (MT) acetylation by promoting the degradation of histone deacetylase 6 (HDAC6), and facilitates the nuclear translocation of Smad complex, and thereby enhancing downstream TGF-β signaling. Smad complex, in turn, increases MAP1S, establishing a feedback loop of MAP1S/Smad/TGF-β1. Finally, survival analysis of 150 HBV-associated HCC patients demonstrated both increased MAP1S and decreased HDAC6 were significantly associated with shorter relapse-free survival. Collectively, this study reveals a unique mechanism whereby HBx-induced upregulation of MAP1S drives HBV-related HCC proliferation and migration through the MAP1S/Smad/TGF-β1 feedback loop. TEASER: MAP1S is a key link between HBV infection and a higher risk of metastatic recurrence of HCC.
Collapse
Affiliation(s)
- Yuanyue Guan
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Tsinghua Changgung Hospital, School Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Jiaxi Li
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Sun
- Clinical Center for Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Intervention Therapy Center of Tumor and Liver Diseases, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Kaikun Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yonghong Zhang
- Clinical Center for Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Intervention Therapy Center of Tumor and Liver Diseases, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Haijing Ben
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Yingmei Feng
- Department of Science and Development, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Mengcheng Liu
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Shanshan Wang
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Yuxue Gao
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Zhongping Duan
- Clinical Center for Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Artificial Liver Center, Beijing You An Hospital, Capital Medical University, Beijing 100069, China
| | - Yang Zhang
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China.
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China.
| | - Yanjun Wang
- Beijing Institute of Hepatology, Beijing You An Hospital, Capital Medical University, Beijing 100069, China; Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing You An Hospital, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
5
|
Wang Y, Li S, Ren T, Zhang Y, Li B, Geng X. Mechanism of emodin in treating hepatitis B virus-associated hepatocellular carcinoma: network pharmacology and cell experiments. Front Cell Infect Microbiol 2024; 14:1458913. [PMID: 39346898 PMCID: PMC11427391 DOI: 10.3389/fcimb.2024.1458913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is a pressing global issue, with Hepatitis B virus (HBV) infection remaining the primary. Emodin, an anthraquinone compound extracted from the natural plant's. This study investigates the molecular targets and possible mechanisms of emodin in treating HBV-related HCC based on network pharmacology and molecular docking and validates the screened molecular targets through in vitro experiments. Methods Potential targets related to emodin were obtained through PubChem, CTD, PharmMapper, SuperPred, and TargetNet databases. Potential disease targets for HBV and HCC were identified using the DisGeNET, GeneCards, OMIM, and TTD databases. A Venn diagram was used to determine overlapping genes between the drug and the diseases. Enrichment analysis of these genes was performed using GO and KEGG via bioinformatics websites. The overlapping genes were imported into STRING to construct a protein-protein interaction network. Cytoscape 3.9.1 software was used for visualizing and analyzing the core targets. Molecular docking analysis of the drug and core targets was performed using Schrodinger. The regulatory effects of emodin on these core targets were validate through in vitro experiments. Results A total of 43 overlapping genes were identified. GO analysis recognized 926 entries, and KEGG analysis identified 135 entries. The main pathways involved in the KEGG analysis included cancer, human cytomegalovirus infection and prostate cancer. The binding energies of emodin with HSP90AA1, PTGS2, GSTP1, SOD2, MAPK3, and PCNA were all less than -5 kcal/mol. Compared to normal liver tissue, the mRNA levels of XRCC1, MAPK3, and PCNA were significantly elevated in liver cancer tissue. The expression levels of XRCC1, HIF1A, MAPK3, and PCNA genes were closely related to HCC progression. High expressions of HSP90AA1, TGFB1, HIF1A, MAPK3, and PCNA were all closely associated with poor prognosis in HCC. In vitro experiments demonstrated that emodin significantly downregulated the expression of HSP90AA1, MAPK3, XRCC1, PCNA, and SOD2, while significantly upregulating the expression of PTGS2 and GSTP1. Conclusion This study, based on network pharmacology and molecular docking validation, suggests that emodin may exert therapeutic effects on HBV-related HCC by downregulating the expression of XRCC1, MAPK3, PCNA, HSP90AA1, and SOD2, and upregulating the expression of PTGS2 and GSTP1.
Collapse
Affiliation(s)
- Yupeng Wang
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
| | - Shuangxing Li
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
| | - Tianqi Ren
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yikun Zhang
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
| | - Bo Li
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
| | - Xingchao Geng
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
6
|
Quirino A, Marascio N, Branda F, Ciccozzi A, Romano C, Locci C, Azzena I, Pascale N, Pavia G, Matera G, Casu M, Sanna D, Giovanetti M, Ceccarelli G, Alaimo di Loro P, Ciccozzi M, Scarpa F, Maruotti A. Viral Hepatitis: Host Immune Interaction, Pathogenesis and New Therapeutic Strategies. Pathogens 2024; 13:766. [PMID: 39338957 PMCID: PMC11435051 DOI: 10.3390/pathogens13090766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Viral hepatitis is a major cause of liver illness worldwide. Despite advances in the understanding of these infections, the pathogenesis of hepatitis remains a complex process driven by intricate interactions between hepatitis viruses and host cells at the molecular level. This paper will examine in detail the dynamics of these host-pathogen interactions, highlighting the key mechanisms that regulate virus entry into the hepatocyte, their replication, evasion of immune responses, and induction of hepatocellular damage. The unique strategies employed by different hepatitis viruses, such as hepatitis B, C, D, and E viruses, to exploit metabolic and cell signaling pathways to their advantage will be discussed. At the same time, the innate and adaptive immune responses put in place by the host to counter viral infection will be analyzed. Special attention will be paid to genetic, epigenetic, and environmental factors that modulate individual susceptibility to different forms of viral hepatitis. In addition, this work will highlight the latest findings on the mechanisms of viral persistence leading to the chronic hepatitis state and the potential implications for the development of new therapeutic strategies. Fully understanding the complex host-pathogen interactions in viral hepatitis is crucial to identifying new therapeutic targets, developing more effective approaches for treatment, and shedding light on the mechanisms underlying progression to more advanced stages of liver damage.
Collapse
Affiliation(s)
- Angela Quirino
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Nadia Marascio
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (C.R.); (M.C.)
| | - Alessandra Ciccozzi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
| | - Chiara Romano
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (C.R.); (M.C.)
| | - Chiara Locci
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Ilenia Azzena
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Noemi Pascale
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
- Department of Chemical Physical Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Grazia Pavia
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Giovanni Matera
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro “Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (A.Q.); (N.M.); (G.P.); (G.M.)
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, MG, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Brasilia 70070-130, GO, Brazil
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University Hospital Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy;
| | | | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (C.R.); (M.C.)
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.); (F.S.)
| | - Antonello Maruotti
- Department GEPLI, Libera Università Maria Ss Assunta, 00193 Rome, Italy;
| |
Collapse
|
7
|
Chen W, Xu H, Guo L, Zheng F, Yao J, Wang L. Role of ACSL4 in modulating farnesoid X receptor expression and M2 macrophage polarization in HBV-induced hepatocellular carcinoma. MedComm (Beijing) 2024; 5:e706. [PMID: 39268355 PMCID: PMC11391271 DOI: 10.1002/mco2.706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/15/2024] Open
Abstract
The intricate relationship between bile acid (BA) metabolism, M2 macrophage polarization, and hepatitis B virus-hepatocellular carcinoma (HBV-HCC) necessitates a thorough investigation of ACSL4's (acyl-CoA synthetase long-chain family member 4) role. This study combines advanced bioinformatics and experimental methods to elucidate ACSL4's significance in HBV-HCC development. Using bioinformatics, we identified differentially expressed genes in HBV-HCC. STRING and gene set enrichment analysis analyses were employed to pinpoint critical genes and pathways. Immunoinfiltration analysis, along with in vitro and in vivo experiments, assessed M2 macrophage polarization and related factors. ACSL4 emerged as a pivotal gene influencing HBV-HCC. In HBV-HCC liver tissues, ACSL4 exhibited upregulation, along with increased levels of M2 macrophage markers and BA. Silencing ACSL4 led to heightened farnesoid X receptor (FXR) expression, reduced BA levels, and hindered M2 macrophage polarization, thereby improving HBV-HCC conditions. This study underscores ACSL4's significant role in HBV-HCC progression. ACSL4 modulates BA-mediated M2 macrophage polarization and FXR expression, shedding light on potential therapeutic targets and novel insights into HBV-HCC pathogenesis.
Collapse
Affiliation(s)
- Wenbiao Chen
- Department of Gastroenterology Shenzhen People's Hospital The Second Clinical Medical College Jinan University The First Affiliated Hospital Southern University of Science and Technology Shenzhen China
| | - Huixuan Xu
- Department of Rheumatology and Immunology The Second Clinical Medical College Jinan University (Shenzhen People's Hospital) Shenzhen China
| | - Liliangzi Guo
- Department of Gastroenterology Shenzhen People's Hospital The Second Clinical Medical College Jinan University The First Affiliated Hospital Southern University of Science and Technology Shenzhen China
| | - Fengping Zheng
- Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center Peking University Shenzhen Hospital Shenzhen Guangdong China
| | - Jun Yao
- Department of Gastroenterology Shenzhen People's Hospital The Second Clinical Medical College Jinan University The First Affiliated Hospital Southern University of Science and Technology Shenzhen China
| | - Lisheng Wang
- Department of Gastroenterology Shenzhen People's Hospital The Second Clinical Medical College Jinan University The First Affiliated Hospital Southern University of Science and Technology Shenzhen China
| |
Collapse
|
8
|
He A, Huang Z, Feng Q, Zhang S, Li F, Li D, Lu H, Wang J. AC099850.3 promotes HBV-HCC cell proliferation and invasion through regulating CD276: a novel strategy for sorafenib and immune checkpoint combination therapy. J Transl Med 2024; 22:809. [PMID: 39217342 PMCID: PMC11366154 DOI: 10.1186/s12967-024-05576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND This study investigates the molecular mechanisms of CC@AC&SF@PP NPs loaded with AC099850.3 siRNA and sorafenib (SF) for improving hepatitis B virus-related hepatocellular carcinoma (HBV-HCC). METHODS A dataset of 44 HBV-HCC patients and their survival information was selected from the TCGA database. Immune genes related to survival status were identified using the ImmPort database and WGCNA analysis. A prognostic risk model was constructed and analyzed using Lasso regression. Differential analysis was performed to screen key genes, and their significance and predictive accuracy for HBV-HCC were validated using Kaplan-Meier survival curves, ROC analysis, CIBERSORT analysis, and correlation analysis. The correlation between AC099850.3 and the gene expression matrix was calculated, followed by GO and KEGG enrichment analysis using AC099850.3 and its co-expressed genes. HepG2.2.15 cells were selected for in vitro validation, and lentivirus interference, cell cycle determination, CCK-8 experiments, colony formation assays, Transwell experiments, scratch experiments, and flow cytometry were performed to investigate the effects of key genes on HepG2.2.15 cells. A subcutaneous transplanted tumor model in mice was constructed to verify the inhibitory effect of key genes on HBV-HCC tumors. Subsequently, pH-triggered drug release NPs (CC@AC&SF@PP) were prepared, and their therapeutic effects on HBV-HCC in situ tumor mice were studied. RESULTS A prognostic risk model (AC012313.9, MIR210HG, AC099850.3, AL645933.2, C6orf223, GDF10) was constructed through bioinformatics analysis, showing good sensitivity and specificity in diagnostic prediction. AC099850.3 was identified as a key gene, and enrichment analysis revealed its impact on cell cycle pathways. In vitro cell experiments demonstrated that AC099850.3 promotes HepG2.2.15 cell proliferation and invasion by regulating immune checkpoint CD276 expression and cell cycle progression. In vivo, subcutaneously transplanted tumor experiments showed that AC099850.3 promotes the growth of HBV-HCC tumors in nude mice. Furthermore, pH-triggered drug release NPs (CC@AC&SF@PP) loaded with AC099850.3 siRNA and SF were successfully prepared and delivered to the in situ HBV-HCC, enhancing the effectiveness of combined therapy for HBV-HCC. CONCLUSIONS AC099850.3 accelerates the cell cycle progression and promotes the occurrence and development of HBV-HCC by upregulating immune checkpoint CD276 expression. CC@AC&SF@PP NPs loaded with AC099850.3 siRNA and SF improve the effectiveness of combined therapy for HBV-HCC.
Collapse
Affiliation(s)
- Aoxiao He
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Zhihao Huang
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, China
| | - Qian Feng
- Department of Emergency, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Shan Zhang
- Department of Hematology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Fan Li
- Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Dan Li
- Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Hongcheng Lu
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, China.
| | - Jiakun Wang
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, China.
| |
Collapse
|
9
|
Peng JX, Wang LZ, Wang QT, Li HL, Lin LJ, He JM. Tenofovir versus entecavir on the prognosis of hepatitis B virus-related hepatocellular carcinoma: a reconstructed individual patient data meta-analysis. Front Pharmacol 2024; 15:1393861. [PMID: 39239648 PMCID: PMC11374766 DOI: 10.3389/fphar.2024.1393861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/16/2024] [Indexed: 09/07/2024] Open
Abstract
Background: Hepatitis B, often leading to Hepatocellular carcinoma (HCC), poses a major global health challenge. While Tenofovir (TDF) and Entecavir (ETV) are potent treatments, their comparative effectiveness in improving recurrence-free survival (RFS) and overall survival (OS) rates in HBV-related HCC is not well-established. Methods: We conducted an individual patient data meta-analysis using survival data from randomized trials and high-quality propensity score-matched studies to compare the impact of Tenofovir (TDF) and Entecavir (ETV) on RFS and OS in HBV-related HCC patients. Data from six databases and gray literature up to 30 August 2023, were analyzed, utilizing Kaplan-Meier curves, stratified Cox models, and shared frailty models for survival rate assessment and to address between-study heterogeneity. The study employed restricted mean survival time analysis to evaluate differences in RFS and OS between TDF-treated and ETV-treated patients. Additionally, landmark analyses compared early (<2 years) and late (≥2 years) tumor recurrence in these cohorts. Results: This study incorporated seven research articles, covering 4,602 patients with HBV-related HCC (2,082 on TDF and 2,520 on ETV). Within the overall cohort, TDF recipients demonstrated significantly higher RFS (p = 0.042) and OS (p < 0.001) than those on ETV. The stratified Cox model revealed significantly improved OS for the TDF group compared to the ETV group (hazard ratio, 0.756; 95% confidence interval, 0.639-0.896; p = 0.001), a result corroborated by the shared frailty model. Over a follow-up period of 1-8 years, no significant difference was noted in the mean time to death between the TDF and ETV groups. The rates of early recurrence did not significantly differ between the groups (p = 0.735). However, TDF treatment was significantly associated with a reduced risk of late recurrence compared to ETV (p < 0.001). In the HCC resection subgroup, the disparities in OS, early, and late recurrence rates between the two treatments paralleled those seen in the overall cohort. Conclusion: Compared to ETV, TDF may enhance OS and reduce late tumor recurrence risk in HBV-related HCC patients receiving curative treatment. However, there was no statistically significant distinction in the timing of tumor recurrence and mortality between patients administered TDF and those prescribed ETV. Systematic Review Registration: http://www.crd.york.ac.uk/prospero/.
Collapse
Affiliation(s)
- Jian-Xin Peng
- Department of Hepatobiliary Surgery, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ling-Zhi Wang
- Department of Anesthesia, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiu-Ting Wang
- Department of Hepatobiliary Surgery, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Hui-Long Li
- Department of Hepatobiliary Surgery, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Li-Jun Lin
- Department of Hepatobiliary Surgery, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jun-Ming He
- Department of Hepatobiliary Surgery, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Cao LQ, Xie Y, Fleishman JS, Liu X, Chen ZS. Hepatocellular carcinoma and lipid metabolism: Novel targets and therapeutic strategies. Cancer Lett 2024; 597:217061. [PMID: 38876384 DOI: 10.1016/j.canlet.2024.217061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Hepatocellular carcinoma (HCC) is an increasingly prevalent disease that is associated with high and continually rising mortality rates. Lipid metabolism holds a crucial role in the pathogenesis of HCC, in which abnormalities pertaining to the delicate balance of lipid synthesis, breakdown, and storage, predispose for the pathogenesis of the nonalcoholic fatty liver disease (NAFLD), a disease precursor to HCC. If caught early enough, HCC treatment may be curative. In later stages, treatment is only halting the inevitable outcome of death, boldly prompting for novel drug discovery to provide a fighting chance for this patient population. In this review, we begin by providing a summary of current local and systemic treatments against HCC. From such we discuss hepatic lipid metabolism and highlight novel targets that are ripe for anti-cancer drug discovery. Lastly, we provide a targeted summary of current known risk factors for HCC pathogenesis, providing key insights that will be essential for rationalizing future development of anti-HCC therapeutics.
Collapse
Affiliation(s)
- Lu-Qi Cao
- Institute for Biotechnology, St. John's University, New York, NY, 11439, USA; College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Yuhao Xie
- College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Joshua S Fleishman
- College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Xuan Liu
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518034, China.
| | - Zhe-Sheng Chen
- Institute for Biotechnology, St. John's University, New York, NY, 11439, USA; College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA.
| |
Collapse
|
11
|
Chen X, Song J, Sun J, Zhang J, Chen X, Zeng C, Hu J, Chang X, Jin F, Luo S, Chen Z, Luo Y. Hepatitis B infection is associated with periodontitis: the national health and nutrition examination survey (2009-2014). BMC Oral Health 2024; 24:815. [PMID: 39020311 PMCID: PMC11256453 DOI: 10.1186/s12903-024-04489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/17/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Current research has been inconclusive regarding whether hepatitis B infection is associated with an increased risk of periodontitis. This study aims to test the null hypothesis that no association exists between hepatitis B infection and an increased risk of periodontitis using the National Health and Nutrition Examination Survey (2009-2014). METHODS We performed a cross-sectional study using the National Health and Nutrition Examination Survey (NHANES) database (2009-2014) to assess the rate of the prevalence of periodontitis in patients with and without hepatitis B infection. Participants who had tested for hepatitis B and periodontitis were included. The included participants were divided into no/mild periodontitis and moderate/severe periodontitis groups according to their periodontal status. The association between hepatitis B infection and chronic periodontitis was evaluated by multivariable regression analyses adjusting for age, gender, race/ethnicity, education level, income-to-poverty ratio, smoking, alcohol, BMI, ALT, AST, creatinine, hypertension, and diabetes. RESULTS A total of 5957 participants were included and divided into two groups: inactive periodontitis group (n = 3444) and active periodontitis group (n = 2513). The results showed that participants with hepatitis B had a higher risk of periodontitis. After adjusting for covariables, adults with hepatitis B infection were 38% more likely to have periodontitis compared to those without hepatitis B infection (95% Confidence Interval [CI]:1.085-1.754). CONCLUSIONS In general, the results suggest that CHB is positively associated with the more severe periodontitis. These results suggest that people with hepatitis B infection should take good periodontal care measures to avoid the occurrence and development of periodontitis.
Collapse
Affiliation(s)
- XianRun Chen
- School of Stomatology, Zunyi Medical University, Zunyi, China
- Department of Prosthodontics, Guiyang Stomatological Hospital, Guiyang, China
| | - Jukun Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, China
| | - JiangLing Sun
- Department of Endodontics, Guiyang Stomatological Hospital, Guiyang, China
| | - JiQin Zhang
- School of Stomatology, Zunyi Medical University, Zunyi, China
- Department of Prosthodontics, Guiyang Stomatological Hospital, Guiyang, China
| | - XingJin Chen
- School of Stomatology, Zunyi Medical University, Zunyi, China
- Department of Endodontics, Guiyang Stomatological Hospital, Guiyang, China
| | - ChongWen Zeng
- School of Stomatology, Zunyi Medical University, Zunyi, China
- Department of Endodontics, Guiyang Stomatological Hospital, Guiyang, China
| | - JiaXin Hu
- School of Stomatology, Zunyi Medical University, Zunyi, China
- Department of Prosthodontics, Guiyang Stomatological Hospital, Guiyang, China
| | - XingTao Chang
- School of Stomatology, Zunyi Medical University, Zunyi, China
- Department of Prosthodontics, Guiyang Stomatological Hospital, Guiyang, China
| | - FuQian Jin
- Department of Endodontics, Guiyang Stomatological Hospital, Guiyang, China
| | - SiYang Luo
- Department of Prosthodontics, Guiyang Stomatological Hospital, Guiyang, China
| | - Zhu Chen
- School of Stomatology, Zunyi Medical University, Zunyi, China.
- Department of Endodontics, Guiyang Stomatological Hospital, Guiyang, China.
| | - Yi Luo
- School of Stomatology, Zunyi Medical University, Zunyi, China.
- Department of Prosthodontics, Guiyang Stomatological Hospital, Guiyang, China.
| |
Collapse
|
12
|
Tyagi P, Singh A, Kumar J, Ahmad B, Bahuguna A, Vivekanandan P, Sarin SK, Kumar V. Furanocoumarins promote proteasomal degradation of viral HBx protein and down-regulate cccDNA transcription and replication of hepatitis B virus. Virology 2024; 595:110065. [PMID: 38569227 DOI: 10.1016/j.virol.2024.110065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Nucleot(s)ide analogues, the current antiviral treatments against chronic hepatitis B (CHB) infection, are non-curative due to their inability to eliminate covalently closed circular DNA (cccDNA) from the infected hepatocytes. Preclinical studies have shown that coumarin derivatives can effectively reduce the HBV DNA replication. We evaluated the antiviral efficacy of thirty new coumarin derivatives in cell culture models for studying HBV. Furanocoumarins Fc-20 and Fc-31 suppressed the levels of pre-genomic RNA as well as cccDNA, and reduced the secretion of virions, HBsAg and HBeAg. The antiviral efficacies of Fc-20 and Fc31 improved further when used in combination with the hepatitis B antiviral drug Entecavir. There was a marked reduction in the intracellular HBx level in the presence of these furanocoumarins due to proteasomal degradation resulting in the down-regulation of HBx-dependent viral genes. Importantly, both Fc-20 and Fc-31 were non-cytotoxic to cells even at high concentrations. Further, our molecular docking studies confirmed a moderate to high affinity interaction between furanocoumarins and viral HBx via residues Ala3, Arg26 and Lys140. These data suggest that furanocoumarins could be developed as a new therapeutic for CHB infection.
Collapse
Affiliation(s)
- Purnima Tyagi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Ankita Singh
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Jitendra Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Belal Ahmad
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Aparna Bahuguna
- Elsevier/ RELX India Pvt Ltd., DLF Cyber City, Gurgaon, 122002, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Vijay Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
| |
Collapse
|
13
|
Li P, Zhai Z, Fang J, Wang R, Li W, Wang B, Wang J, Zhu J, Bing F, Pan Q, Gao C, Lu S. PLGA micro/nanoparticle vaccination elicits non-tumor antigen specific resident memory CD8 + T cell protection from hepatocellular carcinoma. NANOSCALE 2024; 16:12149-12162. [PMID: 38833269 DOI: 10.1039/d4nr00554f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Together, tumor and virus-specific tissue-resident CD8+ memory T cells (TRMs) of hepatocellular carcinoma (HCC) patients with Hepatitis B virus (HBV) infection can provide rapid frontline immune surveillance. The quantity and activity of CD8+ TRMs were correlated with the relapse-free survival of patients with improved health. However, HBV-specific CD8+ TRMs have a more exhausted phenotype and respond more actively under anti-PDL1 or PD1 treatment of HBV+HCC patients. Vaccination strategies that induce a strong and sustained CD8+ TRMs response are quite promising. Herein, a biodegradable poly(D,L-lactide-co-glycolide) microsphere and nanosphere particle (PLGA N.M.P) delivery system co-assembled by anti-PD1 antibodies (aPD1) and loaded with ovalbumin (OVA-aPD1 N.M.P) was fabricated and characterized for size (200 nm and 1 μm diameter), charge (-15 mV), and loading efficiencies of OVA (238 μg mg-1 particles) and aPD1 (40 μg mg-1 particles). OVA-aPD1 N.M.P could stimulate the maturation of BMDCs and enhance the antigen uptake and presentation by 2-fold compared to free OVA. The nanoparticles also induced the activation of macrophages (RAW 264.7) to produce a high level of cytokines, including TNF-α, IL-6 and IL-10. In vivo stimulation of mice using OVA-aPD1 N.M.P robustly enhanced IFN-γ-producing-CD8+ T cell infiltration in tumor tissues and the secretion of IgG and IgG2a/IgG1 antibodies. OVA-aPD1 N.M.P delivered OVA to increase the activation and proliferation of OVA-specific CD8+ TRMs, and its combination with anti-PD1 antibodies promoted complete tumor rejection by the reversal of tumor-infiltrating CD8+ T cell exhaustion. Thus, PLGA N.M.P could induce a strong CD8+ TRMs response, further highlighting its therapeutic potential in enhancing an antitumor immune response.
Collapse
Affiliation(s)
- Pan Li
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310051, China.
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China.
| | - Zihe Zhai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jiawen Fang
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310051, China.
| | - Ruo Wang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China.
| | - Weiqi Li
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310051, China.
| | - Beiduo Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jinglei Wang
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310051, China.
| | - Jiaqi Zhu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China.
| | - Feng Bing
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China.
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China.
| | - ChangYou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - ShaoHong Lu
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310051, China.
| |
Collapse
|
14
|
Hou H, Liang L, Deng L, Ye W, Wen Y, Liu J. Comparison of Clinical Manifestations and Related Factors of Hepatocellular Carcinoma with Chronic Hepatitis B. Int J Gen Med 2024; 17:2877-2886. [PMID: 38947567 PMCID: PMC11214568 DOI: 10.2147/ijgm.s464083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024] Open
Abstract
Background The aim of this study was to describe the demographic and clinical characteristics of hepatitis B virus (HBV) associated hepatocellular carcinoma (HCC), analyse the risk factors associated with HBV-associated HCC, and to provide some references to the diagnosis and treatment of HCC. Methods This study retrospectively enrolled 730 patients, including 390 patients with chronic hepatitis B (CHB) as controls, and 340 patients with CHB complicated with HCC as patients. Relevant information and medical records of these participants were collected, including age, sex, cigarette smoking, alcoholism, diabetes mellitus (DM), hypertension, coronary heart disease (CHD), cirrhosis, occupation, ascites, HBV-DNA load, the qualitative analysis of HBsAg, HBsAb, HBeAg, HBeAb, and HBcAb serological markers, and levels of alanine transaminase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), direct bilirubin (DBIL), gamma-glutamyltransferase (GGT), TNM stage, tumor size and tumor number. The T test, Chi-square test, non-parametric rank-sum test, logistic regression analyses were used to explore the influencing factors and their degree of association with HCC in patients with HBV. Results The proportion of smoking, alcoholism, married status, DM, hypertension, and the rate of HBV-DNA with a viral load of ≥500 copies/mL were significantly higher in the HCC group than in the controls (all p<0.05). Cirrhosis was more common among patients with CHB+HCC than in controls (p=0.013). The proportion of patients with HBsAg, HBeAb, and HBcAb positive was greater in CHB+HCC group than that in CHB group. Logistic regression analysis indicated that age ≥60 years (OR: 1.835, 95% CI: 1.020-3.302, p=0.043), HBeAb positive (OR: 9.105, 95% CI: 4.796-17.288, p<0.001), antiviral treatment with entecavir (OR: 2.209, 95% CI: 1.106-4.409, p=0.025), and GGT (OR: 1.004, 95% CI: 1.001-1.007, p=0.002) were risk factors for HCC in patients with CHB. Conclusion Advanced age, HBeAb positive, antiviral treatment with entecavir, and GGT were independent risk factors for HCC in HBV patients.
Collapse
Affiliation(s)
- Haisong Hou
- Laboratory of Pathogenic Biology, Guangdong Medical University, Zhanjiang, People’s Republic of China
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Liu Liang
- Department of Laboratory Medicine, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Lihong Deng
- Department of Hepatology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Wanping Ye
- Department of Gastroenterology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Yuanzhang Wen
- Department of Hepatobiliary Surgery, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Jun Liu
- Laboratory of Pathogenic Biology, Guangdong Medical University, Zhanjiang, People’s Republic of China
| |
Collapse
|
15
|
Yao M, Fang RF, Xie Q, Xu M, Sai WL, Yao DF. Early monitoring values of oncogenic signalling molecules for hepatocellular carcinoma. World J Gastrointest Oncol 2024; 16:2350-2361. [PMID: 38994143 PMCID: PMC11236219 DOI: 10.4251/wjgo.v16.i6.2350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 06/13/2024] Open
Abstract
The prevention and early diagnosis of liver cancer remains a global medical challenge. During the malignant transformation of hepatocytes, a variety of oncogenic cellular signalling molecules, such as novel high mobility group-Box 3, angiopoietin-2, Golgi protein 73, glypican-3, Wnt3a (a signalling molecule in the Wnt/β-catenin pathway), and secretory clusterin, can be expressed and secreted into the blood. These signalling molecules are derived from different signalling pathways and may not only participate in the malignant transformation of hepatocytes but also become early diagnostic indicators of hepatocarcinogenesis or specific targeted molecules for hepatocellular carcinoma therapy. This article reviews recent progress in the study of several signalling molecules as sensitive biomarkers for monitoring hepatocarcinogenesis.
Collapse
Affiliation(s)
- Min Yao
- Department of Immunology, Medical School of Nantong University and Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Rong-Fei Fang
- Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Qun Xie
- Department of Infectious Diseases, Haian People’s Hospital, Haian 226600, Jiangsu Province, China
| | - Min Xu
- Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wen-Li Sai
- Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Deng-Fu Yao
- Department of Immunology, Medical School of Nantong University and Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
16
|
Zhang H, Ding J, Zhou Y. Quantitative PCR-based high-sensitivity detection of HBV-DNA levels reflects liver function deterioration in patients with hepatitis B virus-related cirrhosis. Am J Transl Res 2024; 16:2301-2309. [PMID: 39006275 PMCID: PMC11236653 DOI: 10.62347/bdlo2786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 07/16/2024]
Abstract
OBJECTIVES To investigate the clinical implication of quantitative polymerase chain reaction (PCR)-based high-sensitivity detection of hepatitis B virus (HBV)-DNA levels in patients with HBV-related liver cirrhosis (LC). METHODS From January 2020 to December 2022, 100 fasting serum samples were collected and retrospectively analyzed from patients with treated HBV-related LC attending the Suzhou Hospital of Integrated Traditional Chinese and Western Medicine and Suzhou Guangci Cancer Hospital. Patients were divided into a negative group (HBV-DNA < 20 IU/mL) and a positive group (HBV-DNA ≥ 20 IU/mL) according to their high-sensitivity HBV-DNA test results. The clinical characteristics and serological indicators of the two groups were compared, mainly including gender, age, liver function [total protein (TP), albumin (ALB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyl transpeptidase (GGT), alkaline phosphatase (ALP), total bilirubin (TBIL), direct bilirubin (DBIL), and indirect bilirubin (IBIL)], lipids [total cholesterol (TC) and triglycerides (TG)], platelets (PLT), five serum liver fibrosis markers [cholyglycine (CG), hyaluronic acid (HA), laminin (LN), precollagen type III (PCIII), and type IV collagen (IV-C)], serum gastrointestinal tumor markers [α-fetoprotein (AFP) and carcinoembryonic antigen (CEA)], and hepatitis B surface antigen (HBsAg). The differences between the two groups in terms of liver function Child-Pugh grades and the incidence of hepatocellular carcinoma (HCC) were also compared. RESULTS There were 39 patients in the positive group, including 29 males and 10 females, and 61 patients in the negative group, including 38 males and 23 females, with no statistically significant differences in gender and age distribution between the two groups (P > 0.05). The levels of serological indicators (TP, ALB, AST, GGT, ALP, TBIL, DBIL, IBIL, TC, TG, PLT, CG, HA, LN, PCIII, IV-C, AFP, CEA, and HBsAg) in both groups showed no significant differences (P > 0.05), but the ALT level in the positive group was higher than that in the negative group (P < 0.0001). The positive group had worse Child-Pugh grades and higher HCC incidence compared to the negative group (P < 0.0001, P = 0.028). CONCLUSIONS Patients with HBV-related LC and HBV-DNA ≥ 20 IU/mL have higher serum ALT levels, worse liver function Child-Pugh grades, and higher HCC incidence than those with HBV-DNA < 20 IU/mL. High-sensitivity HBV-DNA quantification can reflect the deterioration of liver function in patients with HBV-related LC to some extent.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory Department, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine Suzhou 215000, Jiangsu, China
| | - Jiayun Ding
- Laboratory Department, Suzhou Guangci Cancer Hospital Suzhou 215000, Jiangsu, China
| | - Yingzhen Zhou
- Laboratory Department, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine Suzhou 215000, Jiangsu, China
| |
Collapse
|
17
|
Yao M, Fang RF, Xie Q, Xu M, Sai WL, Yao DF. Early monitoring values of oncogenic signalling molecules for hepatocellular carcinoma. World J Gastrointest Oncol 2024; 16:2814-2825. [DOI: 10.4251/wjgo.v16.i6.2814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 06/13/2024] Open
Abstract
The prevention and early diagnosis of liver cancer remains a global medical challenge. During the malignant transformation of hepatocytes, a variety of oncogenic cellular signalling molecules, such as novel high mobility group-Box 3, angiopoietin-2, Golgi protein 73, glypican-3, Wnt3a (a signalling molecule in the Wnt/β-catenin pathway), and secretory clusterin, can be expressed and secreted into the blood. These signalling molecules are derived from different signalling pathways and may not only participate in the malignant transformation of hepatocytes but also become early diagnostic indicators of hepatocarcinogenesis or specific targeted molecules for hepatocellular carcinoma therapy. This article reviews recent progress in the study of several signalling molecules as sensitive biomarkers for monitoring hepatocarcinogenesis.
Collapse
Affiliation(s)
- Min Yao
- Department of Immunology, Medical School of Nantong University and Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Rong-Fei Fang
- Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Qun Xie
- Department of Infectious Diseases, Haian People’s Hospital, Haian 226600, Jiangsu Province, China
| | - Min Xu
- Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wen-Li Sai
- Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Deng-Fu Yao
- Department of Immunology, Medical School of Nantong University and Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
18
|
Szilveszter RM, Muntean M, Florea A. Molecular Mechanisms in Tumorigenesis of Hepatocellular Carcinoma and in Target Treatments-An Overview. Biomolecules 2024; 14:656. [PMID: 38927059 PMCID: PMC11201617 DOI: 10.3390/biom14060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Hepatocellular carcinoma is the most common primary malignancy of the liver, with hepatocellular differentiation. It is ranked sixth among the most common cancers worldwide and is the third leading cause of cancer-related deaths. The most important etiological factors discussed here are viral infection (HBV, HCV), exposure to aflatoxin B1, metabolic syndrome, and obesity (as an independent factor). Directly or indirectly, they induce chromosomal aberrations, mutations, and epigenetic changes in specific genes involved in intracellular signaling pathways, responsible for synthesis of growth factors, cell proliferation, differentiation, survival, the metastasis process (including the epithelial-mesenchymal transition and the expression of adhesion molecules), and angiogenesis. All these disrupted molecular mechanisms contribute to hepatocarcinogenesis. Furthermore, equally important is the interaction between tumor cells and the components of the tumor microenvironment: inflammatory cells and macrophages-predominantly with a pro-tumoral role-hepatic stellate cells, tumor-associated fibroblasts, cancer stem cells, extracellular vesicles, and the extracellular matrix. In this paper, we reviewed the molecular biology of hepatocellular carcinoma and the intricate mechanisms involved in hepatocarcinogenesis, and we highlighted how certain signaling pathways can be pharmacologically influenced at various levels with specific molecules. Additionally, we mentioned several examples of recent clinical trials and briefly described the current treatment protocol according to the NCCN guidelines.
Collapse
Affiliation(s)
- Raluca-Margit Szilveszter
- Department of Pathology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400340 Cluj-Napoca, Romania
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.M.); (A.F.)
- Cluj County Emergency Clinical Hospital, 400340 Cluj-Napoca, Romania
| | - Mara Muntean
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.M.); (A.F.)
| | - Adrian Florea
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.M.); (A.F.)
| |
Collapse
|
19
|
Wang J, Sun X, Wei S, Chen X, Zhu H, Liantang Y, Bao R, Du Y. Noninvasive models for the prediction of liver fibrosis in patients with chronic hepatitis B. BMC Gastroenterol 2024; 24:183. [PMID: 38783185 PMCID: PMC11119390 DOI: 10.1186/s12876-024-03270-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE To evaluate the diagnostic accuracy of aspartate aminotransferase(AST)/ alanine transaminase (ALT), AST to platelet ratio index (APRI), fibrosis-4 score (FIB-4) and gamma-glutamyl transpeptidase to platelet count ratio (GPR) for hepatic fibrosis in patients with chronic hepatitis B (CHB). METHODS A total of 1210 CHB patients who underwent liver biopsy were divided into two groups: patients with no significant fibrosis (control group) and patients with significant fibrosis, and routine laboratory tests were retrospectively included. Logistic regression models were used for the prediction, and the area under the receiver operating characteristic (AUROC) was used to assess the diagnostic accuracy. RESULTS A total of 631 (52.1%) and 275 (22.7%) patients had significant fibrosis (≥ S2) and advanced fibrosis (≥ S3), respectively. The GPR showed significantly higher diagnostic accuracy than that of APRI, FiB-4, and AST/ALT to predict ≥ S2(significant fibrosis) and ≥ S3 fibrosis(advanced fibrosis), with an AUROC was 0.69 (95%CI: 0.66-0.71) and 0.72 (0.69-0.75), respectively. After stratified by the status of HBeAg ( positive or negative), GPR, APRI, and FiB-4 showed improved predicting performance for significant fibrosis and advanced fibrosis in HBeAg positive patients, with the most significant improvement was shown for GPR in predicting significant fibrosis (AUROC = 0.74, 95%CI: 0.70-0.78). CONCLUSIONS Among the four noninvasive models, GPR has the best performance in the diagnosis of hepatic fibrosis in CHB patients and is more valuable in HBeAg-positive patients.
Collapse
Affiliation(s)
- Juanxia Wang
- Department of Infectious Diseases, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, China.
| | - Xince Sun
- Department of Infectious Diseases, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, China
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730030, China
| | - Shibo Wei
- Department of Infectious Diseases, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, China
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730030, China
| | - Xinyue Chen
- Department of Infectious Diseases, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, China
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730030, China
| | - Haoyu Zhu
- Department of Infectious Diseases, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, China
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730030, China
| | - Youyou Liantang
- Department of Infectious Diseases, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou, Gansu, 730030, China
- The Second Clinical Medical College of Lanzhou University, Lanzhou, 730030, China
| | - Ruikun Bao
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, No. 199 West Donggang R.D, Lanzhou, Gansu, 730000, China
| | - Yufeng Du
- Department of Epidemiology and Statistics, School of Public Health, Lanzhou University, No. 199 West Donggang R.D, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
20
|
Mu F, Hu LS, Xu K, Zhao Z, Yang BC, Wang YM, Guo K, Shi JH, Lv Y, Wang B. Perioperative remedial antiviral therapy in hepatitis B virus-related hepatocellular carcinoma resection: How to achieve a better outcome. World J Gastrointest Oncol 2024; 16:1833-1848. [PMID: 38764825 PMCID: PMC11099449 DOI: 10.4251/wjgo.v16.i5.1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/25/2024] [Accepted: 02/18/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Although the benefits of antiviral therapy for hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) have been proven, researchers have not confirmed the differences in patient outcomes between patients who received preoperative antiviral therapy for a period of time (at least 24 wk) and patients who received remedial antiviral therapy just before radical resection for HBV-related HCC. AIM To investigate the efficacy of perioperative remedial antiviral therapy in patients with HBV-related HCC. METHODS A retrospective study of patients who underwent radical resection for HBV-related HCC at the First Affiliated Hospital of Xi'an Jiaotong University from January 2016 to June 2019 was conducted. Considering the history of antiviral therapy, patients were assigned to remedial antiviral therapy and preoperative antiviral therapy groups. RESULTS Kaplan-Meier analysis revealed significant differences in overall survival (P < 0.0001) and disease-free survival (P = 0.035) between the two groups. Multivariate analysis demonstrated that a history of preoperative antiviral treatment was independently related to improved survival (hazard ratio = 0.27; 95% confidence interval: 0.08-0.88; P = 0.030). CONCLUSION In patients with HBV-related HCC, it is ideal to receive preoperative long-term antiviral therapy, which helps patients tolerate more extensive hepatectomy; however, remedial antiviral therapy, which reduces preoperative HBV-DNA levels to less than 4 Log10 copies DNA/mL, can also result in improved outcomes.
Collapse
Affiliation(s)
- Fan Mu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Liang-Shuo Hu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Kun Xu
- Department of Anaesthesiology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Zhen Zhao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Bai-Cai Yang
- Department of Gynaecology, Wenzhou Medical University Affiliated Jiaxing Women and Children Hospital, Jiaxing 314000, Zhejiang Province, China
| | - Yi-Meng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Kun Guo
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Jian-Hua Shi
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|
21
|
Usuda D, Kaneoka Y, Ono R, Kato M, Sugawara Y, Shimizu R, Inami T, Nakajima E, Tsuge S, Sakurai R, Kawai K, Matsubara S, Tanaka R, Suzuki M, Shimozawa S, Hotchi Y, Osugi I, Katou R, Ito S, Mishima K, Kondo A, Mizuno K, Takami H, Komatsu T, Nomura T, Sugita M. Current perspectives of viral hepatitis. World J Gastroenterol 2024; 30:2402-2417. [PMID: 38764770 PMCID: PMC11099385 DOI: 10.3748/wjg.v30.i18.2402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/11/2024] Open
Abstract
Viral hepatitis represents a major danger to public health, and is a globally leading cause of death. The five liver-specific viruses: Hepatitis A virus, hepatitis B virus, hepatitis C virus, hepatitis D virus, and hepatitis E virus, each have their own unique epidemiology, structural biology, transmission, endemic patterns, risk of liver complications, and response to antiviral therapies. There remain few options for treatment, in spite of the increasing prevalence of viral-hepatitis-caused liver disease. Furthermore, chronic viral hepatitis is a leading worldwide cause of both liver-related morbidity and mortality, even though effective treatments are available that could reduce or prevent most patients' complications. In 2016, the World Health Organization released its plan to eliminate viral hepatitis as a public health threat by the year 2030, along with a discussion of current gaps and prospects for both regional and global eradication of viral hepatitis. Today, treatment is sufficiently able to prevent the disease from reaching advanced phases. However, future therapies must be extremely safe, and should ideally limit the period of treatment necessary. A better understanding of pathogenesis will prove beneficial in the development of potential treatment strategies targeting infections by viral hepatitis. This review aims to summarize the current state of knowledge on each type of viral hepatitis, together with major innovations.
Collapse
Affiliation(s)
- Daisuke Usuda
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Yuki Kaneoka
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Rikuo Ono
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Masashi Kato
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Yuto Sugawara
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Runa Shimizu
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Tomotari Inami
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Eri Nakajima
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Shiho Tsuge
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Riki Sakurai
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Kenji Kawai
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Shun Matsubara
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Risa Tanaka
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Makoto Suzuki
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Shintaro Shimozawa
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Yuta Hotchi
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Ippei Osugi
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Risa Katou
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Sakurako Ito
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Kentaro Mishima
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Akihiko Kondo
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Keiko Mizuno
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Hiroki Takami
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Takayuki Komatsu
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
- Department of Sports Medicine, Faculty of Medicine, Juntendo University, Bunkyo 113-8421, Tokyo, Japan
| | - Tomohisa Nomura
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| | - Manabu Sugita
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Nerima 177-8521, Tokyo, Japan
| |
Collapse
|
22
|
Shen Y, Chen J, Wu J, Li T, Yi C, Wang K, Wang P, Sun C, Ye H. Combination of an Autoantibody Panel and Alpha-Fetoprotein for Early Detection of Hepatitis B Virus-Associated Hepatocellular Carcinoma. Cancer Prev Res (Phila) 2024; 17:227-235. [PMID: 38489403 DOI: 10.1158/1940-6207.capr-23-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/04/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The purpose of this study was to identify biomarkers associated with hepatitis B virus-associated hepatocellular carcinoma (HBV-HCC) and to develop a new combination with good diagnostic performance. This study was divided into four phases: discovery, verification, validation, and modeling. A total of four candidate tumor-associated autoantibodies (TAAb; anti-ZIC2, anti-PCNA, anti-CDC37L1, and anti-DUSP6) were identified by human proteome microarray (52 samples) and bioinformatics analysis. Subsequently, these candidate TAAbs were further confirmed by indirect ELISA with two testing cohorts (120 samples for verification and 663 samples for validation). The AUC for these four TAAbs to identify patients with HBV-HCC from chronic hepatitis B (CHB) patients ranged from 0.693 to 0.739. Finally, a diagnostic panel with three TAAbs (anti-ZIC2, anti-CDC37L1, and anti-DUSP6) was developed. This panel showed superior diagnostic efficiency in identifying early HBV-HCC compared with alpha-fetoprotein (AFP), with an AUC of 0.834 [95% confidence interval (CI), 0.772-0.897] for this panel and 0.727 (95% CI, 0.642-0.812) for AFP (P = 0.0359). In addition, the AUC for this panel to identify AFP-negative patients with HBV-HCC was 0.796 (95% CI, 0.734-0.858), with a sensitivity of 52.4% and a specificity of 89.0%. Importantly, the panel in combination with AFP significantly increased the positive rate for early HBV-HCC to 84.1% (P = 0.005) and for late HBV-HCC to 96.3% (P < 0.001). Our findings suggest that AFP and the autoantibody panel may be independent but complementary serologic biomarkers for HBV-HCC detection. PREVENTION RELEVANCE We developed a robust diagnostic panel for identifying patients with HBV-HCC from patients with CHB. This autoantibody panel provided superior diagnostic performance for HBV-HCC at an early stage and/or with negative AFP results. Our findings suggest that AFP and the autoantibody panel may be independent but complementary biomarkers for HBV-HCC detection.
Collapse
MESH Headings
- Adult
- Female
- Humans
- Male
- Middle Aged
- alpha-Fetoproteins/analysis
- alpha-Fetoproteins/immunology
- Autoantibodies/blood
- Autoantibodies/immunology
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/immunology
- Carcinoma, Hepatocellular/virology
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/blood
- Early Detection of Cancer/methods
- Enzyme-Linked Immunosorbent Assay
- Hepatitis B virus/immunology
- Hepatitis B virus/isolation & purification
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/virology
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/blood
- Hepatitis B, Chronic/diagnosis
- Liver Neoplasms/virology
- Liver Neoplasms/diagnosis
- Liver Neoplasms/immunology
- Liver Neoplasms/blood
- Aged
Collapse
Affiliation(s)
- Yajing Shen
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- The State Key Laboratory of Esophageal Cancer Prevention & Treatment and The Key Laboratory of Tumor Epidemiology of Henan, Zhengzhou, Henan, China
| | - Jiajun Chen
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jinyu Wu
- Xi'an Center for Disease Control and Prevention, Xi'an, Shaanxi, China
| | - Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- The State Key Laboratory of Esophageal Cancer Prevention & Treatment and The Key Laboratory of Tumor Epidemiology of Henan, Zhengzhou, Henan, China
| | - Chuncheng Yi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- The State Key Laboratory of Esophageal Cancer Prevention & Treatment and The Key Laboratory of Tumor Epidemiology of Henan, Zhengzhou, Henan, China
| | - Keyan Wang
- The State Key Laboratory of Esophageal Cancer Prevention & Treatment and The Key Laboratory of Tumor Epidemiology of Henan, Zhengzhou, Henan, China
| | - Peng Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- The State Key Laboratory of Esophageal Cancer Prevention & Treatment and The Key Laboratory of Tumor Epidemiology of Henan, Zhengzhou, Henan, China
| | - Changqing Sun
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- School of Nursing and Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hua Ye
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- The State Key Laboratory of Esophageal Cancer Prevention & Treatment and The Key Laboratory of Tumor Epidemiology of Henan, Zhengzhou, Henan, China
| |
Collapse
|
23
|
Khosravi G, Mostafavi S, Bastan S, Ebrahimi N, Gharibvand RS, Eskandari N. Immunologic tumor microenvironment modulators for turning cold tumors hot. Cancer Commun (Lond) 2024; 44:521-553. [PMID: 38551889 PMCID: PMC11110955 DOI: 10.1002/cac2.12539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 05/23/2024] Open
Abstract
Tumors can be classified into distinct immunophenotypes based on the presence and arrangement of cytotoxic immune cells within the tumor microenvironment (TME). Hot tumors, characterized by heightened immune activity and responsiveness to immune checkpoint inhibitors (ICIs), stand in stark contrast to cold tumors, which lack immune infiltration and remain resistant to therapy. To overcome immune evasion mechanisms employed by tumor cells, novel immunologic modulators have emerged, particularly ICIs targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1/programmed death-ligand 1(PD-1/PD-L1). These agents disrupt inhibitory signals and reactivate the immune system, transforming cold tumors into hot ones and promoting effective antitumor responses. However, challenges persist, including primary resistance to immunotherapy, autoimmune side effects, and tumor response heterogeneity. Addressing these challenges requires innovative strategies, deeper mechanistic insights, and a combination of immune interventions to enhance the effectiveness of immunotherapies. In the landscape of cancer medicine, where immune cold tumors represent a formidable hurdle, understanding the TME and harnessing its potential to reprogram the immune response is paramount. This review sheds light on current advancements and future directions in the quest for more effective and safer cancer treatment strategies, offering hope for patients with immune-resistant tumors.
Collapse
Affiliation(s)
- Gholam‐Reza Khosravi
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Samaneh Mostafavi
- Department of ImmunologyFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Sanaz Bastan
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Narges Ebrahimi
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Roya Safari Gharibvand
- Department of ImmunologySchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Nahid Eskandari
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
24
|
Ozturk NB, Pham HN, Mouhaffel R, Ibrahim R, Alsaqa M, Gurakar A, Saberi B. A Longitudinal Analysis of Mortality Related to Chronic Viral Hepatitis and Hepatocellular Carcinoma in the United States. Viruses 2024; 16:694. [PMID: 38793576 PMCID: PMC11125803 DOI: 10.3390/v16050694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
(1) Background: Hepatocellular carcinoma (HCC) contributes to the significant burden of cancer mortality in the United States (US). Despite highly efficacious antivirals, chronic viral hepatitis (CVH) remains an important cause of HCC. With advancements in therapeutic modalities, along with the aging of the population, we aimed to assess the contribution of CVH in HCC-related mortality in the US between 1999-2020. (2) Methods: We queried all deaths related to CVH and HCC in the multiple-causes-of-death files from the CDC Wide-ranging Online Data for Epidemiologic Research (WONDER) database between 1999-2020. Using the direct method of standardization, we adjusted all mortality information for age and compared the age-adjusted mortality rates (AAMRs) across demographic populations and by percentile rankings of social vulnerability. Temporal shifts in mortality were quantified using log-linear regression models. (3) Results: A total of 35,030 deaths were identified between 1999-2020. The overall crude mortality increased from 0.27 in 1999 to 8.32 in 2016, followed by a slight reduction to 7.04 in 2020. The cumulative AAMR during the study period was 4.43 (95% CI, 4.39-4.48). Males (AAMR 7.70) had higher mortality rates compared to females (AAMR 1.44). Mortality was higher among Hispanic populations (AAMR 6.72) compared to non-Hispanic populations (AAMR 4.18). Higher mortality was observed in US counties categorized as the most socially vulnerable (AAMR 5.20) compared to counties that are the least socially vulnerable (AAMR 2.53), with social vulnerability accounting for 2.67 excess deaths per 1,000,000 person-years. (4) Conclusions: Our epidemiological analysis revealed an overall increase in CVH-related HCC mortality between 1999-2008, followed by a stagnation period until 2020. CVH-related HCC mortality disproportionately affected males, Hispanic populations, and Black/African American populations, Western US regions, and socially vulnerable counties. These insights can help aid in the development of strategies to target vulnerable patients, focus on preventive efforts, and allocate resources to decrease HCC-related mortality.
Collapse
Affiliation(s)
- N. Begum Ozturk
- Department of Medicine, Beaumont Hospital, Royal Oak, MI 48073, USA
| | - Hoang Nhat Pham
- Department of Medicine, University of Arizona Tucson, Tucson, AZ 85721, USA
| | - Rama Mouhaffel
- Department of Medicine, University of Arizona Tucson, Tucson, AZ 85721, USA
| | - Ramzi Ibrahim
- Department of Medicine, University of Arizona Tucson, Tucson, AZ 85721, USA
| | - Marwan Alsaqa
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02130, USA
| | - Ahmet Gurakar
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Suite 918, Baltimore, MD 21205, USA
| | - Behnam Saberi
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02130, USA
| |
Collapse
|
25
|
Zdziarski P, Gamian A. Role of B Cells beyond Antibodies in HBV-Induced Oncogenesis: Fulminant Cancer in Common Variable Immunodeficiency-Clinical and Immunotransplant Implications with a Review of the Literature. Diseases 2024; 12:80. [PMID: 38785735 PMCID: PMC11119213 DOI: 10.3390/diseases12050080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Although lymphoma is the most frequent malignancy in common variable immunodeficiency (CVID), solid tumors, especially affected by oncogenic viruses, are not considered. Furthermore, in vitro genetic studies and cell cultures are not adequate for immune system and HBV interaction. We adopted a previously introduced clinical model of host-virus interaction (i.e., infectious process in immunodeficiency) for analysis of B cells and the specific IgG role (an observational study of a CVID patient who received intravenous immunoglobulin (IVIG). Suddenly, the patient deteriorated and a positive results of for HBs and HBV-DNA (369 × 106 copies) were detected. Despite lamivudine therapy and IVIG escalation (from 0.3 to 0.4 g/kg), CT showed an 11 cm intrahepatic tumor (hepatocellular carcinoma). Anti-HBs were positive in time-lapse analysis (range 111-220 IU/mL). Replacement therapy intensification was complicated by an immune complex disease with renal failure. Fulminant HCC in CVID and the development of a tumor as the first sign is of interest. Unfortunately, treatment with hepatitis B immune globulins (HBIG) plays a major role in posttransplant maintenance therapy. Anti-HB substitution has not been proven to be effective, oncoprotective, nor safe. Therefore, immunosuppression in HBV-infected recipients should be carefully minimized, and patient selection more precise with the exclusion of HBV-positive donors. Our clinical model showed an HCC pathway with important humoral host factors, contrary to epidemiological/cohort studies highlighting risk factors only (e.g., chronic hepatitis). The lack of cell cooperation as well as B cell deficiency observed in CVID play a crucial role in high HBV replication, especially in carcinogenesis.
Collapse
Affiliation(s)
- Przemyslaw Zdziarski
- Lower Silesian Center for Cellular Transplantation, 53-439 Wroclaw, Poland
- Clinical Research Center PRION, 50-385 Wroclaw, Poland
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, 53-114 Wroclaw, Poland;
| |
Collapse
|
26
|
Liu X, Teng L, Dai J, Shao H, Chen R, Li H, Li J, Zou H. Effect of Intraoperative Opioid Dose on Perioperative Neutrophil-to-Lymphocyte Ratio and Lymphocyte-to-Monocyte Ratio in Glioma. J Inflamm Res 2024; 17:2159-2167. [PMID: 38617385 PMCID: PMC11016269 DOI: 10.2147/jir.s451455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
Background The neutrophil-to-lymphocyte ratio (NLR) and lymphocyte-to-monocyte ratio (LMR) are inflammatory biomarkers. Until now, it is unknown the impact of opioid dosage on perioperative immunity in glioma patients. The aim of this study was to explore the effect of intraoperative opioid dosage on perioperative immune perturbations using NLR and LMR as inflammatory biomarkers and evaluate the correlation between inflammatory biomarkers and pathological grade of glioma. Methods The study included 208 patients with primary glioma who underwent glioma resection from February 2012 to November 2019 at Harbin Medical University Cancer Hospital. Complete blood count (CBC) was collected at 3 time points: one week before surgery, and 24 hours and one week after surgery. Patients were divided into high-dose and low-dose groups, based on the median value of intraoperative opioid dose. The relationships between perioperative NLR, LMR and intraoperative opioid dosage were analyzed using repeated measurement analysis of variance (ANOVA). Correlations between preoperative various factors and pathological grade were analyzed by Spearman analysis. Receiver operating characteristic (ROC) curves were performed to assess the predictive performance of the NLR and LMR for pathological grade. Results The NLR (P=0.020) and lower LMR (P=0.037) were statistically significant different between high-dose and low-dose groups one week after surgery. The area under the curve (AUC) of the NLR to identify poor diagnosis was 0.685, which was superior to the LMR (AUC: 0.607) and indicated a correlation between the NLR with pathological grade. The preoperative NLR (P=0.000), LMR (P=0.009), age (P=0.000) and tumor size (P=0.001) exhibited a significant correlation with the pathological grade of glioma. Conclusion Intraoperative opioids in the high-dose group were associated with higher NLR and lower LMR in postoperative glioma patients. The preoperative NLR and LMR demonstrated predictive value for distinguishing between high-grade and low-grade gliomas.
Collapse
Affiliation(s)
- Xuejiao Liu
- Department of Pain Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People’s Republic of China
| | - Lei Teng
- Department of Pain Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People’s Republic of China
| | - Junzhu Dai
- Department of Pain Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People’s Republic of China
| | - Hongxue Shao
- Department of Pain Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People’s Republic of China
| | - Rui Chen
- Department of Pain Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People’s Republic of China
| | - Haixiang Li
- Department of Pain Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People’s Republic of China
| | - Jing Li
- Department of Pain Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People’s Republic of China
| | - Huichao Zou
- Department of Pain Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
27
|
You HJ, Ma LH, Wang X, Wang YX, Zhang HY, Bao ES, Zhong YJ, Liu XY, Kong DL, Zheng KY, Kong FY, Tang RX. Hepatitis B virus core protein stabilizes RANGAP1 to upregulate KDM2A and facilitate hepatocarcinogenesis. Cell Oncol (Dordr) 2024; 47:639-655. [PMID: 37845585 DOI: 10.1007/s13402-023-00889-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2023] [Indexed: 10/18/2023] Open
Abstract
PURPOSE As a vital component of the hepatitis B virus (HBV) nucleocapsid, HBV core protein (HBC) contributes to hepatocarcinogenesis. Here, we aimed to assess the effects of RANGAP1 and KDM2A on tumorigenesis induced by HBC. METHODS Co-immunoprecipitation (Co-IP) combined with mass spectrometry were utilized to identify the proteins with the capacity to interact with HBC. The gene and protein levels of RANGAP1 and KDM2A in hepatocellular carcinoma (HCC) and HBV-positive HCC tissues were evaluated using different cohorts. The roles of RANGAP1 and KDM2A in HCC cells mediated by HBC were investigated in vitro and in vivo. Co-IP and western blot were used to estimate the interaction of HBC with RANGAP1 and KDM2A and assess RANGAP1 stabilization regulated by HBC. RESULTS We discovered that HBC could interact with RANGAP1 and KDM2A, the levels of which were markedly elevated in HCC tissues. Relying on RANGAP1 and KDM2A, HBC facilitated HCC cell growth and migration. The increased stabilization of RANGAP1 mediated by HBC was relevant to the disruption of the interaction between RANGAP1 and an E3 ligase SYVN1. RANGAP1 interacted with KDM2A, and it further promoted KDM2A stabilization by disturbing the interaction between KDM2A and SYVN1. HBC enhanced the interaction of KDM2A with RANGAP1 and upregulated the expression of KDM2A via RANGAP1 in HCC cells. CONCLUSIONS These findings demonstrate a novel mechanism by which HBC facilitates hepatocarcinogenesis. RANGAP1 and KDM2A could act as potential molecular targets for treating HBV-associated malignancy.
Collapse
Affiliation(s)
- Hong-Juan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Li-Hong Ma
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xing Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Xin Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huan-Yang Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - En-Si Bao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Jie Zhong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiang-Ye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - De-Long Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fan-Yun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Ren-Xian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
28
|
Ma H, Yan QZ, Ma JR, Li DF, Yang JL. Overview of the immunological mechanisms in hepatitis B virus reactivation: Implications for disease progression and management strategies. World J Gastroenterol 2024; 30:1295-1312. [PMID: 38596493 PMCID: PMC11000084 DOI: 10.3748/wjg.v30.i10.1295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatitis B virus (HBV) reactivation is a clinically significant challenge in disease management. This review explores the immunological mechanisms underlying HBV reactivation, emphasizing disease progression and management. It delves into host immune responses and reactivation's delicate balance, spanning innate and adaptive immunity. Viral factors' disruption of this balance, as are interactions between viral antigens, immune cells, cytokine networks, and immune checkpoint pathways, are examined. Notably, the roles of T cells, natural killer cells, and antigen-presenting cells are discussed, highlighting their influence on disease progression. HBV reactivation's impact on disease severity, hepatic flares, liver fibrosis progression, and hepatocellular carcinoma is detailed. Management strategies, including anti-viral and immunomodulatory approaches, are critically analyzed. The role of prophylactic anti-viral therapy during immunosuppressive treatments is explored alongside novel immunotherapeutic interventions to restore immune control and prevent reactivation. In conclusion, this comprehensive review furnishes a holistic view of the immunological mechanisms that propel HBV reactivation. With a dedicated focus on understanding its implications for disease progression and the prospects of efficient management strategies, this article contributes significantly to the knowledge base. The more profound insights into the intricate interactions between viral elements and the immune system will inform evidence-based approaches, ultimately enhancing disease management and elevating patient outcomes. The dynamic landscape of management strategies is critically scrutinized, spanning anti-viral and immunomodulatory approaches. The role of prophylactic anti-viral therapy in preventing reactivation during immunosuppressive treatments and the potential of innovative immunotherapeutic interventions to restore immune control and proactively deter reactivation.
Collapse
Affiliation(s)
- Hui Ma
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Qing-Zhu Yan
- Department of Ultrasound Medicine, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Jing-Ru Ma
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Dong-Fu Li
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Jun-Ling Yang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| |
Collapse
|
29
|
Perera DJ, Koger-Pease C, Paulini K, Daoudi M, Ndao M. Beyond schistosomiasis: unraveling co-infections and altered immunity. Clin Microbiol Rev 2024; 37:e0009823. [PMID: 38319102 PMCID: PMC10938899 DOI: 10.1128/cmr.00098-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Schistosomiasis is a neglected tropical disease caused by the helminth Schistosoma spp. and has the second highest global impact of all parasites. Schistosoma are transmitted through contact with contaminated fresh water predominantly in Africa, Asia, the Middle East, and South America. Due to the widespread prevalence of Schistosoma, co-infection with other infectious agents is common but often poorly described. Herein, we review recent literature describing the impact of Schistosoma co-infection between species and Schistosoma co-infection with blood-borne protozoa, soil-transmitted helminths, various intestinal protozoa, Mycobacterium, Salmonella, various urinary tract infection-causing agents, and viral pathogens. In each case, disease severity and, of particular interest, the immune landscape, are altered as a consequence of co-infection. Understanding the impact of schistosomiasis co-infections will be important when considering treatment strategies and vaccine development moving forward.
Collapse
Affiliation(s)
- Dilhan J. Perera
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Cal Koger-Pease
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Kayla Paulini
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Mohamed Daoudi
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Momar Ndao
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal, Canada
| |
Collapse
|
30
|
Zhao X, Wang C, Zhao L, Tian Z. HBV DNA polymerase regulates tumor cell glycogen to enhance the malignancy of HCC cells. Hepatol Commun 2024; 8:e0387. [PMID: 38358372 PMCID: PMC10871796 DOI: 10.1097/hc9.0000000000000387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/16/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND The essential function of HBV DNA polymerase (HBV-DNA-Pol) is to initiate viral replication by reverse transcription; however, the role of HBV-DNA-Pol in HBV-associated HCC has not been clarified. Glycogen phosphorylase L (PYGL) is a critical regulator of glycogenolysis and is involved in tumorigenesis, including HCC. However, it is unknown whether HBV-DNA-Pol regulates PYGL to contribute to HCC tumorigenesis. METHODS Bioinformatic analysis, real-time quantitative PCR, western blotting, and oncology functional assays were performed to determine the contribution of HBV-DNA-Pol and PYGL to HCC development and glycolysis. The mechanisms of co-immunoprecipitation and ubiquitination were employed to ascertain how HBV-DNA-Pol upregulated PYGL. RESULTS Overexpression of HBV-DNA-Pol enhanced HCC progression in vitro and in vivo. Mechanistically, HBV-DNA-Pol interacted with PYGL and increased PYGL protein levels by inhibiting PYGL ubiquitination, which was mediated by the E3 ligase TRIM21. HBV-DNA-Pol competitively impaired the binding of PYGL to TRIM21 due to its stronger binding affinity to TRIM21, suppressing the ubiquitination of PYGL. Moreover, HBV-DNA-Pol promoted glycogen decomposition by upregulating PYGL, which led to an increased flow of glucose into glycolysis, thereby promoting HCC development. CONCLUSIONS Our study reveals a novel mechanism by which HBV-DNA-Pol promotes HCC by controlling glycogen metabolism in HCC, establishing a direct link between HBV-DNA-Pol and the Warburg effect, thereby providing novel targets for HCC treatment and drug development.
Collapse
Affiliation(s)
- Xiaoqing Zhao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunqing Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
| | - Liqing Zhao
- Department of Pediatrics, Zaozhuang Municipal Hospital, Zaozhuang, China
| | - Zhongzheng Tian
- Shandong Agricultural Technology Extending Center, Jinan, China
| |
Collapse
|
31
|
Agustiningsih A, Rasyak MR, Turyadi, Jayanti S, Sukowati C. The oncogenic role of hepatitis B virus X gene in hepatocarcinogenesis: recent updates. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:120-134. [PMID: 38464387 PMCID: PMC10918233 DOI: 10.37349/etat.2024.00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/21/2023] [Indexed: 03/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancers with high mortality rate. Among its various etiological factors, one of the major risk factors for HCC is a chronic infection of hepatitis B virus (HBV). HBV X protein (HBx) has been identified to play an important role in the HBV-induced HCC pathogenesis since it may interfere with several key regulators of many cellular processes. HBx localization within the cells may be beneficial to HBx multiple functions at different phases of HBV infection and associated hepatocarcinogenesis. HBx as a regulatory protein modulates cellular transcription, molecular signal transduction, cell cycle, apoptosis, autophagy, protein degradation pathways, and host genetic stability via interaction with various factors, including its association with various non-coding RNAs. A better understanding on the regulatory mechanism of HBx on various characteristics of HCC would provide an overall picture of HBV-associated HCC. This article addresses recent data on HBx role in the HBV-associated hepatocarcinogenesis.
Collapse
Affiliation(s)
- Agustiningsih Agustiningsih
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), Jakarta Pusat 10340, Indonesia
| | - Muhammad Rezki Rasyak
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), Jakarta Pusat 10340, Indonesia
- Post Graduate School, Faculty of Medicine, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Turyadi
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), Jakarta Pusat 10340, Indonesia
| | - Sri Jayanti
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), Jakarta Pusat 10340, Indonesia
| | - Caecilia Sukowati
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), Jakarta Pusat 10340, Indonesia
- Liver Cancer Unit, Fondazione Italiana Fegato ONLUS, AREA Science Park, Basovizza, 34149 Trieste, Italy
| |
Collapse
|
32
|
Floreani A, Gabbia D, De Martin S. Current Perspectives on the Molecular and Clinical Relationships between Primary Biliary Cholangitis and Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:2194. [PMID: 38396870 PMCID: PMC10888596 DOI: 10.3390/ijms25042194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Primary biliary cholangitis (PBC) is an autoimmune liver disease characterised by the immune-mediated destruction of small and medium intrahepatic bile ducts, with variable outcomes and progression. This review summarises the state of the art regarding the risk of neoplastic progression in PBC patients, with a particular focus on the molecular alterations present in PBC and in hepatocellular carcinoma (HCC), which is the most frequent liver cancer in these patients. Major risk factors are male gender, viral infections, e.g., HBV and HCV, non-response to UDCA, and high alcohol intake, as well as some metabolic-associated factors. Overall, HCC development is significantly more frequent in patients with advanced histological stages, being related to liver cirrhosis. It seems to be of fundamental importance to unravel eventual dysfunctional molecular pathways in PBC patients that may be used as biomarkers for HCC development. In the near future, this will possibly take advantage of artificial intelligence-designed algorithms.
Collapse
Affiliation(s)
- Annarosa Floreani
- University of Padova, 35122 Padova, Italy;
- Scientific Consultant IRCCS Negrar, 37024 Verona, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy;
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy;
| |
Collapse
|
33
|
Kumari S, Gautam BK, Singh AK, Gaur V, Kumar A. Diagnostic precision of Truenat® technique and co-relation of ALT levels with HBV-DNA viral load among HBsAg positive patients at a tertiary care hospital in Eastern Uttar Pradesh. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:132-138. [PMID: 38682056 PMCID: PMC11055448 DOI: 10.18502/ijm.v16i1.14882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Background and Objectives In India, it is estimated that there are 40 million people suffering from Hepatitis B virus (HBV). Quantification of the viral burden is an important laboratory tool in the management. However, widespread use of different HBV-DNA assays is still affected by the high cost and variable diagnostic precision. The present study was conducted to evaluate the diagnostic precision and co-relation of ALT levels with HBV-DNA by Truenat®-PCR. Materials and Methods In this prospective cross-sectional study a total of 567 serums were collected from patients by rapid HBsAg, and processed for liver function tests (LFT). The viral HBV-DNA amplification detection was carried out through by Truenat®-PCR test. Results Out of 567 samples, 452 samples were found to be positive by both rapid and Truenat®-PCR and 106 were negative for HBV-DNA followed by 9 invalid. High ALT level found in 73% of positive patients who had HBV-DNA level (>100000 copies/ml) which is significantly higher in 447 patients as compared to those have below ≤100000 copies/ml. Conclusion Truenat®-PCR technique is a highly sensitive and can be performed with low resources for effective control of HBV infection. Evaluation of HBV-DNA levels and serum ALT levels showed a significant proportion of patient harbored ongoing viral replication and disease progression.
Collapse
Affiliation(s)
- Sarita Kumari
- State Reference Laboratory, Department of Microbiology, Baba Raghav Das Medical College, Gorakhpur Uttar Pradesh, India
| | - Bechan Kumar Gautam
- Model Treatment Centre, Department of Medicine, Baba Raghav Das Medical College, Gorakhpur Uttar Pradesh, India
| | - Amresh Kumar Singh
- State Reference Laboratory, Department of Microbiology, Baba Raghav Das Medical College, Gorakhpur Uttar Pradesh, India
| | - Vivek Gaur
- State Reference Laboratory, Department of Microbiology, Baba Raghav Das Medical College, Gorakhpur Uttar Pradesh, India
| | - Ankur Kumar
- State Reference Laboratory, Department of Microbiology, Baba Raghav Das Medical College, Gorakhpur Uttar Pradesh, India
| |
Collapse
|
34
|
Mahmood F, Xu R, Awan MUN, Song Y, Han Q, Xia X, Wei J, Xu J, Peng J, Zhang J. HBV Vaccines: Advances and Development. Vaccines (Basel) 2023; 11:1862. [PMID: 38140265 PMCID: PMC10747071 DOI: 10.3390/vaccines11121862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a global public health problem that is closely related to liver cirrhosis and hepatocellular carcinoma (HCC). The prevalence of acute and chronic HBV infection, liver cirrhosis, and HCC has significantly decreased as a result of the introduction of universal HBV vaccination programs. The first hepatitis B vaccine approved was developed by purifying the hepatitis B surface antigen (HBsAg) from the plasma of asymptomatic HBsAg carriers. Subsequently, recombinant DNA technology led to the development of the recombinant hepatitis B vaccine. Although there are already several licensed vaccines available for HBV infection, continuous research is essential to develop even more effective vaccines. Prophylactic hepatitis B vaccination has been important in the prevention of hepatitis B because it has effectively produced protective immunity against hepatitis B viral infection. Prophylactic vaccines only need to provoke neutralizing antibodies directed against the HBV envelop proteins, whereas therapeutic vaccines are most likely needed to induce a comprehensive T cell response and thus, should include other HBV antigens, such as HBV core and polymerase. The existing vaccines have proven to be highly effective in preventing HBV infection, but ongoing research aims to improve their efficacy, duration of protection, and accessibility. The routine administration of the HBV vaccine is safe and well-tolerated worldwide. The purpose of this type of immunization is to trigger an immunological response in the host, which will halt HBV replication. The clinical efficacy and safety of the HBV vaccine are affected by a number of immunological and clinical factors. However, this success is now in jeopardy due to the breakthrough infections caused by HBV variants with mutations in the S gene, high viral loads, and virus-induced immunosuppression. In this review, we describe various types of available HBV vaccines, along with the recent progress in the ongoing battle to develop new vaccines against HBV.
Collapse
Affiliation(s)
- Faisal Mahmood
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (F.M.); (R.X.); (Y.S.); (Q.H.); (X.X.)
- Central Laboratory, Liver Disease Research Center and Department of Infectious Disease, The Affiliated Hospital of Yunnan University, Kunming 650021, China;
| | - Ruixian Xu
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (F.M.); (R.X.); (Y.S.); (Q.H.); (X.X.)
| | - Maher Un Nisa Awan
- Department of Neurology, The Affiliated Hospital of Yunnan University, No. 176 Qingnian Road, Kunming 650021, China; (M.U.N.A.); (J.X.)
| | - Yuzhu Song
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (F.M.); (R.X.); (Y.S.); (Q.H.); (X.X.)
| | - Qinqin Han
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (F.M.); (R.X.); (Y.S.); (Q.H.); (X.X.)
| | - Xueshan Xia
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (F.M.); (R.X.); (Y.S.); (Q.H.); (X.X.)
| | - Jia Wei
- Central Laboratory, Liver Disease Research Center and Department of Infectious Disease, The Affiliated Hospital of Yunnan University, Kunming 650021, China;
| | - Jun Xu
- Department of Neurology, The Affiliated Hospital of Yunnan University, No. 176 Qingnian Road, Kunming 650021, China; (M.U.N.A.); (J.X.)
| | - Juan Peng
- The Obstetrical Department, The First People’s Hospital of Yunnan Province, Kunming 650032, China;
| | - Jinyang Zhang
- Molecular Medicine Research Centre of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (F.M.); (R.X.); (Y.S.); (Q.H.); (X.X.)
| |
Collapse
|
35
|
Wang Y, Shu M, Chen J, Shen F, Ren H, Yu Y. Hepatitis B immunization status and risk factors of people aged 1 to 69 in Huangpu District, Shanghai, China. Front Public Health 2023; 11:1302183. [PMID: 38179572 PMCID: PMC10766012 DOI: 10.3389/fpubh.2023.1302183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Background China has long been with high Hepatitis B Virus(HBV) prevalence in the world. The HBV prevalence of people aged 1-59 decreased to less than 8% in 2006, and by 2020, HBsAg positive rate of children aged <5 decreased to less than <1% which was due to the free three-dose hepatitis B(HepB) immunization for newborns nationwide since 2002. Huangpu district was selected as one of the pilot areas for free Hep B vaccination in newborns since 1986, which formed an early protection in the population from mother-to-child transmission. However, the existed HBV infected people were still needed to be discovered, evaluated whether to receive antiviral therapies and intervened with health education in order to reduce the incidence of viral hepatitis related hepatocellular carcinoma (HCC) and also reach the goal to eliminate public health hazards of viral hepatitis by 2030. Objective To know HepB immunization status among people aged 1 to 69 in Huangpu district of Shanghai, and find out risk factors changes of HBV infection. Methods Cross-sectional study was applied to analyze the HepB immunization status and related risk factors by carrying out survey among 706 participants aged 1 to 69 years old. Blood samples were collected for detection of serological HBV markers including hepatitis B surface antigen(HBsAg), hepatitis B surface antibody(HBsAb) and hepatitis B core antibody(HBcAb). Participants with HBsAg positive were required to complete additional examinations such as alanine aminotransferase(ALT), aspartate aminotransferase(AST), total bilirubin, albumin, globulin, liver fibroscan and liver ultrasound. Results For participants aged 1 to 14, the positive rate of HBsAg, HBsAb and HBcAb was 0.00, 50.00 and 30.46%, respectively. The HBsAb positive rate reached a peak of 90.91% at 2 years old, and then showed a significant downward trend (χ2 = 55.612, p < 0.001). All the participants have completed three-dose Hep B vaccination, however for the second dose, those who vaccinated 30 days later than the appointed time(aged one month) got higher HBcAb prevalence than those who vaccinated on time(χ2 = 5.87, p = 0.015). Two mothers were found HBsAg positive, but there was no significant difference in children's HBcAb positive rates regardless of the mothers' HBsAg results. For participants aged 15 to 69, the positive rate of HBsAg, HBsAb and HBcAb was 4.21, 44.25 and 49.23%, respectively. Multivariate analysis for HBcAb positive among people aged 15 to 69 showed that age(50-69) and HBsAb positive were the risk factors for HBcAb positive(p < 0.05). Higher education was the protective factor for HBcAb positive(p < 0.05). After the screening for HBsAg, 22 participants were tested HBsAg positive and required additional examinations, and a total of 12 completed all the examinations. One participant was recognized as active HBV infection without antivirus treatment. Among the 12 participants, 2 have received antiviral treatment before and 4 had a history of HBV infection in family members. Conclusion In this study, HBsAg positive rate of those who aged 1 to 14 was 0.00%, which indicated that the HepB immunization has achieved a lot in protecting children from being infected. However, failing to get timely Hep B vaccination could be an influencing factor for HBcAb positive in children. As a result, additional tests for HBV DNA could be done to specify an HBV infection and more attention should be paid to the timeliness of Hep B vaccination in the next step. The HBcAb positive rate of people aged 1 to 69 was relatively higher than that of other provinces. Despite of the limited participants with full examinations, we should still put emphasis on HBV treatment and the possibility of transmission within families.
Collapse
Affiliation(s)
- Yijun Wang
- Department of Viral Hepatitis Prevention and Molecular Biology Laboratory, Huangpu District Center for Disease Control and Prevention, Shanghai, China
| | - Min Shu
- Department of Viral Hepatitis Prevention and Molecular Biology Laboratory, Huangpu District Center for Disease Control and Prevention, Shanghai, China
| | - Jun Chen
- Department of Viral Hepatitis Prevention and Molecular Biology Laboratory, Huangpu District Center for Disease Control and Prevention, Shanghai, China
| | - Fujie Shen
- Department of Viral Hepatitis Prevention and Molecular Biology Laboratory, Huangpu District Center for Disease Control and Prevention, Shanghai, China
| | - Hong Ren
- Department of Viral Hepatitis Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yongfu Yu
- Department of Biostatistics, Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory for Health Technology Assessment, National Commission of Health, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Panneerselvam S, Wilson C, Kumar P, Abirami D, Pamarthi J, Reddy MS, Varghese J. Overview of hepatocellular carcinoma: from molecular aspects to future therapeutic options. Cell Adh Migr 2023; 17:1-21. [PMID: 37726886 PMCID: PMC10512929 DOI: 10.1080/19336918.2023.2258539] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the seventh most highly prevalent malignant tumor globally and the second most common cause of mortality. HCC develops with complex pathways that occur through multistage biological processes. Non-alcoholic fatty liver disease, metabolic-associated fatty liver disease, alcoholic liver disease, autoimmune hepatitis, hepatitis B, and hepatitis C are the causative etiologies of HCC. HCC develops as a result of epigenetic changes, protein-coding gene mutations, and altered signaling pathways. Biomarkers and potential therapeutic targets for HCC open up new possibilities for treating the disease. Immune checkpoint inhibitors are included in the treatment options in combination with molecular targeted therapy.
Collapse
Affiliation(s)
- Sugan Panneerselvam
- Department of Hepatology and Transplant Hepatology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Cornelia Wilson
- Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Discovery Park, Sandwich, UK
| | - Prem Kumar
- Department of Hepatology and Transplant Hepatology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Dinu Abirami
- Department of Gastroenterology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Jayakrishna Pamarthi
- Multi-Disciplinary Research Unit, Madras Medical College, Chennai, Tamil Nadu, India
| | - Mettu Srinivas Reddy
- The Director and Head, Liver Transplant and HPB surgery, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Joy Varghese
- Department of Gastroenterology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| |
Collapse
|
37
|
Wei J, Deng X, Dai W, Xie L, Zhang G, Fan X, Li X, Jin Z, Xiao Q, Chen T. Desmethoxycurcumin aids IFNα's anti-HBV activity by antagonising CRYAB reduction and stabilising IFNAR1 protein. J Drug Target 2023; 31:976-985. [PMID: 37851377 DOI: 10.1080/1061186x.2023.2273200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
The eradication of chronic hepatitis B (CHB) caused by hepatitis B virus (HBV) infection is a crucial goal in clinical practice. Enhancing the anti-HBV activity of interferon type I (IFNI) is a key strategy for achieving a functional cure for CHB. In this study, we investigated the effect of combined treatment with IFNα and Desmethoxycurcumin (DMC) on HBV replication in HepG2 cells and explored the underlying mechanism. Our results indicated IFNα alone was ineffective in completely inhibiting HBV replication, which was attributed to the virus-induced down-regulation of IFNI receptor 1 (IFNAR1) protein. However, the addition of a low dose of DMC significantly synergized with IFNα, leading to notable enhancement of IFNα anti-HBV activity. This effect was achieved by stabilising the IFNAR1 protein. Further investigation revealed that low dose DMC effectively blocked the ubiquitination-mediated degradation of IFNAR1, which was accomplished by rescuing the protein levels of alphaB-crystallin (CRYAB) and orchestrating the interaction between CRYAB and the E3 ubiquitin ligase, β-Trcp. Importantly, over-expression of CRYAB was found to favour the antiviral activity of IFNα against HBV replication. In conclusion, our study demonstrates that low-dose DMC enhanced the anti-HBV activity of IFNα by counteracting the reduction of CRYAB and stabilising the IFNAR1 protein.
Collapse
Affiliation(s)
- Jinlai Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xichuan Deng
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Wenying Dai
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Lingxin Xie
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Guangyuan Zhang
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Xinyue Fan
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Xinyue Li
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Zhixing Jin
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Qin Xiao
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China
| | - Tingting Chen
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
- Pathogen Biology and Immunology Laboratory, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| |
Collapse
|
38
|
Wu D, Li Y. Application of adoptive cell therapy in hepatocellular carcinoma. Immunology 2023; 170:453-469. [PMID: 37435926 DOI: 10.1111/imm.13677] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge. Novel treatment modalities are urgently needed to extend the overall survival of patients. The liver plays an immunomodulatory function due to its unique physiological structural characteristics. Therefore, following surgical resection and radiotherapy, immunotherapy regimens have shown great potential in the treatment of hepatocellular carcinoma. Adoptive cell immunotherapy is rapidly developing in the treatment of hepatocellular carcinoma. In this review, we summarize the latest research on adoptive immunotherapy for hepatocellular carcinoma. The focus is on chimeric antigen receptor (CAR)-T cells and T cell receptor (TCR) engineered T cells. Then tumour-infiltrating lymphocytes (TILs), natural killer (NK) cells, cytokine-induced killer (CIK) cells, and macrophages are briefly discussed. The main overview of the application and challenges of adoptive immunotherapy in hepatocellular carcinoma. It aims to provide the reader with a comprehensive understanding of the current status of HCC adoptive immunotherapy and offers some strategies. We hope to provide new ideas for the clinical treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Dengqiang Wu
- Department of Clinical Laboratory, Ningbo No. 6 Hospital, Ningbo, China
| | - Yujie Li
- Clinical Laboratory of Ningbo Medical Centre Lihuili Hospital, Ningbo University, Zhejiang, Ningbo, China
| |
Collapse
|
39
|
Wang X, Luo L, Zhang Y, Liu G, Fang Z, Xu Z, Hu X. CENPB promotes the proliferation of hepatocellular carcinoma and is directly regulated by miR-29a. Aging (Albany NY) 2023; 15:12171-12191. [PMID: 37925172 PMCID: PMC10683605 DOI: 10.18632/aging.205171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/03/2023] [Indexed: 11/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a significant global health concern as it ranks as the sixth most common malignant tumor and the third leading cause of cancer-related deaths. In this study, we analyzed the expression of centromere protein B (CENPB) mRNA in HCC using TCGA and GEO datasets. Immunohistochemistry (IHC) was performed to determine CENPB protein levels in 490 HCC patients. Our findings revealed higher expression of CENPB mRNA in HCC tissues across the three datasets. Additionally, as the pathological stage and histological grade advanced, CENPB expression increased. Patients with elevated levels of CENPB mRNA and protein demonstrated shorter overall survival (OS) and recurrence-free survival (OS). Notably, CENPB protein showed prognostic value in patients with stage I/II, AFP levels below 400 ng/ml, and tumor size less than 5 cm. Using multivariate regression analysis in 490 HCC patients, we developed nomograms to predict 1-year, 3-year, and 5-year OS and RFS. Knockdown of CENPB in Hep3B and MHCC97 cell lines resulted in significant inhibition of cell proliferation and invasion. Furthermore, bioinformatics analysis identified miR-29a as a potential negative regulator of CENPB expression, which was validated through a dual-luciferase reporter assay. In conclusion, our findings suggest that CENPB may serve as an oncogenic factor in HCC and is directly regulated by miR-29a, highlighting its potential as a promising therapeutic target.
Collapse
Affiliation(s)
- Xuyang Wang
- Department of Organ Transplantation, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi Province, China
| | - Laibang Luo
- Department of Organ Transplantation, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi Province, China
| | - Youfu Zhang
- Department of Organ Transplantation, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi Province, China
| | - Gang Liu
- Department of Organ Transplantation, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi Province, China
| | - Zehong Fang
- Department of Organ Transplantation, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi Province, China
| | - Zhidan Xu
- Department of Organ Transplantation, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi Province, China
| | - Xuguang Hu
- Department of Organ Transplantation, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
40
|
Bae AN, Kim J, Park JH, Lee JH, Choi E. Comprehensive Analysis of NKX3.2 in Liver Hepatocellular Carcinoma by Bigdata. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1782. [PMID: 37893500 PMCID: PMC10608539 DOI: 10.3390/medicina59101782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: The gene NKX3.2 plays a role in determining cell fate during development, and mutations of NKX3.2 have been studied in relation to human skeletal diseases. However, due to the lack of studies on the link between NKX3.2 and cancer, we aimed to provide insights into NKX3.2 as a new prognostic biomarker for liver hepatocellular carcinoma (LIHC). Materials and Methods: The clinical significance of LIHC was investigated using open gene expression databases. We comprehensively analyzed NKX3.2 expression in LIHC using Gene Expression Profiling Interactive Analysis 2, Tumor Immune Estimation Resource (TIMER), and Kaplan-Meier plotter databases. Then, we investigated the association between NKX3.2 expression and tumor-infiltrating immune cells (TIICs). Results: NKX3.2 expression was higher in the primary tumor group compared to the normal group, and expression was higher in fibrolamellar carcinoma (FLC) compared to other subtypes. When the prognostic value of NKX3.2 was evaluated, highly expressed NKX3.2 significantly improved the overall survival and had an unfavorable prognosis. In addition, NKX3.2 expression was associated with immune cell infiltration. Patients with low gene expression and high macrophage expression had a poorer survival rate than those with low NKX3.2 and low macrophage expression (p = 0.0309). Conclusions: High NKX3.2 expression may induce poorer prognosis in LIHC. In addition, these findings can be used as basic data due to the lack of available related research. However, further in vivo studies are essential to gain a deeper understanding of the biological role of NKX3.2 in LIHC and its potential implications for cancer development and progression.
Collapse
Affiliation(s)
- An-Na Bae
- Department of Anatomy, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Republic of Korea
| | - Jongwan Kim
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, 54 Yangji-ro, Busan 47230, Republic of Korea
| | - Jong-Ho Park
- Department of Anatomy, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Republic of Korea
| | - Jae-Ho Lee
- Department of Anatomy, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Republic of Korea
| | - Euncheol Choi
- Department of Radiation Oncology, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| |
Collapse
|
41
|
Fujiwara N, Nakagawa H. Clinico-histological and molecular features of hepatocellular carcinoma from nonalcoholic fatty liver disease. Cancer Sci 2023; 114:3825-3833. [PMID: 37545384 PMCID: PMC10551597 DOI: 10.1111/cas.15925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023] Open
Abstract
Patients with nonalcoholic fatty liver disease (NAFLD) continue to increase with the epidemics of obesity, and NAFLD is estimated to become the most prevalent etiology of hepatocellular carcinoma (HCC). Recently, NAFLD-HCC has been recognized to have clinico-histologically and molecularly distinct features from those from other etiologies, including a lower incidence rate of HCC and less therapeutic efficacy to immune checkpoint inhibitors (ICIs). Consistent with the clinical observations that up to 50% of NAFLD-HCC occurs in the absence of cirrhosis, the imbalance of pro- and antitumorigenic hepatic stellate cells termed as myHSC and cyHSC can contribute to the creation of an HCC-prone hepatic environment, independent of the absolute fibrosis abundance. Immune deregulations by accumulated metabolites in NAFLD-affected livers, such as a fatty-acid-induced loss of cytotoxic CD4 T cells serving for immune surveillance and "auto-aggressive" CXCR6+ CD8 T cells, may promote hepatocarcinogenesis and diminish therapeutic response to ICIs. Steatohepatitic HCC (SH-HCC), characterized by the presence of fat accumulation in tumor cells, ballooned tumor cells, Mallory-Denk body, interstitial fibrosis, and intratumor immune cell infiltration, may represent a metabolic reprogramming for adapting to a lipid-rich tumor microenvironment by downregulating CPT2 and leveraging its intermediates as an "oncometabolite." Genome-wide analyses suggested that SH-HCC may be more responsive to ICIs given its mutual exclusiveness with β-catenin mutation/activation that promotes immune evasion. Thus, further understanding of NAFLD-specific hepatocarcinogenesis and HCC would enable us to improve the current daily practice and eventually the prognoses of patients with NAFLD.
Collapse
Affiliation(s)
- Naoto Fujiwara
- Department of Gastroenterology and HepatologyGraduate School of Medicine, Mie UniversityTsu cityJapan
| | - Hayato Nakagawa
- Department of Gastroenterology and HepatologyGraduate School of Medicine, Mie UniversityTsu cityJapan
| |
Collapse
|
42
|
Pinato DJ, D'Alessio A, Celsa C, Manfredi GF, Fulgenzi CAM. The price and value of therapeutic synergy in liver cancer. Lancet 2023; 402:1108-1110. [PMID: 37499669 DOI: 10.1016/s0140-6736(23)01297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Affiliation(s)
- David J Pinato
- Department of Surgery and Cancer, Faculty of Medicine, Hammersmith Hospital, Imperial College London, London W12 0NN, UK; Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy.
| | - Antonio D'Alessio
- Department of Surgery and Cancer, Faculty of Medicine, Hammersmith Hospital, Imperial College London, London W12 0NN, UK; Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Ciro Celsa
- Department of Surgery and Cancer, Faculty of Medicine, Hammersmith Hospital, Imperial College London, London W12 0NN, UK; Section of Gastroenterology and Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, Palermo, Italy; Department of Surgical, Oncological, and Oral Sciences, University of Palermo, Palermo, Italy
| | - Giulia F Manfredi
- Department of Surgery and Cancer, Faculty of Medicine, Hammersmith Hospital, Imperial College London, London W12 0NN, UK; Division of Internal Medicine, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Claudia A M Fulgenzi
- Department of Surgery and Cancer, Faculty of Medicine, Hammersmith Hospital, Imperial College London, London W12 0NN, UK; Department of Medical Oncology, University Campus Bio-Medico of Rome, Rome, Italy
| |
Collapse
|
43
|
Abbas Z, Abbas M. An Insight Into the Factors Affecting the Prevalence and Natural History of Hepatitis D. Cureus 2023; 15:e43362. [PMID: 37593072 PMCID: PMC10427805 DOI: 10.7759/cureus.43362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2023] [Indexed: 08/19/2023] Open
Abstract
Epidemiological studies and recent metanalyses addressing hepatitis D have reported a wide variation in the prevalence of the disease. Between 4.5% to 15% of all hepatitis B surface antigen (HBsAg) positive patients are thought to harbor the hepatitis D virus. The emergent variation in prevalence can be attributed to several factors. Unsurprisingly, published literature shows that the prevalence of the disease is higher in areas where aggregate viral hepatitis infections are endemic and amongst groups with high-risk practices facilitating the horizontal transfer. Meanwhile, the natural history of the disease is influenced by the genotype of the virus, the hepatitis D virus (HDV) RNA levels, HBV-HDV codominance, HBsAg titers, HBV genotype, nutritional status, HIV co-infection, and prior treatment. Together these factors contribute to the accelerated development of fibrosis and the increased risk of hepatocellular carcinoma. Superinfection with genotype 1 results in rapid progression to cirrhosis with lower rates of remission. Genotype 3 follows an aggressive course but shows a good response to interferon therapy. Other genotypes have better outcomes. The course of the disease leading to these outcomes can be tracked by HDV-specific models integrating clinical surrogate markers and epidemiological factors such as age, region, alanine aminotransferase (ALT), gamma-glutamyl transferase, albumin, platelets and cholinesterase, and liver stiffness.
Collapse
Affiliation(s)
- Zaigham Abbas
- Gastroenterology and Hepatology, Dr. Ziauddin University Hospital, Karachi, PAK
| | - Minaam Abbas
- Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, GBR
| |
Collapse
|
44
|
Otuechere CA, Neupane NP, Adewuyi A, Pathak P, Novak J, Grishina M, Khalilullah H, Jaremko M, Verma A. Green Synthesis of Genistein-Fortified Zinc Ferrite Nanoparticles as a Potent Hepatic Cancer Inhibitor: Validation through Experimental and Computational Studies. Chem Biodivers 2023; 20:e202300719. [PMID: 37312449 DOI: 10.1002/cbdv.202300719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
In hepatic cancer, precancerous nodules account for damage and inflammation in liver cells. Studies have proved that phyto-compounds based on biosynthetic metallic nanoparticles display superior action against hepatic tumors. This study targeted the synthesis of genistein-fortified zinc ferrite nanoparticles (GENP) trailed by anticancer activity assessment against diethylnitrosamine and N-acetyl-2-aminofluorene induced hepatic cancer. The process of nucleation was confirmed by UV/VIS spectrophotometry, X-ray beam diffraction, field-emission scanning electron microscopy, and FT-IR. An in vitro antioxidant assay illustrated that the leaves of Pterocarpus mildbraedii have strong tendency as a reductant and, in the nanoformulation synthesis, as a natural capping agent. A MTT assay confirmed that GENP have a strong selective cytotoxic potential against HepG2 cancer cells. In silico studies of genistein exemplified the binding tendency towards human matrix metalloproteinase comparative to the standard drug marimastat. An in vivo anticancer evaluation showed that GENP effectively inhibit the growth of hepatic cancer by interfering with hepatic and non-hepatic biochemical markers.
Collapse
Affiliation(s)
- Chiagoziem A Otuechere
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, 232101, Ede, Nigeria
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, 211007, Prayagraj, India
| | - Netra P Neupane
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, 211007, Prayagraj, India
| | - Adewale Adewuyi
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, 232101, Ede, Nigeria
| | - Prateek Pathak
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, 211007, Prayagraj, India
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454008, Chelyabinsk, Russia
| | - Jurica Novak
- Department of Biotechnology, University of Rijeka, 51000, Rijeka, Croatia
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, 51000, Rijeka, Croatia
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454008, Chelyabinsk, Russia
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, 51911, Unayzah, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, 211007, Prayagraj, India
| |
Collapse
|
45
|
Shoraka S, Hosseinian SM, Hasibi A, Ghaemi A, Mohebbi SR. The role of hepatitis B virus genome variations in HBV-related HCC: effects on host signaling pathways. Front Microbiol 2023; 14:1213145. [PMID: 37588887 PMCID: PMC10426804 DOI: 10.3389/fmicb.2023.1213145] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/12/2023] [Indexed: 08/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant global health issue, with a high prevalence in many regions. There are variations in the etiology of HCC in different regions, but most cases are due to long-term infection with viral hepatitis. Hepatitis B virus (HBV) is responsible for more than 50% of virus-related HCC, which highlights the importance of HBV in pathogenesis of the disease. The development and progression of HBV-related HCC is a complex multistep process that can involve host, viral, and environmental factors. Several studies have suggested that some HBV genome mutations as well as HBV proteins can dysregulate cell signaling pathways involved in the development of HCC. Furthermore, it seems that the pathogenicity, progression of liver diseases, response to treatment and also viral replication are different among HBV mutants. Understanding the relationship between HBV genome variations and host signaling pathway alteration will improve our understanding of the molecular pathogenesis of HBV-related HCC. Furthermore, investigating commonly dysregulated pathways in HBV-related HCC is necessary to discover more specific therapeutic targets and develop more effective strategies for HCC treatment. The objective of this review is to address the role of HBV in the HCC progression and primarily focus on the impacts of HBV genome variations on HCC-related signaling pathways.
Collapse
Affiliation(s)
- Shahrzad Shoraka
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyed Mahdi Hosseinian
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ayda Hasibi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Yıldırım HÇ, Kavgaci G, Chalabiyev E, Dizdar O. Advances in the Early Detection of Hepatobiliary Cancers. Cancers (Basel) 2023; 15:3880. [PMID: 37568696 PMCID: PMC10416925 DOI: 10.3390/cancers15153880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Hepatocellular cancer (HCC) and biliary tract cancers (BTCs) have poor survival rates and a low likelihood of a cure, especially in advanced-stage disease. Early diagnosis is crucial and can significantly improve survival rates through curative treatment approaches. Current guidelines recommend abdominal ultrasonography (USG) and alpha-fetoprotein (AFP) monitoring for HCC screening in high-risk groups, and abdominal USG, magnetic resonance imaging (MRI), and magnetic resonance cholangiopancreatography (MRCP) monitoring for biliary tract cancer. However, despite this screening strategy, many high-risk individuals still develop advanced-stage HCC and BTC. Blood-based biomarkers are being developed for use in HCC or BTC high-risk groups. Studies on AFP, AFP-L3, des-gamma-carboxy prothrombin, glypican-3 (GPC3), osteopontin (OPN), midkine (MK), neopterin, squamous cell carcinoma antigen (SCCA), Mac-2-binding protein (M2BP), cyclic guanosine monophosphate (cGMP), and interleukin-6 biomarkers for HCC screening have shown promising results when evaluated individually or in combination. In the case of BTCs, the potential applications of circulating tumor DNA, circulating microRNA, and circulating tumor cells in diagnosis are also promising. These biomarkers have shown potential in detecting BTCs in early stages, which can significantly improve patient outcomes. Additionally, these biomarkers hold promise for monitoring disease progression and evaluating response to therapy in BTC patients. However, further research is necessary to fully understand the clinical utility of these biomarkers in the diagnosis and management of HCC and BTCs.
Collapse
Affiliation(s)
| | | | | | - Omer Dizdar
- Department of Medical Oncology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey; (H.Ç.Y.); (G.K.); (E.C.)
| |
Collapse
|
47
|
Kaps L, Limeres MJ, Schneider P, Svensson M, Zeyn Y, Fraude S, Cacicedo ML, Galle PR, Gehring S, Bros M. Liver Cell Type-Specific Targeting by Nanoformulations for Therapeutic Applications. Int J Mol Sci 2023; 24:11869. [PMID: 37511628 PMCID: PMC10380755 DOI: 10.3390/ijms241411869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatocytes exert pivotal roles in metabolism, protein synthesis and detoxification. Non-parenchymal liver cells (NPCs), largely comprising macrophages, dendritic cells, hepatic stellate cells and liver sinusoidal cells (LSECs), serve to induce immunological tolerance. Therefore, the liver is an important target for therapeutic approaches, in case of both (inflammatory) metabolic diseases and immunological disorders. This review aims to summarize current preclinical nanodrug-based approaches for the treatment of liver disorders. So far, nano-vaccines that aim to induce hepatitis virus-specific immune responses and nanoformulated adjuvants to overcome the default tolerogenic state of liver NPCs for the treatment of chronic hepatitis have been tested. Moreover, liver cancer may be treated using nanodrugs which specifically target and kill tumor cells. Alternatively, nanodrugs may target and reprogram or deplete immunosuppressive cells of the tumor microenvironment, such as tumor-associated macrophages. Here, combination therapies have been demonstrated to yield synergistic effects. In the case of autoimmune hepatitis and other inflammatory liver diseases, anti-inflammatory agents can be encapsulated into nanoparticles to dampen inflammatory processes specifically in the liver. Finally, the tolerance-promoting activity especially of LSECs has been exploited to induce antigen-specific tolerance for the treatment of allergic and autoimmune diseases.
Collapse
Affiliation(s)
- Leonard Kaps
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - María José Limeres
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Paul Schneider
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Malin Svensson
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Yanira Zeyn
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Silvia Fraude
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Maximiliano L Cacicedo
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Peter R Galle
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Stephan Gehring
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| |
Collapse
|
48
|
Roma K, Chandler TM, Dossaji Z, Patel A, Gupta K, Minacapelli CD, Rustgi V, Gish R. A Review of the Systemic Manifestations of Hepatitis B Virus Infection, Hepatitis D Virus, Hepatocellular Carcinoma, and Emerging Therapies. GASTRO HEP ADVANCES 2023; 3:276-291. [PMID: 39129946 PMCID: PMC11308766 DOI: 10.1016/j.gastha.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/26/2023] [Indexed: 08/13/2024]
Abstract
Chronic hepatitis B virus (HBV) infection affects about 262 million people worldwide, leading to over 820,000 deaths each year primarily due to cirrhosis and hepatocellular carcinoma. The World Health Organization has pledged to eliminate HBV as a health threat by 2030, but currently, no countries are on track to achieve this goal. One of the barriers to HBV elimination is stigma, causing shame, denial, self-isolation, self-rejection, and depression leading to those with chronic HBV less likely to get tested or seek treatment and more likely to conceal their infection. Other barriers include limited access to care and complicated and restrictive clinical practice guidelines. Increasing public and political efforts are necessary to raise awareness, increase access to care, and change screening and treatment guidelines. The current guidance of the American Association for the Study of Liver Diseases (AASLD) recommends testing only if patients are considered at risk, but this has proven to be ineffective. We propose a simplified "test all and treat all" approach with a 5-line guideline for HBV infection. Universal screening and treatment of adults is cost-effective and can prevent transmission by effectively managing chronic HBV. All patients who are hepatitis B surface antigen (HBsAg) positive with detectable HBV-DNA should receive treatment until HBsAg is undetectable for 12 months, as HBV-DNA transmission via blood transfusion can occur even at low viral loads of 16 copies/mL, and mother-to-child transmission is still a risk even with passive-active immunoprophylaxis. Furthermore, clinical outcomes after HBsAg clearance are significantly better than the clinical outcomes of those who remain HBsAg positive.
Collapse
Affiliation(s)
- Katerina Roma
- Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, Nevada
| | - Toni-Marie Chandler
- Division of Gastroenterology and Hepatology, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences (RBHS), New Brunswick, New Jersey
| | - Zahra Dossaji
- Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, Nevada
| | - Ankoor Patel
- Internal Medicine, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences (RBHS), Rutgers University, New Brunswick, New Jersey
| | - Kapil Gupta
- Division of Gastroenterology and Hepatology, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences (RBHS), New Brunswick, New Jersey
| | - Carlos D. Minacapelli
- Division of Gastroenterology and Hepatology, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences (RBHS), New Brunswick, New Jersey
- Center for Liver Diseases and Masses, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences (RBHS), New Brunswick, New Jersey
| | - Vinod Rustgi
- Division of Gastroenterology and Hepatology, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences (RBHS), New Brunswick, New Jersey
- Center for Liver Diseases and Masses, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences (RBHS), New Brunswick, New Jersey
| | - Robert Gish
- Hepatitis B Foundation, Doylestown, Pennsylvania
| |
Collapse
|
49
|
Lin C, Chen Y, Zhang F, Zhu P, Yu L, Chen W. Single-cell RNA sequencing reveals the mediatory role of cancer-associated fibroblast PTN in hepatitis B virus cirrhosis-HCC progression. Gut Pathog 2023; 15:26. [PMID: 37259127 DOI: 10.1186/s13099-023-00554-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are essential stromal components in the tumor microenvironment of hepatocellular carcinoma (HCC). Hepatitis B virus (HBV) infection induces pathological changes such as liver fibrosis/cirrhosis and HCC. The aim of this research was to explore the novel mediators of CAFs to modulate HBV cirrhosis-HCC progression. METHODS The single-cell transcriptome data of HCC were divided into subsets, and the significant subset related to fibrotic cells, along with biological function, and clinical information of HCC was revealed by integrated data analyses. The cell communication, cells communicated weight analysis of signaling pathways, and key genes in signaling pathways analysis of significant CAFs subclasses were conducted to discover the novel gene of CAFs. Bioinformatics, vitro and HBV transfection assays were used to verify the novel gene is an important target for promoting the progression HBV cirrhosis-HCC progression. RESULTS Fibroblasts derived from HCC single-cell data could be separated into three cell subclasses (CAF0-2), of which CAF2 was associated with the HCC clinical information. Fibroblasts have opposite developmental trajectories to immune B cells and CD8 + T cells. CAF0-2 had strong interaction with B cells and CD8 + T cells, especially CAF2 had the highest interaction frequency and weight with B cells and CD8 + T cells. Moreover, PTN participated in CAF2-related pathways involved in the regulation of cell communication, and the interactions among CAF2 and PTN contributed the most to B cells and CD8 + T cells. Furthermore, the genes of PTN, SDC1, and NCL from PTN signaling were highest expression in CAF2, B cells, and CD8 + T cells, respectively, and the interaction of PTN- SDC1 and PTN- NCL contributed most to the interaction of CAF2- B cells and CAF2-CD8 + T cells. Bioinformatics and vitro experiments confirm PTN was upregulated in HCC and promoted the proliferation of tumor cells, and HBV infection could initiate PTN to perform cirrhosis-HCC progression. CONCLUSION Our findings revealed CAF was associated with hepatocarcinogenesis, and the functional importance of B cells and CD8 + T cells in modulating CAF in HCC. Importantly, PTN maybe a novel mediator of CAF to mediate HBV cirrhosis-HCC progression.
Collapse
Affiliation(s)
- Chenhong Lin
- Department of Endoscopy Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yeda Chen
- Central Laboratory, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, 518109, China
| | - Feng Zhang
- Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
| | - Peng Zhu
- Central Laboratory, Shenzhen Pingshan District People's Hospital, Pingshan General Hospital, Southern Medical University, Shenzhen, 518110, China
| | - Liangliang Yu
- Department of Endoscopy Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Wenbiao Chen
- Central Laboratory, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen, 518109, China.
| |
Collapse
|
50
|
Stroffolini T, Stroffolini G. A Historical Overview on the Role of Hepatitis B and C Viruses as Aetiological Factors for Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:cancers15082388. [PMID: 37190317 DOI: 10.3390/cancers15082388] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Hepatitis B virus (HBV) and hepatitis C virus (HCV) are the leading cause of hepatocellular carcinoma (HCC) worldwide. Currently, HBV-related HCC predominates in Sub-Saharan Africa and South-East-Asia, while HCV-related HCC predominates in northern Africa and in the western world. Liver cirrhosis is the underlying condition in most HBV cases and in nearly all HCV cases. Several cofactors, viral and non-viral, play a role in the progression toward HCC: dual HBV/HCV infection, HDV, HIV, alcohol intake, smoking, diabetes mellitus, obesity, and NAFLD/NASH. HBV vaccine is effective in preventing both infection and HCC; antiviral drugs may suppress HBV replication and eradicate HCV infection, halting progression to HCC. Inequalities exist between high- and low-income countries with respect to vaccine availability and access to antivirals. These factors represent barriers to the control of HCC incidence. Lack of an effective vaccine against HCV is also a serious barrier to HCV elimination and HCC prevention. The most crucial steps and knowledge that have arisen over time on the association between the two major hepatotropic viruses and HCC are discussed in this historical review.
Collapse
Affiliation(s)
- Tommaso Stroffolini
- Department of Tropical and Infectious Diseases, Policlinico Umberto I, 00161 Rome, Italy
| | - Giacomo Stroffolini
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Via Don A. Sempreboni, 5, Negrar, 37024 Verona, Italy
| |
Collapse
|