1
|
Omole AO, Affonso de Oliveira JF, Sutorus L, Karan S, Zhao Z, Neun BW, Cedrone E, Clogston JD, Xu J, Sierk M, Chen Q, Meerzaman D, Dobrovolskaia MA, Steinmetz NF. Cellular fate of a plant virus immunotherapy candidate. Commun Biol 2024; 7:1382. [PMID: 39443610 PMCID: PMC11499861 DOI: 10.1038/s42003-024-06982-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024] Open
Abstract
Cowpea mosaic virus (CPMV) is a plant virus that is currently being developed for intratumoral immunotherapy. CPMV relieves the immune system from tumor-induced immunosuppression; reprograms the tumor microenvironment to an activated state whereby the treated and distant tumors are recognized and eradicated. Toward translational studies, we investigated the safety of CPMV, specifically addressing whether pathogenicity would be induced in mammalian cells. We show that murine macrophage immune cells recognize CPMV; however, there is no indication of de novo viral protein synthesis or RNA replication. Furthermore, we show that CPMV does not induce hemolysis, platelet aggregation and plasma coagulation amongst other assays in human blood and immune cells. Taken together, we anticipate that these results will reinforce the development of CPMV as an immunotherapeutic platform.
Collapse
Affiliation(s)
- Anthony O Omole
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Jessica Fernanda Affonso de Oliveira
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Lucas Sutorus
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Sweta Karan
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Zhongchao Zhao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Barry W Neun
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Edward Cedrone
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Jeffrey D Clogston
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Jie Xu
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Michael Sierk
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Qingrong Chen
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Nicole F Steinmetz
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA.
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California, San Diego, La Jolla, CA, USA.
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA, USA.
- Center for Engineering in Cancer, Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Zhao F, Wang J. Another piece of puzzle for the human microbiome: the gut virome under dietary modulation. J Genet Genomics 2024; 51:983-996. [PMID: 38710286 DOI: 10.1016/j.jgg.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
The virome is the most abundant and highly variable microbial consortium in the gut. Because of difficulties in isolating and culturing gut viruses and the lack of reference genomes, the virome has remained a relatively elusive aspect of the human microbiome. In recent years, studies on the virome have accumulated growing evidence showing that the virome is diet-modulated and widely involved in regulating health. Here, we review the responses of the gut virome to dietary intake and the potential health implications, presenting changes in the gut viral community and preferences of viral members to particular diets. We further discuss how viral-bacterial interactions and phage lifestyle shifts shape the gut microbiota. We also discuss the specific functions conferred by diet on the gut virome and bacterial community in the context of horizontal gene transfer, as well as the import of new viral members along with the diet. Collating these studies will expand our understanding of the dietary regulation of the gut virome and inspire dietary interventions and health maintenance strategies targeting the gut microbiota.
Collapse
Affiliation(s)
- Fengxiang Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jinfeng Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Mukherjee S, Verma A, Kong L, Rengan AK, Cahill DM. Advancements in Green Nanoparticle Technology: Focusing on the Treatment of Clinical Phytopathogens. Biomolecules 2024; 14:1082. [PMID: 39334849 PMCID: PMC11430415 DOI: 10.3390/biom14091082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Opportunistic pathogenic microbial infections pose a significant danger to human health, which forces people to use riskier, more expensive, and less effective drugs compared to traditional treatments. These may be attributed to several factors, such as overusing antibiotics in medicine and lack of sanitization in hospital settings. In this context, researchers are looking for new options to combat this worrying condition and find a solution. Nanoparticles are currently being utilized in the pharmaceutical sector; however, there is a persistent worry regarding their potential danger to human health due to the usage of toxic chemicals, which makes the utilization of nanoparticles highly hazardous to eukaryotic cells. Multiple nanoparticle-based techniques are now being developed, offering essential understanding regarding the synthesis of components that play a crucial role in producing anti-microbial nanotherapeutic pharmaceuticals. In this regard, green nanoparticles are considered less hazardous than other forms, providing potential options for avoiding the extensive harm to the human microbiome that is prevalent with existing procedures. This review article aims to comprehensively assess the current state of knowledge on green nanoparticles related to antibiotic activity as well as their potential to assist antibiotics in treating opportunistic clinical phytopathogenic illnesses.
Collapse
Affiliation(s)
- Sunny Mukherjee
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Anamika Verma
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - David Miles Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
4
|
Sabsay KR, te Velthuis AJ. Using structure prediction of negative sense RNA virus nucleoproteins to assess evolutionary relationships. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580771. [PMID: 38405982 PMCID: PMC10888975 DOI: 10.1101/2024.02.16.580771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Negative sense RNA viruses (NSV) include some of the most detrimental human pathogens, including the influenza, Ebola and measles viruses. NSV genomes consist of one or multiple single-stranded RNA molecules that are encapsidated into one or more ribonucleoprotein (RNP) complexes. These RNPs consist of viral RNA, a viral RNA polymerase, and many copies of the viral nucleoprotein (NP). Current evolutionary relationships within the NSV phylum are based on alignment of conserved RNA-directed RNA polymerase (RdRp) domain amino acid sequences. However, the RdRp domain-based phylogeny does not address whether NP, the other core protein in the NSV genome, evolved along the same trajectory or whether several RdRp-NP pairs evolved through convergent evolution in the segmented and non-segmented NSV genomes architectures. Addressing how NP and the RdRp domain evolved may help us better understand NSV diversity. Since NP sequences are too short to infer robust phylogenetic relationships, we here used experimentally-obtained and AlphaFold 2.0-predicted NP structures to probe whether evolutionary relationships can be estimated using NSV NP sequences. Following flexible structure alignments of modeled structures, we find that the structural homology of the NSV NPs reveals phylogenetic clusters that are consistent with RdRp-based clustering. In addition, we were able to assign viruses for which RdRp sequences are currently missing to phylogenetic clusters based on the available NP sequence. Both our RdRp-based and NP-based relationships deviate from the current NSV classification of the segmented Naedrevirales, which cluster with the other segmented NSVs in our analysis. Overall, our results suggest that the NSV RdRp and NP genes largely evolved along similar trajectories and that even short pieces of genetic, protein-coding information can be used to infer evolutionary relationships, potentially making metagenomic analyses more valuable.
Collapse
Affiliation(s)
- Kimberly R. Sabsay
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
- Lewis Sigler Institute, Princeton University, Princeton, NJ 08544, United States
| | - Aartjan J.W. te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
5
|
Xue Q, Swevers L, Taning CNT. Plant and insect virus-like particles: emerging nanoparticles for agricultural pest management. PEST MANAGEMENT SCIENCE 2023; 79:2975-2991. [PMID: 37103223 DOI: 10.1002/ps.7514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 06/05/2023]
Abstract
Virus-like particles (VLPs) represent a biodegradable, biocompatible nanomaterial made from viral coat proteins that can improve the delivery of antigens, drugs, nucleic acids, and other substances, with most applications in human and veterinary medicine. Regarding agricultural viruses, many insect and plant virus coat proteins have been shown to assemble into VLPs accurately. In addition, some plant virus-based VLPs have been used in medical studies. However, to our knowledge, the potential application of plant/insect virus-based VLPs in agriculture remains largely underexplored. This review focuses on why and how to engineer coat proteins of plant/insect viruses as functionalized VLPs, and how to exploit VLPs in agricultural pest control. The first part of the review describes four different engineering strategies for loading cargo at the inner or the outer surface of VLPs depending on the type of cargo and purpose. Second, the literature on plant and insect viruses the coat proteins of which have been confirmed to self-assemble into VLPs is reviewed. These VLPs are good candidates for developing VLP-based agricultural pest control strategies. Lastly, the concepts of plant/insect virus-based VLPs for delivering insecticidal and antiviral components (e.g., double-stranded RNA, peptides, and chemicals) are discussed, which provides future prospects of VLP application in agricultural pest control. In addition, some concerns are raised about VLP production on a large scale and the short-term resistance of hosts to VLP uptake. Overall, this review is expected to stimulate interest and research exploring plant/insect virus-based VLP applications in agricultural pest management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qi Xue
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Clauvis Nji Tizi Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Fetters AM, Ashman TL. The pollen virome: A review of pollen-associated viruses and consequences for plants and their interactions with pollinators. AMERICAN JOURNAL OF BOTANY 2023:e16144. [PMID: 36924316 DOI: 10.1002/ajb2.16144] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/18/2023]
Abstract
The movement of pollen grains from anthers to stigmas, often by insect pollinator vectors, is essential for plant reproduction. However, pollen is also a unique vehicle for viral spread. Pollen-associated plant viruses reside on the outside or inside of pollen grains, infect susceptible individuals through vertical or horizontal infection pathways, and can decrease plant fitness. These viruses are transferred with pollen between plants by pollinator vectors as they forage for floral resources; thus, pollen-associated viral spread is mediated by floral and pollen grain phenotypes and pollinator traits, much like pollination. Most of what is currently known about pollen-associated viruses was discovered through infection and transmission experiments in controlled settings, usually involving one virus and one plant species of agricultural or horticultural interest. In this review, we first provide an updated, comprehensive list of the recognized pollen-associated viruses. Then, we summarize virus, plant, pollinator vector, and landscape traits that can affect pollen-associated virus transmission, infection, and distribution. Next, we highlight the consequences of plant-pollinator-virus interactions that emerge in complex communities of co-flowering plants and pollinator vectors, such as pollen-associated virus spread between plant species and viral jumps from plant to pollinator hosts. We conclude by emphasizing the need for collaborative research that bridges pollen biology, virology, and pollination biology.
Collapse
Affiliation(s)
- Andrea M Fetters
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W. 12th Avenue, Columbus, OH, 43210, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
7
|
Pouresmaeil M, Dall'Ara M, Salvato M, Turri V, Ratti C. Cauliflower mosaic virus: Virus-host interactions and its uses in biotechnology and medicine. Virology 2023; 580:112-119. [PMID: 36812696 DOI: 10.1016/j.virol.2023.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Cauliflower mosaic virus (CaMV) was the first discovered plant virus with genomic DNA that uses reverse transcriptase for replication. The CaMV 35S promoter is a constitutive promoter and thus, an attractive driver of gene expression in plant biotechnology. It is used in most transgenic crops to activate foreign genes which have been artificially inserted into the host plant. In the last century, producing food for the world's population while preserving the environment and human health is the main topic of agriculture. The damage caused by viral diseases has a significant negative economic impact on agriculture, and disease control is based on two strategies: immunization and prevention to contain virus spread, so correct identification of plant viruses is important for disease management. Here, we discuss CaMV from different aspects: taxonomy, structure and genome, host plants and symptoms, transmission and pathogenicity, prevention, control and application in biotechnology as well as in medicine. Also, we calculated the CAI index for three ORFs IV, V, and VI of the CaMV virus in host plants, the results of which can be used in the discussion of gene transfer or antibody production to identify the CaMV.
Collapse
Affiliation(s)
- Mahin Pouresmaeil
- Department of Biotechnology, Faculty of Agriculture, Azarbijan Shahid Madani University, Tabriz, Iran.
| | - Mattia Dall'Ara
- Department of Agricultural and Food Sciences, School of Agriculture and Veterinary Medicine, University of Bologna, 40127, Bologna, Italy
| | - Maria Salvato
- University of Maryland, Department of Veterinary Medicine, College Park, MD, 20742, USA
| | - Valentina Turri
- Healthcare Direction, Istituto Scientifico Romagnolo per Lo Studio e La Cura Dei Tumori, IRCCS, 47014, Meldola, FC, Italy
| | - Claudio Ratti
- Department of Agricultural and Food Sciences, School of Agriculture and Veterinary Medicine, University of Bologna, 40127, Bologna, Italy
| |
Collapse
|
8
|
Patel P, Kumari N, Sharma PN. RT-PCR based detection of Pepper mild mottle virus from capsicum seeds and seed transmission assay. Virusdisease 2023; 34:50-55. [PMID: 37009258 PMCID: PMC10050496 DOI: 10.1007/s13337-023-00807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 01/02/2023] [Indexed: 02/11/2023] Open
Abstract
Pepper mild mottle virus (PMMoV), a Tobamovirus from Virgaviridae family, is highly contagious and transmitted by seeds as well as soil in nature. PMMoV has become a greater threat to capsicum cultivation worldwide. To develop an indigenous, rapid, and sensitive protocol for routine detection of PMMoV from seeds, the sensitivity of DAS-ELISA and RT-PCR was compared in the present study. The infected seeds of California Wonder were included in the study. Through DAS-ELISA the virus was successfully detected from 20 mg of seeds. However, using RT-PCR, we were able to detect the virus even from one infected seed with reproducibility. In the present study, vertical seed transmission of the test virus was investigated by employing a grow-out test under greenhouse conditions as well as directly through RT-PCR omitting the grow-out test in three capsicum cultivars. Based on symptoms observations in grow out test, seed transmission was observed in the 3 capsicum cultivars viz., California Wonder (63.04%), Yolo Wonder (33.80%) and Doux des LAndes (33.30%). Through RT-PCR it was estimated to be 55.56% (California Wonder), 28.96% (Yolo Wonder), and 40.64% (Doux des Landes), respectively. Thus, indicating 100% seed-to-seedling PMMoV transmission and reliability of RT-PCR in direct PMMoV detection from seeds. Even a small percentage of infected seed has the potential to greatly increase the PMMoV inoculum in the field and result in 100% plant infection. Therefore, we suggest using the established procedure for PMMoV detection right from the seed. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-023-00807-0.
Collapse
Affiliation(s)
- Priyankaben Patel
- Department of Plant Pathology, CSK HPKV, Palampur, Himachal Pradesh 176062 India
| | - Nidhi Kumari
- Department of Plant Pathology, CSK HPKV, Palampur, Himachal Pradesh 176062 India
- Division of Crop Protection, ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, Lucknow, 226101 India
| | - P. N. Sharma
- Department of Plant Pathology, CSK HPKV, Palampur, Himachal Pradesh 176062 India
- University Institute of Agricultural Sciences, Chandigarh University, Gharuan, 140413 India
| |
Collapse
|
9
|
Elbasir A, Ye Y, Schäffer DE, Hao X, Wickramasinghe J, Tsingas K, Lieberman PM, Long Q, Morris Q, Zhang R, Schäffer AA, Auslander N. A deep learning approach reveals unexplored landscape of viral expression in cancer. Nat Commun 2023; 14:785. [PMID: 36774364 PMCID: PMC9922274 DOI: 10.1038/s41467-023-36336-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 01/25/2023] [Indexed: 02/13/2023] Open
Abstract
About 15% of human cancer cases are attributed to viral infections. To date, virus expression in tumor tissues has been mostly studied by aligning tumor RNA sequencing reads to databases of known viruses. To allow identification of divergent viruses and rapid characterization of the tumor virome, we develop viRNAtrap, an alignment-free pipeline to identify viral reads and assemble viral contigs. We utilize viRNAtrap, which is based on a deep learning model trained to discriminate viral RNAseq reads, to explore viral expression in cancers and apply it to 14 cancer types from The Cancer Genome Atlas (TCGA). Using viRNAtrap, we uncover expression of unexpected and divergent viruses that have not previously been implicated in cancer and disclose human endogenous viruses whose expression is associated with poor overall survival. The viRNAtrap pipeline provides a way forward to study viral infections associated with different clinical conditions.
Collapse
Affiliation(s)
| | - Ying Ye
- The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Daniel E Schäffer
- The Wistar Institute, Philadelphia, PA, 19104, USA.,Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Xue Hao
- The Wistar Institute, Philadelphia, PA, 19104, USA
| | | | - Konstantinos Tsingas
- The Wistar Institute, Philadelphia, PA, 19104, USA.,University of Pennsylvania, Philadelphia, PA, USA
| | | | - Qi Long
- University of Pennsylvania, Philadelphia, PA, USA
| | - Quaid Morris
- Computational and Systems Biology, Sloan Kettering Institute, New York City, NY, 10065, USA
| | - Rugang Zhang
- The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Alejandro A Schäffer
- Cancer Data Science Laboratory (CDSL), National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | | |
Collapse
|
10
|
Rivera-Gutiérrez X, Morán P, Taboada B, Serrano-Vázquez A, Isa P, Rojas-Velázquez L, Pérez-Juárez H, López S, Torres J, Ximénez C, Arias CF. The fecal and oropharyngeal eukaryotic viromes of healthy infants during the first year of life are personal. Sci Rep 2023; 13:938. [PMID: 36650178 PMCID: PMC9845211 DOI: 10.1038/s41598-022-26707-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
Using a metagenomic sequencing approach, we described and compared the diversity and dynamics of the oropharyngeal and fecal eukaryotic virome of nine asymptomatic children in a semi-rural community setting located in the State of Morelos, Mexico. Ninety oropharyngeal swabs and 97 fecal samples were collected starting 2 weeks after birth and monthly thereafter until 12 months of age. In both niches, more than 95% of the total sequence reads were represented by viruses that replicate either in humans or in plants. Regarding human viruses, three families were most abundant and frequent in the oropharynx: Herpesviridae, Picornaviridae, and Reoviridae; in fecal samples, four virus families predominated: Caliciviridae, Picornaviridae, Reoviridae, and Anelloviridae. Both niches showed a high abundance of plant viruses of the family Virgaviridae. Differences in the frequency and abundance of sequence reads and diversity of virus species were observed in both niches and throughout the year of study, with some viruses already present in the first months of life. Our results suggest that the children's virome is dynamic and likely shaped by the environment, feeding, and age. Moreover, composition analysis suggests that the virome composition is mostly individual. Whether this constant exposition to different viruses has a long-term impact on children's health or development remains to be studied.
Collapse
Affiliation(s)
- Xaira Rivera-Gutiérrez
- Instituto de Biotecnologıía, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Patricia Morán
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Blanca Taboada
- Instituto de Biotecnologıía, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| | - Angélica Serrano-Vázquez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Pavel Isa
- Instituto de Biotecnologıía, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Liliana Rojas-Velázquez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Horacio Pérez-Juárez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Susana López
- Instituto de Biotecnologıía, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Cecilia Ximénez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Carlos F Arias
- Instituto de Biotecnologıía, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
11
|
Hilaire J, Tindale S, Jones G, Pingarron-Cardenas G, Bačnik K, Ojo M, Frewer LJ. Risk perception associated with an emerging agri-food risk in Europe: plant viruses in agriculture. AGRICULTURE & FOOD SECURITY 2022; 11:21. [PMID: 35310134 PMCID: PMC8917942 DOI: 10.1186/s40066-022-00366-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Research into public risk perceptions associated with emerging risks in agriculture and supply chains has focused on technological risks, zoonotic diseases, and food integrity, but infrequently on naturally occurring diseases in plants. Plant virus infections account for global economic losses estimated at $30 billion annually and are responsible for nearly 50% of plant diseases worldwide, threatening global food security. This research aimed to understand public perceptions of emerging risks and benefits associated with plant viruses in agriculture in Belgium, Slovenia, Spain, and the UK.
Methods
Online qualitative semi-structured interviews with 80 European consumers were conducted, including 20 participants in each of Belgium, Slovenia, the UK, and Spain. Microsoft Streams was used to transcribe the interview data, and NVivo was utilized to code the transcripts and analyze the data.
Results
The results indicate that, while study participants were relatively unfamiliar with the plant viruses and their potential impacts, plant viruses evoked perceived risks in a similar way to other emerging risks in the agri-food sector. These included risks to environment and human health, and the economic functioning of the relevant supply chain. Some participants perceived both risks and benefits to be associated with plant viruses. Benefits were perceived to be associated with improved plant resistance to viruses.
Conclusions
The results provide the basis for risk regulation, policy, and communication developments. Risk communication needs to take account of both risk and benefit perceptions, as well as the observation that plant viruses are perceived as an emerging, rather than an established, understood, and controlled risk. Some participants indicated the need for risk–benefit communication strategies to be developed, including information about the impacts of the risks, and associated mitigation strategies. Participants perceived that responsibility for control of plant viruses should be conferred on actors within the supply chain, in particular primary producers, although policy support (for example, financial incentivization) should be provided to improve their motivation to instigate risk mitigation activities.
Collapse
|
12
|
A novel statovirus identified in fecal samples from wild geladas in the Ethiopian highlands. Arch Virol 2022; 167:2709-2713. [PMID: 36269418 DOI: 10.1007/s00705-022-05588-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
We present a novel statovirus in geladas (Theropithecus gelada), graminivorous primates endemic to the Ethiopian highlands. Using a high-throughput sequencing approach, we identified contiguous sequences in feces from two adult female geladas in the Simien Mountains National Park, Ethiopia, that share similarities to statoviruses. Our phylogenetic analysis of the whole genome, as well as the RNA-dependent RNA polymerase (RdRp) and capsid protein (CP) amino acid sequences, revealed that the gelada statoviruses cluster with those from other primates (laboratory populations of Macaca nemestrina and Macaca mulatta). As the first report of statovirus in wild primates, this finding contributes to our understanding of the phylogenetic and geographic distribution of statoviruses and their hosts.
Collapse
|
13
|
Affonso de Oliveira JF, Chan SK, Omole AO, Agrawal V, Steinmetz NF. In Vivo Fate of Cowpea Mosaic Virus In Situ Vaccine: Biodistribution and Clearance. ACS NANO 2022; 16:18315-18328. [PMID: 36264973 PMCID: PMC9840517 DOI: 10.1021/acsnano.2c06143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cowpea mosaic virus (CPMV) is a nucleoprotein nanoparticle that functions as a highly potent immunomodulator when administered intratumorally and is used as an in situ vaccine. CPMV in situ vaccination remodels the tumor microenvironment and primes a highly potent, systemic, and durable antitumor immune response against the treated and untreated, distant metastatic sites (abscopal effect). Potent efficacy was demonstrated in multiple tumor mouse models and, most importantly, in canine cancer patients with spontaneous tumors. Data indicate that presence of anti-CPMV antibodies are not neutralizing and that in fact opsonization leads to enhanced efficacy. Plant viruses are part of the food chain, but to date, there is no information on human exposure to CPMV. Therefore, patient sera were tested for the presence of immunoglobulins against CPMV, and indeed, >50% of deidentified patient samples tested positive for CPMV antibodies. To get a broader sense of plant virus exposure and immunogenicity in humans, we also tested sera for antibodies against tobacco mosaic virus (>90% patients tested positive), potato virus X (<20% patients tested positive), and cowpea chlorotic mottle virus (no antibodies were detected). Further, patient sera were analyzed for the presence of antibodies against the coliphage Qβ, a platform technology currently undergoing clinical trials for in situ vaccination; we found that 60% of patients present with anti-Qβ antibodies. Thus, data indicate human exposure to CPMV and other plant viruses and phages. Next, we thought to address agronomical safety; i.e., we examined the fate of CPMV after intratumoral treatment and oral gavage (to mimic consumption by food). Because live CPMV is used, an important question is whether there is any evidence of shedding of infectious particles from mice or patients. CPMV is noninfectious toward mammals; however, it is infectious toward plants including black-eyed peas and other legumes. Biodistribution data in tumor-bearing and healthy mice indicate little leaching from tumors and clearance via the reticuloendothelial system followed by biliary excretion. While there was evidence of shedding of RNA in stool, there was no evidence of infectious particles when plants were challenged with stool extracts, thus indicating agronomical safety. Together these data aid the translational development of CPMV as a drug candidate for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Soo Khim Chan
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
| | - Anthony O Omole
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
| | - Vanshika Agrawal
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Center for Nano-ImmunoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Moores Cancer Center, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
- Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92039, United States
| |
Collapse
|
14
|
Characterization of the Urinary Metagenome and Virome in Healthy Children. Biomedicines 2022; 10:biomedicines10102412. [PMID: 36289674 PMCID: PMC9599034 DOI: 10.3390/biomedicines10102412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Recent advances in next-generation sequencing and metagenomic studies have provided insights into the microbial profile of different body sites. However, research on the microbial composition of urine is limited, particularly in children. The goal of this study was to optimize and develop reproducible metagenome and virome protocols using a small volume of urine samples collected from healthy children. We collected midstream urine specimens from 40 healthy children. Using the metagenomics shotgun approach, we tested various protocols. Different microbial roots such as Archaea, Bacteria, Eukaryota, and Viruses were successfully identified using our optimized urine protocol. Our data reflected much variation in the microbial fingerprints of children. Girls had significantly higher levels of Firmicutes, whereas boys had significantly higher levels of Actinobacteria. The genus Anaerococcus dominated the urinary bacteriome of healthy girls, with a significant increase in Anaerococcus prevotii, Anaerococcus vaginalis, and Veillonella parvula (p-value < 0.001) when compared with that of boys. An increased relative abundance of Xylanimonas and Arthrobacter, with a significantly high abundance of Arthrobacter sp. FB24 (p-value 0.0028) and Arthrobacter aurescences (p-value 0.015), was observed in boys. The urinary mycobiome showed a significant rise in the genus Malassezia and Malassezia globose fungus (p-value 0.009) in girls, whereas genus Saccharomyces (p-value 0.009) was significantly high in boys. The beta diversity of the urinary mycobiome was found to differ between different age groups. Boys had significantly more Mastadenovirus and Human mastadenovirus-A in their urinary virome than girls. With increasing age, we noticed an increase in the relative abundance of the order Caudovirales. Our optimized protocols allowed us to identify the unique microbes for each sex by using an adequate volume of urine (3−10 mL) to screen for the bacteriome, mycobiome, and virome profiles in the urine of healthy children. To the best of our knowledge, this is the first study to characterize the metagenomics profiles of urine in a healthy pediatric population.
Collapse
|
15
|
MDR Pumps as Crossroads of Resistance: Antibiotics and Bacteriophages. Antibiotics (Basel) 2022; 11:antibiotics11060734. [PMID: 35740141 PMCID: PMC9220107 DOI: 10.3390/antibiotics11060734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 01/27/2023] Open
Abstract
At present, antibiotic resistance represents a global problem in modern medicine. In the near future, humanity may face a situation where medicine will be powerless against resistant bacteria and a post-antibiotic era will come. The development of new antibiotics is either very expensive or ineffective due to rapidly developing bacterial resistance. The need to develop alternative approaches to the treatment of bacterial infections, such as phage therapy, is beyond doubt. The cornerstone of bacterial defense against antibiotics are multidrug resistance (MDR) pumps, which are involved in antibiotic resistance, toxin export, biofilm, and persister cell formation. MDR pumps are the primary non-specific defense of bacteria against antibiotics, while drug target modification, drug inactivation, target switching, and target sequestration are the second, specific line of their defense. All bacteria have MDR pumps, and bacteriophages have evolved along with them and use the bacteria’s need for MDR pumps to bind and penetrate into bacterial cells. The study and understanding of the mechanisms of the pumps and their contribution to the overall resistance and to the sensitivity to bacteriophages will allow us to either seriously delay the onset of the post-antibiotic era or even prevent it altogether due to phage-antibiotic synergy.
Collapse
|
16
|
Chawanarojnarit A, Dhanesuan N, Luckanagul JA, Rungsiyanont S. Biocompatibility study of tobacco mosaic virus nanoparticles on human alveolar bone cells. J Oral Biol Craniofac Res 2022; 12:363-369. [PMID: 35514677 PMCID: PMC9065312 DOI: 10.1016/j.jobcr.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 12/25/2021] [Accepted: 04/17/2022] [Indexed: 11/15/2022] Open
Abstract
One of the most important factors in a dental implant's success is an adequate quantity of supporting bone. However, there are still some limitations for the bone substitution material. Previous studies found that tobacco mosaic virus (TMV) had the potential for bone formation induction. The aim of this study was to evaluate the biocompatibility of TMV with primary human alveolar bone cells. Primary human alveolar bone cells were cultured on TMV coated substrates. Cell viability, alkaline phosphatase activity, calcium matrix mineralization forming ability, immunofluorescence staining for osteocalcin synthesis and cell morphology were assessed. The results showed that primary human alveolar bone cells cultured on the TMV coated substrates had a higher metabolic rate than the non-TMV coated control group at days 1, 3, 7 and 14. Moreover, the calcium deposition was positive and the alkaline phosphatase activity assay was found significantly greater than the control group at day 14 (p < 0.05). The osteocalcin protein synthesis was found in both the TMV coated substrates and the control group. The immunofluorescence study revealed that in the TMV coated substrates group, the cell morphology changed into a polygonal shape and aggregated more quickly than the control group. The present findings conclude that TMV is biocompatible with primary human alveolar bone cells and also shows osteoinduction potential.
Collapse
Affiliation(s)
- Aunjida Chawanarojnarit
- Department of Oral Surgery and Oral Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Nirada Dhanesuan
- Department of Stomatology, Srinakharinwirot University, Bangkok, Thailand
| | - Jittima Amie Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Chulalongkorn University, Bangkok, Thailand
| | - Sorasun Rungsiyanont
- Department of Oral Surgery and Oral Medicine, Srinakharinwirot University, Bangkok, Thailand
| |
Collapse
|
17
|
Peinado SA, Aliota MT, Blitvich BJ, Bartholomay LC. Biology and Transmission Dynamics of Aedes flavivirus. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:659-666. [PMID: 35064663 PMCID: PMC8924967 DOI: 10.1093/jme/tjab197] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Indexed: 05/08/2023]
Abstract
Aedes albopictus (Skuse) and Aedes aegypti (Linnaeus) (Diptera: Culicidae) mosquitoes transmit pathogenic arthropod-borne viruses, including dengue, chikungunya, and Zika viruses, with significant global health consequences. Both Ae. albopictus and Ae. aegypti also are susceptible to Aedes flavivirus (AEFV), an insect-specific flavivirus (ISF) first isolated in Japan from Ae. albopictus and Ae. flavopictus. ISFs infect only insect hosts and evidence suggests that they are maintained by vertical transmission. In some cases, ISFs interfere with pathogenic flavivirus infection, and may have potential use in disease control. We explored the host range of AEFV in 4 genera of mosquitoes after intrathoracic injection and observed greater than 95% prevalence in the species of Aedes and Toxorhynchites tested. Anopheles and Culex species were less permissive to infection. Vertical transmission studies revealed 100% transovarial transmission and a filial infection rate of 100% for AEFV in a persistently-infected colony of Ae. albopictus. Horizontal transmission potential was assessed for adult and larval mosquitoes following per os exposures and in venereal transmission experiments. No mosquitoes tested positive for AEFV infection after blood feeding, and infection with AEFV after sucrose feeding was rare. Similarly, 2% of adult mosquitoes tested positive for AEFV after feeding on infected cells in culture as larvae. Venereal transmission of AEFV was most frequently observed from infected males to uninfected females as compared with transmission from infected females to uninfected males. These results reveal new information on the infection potential of AEFV in mosquitoes and expand our understanding of both vertical and horizontal transmission of ISFs.
Collapse
Affiliation(s)
- Stephen A Peinado
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Matthew T Aliota
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| | - Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
- Corresponding author, e-mail:
| |
Collapse
|
18
|
Behl A, Nair A, Mohagaonkar S, Yadav P, Gambhir K, Tyagi N, Sharma RK, Butola BS, Sharma N. Threat, challenges, and preparedness for future pandemics: A descriptive review of phylogenetic analysis based predictions. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105217. [PMID: 35065303 DOI: 10.1016/j.meegid.2022.105217] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 12/01/2021] [Accepted: 01/14/2022] [Indexed: 11/27/2022]
Abstract
For centuries the world has been confronted with many infectious diseases, with a potential to turn into a pandemic posing a constant threat to human lives. Some of these pandemics occurred due to the emergence of new disease or re-emergence of previously known diseases with a few mutations. In such scenarios their optimal prevention and control options were not adequately developed. Most of these diseases are highly contagious and for their timely control, knowledge about the pathogens and disease progression is the basic necessity. In this review, we have presented a documented chronology of the earlier pandemics, evolutionary analysis of the infectious disease with pandemic potential, the role of RNA, difficulties in controlling pandemics, and the likely pathogens that could trigger future pandemics. In this study, the evolutionary history of the pathogens was identified by carrying out phylogenetic analysis. The percentage similarity between different infectious diseases is critically analysed for the identification of their correlation using online sequence matcher tools. The Baltimore classification system was used for finding the genomic nature of the viruses. It was observed that most of the infectious pathogens rise from their animal hosts with some mutations in their genome composition. The phylogenetic tree shows that the single-stranded RNA diseases have a common origin and many of them are having high similarity percentage. The outcomes of this study will help in the identification of potential pathogens that can cause future pandemics. This information will be helpful in the development of early detection techniques, devising preventive mechanism to limit their spread, prophylactic measures, Infection control and therapeutic options, thereby, strengthening our approach towards global preparedness against future pandemics.
Collapse
Affiliation(s)
- Amanpreet Behl
- Department of Molecular Medicine, Jamia Hamdard Univeristy, Hamdard Nagar, New Delhi, Delhi 110062, India
| | - Ashrit Nair
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India
| | - Sanika Mohagaonkar
- Department of Metabolism, Digestion and Reproduction, Imperial College, London, United Kingdom
| | - Pooja Yadav
- Department of Medical Elementology and Toxicology, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Kirtida Gambhir
- Stem cell and Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Delhi 110054, India
| | - Nishant Tyagi
- Stem cell and Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Delhi 110054, India
| | - Rakesh Kumar Sharma
- Saveetha Institute of Medical and Technical Sciences, 162, Poonamallee High Road, Chennai 600077, Tamil Nadu, India
| | - Bhupendra Singh Butola
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India
| | - Navneet Sharma
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India.
| |
Collapse
|
19
|
Vendrell-Mir P, Perroud PF, Haas FB, Meyberg R, Charlot F, Rensing SA, Nogué F, Casacuberta JM. A vertically transmitted amalgavirus is present in certain accessions of the bryophyte Physcomitrium patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1786-1797. [PMID: 34687260 DOI: 10.1111/tpj.15545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
In the last few years, next-generation sequencing techniques have started to be used to identify new viruses infecting plants. This has allowed to rapidly increase our knowledge on viruses other than those causing symptoms in economically important crops. Here we used this approach to identify a virus infecting Physcomitrium patens that has the typical structure of the double-stranded RNA endogenous viruses of the Amalgaviridae family, which we named Physcomitrium patens amalgavirus 1, or PHPAV1. PHPAV1 is present only in certain accessions of P. patens, where its RNA can be detected throughout the cell cycle of the plant. Our analysis demonstrates that PHPAV1 can be vertically transmitted through both paternal and maternal germlines, in crosses between accessions that contain the virus with accessions that do not contain it. This work suggests that PHPAV1 can replicate in genomic backgrounds different from those that actually contain the virus and opens the door for future studies on virus-host coevolution.
Collapse
Affiliation(s)
- Pol Vendrell-Mir
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Bellaterra, Barcelona, 08193, Spain
| | - Pierre-François Perroud
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Fabian B Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Rabea Meyberg
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
| | - Florence Charlot
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Josep M Casacuberta
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Bellaterra, Barcelona, 08193, Spain
| |
Collapse
|
20
|
Russo EB. Myth busting cannabinoid hyperemesis syndrome. Am J Emerg Med 2021; 56:342-343. [PMID: 34607735 DOI: 10.1016/j.ajem.2021.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Ethan B Russo
- CReDO Science 20402 81st Avenue SW Vashon, WA 98070, USA..
| |
Collapse
|
21
|
Mammadova R, Fiume I, Bokka R, Kralj-Iglič V, Božič D, Kisovec M, Podobnik M, Zavec AB, Hočevar M, Gellén G, Schlosser G, Pocsfalvi G. Identification of Tomato Infecting Viruses That Co-Isolate with Nanovesicles Using a Combined Proteomics and Electron-Microscopic Approach. NANOMATERIALS 2021; 11:nano11081922. [PMID: 34443753 PMCID: PMC8399691 DOI: 10.3390/nano11081922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022]
Abstract
Plant-derived nanovesicles (NVs) have attracted interest due to their anti-inflammatory, anticancer and antioxidative properties and their efficient uptake by human intestinal epithelial cells. Previously we showed that tomato (Solanum lycopersicum L.) fruit is one of the interesting plant resources from which NVs can be obtained at a high yield. In the course of the isolation of NVs from different batches of tomatoes, using the established differential ultracentrifugation or size-exclusion chromatography methods, we occasionally observed the co-isolation of viral particles. Density gradient ultracentrifugation (gUC), using sucrose or iodixanol gradient materials, turned out to be efficient in the separation of NVs from the viral particles. We applied cryogenic transmission electron microscopy (cryo-TEM), scanning electron microscopy (SEM) for the morphological assessment and LC-MS/MS-based proteomics for the protein identification of the gradient fractions. Cryo-TEM showed that a low-density gUC fraction was enriched in membrane-enclosed NVs, while the high-density fractions were rich in rod-shaped objects. Mass spectrometry-based proteomic analysis identified capsid proteins of tomato brown rugose fruit virus, tomato mosaic virus and tomato mottle mosaic virus. In another batch of tomatoes, we isolated tomato spotted wilt virus, potato virus Y and southern tomato virus in the vesicle sample. Our results show the frequent co-isolation of plant viruses with NVs and the utility of the combination of cryo-TEM, SEM and proteomics in the detection of possible viral contamination.
Collapse
Affiliation(s)
- Ramila Mammadova
- Extracellular Vesicles and Mass Spectrometry Laboratory, Institute of Biosciences and BioResources, National Research Council of Italy, 80131 Naples, Italy; (R.M.); (I.F.); (R.B.)
| | - Immacolata Fiume
- Extracellular Vesicles and Mass Spectrometry Laboratory, Institute of Biosciences and BioResources, National Research Council of Italy, 80131 Naples, Italy; (R.M.); (I.F.); (R.B.)
| | - Ramesh Bokka
- Extracellular Vesicles and Mass Spectrometry Laboratory, Institute of Biosciences and BioResources, National Research Council of Italy, 80131 Naples, Italy; (R.M.); (I.F.); (R.B.)
| | - Veronika Kralj-Iglič
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (V.K.-I.); (D.B.)
| | - Darja Božič
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (V.K.-I.); (D.B.)
| | - Matic Kisovec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (M.P.); (A.B.Z.)
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (M.P.); (A.B.Z.)
| | - Apolonija Bedina Zavec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (M.K.); (M.P.); (A.B.Z.)
| | - Matej Hočevar
- Institute of Metals and Technology, SI-1000 Ljubljana, Slovenia;
| | - Gabriella Gellén
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, ELTE Eötvös Loránd University, Institute of Chemistry, H-1117 Budapest, Hungary; (G.G.); (G.S.)
| | - Gitta Schlosser
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, ELTE Eötvös Loránd University, Institute of Chemistry, H-1117 Budapest, Hungary; (G.G.); (G.S.)
| | - Gabriella Pocsfalvi
- Extracellular Vesicles and Mass Spectrometry Laboratory, Institute of Biosciences and BioResources, National Research Council of Italy, 80131 Naples, Italy; (R.M.); (I.F.); (R.B.)
- Correspondence:
| |
Collapse
|
22
|
Villanova F, Marcatti R, Bertanhe M, Morais VDS, Milagres FADP, Brustulin R, Araújo ELL, Tahmasebi R, Witkin SS, Deng X, Delwart E, Sabino EC, Abreu-Junior CH, Leal É, da Costa AC. New Variants of Squash Mosaic Viruses Detected in Human Fecal Samples. Microorganisms 2021; 9:microorganisms9071349. [PMID: 34206387 PMCID: PMC8307838 DOI: 10.3390/microorganisms9071349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 11/16/2022] Open
Abstract
Squash mosaic virus (SqMV) is a phytovirus that infects great diversity of plants worldwide. In Brazil, the SqMV has been identified in the states of Ceará, Maranhão, Piauí, Rio Grande do Norte, and Tocantins. The presence of non-pathogenic viruses in animals, such as phytoviruses, may not be completely risk-free. Similarities in gene repertories between these viruses and viruses that affect animal species have been reported. The present study describes the fully sequenced genomes of SqMV found in human feces, collected in Tocantins, and analyzes the viral profile by metagenomics in the context of diarrhea symptomatology. The complete SqMV genome was obtained in 39 of 253 analyzed samples (15.5%); 97.4% of them belonged to children under 5 years old. There was no evidence that the observed symptoms were related to the presence of SqMV. Of the different virus species detected in these fecal samples, at least 4 (rotavirus, sapovirus, norovirus, parechovirus) are widely known to cause gastrointestinal symptoms. The presence of SqMV nucleic acid in fecal samples is likely due to recent dietary consumption and it is not evidence of viral replication in the human intestinal cells. Identifying the presence of SqMV in human feces and characterization of its genome is a relevant precursor to determining whether and how plant viruses interact with host cells or microorganisms in the human gastrointestinal tract.
Collapse
Affiliation(s)
- Fabiola Villanova
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem 66075-000, PA, Brazil;
| | - Roberta Marcatti
- Departamento de Moléstias Infecciosas e Parasitárias and Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, SP, Brazil; (R.M.); (M.B.); (V.d.S.M.); (R.T.); (S.S.W.); (E.C.S.); (A.C.d.C.)
| | - Mayara Bertanhe
- Departamento de Moléstias Infecciosas e Parasitárias and Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, SP, Brazil; (R.M.); (M.B.); (V.d.S.M.); (R.T.); (S.S.W.); (E.C.S.); (A.C.d.C.)
- School of Veterinary Medicine and Animal Science, University of Sao Paulo, São Paulo 05508-270, SP, Brazil
| | - Vanessa dos Santos Morais
- Departamento de Moléstias Infecciosas e Parasitárias and Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, SP, Brazil; (R.M.); (M.B.); (V.d.S.M.); (R.T.); (S.S.W.); (E.C.S.); (A.C.d.C.)
| | - Flavio Augusto de Padua Milagres
- Instituto de Ciências Biológicas, Universidade Federal do Tocantins, Palmas 77001-090, TO, Brazil; (F.A.d.P.M.); (R.B.)
- Public Health Laboratory of Tocantins State (LACEN/TO), Palmas 77016-330, TO, Brazil
| | - Rafael Brustulin
- Instituto de Ciências Biológicas, Universidade Federal do Tocantins, Palmas 77001-090, TO, Brazil; (F.A.d.P.M.); (R.B.)
- Public Health Laboratory of Tocantins State (LACEN/TO), Palmas 77016-330, TO, Brazil
| | - Emerson Luiz Lima Araújo
- General Coordination of Public Health, Laboratories of the Strategic Articulation, Department of the Health, Surveillance Secretariat, Ministry of Health (CGLAB/DAEVS/SVS-MS), Brasília 70719-040, DF, Brazil;
| | - Roozbeh Tahmasebi
- Departamento de Moléstias Infecciosas e Parasitárias and Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, SP, Brazil; (R.M.); (M.B.); (V.d.S.M.); (R.T.); (S.S.W.); (E.C.S.); (A.C.d.C.)
| | - Steven S. Witkin
- Departamento de Moléstias Infecciosas e Parasitárias and Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, SP, Brazil; (R.M.); (M.B.); (V.d.S.M.); (R.T.); (S.S.W.); (E.C.S.); (A.C.d.C.)
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Xutao Deng
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA 94143, USA; (X.D.); (E.D.)
- Department Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eric Delwart
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA 94143, USA; (X.D.); (E.D.)
- Department Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ester Cerdeira Sabino
- Departamento de Moléstias Infecciosas e Parasitárias and Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, SP, Brazil; (R.M.); (M.B.); (V.d.S.M.); (R.T.); (S.S.W.); (E.C.S.); (A.C.d.C.)
| | | | - Élcio Leal
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem 66075-000, PA, Brazil;
- Correspondence:
| | - Antonio Charlys da Costa
- Departamento de Moléstias Infecciosas e Parasitárias and Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-000, SP, Brazil; (R.M.); (M.B.); (V.d.S.M.); (R.T.); (S.S.W.); (E.C.S.); (A.C.d.C.)
| |
Collapse
|
23
|
Zuo T, Liu Q, Zhang F, Yeoh YK, Wan Y, Zhan H, Lui GCY, Chen Z, Li AYL, Cheung CP, Chen N, Lv W, Ng RWY, Tso EYK, Fung KSC, Chan V, Ling L, Joynt G, Hui DSC, Chan FKL, Chan PKS, Ng SC. Temporal landscape of human gut RNA and DNA virome in SARS-CoV-2 infection and severity. MICROBIOME 2021; 9:91. [PMID: 33853691 PMCID: PMC8044506 DOI: 10.1186/s40168-021-01008-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/02/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) caused by the enveloped RNA virus SARS-CoV-2 primarily affects the respiratory and gastrointestinal tracts. SARS-CoV-2 was isolated from fecal samples, and active viral replication was reported in human intestinal cells. The human gut also harbors an enormous amount of resident viruses (collectively known as the virome) that play a role in regulating host immunity and disease pathophysiology. Understanding gut virome perturbation that underlies SARS-CoV-2 infection and severity is an unmet need. METHODS We enrolled 98 COVID-19 patients with varying disease severity (3 asymptomatic, 53 mild, 34 moderate, 5 severe, 3 critical) and 78 non-COVID-19 controls matched for gender and co-morbidities. All subjects had fecal specimens sampled at inclusion. Blood specimens were collected for COVID-19 patients at admission to test for inflammatory markers and white cell counts. Among COVID-19 cases, 37 (38%) patients had serial fecal samples collected 2 to 3 times per week from time of hospitalization until after discharge. Using shotgun metagenomics sequencing, we sequenced and profiled the fecal RNA and DNA virome. We investigated alterations and longitudinal dynamics of the gut virome in association with disease severity and blood parameters. RESULTS Patients with COVID-19 showed underrepresentation of Pepper mild mottle virus (RNA virus) and multiple bacteriophage lineages (DNA viruses) and enrichment of environment-derived eukaryotic DNA viruses in fecal samples, compared to non-COVID-19 subjects. Such gut virome alterations persisted up to 30 days after disease resolution. Fecal virome in SARS-CoV-2 infection harbored more stress-, inflammation-, and virulence-associated gene encoding capacities including those pertaining to bacteriophage integration, DNA repair, and metabolism and virulence associated with their bacterial host. Baseline fecal abundance of 10 virus species (1 RNA virus, pepper chlorotic spot virus, and 9 DNA virus species) inversely correlated with disease COVID-19 severity. These viruses inversely correlated with blood levels of pro-inflammatory proteins, white cells, and neutrophils. Among the 10 COVID-19 severity-associated DNA virus species, 4 showed inverse correlation with age; 5 showed persistent lower abundance both during disease course and after disease resolution relative to non-COVID-19 subjects. CONCLUSIONS Both enteric RNA and DNA virome in COVID-19 patients were different from non-COVID-19 subjects, which persisted after disease resolution of COVID-19. Gut virome may calibrate host immunity and regulate severity to SARS-CoV-2 infection. Our observation that gut viruses inversely correlated with both severity of COVID-19 and host age may partly explain that older subjects are prone to severe and worse COVID-19 outcomes. Altogether, our data highlight the importance of human gut virome in severity and potentially therapeutics of COVID-19. Video Abstract.
Collapse
Affiliation(s)
- Tao Zuo
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- State Key Laboratory for Digestive disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qin Liu
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- State Key Laboratory for Digestive disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Hong Kong, China
| | - Fen Zhang
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- State Key Laboratory for Digestive disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Hong Kong, China
| | - Yun Kit Yeoh
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Hong Kong, China
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yating Wan
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- State Key Laboratory for Digestive disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Hong Kong, China
| | - Hui Zhan
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- State Key Laboratory for Digestive disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Hong Kong, China
| | - Grace C Y Lui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zigui Chen
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Amy Y L Li
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chun Pan Cheung
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- State Key Laboratory for Digestive disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Hong Kong, China
| | - Nan Chen
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- State Key Laboratory for Digestive disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wenqi Lv
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- State Key Laboratory for Digestive disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Hong Kong, China
| | - Rita W Y Ng
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Eugene Y K Tso
- Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong, China
| | - Kitty S C Fung
- Department of Pathology, United Christian Hospital, Hong Kong, China
| | - Veronica Chan
- Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong, China
| | - Lowell Ling
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gavin Joynt
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - David S C Hui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Francis K L Chan
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- State Key Laboratory for Digestive disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Hong Kong, China
| | - Paul K S Chan
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Siew C Ng
- Center for Gut Microbiota Research, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
- State Key Laboratory for Digestive disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
- Microbiota I-Center (MagIC), The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
24
|
Kumar M, Bharti R, Ranjan T. The Evolutionary Significance of Generalist Viruses with Special Emphasis on Plant Viruses and their Hosts. Open Virol J 2020. [DOI: 10.2174/1874357902014010022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The host range of a virus is defined as the number of species a virus potentially infects. The specialist virus infects one or few related species while the generalist virus infects several different species, possibly in different families. Origin of generalist viruses from their specialist nature and the expansion of the host range of the generalist virus occur with the host shift event in which the virus encounters and adapts to a new host. Host shift events have resulted in the majority of the newly emerging viral diseases. This review discusses the advantages and disadvantages of generalist over specialist viruses and the unique features of plant viruses and their hosts that result in a higher incidence of generalist viruses in plants.
Collapse
|
25
|
Aljabali AA, Obeid MA. Inorganic-organic Nanomaterials for Therapeutics and Molecular Imaging Applications. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2210681209666190807145229] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::
Surface modification of nanoparticles with targeting moieties can be
achieved through bioconjugation chemistries to impart new Functionalities. Various polymeric
nanoparticles have been used for the formulation of nanoparticles such as naturally-occurring
protein cages, virus-like particles, polymeric saccharides, and liposomes. These polymers have
been proven to be biocompatible, side effects free and degradable with no toxicity.
Objectives::
This paper reviews available literature on the nanoparticles pharmaceutical and medical
applications. The review highlights and updates the customized solutions for selective drug
delivery systems that allow high-affinity binding between nanoparticles and the target receptors.
Methods::
Bibliographic databases and web-search engines were used to retrieve studies that assessed
the usability of nanoparticles in the pharmaceutical and medical fields. Data were extracted
on each system in vivo and in vitro applications, its advantages and disadvantages, and its ability to
be chemically and genetically modified to impart new functionalities. Finally, a comparison
between naturally occurring and their synthetic counterparts was carried out.
Results::
The results showed that nanoparticles-based systems could have promising applications in
diagnostics, cell labeling, contrast agents (Magnetic Resonance Imaging and Computed Tomography),
antimicrobial agents, and as drug delivery systems. However, precautions should be taken
to avoid or minimize toxic effect or incompatibility of nanoparticles-based systems with the biological
systems in case of pharmaceutical or medical applications.
Conclusion::
This review presented a summary of recent developments in the field of pharmaceutical
nanotechnology and highlighted the challenges and the merits that some of the nanoparticles-
based systems both in vivo and in vitro systems.
Collapse
Affiliation(s)
- Alaa A.A. Aljabali
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Yarmouk University, P.O. BOX 566, Irbid 21163, Jordan
| | - Mohammad A. Obeid
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Yarmouk University, P.O. BOX 566, Irbid 21163, Jordan
| |
Collapse
|
26
|
Shahgolzari M, Pazhouhandeh M, Milani M, Yari Khosroushahi A, Fiering S. Plant viral nanoparticles for packaging and in vivo delivery of bioactive cargos. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1629. [PMID: 32249552 DOI: 10.1002/wnan.1629] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 01/15/2023]
Abstract
Nanoparticles have unique capabilities and considerable promise for many different biological uses. One capability is delivering bioactive cargos to specific cells, tissues, or organisms. Depending on the task, there are multiple variables to consider including nanoparticle selection, targeting strategies, and incorporating cargo so it can be delivered in a biologically active form. One nanoparticle option, genetically controlled plant viral nanoparticles (PVNPs), is highly uniform within a given virus but quite variable between viruses with a broad range of useful properties. PVNPs are flexible and versatile tools for incorporating and delivering a wide range of small or large molecule cargos. Furthermore, PVNPs can be modified to create nanostructures that can solve problems in medical, environmental, and basic research. This review discusses the currently available techniques for delivering bioactive cargos with PVNPs and potential cargos that can be delivered with these strategies. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Mehdi Shahgolzari
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maghsoud Pazhouhandeh
- Biotechnology Department, Agricultural Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Morteza Milani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| |
Collapse
|
27
|
Aguado-García Y, Taboada B, Morán P, Rivera-Gutiérrez X, Serrano-Vázquez A, Iša P, Rojas-Velázquez L, Pérez-Juárez H, López S, Torres J, Ximénez C, Arias CF. Tobamoviruses can be frequently present in the oropharynx and gut of infants during their first year of life. Sci Rep 2020; 10:13595. [PMID: 32788688 PMCID: PMC7423923 DOI: 10.1038/s41598-020-70684-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/29/2020] [Indexed: 11/09/2022] Open
Abstract
Plant viruses have been reported to be common in the gut of human adults, presumably as result of food ingestion. In this work, we report that plant viruses can also be found frequently in the gut and oropharynx of children during their first year of life, even when they are exclusively breast-fed. Fecal and oropharynx samples were collected monthly, from birth to 1 year of age, from three apparently healthy children in a semi-rural community and analyzed by next generation sequencing. In 100% of the fecal samples and 65% of the oropharynx samples at least one plant virus was identified. Tobamoviruses in the Virgaviridae family were by far the most frequently detected, with tropical soda apple mosaic virus, pepper mild mottle virus, and opuntia tobamovirus 2 being the most common species. Seventeen complete virus genomes could be assembled, and phylogenetic analyses showed a large diversity of virus strains circulating in the population. These results suggest that children are continuously exposed to an extensive and highly diverse collection of tobamoviruses. Whether the common presence of plant viruses at an early age influences the infant's immune system, either directly or through interaction with other members of the microbiota, remains to be investigated.
Collapse
Affiliation(s)
- Yarenci Aguado-García
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Morelos, Mexico
| | - Blanca Taboada
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Morelos, Mexico
| | - Patricia Morán
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis Num. 148 Doctores, 06726, Ciudad de México, Mexico
| | - Xaira Rivera-Gutiérrez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Morelos, Mexico
| | - Angélica Serrano-Vázquez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis Num. 148 Doctores, 06726, Ciudad de México, Mexico
| | - Pavel Iša
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Morelos, Mexico
| | - Liliana Rojas-Velázquez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis Num. 148 Doctores, 06726, Ciudad de México, Mexico
| | - Horacio Pérez-Juárez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis Num. 148 Doctores, 06726, Ciudad de México, Mexico
| | - Susana López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Morelos, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, 06726, Cuauhtémoc, Ciudad de México, Mexico.
| | - Cecilia Ximénez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis Num. 148 Doctores, 06726, Ciudad de México, Mexico.
| | - Carlos F Arias
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
28
|
Lathe R, St Clair D. From conifers to cognition: Microbes, brain and behavior. GENES BRAIN AND BEHAVIOR 2020; 19:e12680. [PMID: 32515128 DOI: 10.1111/gbb.12680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/12/2020] [Accepted: 05/29/2020] [Indexed: 12/25/2022]
Abstract
A diversity of bacteria, protozoans and viruses ("endozoites") were recently uncovered within healthy tissues including the human brain. By contrast, it was already recognized a century ago that healthy plants tissues contain abundant endogenous microbes ("endophytes"). Taking endophytes as an informative precedent, we overview the nature, prevalence, and role of endozoites in mammalian tissues, centrally focusing on the brain, concluding that endozoites are ubiquitous in diverse tissues. These passengers often remain subclinical, but they are not silent. We address their routes of entry, mechanisms of persistence, tissue specificity, and potential to cause long-term behavioral changes and/or immunosuppression in mammals, where rabies virus is the exemplar. We extend the discussion to Herpesviridae, Coronaviridae, and Toxoplasma, as well as to diverse bacteria and yeasts, and debate the advantages and disadvantages that endozoite infection might afford to the host and to the ecosystem. We provide a clinical perspective in which endozoites are implicated in neurodegenerative disease, anxiety/depression, and schizophrenia. We conclude that endozoites are instrumental in the delicate balance between health and disease, including age-related brain disease, and that endozoites have played an important role in the evolution of brain function and human behavior.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, University of Edinburgh Medical School, Edinburgh, UK
| | - David St Clair
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
29
|
Bengone-Abogourin JG, Chelkha N, Verdin E, Colson P. Sequence Similarities between Viroids and Human MicroRNAs. Intervirology 2020; 62:227-234. [PMID: 32640450 DOI: 10.1159/000509212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/06/2020] [Indexed: 11/19/2022] Open
Abstract
Viroids are minute unencapsidated non-coding circular RNAs known to be present and to cause diseases only in plants. Infections were associated with the occurrence of specific single-stranded RNAs similar in size to miRNAs and endogenous small interfering RNAs, and viroid pathogenicity is suspected to occur through RNA interference. We looked for sequence similarities between viroids and the seed region of human microRNAs (hsa-miRNAs). Viroid genomes were retrieved from GenBank and mature hsa-mi-RNAs were retrieved from miRBase. Two hundred 300-nucleotide-long sequences were randomly generated as controls. BLAST searches were performed using viroids as queries and hsa-miRNAs as subjects with relaxed parameters, and matches involving hsa-miRNA seed regions were considered. A total of 81,021 matches were found, and 1,501 that showed 100% identity with whole hsa-miRNA seed regions were selected. The most frequent matches involved Chrysanthemum stunt viroid or Hop stunt viroidspecies with hsa-miR-4286, in 365 and 207 cases, respectively. Three hsa-mi-RNAs (miR-4286, miR-6808-5p, and miR-3622a-3p) were involved in 47% of all matches between viroids and hsa-mi-RNAs. Taken together, these findings warrant further investigation on the potential of viroids and their derived small RNAs to cross kingdoms and interact with nucleic acids in humans.
Collapse
Affiliation(s)
- Jessica Grace Bengone-Abogourin
- Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Nisrine Chelkha
- Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Eric Verdin
- INRA, UR407, Unité de Pathologie Végétale, Montfavet, France
| | - Philippe Colson
- Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France, .,IHU Méditerranée Infection, Marseille, France,
| |
Collapse
|
30
|
Ansari MH, Ebrahimi M, Fattahi MR, Gardner MG, Safarpour AR, Faghihi MA, Lankarani KB. Viral metagenomic analysis of fecal samples reveals an enteric virome signature in irritable bowel syndrome. BMC Microbiol 2020; 20:123. [PMID: 32429898 PMCID: PMC7236503 DOI: 10.1186/s12866-020-01817-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/10/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Changes in the enteric microbiota have been suggested to contribute to gastrointestinal diseases, including irritable bowel syndrome. Most of the published work is on bacterial dysbiosis with meager data on the role of the virome in irritable bowel syndrome and other gastrointestinal diseases. In the current study, we therefore aimed to investigate the viral community composition of the gut and test for potential dysbiosis linked to irritable bowel syndrome. RESULTS A metagenomics analysis on fecal samples of 50 individuals - 30 of whom met the Rome IV criteria for IBS and 20 healthy controls- was conducted. There was a noticeable alteration in viral taxa observed in association with irritable bowel syndrome when compared to healthy individuals - where some eukaryotic viral taxa noticeably prevail over others. We observed a significant decrease in the diversity and abundance of enteric virome particularly in eukaryotic viruses of Megavirales in patients with irritable bowel syndrome. CONCLUSIONS These findings shed light on a new hypothesis that the alteration of the viral taxa contributes to the pathogenesis of irritable bowel syndrome and related symptoms, and therefore, pave the way for developing a new diagnostic biomarker or anti-viral drugs for the treatment of irritable bowel syndrome.
Collapse
Affiliation(s)
- Mina Hojat Ansari
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehregan Ebrahimi
- Department of Biology, Shiraz University, Shiraz, Fars Province, Iran
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Mohammad Reza Fattahi
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Michael G Gardner
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Evolutionary Biology Unit, South Australian Museum, Adelaide, Australia
| | - Ali Reza Safarpour
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Faghihi
- Persian Bayan Gene Research and Training Center, Dr. Faghihi's Medical Genetics Center, Shiraz, Iran
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kamran Bagheri Lankarani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
31
|
Kim JS, Yoon SJ, Park YJ, Kim SY, Ryu CM. Crossing the kingdom border: Human diseases caused by plant pathogens. Environ Microbiol 2020; 22:2485-2495. [PMID: 32307848 DOI: 10.1111/1462-2920.15028] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022]
Abstract
Interactions between pathogenic microorganisms and their hosts are varied and complex, encompassing open-field scale interactions to interactions at the molecular level. The capacity of plant pathogenic bacteria and fungi to cause diseases in human and animal systems was, until recently, considered of minor importance. However, recent evidence suggests that animal and human infections caused by plant pathogenic fungi, bacteria and viruses may have critical impacts on human and animal health and safety. This review analyses previous research on plant pathogens as causal factors of animal illness. In addition, a case study involving disruption of type III effector-mediated phagocytosis in a human cell line upon infection with an opportunistic phytopathogen, Pseudomonas syringae pv. tomato, is discussed. Further knowledge regarding the molecular interactions between plant pathogens and human and animal hosts is needed to understand the extent of disease incidence and determine mechanisms for disease prevention.
Collapse
Affiliation(s)
- Jun-Seob Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseng-gu, Daejeon, South Korea
| | - Sung-Jin Yoon
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseng-gu, Daejeon, South Korea
| | - Young-Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseng-gu, Daejeon, South Korea
| | - Seon-Yeong Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseng-gu, Daejeon, South Korea.,Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, South Korea
| | - Choong-Min Ryu
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseng-gu, Daejeon, South Korea
| |
Collapse
|
32
|
Bak A, Emerson JB. Cauliflower mosaic virus (CaMV) Biology, Management, and Relevance to GM Plant Detection for Sustainable Organic Agriculture. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
33
|
Martínez-Turiño S, García JA. Potyviral coat protein and genomic RNA: A striking partnership leading virion assembly and more. Adv Virus Res 2020; 108:165-211. [PMID: 33837716 DOI: 10.1016/bs.aivir.2020.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Potyvirus genus clusters a significant and expanding number of widely distributed plant viruses, responsible for large losses impacting most crops of economic interest. The potyviral genome is a single-stranded, linear, positive-sense RNA of around 10kb that is encapsidated in flexuous rod-shaped filaments, mostly made up of a helically arranged coat protein (CP). Beyond its structural role of protecting the viral genome, the potyviral CP is a multitasking protein intervening in practically all steps of the virus life cycle. In particular, interactions between the CP and the viral RNA must be tightly controlled to allow the correct assignment of the RNA to each of its functions through the infection process. This review attempts to bring together the most relevant available information regarding the architecture and modus operandi of potyviral CP and virus particles, highlighting significant discoveries, but also substantial gaps in the existing knowledge on mechanisms orchestrating virion assembly and disassembly. Biotechnological applications based on potyvirus nanoparticles is another important topic addressed here.
Collapse
|
34
|
Finding relationships among biological entities. LOGIC AND CRITICAL THINKING IN THE BIOMEDICAL SCIENCES 2020. [PMCID: PMC7499094 DOI: 10.1016/b978-0-12-821364-3.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Confusion over the concepts of “relationships” and “similarities” lies at the heart of many battles over the direction and intent of research projects. Here is a short story that demonstrates the difference between the two concepts: You look up at the clouds, and you begin to see the shape of a lion. The cloud has a tail, like a lion’s tale, and a fluffy head, like a lion’s mane. With a little imagination the mouth of the lion seems to roar down from the sky. You have succeeded in finding similarities between the cloud and a lion. If you look at a cloud and you imagine a tea kettle producing a head of steam and you recognize that the physical forces that create a cloud and the physical forces that produced steam from a heated kettle are the same, then you have found a relationship. Most popular classification algorithms operate by grouping together data objects that have similar properties or values. In so doing, they may miss finding the true relationships among objects. Traditionally, relationships among data objects are discovered by an intellectual process. In this chapter, we will discuss the scientific gains that come when we classify biological entities by relationships, not by their similarities.
Collapse
|
35
|
Metagenomic analysis of viruses, bacteria and protozoa in irrigation water. Int J Hyg Environ Health 2019; 224:113440. [PMID: 31978735 DOI: 10.1016/j.ijheh.2019.113440] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022]
Abstract
Viruses (e.g., noroviruses and hepatitis A and E virus), bacteria (e.g., Salmonella spp. and pathogenic Escherichia coli) and protozoa (e.g., Cryptosporidium parvum and Giardia intestinalis) are well-known contributors to food-borne illnesses linked to contaminated fresh produce. As agricultural irrigation increases the total amount of water used annually, reclaimed water is a good alternative to reduce dependency on conventional irrigation water sources. European guidelines have established acceptable concentrations of certain pathogens and/or indicators in irrigation water, depending on the irrigation system used and the irrigated crop. However, the incidences of food-borne infections are known to be underestimated and all the different pathogens contributing to these infections are not known. Next-generation sequencing (NGS) enables the determination of the viral, bacterial and protozoan populations present in a water sample, providing an opportunity to detect emerging pathogens and develop improved tools for monitoring the quality of irrigation water. This is a descriptive study of the virome, bacteriome and parasitome present in different irrigation water sources. We applied the same concentration method for all the studied samples and specific metagenomic approaches to characterize both DNA and RNA viruses, bacteria and protozoa. In general, most of the known viral species corresponded to plant viruses and bacteriophages. Viral diversity in river water varied over the year, with higher bacteriophage prevalences during the autumn and winter. Reservoir water contained Enterobacter cloacae, an opportunistic human pathogen and an indicator of fecal contamination, as well as Naegleria australiensis and Naegleria clarki. Hepatitis E virus and Naegleria fowleri, emerging human pathogens, were detected in groundwater. Reclaimed water produced in a constructed wetland system presented a virome and bacteriome that resembled those of freshwater samples (river and reservoir water). Viral, bacterial and protozoan pathogens were occasionally detected in the different irrigation water sources included in this study, justifying the use of improved NGS techniques to get a comprehensive evaluation of microbial species and potential environmental health hazards associated to irrigation water.
Collapse
|
36
|
Ismail SNFB, Baharum SN, Fazry S, Low CF. Comparative genome analysis reveals a distinct influence of nucleotide composition on virus-host species-specific interaction of prawn-infecting nodavirus. JOURNAL OF FISH DISEASES 2019; 42:1761-1772. [PMID: 31637743 DOI: 10.1111/jfd.13093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Discovery of species-specific interaction between the host and virus has drawn the interest of many researchers to study the evolution of the newly emerged virus. Comparative genome analysis provides insights of the virus functional genome evolution and the underlying mechanisms of virus-host interactions. The analysis of nucleotide composition signified the evolution of nodavirus towards host specialization in a host-specific mutation manner. GC-rich genome of betanodavirus was significantly deficient in UpA and UpU dinucleotides composition, whilst the AU-rich genome of gammanodavirus was deficient in CpG dinucleotide. The capsid of MrNV and PvNV of gammanodavirus retains the highest abundance of adenine and uracil at the second codon position, respectively, which were found to be very distinctive from the other genera. ENC-GC3 plot inferred the influence of natural selection and mutational pressure in shaping the evolution of MrNV RdRp and capsid, respectively. Furthermore, CAI/eCAI analysis predicts a comparable adaptability of MrNV in squid, Sepia officinalis than its natural host, Macrobrachium rosenbergii. Thus, further study is warranted to investigate the capacity of MrNV replication in S. officinalis owing to its high codon adaptation index.
Collapse
Affiliation(s)
| | | | - Shazrul Fazry
- Tasik Chini Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Bangi, Malaysia
| | - Chen Fei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
37
|
Abstract
Two areas of research that have greatly increased in attention are: dipterans as vectors and the microbes they are capable of vectoring. Because it is the front-end of the fly that first encounters these microbes, this review focuses on the legs, mouthparts, and foregut, which includes the crop as major structures involved in dipteran vectoring ability. The legs and mouthparts are generally involved in mechanical transmission of microbes. However, the crop is involved in more than just mechanical transmission, for it is within the lumen of the crop that microbes are taken up with the meal of the fly, stored, and it is within the lumen that horizontal transmission of bacterial resistance has been demonstrated. In addition to storage of microbes, the crop is also involved in depositing the microbes via a process known as regurgitation. Various aspects of crop regulation are discussed and specific examples of crop involvement with microorganisms are discussed. The importance of biofilm and biofilm formation are presented, as well as, some physical parameters of the crop that might either facilitate or inhibit biofilm formation. Finally, there is a brief discussion of dipteran model systems for studying crop microbe interactions.
Collapse
Affiliation(s)
- John G Stoffolano
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
38
|
Abstract
Immunotherapy potentiates a patient’s immune response against some forms of cancer, including malignant tumors. In this Special Report, we have summarized the use of nanoparticles that have been designed for use in cancer immunotherapy with particular emphasis on plant viruses. Plant virus-based nanoparticles are an ideal choice for therapeutic applications, as these nanoparticles are not only capable of targeting the desired cells but also of being safely delivered to the body without posing any threat of infection. Plant viruses can be taken up by tumor cells and can be functionalized as drug delivery vehicles. This Special Report describes how the future of cancer immunotherapy could be a success through the merger of computer-based technology using plant-virus nanoparticles. The nonpathogenic nature of plant viral nanoparticles makes them an ideal choice for therapeutic applications such as cancer. Understanding the molecular mechanisms behind the immune response to cancer has facilitated the use of nanotechnology as an effective cancer therapy. Biologically active self-replicating plant virus particles can be introduced to the bloodstream of the human body and used as effective drug delivery vehicles. This Special Report describes how a combination of computer-based technology and plant-virus nanoparticles can assist in cancer immunotherapy.
Collapse
|
39
|
Plant virus-based materials for biomedical applications: Trends and prospects. Adv Drug Deliv Rev 2019; 145:96-118. [PMID: 30176280 DOI: 10.1016/j.addr.2018.08.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/06/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
Nanomaterials composed of plant viral components are finding their way into medical technology and health care, as they offer singular properties. Precisely shaped, tailored virus nanoparticles (VNPs) with multivalent protein surfaces are efficiently loaded with functional compounds such as contrast agents and drugs, and serve as carrier templates and targeting vehicles displaying e.g. peptides and synthetic molecules. Multiple modifications enable uses including vaccination, biosensing, tissue engineering, intravital delivery and theranostics. Novel concepts exploit self-organization capacities of viral building blocks into hierarchical 2D and 3D structures, and their conversion into biocompatible, biodegradable units. High yields of VNPs and proteins can be harvested from plants after a few days so that various products have reached or are close to commercialization. The article delineates potentials and limitations of biomedical plant VNP uses, integrating perspectives of chemistry, biomaterials sciences, molecular plant virology and process engineering.
Collapse
|
40
|
Beatty PH, Lewis JD. Cowpea mosaic virus nanoparticles for cancer imaging and therapy. Adv Drug Deliv Rev 2019; 145:130-144. [PMID: 31004625 DOI: 10.1016/j.addr.2019.04.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 12/07/2018] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
Nanoparticle platforms are particularly attractive for theranostic applications due to their capacity for multifunctionality and multivalency. Some of the most promising nano-scale scaffold systems have been co-opted from nature including plant viruses such as cowpea mosaic virus (CPMV). The use of plant viruses like CPMV as viral nanoparticles is advantageous for many reasons; they are non-infectious and nontoxic to humans and safe for use in intravital imaging and drug delivery. The CPMV capsid icosahedral shape allows for enhanced multifunctional group display and the ability to carry specific cargoes. The native tropism of CPMV for cell-surface displayed vimentin and the enhanced permeability and retention effect allow them to preferentially extravasate from tumor neovasculature and efficiently penetrate tumors. Furthermore, CPMVs can be engineered via several straightforward chemistries to display targeting and imaging moieties on external, addressable residues and they can be loaded internally with therapeutic drug cargoes. These qualities make them highly effective as biocompatible platforms for tumor targeting, intravital imaging and cancer therapy.
Collapse
|
41
|
Richert-Pöggeler KR, Franzke K, Hipp K, Kleespies RG. Electron Microscopy Methods for Virus Diagnosis and High Resolution Analysis of Viruses. Front Microbiol 2019; 9:3255. [PMID: 30666247 PMCID: PMC6330349 DOI: 10.3389/fmicb.2018.03255] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/14/2018] [Indexed: 01/29/2023] Open
Abstract
The term "virosphere" describes both the space where viruses are found and the space they influence, and can extend to their impact on the environment, highlighting the complexity of the interactions involved. Studying the biology of viruses and the etiology of virus disease is crucial to the prevention of viral disease, efficient and reliable virus diagnosis, and virus control. Electron microscopy (EM) is an essential tool in the detection and analysis of virus replication. New EM methods and ongoing technical improvements offer a broad spectrum of applications, allowing in-depth investigation of viral impact on not only the host but also the environment. Indeed, using the most up-to-date electron cryomicroscopy methods, such investigations are now close to atomic resolution. In combination with bioinformatics, the transition from 2D imaging to 3D remodeling allows structural and functional analyses that extend and augment our knowledge of the astonishing diversity in virus structure and lifestyle. In combination with confocal laser scanning microscopy, EM enables live imaging of cells and tissues with high-resolution analysis. Here, we describe the pivotal role played by EM in the study of viruses, from structural analysis to the biological relevance of the viral metagenome (virome).
Collapse
Affiliation(s)
- Katja R. Richert-Pöggeler
- Federal Research Center for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute, Braunschweig, Germany
| | - Kati Franzke
- Institute of Infectiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Regina G. Kleespies
- Federal Research Centre for Cultivated Plants, Institute for Biological Control, Julius Kühn Institute, Darmstadt, Germany
| |
Collapse
|
42
|
Abstract
In the past, viruses were considered nonliving infectious particles, little more than genetic material wrapped in a protein capsid. Today, virologists are beginning to think of viruses as living organisms that can be classified phylogenetically into defined species, much like any other living organism. The primary reasons for this shift in attitude can be partially attributed to the discovery of giant viruses, having large genomes and complex regulatory systems. Aside from that, it has become obvious that viruses lead complex lives; they evolve, speciate, and participate in the evolution of all classes of living organisms. In this chapter, we will discuss the early attempts to classify viruses, and review the biologic properties of the classes of virus that contain human pathogens.
Collapse
|
43
|
Bennett AJ, Bushmaker T, Cameron K, Ondzie A, Niama FR, Parra HJ, Mombouli JV, Olson SH, Munster VJ, Goldberg TL. Diverse RNA viruses of arthropod origin in the blood of fruit bats suggest a link between bat and arthropod viromes. Virology 2018; 528:64-72. [PMID: 30576861 DOI: 10.1016/j.virol.2018.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
Bats host diverse viruses due to their unique ecology, behavior, and immunology. However, the role of other organisms with which bats interact in nature is understudied as a contributor to bat viral diversity. We discovered five viruses in the blood of fruit bats (Hypsignathus monstrosus) from the Republic of Congo. Of these five viruses, four have phylogenetic and genomic features suggesting an arthropod origin (a dicistrovirus, a nodavirus, and two tombus-like viruses), while the fifth (a hepadnavirus) is clearly of mammalian origin. We also report the parallel discovery of related tombus-like viruses in fig wasps and primitive crane flies from bat habitats, as well as high infection rates of bats with haemosporidian parasites (Hepatocystis sp.). These findings suggest transmission between arthropods and bats, perhaps through ingestion or hyperparasitism (viral infection of bat parasites). Some "bat-associated" viruses may be epidemiologically linked to bats through their ecological associations with invertebrates.
Collapse
Affiliation(s)
- Andrew J Bennett
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Trenton Bushmaker
- Laboratory of Virology, Virus Ecology Unit, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, USA
| | - Kenneth Cameron
- Wildlife Conservation Society, Wildlife Health Program, 2300 Southern Boulevard, Bronx, NY, USA
| | - Alain Ondzie
- Wildlife Conservation Society, Wildlife Health Program, 2300 Southern Boulevard, Bronx, NY, USA
| | - Fabien R Niama
- Laboratoire National de Santé Publique, Brazzaville, Republic of Congo
| | | | | | - Sarah H Olson
- Wildlife Conservation Society, Wildlife Health Program, 2300 Southern Boulevard, Bronx, NY, USA
| | - Vincent J Munster
- Laboratory of Virology, Virus Ecology Unit, Division of Intramural Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
44
|
Abat C, Rolain JM, Colson P. Investigations by the Institut Hospitalo-Universitaire Méditerranée Infection of food and food-borne infections in the Mediterranean Basin and in sub-Saharan Africa. New Microbes New Infect 2018; 26:S37-S42. [PMID: 30402242 PMCID: PMC6205566 DOI: 10.1016/j.nmni.2018.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/02/2018] [Accepted: 08/22/2018] [Indexed: 12/25/2022] Open
Abstract
Food-borne infections are major causes of public health concern in developing and developed countries. During the past decade, the Institut Hospitalo-Universitaire Méditerranée Infection has conducted or been involved in multiple investigations that aimed at identifying the sources and strains responsible for food-borne diseases and therefore at improving the understanding, diagnosis, prevention and control of these infections. Investigations were conducted in the Mediterranean area and in sub-Saharan Africa on more than 15 food-borne agents, 17 food products and 14 antibiotic resistance-associated genes. Multiple sources, including unexpected ones, and pathogens, including emerging ones, were involved. Travelling in developing countries and zoonoses are major contributors to food-borne infections, while food-borne transmission of resistance-associated genes is increasingly reported. However, risk factors and pathogens associated with food-borne infections likely remain untapped and must be more extensively investigated, monitored and regularly reassessed. Diagnostic tests based on new technologies and real-time surveillance tools based on microbiology laboratory data are promising approaches to detect known food-borne infections and decipher new ones. Studies of the microbiota and its relationships with dietary patterns are also worth being conducted.
Collapse
|
45
|
Sarkinas A, Sakalauskiene K, Raisutis R, Zeime J, Salaseviciene A, Puidaite E, Mockus E, Cernauskas D. Inactivation of some pathogenic bacteria and phytoviruses by ultrasonic treatment. Microb Pathog 2018; 123:144-148. [DOI: 10.1016/j.micpath.2018.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 01/01/2023]
|
46
|
Ungaro F, Massimino L, Furfaro F, Rimoldi V, Peyrin-Biroulet L, D’Alessio S, Danese S. Metagenomic analysis of intestinal mucosa revealed a specific eukaryotic gut virome signature in early-diagnosed inflammatory bowel disease. Gut Microbes 2018; 10:149-158. [PMID: 30252582 PMCID: PMC6546319 DOI: 10.1080/19490976.2018.1511664] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/17/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023] Open
Abstract
Intestinal dysbiosis is one of the causes underlying the pathogenesis of inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn's disease (CD). Besides bacteria, microbiota comprises both prokaryotic and eukaryotic viruses, that together compose the gut virome. Few works have defined the viral composition of stools, while the virome populating intestinal mucosae from early-diagnosed IBD patients has never been studied. Here we show that, by in-depth metagenomic analysis of RNA-Seq data obtained from gut mucosae of young treatment-naïve patients, early-diagnosed for CD and UC, and from healthy subjects (Ctrl), UC patients display significantly higher levels of eukaryotic Hepadnaviridae transcripts by comparison with both Ctrl and CD patients, whereas CD patients show increased abundance of Hepeviridae versus Ctrl. Moreover, we found that UC gut mucosa is characterized by lower levels of Polydnaviridae and Tymoviridae, whereas the mucosa of patients with CD showed a reduced abundance of Virgaviridae. Our findings support the idea that certain eukaryotic viruses might trigger intestinal inflammation and contribute to IBD pathogenesis and pave the way not only for the discovery of novel diagnostic biomarkers but also for the development of anti-viral drugs for the treatment of IBD.
Collapse
Affiliation(s)
- Federica Ungaro
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Luca Massimino
- Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Federica Furfaro
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy
| | - Valeria Rimoldi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Laurent Peyrin-Biroulet
- Institut National de la Santé et de la Recherche Médicale U954 and Department of Gastroenterology, Nancy University Hospital, Lorraine University, Nancy, France
| | - Silvia D’Alessio
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvio Danese
- IBD Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
47
|
Neethirajan S, Ragavan K, Weng X. Agro-defense: Biosensors for food from healthy crops and animals. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Richert-Pöggeler KR, Franzke K, Hipp K, Kleespies RG. Electron Microscopy Methods for Virus Diagnosis and High Resolution Analysis of Viruses. Front Microbiol 2018. [PMID: 30666247 DOI: 10.3389/fmicb.2018.03255.ecollection] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
The term "virosphere" describes both the space where viruses are found and the space they influence, and can extend to their impact on the environment, highlighting the complexity of the interactions involved. Studying the biology of viruses and the etiology of virus disease is crucial to the prevention of viral disease, efficient and reliable virus diagnosis, and virus control. Electron microscopy (EM) is an essential tool in the detection and analysis of virus replication. New EM methods and ongoing technical improvements offer a broad spectrum of applications, allowing in-depth investigation of viral impact on not only the host but also the environment. Indeed, using the most up-to-date electron cryomicroscopy methods, such investigations are now close to atomic resolution. In combination with bioinformatics, the transition from 2D imaging to 3D remodeling allows structural and functional analyses that extend and augment our knowledge of the astonishing diversity in virus structure and lifestyle. In combination with confocal laser scanning microscopy, EM enables live imaging of cells and tissues with high-resolution analysis. Here, we describe the pivotal role played by EM in the study of viruses, from structural analysis to the biological relevance of the viral metagenome (virome).
Collapse
Affiliation(s)
- Katja R Richert-Pöggeler
- Federal Research Center for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute, Braunschweig, Germany
| | - Kati Franzke
- Institute of Infectiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Regina G Kleespies
- Federal Research Centre for Cultivated Plants, Institute for Biological Control, Julius Kühn Institute, Darmstadt, Germany
| |
Collapse
|
49
|
Janowski AB, Krishnamurthy SR, Lim ES, Zhao G, Brenchley JM, Barouch DH, Thakwalakwa C, Manary MJ, Holtz LR, Wang D. Statoviruses, A novel taxon of RNA viruses present in the gastrointestinal tracts of diverse mammals. Virology 2017; 504:36-44. [PMID: 28152382 PMCID: PMC5515247 DOI: 10.1016/j.virol.2017.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 01/21/2023]
Abstract
Next-generation sequencing has expanded our understanding of the viral populations that constitute the mammalian virome. We describe a novel taxon of viruses named Statoviruses, for Stool associated Tombus-like viruses, present in multiple metagenomic datasets. These viruses define a novel clade that is phylogenetically related to the RNA virus families Tombusviridae and Flaviviridae. Five distinct statovirus types were identified in human, macaque, mouse, and cow gastrointestinal tract samples. The prototype genome, statovirus A, was frequently identified in macaque stool samples from multiple geographically distinct cohorts. Another genome, statovirus C1, was discovered in a stool sample from a human child with fever, cough, and rash. Further experimental data will clarify whether these viruses are infectious to mammals or if they originate from another source present in the mammalian gastrointestinal tract.
Collapse
Affiliation(s)
- Andrew B Janowski
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Siddharth R Krishnamurthy
- Department of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Efrem S Lim
- Department of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Guoyan Zhao
- Department of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Jason M Brenchley
- Lab of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center, Boston, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Boston, MA, USA
| | - Chrissie Thakwalakwa
- Department of Community Health, College of Medicine, University of Malawi, Blantyre 3, Malawi
| | - Mark J Manary
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Lori R Holtz
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - David Wang
- Department of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
50
|
Hadidi A, Flores R, Candresse T, Barba M. Next-Generation Sequencing and Genome Editing in Plant Virology. Front Microbiol 2016; 7:1325. [PMID: 27617007 PMCID: PMC4999435 DOI: 10.3389/fmicb.2016.01325] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/11/2016] [Indexed: 01/18/2023] Open
Abstract
Next-generation sequencing (NGS) has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA, or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21-24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant virology including, but not limited to, discovery of novel viruses and viroids as well as detection and identification of those pathogens already known, analysis of genome diversity and evolution, and study of pathogen epidemiology. The genome engineering editing method, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been successfully used recently to engineer resistance to DNA geminiviruses (family, Geminiviridae) by targeting different viral genome sequences in infected Nicotiana benthamiana or Arabidopsis plants. The DNA viruses targeted include tomato yellow leaf curl virus and merremia mosaic virus (begomovirus); beet curly top virus and beet severe curly top virus (curtovirus); and bean yellow dwarf virus (mastrevirus). The technique has also been used against the RNA viruses zucchini yellow mosaic virus, papaya ringspot virus and turnip mosaic virus (potyvirus) and cucumber vein yellowing virus (ipomovirus, family, Potyviridae) by targeting the translation initiation genes eIF4E in cucumber or Arabidopsis plants. From these recent advances of major importance, it is expected that NGS and CRISPR-Cas technologies will play a significant role in the very near future in advancing the field of plant virology and connecting it with other related fields of biology.
Collapse
Affiliation(s)
- Ahmed Hadidi
- United States Department of Agriculture – Agricultural Research ServiceBeltsville, MD, USA
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia–Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, Institut National de la Recherche Agronomique, Université de BordeauxBordeaux, France
| | - Marina Barba
- Consiglio per la Ricerca in Agricoltura e l’analisi dell’Economia Agraria, Centro di Ricerca per la Patologia VegetaleRome, Italy
| |
Collapse
|