1
|
van Tol S, Fletcher P, Feldmann F, Mukesh RK, Port JR, Gallogly S, Schulz JE, Rhoderick JF, Makinson R, Carmody A, Myers L, Lovaglio J, Smith BJ, Okumura A, Shaia C, Saturday G, Marzi A, Lambe T, Munster VJ, van Doremalen N. A Bivalent Adenovirus-Vectored Vaccine Induces a Robust Humoral Response, but Does Not Protect Cynomolgus Macaques Against a Lethal Challenge With Sudan Virus. J Infect Dis 2024; 230:1083-1092. [PMID: 38487996 PMCID: PMC11566226 DOI: 10.1093/infdis/jiae056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/30/2024] [Indexed: 11/16/2024] Open
Abstract
The most recent Sudan virus (SUDV) outbreak in Uganda was first detected in September 2022 and resulted in 164 laboratory-confirmed cases and 77 deaths. There are no approved vaccines against SUDV. Here, we investigated the protective efficacy of ChAdOx1-biEBOV in cynomolgus macaques using a prime or a prime-boost regimen. ChAdOx1-biEBOV is a replication-deficient simian adenovirus vector encoding SUDV and Ebola virus (EBOV) glycoproteins (GPs). Intramuscular vaccination induced SUDV and EBOV GP-specific immunoglobulin G responses and neutralizing antibodies. Upon challenge with SUDV, vaccinated animals showed signs of disease like those observed in control animals, and no differences in survival outcomes were measured among all 3 groups. Viral load in blood samples and in tissue samples obtained after necropsy were not significantly different between groups. Overall, this study highlights the importance of evaluating vaccines in multiple animal models and demonstrates the importance of understanding protective efficacy in both animal models and human hosts.
Collapse
MESH Headings
- Animals
- Macaca fascicularis
- Hemorrhagic Fever, Ebola/prevention & control
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/virology
- Ebolavirus/immunology
- Ebolavirus/genetics
- Antibodies, Viral/blood
- Genetic Vectors
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Immunity, Humoral
- Ebola Vaccines/immunology
- Ebola Vaccines/administration & dosage
- Immunoglobulin G/blood
- Disease Models, Animal
- Viral Load
- Adenoviruses, Simian/immunology
- Adenoviruses, Simian/genetics
- Vaccination
- Adenoviridae/genetics
- Adenoviridae/immunology
Collapse
Affiliation(s)
| | | | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | | | | | | | | | | | - Rebecca Makinson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, United Kingdom
| | - Aaron Carmody
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Lara Myers
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Brian J Smith
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | | | - Carl Shaia
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | | | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, United Kingdom
| | | | | |
Collapse
|
2
|
Berger S, Zeyn Y, Wagner E, Bros M. New insights for the development of efficient DNA vaccines. Microb Biotechnol 2024; 17:e70053. [PMID: 39545748 PMCID: PMC11565620 DOI: 10.1111/1751-7915.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Despite the great potential of DNA vaccines for a broad range of applications, ranging from prevention of infections, over treatment of autoimmune and allergic diseases to cancer immunotherapies, the implementation of such therapies for clinical treatment is far behind the expectations up to now. The main reason is the poor immunogenicity of DNA vaccines in humans. Consequently, the improvement of the performance of DNA vaccines in vivo is required. This mini-review provides an overview of the current state of DNA vaccines and the various strategies to enhance the immunogenic potential of DNA vaccines, including (i) the optimization of the DNA construct itself regarding size, nuclear transfer and transcriptional regulation; (ii) the use of appropriate adjuvants; and (iii) improved delivery, for example, by careful choice of the administration route, physical methods such as electroporation and nanomaterials that may allow cell type-specific targeting. Moreover, combining nanoformulated DNA vaccines with other immunotherapies and prime-boost strategies may help to enhance success of treatment.
Collapse
Affiliation(s)
- Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScienceLudwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Yanira Zeyn
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg University (JGU) MainzMainzGermany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScienceLudwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Matthias Bros
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg University (JGU) MainzMainzGermany
| |
Collapse
|
3
|
Preetam S, Ghosh A, Mishra R, Pandey A, Roy DS, Rustagi S, Malik S. Electrical stimulation: a novel therapeutic strategy to heal biological wounds. RSC Adv 2024; 14:32142-32173. [PMID: 39399261 PMCID: PMC11467653 DOI: 10.1039/d4ra04258a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Electrical stimulation (ES) has emerged as a powerful therapeutic modality for enhancing biological wound healing. This non-invasive technique utilizes low-level electrical currents to promote tissue regeneration and expedite the wound healing process. ES has been shown to accelerate wound closure, reduce inflammation, enhance angiogenesis, and modulate cell migration and proliferation through various mechanisms. The principle goal of wound management is the rapid recovery of the anatomical continuity of the skin, to prevent infections from the external environment and maintain homeostasis conditions inside. ES at the wound site is a compelling strategy for skin wound repair. Several ES applications are described in medical literature like AC, DC, and PC to improve cutaneous perfusion and accelerate wound healing. This review aimed to evaluate the primary factors and provides an overview of the potential benefits and mechanisms of ES in wound healing, and its ability to stimulate cellular responses, promote tissue regeneration, and improve overall healing outcomes. We also shed light on the application of ES which holds excellent promise as an adjunct therapy for various types of wounds, including chronic wounds, diabetic ulcers, and surgical incisions.
Collapse
Affiliation(s)
- Subham Preetam
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Arka Ghosh
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology Bhubaneswar 751003 Odisha India
| | - Richa Mishra
- Department of Computer Engineering, Parul Institute of Engineering and Technology (PIET), Parul University Ta. Waghodia Vadodara Gujarat 391760 India
| | - Arunima Pandey
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology Bhubaneswar 751003 Odisha India
| | - Debanjan Singha Roy
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology Bhubaneswar 751003 Odisha India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University 22 Dehradun Uttarakhand India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand Ranchi Jharkhand 834001 India
- Department of Biotechnology, University Center for Research & Development (UCRD) Chandigarh University Ludhiana Highway Mohali 140413 Punjab India
| |
Collapse
|
4
|
Zhang HQ, Zhang YN, Deng CL, Zhu QX, Zhang ZR, Li XD, Yuan ZM, Zhang B. Rational design of self-amplifying virus-like vesicles with Ebola virus glycoprotein as vaccines. Mol Ther 2024; 32:3695-3711. [PMID: 39217415 PMCID: PMC11489537 DOI: 10.1016/j.ymthe.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/13/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
As emerging and re-emerging pathogens, filoviruses, especially Ebola virus (EBOV), pose a great threat to public health and require sustained attention and ongoing surveillance. More vaccines and antiviral drugs are imperative to be developed and stockpiled to respond to unpredictable outbreaks. Virus-like vesicles, generated by alphavirus replicons expressing homogeneous or heterogeneous glycoproteins (GPs), have demonstrated the capacity of self-propagation and shown great potential in vaccine development. Here, we describe a novel class of EBOV-like vesicles (eVLVs) incorporating both EBOV GP and VP40. The eVLVs exhibited similar antigenicity as EBOV. In murine models, eVLVs were highly attenuated and elicited robust GP-specific antibodies with neutralizing activities. Importantly, a single dose of eVLVs conferred complete protection in a surrogate EBOV lethal mouse model. Furthermore, our VLVs strategy was also successfully applied to Marburg virus (MARV), the representative member of the genus Marburgvirus. Taken together, our findings indicate the feasibility of an alphavirus-derived VLVs strategy in combating infection of filoviruses represented by EBOV and MARV, which provides further evidence of the potential of this platform for universal live-attenuated vaccine development.
Collapse
Affiliation(s)
- Hong-Qing Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Nan Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430062, China; Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Cheng-Lin Deng
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430062, China
| | - Qin-Xuan Zhu
- Hunan Normal University, School of Medicine, Changsha 410081, China
| | - Zhe-Rui Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430062, China
| | - Xiao-Dan Li
- Hunan Normal University, School of Medicine, Changsha 410081, China
| | - Zhi-Ming Yuan
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China; Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Bo Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China; Hubei Jiangxia Laboratory, Wuhan 430200, China.
| |
Collapse
|
5
|
Adriaensen W, Oostvogels S, Levy Y, Leigh B, Kavunga-Membo H, Watson-Jones D. Urgent considerations for booster vaccination strategies against Ebola virus disease. THE LANCET. INFECTIOUS DISEASES 2024; 24:e647-e653. [PMID: 38734010 DOI: 10.1016/s1473-3099(24)00210-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 05/13/2024]
Abstract
With two endorsed and prophylactic vaccines against Zaire ebolavirus (referred to hereafter as EBOV), the number of individuals vaccinated against EBOV worldwide is estimated to range between 500 000 and 1 000 000 individuals, increasing with every renewed EBOV threat and vaccination campaign. Therefore, re-exposure of previously vaccinated health-care workers, and possibly community members, could become more frequent. In the absence of long-term data on vaccine efficacy and duration of protection, we urgently need to understand revaccination strategies that could maximise the level of protection. In this Personal View, we highlight the scarcity of available evidence to guide revaccination recommendations for the accumulating groups of previously vaccinated communities or front-line health-care workers that could be redeployed or re-exposed in the next EBOV outbreak(s). This evidence base is crucial to identify optimal target populations and the frequency of booster doses, and guide vaccine interchangeability (especially in settings with limited or unpredictable vaccine supplies), while preventing vaccine mistrust, equity concerns, and exclusion of vulnerable populations. We discuss five priority gaps (to whom, when, and how frequently, to provide booster doses; long-term correlates and thresholds of protection; the effect of vector-directed immunity and viral variant protection; comparative research in mix-and-match schedules; and implementation concerns) that should be urgently tackled to adapt the initial EBOV prophylactic vaccination strategies considering potential booster dose vaccinations.
Collapse
Affiliation(s)
- Wim Adriaensen
- Clinical Immunology Unit, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
| | - Selien Oostvogels
- Clinical Immunology Unit, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Yves Levy
- Vaccine Research Institute, INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Bailah Leigh
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Hugo Kavunga-Membo
- Rodolphe Merieux Laboratory INRB-Goma, Goma, Democratic Republic of the Congo; University of Goma, Goma, Democratic Republic of the Congo
| | - Deborah Watson-Jones
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK; Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| |
Collapse
|
6
|
Kalkan-Yazıcı M, Karaaslan E, Güler-Çetin NS, Doymaz MZ. Cellular immunity to nucleoproteins (NP) of Crimean-Congo hemorrhagic fever virus (CCHFV) and Hazara Virus (HAZV). Med Microbiol Immunol 2024; 213:20. [PMID: 39320473 DOI: 10.1007/s00430-024-00802-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024]
Abstract
Crimean-Congo Hemorrhagic Fever Virus (CCHFV) is a globally significant vector-borne pathogen with no internationally-licensed preventative and therapeutic interventions. Hazara virus (HAZV), on the other hand, a related Orthonairovirus, has not been reported as a human pathogen. HAZV has been proposed as a surrogate model for studying CCHFV, bisosafety level 4 (BSL-4) agent. Previously, we investigated the humoral immune responses between NPs of these viruses and in this study, we extended the scrutiny to cellular immune responses elicited by NPs of CCHFV and HAZV. Here, mice were immunized with recombinant CCHFV NP and HAZV NP to evaluate the correlates of cell-mediated immunity (CMI). Delayed-type hypersensitivity (DTH) responses were assessed by challenging immunized mice with CCHFV-rNP or HAZV-rNP on the footpad and lymphocyte proliferation assays (LPAs) were performed by stimulating splenocytes in vitro with CCHFV-rNP or HAZV-rNP to compare cellular immune responses. In all test groups, strong DTH and LPA responses were detected against homologous and heterologous challenging antigens. To assess the cytokine response, an RT-qPCR -specific for cytokine mRNAs was utilized. Interestingly, CCHFV NP stimulated groups exhibited a significantly elevated mRNA level of interleukin 17 A (IL-17) compared to HAZV NP, indicating a notable difference in immune responses. This study presents comparison between CMI elicited by NPs of CCHFV and HAZV and contributes to the understanding of a highly pathogenic virus, particularly in the context of the declaration of CCHFV by World Health Organization's (WHO) as a major viral threat to the world.
Collapse
Affiliation(s)
- Merve Kalkan-Yazıcı
- Department of Medical Microbiology, Medical School, Beykoz Institute of Life Sciences & Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
- Current Address: Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Elif Karaaslan
- Department of Medical Microbiology, Medical School, Beykoz Institute of Life Sciences & Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| | - Nesibe Selma Güler-Çetin
- Department of Medical Microbiology, Medical School, Beykoz Institute of Life Sciences & Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
- Current Address: Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Mehmet Z Doymaz
- Department of Medical Microbiology, Medical School, Beykoz Institute of Life Sciences & Biotechnology, Bezmialem Vakif University, Istanbul, Turkey.
- Current Address: Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
7
|
Jogi HR, Smaraki N, Rajak KK, Yadav AK, Bhatt M, Einstien C, Revathi A, Thakur R, Kamothi DJ, Dedeepya PVSS, Savsani HH. Revolutionizing Veterinary Health with Viral Vector-Based Vaccines. Indian J Microbiol 2024; 64:867-878. [PMID: 39282171 PMCID: PMC11399537 DOI: 10.1007/s12088-024-01341-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/13/2024] [Indexed: 09/18/2024] Open
Abstract
Vaccines signify one of the economical and reasonable means to prevent and eradicate the important infectious diseases. Conventional vaccines like live attenuated and inactivated vaccines comprise of whole pathogen either in attenuated or killed form. While, new generation vaccines have been designed to elicit immune response by genetically modifying only the nucleic acid portion of that pathogen. These new generation therapeutics include mRNA vaccines, DNA plasmid vaccines, chimeric vaccines and recombinant viral vector-based vaccines. Nucleic acid based vaccines use genetic material itself thus, they are highly stable and potent in nature to induce long-lasting immune response. Amongst these novel vaccine platforms, viral vector-based vaccines is one such emerging field which has proven to be extremely effective and potent. Nowadays, veterinary medicine has also accepted this innovative vectored vaccine platform to develop an effective control strategy against certain important viral diseases of animals. Viral vector-based vaccine uses various DNA and RNA viruses of human or animal origin to carry an immunogenic transgene of target pathogen. These vaccines enhance both humoral and cell mediated immune response without use of any accessory immune-stimulants. Till today, several viruses have been modified to be characterized as vaccine vectors. Currently, large number of research programs are going on to develop vectored vaccines and novel viral vector for veterinary use. In the present review, different kinds of viral vectored vaccines having veterinary importance have been discussed.
Collapse
Affiliation(s)
- Harsh Rajeshbhai Jogi
- Division of Biological Products, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Nabaneeta Smaraki
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Kaushal Kishor Rajak
- Division of Biological Products, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Ajay Kumar Yadav
- Division of Biological Products, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Mukesh Bhatt
- CADRAD, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Chris Einstien
- Division of Biological Products, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Annepu Revathi
- Division of Biological Products, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Ravi Thakur
- Division of Biological Products, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Dhaval J Kamothi
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - P V S S Dedeepya
- Division of Biological Products, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - H H Savsani
- Veterinary College, Kamdhenu University, Junagadh, Gujarat 362001 India
| |
Collapse
|
8
|
Mahmoodi S, Amirzakaria JZ, Ghasemian A. A novel multi-epitope peptide vaccine targeting immunogenic antigens of Ebola and monkeypox viruses with potential of immune responses provocation in silico. Biotechnol Appl Biochem 2024. [PMID: 39128888 DOI: 10.1002/bab.2646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024]
Abstract
The emergence or reemergence of monkeypox (Mpox) and Ebola virus (EBOV) agents causing zoonotic diseases remains a huge threat to human health. Our study aimed at designing a multi-epitope vaccine (MEV) candidate to target both the Mpox and EBOV agents using immunoinformatics tools. Viral protein sequences were retrieved, and potential nonallergenic, nontoxic, and antigenic epitopes were obtained. Next, cytotoxic and helper T-cell (CTL and HTL, respectively) and B-cell (BCL) epitopes were predicted, and those potential epitopes were fused utilizing proper linkers. The in silico cloning and expression processes were implemented using Escherichia coli K12. The immune responses were prognosticated using the C-ImmSim server. The MEV construct (29.53 kDa) included four BCL, two CTL, and four HTL epitopes and adjuvant. The MEV traits were pertinent in terms of antigenicity, non-allergenicity, nontoxicity, physicochemical characters, and stability. The MEV candidate was also highly expressed in E. coli K12. The strong affinity of MEV-TLR3 was confirmed using molecular docking and molecular dynamics simulation analyses. Immune simulation analyses unraveled durable activation and responses of cellular and humoral arms alongside innate immune responses. The designed MEV candidate demonstrated appropriate traits and was promising in the prediction of immune responses against both Mpox and EBOV agents. Further experimental assessments of the MEV are required to verify its efficacy.
Collapse
Affiliation(s)
- Shirin Mahmoodi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Javad Zamani Amirzakaria
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
9
|
Khadka RB, Karki K, Pandey J, Gyawali R, Chaudhary GP. Strengthening global health resilience: Marburg virus-like particle vaccines and the One Health approach. SCIENCE IN ONE HEALTH 2024; 3:100076. [PMID: 39309209 PMCID: PMC11415973 DOI: 10.1016/j.soh.2024.100076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024]
Abstract
The Marburg virus (MARV), belonging to the Filoviridae family, poses a significant global health threat, emphasizing the urgency to develop Marburg virus-like particle (VLP) vaccines for outbreak mitigation. The virus's menacing traits accentuate the need for such vaccines, which can be addressed by VLPs that mimic its structure safely, potentially overcoming past limitations. Early Marburg vaccine endeavors and their challenges are examined in the historical perspectives section, followed by an exploration of VLPs as transformative tools, capable of eliciting immune responses without conventional risks. Noteworthy milestones and achievements in Marburg VLP vaccine development, seen through preclinical and clinical trials, indicate potential cross-protection. Ongoing challenges, encompassing durability, strain diversity, and equitable distribution, are addressed, with proposed innovations like novel adjuvant, mRNA technology, and structure-based design poised to enhance Marburg VLP vaccines. This review highlights the transformative potential of Marburg VLPs in countering the virus, showcasing global collaboration, regulatory roles, and health equity for a safer future through the harmonious interplay of science, regulation, and global efforts.
Collapse
Affiliation(s)
- Ram Bahadur Khadka
- Department of Laboratory Science, Crimson College of Technology, Affiliated with Pokhara University, Butwal-11, Devinagar, Rupandehi 32907, Nepal
| | - Khimdhoj Karki
- Department of Laboratory Science, Crimson College of Technology, Affiliated with Pokhara University, Butwal-11, Devinagar, Rupandehi 32907, Nepal
| | - Jitendra Pandey
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Rabin Gyawali
- Padmodaya Campus, Affiliated to Tribhuwan University, Dang 21906, Nepal
| | - Gautam Prasad Chaudhary
- Department of Pharmacy, Crimson College of Technology, Affiliated with Pokhara University, Butwal-11, Devinagar, Rupandehi 32907, Nepal
| |
Collapse
|
10
|
Park A, Lee JY. Adenoviral Vector System: A Comprehensive Overview of Constructions, Therapeutic Applications and Host Responses. J Microbiol 2024; 62:491-509. [PMID: 39037484 DOI: 10.1007/s12275-024-00159-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
Adenoviral vectors are crucial for gene therapy and vaccine development, offering a platform for gene delivery into host cells. Since the discovery of adenoviruses, first-generation vectors with limited capacity have evolved to third-generation vectors flacking viral coding sequences, balancing safety and gene-carrying capacity. The applications of adenoviral vectors for gene therapy and anti-viral treatments have expanded through the use of in vitro ligation and homologous recombination, along with gene editing advancements such as CRISPR-Cas9. Current research aims to maintain the efficacy and safety of adenoviral vectors by addressing challenges such as pre-existing immunity against adenoviral vectors and developing new adenoviral vectors from rare adenovirus types and non-human species. In summary, adenoviral vectors have great potential in gene therapy and vaccine development. Through continuous research and technological advancements, these vectors are expected to lead to the development of safer and more effective treatments.
Collapse
Affiliation(s)
- Anyeseu Park
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Jeong Yoon Lee
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea.
| |
Collapse
|
11
|
Preetam S. Nano revolution: pioneering the future of water reclamation with micro-/nano-robots. NANOSCALE ADVANCES 2024; 6:2569-2581. [PMID: 38752135 PMCID: PMC11093266 DOI: 10.1039/d3na01106b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/05/2024] [Indexed: 05/18/2024]
Abstract
Earth's freshwater reserves are alarmingly limited, with less than 1% readily available. Factors such as industrialisation, population expansion, and climate change are compounding the scarcity of clean water. In this context, self-driven, programmable micro- and nano-scale synthetic robots offer a potential solution for enhancing water monitoring and remediation. With the aid of these innovative robots, diffusion-limited reactions can be overcome, allowing for active engagement with target pollutants, such as heavy metals, dyes, nano- and micro-plastics, oils, pathogenic microorganisms, and persistent organic pollutants. Herein, we introduced and reviewed recent influential and advanced studies on micro-/nano-robots (MNR) carried out over the past decade. Typical works are categorized by propulsion modes, analyzing their advantages and drawbacks in detail and looking at specific applications. Moreover, this review provides a concise overview of the contemporary advancements and applications of micro-/nano-robots in water-cleaning applications.
Collapse
Affiliation(s)
- Subham Preetam
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology Daegu-42988 South Korea
- Institute of Advanced Materials, IAAM Gammalkilsvägen 18 Ulrika 59053 Sweden
| |
Collapse
|
12
|
Zhang Z, Yang W, Chen Z, Chi H, Wu S, Zheng W, Jin R, Wang B, Wang Y, Huo N, Zhang J, Song X, Xu L, Zhang J, Hou L, Chen W. A causal multiomics study discriminates the early immune features of Ad5-vectored Ebola vaccine recipients. Innovation (N Y) 2024; 5:100603. [PMID: 38745762 PMCID: PMC11092886 DOI: 10.1016/j.xinn.2024.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/28/2024] [Indexed: 05/16/2024] Open
Abstract
The vaccine-induced innate immune response is essential for the generation of an antibody response. To date, how Ad5-vectored vaccines are influenced by preexisting anti-Ad5 antibodies during activation of the early immune response remains unclear. Here, we investigated the specific alterations in GP1,2-specific IgG-related elements of the early immune response at the genetic, molecular, and cellular levels on days 0, 1, 3, and 7 after Ad5-EBOV vaccination. In a causal multiomics analysis, distinct early immune responses associated with GP1,2-specific IgG were observed in Ad5-EBOV recipients with a low level of preexisting anti-Ad5 antibodies. This study revealed the correlates of the Ad5-EBOV-induced IgG response and provided mechanistic evidence for overcoming preexisting Ad5 immunity during the administration of Ad5-vectored vaccines.
Collapse
Affiliation(s)
- Zhe Zhang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wenjing Yang
- Department of Intelligent Data Science, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Zhengshan Chen
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Haoang Chi
- Department of Intelligent Data Science, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
- Intelligent Game and Decision Lab, Academy of Military Science, Beijing 100091, China
| | - Shipo Wu
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wanru Zheng
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Ruochun Jin
- Department of Intelligent Data Science, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Busen Wang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yudong Wang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Nan Huo
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jinlong Zhang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaohong Song
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Liyang Xu
- Department of Intelligent Data Science, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
| | - Jun Zhang
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Lihua Hou
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wei Chen
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
13
|
Stephens MT, Juniastuti, Sulistiawati, Dossen PC. The potential risk components and prevention measures of the Ebola virus disease outbreak in Liberia: An in-depth interview with the health workers and stakeholders. BELITUNG NURSING JOURNAL 2024; 10:67-77. [PMID: 38425680 PMCID: PMC10900057 DOI: 10.33546/bnj.3069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/01/2023] [Accepted: 01/13/2024] [Indexed: 03/02/2024] Open
Abstract
Background The Ebola virus, a highly infectious and deadly pathogen, has posed a significant public health threat in West Africa for several decades. Liberia is one of the most severely affected countries. Healthcare personnel, including nurses, are on the front lines of patient care, and their perspectives are invaluable in understanding the challenges that arise during outbreaks, especially in implementing prevention measures. Objective This study aimed to explore the potential risk components and prevention measures of the Ebola virus disease (EVD). Methods This study used an exploratory descriptive qualitative design. Five stakeholders, ten doctors and five nurses who had suffered from EVD during the outbreak in Liberia participated in semi-structured interviews to provide their experience and comprehensive perspectives on EVD. Data were collected from February 2022-August 2023. NVivo 12 plus was used for inductive thematic analysis. Results Six themes and several subthemes emerged: 1) transmission modes (body contact, body fluid, sexual intercourse, traditional burial), 2) funeral attendance (traditional practices and crowded gatherings), 3) community-led prevention (promoting good hygiene practices, increasing awareness, contact tracing, and surveillance), 4) Ebola virus vaccine (false sense of security, potential side effects, and limited data), 5) challenges in implementing prevention measures (inadequate health infrastructures, difficulty of tracing infected people, lack of resources, and cultural-social barriers), 6) Liberia's health systems (a weak, underfunded, fragile health infrastructure, lack of health facilities and shortage of health workers). Conclusion Several potential risk components contributing to the EVD outbreak should be a public concern. Strengthening the current healthcare system supported by local community and international aid providers (multidisciplinary teams) is needed to anticipate behavioral problems and to improve the efficacy of the prevention measures appropriate to the conditions in Liberia. Accordingly, the nurses' compliance with the recommended prevention practices is necessary.
Collapse
Affiliation(s)
- Moses Tende Stephens
- Master Program of Basic Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Health Science, United Methodist University, Monrovia, Liberia
| | - Juniastuti
- Department of Medical Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sulistiawati
- Department of Public Health and Prevention Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Peter Chilaque Dossen
- Department of Health Science Education, William V.S Tubman University, Maryland, Liberia
| |
Collapse
|
14
|
Ranjbaran H, Ehteshaminia Y, Nadernezhad M, Jalali SF, Jadidi-Niaragh F, Pagheh AS, Enderami SE, Kenari SA, Hassannia H. Comparison of neutralization potency across passive immunotherapy approaches as potential treatments for emerging infectious diseases. Heliyon 2024; 10:e23478. [PMID: 38226283 PMCID: PMC10788261 DOI: 10.1016/j.heliyon.2023.e23478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024] Open
Abstract
The use of passive immunotherapy, either as plasma or purified antibodies, has been recommended to treat the emerging infectious diseases (EIDs) in the absence of alternative therapeutic options. Here, we compare the neutralization potency of various passive immunotherapy approaches designed to provide the immediate neutralizing antibodies as potential EID treatments. To prepare human plasma and purified IgG, we screened and classified individuals into healthy, convalescent, and vaccinated groups against SARS-CoV-2 using qRT-PCR, anti-nucleocapsid, and anti-spike tests. Moreover, we prepared purified IgG from non-immunized and hyperimmunized rabbits against SARS-CoV-2 spike protein. Human and rabbit samples were used to evaluate the neutralization potency by sVNT. All vaccinated and convalescent human plasma and purified IgG groups, as well as purified IgG from hyperimmunized rabbits, had significantly greater levels of spike-specific antibodies than the control groups. Furthermore, when compared to the other groups, the purified IgG from hyperimmunized rabbits exhibited superior levels of neutralizing antibodies, with an IC50 value of 2.08 μg/ml. Additionally, our results indicated a statistically significant positive correlation between the neutralization IC50 value and the positive endpoint concentration of spike-specific antibodies. In conclusion, our study revealed that purified IgG from hyperimmunized animals has greater neutralization potency than other passive immunotherapy methods and may be the most suitable treatment of critically ill patients in EIDs.
Collapse
Affiliation(s)
- Hossein Ranjbaran
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Yahya Ehteshaminia
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Nadernezhad
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Farzaneh Jalali
- Department of Hematology, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Abdol Sattar Pagheh
- Infectious Diseases Research Center, Birjand University of Medical Science, Birjand, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abedian Kenari
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Hassannia
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
15
|
Martinez-Murillo PA, Huttner A, Lemeille S, Medaglini D, Ottenhoff THM, Harandi AM, Didierlaurent AM, Siegrist CA. Refined innate plasma signature after rVSVΔG-ZEBOV-GP immunization is shared among adult cohorts in Europe and North America. Front Immunol 2024; 14:1279003. [PMID: 38235127 PMCID: PMC10791923 DOI: 10.3389/fimmu.2023.1279003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024] Open
Abstract
Background During the last decade Ebola virus has caused several outbreaks in Africa. The recombinant vesicular stomatitis virus-vectored Zaire Ebola (rVSVΔG-ZEBOV-GP) vaccine has proved safe and immunogenic but is reactogenic. We previously identified the first innate plasma signature response after vaccination in Geneva as composed of five monocyte-related biomarkers peaking at day 1 post-immunization that correlates with adverse events, biological outcomes (haematological changes and viremia) and antibody titers. In this follow-up study, we sought to identify additional biomarkers in the same Geneva cohort and validate those identified markers in a US cohort. Methods Additional biomarkers were identified using multiplexed protein biomarker platform O-link and confirmed by Luminex. Principal component analysis (PCA) evaluated if these markers could explain a higher variability of the vaccine response (and thereby refined the initial signature). Multivariable and linear regression models evaluated the correlations of the main components with adverse events, biological outcomes, and antibody titers. External validation of the refined signature was conducted in a second cohort of US vaccinees (n=142). Results Eleven additional biomarkers peaked at day 1 post-immunization: MCP2, MCP3, MCP4, CXCL10, OSM, CX3CL1, MCSF, CXCL11, TRAIL, RANKL and IL15. PCA analysis retained three principal components (PC) that accounted for 79% of the vaccine response variability. PC1 and PC2 were very robust and had different biomarkers that contributed to their variability. PC1 better discriminated different doses, better defined the risk of fever and myalgia, while PC2 better defined the risk of headache. We also found new biomarkers that correlated with reactogenicity, including transient arthritis (MCP-2, CXCL10, CXCL11, CX3CL1, MCSF, IL-15, OSM). Several innate biomarkers are associated with antibody levels one and six months after vaccination. Refined PC1 correlated strongly in both data sets (Geneva: r = 0.97, P < 0.001; US: r = 0.99, P< 0.001). Conclusion Eleven additional biomarkers refined the previously found 5-biomarker Geneva signature. The refined signature better discriminated between different doses, was strongly associated with the risk of adverse events and with antibody responses and was validated in a separate cohort.
Collapse
Affiliation(s)
- Paola Andrea Martinez-Murillo
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Angela Huttner
- Center for Vaccinology, Geneva University Hospitals, Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for Clinical Research, Geneva University Hospitals, Geneva, Switzerland
| | - Sylvain Lemeille
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Ali M. Harandi
- Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Vaccine Evaluation Centre, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Arnaud M. Didierlaurent
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for Vaccinology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
16
|
Izudi J, Bajunirwe F. Case fatality rate for Ebola disease, 1976-2022: A meta-analysis of global data. J Infect Public Health 2024; 17:25-34. [PMID: 37992431 DOI: 10.1016/j.jiph.2023.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/07/2023] [Accepted: 10/22/2023] [Indexed: 11/24/2023] Open
Abstract
An up-to-date pooled case fatality rate (CFR) for Ebola disease (EBOD) at the global level is lacking. We abstracted EBOD data from 1976 to 2022 for 16 countries and 42 outbreaks to conduct a meta-analysis. The pooled CFR was 60.6% (95% confidence interval (CI) 51.6-69.4; 95% prediction interval 12.9-99.1). Of the four ebolaviruses, Zaire virus was the most lethal (CFR = 66.6%, 95% CI 55.9-76.8), then Sudan virus (CFR=48.5%, 95% CI 38.6-58.4), Bundibugyo virus (CFR=32.8%, 95% CI 25.8-40.2) and Tai Forest virus (CFR= 0%, 95% CI 0.0-97.5). The CFR in sub-Saharan Africa was 61.3% (95% CI 52.8-69.6) and for the rest of the world was 24.5% (95% CI 0.0-67.9%). CFR declined over time but stabilized at 61.0% (95% CI, 52.0-69.0) between 2014 and 2022. Overall, the EBOD CFR is still high and heterogeneous. Accordingly, early diagnosis, early treatment if available, and supportive care are important to prevent significant morbidity and mortality.
Collapse
Affiliation(s)
- Jonathan Izudi
- Department of Community Health, Mbarara University of Science and Technology, Mbarara, Uganda; Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda.
| | - Francis Bajunirwe
- Department of Community Health, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
17
|
Mujahid U, Ahmad M, Mujahid A, Narayan E, Rehman SU, Iqbal HMN, Ahmed I. Recent outbreak of Marburg virus; a global health concern and future perspective. Eur J Clin Microbiol Infect Dis 2024; 43:209-211. [PMID: 37930494 DOI: 10.1007/s10096-023-04692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Affiliation(s)
- Usama Mujahid
- Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, 66000, Pakistan
| | - Muhammad Ahmad
- Faculty of Veterinary Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, 67210, Pakistan
- Institute of Physiology and Pharmacology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Attiqa Mujahid
- Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, 66000, Pakistan
| | - Edward Narayan
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Saif Ur Rehman
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| | - Ishtiaq Ahmed
- La Trobe Rural Health School, Albury-Wodonga Campus, La Trobe University, Victoria, 3690, Australia.
| |
Collapse
|
18
|
Izudi J, Komakech A, Morukileng J, Bajunirwe F. Ebola incidence and mortality before and during a lockdown: The 2022 epidemic in Uganda. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0002702. [PMID: 38133997 PMCID: PMC10745136 DOI: 10.1371/journal.pgph.0002702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023]
Abstract
On September 20, 2022, an Ebola Disease (EBOD) outbreak was declared in Mubende district, Central Uganda. Following a rapid surge in the number of cases and mortality, the Government of Uganda imposed a lockdown in the two most affected districts, Mubende and Kassanda. We describe the trends in EBOD incidence and mortality nationally and in the two districts before and during the lockdown and the lessons learned during the epidemic response. We retrieved data from the Ministry of Health situation reports from September 20, 2022, when the EBOD outbreak was declared until November 26, 2022, when the lockdown ended. We graphed trends in EBOD morbidity and mortality during a 3-week and 6-week lockdown, computed the EBOD case fatality rate, and summarized the major lessons learned during the epidemic response. We found case fatality rate during the pre-lockdown, 3-week lockdown, and 6-week lockdown period was 37.9% (22/58), 39.3% (53/135), and 38.7% (55/142), respectively. In the early weeks of the lockdown, EBOD incidence and mortality increased nationally and in Kassanda district while Mubende district registered a decline in incidence and stagnation in mortality. With the extension of the lockdown to six weeks, the EBOD incidence and mortality during the 4-6-week lockdown declined compared to the pre-lockdown period. In conclusion, the EBOD incidence and mortality remained higher in the early weeks of the lockdown than during the pre-lockdown period nationally and in one of the two districts. With extended lockdown, incidence and mortality dropped in the 4-6-week period than the pre-lockdown period. Therefore, reliance on known public health measures to control an EBOD outbreak is important.
Collapse
Affiliation(s)
- Jonathan Izudi
- Department of Community Health, Mbarara University of Science and Technology, Mbarara, Uganda
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Allan Komakech
- Uganda National Institute of Public Health, Ministry of Health, Kampala, Uganda
- Institute of Public Health and Management, Clarke International University, Kampala, Uganda
| | - Job Morukileng
- Uganda National Institute of Public Health, Ministry of Health, Kampala, Uganda
| | - Francis Bajunirwe
- Department of Community Health, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
19
|
Schönborn L, Seck SE, Thiele T, Kaderali L, Hoffmann T, Hlinka A, Lindhoff-Last E, Völker U, Selleng K, Buoninfante A, Cavaleri M, Greinacher A. Long-term outcome in vaccine-induced immune thrombocytopenia and thrombosis. J Thromb Haemost 2023; 21:2519-2527. [PMID: 37394120 DOI: 10.1016/j.jtha.2023.06.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Rapid diagnosis and treatment has improved outcome of patients with vaccine-induced immune thrombocytopenia and thrombosis (VITT). However, after the acute episode, many questions on long-term management of VITT remained unanswered. OBJECTIVES To analyze, in patients with VITT, the long-term course of anti-platelet factor 4 (PF4) antibodies; clinical outcomes, including risk of recurrent thrombosis and/or thrombocytopenia; and the effects of new vaccinations. METHODS 71 patients with serologically confirmed VITT in Germany were enrolled into a prospective longitudinal study and followed for a mean of 79 weeks from March 2021 to January 2023. The course of anti-PF4 antibodies was analyzed by consecutive anti-PF4/heparin immunoglobulin G enzyme-linked immunosorbent assay and PF4-enhanced platelet activation assay. RESULTS Platelet-activating anti-PF4 antibodies became undetectable in 62 of 71 patients (87.3%; 95% CI, 77.6%-93.2%). In 6 patients (8.5%), platelet-activating anti-PF4 antibodies persisted for >18 months. Five of 71 patients (7.0%) showed recurrent episodes of thrombocytopenia and/or thrombosis; in 4 of them (80.0%), alternative explanations beside VITT were present. After further COVID-19 vaccination with a messenger RNA vaccine, no reactivation of platelet-activating anti-PF4 antibodies or new thrombosis was observed. No adverse events occurred in our patients subsequently vaccinated against influenza, tick-borne encephalitis, varicella, tetanus, diphtheria, pertussis, and polio. No new thrombosis occurred in the 24 patients (33.8%) who developed symptomatic SARS-CoV-2 infection following recovery from acute VITT. CONCLUSION Once the acute episode of VITT has passed, patients appear to be at low risk for recurrent thrombosis and/or thrombocytopenia.
Collapse
Affiliation(s)
- Linda Schönborn
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Sabrina E Seck
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Thiele
- Institute of Transfusion Medicine, University Medicine Rostock, Rostock, Germany
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Till Hoffmann
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Annalena Hlinka
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Edelgard Lindhoff-Last
- Cardioangiology Center Bethanien Hospital, CCB Coagulation Center and CCB Coagulation Research Center, Frankfurt, Hessen, Germany
| | - Uwe Völker
- Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Kathleen Selleng
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Alessandra Buoninfante
- Health Threats and Vaccines Strategy, European Medicines Agency, Amsterdam, The Netherlands
| | - Marco Cavaleri
- Health Threats and Vaccines Strategy, European Medicines Agency, Amsterdam, The Netherlands
| | - Andreas Greinacher
- Institute of Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
20
|
Hussein HA. Brief review on ebola virus disease and one health approach. Heliyon 2023; 9:e19036. [PMID: 37600424 PMCID: PMC10432691 DOI: 10.1016/j.heliyon.2023.e19036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023] Open
Abstract
Ebola virus disease (EVD) is a severe and highly fatal zoonotic disease caused by viruses in the family Filoviridae and genus Ebolavirus. The disease first appeared in Zaire near the Ebola River in 1976, now in the Democratic Republic of the Congo. Since then, several outbreaks have been reported in different parts of the world, mainly in Africa, leading to the identification of six distinct viral strains that cause disease in humans and other primates. Bats are assumed to be the main reservoir hosts of the virus, and the initial incidence of human epidemics invariably follows exposure to infected forest animals through contact or consumption of bush meat and body fluids of forest animals harboring the disease. Human-to-human transmission occurs when contaminated body fluids, utensils, and equipment come in contact with broken or abraded skin and mucous membranes. EVD is characterized by sudden onset of 'flu-like' symptoms (fever, myalgia, chills), vomiting and diarrhea, then disease rapidly evolves into a severe state with a rapid clinical decline which may lead potential hemorrhagic complications and multiple organ failure. Effective EVD prevention, detection, and response necessitate strong coordination across the animal, human, and environmental health sectors, as well as well-defined roles and responsibilities evidencing the significance of one health approach; the natural history, epidemiology, pathogenesis, and diagnostic procedures of the Ebola virus, as well as prevention and control efforts in light of one health approach, are discussed in this article.
Collapse
Affiliation(s)
- Hassan Abdi Hussein
- College of Veterinary Medicine, Department of One Health Tropical Infectious Disease, Jigjiga University, P.O. Box: 1020, Jigjiga, Ethiopia
| |
Collapse
|
21
|
Schaber KL, Kumar S, Lubwama B, Desai A, Majumder MS. An Epidemic Model for Multi-Intervention Outbreaks. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.27.23291973. [PMID: 37425878 PMCID: PMC10327283 DOI: 10.1101/2023.06.27.23291973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Modeling is an important tool to utilize at the beginning of an infectious disease outbreak, as it allows estimation of parameters - such as the basic reproduction number, R 0 -that can be used to postulate how the outbreak may continue to spread. However, there exist many challenges that need to be accounted for, such as an unknown first case date, retrospective reporting of 'probable' cases, changing dynamics between case count and death count trends, and the implementation of multiple control efforts and their delayed or diminished effects. Using the near-daily data provided from the recent outbreak of Sudan ebolavirus in Uganda as a case study, we create a model and present a framework aimed at overcoming these aforementioned challenges. The impact of each challenge is examined by comparing model estimates and fits throughout our framework. Indeed, we found that allowing for multiple fatality rates over the course of an outbreak generally resulted in better fitting models. On the other hand, not knowing the start date of an outbreak appeared to have large and non-uniform effects on parameter estimates, particularly at the beginning stages of an outbreak. While models that did not account for the decaying effect of interventions on transmission underestimated R 0 , all decay models run on the full dataset yielded precise R 0 estimates, demonstrating the robustness of R 0 as a measure of disease spread when examining data from the entire outbreak.
Collapse
Affiliation(s)
- Kathryn L. Schaber
- Boston Children’s Hospital, Boston, MA, US
- Harvard Medical School, Boston, MA, US
| | | | - Baker Lubwama
- School of Clinical Medicine, University of Cambridge, Cambridge, GB
| | - Angel Desai
- Department of Internal Medicine, Division of Infectious Diseases, University of California-Davis Health Medical Center, Sacramento, CA, US
| | - Maimuna S. Majumder
- Boston Children’s Hospital, Boston, MA, US
- Harvard Medical School, Boston, MA, US
| |
Collapse
|