1
|
Elliott S, Olufemi OT, Daly JM. Systematic Review of Equine Influenza A Virus Vaccine Studies and Meta-Analysis of Vaccine Efficacy. Viruses 2023; 15:2337. [PMID: 38140577 PMCID: PMC10747572 DOI: 10.3390/v15122337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Vaccines against equine influenza have been available since the late 1960s, but outbreaks continue to occur periodically, affecting both vaccinated and unvaccinated animals. The aim of this study was to systematically evaluate the efficacy of vaccines against influenza A virus in horses (equine IAV). For this, PubMed, CAB abstracts, and Web of Science were searched for controlled trials of equine IAV vaccines published up to December 2020. Forty-three articles reporting equine IAV vaccination and challenge studies in previously naïve equids using an appropriate comparison group were included in a qualitative analysis of vaccine efficacy. A value for vaccine efficacy (VE) was calculated as the percentage reduction in nasopharyngeal virus shedding detected by virus isolation in embryonated hens' eggs from 38 articles. Among 21 studies involving commercial vaccines, the mean VE was 50.03% (95% CI: 23.35-76.71%), ranging from 0 to 100%. Among 17 studies reporting the use of experimental vaccines, the mean VE was 40.37% (95% CI: 19.64-62.44), and the range was again 0-100%. Overall, complete protection from virus shedding was achieved in five studies. In conclusion, although commercially available vaccines can, in some circumstances, offer complete protection from infection, the requirement for frequent vaccination in the field to limit virus shedding and hence transmission is apparent. Although most studies were conducted by a few centres, a lack of consistent study design made comparisons difficult.
Collapse
Affiliation(s)
| | | | - Janet M. Daly
- One Virology, Wolfson Centre for Global Virus Research, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK
| |
Collapse
|
2
|
Marr CM. A pyramid needs a foundation: Exploding some myths about what EVJ's editors are looking for from authors? Equine Vet J 2023; 55:931-937. [PMID: 37827177 DOI: 10.1111/evj.14006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023]
|
3
|
Whitlock F, Grewar J, Newton R. An epidemiological overview of the equine influenza epidemic in Great Britain during 2019. Equine Vet J 2023; 55:153-164. [PMID: 36054725 PMCID: PMC10087154 DOI: 10.1111/evj.13874] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/08/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND During 2019, an epidemic of equine influenza (EI) occurred in Europe. OBJECTIVES To describe the epidemiology of the 2019 EI epidemic within Great Britain (GB). STUDY DESIGN Retrospective descriptive study of laboratory confirmed EI cases. METHODS Epidemiological data were obtained from veterinary surgeons referring samples for EI virus testing. Where available, data on confirmed cases and their wider resident population on EI-infected premises were collated and described. On a national level, spatial and temporal representations, consisting of choropleth maps and epidemic curves, described the spread of EI. EI-infected premises-level factors associated with the first of two epidemic phases were investigated using ordinary logistic regression analysis. RESULTS There were 412 confirmed cases and 234 EI-infected premises, with the first of two epidemic phases occurring between January and April, followed by a second phase through to August. The median age of confirmed cases was 5 years and Sports horses (24%) and Cobs (16%) made up the highest proportions by general horse type and breed. Among confirmed cases 72% were unvaccinated and 18% were vaccinated against EI. New horses arriving within 2 weeks of a confirmed case were reported by 42% of EI-infected premises. Investigation of EI-infected premises biosecurity measures indicated that 23% quarantined new arrivals, 37% had isolation facilities and 57% of resident horses were vaccinated. EI-infected premises were more likely in the first than second epidemic phase to be classified as professional, have a vaccinated confirmed case and EI confirmed in a newly arrived animal. MAIN LIMITATIONS Data were collected at a single time point for each EI-infected premises with no follow ups performed. CONCLUSIONS During 2019, EI-infected premises generally had low levels of population vaccine coverage and implemented limited preventive biosecurity measures, particularly linked to horse movements. Without substantial improvements in infectious disease prevention and control, the GB equine population remains at risk of future EI epidemics.
Collapse
Affiliation(s)
- Fleur Whitlock
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | | | - Richard Newton
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
4
|
Carnet F, Perrin-Cocon L, Paillot R, Lotteau V, Pronost S, Vidalain PO. An inventory of adjuvants used for vaccination in horses: the past, the present and the future. Vet Res 2023; 54:18. [PMID: 36864517 PMCID: PMC9983233 DOI: 10.1186/s13567-023-01151-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/27/2023] [Indexed: 03/04/2023] Open
Abstract
Vaccination is one of the most widely used strategies to protect horses against pathogens. However, available equine vaccines often have limitations, as they do not always provide effective, long-term protection and booster injections are often required. In addition, research efforts are needed to develop effective vaccines against emerging equine pathogens. In this review, we provide an inventory of approved adjuvants for equine vaccines worldwide, and discuss their composition and mode of action when available. A wide range of adjuvants are used in marketed vaccines for horses, the main families being aluminium salts, emulsions, polymers, saponins and ISCOMs. We also present veterinary adjuvants that are already used for vaccination in other species and are currently evaluated in horses to improve equine vaccination and to meet the expected level of protection against pathogens in the equine industry. Finally, we discuss new adjuvants such as liposomes, polylactic acid polymers, inulin, poly-ε-caprolactone nanoparticles and co-polymers that are in development. Our objective is to help professionals in the horse industry understand the composition of marketed equine vaccines in a context of mistrust towards vaccines. Besides, this review provides researchers with a list of adjuvants, either approved or at least evaluated in horses, that could be used either alone or in combination to develop new vaccines.
Collapse
Affiliation(s)
- Flora Carnet
- grid.508204.bLABÉO, 14280 Saint-Contest, France ,grid.412043.00000 0001 2186 4076BIOTARGEN, Normandie University, UNICAEN, 14280 Saint-Contest, France
| | - Laure Perrin-Cocon
- grid.462394.e0000 0004 0450 6033CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Romain Paillot
- grid.451003.30000 0004 0387 5232School of Equine and Veterinary Physiotherapy, Writtle University College, Lordship Road, Writtle, Chelmsford, CM1 3RR UK
| | - Vincent Lotteau
- grid.462394.e0000 0004 0450 6033CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Stéphane Pronost
- LABÉO, 14280, Saint-Contest, France. .,BIOTARGEN, Normandie University, UNICAEN, 14280, Saint-Contest, France.
| | - Pierre-Olivier Vidalain
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France.
| |
Collapse
|
5
|
Colgate VA, Newton JR. Equine influenza bi-annual boosters: What does the evidence tell us? Equine Vet J 2023; 55:147-152. [PMID: 36382414 DOI: 10.1111/evj.13898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Victoria A Colgate
- Equine Infectious Disease Surveillance, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - J Richard Newton
- Equine Infectious Disease Surveillance, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Newton JR, Rendle DI, Mountford DR, Marr CM. Equine influenza vaccination catches an autumn cold! But must get over it as soon as it can. Equine Vet J 2023; 55:142-146. [PMID: 36226994 DOI: 10.1111/evj.13885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 12/15/2022]
Affiliation(s)
- J Richard Newton
- Equine Infectious Disease Surveillance, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | | | - Celia M Marr
- Equine Veterinary Journal, Ely, Cambridgeshire, UK
| |
Collapse
|
7
|
Carnet F, Paillot R, Fortier C, Hue ES, Briot L, de Geoffroy F, Vidalain PO, Pronost S. Immunostimulating Effect of Inactivated Parapoxvirus Ovis on the Serological Response to Equine Influenza Booster Vaccination. Vaccines (Basel) 2022; 10:vaccines10122139. [PMID: 36560549 PMCID: PMC9782193 DOI: 10.3390/vaccines10122139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Equine influenza virus (EIV) is responsible for recurring outbreaks that are detrimental to the equine industry. Vaccination is key for prevention, but the effectiveness and duration of protection provided by existing vaccines is often insufficient. In order to improve vaccine efficacy, we evaluated the benefit of immune stimulation with inactivated Parapoxvirus ovis (iPPVO) on the antibody response induced by a vaccine boost against EIV. A whole inactivated ISCOMatrix-adjuvanted equine influenza vaccine was administered alone (n = 10) or combined with iPPVO injections at D0, D2 and D4 post vaccination (n = 10) to adult horses that required a vaccine boost 6 months after the last immunization, as now recommended by the WOAH. Antibody levels were measured with the single radial haemolysis (SRH) assay at 1, 3 and 6 months post-vaccination. Results revealed that horses that received iPPVO had higher antibody levels than the control group injected with the EI vaccine alone. Although the vaccine used contains only a clade 1 and European lineage strain, the increase in protective antibodies was also observed against a clade 2 strain. Thus, immune stimulation with iPPVO, a substance already marketed as an immunostimulant, could be used to improve vaccination protocols in horses and potentially other species.
Collapse
Affiliation(s)
- Flora Carnet
- LABÉO, 14280 Saint-Contest, France
- BIOTARGEN, Normandie University, UNICAEN, 14280 Saint-Contest, France
| | - Romain Paillot
- LABÉO, 14280 Saint-Contest, France
- BIOTARGEN, Normandie University, UNICAEN, 14280 Saint-Contest, France
- School of Equine and Veterinary Physiotherapy, Writtle University College, Lordship Road, Writtle, Chelmsford CM1 3RR, UK
| | - Christine Fortier
- LABÉO, 14280 Saint-Contest, France
- BIOTARGEN, Normandie University, UNICAEN, 14280 Saint-Contest, France
| | - Erika S. Hue
- LABÉO, 14280 Saint-Contest, France
- BIOTARGEN, Normandie University, UNICAEN, 14280 Saint-Contest, France
| | - Laurie Briot
- Institut Français du Cheval et de l’Equitation, Plateau Technique du Pin-au-Haras, 61310 Gouffern en Auge, France
| | - Frédéric de Geoffroy
- Institut Français du Cheval et de l’Equitation, Plateau Technique du Pin-au-Haras, 61310 Gouffern en Auge, France
| | - Pierre-Olivier Vidalain
- CIRI Centre International de Recherche en Infectiologie, Univ. Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Stéphane Pronost
- LABÉO, 14280 Saint-Contest, France
- BIOTARGEN, Normandie University, UNICAEN, 14280 Saint-Contest, France
- Correspondence:
| |
Collapse
|
8
|
Gonzalez-Obando J, Forero JE, Zuluaga-Cabrera AM, Ruiz-Saenz J. Equine Influenza Virus: An Old Known Enemy in the Americas. Vaccines (Basel) 2022; 10:vaccines10101718. [PMID: 36298583 PMCID: PMC9610386 DOI: 10.3390/vaccines10101718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Equine influenza is a highly contagious disease caused by the H3N8 equine influenza virus (EIV), which is endemically distributed throughout the world. It infects equids, and interspecies transmission to dogs has been reported. The H3N8 Florida lineage, which is divided into clades 1 and 2, is the most representative lineage in the Americas. The EIV infects the respiratory system, affecting the ciliated epithelial cells and preventing the elimination of foreign bodies and substances. Certain factors related to the disease, such as an outdated vaccination plan, age, training, and close contact with other animals, favor the presentation of equine influenza. This review focuses on the molecular, pathophysiological, and epidemiological characteristics of EIV in the Americas to present updated information to achieve prevention and control of the virus. We also discuss the need for monitoring the disease, the use of vaccines, and the appropriate application of those biologicals, among other biosecurity measures that are important for the control of the virus.
Collapse
Affiliation(s)
- Juliana Gonzalez-Obando
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia
| | - Jorge Eduardo Forero
- Grupo de Investigación en Microbiología Veterinaria, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia
| | - Angélica M Zuluaga-Cabrera
- Facultad de Medicina Veterinaria y Zootecnia, Fundación Universitaria Autónoma de las Américas, Circular 73 N°35-04, Medellín 050010, Colombia
| | - Julián Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia
- Correspondence:
| |
Collapse
|
9
|
Whitlock F, Murcia PR, Newton JR. A Review on Equine Influenza from a Human Influenza Perspective. Viruses 2022; 14:v14061312. [PMID: 35746783 PMCID: PMC9229935 DOI: 10.3390/v14061312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Influenza A viruses (IAVs) have a main natural reservoir in wild birds. IAVs are highly contagious, continually evolve, and have a wide host range that includes various mammalian species including horses, pigs, and humans. Furthering our understanding of host-pathogen interactions and cross-species transmissions is therefore essential. This review focuses on what is known regarding equine influenza virus (EIV) virology, pathogenesis, immune responses, clinical aspects, epidemiology (including factors contributing to local, national, and international transmission), surveillance, and preventive measures such as vaccines. We compare EIV and human influenza viruses and discuss parallels that can be drawn between them. We highlight differences in evolutionary rates between EIV and human IAVs, their impact on antigenic drift, and vaccine strain updates. We also describe the approaches used for the control of equine influenza (EI), which originated from those used in the human field, including surveillance networks and virological analysis methods. Finally, as vaccination in both species remains the cornerstone of disease mitigation, vaccine technologies and vaccination strategies against influenza in horses and humans are compared and discussed.
Collapse
Affiliation(s)
- Fleur Whitlock
- Medical Research Council, University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, UK; (F.W.); (P.R.M.)
- Equine Infectious Disease Surveillance (EIDS), Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Pablo R. Murcia
- Medical Research Council, University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, UK; (F.W.); (P.R.M.)
| | - J. Richard Newton
- Equine Infectious Disease Surveillance (EIDS), Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
- Correspondence:
| |
Collapse
|
10
|
Parys A, Vandoorn E, Chiers K, Van Reeth K. Alternating 3 different influenza vaccines for swine in Europe for a broader antibody response and protection. Vet Res 2022; 53:44. [PMID: 35705993 PMCID: PMC9202218 DOI: 10.1186/s13567-022-01060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
Heterologous prime-boost vaccination with experimental or commercial influenza vaccines has been successful in various animal species. In this study, we have examined the efficacy of alternating 3 different European commercial swine influenza A virus (swIAV) vaccines: the trivalent Respiporc® FLU3 (TIV), the bivalent GRIPORK® (BIV) and the monovalent Respiporc® FLUpan H1N1 (MOV). Five groups of 6 pigs each received 3 vaccinations at 4-6 week intervals in a homologous or heterologous prime-boost regimen. A sixth group served as a mock-vaccinated challenge control. Four weeks after the last vaccination, pigs were challenged intranasally with a European avian-like H1N1 (1C.2.1) swIAV, which was antigenically distinct from the vaccine strains. One heterologous prime-boost group (TIV-BIV-MOV) had higher hemagglutination inhibition (HI) and neuraminidase inhibition antibody responses against a panel of antigenically distinct H1N1, H1N2 and H3N2 IAVs than the other heterologous prime-boost group (BIV-TIV-MOV) and the homologous prime-boost groups (3xTIV; 3xBIV; 3xMOV). Group TIV-BIV-MOV had seroprotective HI titers (≥ 40) against 56% of the tested viruses compared to 33% in group BIV-TIV-MOV and 22-39% in the homologous prime-boost groups. Post-challenge, group TIV-BIV-MOV was the single group with significantly reduced virus titers in all respiratory samples compared to the challenge control group. Our results suggest that the use of different commercial swIAV vaccines for successive vaccinations may result in broader antibody responses and protection than the traditional, homologous prime-boost vaccination regimens. In addition, the order in which the different vaccines are administered seems to affect the breadth of the antibody response and protection.
Collapse
Affiliation(s)
- Anna Parys
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Elien Vandoorn
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Koen Chiers
- Laboratory of Veterinary Pathology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Kristien Van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
11
|
El-Hage C, Hartley C, Savage C, Watson J, Gilkerson J, Paillot R. Assessment of Humoral and Long-Term Cell-Mediated Immune Responses to Recombinant Canarypox-Vectored Equine Influenza Virus Vaccination in Horses Using Conventional and Accelerated Regimens Respectively. Vaccines (Basel) 2022; 10:vaccines10060855. [PMID: 35746463 PMCID: PMC9229645 DOI: 10.3390/vaccines10060855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
During Australia's first and only outbreak of equine influenza (EI), which was restricted to two northeastern states, horses were strategically vaccinated with a recombinant canarypox-vectored vaccine (rCP-EIV; ProteqFlu™, Merial P/L). The vaccine encoded for haemagglutinin (HA) belonging to two equine influenza viruses (EIVs), including an American and Eurasian lineage subtype that predated the EIV responsible for the outbreak (A/equine/Sydney/07). Racehorses in Victoria (a southern state that remained free of EI) were vaccinated prophylactically. Although the vaccine encoded for (HA) belonged to two EIVs of distinct strains of the field virus, clinical protection was reported in vaccinated horses. Our aim is to assess the extent of humoral immunity in one group of vaccinated horses and interferon-gamma ((EIV)-IFN-γ)) production in the peripheral blood mononuclear cells (PBMCs) of a second population of vaccinated horses. Twelve racehorses at work were monitored for haemagglutination inhibition antibodies to three antigenically distinct equine influenza viruses (EIVs) The EIV antigens included two H3N8 subtypes: A/equine/Sydney/07) A/equine/Newmarket/95 (a European lineage strain) and an H7N7 subtype (A/equine/Prague1956). Cell-mediated immune responses of: seven racehorses following an accelerated vaccination schedule, two horses vaccinated using a conventional regimen, and six unvaccinated horses were evaluated by determining (EIV)-IFN-γ levels. Antibody responses following vaccination with ProteqFlu™ were cross-reactive in nature, with responses to both H3N8 EIV strains. Although (EIV)IFN-γ was clearly detected following the in vitro re-stimulation of PBMC, there was no significant difference between the different groups of horses. Results of this study support reports of clinical protection of Australian horses following vaccination with Proteq-Flu™ with objective evidence of humoral cross-reactivity to the outbreak viral strain A/equine/Sydney/07.
Collapse
Affiliation(s)
- Charles El-Hage
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (C.H.); (C.S.); (J.G.)
- Correspondence: ; Tel.: +61-417166029
| | - Carol Hartley
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (C.H.); (C.S.); (J.G.)
| | - Catherine Savage
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (C.H.); (C.S.); (J.G.)
| | - James Watson
- Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC 3216, Australia;
| | - James Gilkerson
- Centre for Equine Infectious Diseases, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (C.H.); (C.S.); (J.G.)
| | - Romain Paillot
- School of Equine and Veterinary Physiotherapy, Writtle University College, Lordship Road, Writtle, Chelmsford CM1 3RR, UK;
| |
Collapse
|
12
|
Lee DH, Lee EB, Seo JP, Ko EJ. Evaluation of concurrent vaccinations with recombinant canarypox equine influenza virus and inactivated equine herpesvirus vaccines. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:588-598. [PMID: 35709134 PMCID: PMC9184697 DOI: 10.5187/jast.2022.e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 11/20/2022]
Abstract
Despite vaccination, equine influenza virus (EIV) and equine herpesvirus (EHV)
infections still cause highly contagious respiratory diseases in horses.
Recently, concurrent vaccination with EIV and EHV was suggested as a new
approach; however, there have been no reports of concurrent vaccination with
recombinant canarypox EIV and inactivated EHV vaccines. In this study, we aimed
to compare the EIV-specific immune responses induced by concurrent
administrations of a recombinant canarypox EIV vaccine and an inactivated
bivalent EHV vaccine with those induced by a single recombinant canarypox EIV
vaccine in experimental horse and mouse models. Serum and peripheral blood
mononuclear cells (PBMCs) were collected from immunized animals after
vaccination. EIV-specific serum antibody levels, serum hemagglutinin inhibition
(HI) titers, and interferon-gamma (IFN-γ) levels were measured by
enzyme-linked immunosorbent assay, HI assay, and quantitative polymerase chain
reaction, respectively. Concurrent EIV and EHV vaccine administration
significantly increased IFN-γ production, without compromising humoral
responses. Our data demonstrate that concurrent vaccination with EIV and EHV
vaccines can enhance EIV-specific cellular responses in horses.
Collapse
Affiliation(s)
- Dong-Ha Lee
- College of Veterinary Medicine and
Veterinary Medical Research Institute, Jeju National
University, Jeju 63243, Korea
| | - Eun-bee Lee
- Department of Veterinary Medicine, College
of Veterinary Medicine, Jeju National University, Jeju 63243,
Korea
| | - Jong-pil Seo
- Department of Veterinary Medicine, College
of Veterinary Medicine, Jeju National University, Jeju 63243,
Korea
| | - Eun-Ju Ko
- College of Veterinary Medicine and
Veterinary Medical Research Institute, Jeju National
University, Jeju 63243, Korea
- Corresponding author: Eun-Ju Ko, College of
Veterinary Medicine and Veterinary Medical Research Institute, Jeju National
University, Jeju 63243, Korea. Tel: +82-64-754-3366, E-mail:
| |
Collapse
|
13
|
Henriksen IW, Mejia JLC, Mentzel CMJ, Lindenberg F, Hansen AK. Oligosaccharide equine feed supplement, Immulix, has minor impact on vaccine responses in mice. Sci Rep 2022; 12:582. [PMID: 35022427 PMCID: PMC8755741 DOI: 10.1038/s41598-021-04132-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/19/2021] [Indexed: 12/26/2022] Open
Abstract
Several mammalian species are vaccinated in early life, but little is known about the effect of diet on vaccine response. Oligosaccharides are increasingly proposed as dietary supplement for young individuals due to their anti-inflammatory potential elicited through modulation of gut microbiota (GM). Also, diet, e.g. the size of the fat fraction, is known to modulate the GM. We tested if an oligosaccharide diet (Immulix) and/or increased dietary fat content affected antibody titers to a tetanus vaccine in 48 BALB/cJTac mice through GM modulation. Female mice had significantly higher IgG titers with higher variation compared to male mice. The effects of Immulix and/or increased fat content were minor. Immulix negatively affected IgG titers in male mice four weeks after secondary vaccination but upregulated Il1b gene expression in the spleen. Immulix had a downregulating effect on expression of Cd4 and Foxp3 in ileum only if the mice were fed the diet with increased fat. The diet with increased dietary fat increased Il1b but decreased Cd8a gene expression in the spleen. Immulix and diet affected GM composition significantly. Increased dietary fat content upregulated Lactobacillus animalis but downregulated an unclassified Prevotella spp. Immulix decreased Lactobacillales, Streptococcaceae and Prevotellaceae but increased Bacteroides. It is concluded that in spite of some minor influences on immune cell markers, cytokines and IgG titers Immulix feeding or increased dietary fat content did not have any biologically relevant effects on tetanus vaccine responses in this experiment in mice.
Collapse
Affiliation(s)
- Ida Wang Henriksen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg C, Denmark.
- Brogaarden Aps, Lynge, Denmark.
| | | | | | | | - Axel Kornerup Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1870, Frederiksberg C, Denmark
| |
Collapse
|
14
|
Abstract
Horses are the third major mammalian species, along with humans and swine, long known to be subject to acute upper respiratory disease from influenza A virus infection. The viruses responsible are subtype H7N7, which is believed extinct, and H3N8, which circulates worldwide. The equine influenza lineages are clearly divergent from avian influenza lineages of the same subtypes. Their genetic evolution and potential for interspecies transmission, as well as clinical features and epidemiology, are discussed. Equine influenza is spread internationally and vaccination is central to control efforts. The current mechanism of international surveillance and virus strain recommendations for vaccines is described.
Collapse
Affiliation(s)
- Thomas M Chambers
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| |
Collapse
|
15
|
Affiliation(s)
- G. Galen
- School of Veterinary Medicine University of Sydney Sydney Australia
| |
Collapse
|
16
|
Equine Influenza Virus and Vaccines. Viruses 2021; 13:v13081657. [PMID: 34452521 PMCID: PMC8402878 DOI: 10.3390/v13081657] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023] Open
Abstract
Equine influenza virus (EIV) is a constantly evolving viral pathogen that is responsible for yearly outbreaks of respiratory disease in horses termed equine influenza (EI). There is currently no evidence of circulation of the original H7N7 strain of EIV worldwide; however, the EIV H3N8 strain, which was first isolated in the early 1960s, remains a major threat to most of the world's horse populations. It can also infect dogs. The ability of EIV to constantly accumulate mutations in its antibody-binding sites enables it to evade host protective immunity, making it a successful viral pathogen. Clinical and virological protection against EIV is achieved by stimulation of strong cellular and humoral immunity in vaccinated horses. However, despite EI vaccine updates over the years, EIV remains relevant, because the protective effects of vaccines decay and permit subclinical infections that facilitate transmission into susceptible populations. In this review, we describe how the evolution of EIV drives repeated EI outbreaks even in horse populations with supposedly high vaccination coverage. Next, we discuss the approaches employed to develop efficacious EI vaccines for commercial use and the existing system for recommendations on updating vaccines based on available clinical and virological data to improve protective immunity in vaccinated horse populations. Understanding how EIV biology can be better harnessed to improve EI vaccines is central to controlling EI.
Collapse
|
17
|
Abstract
Influenza is an extremely contagious respiratory disease, which predominantly affects the upper respiratory tract. There are four types of influenza virus, and pigs and chickens are considered two key reservoirs of this virus. Equine influenza (EI) virus was first identified in horses in 1956, in Prague. The influenza A viruses responsible for EI are H7N7 and H3N8. Outbreaks of EI are characterized by their visible and rapid spread, and it has been possible to isolate and characterize H3N8 outbreaks in several countries. The clinical diagnosis of this disease is based on the clinical signs presented by the infected animals, which can be confirmed by performing complementary diagnostic tests. In the diagnosis of EI, in the field, rapid antigen detection tests can be used for a first approach. Treatment is based on the management of the disease and rest for the animal. Regarding the prognosis, it will depend on several factors, such as the animal's vaccination status. One of the important points in this disease is its prevention, which can be done through vaccination. In addition to decreasing the severity of clinical signs and morbidity during outbreaks, vaccination ensures immunity for the animals, reducing the economic impact of this disease.
Collapse
|
18
|
Zhang P, Sun Y, Tan C, Ling M, Li X, Wang W, Cong Y. Preparation and evaluation of virus-like particle vaccine against H3N8 subtype equine influenza. Microb Pathog 2021; 157:104885. [PMID: 33991641 DOI: 10.1016/j.micpath.2021.104885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/28/2021] [Accepted: 03/19/2021] [Indexed: 11/29/2022]
Abstract
To prevent and control H3N8 subtype equine influenza, we prepared virus-like particles (VLPs) comprising the HA, NA and M1 proteins of H3N8 equine influenza virus (EIV) through the insect cell-baculovirus expression system. The results of Western blot and hemagglutination analyses demonstrated that the constructed VLPs comprising HA, NA and M1 proteins have good hemagglutination activity. Immunoelectron microscope revealed that the VLPs share similar morphology and structure with natural virus particles. The hyperimmune serum from horses immunized with the VLPs were injected into mice by means of artificial passive immunization and then challenge, or challenge following by injecting hyperimmune serum. The results showed that the equine hyperimmune serum has good preventive and therapeutic efficacy against the infection of H3N8 EIV. The study provides a technical foundation for the development of H3N8 EIV VLP vaccine.
Collapse
Affiliation(s)
- Pengju Zhang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yixue Sun
- Jilin Research & Development Center of Biomedical Engineering, Changchun University, Changchun, 130022, China
| | - Chengcheng Tan
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Mengmeng Ling
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, 130062, China
| | - Xintao Li
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Weixia Wang
- Institute of Animal Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Yanlong Cong
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, 130062, China.
| |
Collapse
|
19
|
Olguin-Perglione C, Barrandeguy ME. An Overview of Equine Influenza in South America. Viruses 2021; 13:v13050888. [PMID: 34065839 PMCID: PMC8151294 DOI: 10.3390/v13050888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Equine influenza virus (EIV) is one of the most important respiratory pathogens of horses as outbreaks of the disease lead to significant economic losses worldwide. In this review, we summarize the information available on equine influenza (EI) in South America. In the region, the major events of EI occurred almost in the same period in the different countries, and the EIV isolated showed high genetic identity at the hemagglutinin gene level. It is highly likely that the continuous movement of horses, some of them subclinically infected, among South American countries, facilitated the spread of the virus. Although EI vaccination is mandatory for mobile or congregates equine populations in the region, EI outbreaks continuously threaten the equine industry. Vaccine breakdown could be related to the fact that many of the commercial vaccines available in the region contain out-of-date EIV strains, and some of them even lack reliable information about immunogenicity and efficacy. This review highlights the importance of disease surveillance and reinforces the need to harmonize quarantine and biosecurity protocols, and encourage vaccine manufacturer companies to carry out quality control procedures and update the EIV strains in their products.
Collapse
Affiliation(s)
- Cecilia Olguin-Perglione
- Instituto de Virología CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham B1686, Argentina;
- Correspondence: ; Tel.: +54-11-4621-1447 (ext. 3368)
| | - María Edith Barrandeguy
- Instituto de Virología CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham B1686, Argentina;
- Escuela de Veterinaria, Facultad de Ciencias Agrarias y Veterinarias, Universidad del Salvador, Pilar B1630AHU, Argentina
| |
Collapse
|
20
|
Aida V, Pliasas VC, Neasham PJ, North JF, McWhorter KL, Glover SR, Kyriakis CS. Novel Vaccine Technologies in Veterinary Medicine: A Herald to Human Medicine Vaccines. Front Vet Sci 2021; 8:654289. [PMID: 33937377 PMCID: PMC8083957 DOI: 10.3389/fvets.2021.654289] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/17/2021] [Indexed: 01/10/2023] Open
Abstract
The success of inactivated and live-attenuated vaccines has enhanced livestock productivity, promoted food security, and attenuated the morbidity and mortality of several human, animal, and zoonotic diseases. However, these traditional vaccine technologies are not without fault. The efficacy of inactivated vaccines can be suboptimal with particular pathogens and safety concerns arise with live-attenuated vaccines. Additionally, the rate of emerging infectious diseases continues to increase and with that the need to quickly deploy new vaccines. Unfortunately, first generation vaccines are not conducive to such urgencies. Within the last three decades, veterinary medicine has spearheaded the advancement in novel vaccine development to circumvent several of the flaws associated with classical vaccines. These third generation vaccines, including DNA, RNA and recombinant viral-vector vaccines, induce both humoral and cellular immune response, are economically manufactured, safe to use, and can be utilized to differentiate infected from vaccinated animals. The present article offers a review of commercially available novel vaccine technologies currently utilized in companion animal, food animal, and wildlife disease control.
Collapse
Affiliation(s)
- Virginia Aida
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
| | - Vasilis C. Pliasas
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
| | - Peter J. Neasham
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
| | - J. Fletcher North
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
| | - Kirklin L. McWhorter
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - Sheniqua R. Glover
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
| | - Constantinos S. Kyriakis
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| |
Collapse
|
21
|
Karam B, Wilson WD, Chambers TM, Reedy S, Pusterla N. Hemagglutinin inhibition antibody responses to commercial equine influenza vaccines in vaccinated horses. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2021; 62:266-272. [PMID: 33692582 PMCID: PMC7877680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The use of a hemagglutination inhibition (HI) assay to assess humoral immune response to equine influenza virus (EIV) vaccines from various manufacturers administered to previously immunized adult horses was investigated. Subjects were allocated into one of 3 groups and vaccinated with various commercially available vaccines. Groups were subdivided into subjects that received 1 dose of a particular vaccine and those that received a second dose, 30 d later. Serum was collected at various times to assess antibody responses to contemporary EIV Florida sub-lineage strains. Statistical significance was set at P < 0.05 and all groups had a significant increase in antibody titers pre- and post-administration of the first dose. In contrast, there was no significant difference between day 30 titers and titers at subsequent time points, regardless of protocol. We concluded that administration of various commercial influenza vaccines containing a different sub-lineage clade stimulated equivalent HI antibody titers after 1 booster vaccination.
Collapse
Affiliation(s)
- Bruno Karam
- William R. Pritchard Veterinary Medical Teaching Hospital (Karam), Department of Medicine and Epidemiology (Wilson, Pusterla), School of Veterinary Medicine, University of California, Davis, California, USA; Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA (Chambers, Reedy)
| | - William D Wilson
- William R. Pritchard Veterinary Medical Teaching Hospital (Karam), Department of Medicine and Epidemiology (Wilson, Pusterla), School of Veterinary Medicine, University of California, Davis, California, USA; Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA (Chambers, Reedy)
| | - Thomas M Chambers
- William R. Pritchard Veterinary Medical Teaching Hospital (Karam), Department of Medicine and Epidemiology (Wilson, Pusterla), School of Veterinary Medicine, University of California, Davis, California, USA; Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA (Chambers, Reedy)
| | - Stephanie Reedy
- William R. Pritchard Veterinary Medical Teaching Hospital (Karam), Department of Medicine and Epidemiology (Wilson, Pusterla), School of Veterinary Medicine, University of California, Davis, California, USA; Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA (Chambers, Reedy)
| | - Nicola Pusterla
- William R. Pritchard Veterinary Medical Teaching Hospital (Karam), Department of Medicine and Epidemiology (Wilson, Pusterla), School of Veterinary Medicine, University of California, Davis, California, USA; Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA (Chambers, Reedy)
| |
Collapse
|
22
|
Pavulraj S, Bergmann T, Trombetta CM, Marchi S, Montomoli E, Alami SSE, Ragni-Alunni R, Osterrieder N, Azab W. Immunogenicity of Calvenza-03 EIV/EHV ® Vaccine in Horses: Comparative In Vivo Study. Vaccines (Basel) 2021; 9:vaccines9020166. [PMID: 33671378 PMCID: PMC7922102 DOI: 10.3390/vaccines9020166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 01/20/2023] Open
Abstract
Equine influenza (EI) is a highly contagious acute respiratory disease of equines that is caused mainly by the H3N8 subtype of influenza A virus. Vaccinating horses against EI is the most effective strategy to prevent the infection. The current study aimed to compare the kinetics of EI-specific humoral- and cell-mediated immunity (CMI) in horses receiving either identical or mixed vaccinations. Two groups of horses were previously (six months prior) vaccinated with either Calvenza 03 EIV EHV® (G1) or Fluvac Innovator® (G2) vaccine. Subsequently, both groups received a booster single dose of Calvenza 03 EIV EHV®. Immune responses were assessed after 10 weeks using single radial hemolysis (SRH), virus neutralization (VN), and EliSpot assays. Our results revealed that Calvenza-03 EIV/EHV®-immunized horses had significantly higher protective EI-specific SRH antibodies and VN antibodies. Booster immunization with Calvenza-03 EIV/EHV® vaccine significantly stimulated cell-mediated immune response as evidenced by significant increase in interferon-γ-secreting peripheral blood mononuclear cells. In conclusion, Calvenza-03 EIV/EHV® vaccine can be safely and effectively used for booster immunization to elicit optimal long persisting humoral and CMI responses even if the horses were previously immunized with a heterogeneous vaccine.
Collapse
Affiliation(s)
- Selvaraj Pavulraj
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; (S.P.); (T.B.); (N.O.)
| | - Tobias Bergmann
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; (S.P.); (T.B.); (N.O.)
| | - Claudia Maria Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.M.T.); (S.M.); (E.M.)
| | - Serena Marchi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.M.T.); (S.M.); (E.M.)
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (C.M.T.); (S.M.); (E.M.)
- VisMederi srl, 53100 Siena, Italy
| | | | - Roberto Ragni-Alunni
- Equine Marketing Division, Boehringer Ingelheim META, Dubai P.O. Box 507066, United Arab Emirates;
| | - Nikolaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; (S.P.); (T.B.); (N.O.)
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
| | - Walid Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany; (S.P.); (T.B.); (N.O.)
- Correspondence:
| |
Collapse
|
23
|
An Evaluation of Three Different Primary Equine Influenza Vaccination Intervals in Foals. J Equine Vet Sci 2021; 99:103397. [PMID: 33781435 DOI: 10.1016/j.jevs.2021.103397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 11/20/2022]
Abstract
In order to evaluate the effect of three different primary vaccination intervals on EI vaccine response, 21 unvaccinated thoroughbred foals were randomly divided into three groups of 7 and vaccinated with three different intervals of primary immunization (i.e., with 1, 2 or 3 months intervals between V1 and V2, respectively). The antibody response was measured for up to 1 year after the third immunization V3 (administered 6 months after V2) by single radial hemolysis (SRH) assay. All weanlings had seroconverted and exceeded the clinical protection threshold 2 weeks after V2 and 1 month after V3 until the end of the study. Significant differences were measured at the peak of immunity after V2 and for the duration of the immunity gap between V2 and V3. The group with one month primary vaccination interval had a lower immunity peak after V2 (158.05 ± 6.63 mm2) and a wider immunity gap between V2 and V3 (18 weeks) when compared with other groups (i.e., 174.72 ± 6.86 mm2 and 16 weeks for a two months interval, 221.45 ± 14.48 mm2 and 12 weeks for a 3-month interval). The advantage observed in the group with 1 month primary vaccination interval, which induces an earlier protective immunity, is counterbalance with a lower peak of immunity and a wider immunity gap after V2, when compared with foals vaccinated with 2- and 3-month intervals.
Collapse
|
24
|
Protection against the New Equine Influenza Virus Florida Clade I Outbreak Strain Provided by a Whole Inactivated Virus Vaccine. Vaccines (Basel) 2020; 8:vaccines8040784. [PMID: 33371484 PMCID: PMC7767483 DOI: 10.3390/vaccines8040784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Equine influenza virus (EIV) is a major cause of respiratory disease in horses. Vaccination is an effective tool for infection control. Although various EIV vaccines are widely available, major outbreaks occurred in Europe in 2018 involving a new EIV H3N8 FC1 strain. In France, it was reported that both unvaccinated and vaccinated horses were affected despite >80% vaccination coverage and most horses being vaccinated with a vaccine expressing FC1 antigen. This study assessed whether vaccine type, next to antigenic difference between vaccine and field strain, plays a role. Horses were vaccinated with an ISCOMatrix-adjuvanted, whole inactivated virus vaccine (Equilis Prequenza) and experimentally infected with the new FC1 outbreak strain. Serology (HI), clinical signs, and virus shedding were evaluated in vaccinated compared to unvaccinated horses. Results showed a significant reduction in clinical signs and a lack of virus shedding in vaccinated horses compared to unvaccinated controls. From these results, it can be concluded that Equilis Prequenza provides a high level of protection to challenge with the new FC1 outbreak strain. This suggests that, apart from antigenic differences between vaccine and field strain, other aspects of the vaccine may also play an important role in determining field efficacy.
Collapse
|
25
|
Wilson A, Pinchbeck G, Dean R, McGowan C. Equine influenza vaccination in the UK: Current practices may leave horses with suboptimal immunity. Equine Vet J 2020; 53:1004-1014. [PMID: 33124070 PMCID: PMC8451788 DOI: 10.1111/evj.13377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/26/2020] [Accepted: 10/22/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Vaccination is integral to preventive healthcare. Despite numerous guidelines on equine vaccination, evidence of current vaccination practices is lacking. OBJECTIVES To describe current vaccination practices advised by vets treating horses in the United Kingdom (UK) and compare practices with manufacturer datasheets and current guidelines. STUDY DESIGN Cross-sectional survey. METHODS An online questionnaire was distributed using email addresses acquired through professional registration listings and social media, targeting vets who treat horses in the UK. The questionnaire collected demographic data and information regarding vaccination practices and vaccine hesitancy. Descriptive statistical analysis was performed. RESULTS Questionnaires were completed by 304 UK vets working with horses used for leisure (97.4%, n = 296/304), competition (86.2%, n = 262/304), stud-work (47.7%, n = 145/304) and racing (40.5%, n = 123/304). Variation was identified in vaccine protocols for competition and noncompetition horses. Fifty-seven per cent (n = 170/298) of respondents reported variation in advised 'booster' frequency; most commonly (n = 118) advising a 6-monthly vaccination in competition horses and annual vaccination in noncompetition horses. Most common vaccination guidelines volunteered were British Horseracing Authority (68.8%, n = 172/250) and Federation Equestre Internationale (66.4%, n = 166/250). Most vaccination practices were not consistent with datasheet guidance. Only 7.7% (n = 23/300) of respondents complied with datasheet timeframes between the second and third vaccination. Adverse events following vaccination in the previous year were encountered by 66% (n = 199/304) of respondents, representing 2760 adverse events; but only 526 (19.1%) cases were reported to the Veterinary Medicines Directorate. Most common reactions were transient, including stiffness (931), localised swelling (835), lethargy (559) and pyrexia (355). 86.4% respondents reported vaccine hesitancy from horse owners, most commonly due to perception of over-vaccination, cost and concern regarding adverse events. MAIN LIMITATIONS Potential selection, respondent and recall bias. The recent Equine Influenza (EI) and Equine Herpes Virus (EHV) outbreaks in the UK may have altered responses. CONCLUSIONS Current equine vaccination practices, although complying with competition rules, are mostly noncompliant with datasheet guidelines, potentially risking suboptimal immunity.
Collapse
Affiliation(s)
- Amie Wilson
- Department of Equine Clinical Science, Institute of Veterinary and Ecological Sciences, University of Liverpool, Neston, Cheshire, UK
| | - Gina Pinchbeck
- Department of Equine Clinical Science, Institute of Veterinary and Ecological Sciences, University of Liverpool, Neston, Cheshire, UK
| | | | - Catherine McGowan
- Department of Equine Clinical Science, Institute of Veterinary and Ecological Sciences, University of Liverpool, Neston, Cheshire, UK
| |
Collapse
|
26
|
Determining Equine Influenza Virus Vaccine Efficacy-The Specific Contribution of Strain Versus Other Vaccine Attributes. Vaccines (Basel) 2020; 8:vaccines8030501. [PMID: 32899189 PMCID: PMC7564743 DOI: 10.3390/vaccines8030501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 02/02/2023] Open
Abstract
Vaccination is an effective tool to limit equine influenza virus (EIV H3N8) infection, a contagious respiratory disease with potentially huge economic impact. The study assessed the effects of antigenic change on vaccine efficacy and the need for strain update. Horses were vaccinated (V1 and V2) with an ISCOMatrix-adjuvanted, whole inactivated virus vaccine (Equilis Prequenza, group 2, FC1 and European strains) or a carbomer-adjuvanted, modified vector vaccine (ProteqFlu, group 3, FC1 and FC2 HA genes). Serology (SRH, HI, VN), clinical signs and viral shedding were assessed in comparison to unvaccinated control horses. The hypothesis was that group 2 (no FC2 vaccine strain) would be less well protected than group 3 following experimental infection with a recent FC2 field strain (A/equi-2/Wexford/14) 4.5 months after vaccination. All vaccinated horses had antibody titres to FC1 and FC2. After challenge, serology increased more markedly in group 3 than in group 2. Vaccinated horses had significantly lower total clinical scores and viral shedding. Unexpectedly, viral RNA shedding was significantly lower in group 2 than in group 3. Vaccination induced protective antibody titres to FC1 and FC2 and reduced clinical signs and viral shedding. The two tested vaccines provided equivalent protection against a recent FC2 EIV field strain.
Collapse
|
27
|
Kinsley R, Pronost S, De Bock M, Temperton N, Daly JM, Paillot R, Scott S. Evaluation of a Pseudotyped Virus Neutralisation Test for the Measurement of Equine Influenza Virus-Neutralising Antibody Responses Induced by Vaccination and Infection. Vaccines (Basel) 2020; 8:vaccines8030466. [PMID: 32825702 PMCID: PMC7565038 DOI: 10.3390/vaccines8030466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/05/2020] [Accepted: 08/15/2020] [Indexed: 01/03/2023] Open
Abstract
Equine influenza is a major respiratory disease of horses that is largely controlled by vaccination in some equine populations. Virus-neutralising antibodies, the mainstay of the protective immune response, are problematic in assaying for equine influenza virus, as most strains do not replicate efficiently in cell culture. Surrogate measures of protective antibody responses include the haemagglutination inhibition (HI) test and single radial haemolysis (SRH) assay. For this study, a pseudotyped virus, bearing an envelope containing the haemagglutinin (HA) from the Florida clade 2 equine influenza virus strain A/equine/Richmond/1/07 (H3N8), was generated to measure HA-specific neutralising antibodies in serum samples (n = 134) from vaccinated or experimentally-infected ponies using a pseudotyped virus neutralization test (PVNT). Overall, the results of PVNT were in good agreement with results from the SRH assay (100% sensitivity, 68.53% specificity) and HI test (99.2% sensitivity, 49.03% specificity). The PVNT was apparently more sensitive than either the SRH assay or the HI test, which could be advantageous for studying the antibody kinetics, particularly when antibody levels are low. Nevertheless, further studies are required to determine whether a protective antibody level can be defined for the SRH assay and to ascertain the inter-laboratory reproducibility. In conclusion, the PVNT efficiently measures neutralising antibodies after immunization and/or experimental infection in the natural host, and may complement existing antibody assays.
Collapse
Affiliation(s)
- Rebecca Kinsley
- Viral Pseudotype Unit (VPU), Medway School of Pharmacy, Universities of Kent & Greenwich, Chatham Maritime ME4 4TB, UK; (R.K.); (N.T.)
| | - Stéphane Pronost
- LABÉO Frank Duncombe, 1 route de Rosel, 14053 Caen CEDEX 4, France;
- Normandie University, UNICAEN, BIOTARGEN EA7450, 14280 Saint-Contest, France
| | - Manuelle De Bock
- Elanco Animal Health, Plantin en Moretuslei, B-2018 Antwerpen, Belgium;
| | - Nigel Temperton
- Viral Pseudotype Unit (VPU), Medway School of Pharmacy, Universities of Kent & Greenwich, Chatham Maritime ME4 4TB, UK; (R.K.); (N.T.)
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK;
| | - Romain Paillot
- LABÉO Frank Duncombe, 1 route de Rosel, 14053 Caen CEDEX 4, France;
- Normandie University, UNICAEN, BIOTARGEN EA7450, 14280 Saint-Contest, France
- Animal Health Trust, Centre for Preventive Medicine, Lanwades Park, Kentford Newmarket CB8 7UU, UK
- Correspondence: (R.P.); (S.S.); Tel.: +33-231-471-926 (R.P.); +44-1634-202957 (S.S.)
| | - Simon Scott
- Viral Pseudotype Unit (VPU), Medway School of Pharmacy, Universities of Kent & Greenwich, Chatham Maritime ME4 4TB, UK; (R.K.); (N.T.)
- Correspondence: (R.P.); (S.S.); Tel.: +33-231-471-926 (R.P.); +44-1634-202957 (S.S.)
| |
Collapse
|
28
|
Diallo AA, Souley MM, Issa Ibrahim A, Alassane A, Issa R, Gagara H, Yaou B, Issiakou A, Diop M, Ba Diouf RO, Lo FT, Lo MM, Bakhoum T, Sylla M, Seck MT, Meseko C, Shittu I, Cullinane A, Settypalli TBK, Lamien CE, Dundon WG, Cattoli G. Transboundary spread of equine influenza viruses (H3N8) in West and Central Africa: Molecular characterization of identified viruses during outbreaks in Niger and Senegal, in 2019. Transbound Emerg Dis 2020; 68:1253-1262. [PMID: 32770642 DOI: 10.1111/tbed.13779] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/13/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
Since November 2018, several countries in West and Central Africa have reported mortalities in donkeys and horses. Specifically, more than 66,000 horses and donkeys have succumbed to disease in Burkina Faso, Chad, Cameroon, The Gambia, Ghana, Mali, Niger, Nigeria, and Senegal. Strangles caused by Streptococcus equi subsp equi, African Horse Sickness (AHS) virus, and Equine influenza virus (EIV) were all suspected as potential causative agents. This study reports the identification of EIV in field samples collected in Niger and Senegal. Phylogenetic analysis of the hemagglutinin and neuraminidase genes revealed that the identified viruses belonged to clade 1 of the Florida sublineage and were very similar to viruses identified in Nigeria in 2019. Interestingly, they were also more similar to EIVs from recent outbreaks in South America than to those in Europe and the USA. This is one of the first reports providing detailed description and characterization of EIVs in West and Central Africa region.
Collapse
Affiliation(s)
- Alpha Amadou Diallo
- Laboratoire National de l'Elevage et de Recherches Vétérinaires ISRA/LNERV(LNERV), Dakar, Sénégal
| | | | | | - Abdou Alassane
- Laboratoire Central de l'Elevage (LABOCEL), Niamey, Niger
| | - Rahila Issa
- Laboratoire Central de l'Elevage (LABOCEL), Niamey, Niger
| | - Haladou Gagara
- Laboratoire Central de l'Elevage (LABOCEL), Niamey, Niger
| | - Bachir Yaou
- Laboratoire Central de l'Elevage (LABOCEL), Niamey, Niger
| | - Abdou Issiakou
- Direction Générale des Services Vétérinaires du Niger, Niamey, Niger
| | - Mariame Diop
- Laboratoire National de l'Elevage et de Recherches Vétérinaires ISRA/LNERV(LNERV), Dakar, Sénégal
| | - Racky Oumar Ba Diouf
- Laboratoire National de l'Elevage et de Recherches Vétérinaires ISRA/LNERV(LNERV), Dakar, Sénégal
| | - Fatou Tall Lo
- Laboratoire National de l'Elevage et de Recherches Vétérinaires ISRA/LNERV(LNERV), Dakar, Sénégal
| | - Modou Moustapha Lo
- Laboratoire National de l'Elevage et de Recherches Vétérinaires ISRA/LNERV(LNERV), Dakar, Sénégal
| | - Thierno Bakhoum
- Laboratoire National de l'Elevage et de Recherches Vétérinaires ISRA/LNERV(LNERV), Dakar, Sénégal
| | - Mamadou Sylla
- Laboratoire National de l'Elevage et de Recherches Vétérinaires ISRA/LNERV(LNERV), Dakar, Sénégal.,Direction du Développement des Equidés, MEPA, Dakar, Sénégal
| | - Momar Talla Seck
- Laboratoire National de l'Elevage et de Recherches Vétérinaires ISRA/LNERV(LNERV), Dakar, Sénégal
| | - Clement Meseko
- National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Ismaila Shittu
- National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Ann Cullinane
- OIE Reference Laboratory for Equine influenza, Irish Equine Centre, Kildare, Ireland
| | - Tirumala B K Settypalli
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Charles E Lamien
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - William G Dundon
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
29
|
Entenfellner J, Gahan J, Garvey M, Walsh C, Venner M, Cullinane A. Response of Sport Horses to Different Formulations of Equine Influenza Vaccine. Vaccines (Basel) 2020; 8:vaccines8030372. [PMID: 32664411 PMCID: PMC7563521 DOI: 10.3390/vaccines8030372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 01/28/2023] Open
Abstract
The international governing body of equestrian sports requires that horses be vaccinated against equine influenza within 6 months and 21 days of competing. The aim of this study was to compare the antibody response of young sport horses to six-monthly booster vaccination with equine influenza vaccines of different formulations. An inactivated vaccine was allocated to 35 horses and subunit and recombinant vaccines were allocated to 34 horses each. After vaccination, all horses were monitored for evidence of adverse reactions. Whole blood samples were collected at the time of vaccination and on nine occasions up to six months and 21 days post vaccination. Antibodies against equine influenza were measured by single radial haemolysis. Transient fever and injection site reactions were observed in several horses vaccinated with each vaccine. Only two horses failed to seroconvert post booster vaccination but there was a delayed response to the recombinant vaccine. The antibody response to the recombinant vaccine was lower than that induced by the whole-inactivated and subunit vaccines up to three months post vaccination. Thereafter, there was no significant difference. By six months post vaccination, the majority of horses in all three groups were clinically but not virologically protected. There was minimal decline in antibody titres within the 21-day grace period.
Collapse
Affiliation(s)
| | - Jacinta Gahan
- Irish Equine Centre, Johnstown, Naas, Co. Kildare, W91 RH93 Johnstown, Ireland; (J.G.); (M.G.)
| | - Marie Garvey
- Irish Equine Centre, Johnstown, Naas, Co. Kildare, W91 RH93 Johnstown, Ireland; (J.G.); (M.G.)
| | - Cathal Walsh
- Department of Mathematics and Statistics, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Monica Venner
- Pferdeklinik Destedt GmbH, Destedt, Trift 4, 38162 Cremlingen, Germany;
| | - Ann Cullinane
- Irish Equine Centre, Johnstown, Naas, Co. Kildare, W91 RH93 Johnstown, Ireland; (J.G.); (M.G.)
- Correspondence: ; Tel.: +353-45-866-266
| |
Collapse
|
30
|
Bambra W, Daly JM, Kendall NR, Gardner DS, Brennan M, Kydd JH. Equine influenza vaccination as reported by horse owners and factors influencing their decision to vaccinate or not. Prev Vet Med 2020; 180:105011. [PMID: 32438206 DOI: 10.1016/j.prevetmed.2020.105011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/27/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Equine influenza virus is a highly contagious respiratory pathogen that causes pyrexia, anorexia, lethargy and coughing in immunologically naïve horses. Vaccines against equine influenza are available and vaccination is mandatory for horses that participate in affiliated competitions, but this group forms a small proportion of the total horse population. The aims of this study were to: i) identify the equine influenza vaccination rate as reported in 2016 by horse owners in the United Kingdom (UK); ii) examine the demographics of owners and horses which were associated with significantly lower influenza vaccination rates and iii) explore factors that influence horse owners' decisions around influenza vaccine uptake. RESULTS Responses from 4837 UK horse owners who were responsible for 10,501 horses were analysed. An overall equine influenza vaccination rate of 80% (8385/10501) was reported. Several owner demographic characteristics were associated with significantly lower (p<0.05) reported equine influenza vaccination rates including: some geographical locations, increasing horse owner age, annual household income of less that £15,000 and owning more than one horse. Horse-related features which were associated with significantly lower reported equine influenza vaccination rates included age ranges of <4 years and > 20 years, use as a companion or breeding animal or leaving their home premises either never or at most once a year. The most common reasons cited for failing to vaccinate horses was no competition activity, lack of exposure to influenza and expense of vaccines. In contrast, the most common underlying reasons given by horse owners who vaccinated their horse were protection of the individual horse against disease, veterinary advice and to protect the national herd. Owners of vaccinated horses had less previous experience of an influenza outbreak or adverse reaction to vaccination compared with owners of unvaccinated horses. CONCLUSIONS This study documented a high rate of equine influenza vaccination as reported by owners in a substantial number of horses in the UK, but this does not reflect the level of protection. Sub-populations of horses which were less likely to be vaccinated and the factors that influence each owner's decision around vaccination of their horses against equine influenza were identified, but may alter following the 2019 European influenza outbreak. This information may nevertheless help veterinary surgeons identify "at-risk" patients and communicate more personalised advice to their horse-owning clients. It may also influence educational campaigns about equine influenza directed to horse owners, which aim to improve uptake of vaccination against this pathogen.
Collapse
Affiliation(s)
- W Bambra
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, United Kingdom.
| | - J M Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, United Kingdom.
| | - N R Kendall
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, United Kingdom.
| | - D S Gardner
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, United Kingdom.
| | - M Brennan
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, United Kingdom.
| | - J H Kydd
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, United Kingdom.
| |
Collapse
|
31
|
Cullinane A, Gahan J, Walsh C, Nemoto M, Entenfellner J, Olguin-Perglione C, Garvey M, Huang Fu TQ, Venner M, Yamanaka T, Barrandeguy M, Fernandez CJ. Evaluation of Current Equine Influenza Vaccination Protocols Prior to Shipment, Guided by OIE Standards. Vaccines (Basel) 2020; 8:E107. [PMID: 32121419 PMCID: PMC7157717 DOI: 10.3390/vaccines8010107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 01/28/2023] Open
Abstract
To facilitate the temporary importation of horses for competition and racing purposes, with a minimum risk of transmitting equine influenza, the World Organisation for Animal Health (Office International des Epizooties, or OIE), formally engaged in a public-private partnership with the Federation Equestre Internationale (FEI) and the International Federation for Horseracing Authorities (IFHA) to establish, within the context of existing OIE standards, a science-based rationale to identify the ideal time period for equine influenza vaccination prior to shipment. Field trials using vaccines based on different technologies were carried out on three continents. The antibody response post-booster vaccination at intervals aligned with the different rules/recommendations of the OIE, FEI, and IFHA, was monitored by single radial haemolysis. It was determined that 14 days was the optimum period necessary to allow horses adequate time to respond to booster vaccination and for horses that have previously received four or more doses of vaccine and are older than four years, it is adequate to allow vaccination within 180 days of shipment. In contrast, the results indicate that there is a potential benefit to younger (four years old or younger) horses in requiring booster vaccination within 90 days of shipment, consistent with the current OIE standard.
Collapse
Affiliation(s)
- Ann Cullinane
- Virology Unit, The Irish Equine Centre, Naas, Co. Kildare, W91 RH93 Johnstown, Ireland; (J.G.); (M.N.); (M.G.)
| | - Jacinta Gahan
- Virology Unit, The Irish Equine Centre, Naas, Co. Kildare, W91 RH93 Johnstown, Ireland; (J.G.); (M.N.); (M.G.)
| | - Cathal Walsh
- Department of Mathematics and Statistics, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Manabu Nemoto
- Virology Unit, The Irish Equine Centre, Naas, Co. Kildare, W91 RH93 Johnstown, Ireland; (J.G.); (M.N.); (M.G.)
- Equine Research Institute, the Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi 329-0412, Japan;
| | - Johanna Entenfellner
- Equine Clinic, School of Veterinary Medicine, Bischofsholer Damm 15, 30173 Hannover, Germany;
| | - Cecilia Olguin-Perglione
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología, De Los Reseros y Dr. Nicolás Repetto S/N, Hurlingham, Buenos Aires B1686IGC, Argentina;
| | - Marie Garvey
- Virology Unit, The Irish Equine Centre, Naas, Co. Kildare, W91 RH93 Johnstown, Ireland; (J.G.); (M.N.); (M.G.)
| | - Tao Qi Huang Fu
- Centre for Animal and Veterinary Sciences, Professional and Scientific Services, Animal and Veterinary Service, National Parks Board, 1 Cluny Road, Singapore 259569, Singapore; (T.Q.H.F.); (C.J.F.)
| | - Monica Venner
- Pferdeklinik Destedt GmbH, Destedt, Trift 4, 38162 Cremlingen, Germany;
| | - Takashi Yamanaka
- Equine Research Institute, the Japan Racing Association, 1400-4 Shiba, Shimotsuke, Tochigi 329-0412, Japan;
| | - María Barrandeguy
- Escuela de Veterinaria, Universidad del Salvador, Champagnat 1599, Ruta Panamericana km 54.5 Pilar, Buenos Aires B1630AHU, Argentina;
| | - Charlene Judith Fernandez
- Centre for Animal and Veterinary Sciences, Professional and Scientific Services, Animal and Veterinary Service, National Parks Board, 1 Cluny Road, Singapore 259569, Singapore; (T.Q.H.F.); (C.J.F.)
| |
Collapse
|
32
|
Nimmanapalli R, Gupta V. Vaccines the tugboat for prevention-based animal production. GENOMICS AND BIOTECHNOLOGICAL ADVANCES IN VETERINARY, POULTRY, AND FISHERIES 2020. [PMCID: PMC7149732 DOI: 10.1016/b978-0-12-816352-8.00020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The world population is growing at a faster rate day-by-day and the demands for animal products are also increasing to meet the food security worldwide. For sustained production of animals products, healthy livestock and poultry farming are the major concerns as animals are susceptible to various infectious agents viz. bacteria, virus, and parasites leading to huge economical losses in the form of livestock’s morbidity and mortality. Besides, zoonotic nature of some infectious pathogens of animals is also raising concern for human safety. Vaccination of animals against various diseases present in different geographical regions is a best known strategy for prevention of different disease outbreaks both in organized and unorganized livestock and poultry sectors. Vaccines had played a major role in eradication of different dreaded diseases of livestock sectors globally. In this article we have discussed different vaccine types, various vaccine strategies used for the development of more efficacious and safe vaccines and commercially available vaccines for livestock and poultry.
Collapse
|
33
|
Success and Limitation of Equine Influenza Vaccination: The First Incursion in a Decade of a Florida Clade 1 Equine Influenza Virus that Shakes Protection Despite High Vaccine Coverage. Vaccines (Basel) 2019; 7:vaccines7040174. [PMID: 31684097 PMCID: PMC6963532 DOI: 10.3390/vaccines7040174] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 11/21/2022] Open
Abstract
Every year, several epizooties of equine influenza (EI) are reported worldwide. However, no EI case has been identified in France between 2015 and late 2018, despite an effective field surveillance of the pathogen and the disease. Vaccination against equine influenza virus (EIV) remains to this day one of the most effective methods to prevent or limit EI outbreaks and the lack of detection of the pathogen could be linked to vaccination coverage. The aim of this study was to evaluate EI immunity and vaccine coverage in France through a large-scale serological study. A total of 3004 archived surplus serums from French horses of all ages, breeds and sexes were selected from four different geographical regions and categories (i.e., sanitary check prior to exportation, sale, breeding protocol or illness diagnosis). EIV-specific antibody response was measured by single radial hemolysis (SRH) and an EIV-nucleoprotein (NP) ELISA (used as a DIVA test). Overall immunity coverage against EIV infection (i.e., titers induced by vaccination and/or natural infection above the clinical protection threshold) reached 87.6%. The EIV NP ELISA results showed that 83% of SRH positive serum samples from young horses (≤3 years old) did not have NP antibodies, which indicates that the SRH antibody response was likely induced by EI vaccination alone (the HA recombinant canarypoxvirus-based EI vaccine is mostly used in France) and supports the absence of EIV circulation in French horse populations between 2015 and late 2018, as reported by the French equine infectious diseases surveillance network (RESPE). Results from this study confirm a strong EI immunity in a large cohort of French horses, which provides an explanation to the lack of clinical EI in France in recent years and highlights the success of vaccination against this disease. However, such EI protection has been challenged since late 2018 by the incursion in the EU of a Florida Clade 1 sub-lineage EIV (undetected in France since 2009), which is also reported here.
Collapse
|
34
|
Blanco-Lobo P, Rodriguez L, Reedy S, Oladunni FS, Nogales A, Murcia PR, Chambers TM, Martinez-Sobrido L. A Bivalent Live-Attenuated Vaccine for the Prevention of Equine Influenza Virus. Viruses 2019; 11:v11100933. [PMID: 31614538 PMCID: PMC6832603 DOI: 10.3390/v11100933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
Vaccination remains the most effective approach for preventing and controlling equine influenza virus (EIV) in horses. However, the ongoing evolution of EIV has increased the genetic and antigenic differences between currently available vaccines and circulating strains, resulting in suboptimal vaccine efficacy. As recommended by the World Organization for Animal Health (OIE), the inclusion of representative strains from clade 1 and clade 2 Florida sublineages of EIV in vaccines may maximize the protection against presently circulating viral strains. In this study, we used reverse genetics technologies to generate a bivalent EIV live-attenuated influenza vaccine (LAIV). We combined our previously described clade 1 EIV LAIV A/equine/Ohio/2003 H3N8 (Ohio/03 LAIV) with a newly generated clade 2 EIV LAIV that contains the six internal genes of Ohio/03 LAIV and the HA and NA of A/equine/Richmond/1/2007 H3N8 (Rich/07 LAIV). The safety profile, immunogenicity, and protection efficacy of this bivalent EIV LAIV was tested in the natural host, horses. Vaccination of horses with the bivalent EIV LAIV, following a prime-boost regimen, was safe and able to confer protection against challenge with clade 1 (A/equine/Kentucky/2014 H3N8) and clade 2 (A/equine/Richmond/2007) wild-type (WT) EIVs, as evidenced by a reduction of clinical signs, fever, and virus excretion. This is the first description of a bivalent LAIV for the prevention of EIV in horses that follows OIE recommendations. In addition, since our bivalent EIV LAIV is based on the use of reverse genetics approaches, our results demonstrate the feasibility of using the backbone of clade 1 Ohio/03 LAIV as a master donor virus (MDV) for the production and rapid update of LAIVs for the control and protection against other EIV strains of epidemiological relevance to horses.
Collapse
Affiliation(s)
- Pilar Blanco-Lobo
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| | - Laura Rodriguez
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
- Agencia Española de Medicamentos y Productos Sanitarios, E28022 Madrid, Spain.
| | - Stephanie Reedy
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA.
| | - Fatai S Oladunni
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA.
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
- Center for Animal Health Research- National Institute for Agricultural and Food Research and Technology, Valdeolmos, 28130 Madrid, Spain.
| | - Pablo R Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1AF, UK.
| | - Thomas M Chambers
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA.
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
35
|
Paillot R, Pitel PH, Pronost S, Legrand L, Fougerolle S, Jourdan M, Marcillaud-Pitel C. Florida clade 1 equine influenza virus in France. Vet Rec 2019; 184:101. [PMID: 30655407 DOI: 10.1136/vr.l1203] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Romain Paillot
- LABÉO Frank Duncombe, 1 Route de Rosel, 14053 Caen cedex 4, France
| | | | - Stéphane Pronost
- LABÉO Frank Duncombe, 1 Route de Rosel, 14053 Caen cedex 4, France
| | - Loïc Legrand
- LABÉO Frank Duncombe, 1 Route de Rosel, 14053 Caen cedex 4, France
| | - Stéphanie Fougerolle
- Normandie Univ, UniCaen, Biotargen, 3 rue Nelson Mandela, 14280 Saint-Contest, France
| | - Marion Jourdan
- RESPE, 3 Rue Nelson Mandela, 14280 Saint-Contest, France
| | | |
Collapse
|
36
|
Foamy matters: an update on Quillaja saponins and their use as immunoadjuvants. Future Med Chem 2019; 11:1485-1499. [DOI: 10.4155/fmc-2018-0438] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Immunoadjuvant Quillaja spp. tree saponins stimulate both cellular and humoral responses, significantly widening vaccine target pathogen spectra. Host toxicity of specific saponins, fractions and extracts may be rather low and further reduced using lipid-based delivery systems. Saponins contain a hydrophobic central aglycone decorated with several sugar residues, posing a challenge for viable chemical synthesis. These, however, may provide simpler analogs. Saponin chemistry affords characteristic interactions with cell membranes, which are essential for its mechanism of action. Natural sources include Quillaja saponaria barks and, more recently, Quillaja brasiliensis leaves. Sustainable large-scale supply can use young plants grown in clonal gardens and elicitation treatments. Quillaja genomic studies will most likely buttress future synthetic biology-based saponin production efforts.
Collapse
|
37
|
Martínez-Sobrido L, Peersen O, Nogales A. Temperature Sensitive Mutations in Influenza A Viral Ribonucleoprotein Complex Responsible for the Attenuation of the Live Attenuated Influenza Vaccine. Viruses 2018; 10:E560. [PMID: 30326610 PMCID: PMC6213772 DOI: 10.3390/v10100560] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/03/2018] [Accepted: 10/12/2018] [Indexed: 01/29/2023] Open
Abstract
Live attenuated influenza vaccines (LAIV) have prevented morbidity and mortality associated with influenza viral infections for many years and represent the best therapeutic option to protect against influenza viral infections in humans. However, the development of LAIV has traditionally relied on empirical methods, such as the adaptation of viruses to replicate at low temperatures. These approaches require an extensive investment of time and resources before identifying potential vaccine candidates that can be safely implemented as LAIV to protect humans. In addition, the mechanism of attenuation of these vaccines is poorly understood in some cases. Importantly, LAIV are more efficacious than inactivated vaccines because their ability to mount efficient innate and adaptive humoral and cellular immune responses. Therefore, the design of potential LAIV based on known properties of viral proteins appears to be a highly appropriate option for the treatment of influenza viral infections. For that, the viral RNA synthesis machinery has been a research focus to identify key amino acid substitutions that can lead to viral attenuation and their use in safe, immunogenic, and protective LAIV. In this review, we discuss the potential to manipulate the influenza viral RNA-dependent RNA polymerase (RdRp) complex to generate attenuated forms of the virus that can be used as LAIV for the treatment of influenza viral infections, one of the current and most effective prophylactic options for the control of influenza in humans.
Collapse
Affiliation(s)
- Luis Martínez-Sobrido
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, NY 14642, USA.
| | - Olve Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, CO 80523, USA.
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York, NY 14642, USA.
| |
Collapse
|
38
|
Impact of Mixed Equine Influenza Vaccination on Correlate of Protection in Horses. Vaccines (Basel) 2018; 6:vaccines6040071. [PMID: 30287762 PMCID: PMC6313876 DOI: 10.3390/vaccines6040071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/06/2018] [Accepted: 09/14/2018] [Indexed: 12/27/2022] Open
Abstract
To evaluate the humoral immune response to mixed Equine Influenza vaccination, a common practice in the field, an experimental study was carried out on 42 unvaccinated thoroughbred weanling foals divided into six groups of seven. Three groups were vaccinated using a non-mixed protocol (Equilis® Prequenza-Te, Proteqflu-Te® or Calvenza-03®) and three other groups were vaccinated using a mix of the three vaccines mentioned previously. Each weanling underwent a primary EI vaccination schedule composed of two primary immunisations (V1 and V2) four weeks apart followed by a third boost immunisation (V3) six months later. Antibody responses were monitored until one-year post-V3 by single radial haemolysis (SRH). The results showed similar antibody responses for all groups using mixed EI vaccination and the group exclusively vaccinated with Equilis® Prequenza-TE, which were significantly higher than the other two groups vaccinated with Proteqflu-TE® and Calvenza-03®. All weanlings (100%) failed to seroconvert after V1 and 21% (9/42) still had low or no SRH antibody titres two weeks post-V2. All weanlings had seroconverted and exceeded the clinical protection threshold one month after V3. The poor response to vaccination was primarily observed in groups exclusively vaccinated with Proteqflu-Te® and Calvenza-03®. A large window of susceptibility (3–4.5-month duration) usually called immunity gap was observed after V2 and prior to V3 for all groups. The SRH antibody level was maintained above the clinical protection threshold for three months post-V3 for the groups exclusively vaccinated with Proteqflu-Te® and Calvenza-03®, and six months to one year for groups using mixed EI vaccination or exclusively vaccinated with Equilis® Prequenza-Te. This study demonstrates for the first time that the mix of EI vaccines during the primary vaccination schedule has no detrimental impact on the correlate of protection against EIV infection.
Collapse
|
39
|
Singh RK, Dhama K, Karthik K, Khandia R, Munjal A, Khurana SK, Chakraborty S, Malik YS, Virmani N, Singh R, Tripathi BN, Munir M, van der Kolk JH. A Comprehensive Review on Equine Influenza Virus: Etiology, Epidemiology, Pathobiology, Advances in Developing Diagnostics, Vaccines, and Control Strategies. Front Microbiol 2018; 9:1941. [PMID: 30237788 PMCID: PMC6135912 DOI: 10.3389/fmicb.2018.01941] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/31/2018] [Indexed: 01/23/2023] Open
Abstract
Among all the emerging and re-emerging animal diseases, influenza group is the prototype member associated with severe respiratory infections in wide host species. Wherein, Equine influenza (EI) is the main cause of respiratory illness in equines across globe and is caused by equine influenza A virus (EIV-A) which has impacted the equine industry internationally due to high morbidity and marginal morality. The virus transmits easily by direct contact and inhalation making its spread global and leaving only limited areas untouched. Hitherto reports confirm that this virus crosses the species barriers and found to affect canines and few other animal species (cat and camel). EIV is continuously evolving with changes at the amino acid level wreaking the control program a tedious task. Until now, no natural EI origin infections have been reported explicitly in humans. Recent advances in the diagnostics have led to efficient surveillance and rapid detection of EIV infections at the onset of outbreaks. Incessant surveillance programs will aid in opting a better control strategy for this virus by updating the circulating vaccine strains. Recurrent vaccination failures against this virus due to antigenic drift and shift have been disappointing, however better understanding of the virus pathogenesis would make it easier to design effective vaccines predominantly targeting the conserved epitopes (HA glycoprotein). Additionally, the cold adapted and canarypox vectored vaccines are proving effective in ceasing the severity of disease. Furthermore, better understanding of its genetics and molecular biology will help in estimating the rate of evolution and occurrence of pandemics in future. Here, we highlight the advances occurred in understanding the etiology, epidemiology and pathobiology of EIV and a special focus is on designing and developing effective diagnostics, vaccines and control strategies for mitigating the emerging menace by EIV.
Collapse
Affiliation(s)
- Raj K. Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | | | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, West Tripura, India
| | - Yashpal S. Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | | | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Johannes H. van der Kolk
- Division of Clinical Veterinary Medicine, Swiss Institute for Equine Medicine (ISME), Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| |
Collapse
|
40
|
Dilai M, Piro M, Fougerolle S, El Harrak M, Mahir W, El Mourid R, Legrand L, Paillot R, Fassi Fihri O. Serological investigation of racehorse vaccination against equine influenza in Morocco. Vet Microbiol 2018; 223:153-159. [DOI: 10.1016/j.vetmic.2018.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 11/16/2022]
|
41
|
The Immunity Gap Challenge: Protection against a Recent Florida Clade 2 Equine Influenza Strain. Vaccines (Basel) 2018; 6:vaccines6030038. [PMID: 30004410 PMCID: PMC6161116 DOI: 10.3390/vaccines6030038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/02/2022] Open
Abstract
Vaccination is one of the most effective tools for limiting the impact of equine influenza (EI). The humoral immunity established following a primary vaccination course can decrease significantly between the second (V2) and third immunisations (V3), leaving some horses insufficiently protected for several weeks. This so-called “immunity gap” poses a challenge to all EI vaccines. During this period, the EI infection of vaccinated animals may be followed by marked clinical signs and virus shedding. However, several EI vaccines have been shown to stimulate equine influenza virus (EIV)-specific cell-mediated immunity, which is likely to play a role in protection against EIV infection and/or mitigate the clinical and virological signs of EI. Reducing the interval between V2 and V3 has been shown to be counterproductive to longer-term immunity. Further research is needed to define and address the “immunity gap” in horses. This study aimed to measure the level of protection induced by a whole inactivated, ISCOMatrix adjuvanted, EI and tetanus vaccine (Equilis Prequenza-Te) when challenged during the immunity gap (i.e., immediately before the recommended boost immunisation, more than 5 months after V2) using infection with a recent heterologous Florida Clade 2 (FC2) equine influenza virus (EIV) strain. This vaccine was tested in a Welsh mountain pony model. A group of seven ponies was vaccinated twice, 4 weeks apart. The protective antibody response was measured and ponies were challenged, along with 5 unvaccinated control ponies, by experimental infection with the FC2 A/eq/Northamptonshire/1/13 EIV strain, 158 days (around 5.2 months) after V2 and their clinical signs and virus shedding were monitored. EI serology was measured by single radial haemolysis (SRH) and haemagglutination inhibition (HI). Clinical signs and virus shedding (measured by qRT-PCR and hen’s egg titration) were compared with controls. All vaccinates had detectable, low SRH antibody titres and most had detectable, low HI titres. Significant clinical and virological protection was observed in vaccinates (p < 0.05), supporting the good performance of this vaccine against a recent EIV strain. In this study, the impact of the immunity gap in ponies was limited after primary vaccination with this whole inactivated, ISCOMatrix adjuvanted EI and tetanus vaccine (Equilis Prequenza-Te) when infected several months after V2 with a recent FC2 strain, which is representative of EIV circulating in the EU.
Collapse
|
42
|
Spence KL, O'Sullivan TL, Poljak Z, Greer AL. Using a computer simulation model to examine the impact of biosecurity measures during a facility-level outbreak of equine influenza. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2018; 82:89-96. [PMID: 29755187 PMCID: PMC5914078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/29/2017] [Indexed: 06/08/2023]
Abstract
On-farm biosecurity measures are an important part of a control plan to minimize the introduction and spread of infectious diseases, such as equine influenza, in an equine facility. It can be challenging, however, to evaluate the efficacy of biosecurity measures under field conditions. We used an agent-based computer simulation model to describe the impact of: i) preventive vaccination; ii) reduced horse-to-horse contact; and iii) a combination of vaccination and reduced contact during an outbreak of equine influenza in a simulated horse facility. The model demonstrated that the most effective intervention was a combination of a high proportion of recently vaccinated horses and a substantial reduction in horse-to-horse contact once equine influenza had been identified in the facility. This study highlights the importance of compliance when implementing biosecurity measures, such as facility-level infection control practices, on horse farms.
Collapse
Affiliation(s)
- Kelsey L Spence
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1
| | - Terri L O'Sullivan
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1
| | - Zvonimir Poljak
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1
| | - Amy L Greer
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1
| |
Collapse
|
43
|
Rodriguez L, Reedy S, Nogales A, Murcia PR, Chambers TM, Martinez-Sobrido L. Development of a novel equine influenza virus live-attenuated vaccine. Virology 2018; 516:76-85. [PMID: 29331866 PMCID: PMC5840510 DOI: 10.1016/j.virol.2018.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 11/16/2022]
Abstract
H3N8 equine influenza virus (EIV) is an important and significant respiratory pathogen of horses. EIV is enzootic in Europe and North America, mainly due to the suboptimal efficacy of current vaccines. We describe, for the first time, the generation of a temperature sensitive (ts) H3N8 EIV live-attenuated influenza vaccine (LAIV) using reverse-genetics approaches. Our EIV LAIV was attenuated (att) in vivo and able to induce, upon a single intranasal administration, protection against H3N8 EIV wild-type (WT) challenge in both a mouse model and the natural host, the horse. Notably, since our EIV LAIV was generated using reverse genetics, the vaccine can be easily updated against drifting or emerging strains of EIV using the safety backbone of our EIV LAIV as master donor virus (MDV). These results demonstrate the feasibility of implementing a novel EIV LAIV approach for the prevention and control of currently circulating H3N8 EIVs in horse populations.
Collapse
Affiliation(s)
- Laura Rodriguez
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Stephanie Reedy
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY, United States
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Pablo R Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Thomas M Chambers
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY, United States
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States.
| |
Collapse
|
44
|
Spence KL, O’Sullivan TL, Poljak Z, Greer AL. Estimating the potential for disease spread in horses associated with an equestrian show in Ontario, Canada using an agent-based model. Prev Vet Med 2018; 151:21-28. [DOI: 10.1016/j.prevetmed.2017.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 10/18/2022]
|
45
|
Ibañez LI, Caldevilla CA, Paredes Rojas Y, Mattion N. Genetic and subunit vaccines based on the stem domain of the equine influenza hemagglutinin provide homosubtypic protection against heterologous strains. Vaccine 2018; 36:1592-1598. [PMID: 29454522 DOI: 10.1016/j.vaccine.2018.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/27/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
Abstract
H3N8 influenza virus strains have been associated with infectious disease in equine populations throughout the world. Although current vaccines for equine influenza stimulate a protective humoral immune response against the surface glycoproteins, disease in vaccinated horses has been frequently reported, probably due to poor induction of cross-reactive antibodies against non-matching strains. This work describes the performance of a recombinant protein vaccine expressed in prokaryotic cells (ΔHAp) and of a genetic vaccine (ΔHAe), both based on the conserved stem region of influenza hemagglutinin (HA) derived from A/equine/Argentina/1/93 (H3N8) virus. Sera from mice inoculated with these immunogens in different combinations and regimes presented reactivity in vitro against highly divergent influenza virus strains belonging to phylogenetic groups 1 and 2 (H1 and H3 subtypes, respectively), and conferred robust protection against a lethal challenge with both the homologous equine strain (100%) and the homosubtypic human strain A/Victoria/3/75 (H3N2) (70-100%). Animals vaccinated with the same antigens but challenged with the human strain A/PR/8/34 (H1N1), belonging to the phylogenetic group 1, were not protected (0-33%). Combination of protein and DNA immunogens showed higher reactivity to non-homologous strains than protein alone, although all vaccines were permissive for lung infection.
Collapse
Affiliation(s)
- Lorena Itatí Ibañez
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX Ciudad de Buenos Aires, Argentina.
| | - Cecilia Andrea Caldevilla
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX Ciudad de Buenos Aires, Argentina.
| | - Yesica Paredes Rojas
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX Ciudad de Buenos Aires, Argentina.
| | - Nora Mattion
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Saladillo 2468, C1440FFX Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
46
|
Rajão DS, Pérez DR. Universal Vaccines and Vaccine Platforms to Protect against Influenza Viruses in Humans and Agriculture. Front Microbiol 2018; 9:123. [PMID: 29467737 PMCID: PMC5808216 DOI: 10.3389/fmicb.2018.00123] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/18/2018] [Indexed: 01/22/2023] Open
Abstract
Influenza virus infections pose a significant threat to public health due to annual seasonal epidemics and occasional pandemics. Influenza is also associated with significant economic losses in animal production. The most effective way to prevent influenza infections is through vaccination. Current vaccine programs rely heavily on the vaccine's ability to stimulate neutralizing antibody responses to the hemagglutinin (HA) protein. One of the biggest challenges to an effective vaccination program lies on the fact that influenza viruses are ever-changing, leading to antigenic drift that results in escape from earlier immune responses. Efforts toward overcoming these challenges aim at improving the strength and/or breadth of the immune response. Novel vaccine technologies, the so-called universal vaccines, focus on stimulating better cross-protection against many or all influenza strains. However, vaccine platforms or manufacturing technologies being tested to improve vaccine efficacy are heterogeneous between different species and/or either tailored for epidemic or pandemic influenza. Here, we discuss current vaccines to protect humans and animals against influenza, highlighting challenges faced to effective and uniform novel vaccination strategies and approaches.
Collapse
Affiliation(s)
- Daniela S. Rajão
- Department of Population Health, University of Georgia, Athens, GA, United States
| | | |
Collapse
|
47
|
Sreenivasan CC, Jandhyala SS, Luo S, Hause BM, Thomas M, Knudsen DEB, Leslie-Steen P, Clement T, Reedy SE, Chambers TM, Christopher-Hennings J, Nelson E, Wang D, Kaushik RS, Li F. Phylogenetic Analysis and Characterization of a Sporadic Isolate of Equine Influenza A H3N8 from an Unvaccinated Horse in 2015. Viruses 2018; 10:v10010031. [PMID: 29324680 PMCID: PMC5795444 DOI: 10.3390/v10010031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/07/2018] [Accepted: 01/09/2018] [Indexed: 01/08/2023] Open
Abstract
Equine influenza, caused by the H3N8 subtype, is a highly contagious respiratory disease affecting equid populations worldwide and has led to serious epidemics and transboundary pandemics. This study describes the phylogenetic characterization and replication kinetics of recently-isolated H3N8 virus from a nasal swab obtained from a sporadic case of natural infection in an unvaccinated horse from Montana, USA. The nasal swab tested positive for equine influenza by Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (RT-PCR). Further, the whole genome sequencing of the virus confirmed that it was the H3N8 subtype and was designated as A/equine/Montana/9564-1/2015 (H3N8). A BLASTn search revealed that the polymerase basic protein 1 (PB1), polymerase acidic (PA), hemagglutinin (HA), nucleoprotein (NP), and matrix (M) segments of this H3N8 isolate shared the highest percentage identity to A/equine/Tennessee/29A/2014 (H3N8) and the polymerase basic protein 2 (PB2), neuraminidase (NA), and non-structural protein (NS) segments to A/equine/Malaysia/M201/2015 (H3N8). Phylogenetic characterization of individual gene segments, using currently available H3N8 viral genomes, of both equine and canine origin, further established that A/equine/Montana/9564-1/2015 belonged to the Florida Clade 1 viruses. Interestingly, replication kinetics of this H3N8 virus, using airway derived primary cells from multiple species, such as equine, swine, bovine, and human lung epithelial cells, demonstrated appreciable titers, when compared to Madin-Darby canine kidney epithelial cells. These findings indicate the broad host spectrum of this virus isolate and suggest the potential for cross-species transmissibility.
Collapse
Affiliation(s)
- Chithra C. Sreenivasan
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (C.C.S.); (S.S.J.); (S.L.); (D.W.); (R.S.K.)
| | - Sunayana S. Jandhyala
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (C.C.S.); (S.S.J.); (S.L.); (D.W.); (R.S.K.)
| | - Sisi Luo
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (C.C.S.); (S.S.J.); (S.L.); (D.W.); (R.S.K.)
| | - Ben M. Hause
- Cambridge Technologies, Oxford Street Worthington, MN 56187, USA;
| | - Milton Thomas
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (M.T.); (D.E.B.K.); (P.L.-S.); (T.C.); (J.C.-H.); (E.N.)
| | - David E. B. Knudsen
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (M.T.); (D.E.B.K.); (P.L.-S.); (T.C.); (J.C.-H.); (E.N.)
| | - Pamela Leslie-Steen
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (M.T.); (D.E.B.K.); (P.L.-S.); (T.C.); (J.C.-H.); (E.N.)
| | - Travis Clement
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (M.T.); (D.E.B.K.); (P.L.-S.); (T.C.); (J.C.-H.); (E.N.)
| | - Stephanie E. Reedy
- Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (S.E.R.); (T.M.C.)
| | - Thomas M. Chambers
- Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA; (S.E.R.); (T.M.C.)
| | - Jane Christopher-Hennings
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (M.T.); (D.E.B.K.); (P.L.-S.); (T.C.); (J.C.-H.); (E.N.)
| | - Eric Nelson
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (M.T.); (D.E.B.K.); (P.L.-S.); (T.C.); (J.C.-H.); (E.N.)
| | - Dan Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (C.C.S.); (S.S.J.); (S.L.); (D.W.); (R.S.K.)
- BioSNTR, Brookings, SD 57007, USA
| | - Radhey S. Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (C.C.S.); (S.S.J.); (S.L.); (D.W.); (R.S.K.)
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (M.T.); (D.E.B.K.); (P.L.-S.); (T.C.); (J.C.-H.); (E.N.)
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA; (C.C.S.); (S.S.J.); (S.L.); (D.W.); (R.S.K.)
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (M.T.); (D.E.B.K.); (P.L.-S.); (T.C.); (J.C.-H.); (E.N.)
- BioSNTR, Brookings, SD 57007, USA
- Correspondence:
| |
Collapse
|
48
|
Equine Vaccines: How, When and Why? Report of the Vaccinology Session, French Equine Veterinarians Association, 2016, Reims. Vaccines (Basel) 2017; 5:vaccines5040046. [PMID: 29207516 PMCID: PMC5748612 DOI: 10.3390/vaccines5040046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/15/2017] [Accepted: 11/29/2017] [Indexed: 11/21/2022] Open
Abstract
To date, vaccination is one of the most efficient methods of prevention against equine infectious diseases. The vaccinology session, which was organised during the annual meeting of the French Equine Veterinarians Association (AVEF) at Reims (France) in 2016, aimed to approach three subjects of importance for the equine industry. Vaccination against three major equine diseases were used as examples: equine influenza (equine influenza virus), rhinopneumonitis (equine herpes virus 1/4), and tetanus (Clostridium tetani neuro-toxin). (1) Emergency vaccination: while it has been very successful to reduce the impact of equine influenza epizooties and it is also recommended for tetanus in case of surgery and accident, the benefit of emergency vaccination against equine herpes virus 1/4 remains arguable; (2) Compatibility of equine vaccines from different brands: despite being a frequent concerns for equine veterinarians, little information is available about the compatibility of equine vaccines from different commercial origins. The consequence of mixing different equine vaccines targeting the same disease is believed to be limited but scientific evidences are sparse; and, (3) Laps vaccination and vaccine shortage: they could have serious consequences in terms of protection and their impact should be evaluated on a case by case basis, taking into account the risk of contact with the pathogen and the effect on herd immunity.
Collapse
|
49
|
Refinement of the equine influenza model in the natural host: A meta-analysis to determine the benefits of individual nebulisation for experimental infection and vaccine evaluation in the face of decreased strain pathogenicity. Vet Microbiol 2017; 211:150-159. [PMID: 29102112 DOI: 10.1016/j.vetmic.2017.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 11/23/2022]
Abstract
Equine Influenza (EI) is an important respiratory disease of horses caused by H3N8 equine influenza viruses (EIV). Vaccination is a key strategy to prevent or control this disease. However, EIV undergoes continuous antigenic drift and whilst numerous EI vaccines are commercially available worldwide, an accurate evaluation of their efficacy is frequently required through clinical trials conducted in the natural host. Room nebulisation is one of the chosen methods to challenge horses during EI vaccine studies. A potential decreased pathogenicity observed with recent Florida Clade 2 (FC2) EIV isolates have increased the heterogeneity of the clinical response and virus shedding measured after infection by room nebulisation, which reduced the statistical power of studies. Our objectives were to compare clinical and virological parameters following experimental infection with several different EIV strains and to confirm that individual nebulisation is a model refinement that prevents an increase of the number of animals per group. This study is a retrospective comparison and meta-analysis of clinical and virological results collected from 9 independent EIV infection studies in the natural host. Naïve Welsh mountain ponies were experimentally infected by room or individual nebulisation with FC2 EIV strains, including A/equine/Richmond/1/07 (R/07), A/equine/East Renfrewshire/11 (ER/11), A/equine/Cambremer/1/2012 (C/12) and A/equine/Northamptonshire/1/13 (N/1/13). The retrospective meta-analysis confirmed a decreased pathogenicity of the EIV ER/11 and C/12 strains when compared with R/07. Experimental infection by individual nebulisation improved the clinical and virological parameters induced by recent FC2 strains, when compared with conventional room nebulisation. In conclusion, individual nebulisation offers a better control of the challenge dose administered and a greater homogeneity of the response measured in control animals. This in turn, helps maintain the number of animals per group to the minimum necessary required to obtain meaningful results in vaccine efficacy studies, which adheres to the 3Rs (Replacement, Reduction and Refinement) principles.
Collapse
|
50
|
Pavulraj S, Virmani N, Bera BC, Joshi A, Anand T, Virmani M, Singh R, Singh RK, Tripathi BN. Immunogenicity and protective efficacy of inactivated equine influenza (H3N8) virus vaccine in murine model. Vet Microbiol 2017; 210:188-196. [PMID: 29103691 DOI: 10.1016/j.vetmic.2017.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 02/04/2023]
Abstract
Equine influenza viruses (EIVs) are responsible for acute contagious respiratory infection in equines and the disease remains a major threat for equine population throughout the world despite vaccination strategies in place. The present study was aimed to assess the suitability of BALB/c mice as a potential small animal model for preliminary screening of EI vaccine candidates. For this, we evaluated the immunogenicity and protective efficacy of an inactivated EIV (H3N8) vaccine in BALB/c mouse model after challenge with homologous H3N8 virus (Clade 2 virus, Florida sublineage) through serology, clinical signs, gross and histopathology lesions with grading, immunohistochemistry and virus quantification. Serological responses in immunized mice were evaluated by haemagglutination inhibition assay (HAI) and antibodies were subtyped by ELISA. The vaccine induced optimum protective antibody titre on 49 dpi along with balanced Th1/Th2 responses. Immunized mice were well protected against EIV challenge as evident by significant rise in serum antibody titre which concurred with mild clinical signs, early recovery, lower gross and histopathological lesions score, less severe intensity of viral antigen distribution, restricted virus replication in respiratory tract and less virus detection in nasal washes for short duration. The duration of the viral load was also lower and only for brief period as compared to unvaccinated challenged mice. In conclusion, induction of H3N8 specific antibody response and protection against H3N8 challenge proves that egg grown inactivated H3N8 whole virus vaccine would provide an effective intercession against H3N8 virus. In addition, BALB/c mouse can serve as an attractive tool for adjudging protective efficacy of vaccine candidates prior to final testing in equines.
Collapse
Affiliation(s)
- Selvaraj Pavulraj
- ICAR-National Research Centre on Equines, Hisar, Haryana, 125001, India; Indian Veterinary Research Institute, Bareilly, UP, 243122, India
| | - Nitin Virmani
- ICAR-National Research Centre on Equines, Hisar, Haryana, 125001, India.
| | | | - Alok Joshi
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary & Animal Sciences, Hisar, Haryana, 125003, India
| | - Taruna Anand
- ICAR-National Research Centre on Equines, Hisar, Haryana, 125001, India
| | - Meenakshi Virmani
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary & Animal Sciences, Hisar, Haryana, 125003, India
| | - Rajendra Singh
- Indian Veterinary Research Institute, Bareilly, UP, 243122, India
| | - Raj Kumar Singh
- Indian Veterinary Research Institute, Bareilly, UP, 243122, India
| | | |
Collapse
|