1
|
Qi F, Chen X, Wang J, Niu X, Li S, Huang S, Ran X. Genome-wide characterization of structure variations in the Xiang pig for genetic resistance to African swine fever. Virulence 2024; 15:2382762. [PMID: 39092797 PMCID: PMC11299630 DOI: 10.1080/21505594.2024.2382762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/07/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
African swine fever (ASF) is a rapidly fatal viral haemorrhagic fever in Chinese domestic pigs. Although very high mortality is observed in pig farms after an ASF outbreak, clinically healthy and antibody-positive pigs are found in those farms, and viral detection is rare from these pigs. The ability of pigs to resist ASF viral infection may be modulated by host genetic variations. However, the genetic basis of the resistance of domestic pigs against ASF remains unclear. We generated a comprehensive set of structural variations (SVs) in a Chinese indigenous Xiang pig with ASF-resistant (Xiang-R) and ASF-susceptible (Xiang-S) phenotypes using whole-genome resequencing method. A total of 53,589 nonredundant SVs were identified, with an average of 25,656 SVs per individual in the Xiang pig genome, including insertion, deletion, inversion and duplication variations. The Xiang-R group harboured more SVs than the Xiang-S group. The F-statistics (FST) was carried out to reveal genetic differences between two populations using the resequencing data at each SV locus. We identified 2,414 population-stratified SVs and annotated 1,152 Ensembl genes (including 986 protein-coding genes), in which 1,326 SVs might disturb the structure and expression of the Ensembl genes. Those protein-coding genes were mainly enriched in the Wnt, Hippo, and calcium signalling pathways. Other important pathways associated with the ASF viral infection were also identified, such as the endocytosis, apoptosis, focal adhesion, Fc gamma R-mediated phagocytosis, junction, NOD-like receptor, PI3K-Akt, and c-type lectin receptor signalling pathways. Finally, we identified 135 candidate adaptive genes overlapping 166 SVs that were involved in the virus entry and virus-host cell interactions. The fact that some of population-stratified SVs regions detected as selective sweep signals gave another support for the genetic variations affecting pig resistance against ASF. The research indicates that SVs play an important role in the evolutionary processes of Xiang pig adaptation to ASF infection.
Collapse
Affiliation(s)
- Fenfang Qi
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| | - Xia Chen
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| | - Jiafu Wang
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| | - Xi Niu
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| | - Sheng Li
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| | - Shihui Huang
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| | - Xueqin Ran
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, College of Animal Science, Guizhou University, Guiyang, Guizhou Province, China
| |
Collapse
|
2
|
Ruedas-Torres I, Thi to Nga B, Salguero FJ. Pathogenicity and virulence of African swine fever virus. Virulence 2024; 15:2375550. [PMID: 38973077 PMCID: PMC11232652 DOI: 10.1080/21505594.2024.2375550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024] Open
Abstract
African swine fever (ASF) is a devastating disease with a high impact on the pork industry worldwide. ASF virus (ASFV) is a very complex pathogen, the sole member of the family Asfaviridae, which induces a state of immune suppression in the host through infection of myeloid cells and apoptosis of lymphocytes. Moreover, haemorrhages are the other main pathogenic effect of ASFV infection in pigs, related to the infection of endothelial cells, as well as the activation and structural changes of this cell population by proinflammatory cytokine upregulation within bystander monocytes and macrophages. There are still many gaps in the knowledge of the role of proteins produced by the ASFV, which is related to the difficulty in producing a safe and effective vaccine to combat the disease, although few candidates have been approved for use in Southeast Asia in the past couple of years.
Collapse
Affiliation(s)
- Ines Ruedas-Torres
- Vaccine Development and Evaluation Centre (VDEC), United Kingdom Health Security Agency, Salisbury, UK
| | - Bui Thi to Nga
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Francisco J. Salguero
- Vaccine Development and Evaluation Centre (VDEC), United Kingdom Health Security Agency, Salisbury, UK
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
3
|
Auer A, Cattoli G, Padungtod P, Lamien CE, Oh Y, Jayme S, Rozstalnyy A. Challenges in the Application of African Swine Fever Vaccines in Asia. Animals (Basel) 2024; 14:2473. [PMID: 39272258 PMCID: PMC11393951 DOI: 10.3390/ani14172473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
This paper explores the significance of quality vaccines in managing ASF in Asia, where it poses a substantial threat to the pork industry. It emphasizes the risks associated with substandard vaccines, including the emergence of new virus strains that complicate disease control. Highlighting recent advancements in vaccine deployment in Vietnam, the paper calls for rigorous testing and regulations to guarantee vaccine effectiveness and safety. The authors advocate for the implementation of vaccines with the inclusion of differentiating infected from vaccinated animals (DIVA), which enhances disease management strategies in both endemic and non-endemic regions. The conclusion underscores the necessity of stringent standards in vaccine development and strict adherence to regulatory guidelines to ensure successful ASF management and maintain public trust in the vaccines.
Collapse
Affiliation(s)
- Agathe Auer
- Joint FAO/IAEA Center, 2444 Seibersdorf, Austria
- Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| | - Giovanni Cattoli
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Padua, Italy
| | - Pawin Padungtod
- Food and Agriculture Organization of the United Nations (FAO), Representation in Vietnam, Hanoi 11112, Vietnam
| | | | - Yooni Oh
- Food and Agriculture Organization of the United Nations (FAO), Regional Office for Asia and the Pacific, Bangkok 10200, Thailand
| | - Sarah Jayme
- Food and Agriculture Organization of the United Nations (FAO), Regional Office for Asia and the Pacific, Bangkok 10200, Thailand
| | - Andriy Rozstalnyy
- Food and Agriculture Organization of the United Nations (FAO), 00153 Rome, Italy
| |
Collapse
|
4
|
He J, Li J, Luo M, Liu Y, Sun J, Yao L. Identification of two novel linear epitopes on the E165R protein of African swine fever virus recognized by monoclonal antibodies. Front Vet Sci 2024; 11:1392350. [PMID: 39166172 PMCID: PMC11333337 DOI: 10.3389/fvets.2024.1392350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
African swine fever (ASF) is a highly fatal infectious disease in pigs, caused by the African swine fever virus (ASFV). It is characterized by short disease duration and high morbidity and mortality. In August 2018, ASF was first reported in China and it subsequently spread rapidly throughout the country, causing serious economic losses for the Chinese pig industry. Early detection plays a critical role in preventing and controlling ASF because there is currently no effective vaccine or targeted therapeutic medication available. Additionally, identifying conserved protective antigenic epitopes of ASFV is essential for the development of diagnostic reagents. The E165R protein, which is highly expressed in the early stages of ASFV infection, can serve as an important indicator for early detection. In this study, we successfully obtained high purity soluble prokaryotic expression of the E165R protein. We then utilized the purified recombinant E165R protein for immunization in mice to prepare monoclonal antibodies (mAbs) using the hybridoma fusion technique. After three subclonal screens, we successfully obtained three mAbs against ASFV E165R protein in cells named 1B7, 1B8, and 10B8. Through immunofluorescence assay (IFA) and Western blot, we confirmed that the prepared mAbs specifically recognize the baculovirus-expressed E165R protein. By using overlapping truncated E165R protein and overlapping peptide scanning analysis, we tentatively identified two novel linear B cell epitopes (13EAEAYYPPSV22 and 55VACEHMGKKC64) that are highly conserved in genotype I and genotype II of ASFV. Thus, as a detection antibody, it has the capability to detect ASFV across a wide range of genotypes, providing valuable information for the development of related immunodiagnostic reagents.
Collapse
Affiliation(s)
- Jian He
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Field Observation and Research Station of Headwork Wetland Ecosystem of The Central Route of South-to-North Water Diversion Project, School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jieqiong Li
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Field Observation and Research Station of Headwork Wetland Ecosystem of The Central Route of South-to-North Water Diversion Project, School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Mingzhan Luo
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Field Observation and Research Station of Headwork Wetland Ecosystem of The Central Route of South-to-North Water Diversion Project, School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Yangkun Liu
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Field Observation and Research Station of Headwork Wetland Ecosystem of The Central Route of South-to-North Water Diversion Project, School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lunguang Yao
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Field Observation and Research Station of Headwork Wetland Ecosystem of The Central Route of South-to-North Water Diversion Project, School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China
| |
Collapse
|
5
|
Venkateswaran D, Prakash A, Nguyen QA, Salman M, Suntisukwattana R, Atthaapa W, Tantituvanont A, Lin H, Songkasupa T, Nilubol D. Comprehensive Characterization of the Genetic Landscape of African Swine Fever Virus: Insights into Infection Dynamics, Immunomodulation, Virulence and Genes with Unknown Function. Animals (Basel) 2024; 14:2187. [PMID: 39123713 PMCID: PMC11311002 DOI: 10.3390/ani14152187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
African Swine Fever (ASF) is a lethal contagious hemorrhagic viral disease affecting the swine population. The causative agent is African Swine Fever Virus (ASFV). There is no treatment or commercial vaccine available at present. This virus poses a significant threat to the global swine industry and economy, with 100% mortality rate in acute cases. ASFV transmission occurs through both direct and indirect contact, with control measures limited to early detection, isolation, and culling of infected pigs. ASFV exhibits a complex genomic structure and encodes for more than 50 structural and 100 non-structural proteins and has 150 to 167 open reading frames (ORFs). While many of the proteins are non-essential for viral replication, they play crucial roles in mediating with the host to ensure longevity and transmission of virus in the host. The dynamic nature of ASFV research necessitates constant updates, with ongoing exploration of various genes and their functions, vaccine development, and other ASF-related domains. This comprehensive review aims to elucidate the structural and functional roles of both newly discovered and previously recorded genes involved in distinct stages of ASFV infection and immunomodulation. Additionally, the review discusses the virulence genes and genes with unknown functions, and proposes future interventions.
Collapse
Affiliation(s)
- Dhithya Venkateswaran
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anwesha Prakash
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Quynh Anh Nguyen
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Muhammad Salman
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Roypim Suntisukwattana
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Waranya Atthaapa
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Angkana Tantituvanont
- Department of Pharmaceutic and Industrial Pharmacies, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hongyao Lin
- MSD Animal Health Innovation Pte Ltd., Singapore 718847, Singapore
| | - Tapanut Songkasupa
- National Institute of Animal Health, Department of Livestock Development, 50/2 Kasetklang, Phahonyothin 45-15, Chatuchak, Bangkok 10900, Thailand
| | - Dachrit Nilubol
- Swine Viral Evolution and Vaccine Development Research Unit, Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Shen D, Zhang G, Weng X, Liu R, Liu Z, Sheng X, Zhang Y, Liu Y, Mu Y, Zhu Y, Sun E, Zhang J, Li F, Xia C, Ge J, Liu Z, Bu Z, Zhao D. A genome-wide CRISPR/Cas9 knockout screen identifies TMEM239 as an important host factor in facilitating African swine fever virus entry into early endosomes. PLoS Pathog 2024; 20:e1012256. [PMID: 39024394 PMCID: PMC11288436 DOI: 10.1371/journal.ppat.1012256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/30/2024] [Accepted: 05/13/2024] [Indexed: 07/20/2024] Open
Abstract
African swine fever (ASF) is a highly contagious, fatal disease of pigs caused by African swine fever virus (ASFV). The complexity of ASFV and our limited understanding of its interactions with the host have constrained the development of ASFV vaccines and antiviral strategies. To identify host factors required for ASFV replication, we developed a genome-wide CRISPR knockout (GeCKO) screen that contains 186,510 specific single guide RNAs (sgRNAs) targeting 20,580 pig genes and used genotype II ASFV to perform the GeCKO screen in wild boar lung (WSL) cells. We found that knockout of transmembrane protein 239 (TMEM239) significantly reduced ASFV replication. Further studies showed that TMEM239 interacted with the early endosomal marker Rab5A, and that TMEM239 deletion affected the co-localization of viral capsid p72 and Rab5A shortly after viral infection. An ex vivo study showed that ASFV replication was significantly reduced in TMEM239-/- peripheral blood mononuclear cells from TMEM239 knockout piglets. Our study identifies a novel host factor required for ASFV replication by facilitating ASFV entry into early endosomes and provides insights for the development of ASF-resistant breeding.
Collapse
Affiliation(s)
- Dongdong Shen
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Guigen Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaogang Weng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Renqiang Liu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhiheng Liu
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Xiangpeng Sheng
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuting Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Yan Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Yanshuang Mu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Yuanmao Zhu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Encheng Sun
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiwen Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fang Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, Engineering Research Center of Intelligent Breeding and Farming of Pig in Northern Cold Region, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Zhigao Bu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dongming Zhao
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
7
|
Jackman JA, Hakobyan A, Grigoryan R, Izmailyan R, Elrod CC, Zakaryan H. Antiviral screening of natural, anti-inflammatory compound library against African swine fever virus. Virol J 2024; 21:95. [PMID: 38664855 PMCID: PMC11046949 DOI: 10.1186/s12985-024-02374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND African swine fever virus (ASFV) is a major threat to pig production and the lack of effective vaccines underscores the need to develop robust antiviral countermeasures. Pathologically, a significant elevation in pro-inflammatory cytokine production is associated with ASFV infection in pigs and there is high interest in identifying dual-acting natural compounds that exhibit antiviral and anti-inflammatory activities. METHODS Using the laboratory-adapted ASFV BA71V strain, we screened a library of 297 natural, anti-inflammatory compounds to identify promising candidates that protected Vero cells against virus-induced cytopathic effect (CPE). Virus yield reduction, virucidal, and cell cytotoxicity experiments were performed on positive hits and two lead compounds were further characterized in dose-dependent assays along with time-of-addition, time-of-removal, virus entry, and viral protein synthesis assays. The antiviral effects of the two lead compounds on mitigating virulent ASFV infection in porcine macrophages (PAMs) were also tested using similar methods, and the ability to inhibit pro-inflammatory cytokine production during virulent ASFV infection was assessed by enzyme-linked immunosorbent assay (ELISA). RESULTS The screen identified five compounds that inhibited ASFV-induced CPE by greater than 50% and virus yield reduction experiments showed that two of these compounds, tetrandrine and berbamine, exhibited particularly high levels of anti-ASFV activity. Mechanistic analysis confirmed that both compounds potently inhibited early stages of ASFV infection and that the compounds also inhibited infection of PAMs by the virulent ASFV Arm/07 isolate. Importantly, during ASFV infection in PAM cells, both compounds markedly reduced the production of pro-inflammatory cytokines involved in disease pathogenesis while tetrandrine had a greater and more sustained anti-inflammatory effect than berbamine. CONCLUSIONS Together, these findings support that dual-acting natural compounds with antiviral and anti-inflammatory properties hold promise as preventative and therapeutic agents to combat ASFV infection by simultaneously inhibiting viral replication and reducing virus-induced cytokine production.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Astghik Hakobyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Rafayela Grigoryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Roza Izmailyan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Yerevan, Armenia
| | - Charles C Elrod
- Natural Biologics Inc, Newfield, NY, 14867, USA.
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Hovakim Zakaryan
- Laboratory of Antiviral Drug Discovery, Institute of Molecular Biology of NAS, Yerevan, Armenia.
| |
Collapse
|
8
|
Lee SC, Kim Y, Cha JW, Chathuranga K, Dodantenna N, Kwon HI, Kim MH, Jheong W, Yoon IJ, Lee JY, Yoo SS, Lee JS. CA-CAS-01-A: A Permissive Cell Line for Isolation and Live Attenuated Vaccine Development Against African Swine Fever Virus. J Microbiol 2024; 62:125-134. [PMID: 38480615 PMCID: PMC11021262 DOI: 10.1007/s12275-024-00116-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 04/17/2024]
Abstract
African swine fever virus (ASFV) is the causative agent of the highly lethal African swine fever disease that affects domestic pigs and wild boars. In spite of the rapid spread of the virus worldwide, there is no licensed vaccine available. The lack of a suitable cell line for ASFV propagation hinders the development of a safe and effective vaccine. For ASFV propagation, primary swine macrophages and monocytes have been widely studied. However, obtaining these cells can be time-consuming and expensive, making them unsuitable for mass vaccine production. The goal of this study was to validate the suitability of novel CA-CAS-01-A (CAS-01) cells, which was identified as a highly permissive cell clone for ASFV replication in the MA-104 parental cell line for live attenuated vaccine development. Through a screening experiment, maximum ASFV replication was observed in the CAS-01 cell compared to other sub-clones of MA-104 with 14.89 and log10 7.5 ± 0.15 Ct value and TCID50/ml value respectively. When CAS-01 cells are inoculated with ASFV, replication of ASFV was confirmed by Ct value for ASFV DNA, HAD50/ml assay, TCID50/ml assay, and cytopathic effects and hemadsoption were observed similar to those in primary porcine alveolar macrophages after 5th passage. Additionally, we demonstrated stable replication and adaptation of ASFV over the serial passage. These results suggest that CAS-01 cells will be a valuable and promising cell line for ASFV isolation, replication, and development of live attenuated vaccines.
Collapse
Affiliation(s)
- Seung-Chul Lee
- Choong Ang Vaccine Laboratories, Daejeon, 34055, Republic of Korea
| | - Yongkwan Kim
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention, Gwangju, 62407, Republic of Korea
| | - Ji-Won Cha
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Niranjan Dodantenna
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyeok-Il Kwon
- Choong Ang Vaccine Laboratories, Daejeon, 34055, Republic of Korea
| | - Min Ho Kim
- Choong Ang Vaccine Laboratories, Daejeon, 34055, Republic of Korea
| | - Weonhwa Jheong
- Wildlife Disease Response Team, National Institute of Wildlife Disease Control and Prevention, Gwangju, 62407, Republic of Korea
| | - In-Joong Yoon
- Choong Ang Vaccine Laboratories, Daejeon, 34055, Republic of Korea
| | - Joo Young Lee
- Choong Ang Vaccine Laboratories, Daejeon, 34055, Republic of Korea
| | - Sung-Sik Yoo
- Choong Ang Vaccine Laboratories, Daejeon, 34055, Republic of Korea.
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
9
|
Barrado-Gil L, García-Dorival I, Galindo I, Alonso C, Cuesta-Geijo MÁ. Insights into the function of ESCRT complex and LBPA in ASFV infection. Front Cell Infect Microbiol 2023; 13:1163569. [PMID: 38125905 PMCID: PMC10731053 DOI: 10.3389/fcimb.2023.1163569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
The African swine fever virus (ASFV) is strongly dependent on an intact endocytic pathway and a certain cellular membrane remodeling for infection, possibly regulated by the endosomal sorting complexes required for transport (ESCRT). The ESCRT machinery is mainly involved in the coordination of membrane dynamics; hence, several viruses exploit this complex and its accessory proteins VPS4 and ALIX for their own benefit. In this work, we found that shRNA-mediated knockdown of VPS4A decreased ASFV replication and viral titers, and this silencing resulted in an enhanced expression of ESCRT-0 component HRS. ASFV infection slightly increased HRS expression but not under VPS4A depletion conditions. Interestingly, VPS4A silencing did not have an impact on ALIX expression, which was significantly overexpressed upon ASFV infection. Further analysis revealed that ALIX silencing impaired ASFV infection at late stages of the viral cycle, including replication and viral production. In addition to ESCRT, the accessory protein ALIX is involved in endosomal membrane dynamics in a lysobisphosphatydic acid (LBPA) and Ca2+-dependent manner, which is relevant for intraluminal vesicle (ILV) biogenesis and endosomal homeostasis. Moreover, LBPA interacts with NPC2 and/or ALIX to regulate cellular cholesterol traffic, and would affect ASFV infection. Thus, we show that LBPA blocking impacted ASFV infection at both early and late infection, suggesting a function for this unconventional phospholipid in the ASFV viral cycle. Here, we found for the first time that silencing of VPS4A and ALIX affects the infection later on, and blocking LBPA function reduces ASFV infectivity at early and later stages of the viral cycle, while ALIX was overexpressed upon infection. These data suggested the relevance of ESCRT-related proteins in ASFV infection.
Collapse
Affiliation(s)
| | | | | | | | - Miguel Ángel Cuesta-Geijo
- Departmento Biotecnología, INIA-CSIC, Centro Nacional Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
10
|
Orosco FL. Host immune responses against African swine fever virus: Insights and challenges for vaccine development. Open Vet J 2023; 13:1517-1535. [PMID: 38292721 PMCID: PMC10824091 DOI: 10.5455/ovj.2023.v13.i12.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/22/2023] [Indexed: 02/01/2024] Open
Abstract
The African swine fever virus (ASFV) poses a serious threat to global swine populations, underscoring the urgent need for effective preventive strategies. This comprehensive review investigates the intricate interplay between innate, cellular, and humoral immunity against ASFV, with a focus on their relevance to vaccine development. By delving into immunopathogenesis and immunological challenges, this review article aims to provide a holistic perspective on the complexities of ASFV infections and immune evasion. Key findings underscore the critical role of innate immune recognition in shaping subsequent adaptive immune defenses, potential protective antigens, and the multifaceted nature of ASFV-specific antibodies and cytotoxic T-cell responses. Despite advancements, the unique attributes of ASFV present hurdles in the development of a successful vaccine. In conclusion, this review examines the current state of ASFV immune responses and offers insights into future research directions, fostering the development of effective interventions against this devastating pathogen.
Collapse
Affiliation(s)
- Fredmoore L. Orosco
- Virology and Vaccine Institute of the Philippines Program, Department of Science and Technology, Industrial Technology Development Institute, Taguig, Philippines
- S&T Fellows Program, Department of Science and Technology, Taguig, Philippines
- Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
11
|
Zheng W, Xi J, Zi Y, Wang J, Chi Y, Chen M, Zou Q, Tang C, Zhou X. Stability of African swine fever virus genome under different environmental conditions. Vet World 2023; 16:2374-2381. [PMID: 38152254 PMCID: PMC10750735 DOI: 10.14202/vetworld.2023.2374-2381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/25/2023] [Indexed: 12/29/2023] Open
Abstract
Background and Aim African swine fever (ASF), a globally transmitted viral disease caused by ASF virus (ASFV), can severely damage the global trade economy. Laboratory diagnostic methods, including pathogen and serological detection techniques, are currently used to monitor and control ASF. Because the large double-stranded DNA genome of the mature virus particle is wrapped in a membrane, the stability of ASFV and its genome is maintained in most natural environments. This study aimed to investigate the stability of ASFV under different environmental conditions from both genomic and antibody perspectives, and to provide a theoretical basis for the prevention and elimination of ASFV. Materials and Methods In this study, we used quantitative real-time polymerase chain reaction for pathogen assays and enzyme-linked immunosorbent assay for serological assays to examine the stability of the ASFV genome and antibody, respectively, under different environmental conditions. Results The stability of the ASFV genome and antibody under high-temperature conditions depended on the treatment time. In the pH test, the ASFV genome and antibody remained stable in both acidic and alkaline environments. Disinfection tests revealed that the ASFV genome and antibody were susceptible to standard disinfection methods. Conclusion Collectively, the results demonstrated that the ASFV genome is highly stable in favorable environments but are also susceptible to standard disinfection methods. This study focuses on the stability of the ASFV genome under different conditions and provides various standard disinfection methods for the prevention and control of ASF.
Collapse
Affiliation(s)
- Wei Zheng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529000, China
| | - Jiahui Xi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529000, China
| | - Yin Zi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529000, China
| | - Jinling Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529000, China
| | - Yue Chi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529000, China
| | - Min Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529000, China
| | - Qingjian Zou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529000, China
| | - Chengcheng Tang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529000, China
| | - Xiaoqing Zhou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529000, China
| |
Collapse
|
12
|
Gao F, Li P, Yin Y, Du X, Cao G, Wu S, Zhao Y. Molecular breeding of livestock for disease resistance. Virology 2023; 587:109862. [PMID: 37562287 DOI: 10.1016/j.virol.2023.109862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Animal infectious diseases pose a significant threat to the global agriculture and biomedicine industries, leading to significant economic losses and public health risks. The emergence and spread of viral infections such as African swine fever virus (ASFV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV), and avian influenza virus (AIV) have highlighted the need for innovative approaches to develop resilient and disease-resistant animal populations. Gene editing technologies, such as CRISPR/Cas9, offer a promising avenue for generating animals with enhanced disease resistance. This review summarizes recent advances in molecular breeding strategies for generating disease-resistant animals, focusing on the development of disease-resistant livestock. We also highlight the potential applications of genome-wide CRISPR/Cas9 library screening and base editors in producing precise gene modified livestock for disease resistance in the future. Overall, gene editing technologies have the potential to revolutionize animal breeding and improve animal health and welfare.
Collapse
Affiliation(s)
- Fei Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China; Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Pan Li
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Ye Yin
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Xuguang Du
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China; Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Gengsheng Cao
- Henan Livestock Genome Editing and Biobreeding Engineering Research Center, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Sen Wu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China; Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Yaofeng Zhao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China.
| |
Collapse
|
13
|
Avagyan HR, Hakobyan SA, Avetisyan AS, Bayramyan NV, Hakobyan LH, Poghosyan AA, Abroyan LO, Baghdasaryan BV, Tsakanova GV, Sahakyan LV, Yeremyan AS, Karalyan ZA. The pattern of stability of African swine fever virus in leeches. Vet Microbiol 2023; 284:109835. [PMID: 37515978 DOI: 10.1016/j.vetmic.2023.109835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
African swine fever virus (ASFV) can accumulate and survive in leeches for a long time. The reasons for the survival of ASFV in leeches are not entirely clear. Here, we elucidate the virus survival pathway in infected leeches. One of the questions reported previously is addressed in this article. How the virus concentration in the body of the leech is equal to or higher than in the water infected with ASFV? Examination of blood swallowed by leeches reveals that the blood cells retain their morphological characteristics for several weeks. It can explain the long-term persistence of the high levels of ASFV in the leeches that ingested ASFV-infected pig blood. qRT-PCR assay showed the transcription of ASFV genes in infected leeches. However, the infectious particles of the virus measured by HADU haven't increased. Quantitative studies of the ASFV revealed a high content of both viral genes and infectious particles in the skin of leeches compared with other body parts. Electron microscopy analysis revealed the ability of the ASFV to effectively bind to the skin surface of the leeches, which explained the high concentrations of ASFV in the leeches' skin. A significant difference in the transcriptional activity between early and late viral genes indicates that the virus entered the initial stage of replication, but for some reason failed to complete it, which is typical of abortive infections.
Collapse
Affiliation(s)
- Hranush R Avagyan
- Institute of Molecular Biology NAS RA, 0014 Yerevan, Armenia; Yerevan State Medical University, 2 Koryun St, 0025 Yerevan, Armenia
| | - Sona A Hakobyan
- Institute of Molecular Biology NAS RA, 0014 Yerevan, Armenia
| | - Aida S Avetisyan
- Institute of Molecular Biology NAS RA, 0014 Yerevan, Armenia; Yerevan State Medical University, 2 Koryun St, 0025 Yerevan, Armenia
| | | | - Lina H Hakobyan
- Institute of Molecular Biology NAS RA, 0014 Yerevan, Armenia
| | | | - Liana O Abroyan
- Institute of Molecular Biology NAS RA, 0014 Yerevan, Armenia
| | | | - Gohar V Tsakanova
- Institute of Molecular Biology NAS RA, 0014 Yerevan, Armenia; CANDLE Synchrotron Research Institute, 31 Acharyan street, 0040 Yerevan, Armenia
| | - Lilit V Sahakyan
- Center for Ecological-Noosphere Studies NAS RA, 68 Abovyan street, 0025 Yerevan, Armenia
| | - Arsham S Yeremyan
- CANDLE Synchrotron Research Institute, 31 Acharyan street, 0040 Yerevan, Armenia
| | - Zaven A Karalyan
- Institute of Molecular Biology NAS RA, 0014 Yerevan, Armenia; Yerevan State Medical University, 2 Koryun St, 0025 Yerevan, Armenia.
| |
Collapse
|
14
|
Chen X, Zheng J, Li T, Liu C, Bao M, Wang X, Li X, Li J, Huang L, Zhang Z, Weng C. Coreceptor AXL Facilitates African Swine Fever Virus Entry via Apoptotic Mimicry. J Virol 2023; 97:e0061623. [PMID: 37382521 PMCID: PMC10373532 DOI: 10.1128/jvi.00616-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
African swine fever (ASF) is an acute and hemorrhagic infectious disease caused by African swine fever virus (ASFV), which is listed as an animal epidemic disease that must be reported by The World Organization for Animal Health and that causes serious economic losses to China and even the whole world. Currently, the entry mechanism of ASFV is not fully understood. Especially in the early stages of virus entry, the host factors required for ASFV entry have not yet been identified and characterized. In this study, we demonstrated that ASFV externalized phosphatidylserine (PS) on the envelope functioned as viral apoptotic mimicry, which interacts with AXL, a tyrosine kinase receptor, to mediate ASFV entry into porcine alveolar macrophages (PAMs). We found that AXL was the most pronounced phosphatidylserine receptor (PSR) affecting ASFV entry in PAMs by RNA interference screening. Knockout AXL gene expression remarkably decreased ASFV internalization and replication in MA104 cells. Furthermore, the antibody against AXL extracellular domains effectively inhibited the ASFV entry. Consistent with these results, the deletion of the intracellular kinase domain of AXL and the treatment of the AXL inhibitor, R428, significantly inhibited the internalization of ASFV. Mechanistically, AXL facilitated the internalization of ASFV virions via macropinocytosis. Collectively, we provide evidence that AXL is a coreceptor for ASFV entry into PAMs, which expands our knowledge of ASFV entry and provides a theoretical basis for identifying new antiviral targets. IMPORTANCE African swine fever (ASF) is a highly contagious infectious disease caused by the ASF virus (ASFV), with a mortality rate of up to 100%. ASFV has caused huge economic losses to pig farming worldwide. Specific cellular surface receptors are considered crucial determinants of ASFV tropism. However, the host factors required for ASFV entry have not yet been identified, and the molecular mechanism of its entry remains unclear. Here, we found that ASFV utilized phosphatidylserine (PS) on the surface of virions to masquerade as apoptotic mimicry and facilitated virus entry by interacting with host factor AXL. We found that knockout of AXL remarkably decreased ASFV internalization and replication. The antibody against AXL extracellular domains and AXL inhibitor R428 significantly inhibited the internalization of ASFV via macropinocytosis. The current work deepens our understanding of ASFV entry and provides clues for the development of antiviral drugs to control ASFV infection.
Collapse
Affiliation(s)
- Xin Chen
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Jun Zheng
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Tingting Li
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Chuanxia Liu
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Miaofei Bao
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Xiao Wang
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Xuewen Li
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| | - Jiangnan Li
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Li Huang
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Zhaoxia Zhang
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Changjiang Weng
- Division of Fundamental Immunology, National African Swine Fever Para-reference Laboratory, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| |
Collapse
|
15
|
Dolata KM, Pei G, Netherton CL, Karger A. Functional Landscape of African Swine Fever Virus-Host and Virus-Virus Protein Interactions. Viruses 2023; 15:1634. [PMID: 37631977 PMCID: PMC10459248 DOI: 10.3390/v15081634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Viral replication fully relies on the host cell machinery, and physical interactions between viral and host proteins mediate key steps of the viral life cycle. Therefore, identifying virus-host protein-protein interactions (PPIs) provides insights into the molecular mechanisms governing virus infection and is crucial for designing novel antiviral strategies. In the case of the African swine fever virus (ASFV), a large DNA virus that causes a deadly panzootic disease in pigs, the limited understanding of host and viral targets hinders the development of effective vaccines and treatments. This review summarizes the current knowledge of virus-host and virus-virus PPIs by collecting and analyzing studies of individual viral proteins. We have compiled a dataset of experimentally determined host and virus protein targets, the molecular mechanisms involved, and the biological functions of the identified virus-host and virus-virus protein interactions during infection. Ultimately, this work provides a comprehensive and systematic overview of ASFV interactome, identifies knowledge gaps, and proposes future research directions.
Collapse
Affiliation(s)
- Katarzyna Magdalena Dolata
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Gang Pei
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | | | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
16
|
Yu SL, Chung NH, Lin YC, Liao YA, Chen YC, Chow YH. Human SCARB2 Acts as a Cellular Associator for Helping Coxsackieviruses A10 Infection. Viruses 2023; 15:932. [PMID: 37112912 PMCID: PMC10144829 DOI: 10.3390/v15040932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Coxsackievirus A10 (CVA10) causes hand, foot, and mouth disease (HFMD) and herpangina, which can result in severe neurological symptoms in children. CVA10 does not use the common enterovirus 71 (EV71) receptor, human SCARB2 (hSCARB2, scavenger receptor class B, member 2), for infection but instead uses another receptor, such as KREMEN1. Our research has shown that CVA10 can infect and replicate in mouse cells expressing human SCARB2 (3T3-SCARB2) but not in the parental NIH3T3 cells, which do not express hSCARB2 for CVA10 entry. Knocking down endogenous hSCARB2 and KREMEN1 with specific siRNAs inhibited CVA10 infection in human cells. Co-immunoprecipitation confirmed that VP1, a main capsid protein where virus receptors for attaching to the host cells, could physically interact with hSCARB2 and KREMEN1 during CVA10 infection. It is the efficient virus replication following virus attachment to its cellular receptor. It resulted in severe limb paralysis and a high mortality rate in 12-day-old transgenic mice challenged with CVA10 but not in wild-type mice of the same age. Massive amounts of CVA10 accumulated in the muscles, spinal cords, and brains of the transgenic mice. Formalin inactivated CVA10 vaccine-induced protective immunity against lethal CVA10 challenge and reduced the severity of disease and tissue viral loads. This is the first report to show that hSCARB2 serves as an associate to aid CVA10 infection. hSCARB2-transgenic mice could be useful in evaluating anti-CVA10 medications and studying the pathogenesis induced by CVA10.
Collapse
Affiliation(s)
- Shu-Ling Yu
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan; (S.-L.Y.); (N.-H.C.); (Y.-C.L.); (Y.-A.L.); (Y.-C.C.)
- Graduate School of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Nai-Hsiang Chung
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan; (S.-L.Y.); (N.-H.C.); (Y.-C.L.); (Y.-A.L.); (Y.-C.C.)
- Graduate Program of Biotechnology in Medicine, Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 300, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yu-Ching Lin
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan; (S.-L.Y.); (N.-H.C.); (Y.-C.L.); (Y.-A.L.); (Y.-C.C.)
| | - Yi-An Liao
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan; (S.-L.Y.); (N.-H.C.); (Y.-C.L.); (Y.-A.L.); (Y.-C.C.)
| | - Ying-Chin Chen
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan; (S.-L.Y.); (N.-H.C.); (Y.-C.L.); (Y.-A.L.); (Y.-C.C.)
| | - Yen-Hung Chow
- Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan; (S.-L.Y.); (N.-H.C.); (Y.-C.L.); (Y.-A.L.); (Y.-C.C.)
- Graduate School of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
17
|
Dynamics of Serological and Mucosal Antibody Responses against African Swine Fever Viruses in Experimentally Infected Pigs. Transbound Emerg Dis 2023. [DOI: 10.1155/2023/9959847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
African swine fever virus (ASFV) is a lethal swine pathogen, and there is no effective vaccine or treatment available for ASFV infection. Recently, the occurrence of ASFV genotype I and genotype II natural mutants that manifest as subacute, longer-incubation, or persistent infections poses threats to preventing ASFV infection. The dynamics of antibody responses to ASFV are still completely unrevealed, especially the secretion of mucosal antibodies in oral fluid. Here, a systematic analysis was performed of serological and mucosal antibody secretion against 6 ASFV antigens after direct or indirect infection with four different ASFV strains or genotypes, namely, the field virulent genotype II isolate ASFV HLJ/18, the artificially attenuated genotype II strain HLJ/18-7GD, the naturally attenuated genotype II isolate HLJ/HRB1/20, and genotype I isolate SD/DY-I/21. Severe clinical signs of HLJ/18 infection were observed in pigs from 4 days postinoculation. However, no clinical signs were observed in HLJ/18-7GD-infected pigs. The contact pigs cohoused with the pigs intramuscularly infected with the isolate SD/DY-I/21 or HLJ/HRB1/20 only showed chronic clinical signs. Interestingly, the oral fluid sIgA responses to all the selected antigens were significantly stronger and earlier than the serum IgG responses in both HLJ/18- and HLJ/18-7GD-challenged pigs. Although significant fluctuations and individual differences appeared in oral swab sIgA responses in the contact transmission group, they were earlier than the corresponding serological IgG responses. Moreover, according to the comparative analysis of the three infection groups, P54 was proposed to be a dominant target for serological IgG diagnosis, while P30, CD2v, P54, P22, and P10 were more advantageous as mucosal sIgA diagnosis targets. These results highlight the important role of mucosal antibodies in the early diagnosis of ASFV infection and can provide references to screen appropriate targets for ASFV detection.
Collapse
|
18
|
Pu F, Wang R, Yang X, Hu X, Wang J, Zhang L, Zhao Y, Zhang D, Liu Z, Liu J. Nucleotide and codon usage biases involved in the evolution of African swine fever virus: A comparative genomics analysis. J Basic Microbiol 2023; 63:499-518. [PMID: 36782108 DOI: 10.1002/jobm.202200624] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/21/2023] [Indexed: 02/15/2023]
Abstract
Since African swine fever virus (ASFV) replication is closely related to its host's machinery, codon usage of viral genome can be subject to selection pressures. A better understanding of codon usage can give new insights into viral evolution. We implemented information entropy and revealed that the nucleotide usage pattern of ASFV is significantly associated with viral isolation factors (region and time), especially the usages of thymine and cytosine. Despite the domination of adenine and thymine in the viral genome, we found that mutation pressure alters the overall codon usage pattern of ASFV, followed by selective forces from natural selection. Moreover, the nucleotide skew index at the gene level indicates that nucleotide usages influencing synonymous codon bias of ASFV are significantly correlated with viral protein hydropathy. Finally, evolutionary plasticity is proved to contribute to the weakness in synonymous codons with A- or T-end serving as optimal codons of ASFV, suggesting that fine-tuning translation selection plays a role in synonymous codon usages of ASFV for adapting host. Taken together, ASFV is subject to evolutionary dynamics on nucleotide selections and synonymous codon usage, and our detailed analysis offers deeper insights into the genetic characteristics of this newly emerging virus around the world.
Collapse
Affiliation(s)
- Feiyang Pu
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Rui Wang
- Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Xuanye Yang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Xinyan Hu
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Jinqian Wang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Lijuan Zhang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Yongqing Zhao
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Derong Zhang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Zewen Liu
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| | - Junlin Liu
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, China
| |
Collapse
|
19
|
Seneca Valley Virus Enters PK-15 Cells via Caveolae-Mediated Endocytosis and Macropinocytosis Dependent on Low-pH, Dynamin, Rab5, and Rab7. J Virol 2022; 96:e0144622. [PMID: 36472440 PMCID: PMC9769397 DOI: 10.1128/jvi.01446-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Seneca Valley virus (SVV), a new pathogen resulting in porcine vesicular disease, is prevalent in pig herds worldwide. Although an understanding of SVV biology pathogenesis is crucial for preventing and controlling this disease, the molecular mechanisms for the entry and post-internalization of SVV, which represent crucial steps in viral infection, are not well characterized. In this study, specific inhibitors, Western blotting, and immunofluorescence detection revealed that SVV entry into PK-15 cells depends on low-pH conditions and dynamin. Furthermore, results showed that caveolae-mediated endocytosis (CavME) contributes crucially to the internalization of SVV, as evidenced by cholesterol depletion, downregulation of caveolin-1 expression by small interfering RNA knockdown, and overexpression of a caveolin-1 dominant negative (caveolin-1-DN) in SVV-infected PK-15 cells. However, SVV entry into PK-15 cells did not depend on clathrin-mediated endocytosis (CME). Furthermore, treatment with specific inhibitors demonstrated that SVV entry into PK-15 cells via macropinocytosis depended on the Na+/H+ exchanger (NHE), p21-activated kinase 1 (Pak1), and actin rearrangement, but not phosphatidylinositol 3-kinase (PI3K). Electron microscopy showed that SVV particles or proteins were localized in CavME and macropinocytosis. Finally, knockdown of GTPase Rab5 and Rab7 by siRNA significantly inhibited SVV replication, as determined by measuring viral genome copy numbers, viral protein expression, and viral titers. In this study, our results demonstrated that SVV utilizes caveolae-mediated endocytosis and macropinocytosis to enter PK-15 cells, dependent on low pH, dynamin, Rab5, and Rab7. IMPORTANCE Entry of virus into cells represents the initiation of a successful infection. As an emerging pathogen of porcine vesicular disease, clarification of the process of SVV entry into cells enables us to better understand the viral life cycle and pathogenesis. In this study, patterns of SVV internalization and key factors required were explored. We demonstrated for the first time that SVV entry into PK-15 cells via caveolae-mediated endocytosis and macropinocytosis requires Rab5 and Rab7 and is independent of clathrin-mediated endocytosis, and that low-pH conditions and dynamin are involved in the process of SVV internalization. This information increases our understanding of the patterns in which all members of the family Picornaviridae enter host cells, and provides new insights for preventing and controlling SVV infection.
Collapse
|
20
|
He WR, Yuan J, Ma YH, Zhao CY, Yang ZY, Zhang Y, Han S, Wan B, Zhang GP. Modulation of Host Antiviral Innate Immunity by African Swine Fever Virus: A Review. Animals (Basel) 2022; 12:2935. [PMID: 36359059 PMCID: PMC9653632 DOI: 10.3390/ani12212935] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 08/27/2023] Open
Abstract
African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious and fatal disease found in swine. However, the viral proteins and mechanisms responsible for immune evasion are poorly understood, which has severely hindered the development of vaccines. This review mainly focuses on studies involving the innate antiviral immune response of the host and summarizes the latest studies on ASFV genes involved in interferon (IFN) signaling and inflammatory responses. We analyzed the effects of candidate viral proteins on ASFV infection, replication and pathogenicity and identified potential molecular targets for novel ASFV vaccines. These efforts will contribute to the construction of novel vaccines and wonder therapeutics for ASF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Wan
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Gai-Ping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
21
|
African Swine Fever Vaccinology: The Biological Challenges from Immunological Perspectives. Viruses 2022; 14:v14092021. [PMID: 36146827 PMCID: PMC9505361 DOI: 10.3390/v14092021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/22/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
African swine fever virus (ASFV), a nucleocytoplasmic large DNA virus (NCLDV), causes African swine fever (ASF), an acute hemorrhagic disease with mortality rates up to 100% in domestic pigs. ASF is currently epidemic or endemic in many countries and threatening the global swine industry. Extensive ASF vaccine research has been conducted since the 1920s. Like inactivated viruses of other NCLDVs, such as vaccinia virus, inactivated ASFV vaccine candidates did not induce protective immunity. However, inactivated lumpy skin disease virus (poxvirus) vaccines are protective in cattle. Unlike some experimental poxvirus subunit vaccines that induced protection, ASF subunit vaccine candidates implemented with various platforms containing several ASFV structural genes or proteins failed to protect pigs effectively. Only some live attenuated viruses (LAVs) are able to protect pigs with high degrees of efficacy. There are currently several LAV ASF vaccine candidates. Only one commercial LAV vaccine is approved for use in Vietnam. LAVs, as ASF vaccines, have not yet been widely tested. Reports thus far show that the onset and duration of protection induced by the LAVs are late and short, respectively, compared to LAV vaccines for other diseases. In this review, the biological challenges in the development of ASF vaccines, especially subunit platforms, are discussed from immunological perspectives based on several unusual ASFV characteristics shared with HIV and poxviruses. These characteristics, including multiple distinct infectious virions, extremely high glycosylation and low antigen surface density of envelope proteins, immune evasion, and possible apoptotic mimicry, could pose enormous challenges to the development of ASF vaccines, especially subunit platforms designed to induce humoral immunity.
Collapse
|
22
|
Li Z, Chen W, Qiu Z, Li Y, Fan J, Wu K, Li X, Zhao M, Ding H, Fan S, Chen J. African Swine Fever Virus: A Review. Life (Basel) 2022; 12:1255. [PMID: 36013434 PMCID: PMC9409812 DOI: 10.3390/life12081255] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
African swine fever (ASF) is a viral disease with a high fatality rate in both domestic pigs and wild boars. ASF has greatly challenged pig-raising countries and also negatively impacted regional and national trade of pork products. To date, ASF has spread throughout Africa, Europe, and Asia. The development of safe and effective ASF vaccines is urgently required for the control of ASF outbreaks. The ASF virus (ASFV), the causative agent of ASF, has a large genome and a complex structure. The functions of nearly half of its viral genes still remain to be explored. Knowledge on the structure and function of ASFV proteins, the mechanism underlying ASFV infection and immunity, and the identification of major immunogenicity genes will contribute to the development of an ASF vaccine. In this context, this paper reviews the available knowledge on the structure, replication, protein function, virulence genes, immune evasion, inactivation, vaccines, control, and diagnosis of ASFV.
Collapse
Affiliation(s)
- Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Zilong Qiu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.C.); (Z.Q.); (Y.L.); (J.F.); (K.W.); (X.L.); (M.Z.); (H.D.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| |
Collapse
|
23
|
Duan X, Ru Y, Yang W, Ren J, Hao R, Qin X, Li D, Zheng H. Research progress on the proteins involved in African swine fever virus infection and replication. Front Immunol 2022; 13:947180. [PMID: 35935977 PMCID: PMC9353306 DOI: 10.3389/fimmu.2022.947180] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
African swine fever (ASF) is an acute, hemorrhagic and highly contagious infectious disease caused by African swine fever virus (ASFV), which infects domestic pigs or wild boars. It is characterized by short course of disease, high fever and hemorrhagic lesions, with mortality of up to 100% from acute infection. Up to now, the lack of commercial vaccines and effective drugs has seriously threatened the healthy economic development of the global pig industry. ASFV is a double-stranded DNA virus and genome varies between about 170-194 kb, which encodes 150-200 viral proteins, including 68 structural proteins and more than 100 non-structural proteins. In recent years, although the research on structure and function of ASFV-encoded proteins has been deepened, the structure and infection process of ASFV are still not clear. This review summarizes the main process of ASFV infection, replication and functions of related viral proteins to provide scientific basis and theoretical basis for ASFV research and vaccine development.
Collapse
Affiliation(s)
- Xianghan Duan
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yi Ru
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wenping Yang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jingjing Ren
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Rongzeng Hao
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaodong Qin
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Haixue Zheng,
| |
Collapse
|
24
|
Biancolella M, Colona VL, Mehrian-Shai R, Watt JL, Luzzatto L, Novelli G, Reichardt JKV. COVID-19 2022 update: transition of the pandemic to the endemic phase. Hum Genomics 2022; 16:19. [PMID: 35650595 PMCID: PMC9156835 DOI: 10.1186/s40246-022-00392-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19, which is caused by the SARS-CoV-2, has ravaged the world for the past 2 years. Here, we review the current state of research into the disease with focus on its history, human genetics and genomics and the transition from the pandemic to the endemic phase. We are particularly concerned by the lack of solid information from the initial phases of the pandemic that highlighted the necessity for better preparation to face similar future threats. On the other hand, we are gratified by the progress into human genetic susceptibility investigations and we believe now is the time to explore the transition from the pandemic to the endemic phase. The latter will require worldwide vigilance and cooperation, especially in emerging countries. In the transition to the endemic phase, vaccination rates have lagged and developed countries should assist, as warranted, in bolstering vaccination rates worldwide. We also discuss the current status of vaccines and the outlook for COVID-19.
Collapse
Affiliation(s)
| | - Vito Luigi Colona
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Ruty Mehrian-Shai
- Sheba Medical Center, Pediatric Hemato-Oncology, Edmond and Lilly Safra Children's Hospital, Tel Hashomer 2 Sheba Road, 52621, Ramat Gan, Israel
| | - Jessica Lee Watt
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, QLD, 4878, Australia
| | - Lucio Luzzatto
- Department of Haematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.,University of Florence, Florence, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133, Rome, Italy. .,IRCCS Neuromed, Pozzilli, Isernia, Italy. .,Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV, USA. .,Department of Biomedicine and Prevention, School of Medicine and Surgery, Via Montpellier 1, 00133, Rome, Italy.
| | - Juergen K V Reichardt
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD, 4878, Australia
| |
Collapse
|
25
|
Gao Q, Wang S, Li F, Lian J, Cheng S, Yue D, Zhang Z, Liu S, Ren F, Zhang D, Wang S, Wang L, Zhang Y. High mobility group protein B1 decreases surface localization of PD-1 to augment T-cell activation. Cancer Immunol Res 2022; 10:844-855. [PMID: 35580259 DOI: 10.1158/2326-6066.cir-21-0652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/13/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022]
Abstract
High-mobility group protein B1 (HMGB1) is a danger signaling molecule that has been found to trigger an effective antitumor immune response. However, the mechanisms underlying its antitumor effects are not fully understood. Here, we found that HMGB1 release induced by chemotherapy in patients with non-small cell lung cancer (NSCLC) was negatively correlated with PD-1 expression on CD8+ T cells. In vitro analysis indicated that treatment with HMGB1 led to a significant decrease in the level of expression of PD-1 on CD8+ T cells. Further analysis demonstrated that HMGB1 reduced PD-1 expression by inducing dynamin-mediated internalization of the protein, leading to early endocytosis in the cytoplasm, and subsequently degradation in the lysosomes. In a xenograft model, HER2-targeted chimeric-antigen receptor (CAR) T cells had enhanced function in the presence of HMGB1. These data identify a role for HMGB1 as a negative regulator of PD-1 signaling in lung cancer cells and the observed antitumor effect of HMGB1 on chimeric-antigen receptor (CAR) T cells may provide a theoretical foundation for a new immunotherapy combination.
Collapse
Affiliation(s)
- Qun Gao
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shumin Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Li
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingyao Lian
- First Affiliated Hospital of Zhengzhou University, China
| | - Shaoyan Cheng
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, ZhengZhou, China
| | - Dongli Yue
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Zhang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shasha Liu
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feifei Ren
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Daiqun Zhang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | | | - Liping Wang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
26
|
Meloni D, Franzoni G, Oggiano A. Cell Lines for the Development of African Swine Fever Virus Vaccine Candidates: An Update. Vaccines (Basel) 2022; 10:707. [PMID: 35632463 PMCID: PMC9144233 DOI: 10.3390/vaccines10050707] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
African swine fever virus (ASFV) is the etiological agent of a highly lethal disease in both domestic and wild pigs. The virus has rapidly spread worldwide and has no available licensed vaccine. An obstacle to the construction of a safe and efficient vaccine is the lack of a suitable cell line for ASFV isolation and propagation. Macrophages are the main targets for ASFV, and they have been widely used to study virus-host interactions; nevertheless, obtaining these cells is time-consuming and expensive, and they are not ethically suitable for the production of large-scale vaccines. To overcome these issues, different virulent field isolates have been adapted on monkey or human continuous cells lines; however, several culture passages often lead to significant genetic modifications and the loss of immunogenicity of the adapted strain. Thus, several groups have attempted to establish a porcine cell line able to sustain ASFV growth. Preliminary data suggested that some porcine continuous cell lines might be an alternative to primary macrophages for ASFV research and for large-scale vaccine production, although further studies are still needed. In this review, we summarize the research to investigate the most suitable cell line for ASFV isolation and propagation.
Collapse
Affiliation(s)
| | - Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (D.M.); (A.O.)
| | | |
Collapse
|
27
|
Wang Z, Ai Q, Huang S, Ou Y, Gao Y, Tong T, Fan H. Immune Escape Mechanism and Vaccine Research Progress of African Swine Fever Virus. Vaccines (Basel) 2022; 10:vaccines10030344. [PMID: 35334976 PMCID: PMC8949402 DOI: 10.3390/vaccines10030344] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
African swine fever virus (ASFV) is the causative agent of the epidemic of African swine fever (ASF), with virulent strains having a mortality rate of up to 100% and presenting devastating impacts on animal farming. Since ASF was first reported in China in 2018, ASFV still exists and poses a potential threat to the current pig industry. Low-virulence and genotype I strains of ASFV have been reported in China, and the prevention and control of ASF is more complicated. Insufficient understanding of the interaction of ASFV with the host immune system hinders vaccine development. Physical barriers, nonspecific immune response and acquired immunity are the three barriers of the host against infection. To escape the innate immune response, ASFV invades monocytes/macrophages and dendritic cells, thereby inhibiting IFN expression, regulating cytokine expression and the body’s inflammatory response process. Meanwhile, in order to evade the adaptive immune response, ASFV inhibits antigen presentation, induces the production of non-neutralizing antibodies, and inhibits apoptosis. Recently, significant advances have been achieved in vaccine development around the world. Live attenuated vaccines (LAVs) based on artificially deleting specific virulence genes can achieve 100% homologous protection and partial heterologous protection. The key of subunit vaccines is identifying the combination of antigens that can effectively provide protection and selecting carriers that can effectively deliver the antigens. In this review, we introduce the epidemic trend of ASF and the impact on the pig industry, analyze the interaction mechanism between ASFV and the body’s immune system, and compare the current status of potential vaccines in order to provide a reference for the development of effective ASF vaccines.
Collapse
Affiliation(s)
- Zhaoyang Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Qiangyun Ai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shenglin Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yating Ou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yinze Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Tiezhu Tong
- Guangzhou Customs Technology Center, Guangzhou 510623, China
- Correspondence: (T.T.); (H.F.); Fax: +86-020-38295730 (T.T.); +86-20-8528-3309 (H.F.)
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (T.T.); (H.F.); Fax: +86-020-38295730 (T.T.); +86-20-8528-3309 (H.F.)
| |
Collapse
|
28
|
Yu S, Ge H, Li S, Qiu HJ. Modulation of Macrophage Polarization by Viruses: Turning Off/On Host Antiviral Responses. Front Microbiol 2022; 13:839585. [PMID: 35222345 PMCID: PMC8874017 DOI: 10.3389/fmicb.2022.839585] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Macrophages are professional antigen-presenting cells and serve as the first line of defense against invading pathogens. Macrophages are polarized toward the proinflammatory classical (M1) or anti-inflammatory alternative (M2) phenotype upon viral infections. M1-polarized macrophages exert critical roles in antiviral responses via different mechanisms. Within the long competitive history between viruses and hosts, viruses have evolved various immune evasion strategies, inhibiting macrophage acquisition of an antiviral phenotype, impairing the antiviral responses of activated macrophages, and/or exploiting macrophage phenotypes for efficient replication. This review focuses on the sophisticated regulation of macrophage polarization utilized by viruses and is expected to provide systematic insights into the regulatory mechanisms of macrophage polarization by viruses and further facilitate the design of therapeutic targets for antivirals.
Collapse
|
29
|
Zhu W, Meng K, Zhang Y, Bu Z, Zhao D, Meng G. Lateral Flow Assay for the Detection of African Swine Fever Virus Antibodies Using Gold Nanoparticle-Labeled Acid-Treated p72. Front Chem 2022; 9:804981. [PMID: 35047481 PMCID: PMC8761911 DOI: 10.3389/fchem.2021.804981] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
African swine fever is a widespread and highly contagious disease in the porcine population, which is caused by African swine fever virus (ASFV). The PCR and ELISA detection methods are the main conventional diagnostic methods for ASFV antigen/antibody detection in the field. However, these methods have limitations of expensive equipment, trained technicians, and time-consuming results. Thus, a rapid, inexpensive, accurate and on-site detection method is urgently needed. Here we describe a double-antigen-sandwich lateral-flow assay based on gold nanoparticle-conjugated ASFV major capsid protein p72, which can detect ASFV antibody in serum samples with high sensitivity and specificity in 10 min and the results can be determined by naked eyes. A lateral flow assay was established by using yeast-expressed and acid-treated ASFV p72 conjugated with gold nanoparticles, which are synthesized by seeding method. A high coincidence (97.8%) of the assay was determined using clinical serum compared to a commercial ELISA kit. In addition, our lateral flow strip can detect as far as 1:10,000 diluted clinically positive serum for demonstration of high sensitivity. In summary, the assay developed here was shown to be rapid, inexpensive, accurate and highly selective. It represents a reliable method for on-site ASFV antibody detection and may help to control the ASFV pandemic.
Collapse
Affiliation(s)
- Wenzhuang Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kaiwen Meng
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yueping Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dongming Zhao
- State Key Laboratory of Veterinary Biotechnology, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Geng Meng
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Spatiotemporally Orchestrated Interactions between Viral and Cellular Proteins Involved in the Entry of African Swine Fever Virus. Viruses 2021; 13:v13122495. [PMID: 34960765 PMCID: PMC8703583 DOI: 10.3390/v13122495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/27/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
African swine fever (ASF) is a highly contagious hemorrhagic disease in domestic pigs and wild boars with a mortality of up to 100%. The causative agent, African swine fever virus (ASFV), is a member of the Asfarviridae family of the nucleocytoplasmic large DNA viruses. The genome size of ASFV ranges from 170 to 194 kb, encoding more than 50 structural and 100 nonstructural proteins. ASFV virions are 260–300 nm in diameter and composed of complex multilayered structures, leading to an intricate internalization pathway to enter host cells. Currently, no commercial vaccines or antivirals are available, due to the insufficient knowledge of the viral receptor(s), the molecular events of ASFV entry into host cells, and the functions of virulence-associated genes. During the early stage of ASFV infection, the fundamental aspects of virus-host interactions, including virus internalization, intracellular transport through the endolysosomal system, and membrane fusion with endosome, are precisely regulated and orchestrated via a series of molecular events. In this review, we summarize the currently available knowledge on the pathways of ASFV entry into host cells and the functions of viral proteins involved in virus entry. Furthermore, we conclude with future perspectives and highlight areas that require further investigation. This review is expected to provide unique insights for further understanding ASFV entry and facilitate the development of vaccines and antivirals.
Collapse
|
31
|
Makvandi P, Chen M, Sartorius R, Zarrabi A, Ashrafizadeh M, Dabbagh Moghaddam F, Ma J, Mattoli V, Tay FR. Endocytosis of abiotic nanomaterials and nanobiovectors: Inhibition of membrane trafficking. NANO TODAY 2021; 40:101279. [PMID: 34518771 PMCID: PMC8425779 DOI: 10.1016/j.nantod.2021.101279] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 05/04/2023]
Abstract
Humans are exposed to nanoscopical nanobiovectors (e.g. coronavirus SARS-CoV-2) as well as abiotic metal/carbon-based nanomaterials that enter cells serendipitously or intentionally. Understanding the interactions of cell membranes with these abiotic and biotic nanostructures will facilitate scientists to design better functional nanomaterials for biomedical applications. Such knowledge will also provide important clues for the control of viral infections and the treatment of virus-induced infectious diseases. In the present review, the mechanisms of endocytosis are reviewed in the context of how nanomaterials are uptaken into cells. This is followed by a detailed discussion of the attributes of man-made nanomaterials (e.g. size, shape, surface functional groups and elasticity) that affect endocytosis, as well as the different human cell types that participate in the endocytosis of nanomaterials. Readers are then introduced to the concept of viruses as nature-derived nanoparticles. The mechanisms in which different classes of viruses interact with various cell types to gain entry into the human body are reviewed with examples published over the last five years. These basic tenets will enable the avid reader to design advanced drug delivery and gene transfer nanoplatforms that harness the knowledge acquired from endocytosis to improve their biomedical efficacy. The review winds up with a discussion on the hurdles to be addressed in mimicking the natural mechanisms of endocytosis in nanomaterials design.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Meiling Chen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples 80131, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Jingzhi Ma
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
32
|
Porcine deltacoronavirus enters porcine IPI-2I intestinal epithelial cells via macropinocytosis and clathrin-mediated endocytosis dependent on pH and dynamin. J Virol 2021; 95:e0134521. [PMID: 34586858 DOI: 10.1128/jvi.01345-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, causes serious diarrhoea in suckling piglets and has the potential for cross-species transmission. Although extensive studies have been reported on the biology and pathogenesis of PDCoV, the mechanisms by which PDCoV enters cells are not well characterized. In this study, we investigated how PDCoV enters IPI-2I cells, a line of porcine intestinal epithelial cells derived from pig ileum. Immunofluorescence assays, siRNA interference, specific pharmacological inhibitors and dominant-negative mutation results revealed that PDCoV entry into IPI-2I cells depended on clathrin, dynamin and a low-pH environment, but was independent of caveolae. Specific inhibition of phosphatidylinositol 3-kinase (PI3K) and the Na+/H+ exchanger (NHE) revealed that PDCoV entry involves macropinocytosis and depends on NHE rather than on PI3K. Additionally, Rab5 and Rab7, but not Rab11, regulated PDCoV endocytosis. This is the first study to demonstrate that PDCoV uses clathrin-mediated endocytosis and macropinocytosis as alternative endocytic pathways to enter porcine intestinal epithelial cells. We also discussed the entry pathways of PDCoV into other porcine cell lines. Our findings reveal the entry mechanisms of PDCoV and provide new insight into the PDCoV life cycle. IMPORTANCE An emerging enteropathogenic coronavirus, PDCoV has the potential for cross-species transmission, attracting extensive attenuation. Characterizing the detailed process of PDCoV entry into cells will deepen our understanding of the viral infection and pathogenesis, and provide the clues for therapeutic intervention against PDCoV. With the objective, we used complementary approaches to dissect the process in PDCoV-infected IPI-2I cells, a line of more physiologically relevant intestinal epithelial cells to PDCoV infection in vivo. Here, we demonstrate that PDCoV enters IPI-2I cells via macropinocytosis that does not require a specific receptor and clathrin-mediated endocytosis that requires a low-pH environment and dynamin, while a caveola-mediated endocytic pathway is used by PDCoV to enter swine testicular (ST) cells and porcine kidney (LLC-PK1) cells. These findings provide a molecular detail of the cellular entry pathways of PDCoV and may direct us toward novel antiviral drug development.
Collapse
|
33
|
Wang Y, Kang W, Yang W, Zhang J, Li D, Zheng H. Structure of African Swine Fever Virus and Associated Molecular Mechanisms Underlying Infection and Immunosuppression: A Review. Front Immunol 2021; 12:715582. [PMID: 34552586 PMCID: PMC8450572 DOI: 10.3389/fimmu.2021.715582] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/20/2021] [Indexed: 01/02/2023] Open
Abstract
African swine fever (ASF) is an acute, highly contagious, and deadly infectious disease. The mortality rate of the most acute and acute ASF infection is almost 100%. The World Organization for Animal Health [Office International des épizooties (OIE)] lists it as a legally reported animal disease and China lists it as class I animal epidemic. Since the first diagnosed ASF case in China on August 3, 2018, it has caused huge economic losses to animal husbandry. ASF is caused by the African swine fever virus (ASFV), which is the only member of Asfarviridae family. ASFV is and the only insect-borne DNA virus belonging to the Nucleocytoplasmic Large DNA Viruses (NCLDV) family with an icosahedral structure and an envelope. Till date, there are still no effective vaccines or antiviral drugs for the prevention or treatment of ASF. The complex viral genome and its sophisticated ability to regulate the host immune response may be the reason for the difficulty in developing an effective vaccine. This review summarizes the recent findings on ASFV structure, the molecular mechanism of ASFV infection and immunosuppression, and ASFV-encoded proteins to provide comprehensive proteomic information for basic research on ASFV. In addition, it also analyzes the results of previous studies and speculations on the molecular mechanism of ASFV infection, which aids the study of the mechanism of clinical pathological phenomena, and provides a possible direction for an intensive study of ASFV infection mechanism. By summarizing the findings on molecular mechanism of ASFV- regulated host cell immune response, this review provides orientations and ideas for fundamental research on ASFV and provides a theoretical basis for the development of protective vaccines against ASFV.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weifang Kang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wenping Yang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jing Zhang
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Li
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology and OIE/National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
34
|
Liu LK, Liu MJ, Li DL, Liu HP. Recent insights into anti-WSSV immunity in crayfish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103947. [PMID: 33253753 DOI: 10.1016/j.dci.2020.103947] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
White spot syndrome virus (WSSV) is currently the most severely viral pathogen for farmed crustaceans such as shrimp and crayfish, which has been causing huge economic losses for crustaceans farming worldwide every year. Unfortunately, study on the molecular mechanisms of WSSV has been restricted by the lack of crustacean cell lines for WSSV propagation as well as the incompletely annotated genomes for host species, resulting in limited elucidation for WSSV pathogenesis at present. In addition to the findings of anti-WSSV response in shrimp, some of novel cellular events involved in WSSV infection have been recently revealed in crayfish, including endocytosis and intracellular transport of WSSV, innate immune pathways in response to WSSV infection, and regulation of viral gene expression by host genes. Despite these advances, many fundamental gaps in WSSV pathogenesis are still remaining, for example, how WSSV genome enters into nucleus and how the progeny virions are fully assembled in the host cell nucleus. In this review, recent findings in WSSV infection mechanism and the antiviral immunity against WSSV in crayfish are summarized and discussed, which may provide us a better understanding of the WSSV pathogenesis as well as new ideas for the target design of antiviral drugs against WSSV in crustaceans farming.
Collapse
Affiliation(s)
- Ling-Ke Liu
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology; State Key Laboratory of Marine Environmental Science; College of Ocean and Earth Sciences, Xiamen University; Xiamen 361102, Fujian, China
| | - Man-Jun Liu
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology; State Key Laboratory of Marine Environmental Science; College of Ocean and Earth Sciences, Xiamen University; Xiamen 361102, Fujian, China
| | - Dong-Li Li
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology; State Key Laboratory of Marine Environmental Science; College of Ocean and Earth Sciences, Xiamen University; Xiamen 361102, Fujian, China
| | - Hai-Peng Liu
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology; State Key Laboratory of Marine Environmental Science; College of Ocean and Earth Sciences, Xiamen University; Xiamen 361102, Fujian, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| |
Collapse
|
35
|
Shen Z, Chen C, Yang Y, Xie Z, Ao Q, Lv L, Zhang S, Chen H, Hu R, Chen H, Peng G. A novel function of African Swine Fever Virus pE66L in inhibition of host translation by the PKR/eIF2α pathway. J Virol 2021; 95:JVI.01872-20. [PMID: 33328305 PMCID: PMC8092821 DOI: 10.1128/jvi.01872-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/04/2020] [Indexed: 12/28/2022] Open
Abstract
African swine fever virus (ASFV) is one of the most contagious and lethal viruses infecting pigs. This virus is endemic in many countries and has very recently spread to China, but no licensed vaccines or treatments are currently available. Despite extensive research, the basic question of how ASFV-encoded proteins inhibit host translation remains. Here, we examined how ASFV interfered with host translation and optimized viral gene expression. We found that 14 ASFV proteins inhibited Renilla luciferase (Rluc) activity greater than 5-fold, and the protein with the strongest inhibitory effect was pE66L, which was not previously reported. Combined with bioinformatical analysis and biochemical experiment, we determined that the transmembrane (TM) domain (amino acids 13-34) of pE66L was required for the inhibition of host gene expression. Notably, we constructed a recombinant plasmid with the TM domain linked to enhanced green fluorescent protein (EGFP) and further demonstrated that this domain broadly inhibited protein synthesis. Confocal and biochemical analyses indicated that the TM domain might help proteins locate to the endoplasmic reticulum (ER) to suppress translation though the PKR/eIF2α pathway. Deletion of the E66L gene had little effect on virus replication in macrophages, but significantly recovered host gene expression. Taken together, our findings complement studies on the host translation of ASFV proteins and suggest that ASFV pE66L induces host translation shutoff, which is dependent on activation of the PKR/eIF2α pathway.Importance African swine fever virus (ASFV) is a member of the nucleocytoplasmic large DNA virus superfamily that predominantly replicates in the cytoplasm of infected cells. The ASFV double-stranded DNA genome varies in length from approximately 170 to 193 kbp depending on the isolate and contains between 150 and 167 open reading frames (ORFs), of which half the encoded proteins have not been explored. Our study showed that 14 proteins had an obvious inhibitory effect on Renilla luciferase (Rluc) gene synthesis, with pE66L showing the most significant effect. Furthermore, the transmembrane (TM) domain of pE66L broadly inhibited host protein synthesis in a PKR/eIF2a pathway-dependent manner. Loss of pE66L during ASFV infection had little effect on virus replication, but significantly recovered host protein synthetic. Based on the above results, our findings expand our view of ASFV in determining the fate of host-pathogen interactions.
Collapse
Affiliation(s)
- Zhou Shen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chen Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yilin Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhenhua Xie
- Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Qingying Ao
- Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Lu Lv
- Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Shoufeng Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Rongliang Hu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
36
|
Feng Z, Chen J, Liang W, Chen W, Li Z, Chen Q, Cai S. The recombinant pseudorabies virus expressing African swine fever virus CD2v protein is safe and effective in mice. Virol J 2020; 17:180. [PMID: 33198749 PMCID: PMC7668019 DOI: 10.1186/s12985-020-01450-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Background African swine fever (ASF) leads to high mortality in domestic pigs and wild boar and is caused by the African swine fever virus (ASFV). Currently, no vaccine is commercially available for prevention, and the epidemic is still spreading. Here, we constructed a recombinant pseudorabies virus (PRV) (PRV-ΔgE/ΔgI/ΔTK-(CD2v)) that expresses the CD2v protein of ASFV and evaluated its effectiveness and safety as a vaccine candidate in mice. Methods A homologous recombination fragment containing ASFV CD2v was synthesized and co-transfected into HEK 293 T cells, a knockout vector targeting the PRV TK gene. The transfected cells were infected with PRV-ΔgE/ΔgI, and the recombinant strain (PRV-ΔgE/ΔgI/ΔTK-(CD2v)) was obtained by plaque purification in Vero cells. The expression of ASFV CD2v in the recombinant virus was confirmed by sequencing, Western blotting, and immunofluorescence analysis, and the genetic stability was tested in Vero cells over 20 passages. The virulence, immunogenicity and protective ability of the recombinant virus were further tested in a mouse model. Results The PRV-ΔgE/ΔgI/ΔTK-(CD2v) recombinant strain is stable in Vero cells, and the processing of CD2v does not depend on ASFV infection. The vaccination of PRV-ΔgE/ΔgI/ΔTK-(CD2v) causes neither pruritus, not a systemic infection and inflammation (with the high expression of interleukin-6 (IL6)). Besides, the virus vaccination can produce anti-CD2v specific antibody and activate a specific cellular immune response, and 100% protect mice from the challenge of the virulent strain (PRV-Fa). The detoxification occurs much earlier upon the recombinant virus vaccination and the amount of detoxification is much lower as well. Conclusions The PRV-ΔgE/ΔgI/ΔTK-(CD2v) recombinant strain has strong immunogenicity, is safe and effective, and maybe a potential vaccine candidate for the prevention of ASF and Pseudorabies.
Collapse
Affiliation(s)
- Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Province, Fujian Normal University Qishan Campus, College Town, Fuzhou, 350117, People's Republic of China
| | - Jianghua Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Province, Fujian Normal University Qishan Campus, College Town, Fuzhou, 350117, People's Republic of China
| | - Wangwang Liang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Province, Fujian Normal University Qishan Campus, College Town, Fuzhou, 350117, People's Republic of China
| | - Wenzhi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Province, Fujian Normal University Qishan Campus, College Town, Fuzhou, 350117, People's Republic of China
| | - Zhaolong Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Province, Fujian Normal University Qishan Campus, College Town, Fuzhou, 350117, People's Republic of China. .,Institute of Animal Husbandry and Veterinary Medicine, Fujian Province, Fujian Academy of Agricultural Sciences, Pudang, Jin-an District, Fuzhou, 350117, People's Republic of China.
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Province, Fujian Normal University Qishan Campus, College Town, Fuzhou, 350117, People's Republic of China.
| | - Shaoli Cai
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Province, Fujian Normal University Qishan Campus, College Town, Fuzhou, 350117, People's Republic of China.
| |
Collapse
|
37
|
Dunn LEM, Ivens A, Netherton CL, Chapman DAG, Beard PM. Identification of a Functional Small Noncoding RNA of African Swine Fever Virus. J Virol 2020; 94:e01515-20. [PMID: 32796064 PMCID: PMC7565616 DOI: 10.1128/jvi.01515-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 01/08/2023] Open
Abstract
African swine fever virus (ASFV) causes a lethal hemorrhagic disease of domestic pigs, against which no vaccine is available. ASFV has a large, double-stranded DNA genome that encodes over 150 proteins. Replication takes place predominantly in the cytoplasm of the cell and involves complex interactions with host cellular components, including small noncoding RNAs (sncRNAs). A number of DNA viruses are known to manipulate sncRNA either by encoding their own or disrupting host sncRNA. To investigate the interplay between ASFV and sncRNAs, a study of host and viral small RNAs extracted from ASFV-infected primary porcine macrophages (PAMs) was undertaken. We discovered that ASFV infection had only a modest effect on host miRNAs, with only 6 miRNAs differentially expressed during infection. The data also revealed 3 potential novel small RNAs encoded by ASFV, ASFVsRNA1-3. Further investigation of ASFVsRNA2 detected it in lymphoid tissue from pigs with ASF. Overexpression of ASFVsRNA2 led to an up to 1-log reduction in ASFV growth, indicating that ASFV utilizes a virus-encoded small RNA to disrupt its own replication.IMPORTANCE African swine fever (ASF) poses a major threat to pig populations and food security worldwide. The disease is endemic to Africa and Eastern Europe and is rapidly emerging into Asia, where it has led to the deaths of millions of pigs in the last 12 months. The development of safe and effective vaccines to protect pigs against ASF has been hindered by lack of understanding of the complex interactions between ASFV and the host cell. We focused our work on characterizing the interactions between ASFV and sncRNAs. Although comparatively modest changes to host sncRNA abundances were observed upon ASFV infection, we discovered and characterized a novel functional ASFV-encoded sncRNA. The results from this study add important insights into ASFV host-pathogen interactions. This knowledge may be exploited to develop more effective ASFV vaccines that take advantage of the sncRNA system.
Collapse
Affiliation(s)
- Laura E M Dunn
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, United Kingdom
| | - Alasdair Ivens
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Philippa M Beard
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, United Kingdom
| |
Collapse
|
38
|
Yoo D, Kim H, Lee JY, Yoo HS. African swine fever: Etiology, epidemiological status in Korea, and perspective on control. J Vet Sci 2020; 21:e38. [PMID: 32233141 PMCID: PMC7113569 DOI: 10.4142/jvs.2020.21.e38] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022] Open
Abstract
African swine fever (ASF), caused by the ASF virus, a member of the Asfarviridae family, is one of the most important diseases in the swine industry due to its clinical and economic impacts. Since the first report of ASF a century ago, ample information has become available, but prevention and treatment measures are still inadequate. Two waves of epizootic outbreaks have occurred worldwide. While the first wave of the epizootic outbreak was controlled in most of the infected areas, the second wave is currently active in the European and Asian continents, causing severe economic losses to the pig industry. There are different patterns of spreading in the outbreaks between those in European and Asian countries. Prevention and control of ASF are very difficult due to the lack of available vaccines and effective therapeutic measures. However, recent outbreaks in South Korea have been successfully controlled on swine farms, although feral pigs are periodically being found to be positive for the ASF virus. Therefore, we would like to share our story regarding the preparation and application of control measures. The success in controlling ASF on farms in South Korea is largely due to the awareness and education of swine farmers and practitioners, the early detection of infected animals, the implementation of strict control policies by the government, and widespread sharing of information among stakeholders. Based on the experience gained from the outbreaks in South Korea, this review describes the current understanding of the ASF virus and its pathogenic mechanisms, epidemiology, and control.
Collapse
Affiliation(s)
- Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois-Urbana-Champaign, Urbana, IL 61802, USA.,Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | | | - Joo Young Lee
- Choong Ang Vaccine Laboratories Co. (Ltd.), Daejeon 34055, Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
39
|
Fecchi K, Anticoli S, Peruzzu D, Iessi E, Gagliardi MC, Matarrese P, Ruggieri A. Coronavirus Interplay With Lipid Rafts and Autophagy Unveils Promising Therapeutic Targets. Front Microbiol 2020; 11:1821. [PMID: 32849425 PMCID: PMC7431668 DOI: 10.3389/fmicb.2020.01821] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022] Open
Abstract
Coronaviruses are enveloped, single-stranded, positive-sense RNA viruses that can infect animal and human hosts. The infection induces mild or sometimes severe acute respiratory diseases. Nowadays, the appearance of a new, highly pathogenic and lethal coronavirus variant, SARS-CoV-2, responsible for a pandemic (COVID-19), represents a global problem for human health. Unfortunately, only limited approaches are available to treat coronavirus infections and a vaccine against this new coronavirus variant is not yet available. The plasma membrane microdomain lipid rafts have been found by researchers to be involved in the replication cycle of numerous viruses, including coronaviruses. Indeed, some pathogen recognition receptors for coronaviruses as for other viruses cluster into lipid rafts, and it is therefore conceivable that the first contact between virus and host cells occurs into these specialized regions, representing a port of cell entry for viruses. Recent data highlighted the peculiar pro-viral or anti-viral role played by autophagy in the host immune responses to viral infections. Coronaviruses, like other viruses, were reported to be able to exploit the autophagic machinery to increase their replication or to inhibit the degradation of viral products. Agents known to disrupt lipid rafts, such as metil-β-cyclodextrins or statins, as well as autophagy inhibitor agents, were shown to have an anti-viral role. In this review, we briefly describe the involvement of lipid rafts and autophagy in coronavirus infection and replication. We also hint how lipid rafts and autophagy may represent a potential therapeutic target to be investigated for the treatment of coronavirus infections.
Collapse
Affiliation(s)
- Katia Fecchi
- Reference Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Anticoli
- Reference Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Daniela Peruzzu
- Reference Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Elisabetta Iessi
- Reference Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Paola Matarrese
- Reference Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Ruggieri
- Reference Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
40
|
Portes J, Barrias E, Travassos R, Attias M, de Souza W. Toxoplasma gondii Mechanisms of Entry Into Host Cells. Front Cell Infect Microbiol 2020; 10:294. [PMID: 32714877 PMCID: PMC7340009 DOI: 10.3389/fcimb.2020.00294] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/19/2020] [Indexed: 01/12/2023] Open
Abstract
Toxoplasma gondii, the causative agent of toxoplasmosis, is an obligate intracellular protozoan parasite. Toxoplasma can invade and multiply inside any nucleated cell of a wide range of homeothermic hosts. The canonical process of internalization involves several steps: an initial recognition of the host cell surface and a sequential secretion of proteins from micronemes followed by rhoptries that assemble a macromolecular complex constituting a specialized and transient moving junction. The parasite is then internalized via an endocytic process with the establishment of a parasitophorous vacuole (PV), that does not fuse with lysosomes, where the parasites survive and multiply. This process of host cell invasion is usually referred to active penetration. Using different cell types and inhibitors of distinct endocytic pathways, we show that treatment of host cells with compounds that interfere with clathrin-mediated endocytosis (hypertonic sucrose medium, chlorpromazine hydrochloride, and pitstop 2 inhibited the internalization of tachyzoites). In addition, treatments that interfere with macropinocytosis, such as incubation with amiloride or IPA-3, increased parasite attachment to the host cell surface but significantly blocked parasite internalization. Immunofluorescence microscopy showed that markers of macropinocytosis, such as the Rab5 effector rabankyrin 5 and Pak1, are associated with parasite-containing cytoplasmic vacuoles. These results indicate that entrance of T. gondii into mammalian cells can take place both by the well-characterized interaction of parasite and host cell endocytic machinery and other processes, such as the clathrin-mediated endocytosis, and macropinocytosis.
Collapse
Affiliation(s)
- Juliana Portes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem, Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Emile Barrias
- Laboratório de Metrologia Aplicada à Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia- Inmetro, Rio de Janeiro, Brazil
| | - Renata Travassos
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem, Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Márcia Attias
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem, Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem, Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| |
Collapse
|
41
|
Fan W, Jiao P, Zhang H, Chen T, Zhou X, Qi Y, Sun L, Shang Y, Zhu H, Hu R, Liu W, Li J. Inhibition of African Swine Fever Virus Replication by Porcine Type I and Type II Interferons. Front Microbiol 2020; 11:1203. [PMID: 32655518 PMCID: PMC7325991 DOI: 10.3389/fmicb.2020.01203] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/12/2020] [Indexed: 02/03/2023] Open
Abstract
Interferons (IFNs) are proteins produced by a variety of cells during the process of virus infection. It can activate the transcription of multiple functional genes in cells, regulate the synergistic effect of multiple signaling pathways, and mediate a variety of biological functions such as antiviral activity and immune regulation. The symptoms of hosts infected with African swine fever virus (ASFV) depend on the combined interaction between viruses and the host. However, it is unclear whether IFNs can be used as an emergency preventive treatment for ASFV. This study focused on the use of recombinant porcine IFNs, produced by Escherichia coli, to inhibit the replication of ASFV. The activity of IFN against ASFV was detected using primary alveolar macrophages at different doses through immunofluorescence assays and quantitative real-time PCR. We found that both 1000 and 100 U/mL doses significantly inhibited the replication of ASFV. Meanwhile, we found that IFNs could significantly trigger the production of a variety of IFN-induced genes (IFIT1, IFITM3, Mx-1, OASL, ISG15, PKR, GBP1, Viperin, BST2, IRF-1, and CXCL10) and MHC molecules, which play key roles in resistance to virus infection. Peripheral blood samples were also obtained from surviving pigs treated with IFNs, and the viral load was determined. Consistent with in vitro tests, low-dose (105 U/kg) recombinant porcine IFNs (PoIFN-α and PoIFN-γ) significantly reduced viral load compared to that with high-dose (106 U/kg) treatment. Our results suggest that recombinant porcine IFNs have high antiviral activity against ASFV, providing a new strategy for the prevention of African swine fever.
Collapse
Affiliation(s)
- Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Pengtao Jiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - He Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Teng Chen
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Xintao Zhou
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Yu Qi
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yingli Shang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Hongfei Zhu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rongliang Hu
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Gaudreault NN, Madden DW, Wilson WC, Trujillo JD, Richt JA. African Swine Fever Virus: An Emerging DNA Arbovirus. Front Vet Sci 2020; 7:215. [PMID: 32478103 PMCID: PMC7237725 DOI: 10.3389/fvets.2020.00215] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
African swine fever virus (ASFV) is the sole member of the family Asfarviridae, and the only known DNA arbovirus. Since its identification in Kenya in 1921, ASFV has remained endemic in Africa, maintained in a sylvatic cycle between Ornithodoros soft ticks and warthogs (Phacochoerus africanus) which do not develop clinical disease with ASFV infection. However, ASFV causes a devastating and economically significant disease of domestic (Sus scrofa domesticus) and feral (Sus scrofa ferus) swine. There is no ASFV vaccine available, and current control measures consist of strict animal quarantine and culling procedures. The virus is highly stable and easily spreads by infected swine, contaminated pork products and fomites, or via transmission by the Ornithodoros vector. Competent Ornithodoros argasid soft tick vectors are known to exist not only in Africa, but also in parts of Europe and the Americas. Once ASFV is established in the argasid soft tick vector, eradication can be difficult due to the long lifespan of Ornithodoros ticks and their proclivity to inhabit the burrows of warthogs or pens and shelters of domestic pigs. Establishment of endemic ASFV infections in wild boar populations further complicates the control of ASF. Between the late 1950s and early 1980s, ASFV emerged in Europe, Russia and South America, but was mostly eradicated by the mid-1990s. In 2007, a highly virulent genotype II ASFV strain emerged in the Caucasus region and subsequently spread into the Russian Federation and Europe, where it has continued to circulate and spread. Most recently, ASFV emerged in China and has now spread to several neighboring countries in Southeast Asia. The high morbidity and mortality associated with ASFV, the lack of an efficacious vaccine, and the complex makeup of the ASFV virion and genome as well as its lifecycle, make this pathogen a serious threat to the global swine industry and national economies. Topics covered by this review include factors important for ASFV infection, replication, maintenance, and transmission, with attention to the role of the argasid tick vector and the sylvatic transmission cycle, current and future control strategies for ASF, and knowledge gaps regarding the virus itself, its vector and host species.
Collapse
Affiliation(s)
- Natasha N. Gaudreault
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Daniel W. Madden
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - William C. Wilson
- Arthropod Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS, United States
| | - Jessie D. Trujillo
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
43
|
Li G, Liu X, Yang M, Zhang G, Wang Z, Guo K, Gao Y, Jiao P, Sun J, Chen C, Wang H, Deng W, Xiao H, Li S, Wu H, Wang Y, Cao L, Jia Z, Shang L, Yang C, Guo Y, Rao Z. Crystal Structure of African Swine Fever Virus pS273R Protease and Implications for Inhibitor Design. J Virol 2020; 94:e02125-19. [PMID: 32075933 PMCID: PMC7199414 DOI: 10.1128/jvi.02125-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/11/2020] [Indexed: 01/21/2023] Open
Abstract
African swine fever (ASF) is a highly contagious hemorrhagic viral disease of domestic and wild pigs that is responsible for serious economic and production losses. It is caused by the African swine fever virus (ASFV), a large and complex icosahedral DNA virus of the Asfarviridae family. Currently, there is no effective treatment or approved vaccine against the ASFV. pS273R, a specific SUMO-1 cysteine protease, catalyzes the maturation of the pp220 and pp62 polyprotein precursors into core-shell proteins. Here, we present the crystal structure of the ASFV pS273R protease at a resolution of 2.3 Å. The overall structure of the pS273R protease is represented by two domains named the "core domain" and the N-terminal "arm domain." The "arm domain" contains the residues from M1 to N83, and the "core domain" contains the residues from N84 to A273. A structure analysis reveals that the "core domain" shares a high degree of structural similarity with chlamydial deubiquitinating enzyme, sentrin-specific protease, and adenovirus protease, while the "arm domain" is unique to ASFV. Further, experiments indicated that the "arm domain" plays an important role in maintaining the enzyme activity of ASFV pS273R. Moreover, based on the structural information of pS273R, we designed and synthesized several peptidomimetic aldehyde compounds at a submolar 50% inhibitory concentration, which paves the way for the design of inhibitors to target this severe pathogen.IMPORTANCE African swine fever virus, a large and complex icosahedral DNA virus, causes a deadly infection in domestic pigs. In addition to Africa and Europe, countries in Asia, including China, Vietnam, and Mongolia, were negatively affected by the hazards posed by ASFV outbreaks in 2018 and 2019, at which time more than 30 million pigs were culled. Until now, there has been no vaccine for protection against ASFV infection or effective treatments to cure ASF. Here, we solved the high-resolution crystal structure of the ASFV pS273R protease. The pS273R protease has a two-domain structure that distinguishes it from other members of the SUMO protease family, while the unique "arm domain" has been proven to be essential for its hydrolytic activity. Moreover, the peptidomimetic aldehyde compounds designed to target the substrate binding pocket exert prominent inhibitory effects and can thus be used in a potential lead for anti-ASFV drug development.
Collapse
Affiliation(s)
- Guobang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
| | - Xiaoxia Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, People's Republic of China
| | - Mengyuan Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
| | - Guangshun Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
| | - Zhengyang Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, People's Republic of China
| | - Kun Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, People's Republic of China
| | - Yuxue Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
| | - Peng Jiao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, People's Republic of China
| | - Jixue Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Cheng Chen
- School of Life Sciences, Tianjin University, Tianjin, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
| | - Weilong Deng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
| | - Huihe Xiao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Sizheng Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Haoru Wu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
| | - Ying Wang
- Tianjin Crops Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, People's Republic of China
| | - Lin Cao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
- College of Life Science, Nankai University, Tianjin, People's Republic of China
| | - Zihan Jia
- College of Life Science, Nankai University, Tianjin, People's Republic of China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Luqing Shang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, People's Republic of China
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, People's Republic of China
- Frontiers Science Center for Cell Responses, Nankai University, Tianjin, People's Republic of China
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
- Drug Discovery Center for Infectious Diseases, Nankai University, Tianjin, People's Republic of China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, People's Republic of China
- College of Life Science, Nankai University, Tianjin, People's Republic of China
- Frontiers Science Center for Cell Responses, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
44
|
Karger A, Pérez-Núñez D, Urquiza J, Hinojar P, Alonso C, Freitas FB, Revilla Y, Le Potier MF, Montoya M. An Update on African Swine Fever Virology. Viruses 2019; 11:v11090864. [PMID: 31533244 PMCID: PMC6784044 DOI: 10.3390/v11090864] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
Animal diseases constitute a continuing threat to animal health, food safety, national economy, and the environment. Among those, African swine fever (ASF) is one of the most devastating viruses affecting pigs and wild suids due to the lack of vaccine or effective treatment. ASF is endemic in countries in sub-Saharan Africa, but since its introduction to the Caucasus region in 2007, a highly virulent strain of ASF virus (ASFV) has continued to circulate and spread into Eastern Europe and Russia, and most recently into Western Europe, China, and various countries of Southeast Asia. Given the importance of this disease, this review will highlight recent discoveries in basic virology with special focus on proteomic analysis, replication cycle, and some recent data on genes involved in cycle progression and viral–host interactions, such as I215L (E2 ubiquitin-conjugating enzyme), EP402R (CD2v), A104R (histone-like protein), QP509L, and Q706L (RNA helicases) or P1192R (Topoisomerase II). Taking into consideration the large DNA genome of ASFV and its complex interactions with the host, more studies and new approaches are to be taken to understand the basic virus–host interaction for ASFV. Proteomic studies are just paving the way for future research.
Collapse
Affiliation(s)
- Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich Loeffler Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Daniel Pérez-Núñez
- Virology Department, Centro Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain; (D.P.-N.); (Y.R.)
| | - Jesús Urquiza
- INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain; (J.U.); (P.H.); (C.A.)
| | - Patricia Hinojar
- INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain; (J.U.); (P.H.); (C.A.)
| | - Covadonga Alonso
- INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain; (J.U.); (P.H.); (C.A.)
| | - Ferdinando B. Freitas
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisboa, Portugal;
| | - Yolanda Revilla
- Virology Department, Centro Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain; (D.P.-N.); (Y.R.)
| | - Marie-Frédérique Le Potier
- ANSES, Laboratoire de Ploufragan/Plouzané/Niort, Unité Virologie Immunologie Porcines, Anses, 22440 Ploufragan, France;
| | - Maria Montoya
- Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|