1
|
Dutta S, Zhu Y, Almuntashiri S, Peh HY, Zuñiga J, Zhang D, Somanath PR, Ramírez G, Irineo-Moreno V, Jiménez-Juárez F, López-Salinas K, Regino N, Campero P, Crocker SJ, Owen CA, Wang X. PDGFRα-positive cell-derived TIMP-1 modulates adaptive immune responses to influenza A viral infection. Am J Physiol Lung Cell Mol Physiol 2025; 328:L60-L74. [PMID: 39585242 DOI: 10.1152/ajplung.00104.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a physiologic inhibitor of the matrix metalloproteinases (MMPs), but little is known about the role of TIMP-1 in regulating the pathogenesis of influenza A virus (IAV) infection. Here, we performed both in vivo and in vitro experiments to investigate the regulation and function of TIMP-1 during IAV infection. Specifically, plasma levels of TIMP-1 are significantly increased in human subjects and wild-type (WT) mice infected with 2009 H1N1 IAV compared with levels in uninfected controls. Also, TIMP-1 is strikingly upregulated in PDGFRα positive (PDGFRα+) cells in IAV-infected murine lungs as demonstrated using conditional KO (cKO) mice with a specific deletion of Timp-1 in PDGFRα+ cells. Our in vitro data indicated that TIMP-1 is induced by transforming growth factor-β (TGF-β) during lipofibroblasts (lipoFBs)-to-myofibroblast (myoFB) transdifferentiation. Timp-1 deficiency protects mice from H1N1 IAV-induced weight loss, mortality, and lung injury. IAV-infected Timp-1-deficient mice showed increased macrophages, and B and T cell counts in bronchoalveolar lavage (BAL) on day 7 postinfection (p.i.), but reduced BAL neutrophil counts. Increased Cxcl12 levels were detected in both BAL cells and lungs from Timp-1-deficient mice on day 3 p.i. Taken together, our data strongly link TIMP-1 to IAV pathogenesis. We identified that PDGFRα-lineage cells are the main cellular source of elevated TIMP-1 during IAV infection. Loss of Timp-1 attenuates IAV-induced mortality and promotes T and B cell recruitment. Thus, TIMP-1 may be a novel therapeutic target for IAV infection.NEW & NOTEWORTHY Our data strongly link tissue inhibitor of metalloproteinases-1 (TIMP-1) to influenza A virus (IAV) pathogenesis. TIMP-1 is highly increased in PDGFRα-lineage cells during IAV infection. Transforming growth factor-β (TGF-β) induces TIMP-1 during lipofibroblast (lipoFB)-to- myofibroblast (myoFB) transdifferentiation. Timp-1 deficiency protects mice from H1N1 IAV-induced weight loss, mortality, and lung injury. TIMP-1 may be a novel therapeutic target for IAV infection.
Collapse
Affiliation(s)
- Saugata Dutta
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| | - Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| | - Sultan Almuntashiri
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Hong Yong Peh
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, United States
| | - Joaquin Zuñiga
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City, Mexico
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City, Mexico
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| | - Gustavo Ramírez
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Valeria Irineo-Moreno
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City, Mexico
| | - Fabiola Jiménez-Juárez
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City, Mexico
| | - Karen López-Salinas
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City, Mexico
| | - Nora Regino
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Mexico City, Mexico
| | - Paloma Campero
- Laboratory of Immunobiology and Genetics and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut, United States
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, United States
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia, United States
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
2
|
Saitoh S, Takeda Y, Araki A, Nouchi Y, Yamaguchi R, Nakajima O, Asao H. 5-Aminolevulinic Acid (5-ALA) Plays an Important Role in the Function of Innate Immune Cells. Inflammation 2024:10.1007/s10753-024-02212-1. [PMID: 39702622 DOI: 10.1007/s10753-024-02212-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
5-aminolevulinic acid (5-ALA) is an amino acid essential for the synthesis of heme, which is important for various cellular functions, including the mitochondrial electron transport chain. We previously established heterozygous knockout mice (Alas1+/-) for 5-ALA synthase 1 (ALAS1), the rate-limiting enzyme for 5-ALA synthesis, and reported that the mice developed non-obese insulin-resistant diabetes. In the present study, we used these mice to analyze the role of 5-ALA in the immune system. Using a lipopolysaccharide (LPS)-induced septic shock model, Alas1+/- mice showed reduced mortality compared to wild-type (WT) mice. In this model experiment, the plasma concentration of inflammatory cytokines such as tumor necrosis factor α (TNFα) and interleukin-6 (IL-6), and the chemokine monocyte chemoattractant protein-1 (MCP1) decreased in Alas1+/- mice compared that in WT mice, and inflammatory cell infiltration into the peritoneal cavity was also decreased. In ex vivo experiments, exogenous 5-ALA pretreatment enhanced LPS-induced TNFα and IL-6 production from peripheral blood leukocytes of Alas1+/- mice. Additionally, 5-ALA pretreatment enhanced LPS-induced activation of inflammatory cytokine genes in innate immune cells. Interestingly, the phagocytosis and reactive oxygen species (ROS) producing abilities of neutrophils were clearly hampered in Alas1+/- mice compared to WT mice, but after 2 weeks of 5-ALA administration to Alas1+/- mice, both abilities were significantly recovered up to the level in WT mice. These results reveal that 5-ALA is essential for the function of innate immune cells. Because 5-ALA can be supplemented orally, it has the potential to be used as a drug to restore innate immune function.
Collapse
Affiliation(s)
- Shinichi Saitoh
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Yuji Takeda
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Akemi Araki
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Yusuke Nouchi
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Risako Yamaguchi
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Osamu Nakajima
- Research Center for Molecular Genetics, Institute for Promotion of Medical Science Research, Yamagata University, Yamagata, 990-9585, Japan
| | - Hironobu Asao
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan.
| |
Collapse
|
3
|
Marchenko VA, Zhilinskaya IN. Endothelial activation and dysfunction caused by influenza A virus ( Alphainfluenzavirus influenzae). Vopr Virusol 2024; 69:465-478. [PMID: 39841412 DOI: 10.36233/0507-4088-264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Indexed: 01/23/2025]
Abstract
Annual epidemics of influenza result in 3-5 million cases of severe illness and more than 600 000 deaths. Severe forms of influenza are usually characterized by vascular endothelial cells damage. Thus, influenza A viruses, including subtypes A(H1N1)pdm09, A(H3N2), as well as highly pathogenic avian influenza viruses, can infect the vascular endothelium, leading to activation and subsequent dysfunction of these cells. In turn, endothelial dysfunction resulting in systemic morphofunctional changes of endothelial cells, which leads to impaired vascular tone, thrombosis and other complications, and is also a risk factor and profoundly implicated in the pathogenesis of many cardiovascular diseases. Thus, endothelial dysfunction is an important aspect of the pathogenesis of severe influenza, which must be considered in the pathogenetic therapy of this infectious disease. The aim of the review is to analyze the causes and specify mechanisms of development of endothelial activation and dysfunction caused by influenza A virus.
Collapse
Affiliation(s)
- V A Marchenko
- North-Western State Medical University Named after I.I. Mechnikov
| | - I N Zhilinskaya
- North-Western State Medical University Named after I.I. Mechnikov
| |
Collapse
|
4
|
Owen AR, Farias A, Levins AM, Wang Z, Higham SL, Mack M, Tregoning JS, Johansson C. Exposure to bacterial PAMPs before RSV infection exacerbates innate inflammation and disease via IL-1α and TNF-α. Mucosal Immunol 2024; 17:1184-1198. [PMID: 39127259 PMCID: PMC11631774 DOI: 10.1016/j.mucimm.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Respiratory syncytial virus (RSV) can cause severe lower respiratory tract infections. Understanding why some individuals get more serious disease may help with diagnosis and treatment. One possible risk factor underlying severe disease is bacterial exposure before RSV infection. Bacterial exposure has been associated with increased respiratory viral-induced disease severity but the mechanism remains unknown. Respiratory bacterial infections or exposure to their pathogen associated molecular patterns (PAMPs) trigger innate immune inflammation, characterised by neutrophil and inflammatory monocyte recruitment and the production of inflammatory cytokines. We hypothesise that these changes to the lung environment alter the immune response and disease severity during subsequent RSV infection. To test this, we intranasally exposed mice to LPS, LTA or Acinetobacter baumannii (an airway bacterial pathogen) before RSV infection and observed an early induction of disease, measured by weight loss, at days 1-3 after infection. Neutrophils or inflammatory monocytes were not responsible for driving this exacerbated weight loss. Instead, exacerbated disease was associated with increased IL-1α and TNF-α, which orchestrated the recruitment of innate immune cells into the lung. This study shows that exposure to bacterial PAMPs prior to RSV infection increases the expression of IL-1α and TNF-α, which dysregulate the immune response resulting in exacerbated disease.
Collapse
Affiliation(s)
- Amber R Owen
- Respiratory Infections, National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Ana Farias
- Respiratory Infections, National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Anne-Marie Levins
- Respiratory Infections, National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Ziyin Wang
- Department of Infectious Disease, Imperial College London, United Kingdom
| | - Sophie L Higham
- Department of Infectious Disease, Imperial College London, United Kingdom
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - John S Tregoning
- Department of Infectious Disease, Imperial College London, United Kingdom
| | - Cecilia Johansson
- Respiratory Infections, National Heart and Lung Institute, Imperial College London, United Kingdom.
| |
Collapse
|
5
|
Kawahara E, Senpuku K, Kawaguchi Y, Yamamoto S, Yasuda K, Kuroda E, Ouji-Sageshima N, Ito T, Hirai T, Shibata T, Yoshioka Y. Recombinant RSV G protein vaccine induces enhanced respiratory disease via IL-13 and mucin overproduction. NPJ Vaccines 2024; 9:187. [PMID: 39394212 PMCID: PMC11470036 DOI: 10.1038/s41541-024-00987-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
The G protein expressed on the surface of respiratory syncytial virus (RSV) is important for adhesion to host cells and as a vaccine target antigen. The corresponding vaccines can effectively eliminate RSV. However, they exacerbate pulmonary immunopathology including eosinophilic infiltration in the lungs after an RSV challenge in animal models, raising concerns about enhanced respiratory disease (ERD); thus, approaches that mitigate these effects are urgently needed. Herein, we aimed to examine the mechanisms of G protein vaccine-induced ERD in mice, using recombinant G protein as a vaccine antigen. After the RSV challenge, G protein-vaccinated mice exhibited lung weight gain, lung tissue damage, and increased infiltration of eosinophils, neutrophils, and CD4+ T cells into the lungs. We set lung weight gain as the endpoint for ERD and examined the impact of each infiltrating cell on lung weight gain. We observed that CD4+ T cells, but not eosinophils or neutrophils, that infiltrate the lungs are responsible for lung weight gain. In addition, T helper 2 cell-mediated IL-13 induced mucin hypersecretion and lung weight gain. Mucin hypersecretion may contribute to weight gain in the lungs. In conclusion, our results indicate a novel mechanism of G protein vaccine-induced ERD via IL-13 and mucin hypersecretion, which could lead to the development of safe G protein vaccines and the elucidation of the causes of ERD associated with other vaccines.
Collapse
Affiliation(s)
- Eigo Kawahara
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Vaccine Creation Group, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kota Senpuku
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Vaccine Creation Group, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoshino Kawaguchi
- Vaccine Creation Group, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Shinya Yamamoto
- The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Koubun Yasuda
- Department of Immunology, Hyogo College of Medicine, Hyogo, Japan
| | - Etsushi Kuroda
- Department of Immunology, Hyogo College of Medicine, Hyogo, Japan
| | | | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Nara, Japan
| | - Toshiro Hirai
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Vaccine Creation Group, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Takehiko Shibata
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| | - Yasuo Yoshioka
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
- Vaccine Creation Group, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
- The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan.
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan.
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
| |
Collapse
|
6
|
West AC, Harpur CM, Le Page MA, Lam M, Hodges C, Ely LK, Gearing AJ, Tate MD. Harnessing Endogenous Peptide Compounds as Potential Therapeutics for Severe Influenza. J Infect Dis 2024; 230:e384-e394. [PMID: 38060822 PMCID: PMC11326819 DOI: 10.1093/infdis/jiad566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/05/2023] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Excessive pulmonary inflammation and damage are characteristic features of severe influenza virus infections. LAT8881 is a synthetic 16-amino acid cyclic peptide form of a naturally occurring C-terminal fragment of human growth hormone with therapeutic efficacy against influenza. Shorter linear peptides are typically easier to manufacture and formulate for delivery than larger cyclic peptides. A 6-amino acid linear peptide fragment of LAT8881, LAT9997, was investigated as a potential influenza therapy. METHODS LAT9997 was evaluated for its potential to limit disease in a preclinical mouse model of severe influenza infection. RESULTS Intranasal treatment of mice with either LAT8881 or LAT9997 from day 1 following influenza infection significantly improved survival outcomes. Initiating LAT9997 treatment at the onset of severe disease also significantly improved disease severity. Greater disease resistance in LAT9997-treated mice correlated with reduced lung immunopathology, damage markers, vascular leak, and epithelial cell death. Treatment reduced viral loads, cytokines, and neutrophil infiltration in the airways yet maintained protective alveolar macrophages in a dose-dependent manner. Sequential trimming of N- and C-terminal amino acids from LAT9997 revealed a structure-activity relationship. CONCLUSIONS These findings provide preclinical evidence that therapeutic LAT9997 treatment limits viral burden and characteristic features of severe influenza, including hyperinflammation and lung damage. SUMMARY Excessive pulmonary inflammation and damage are characteristic features of severe influenza virus infections. LAT9997 is a linear peptide fragment derived from human growth hormone. This study provides preclinical evidence that therapeutic LAT9997 treatment limits viral burden, hyperinflammation, and lung damage.
Collapse
Affiliation(s)
- Alison C West
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research
- Department of Molecular and Translational Sciences, Monash University, Clayton
| | - Christopher M Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research
- Department of Molecular and Translational Sciences, Monash University, Clayton
| | - Mélanie A Le Page
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research
- Department of Molecular and Translational Sciences, Monash University, Clayton
| | - Maggie Lam
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research
- Department of Molecular and Translational Sciences, Monash University, Clayton
| | - Christopher Hodges
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research
- Department of Molecular and Translational Sciences, Monash University, Clayton
| | | | | | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research
- Department of Molecular and Translational Sciences, Monash University, Clayton
| |
Collapse
|
7
|
Kamsom C, Edwards SW, Thaosing J, Papalee S, Pientong C, Kurosu T, Phanthanawiboon S. Altered neutrophil responses to dengue virus serotype three: delayed apoptosis is regulated by stabilisation of Mcl-1. Sci Rep 2024; 14:18414. [PMID: 39117747 PMCID: PMC11310306 DOI: 10.1038/s41598-024-68642-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Dengue is a global health concern, and the host-viral interactions that regulate disease severity are largely unknown. Detrimental effects of neutrophils in this disease have been reported, but the precise mechanisms and functional properties of dengue-activated neutrophils are not fully characterised. Here, we measured the effects of dengue virus serotype 3 (DV3) on neutrophil lifespan and functions. We show that DV3 extends neutrophil survival with a significant proportion of cells surviving for 72 h post-incubation. These effects on neutrophil survival were greater than those observed by adding GM-CSF and TNF-α alone, but these cytokines enhanced survival induced by the virus. Enhanced reactive oxygen species (ROS) generation was observed following incubation with DV3 activation and this ROS production was enhanced by co-incubation with priming agents. In addition, DV triggered the enhanced IL-8 expression by the majority of neutrophils and a low percentage of cells were activated to express MCP-1 (CCL2). A low number of neutrophils showed increased co-expression of the migratory markers, CCR7 and CXCR4 which could promote their migration towards lymph nodes. DV3 significantly upregulated the BCL-XL gene at 3, 12, and 24 h, and the Mcl-1 gene at 12 h, following treatment. We also show that DV3 induces the Mcl-1 protein stabilization similar to GM-CSF. This report sheds new light on the mechanisms by which neutrophils may contribute to the pathology of dengue disease via delayed apoptosis and generation of pro-inflammatory molecules, and raises the possibility that dengue-activated neutrophils may play a role in activating cells of adaptive immunity.
Collapse
Affiliation(s)
- Chatcharin Kamsom
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Steven W Edwards
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jiraphon Thaosing
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Saitharn Papalee
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | | |
Collapse
|
8
|
Feng Z, Fu J, Tang L, Bao C, Liu H, Liu K, Yang T, Yuan JH, Zhou CB, Zhang C, Xu R, Wang FS. HBeAg induces neutrophils activation impairing NK cells function in patients with chronic hepatitis B. Hepatol Int 2024; 18:1122-1134. [PMID: 38829576 DOI: 10.1007/s12072-024-10689-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/21/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND The role of neutrophils in hepatitis B virus (HBV) infection has been a subject of debate due to their involvement in antiviral responses and immune regulation. This study aimed to elucidate the neutrophil characteristics in patients with chronic hepatitis B (CHB). METHODS Through flow cytometry and ribonucleic acid-sequencing analysis, the phenotypes and counts of neutrophils were analyzed in patients with CHB. Moreover, the effects of HBeAg on neutrophils and the corresponding pattern recognition receptors were identified. Simultaneously, the cross-talk between neutrophils and natural killer (NK) cells was investigated. RESULTS Neutrophils were activated in patients with CHB, characterized by higher expression levels of programmed death-ligand 1 (PD-L1), cluster of differentiation 86, and interleukin-8, and lower levels of CXC motif chemokine receptor (CXCR) 1 and CXCR2. Hepatitis B e antigen (HBeAg) partially induces neutrophil activation through the Toll-like receptor 2 (TLR2). A consistent upregulation of the TLR2 and HBeAg expression was observed in patients with CHB. Notably, the genes encoding molecules pivotal for NK-cell function upon NK receptor engagement enriched in neutrophils after HBeAg activation. The HBeAg-activated neutrophils demonstrated the ability to decrease the production of interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) in NK cells, while the PD-1 and PD-L1 pathways partially mediated the immunosuppression. CONCLUSIONS The immunosuppression of neutrophils induced by HBeAg suggests a novel pathogenic mechanism contributing to immune tolerance in patients with CHB.
Collapse
Affiliation(s)
- Zhiqian Feng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Junliang Fu
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Lili Tang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chunmei Bao
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Honghong Liu
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Kai Liu
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Tao Yang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jin-Hong Yuan
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chun-Bao Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Ruonan Xu
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Voutouri C, Hardin CC, Naranbhai V, Nikmaneshi MR, Khandekar MJ, Gainor JF, Munn LL, Jain RK, Stylianopoulos T. Dynamic heterogeneity in COVID-19: Insights from a mathematical model. PLoS One 2024; 19:e0301780. [PMID: 38820409 PMCID: PMC11142552 DOI: 10.1371/journal.pone.0301780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/20/2024] [Indexed: 06/02/2024] Open
Abstract
Critical illness, such as severe COVID-19, is heterogenous in presentation and treatment response. However, it remains possible that clinical course may be influenced by dynamic and/or random events such that similar patients subject to similar injuries may yet follow different trajectories. We deployed a mechanistic mathematical model of COVID-19 to determine the range of possible clinical courses after SARS-CoV-2 infection, which may follow from specific changes in viral properties, immune properties, treatment modality and random external factors such as initial viral load. We find that treatment efficacy and baseline patient or viral features are not the sole determinant of outcome. We found patients with enhanced innate or adaptive immune responses can experience poor viral control, resolution of infection or non-infectious inflammatory injury depending on treatment efficacy and initial viral load. Hypoxemia may result from poor viral control or ongoing inflammation despite effective viral control. Adaptive immune responses may be inhibited by very early effective therapy, resulting in viral load rebound after cessation of therapy. Our model suggests individual disease course may be influenced by the interaction between external and patient-intrinsic factors. These data have implications for the reproducibility of clinical trial cohorts and timing of optimal treatment.
Collapse
Affiliation(s)
- Chrysovalantis Voutouri
- Department of Radiation Oncology, Edwin L Steele Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
- Department of Mechanical and Manufacturing Engineering, Cancer Biophysics Laboratory, University of Cyprus, Nicosia, Cyprus
| | - C. Corey Hardin
- Department of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Vivek Naranbhai
- Department of Medicine, Massachusetts General Hospital Cancer Center, Division of Hematology/Oncology, Massachusetts General Hospital, Boston, MA, United States of America
- Dana-Farber Cancer Institute, Boston, MA, United States of America
- Center for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Mohammad R. Nikmaneshi
- Department of Radiation Oncology, Edwin L Steele Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Melin J. Khandekar
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Justin F. Gainor
- Department of Medicine, Massachusetts General Hospital Cancer Center, Division of Hematology/Oncology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Lance L. Munn
- Department of Radiation Oncology, Edwin L Steele Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Rakesh K. Jain
- Department of Radiation Oncology, Edwin L Steele Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Triantafyllos Stylianopoulos
- Department of Mechanical and Manufacturing Engineering, Cancer Biophysics Laboratory, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
10
|
Wilks LR, Joshi G, Rychener N, Gill HS. Generation of Broad Protection against Influenza with Di-Tyrosine-Cross-Linked M2e Nanoclusters. ACS Infect Dis 2024; 10:1552-1560. [PMID: 38623820 DOI: 10.1021/acsinfecdis.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Tyrosine cross-linking has recently been used to produce nanoclusters (NCs) from peptides to enhance their immunogenicity. In this study, NCs were generated using the ectodomain of the ion channel Matrix 2 (M2e) protein, a conserved influenza surface antigen. The NCs were administered via intranasal (IN) or intramuscular (IM) routes in a mouse model in a prime-boost regimen in the presence of the adjuvant CpG. After boost, a significant increase in anti-M2e IgG and its subtypes was observed in the serum and lungs of mice vaccinated through the IM and IN routes; however, significant enhancement in anti-M2e IgA in lungs was observed only in the IN group. Analysis of cytokine concentrations in stimulated splenocyte cultures indicated a Th1/Th17-biased response. Mice were challenged with a lethal dose of A/California/07/2009 (H1N1pdm), A/Puerto Rico/08/1934 (H1N1), or A/Hong Kong/08/1968 (H3N2) strains. Mice that received M2e NCs + CpG were significantly protected against these strains and showed decreased lung viral titers compared with the naive mice and M2e NC-alone groups. The IN-vaccinated group showed superior protection against the H3N2 strain as compared to the IM group. This research extends our earlier efforts involving the tyrosine-based cross-linking method and highlights the potential of this technology in enhancing the immunogenicity of short peptide immunogens.
Collapse
Affiliation(s)
- Logan R Wilks
- Department of Chemical Engineering, Texas Tech University, Eighth Street and Canton Avenue, Mail Stop 3121, Lubbock, Texas 79409-3121, United States
| | - Gaurav Joshi
- Department of Chemical Engineering, Texas Tech University, Eighth Street and Canton Avenue, Mail Stop 3121, Lubbock, Texas 79409-3121, United States
| | - Natalie Rychener
- Department of Chemical Engineering, Texas Tech University, Eighth Street and Canton Avenue, Mail Stop 3121, Lubbock, Texas 79409-3121, United States
| | - Harvinder Singh Gill
- Department of Chemical Engineering, Texas Tech University, Eighth Street and Canton Avenue, Mail Stop 3121, Lubbock, Texas 79409-3121, United States
| |
Collapse
|
11
|
Finn CM, McKinstry KK. Ex Pluribus Unum: The CD4 T Cell Response against Influenza A Virus. Cells 2024; 13:639. [PMID: 38607077 PMCID: PMC11012043 DOI: 10.3390/cells13070639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Current Influenza A virus (IAV) vaccines, which primarily aim to generate neutralizing antibodies against the major surface proteins of specific IAV strains predicted to circulate during the annual 'flu' season, are suboptimal and are characterized by relatively low annual vaccine efficacy. One approach to improve protection is for vaccines to also target the priming of virus-specific T cells that can protect against IAV even in the absence of preexisting neutralizing antibodies. CD4 T cells represent a particularly attractive target as they help to promote responses by other innate and adaptive lymphocyte populations and can also directly mediate potent effector functions. Studies in murine models of IAV infection have been instrumental in moving this goal forward. Here, we will review these findings, focusing on distinct subsets of CD4 T cell effectors that have been shown to impact outcomes. This body of work suggests that a major challenge for next-generation vaccines will be to prime a CD4 T cell population with the same spectrum of functional diversity generated by IAV infection. This goal is encapsulated well by the motto 'ex pluribus unum': that an optimal CD4 T cell response comprises many individual specialized subsets responding together.
Collapse
Affiliation(s)
| | - K. Kai McKinstry
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| |
Collapse
|
12
|
Casalino-Matsuda SM, Chen F, Gonzalez-Gonzalez FJ, Matsuda H, Nair A, Abdala-Valencia H, Budinger GS, Dong JT, Beitel GJ, Sporn PH. Myeloid Zfhx3 deficiency protects against hypercapnia-induced suppression of host defense against influenza A virus. JCI Insight 2024; 9:e170316. [PMID: 38227369 PMCID: PMC11143927 DOI: 10.1172/jci.insight.170316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024] Open
Abstract
Hypercapnia, elevation of the partial pressure of CO2 in blood and tissues, is a risk factor for mortality in patients with severe acute and chronic lung diseases. We previously showed that hypercapnia inhibits multiple macrophage and neutrophil antimicrobial functions and that elevated CO2 increases the mortality of bacterial and viral pneumonia in mice. Here, we show that normoxic hypercapnia downregulates innate immune and antiviral gene programs in alveolar macrophages (AMØs). We also show that zinc finger homeobox 3 (Zfhx3) - a mammalian ortholog of zfh2, which mediates hypercapnic immune suppression in Drosophila - is expressed in mouse and human macrophages. Deletion of Zfhx3 in the myeloid lineage blocked the suppressive effect of hypercapnia on immune gene expression in AMØs and decreased viral replication, inflammatory lung injury, and mortality in hypercapnic mice infected with influenza A virus. To our knowledge, our results establish Zfhx3 as the first known mammalian mediator of CO2 effects on immune gene expression and lay the basis for future studies to identify therapeutic targets to interrupt hypercapnic immunosuppression in patients with advanced lung disease.
Collapse
Affiliation(s)
- S. Marina Casalino-Matsuda
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Fei Chen
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Francisco J. Gonzalez-Gonzalez
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hiroaki Matsuda
- Department of Physical Sciences and Engineering, Wilbur Wright College, Chicago, Illinois, USA
| | - Aisha Nair
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - G.R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Research Service, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Jin-Tang Dong
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Greg J. Beitel
- Department of Molecular Biosciences, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois, USA
| | - Peter H.S. Sporn
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Research Service, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| |
Collapse
|
13
|
Nakade I, Tamura Y, Hashimoto F, Ariza Y, Hotta S, Fujigaya H, Arai S, Taniguchi M, Ogawa H, Nishibata Y, Masuda S, Nakazawa D, Tomaru U, Ishizu A. Bruton's tyrosine kinase is a possible therapeutic target in microscopic polyangiitis. Arthritis Res Ther 2023; 25:215. [PMID: 37932784 PMCID: PMC10626711 DOI: 10.1186/s13075-023-03201-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Bruton's tyrosine kinase (Btk) is an enzyme expressed in leukocytes other than T lymphocytes and plasma cells and involved in B-cell receptor- and Fcγ receptor (FcγR)-mediated signal transduction. Btk inhibitors potentially suppress autoantibody production due to the expected inhibitory ability of B lymphocyte differentiation into antibody-producing plasma cells and reduce FcγR-mediated neutrophil activation, including the release of neutrophil extracellular traps (NETs). Microscopic polyangiitis (MPA) is a systemic small-vessel vasculitis characterized by the pathogenic autoantibody, antineutrophil cytoplasmic antibody (ANCA) that reacts with myeloperoxidase (MPO). MPO and MPO-ANCA immune complex (IC)-induced FcγR-mediated NETs are critically involved in MPA pathogenesis. This study aimed to demonstrate the therapeutic efficacy of the Btk inhibitor tirabrutinib on MPA. METHODS Various doses of tirabrutinib or vehicle were orally administered to Sprague-Dawley rats daily. Four weeks later, the number of peripheral B lymphocytes was counted, and Btk phosphorylation in B lymphocytes was evaluated by flow cytometry. Human peripheral blood neutrophils were stimulated by MPO and anti-MPO antibody ICs (MPO and anti-MPO-ICs), and Btk and its downstream Vav phosphorylation were assessed by western blotting. The effects of tirabrutinib on MPO and anti-MPO-IC-induced NET formation were examined in vitro. Wistar Kyoto rats were immunized with human MPO to induce experimental MPA and given drug-free or tirabrutinib-containing feed (0.0037% or 0.012%) from day 0 or 28. All rats were euthanized on day 42 for serological and histological evaluation. RESULTS Tirabrutinib inhibited Btk phosphorylation without decreasing B lymphocytes in vivo. Neutrophil Btk and Vav were phosphorylated when stimulated with MPO and anti-MPO-ICs. Tirabrutinib suppressed MPO and anti-MPO-IC-induced NET formation in vitro and ameliorated experimental MPA in a dose-dependent manner in vivo. Although MPO-ANCA production was not affected, NET-forming neutrophils in the blood were significantly reduced by tirabrutinib. CONCLUSIONS The Btk inhibitor tirabrutinib suppressed MPO and anti-MPO-IC-induced NET formation in vitro and ameliorated experimental MPA by reducing NET-forming neutrophils but not decreasing MPO-ANCA titer in vivo. This study suggests that Btk is a possible therapeutic target in MPA.
Collapse
Affiliation(s)
- Issei Nakade
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo, 0600812, Japan
| | - Yuto Tamura
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo, 0600812, Japan
| | - Fuyu Hashimoto
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo, 0600812, Japan
| | - Yuko Ariza
- Department of Discovery and Research, Ono Pharmaceutical Corp. Ltd., Osaka, Japan
| | - Shingo Hotta
- Department of Discovery and Research, Ono Pharmaceutical Corp. Ltd., Osaka, Japan
| | - Hirofumi Fujigaya
- Department of Discovery and Research, Ono Pharmaceutical Corp. Ltd., Osaka, Japan
| | - Suishin Arai
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo, 0600812, Japan
| | - Mai Taniguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo, 0600812, Japan
| | - Hodaka Ogawa
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo, 0600812, Japan
| | - Yuka Nishibata
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo, 0600812, Japan
| | - Sakiko Masuda
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo, 0600812, Japan
| | - Daigo Nakazawa
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Utano Tomaru
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Akihiro Ishizu
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo, 0600812, Japan.
| |
Collapse
|
14
|
Choi EA, Park HJ, Choi SM, Lee JI, Jung KC. Prevention of severe lung immunopathology associated with influenza infection through adeno-associated virus vector administration. Lab Anim Res 2023; 39:26. [PMID: 37904257 PMCID: PMC10614381 DOI: 10.1186/s42826-023-00177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Influenza A viruses (IAVs) have long posed a threat to humans, occasionally causing significant morbidity and mortality. The initial immune response is triggered by infected epithelial cells, alveolar macrophages and dendritic cells. However, an exaggerated innate immune response can result in severe lung injury and even host mortality. One notable pathology observed in hosts succumbing to severe influenza is the excessive influx of neutrophils and monocytes into the lung. In this study, we investigated a strategy for controlling lung immunopathology following severe influenza infection. RESULTS To evaluate the impact of innate immunity on influenza-associated lung injury, we employed CB17.SCID and NOD.SCID mice. NOD.SCID mice exhibited slower weight loss and longer survival than CB17.SCID mice following influenza infection. Lung inflammation was reduced in NOD.SCID mice compared to CB17.SCID mice. Bulk RNA sequencing analysis of lung tissue showed significant downregulation of 827 genes, and differentially expressed gene analysis indicated that the cytokine-cytokine receptor interaction pathway was predominantly downregulated in NOD.SCID mice. Interestingly, the expression of the Cxcl14 gene was higher in the lungs of influenza-infected NOD.SCID mice than in CB17.SCID mice. Therefore, we induced overexpression of the Cxcl14 gene in the lung using the adeno-associated virus 9 (AAV9)-vector system for target gene delivery. However, when we administered the AAV9 vector carrying the Cxcl14 gene or a control AAV9 vector to BALB/c mice from both groups, the morbidity and mortality rates remained similar. Both groups exhibited lower morbidity and mortality than the naive group that did not receive the AAV9 vector prior to IAV infection, suggesting that the pre-administration of the AAV9 vector conferred protection against lethal influenza infection, irrespective of Cxcl14 overexpression. Furthermore, we found that pre-inoculation of BALB/c mice with AAV9 attenuated the infiltration of trans-macrophages, neutrophils and monocytes in the lungs following IAV infection. Although there was no difference in lung viral titers between the naive group and the AAV9 pre-inoculated group, pre-inoculation with AAV9 conferred lung injury protection against lethal influenza infection in mice. CONCLUSIONS Our study demonstrated that pre-inoculation with AAV9 prior to IAV infection protected mouse lungs from immunopathology by reducing the recruitment of inflammatory cells.
Collapse
Affiliation(s)
- Eun Ah Choi
- Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hi Jung Park
- Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sung Min Choi
- Graduate Course of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jae Il Lee
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Kyeong Cheon Jung
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Department of Pathology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Republic of Korea.
| |
Collapse
|
15
|
Wei L, Wang X, Zhou H. Interaction among inflammasome, PANoptosise, and innate immune cells in infection of influenza virus: Updated review. Immun Inflamm Dis 2023; 11:e997. [PMID: 37773712 PMCID: PMC10521376 DOI: 10.1002/iid3.997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Influenza virus (IV) is a leading cause of respiratory tract infections, eliciting responses from key innate immune cells such as Macrophages (MQs), Neutrophils, and Dendritic Cells (DCs). These cells employ diverse mechanisms to combat IV, with Inflammasomes playing a pivotal role in viral infection control. Cellular death mechanisms, including Pyroptosis, Apoptosis, and Necroptosis (collectively called PANoptosis), significantly contribute to the innate immune response. METHODS In this updated review, we delve into the intricate relationship between PANoptosis and Inflammasomes within innate immune cells (MQs, Neutrophils, and DCs) during IV infections. We explore the strategies employed by IV to evade these immune defenses and the consequences of unchecked PANoptosis and inflammasome activation, including the potential development of severe complications such as cytokine storms and tissue damage. RESULTS Our analysis underscores the interplay between PANoptosis and Inflammasomes as a critical aspect of the innate immune response against IV. We provide insights into IV's various mechanisms to subvert these immune pathways and highlight the importance of understanding these interactions to develop effective antiviral medications. CONCLUSION A comprehensive understanding of the dynamic interactions between PANoptosis, Inflammasomes, and IV is essential for advancing our knowledge of innate immune responses to viral infections. This knowledge will be invaluable in developing targeted antiviral therapies to combat IV and mitigate potential complications, including cytokine storms and tissue damage.
Collapse
Affiliation(s)
- Li Wei
- Intensive Care Unit, Huzhou Third Municipal hospitalThe Affiliated hospital of Huzhou UniversityHuzhouChina
| | - Xufang Wang
- Intensive Care Unit, Huzhou Third Municipal hospitalThe Affiliated hospital of Huzhou UniversityHuzhouChina
| | - Huifei Zhou
- Intensive Care Unit, Huzhou Third Municipal hospitalThe Affiliated hospital of Huzhou UniversityHuzhouChina
| |
Collapse
|
16
|
Carnevale S, Di Ceglie I, Grieco G, Rigatelli A, Bonavita E, Jaillon S. Neutrophil diversity in inflammation and cancer. Front Immunol 2023; 14:1180810. [PMID: 37180120 PMCID: PMC10169606 DOI: 10.3389/fimmu.2023.1180810] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Neutrophils are the most abundant circulating leukocytes in humans and the first immune cells recruited at the site of inflammation. Classically perceived as short-lived effector cells with limited plasticity and diversity, neutrophils are now recognized as highly heterogenous immune cells, which can adapt to various environmental cues. In addition to playing a central role in the host defence, neutrophils are involved in pathological contexts such as inflammatory diseases and cancer. The prevalence of neutrophils in these conditions is usually associated with detrimental inflammatory responses and poor clinical outcomes. However, a beneficial role for neutrophils is emerging in several pathological contexts, including in cancer. Here we will review the current knowledge of neutrophil biology and heterogeneity in steady state and during inflammation, with a focus on the opposing roles of neutrophils in different pathological contexts.
Collapse
Affiliation(s)
| | | | - Giovanna Grieco
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | | | - Sebastien Jaillon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
17
|
Kasumba DM, Huot S, Caron E, Fortin A, Laflamme C, Zamorano Cuervo N, Lamontagne F, Pouliot M, Grandvaux N. DUOX2 regulates secreted factors in virus-infected respiratory epithelial cells that contribute to neutrophil attraction and activation. FASEB J 2023; 37:e22765. [PMID: 36607642 PMCID: PMC10107641 DOI: 10.1096/fj.202201205r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/10/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
The first line of defense against respiratory viruses relies on the antiviral and proinflammatory cytokine response initiated in infected respiratory epithelial cells. The cytokine response not only restricts virus replication and spreading, but also orchestrates the subsequent immune response. The epithelial Dual Oxidase 2 (DUOX2) has recently emerged as a regulator of the interferon antiviral response. Here, we investigated the role of DUOX2 in the inflammatory cytokine response using a model of A549 cells deficient in DUOX2 generated using Crispr-Cas9 and infected by Sendai virus. We found that the absence of DUOX2 selectively reduced the induction of a restricted panel of 14 cytokines and chemokines secreted in response to Sendai virus by 20 to 89%. The secreted factors produced by epithelial cells upon virus infection promoted the migration, adhesion, and degranulation of primary human neutrophils, in part through the DUOX2-dependent secretion of TNF and chemokines. In contrast, DUOX2 expression did not impact neutrophil viability or NETosis, thereby highlighting a selective impact of DUOX2 in neutrophil functions. Overall, this study unveils previously unrecognized roles of epithelial DUOX2 in the epithelial-immune cells crosstalk during respiratory virus infection.
Collapse
Affiliation(s)
- Dacquin M Kasumba
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Sandrine Huot
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada.,Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec - Université Laval, Québec City, Québec, Canada
| | - Elise Caron
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Audray Fortin
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Cynthia Laflamme
- Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec - Université Laval, Québec City, Québec, Canada
| | - Natalia Zamorano Cuervo
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Felix Lamontagne
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Marc Pouliot
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada.,Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec - Université Laval, Québec City, Québec, Canada
| | - Nathalie Grandvaux
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
18
|
Tang J, Xu Q, Tang K, Ye X, Cao Z, Zou M, Zeng J, Guan X, Han J, Wang Y, Yang L, Lin Y, Jiang K, Chen X, Zhao Y, Tian D, Li C, Shen W, Du X. Susceptibility identification for seasonal influenza A/H3N2 based on baseline blood transcriptome. Front Immunol 2023; 13:1048774. [PMID: 36713410 PMCID: PMC9878565 DOI: 10.3389/fimmu.2022.1048774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Influenza susceptibility difference is a widely existing trait that has great practical significance for the accurate prevention and control of influenza. Methods Here, we focused on the human susceptibility to the seasonal influenza A/H3N2 of healthy adults at baseline level. Whole blood expression data for influenza A/H3N2 susceptibility from GEO were collected firstly (30 symptomatic and 19 asymptomatic). Then to explore the differences at baseline, a suite of systems biology approaches - the differential expression analysis, co-expression network analysis, and immune cell frequencies analysis were utilized. Results We found the baseline condition, especially immune condition between symptomatic and asymptomatic, was different. Co-expression module that is positively related to asymptomatic is also related to immune cell type of naïve B cell. Function enrichment analysis showed significantly correlation with "B cell receptor signaling pathway", "immune response-activating cell surface receptor signaling pathway" and so on. Also, modules that are positively related to symptomatic are also correlated to immune cell type of neutrophils, with function enrichment analysis showing significantly correlations with "response to bacterium", "inflammatory response", "cAMP-dependent protein kinase complex" and so on. Responses of symptomatic and asymptomatic hosts after virus exposure show differences on resisting the virus, with more effective frontline defense for asymptomatic hosts. A prediction model was also built based on only baseline transcription information to differentiate symptomatic and asymptomatic population with accuracy of 0.79. Discussion The results not only improve our understanding of the immune system and influenza susceptibility, but also provide a new direction for precise and targeted prevention and therapy of influenza.
Collapse
Affiliation(s)
- Jing Tang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Qiumei Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China,Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Kang Tang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Ye
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zicheng Cao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China,School of Public Health, Shantou University, Shantou, China
| | - Min Zou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Jinfeng Zeng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Xinyan Guan
- Department of Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Jinglin Han
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Yihan Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Lan Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China,School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yishan Lin
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Kaiao Jiang
- Palos Verdes Peninsula High School, Rancho Palos Verdes, CA, United States
| | - Xiaoliang Chen
- Department of Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Yang Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Dechao Tian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Chunwei Li
- Department of Otolaryngology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Shen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China,*Correspondence: Xiangjun Du, ; Wei Shen,
| | - Xiangjun Du
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China,School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China,*Correspondence: Xiangjun Du, ; Wei Shen,
| |
Collapse
|
19
|
Beyond neutralization: Fc-dependent antibody effector functions in SARS-CoV-2 infection. Nat Rev Immunol 2022:10.1038/s41577-022-00813-1. [PMID: 36536068 PMCID: PMC9761659 DOI: 10.1038/s41577-022-00813-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Neutralizing antibodies are known to have a crucial role in protecting against SARS-CoV-2 infection and have been suggested to be a useful correlate of protection for vaccine clinical trials and for population-level surveys. In addition to neutralizing virus directly, antibodies can also engage immune effectors through their Fc domains, including Fc receptor-expressing immune cells and complement. The outcome of these interactions depends on a range of factors, including antibody isotype-Fc receptor combinations, Fc receptor-bearing cell types and antibody post-translational modifications. A growing body of evidence has shown roles for these Fc-dependent antibody effector functions in determining the outcome of SARS-CoV-2 infection. However, measuring these functions is more complicated than assays that measure antibody binding and virus neutralization. Here, we examine recent data illuminating the roles of Fc-dependent antibody effector functions in the context of SARS-CoV-2 infection, and we discuss the implications of these data for the development of next-generation SARS-CoV-2 vaccines and therapeutics.
Collapse
|
20
|
Zhu C, Zhang M, Fu W, He Y, Yang Y, Zhang L, Yuan S, Jiang L, Xu J, Zhang X. Comparison of H7N9 and H9N2 influenza infections in mouse model unravels the importance of early innate immune response in host protection. Front Cell Infect Microbiol 2022; 12:941078. [PMID: 36034707 PMCID: PMC9414078 DOI: 10.3389/fcimb.2022.941078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/13/2022] [Indexed: 12/03/2022] Open
Abstract
The outcome of infection with influenza A virus is determined by a complex virus-host interaction. A new H7N9 virus of avian origin crossed the species barrier to infect humans, causing high mortality and emerged as a potential pandemic threat. The mechanisms underlying the virulence and pathogenicity of H7N9 virus remains elusive. H7N9 virus originated from a genetic assortment that involved the avian H9N2 virus, which was the donor of the six internal genes. Unlike the H7N9 virus, the H9N2 virus caused only mild phenotype in infected mice. In this study, we used the mouse infection model to dissect the difference in the host response between the H7N9 and H9N2 viruses. Through analyzing transcriptomics of infected lungs, we surprisingly found that the H9N2 infection elicited an earlier induction of innate immunity than H7N9 infection. This finding was further corroborated by an immunohistochemical study demonstrating earlier recruitment of macrophage to the H9N2-infected lung than the H7N9-infected lung, which could occur as early as 6 hours post infection. In contrast, H7N9 infection was characterized by a late, strong lung CD8+ T cell response that is more robust than H9N2 infection. The different pattern of immune response may underlie more severe lung pathology caused by H7N9 infection compared to H9N2 infection. Finally, we could show that co-infection of the H9N2 virus protected mice from the challenge of both H7N9 and PR8 viruses, thereby strengthening the importance of the induction of an early innate immunity in the host’s defense against influenza infection. Collectively, our study unraveled a previously unidentified difference in host response between H7N9 and H9N2 infection and shed new insight on how virus-host interaction shapes the in vivo outcome of influenza infection.
Collapse
Affiliation(s)
- Cuisong Zhu
- Department of Scientific Research, Shanghai Public Health Clinical Center, Shanghai, China
- Department of Pathology, Institute of Clinical Science and Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Miaomiao Zhang
- Department of Scientific Research, Shanghai Public Health Clinical Center, Shanghai, China
| | - Weihui Fu
- Department of Scientific Research, Shanghai Public Health Clinical Center, Shanghai, China
| | - Yongquan He
- Human Disease Genes Key Laboratory of Sichuan Province and Institute of Laboratory Medicine,Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Linxia Zhang
- Department of Scientific Research, Shanghai Public Health Clinical Center, Shanghai, China
| | - Songhua Yuan
- Department of Scientific Research, Shanghai Public Health Clinical Center, Shanghai, China
| | - Lang Jiang
- Department of Scientific Research, Shanghai Public Health Clinical Center, Shanghai, China
| | - Jianqing Xu
- Department of Scientific Research, Shanghai Public Health Clinical Center, Shanghai, China
- Department of Pathology, Institute of Clinical Science and Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
- *Correspondence: Xiaoyan Zhang, ; Jianqing Xu,
| | - Xiaoyan Zhang
- Department of Scientific Research, Shanghai Public Health Clinical Center, Shanghai, China
- Department of Pathology, Institute of Clinical Science and Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
- *Correspondence: Xiaoyan Zhang, ; Jianqing Xu,
| |
Collapse
|
21
|
McGrath JJC, Vanderstocken G, Dvorkin-Gheva A, Cass SP, Afkhami S, Fantauzzi MF, Thayaparan D, Reihani A, Wang P, Beaulieu A, Shen P, Morissette M, Jiménez-Saiz R, Revill SD, Tabuchi A, Zabini D, Lee WL, Richards CD, Miller MS, Ask K, Kuebler WM, Simpson JA, Stämpfli MR. Cigarette smoke augments CSF3 expression in neutrophils to compromise alveolar-capillary barrier function during influenza infection. Eur Respir J 2022; 60:2102049. [PMID: 35058252 DOI: 10.1183/13993003.02049-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/29/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Cigarette smokers are at increased risk of acquiring influenza, developing severe disease and requiring hospitalisation/intensive care unit admission following infection. However, immune mechanisms underlying this predisposition are incompletely understood, and therapeutic strategies for influenza are limited. METHODS We used a mouse model of concurrent cigarette smoke exposure and H1N1 influenza infection, colony-stimulating factor (CSF)3 supplementation/receptor (CSF3R) blockade and single-cell RNA sequencing (scRNAseq) to investigate this relationship. RESULTS Cigarette smoke exposure exacerbated features of viral pneumonia such as oedema, hypoxaemia and pulmonary neutrophilia. Smoke-exposed infected mice demonstrated an increase in viral (v)RNA, but not replication-competent viral particles, relative to infection-only controls. Interstitial rather than airspace neutrophilia positively predicted morbidity in smoke-exposed infected mice. Screening of pulmonary cytokines using a novel dysregulation score identified an exacerbated expression of CSF3 and interleukin-6 in the context of smoke exposure and influenza. Recombinant (r)CSF3 supplementation during influenza aggravated morbidity, hypothermia and oedema, while anti-CSF3R treatment of smoke-exposed infected mice improved alveolar-capillary barrier function. scRNAseq delineated a shift in the distribution of Csf3 + cells towards neutrophils in the context of cigarette smoke and influenza. However, although smoke-exposed lungs were enriched for infected, highly activated neutrophils, gene signatures of these cells largely reflected an exacerbated form of typical influenza with select unique regulatory features. CONCLUSION This work provides novel insight into the mechanisms by which cigarette smoke exacerbates influenza infection, unveiling potential therapeutic targets (e.g. excess vRNA accumulation, oedematous CSF3R signalling) for use in this context, and potential limitations for clinical rCSF3 therapy during viral infectious disease.
Collapse
Affiliation(s)
- Joshua J C McGrath
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
- Authors contributed equally
| | - Gilles Vanderstocken
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
- Authors contributed equally
| | - Anna Dvorkin-Gheva
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Steven P Cass
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Sam Afkhami
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Matthew F Fantauzzi
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Danya Thayaparan
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Amir Reihani
- Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada
| | - Peiyao Wang
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ashley Beaulieu
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Pamela Shen
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Mathieu Morissette
- Dept of Medicine, Université Laval, Quebec City, QC, Canada
- Quebec Heart and Lung Institute, Université Laval, Quebec City, QC, Canada
| | - Rodrigo Jiménez-Saiz
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
- Dept of Immunology, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Madrid, Spain
- Dept of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Spencer D Revill
- Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- The Research Institute of St Joe's Hamilton, Hamilton, ON, Canada
| | - Arata Tabuchi
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada
| | - Diana Zabini
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada
| | - Warren L Lee
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada
| | - Carl D Richards
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
| | - Matthew S Miller
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Wolfgang M Kuebler
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada
- Institute of Physiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jeremy A Simpson
- Dept of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Martin R Stämpfli
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Dept of Medicine, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
22
|
Wang L, Cao Z, Wang Z, Guo J, Wen J. Reactive oxygen species associated immunoregulation post influenza virus infection. Front Immunol 2022; 13:927593. [PMID: 35967412 PMCID: PMC9373727 DOI: 10.3389/fimmu.2022.927593] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
An appropriate level of reactive oxygen species (ROS) is necessary for cell proliferation, signaling transduction, and apoptosis due to their highly reactive character. ROS are generated through multiple metabolic pathways under a fine-tuned control between oxidant and antioxidant signaling. A growing number of evidence has proved their highly relevant role in modulating inflammation during influenza virus infection. As a network of biological process for protecting organism from invasion of pathogens, immune system can react and fight back through either innate immune system or adaptive immune system, or both. Herein, we provide a review about the mechanisms of ROS generation when encounter influenza virus infection, and how the imbalanced level of ROS influences the replication of virus. We also summarize the pathways used by both the innate and adaptive immune system to sense and attack the invaded virus and abnormal levels of ROS. We further review the limitation of current strategies and discuss the direction of future work.
Collapse
Affiliation(s)
- Lan Wang
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States,UCLA Acquired Immune Deficiency Syndrome (AIDS) Institute, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Zheng Cao
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Zi Wang
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Jimin Guo
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States,UCLA Acquired Immune Deficiency Syndrome (AIDS) Institute, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Jing Wen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States,UCLA Acquired Immune Deficiency Syndrome (AIDS) Institute, University of California Los Angeles (UCLA), Los Angeles, CA, United States,*Correspondence: Jing Wen,
| |
Collapse
|
23
|
Abstract
Influenza viruses cause respiratory tract infections, which lead to human disease outbreaks and pandemics. Influenza A virus (IAV) circulates in diverse animal species, predominantly aquatic birds. This often results in the emergence of novel viral strains causing severe human disease upon zoonotic transmission. Innate immune sensing of the IAV infection promotes host cell death and inflammatory responses to confer antiviral host defense. Dysregulated respiratory epithelial cell death and excessive proinflammatory responses drive immunopathology in highly pathogenic influenza infections. Here, we discuss the critical mechanisms regulating IAV-induced cell death and proinflammatory responses. We further describe the essential role of the Z-form nucleic acid sensor ZBP1/DAI and RIPK3 in triggering apoptosis, necroptosis, and pyroptosis during IAV infection and their impact on host defense and pathogenicity in vivo. We also discuss the functional importance of ZBP1-RIPK3 signaling in recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other viral infections. Understanding these mechanisms of RNA virus-induced cytopathic and pathogenic inflammatory responses is crucial for targeting pathogenic lung infections and human respiratory illness.
Collapse
|
24
|
Neutrophil extracellular traps mediate severe lung injury induced by influenza A virus H1N1 in mice coinfected with Staphylococcus aureus. Microb Pathog 2022; 166:105558. [PMID: 35487479 DOI: 10.1016/j.micpath.2022.105558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 11/21/2022]
Abstract
Influenza virus and bacterial infection contributed to massive morbidity and mortality. However, the underlying mechanisms were poorly understood. A coinfected model was generating by using sublethal doses of influenza A virus H1N1 A/FM/1/47(H1N1) and methicillin-resistant Staphylococcus aureus (MRSA). Further, the model was optimized to achieve the highest peak of mortality initiated by intranasal infection with 0.2LD50 H1N1 and 0.16LD50 MRSA at 3 days interval. Excessive neutrophil recruitment, accompanied by high levels of inflammatory cytokines and chemokines, and increased bacterial and viral load were observed in coinfected mice. Under the inflammatory environments triggered by H1N1 and MRSA, the excessive neutrophil recruitment led to the formation of neutrophil extracellular traps (NETs), associated with severe inflammation and vascular endothelial injury. Importantly, the severity of lung injury could be alleviated by treatment with DNase I or a selective neutrophil elastase inhibitor (NEi). Therefore, our data suggested that excessive neutrophil recruitment and NETs formation contributed to severe inflammation and acute lung injury in coinfected animals.
Collapse
|
25
|
Yegorov S, Celeste DB, Gomes KB, Ang JC, Vandenhof C, Wang J, Rybkina K, Tsui V, Stacey HD, Loeb M, Miller MS. Inactivated and live-attenuated seasonal influenza vaccines boost broadly neutralizing antibodies in children. Cell Rep Med 2022; 3:100509. [PMID: 35243417 PMCID: PMC8861809 DOI: 10.1016/j.xcrm.2022.100509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/16/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
Abstract
The induction of broadly neutralizing antibodies (bNAbs) that target the hemagglutinin stalk domain is a promising strategy for the development of “universal” influenza virus vaccines. bNAbs can be boosted in adults by sequential exposure to heterosubtypic viruses through natural infection or vaccination. However, little is known about if or how bNAbs are induced by vaccination in more immunologically naive children. Here, we describe the impact of repeated seasonal influenza vaccination and vaccine type on induction of bNAbs against group 1 influenza viruses in a pediatric cohort enrolled in randomized controlled trials of seasonal influenza vaccination. Repeated seasonal vaccination results in significant boosting of a durable bNAb response. Boosting of serological bNAb titers is comparable within inactivated and live attenuated (LAIV) vaccinees and declines with age. These data provide insights into vaccine-elicited bNAb induction in children, which have important implications for the design of universal influenza vaccine modalities in this critical population. Repeated inactivated influenza vaccination boosts bNAbs Inactivated and live attenuated vaccines are similarly efficient at boosting bNAbs The magnitude of IIV and LAIV vaccine-elicited bNAb boosting declines with age
Collapse
Affiliation(s)
- Sergey Yegorov
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Daniel B. Celeste
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Kimberly Braz Gomes
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Jann C. Ang
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Colin Vandenhof
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Joanne Wang
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Ksenia Rybkina
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Vanessa Tsui
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Hannah D. Stacey
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Mark Loeb
- Michael G. DeGroote Institute for Infectious Disease Research, Health Research Methodology, Evidence, and Impact, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Matthew S. Miller
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Corresponding author
| |
Collapse
|
26
|
Gunther RC, Bharathi V, Miles SD, Tumey LR, Schmedes CM, Tatsumi K, Bridges MD, Martinez D, Montgomery SA, Beck MA, Camerer E, Mackman N, Antoniak S. Myeloid Protease-Activated Receptor-2 Contributes to Influenza A Virus Pathology in Mice. Front Immunol 2021; 12:791017. [PMID: 34925374 PMCID: PMC8671937 DOI: 10.3389/fimmu.2021.791017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
BackgroundInnate immune responses to influenza A virus (IAV) infection are initiated in part by toll-like receptor 3 (TLR3). TLR3-dependent signaling induces an antiviral immune response and an NFκB-dependent inflammatory response. Protease-activated receptor 2 (PAR2) inhibits the antiviral response and enhances the inflammatory response. PAR2 deficiency protected mice during IAV infection. However, the PAR2 expressing cell-types contributing to IAV pathology in mice and the mechanism by which PAR2 contributes to IAV infection is unknown.MethodsIAV infection was analyzed in global (Par2-/-), myeloid (Par2fl/fl;LysMCre+) and lung epithelial cell (EpC) Par2 deficient (Par2fl/fl;SPCCre+) mice and their respective controls (Par2+/+ and Par2fl/fl). In addition, the effect of PAR2 activation on polyinosinic-polycytidylic acid (poly I:C) activation of TLR3 was analyzed in bone marrow-derived macrophages (BMDM). Lastly, we determined the effect of PAR2 inhibition in wild-type (WT) mice.ResultsAfter IAV infection, Par2-/- and mice with myeloid Par2 deficiency exhibited increased survival compared to infected controls. The improved survival was associated with reduced proinflammatory mediators and reduced cellular infiltration in bronchoalveolar lavage fluid (BALF) of Par2-/- and Par2fl/fl;LysMCre+ 3 days post infection (dpi) compared to infected control mice. Interestingly, Par2fl/fl;SPCCre+ mice showed no survival benefit compared to Par2fl/fl. In vitro studies showed that Par2-/- BMDM produced less IL6 and IL12p40 than Par2+/+ BMDM after poly I:C stimulation. In addition, activation of PAR2 on Par2+/+ BMDM increased poly I:C induction of IL6 and IL12p40 compared to poly I:C stimulation alone. Importantly, PAR2 inhibition prior to IAV infection protect WT mice.ConclusionGlobal Par2 or myeloid cell but not lung EpC Par2 deficiency was associated with reduced BALF inflammatory markers and reduced IAV-induced mortality. Our study suggests that PAR2 may be a therapeutic target to reduce IAV pathology.
Collapse
Affiliation(s)
- Randall C. Gunther
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Vanthana Bharathi
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephen D. Miles
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lauryn R. Tumey
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Clare M. Schmedes
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kohei Tatsumi
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Meagan D. Bridges
- UNC Blood Research Center, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David Martinez
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephanie A. Montgomery
- UNC Lineberger Comprehensive Cancer Center, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Melinda A. Beck
- Department of Nutrition, Gillings School of Global Public Health, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Eric Camerer
- Department of Medicine, Université de Paris, Paris Cardiovascular Research Center (PARCC), INSERM UMR 970, Paris, France
| | - Nigel Mackman
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Silvio Antoniak
- UNC Blood Research Center, UNC Lineberger Comprehensive Cancer Center, UNC McAllister Heart Institute, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Silvio Antoniak,
| |
Collapse
|