1
|
Figueira LW, Panariello B, Koga-Ito CY, Duarte S. Exploring the efficacy of in-vitro low-temperature plasma treatment on single and multispecies dental cariogenic biofilms. Sci Rep 2024; 14:20678. [PMID: 39237570 PMCID: PMC11377728 DOI: 10.1038/s41598-024-70943-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
The primary aim of this study was to investigate the impact of treatment with low-temperature plasma (LTP) for varying exposure durations on a multispecies cariogenic biofilm comprising C. albicans, L. casei, and S. mutans, as well as on single-species biofilms of L. casei and C. albicans, cultured on hydroxyapatite discs. Biofilms were treated with LTP-argon at a 10 mm distance for 30 s, 60 s, and 120 s. Chlorhexidine solution (0.12%) and NaCl (0.89%) were used as positive (PC) and negative controls (NC), respectively. Argon flow only was also used as gas flow control (F). Colony-forming units (CFU) recovery and confocal laser scanning microscopy (CLSM) were used to analyze biofilm viability. LTP starting at 30 s of application significantly reduced the viability of multispecies biofilms by more than 2 log10 in all treated samples (p < 0.0001). For single-species biofilms, L. casei showed a significant reduction compared to PC and NC of over 1 log10 at all exposure times (p < 0.0001). In the case of C. albicans biofilms, LTP treatment compared to PC and NC resulted in a significant decrease in bacterial counts when applied for 60 and 120 s (1.55 and 1.90 log10 CFU/mL, respectively) (p < 0.0001). A significant effect (p ≤ 0.05) of LTP in single-species biofilms was observed to start at 60 s of LTP application compared to F, suggesting a time-dependent effect of LTP for the single-species biofilms of C. albicans and L. casei. LTP is a potential mechanism in treating dental caries by being an effective anti-biofilm therapy of both single and multispecies cariogenic biofilms.
Collapse
Affiliation(s)
- Leandro Wagner Figueira
- Department of Environmental Engineering and Oral Biopathology Graduate Program, Institute of Science and Technology, São Paulo State University, UNESP, São José dos Campos, São Paulo, Brazil
| | - Beatriz Panariello
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Cristiane Y Koga-Ito
- Department of Environmental Engineering and Oral Biopathology Graduate Program, Institute of Science and Technology, São Paulo State University, UNESP, São José dos Campos, São Paulo, Brazil
| | - Simone Duarte
- Department of Restorative Dentistry, University at Buffalo School of Dental Medicine, Buffalo, NY, USA.
| |
Collapse
|
2
|
Laforgia A, Inchingolo AD, Piras F, Colonna V, Giorgio RV, Carone C, Rapone B, Malcangi G, Inchingolo AM, Inchingolo F, Palermo A, Dipalma G. Therapeutic Strategies and Genetic Implications for Periodontal Disease Management: A Systematic Review. Int J Mol Sci 2024; 25:7217. [PMID: 39000324 PMCID: PMC11242487 DOI: 10.3390/ijms25137217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
The objective of this review is to identify the microbiological alterations caused by various therapy modalities by critically analyzing the current findings. We limited our search to English-language papers published between 1 January 2004 and 7 May 2024 in PubMed, Scopus, and Web of Science that were relevant to our topic. In the search approach, the Boolean keywords "microbio*" AND "periodontitis" were used. A total of 5152 papers were obtained from the databases Web of Science (2205), PubMed (1793), and Scopus (1154). This resulted in 3266 articles after eliminating duplicates (1886), and 1411 entries were eliminated after their titles and abstracts were examined. The qualitative analysis of the 22 final articles is included in this study. Research on periodontal disease shows that periodontitis alters the oral microbiome and increases antibiotic resistance. Treatments like scaling and root planing (SRP), especially when combined with minocycline, improve clinical outcomes by reducing harmful bacteria. Comprehensive mechanical debridement with antibiotics, probiotics, EMD with bone grafts, and other adjunctive therapies enhances periodontal health. Personalized treatment strategies and advanced microbial analyses are crucial for effective periodontal management and antibiotic resistance control.
Collapse
Affiliation(s)
- Alessandra Laforgia
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | | | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Valeria Colonna
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Roberto Vito Giorgio
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Claudio Carone
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | | | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Andrea Palermo
- College of Medicine and Dentistry, CoMD Birmingham Campus, Birmingham B4 6BN, UK
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
3
|
Taniguchi K, Aoyama N, Fujii T, Kida S, Yata T, Takeda AK, Minabe M, Komaki M. Oral and Intestinal Bacterial Flora in Patients with Increased Periodontal Inflamed Surface Area: A Cross-Sectional Study. J Clin Med 2024; 13:3756. [PMID: 38999323 PMCID: PMC11242651 DOI: 10.3390/jcm13133756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Background/Objectives: Periodontitis is caused by bacterial plaque. The oral microflora may interact with the intestinal microflora and play a role in the development of periodontitis. The periodontal inflamed surface area (PISA) has been shown to be a useful indicator of periodontal disease related to systemic diseases; however, few studies have shown an association between PISA and the bacterial flora. This study aimed to determine the association between PISA and oral and intestinal bacteria. Methods: Participants were recruited between 2018 and 2021 at the Medical and Dental Collaboration Center of Kanagawa Dental University Hospital. A periodontal clinical examination was performed, and the PISA was calculated. Salivary tests were conducted, and leukocyte scores in the saliva were calculated. Moreover, 16S rRNA amplicon sequencing was performed using saliva and stool samples to analyze oral and intestinal bacteria, respectively. Results: Higher PISA levels resulted in an increased presence of Bacteroides and a decreased presence of Proteobacteria and Actinobacteria in the saliva. An increase in Bacteroides was detected in the saliva of patients with high leukocyte scores. No correlation was observed between PISA and intestinal bacteria. Conclusions: Bacteroides was highly abundant in the saliva of patients with worsened periodontal conditions, as indicated by PISA. No association was found between PISA and intestinal bacteria.
Collapse
Affiliation(s)
- Kentaro Taniguchi
- Department of Periodontology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Kanagawa, Japan; (K.T.); (T.F.); (S.K.); (T.Y.); (M.K.)
| | - Norio Aoyama
- Department of Periodontology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Kanagawa, Japan; (K.T.); (T.F.); (S.K.); (T.Y.); (M.K.)
- Department of Education Planning, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Kanagawa, Japan
| | - Toshiya Fujii
- Department of Periodontology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Kanagawa, Japan; (K.T.); (T.F.); (S.K.); (T.Y.); (M.K.)
| | - Sayuri Kida
- Department of Periodontology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Kanagawa, Japan; (K.T.); (T.F.); (S.K.); (T.Y.); (M.K.)
| | - Tomomi Yata
- Department of Periodontology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Kanagawa, Japan; (K.T.); (T.F.); (S.K.); (T.Y.); (M.K.)
| | - Aya K. Takeda
- Cykinso, Inc., 1-36-1 Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan;
| | - Masato Minabe
- Bunkyou Dori Dental Clinic, 2-4-1 Anagawa, Inage-ku, Chiba 263-0024, Chiba, Japan;
- Department of Environmental Pathology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Kanagawa, Japan
| | - Motohiro Komaki
- Department of Periodontology, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka 238-8580, Kanagawa, Japan; (K.T.); (T.F.); (S.K.); (T.Y.); (M.K.)
| |
Collapse
|
4
|
Bartsch S, Kohnert E, Kreutz C, Woelber JP, Anderson A, Burkhardt AS, Hellwig E, Buchalla W, Hiller KA, Ratka-Krueger P, Cieplik F, Al-Ahmad A. Chlorhexidine digluconate mouthwash alters the oral microbial composition and affects the prevalence of antimicrobial resistance genes. Front Microbiol 2024; 15:1429692. [PMID: 38983634 PMCID: PMC11231401 DOI: 10.3389/fmicb.2024.1429692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Introduction Chlorhexidine (CHX) is a commonly used antiseptic in situations of limited oral hygiene ability such as after periodontal surgery. However, CHX is also considered as a possible factor in the emergence of cross-resistance to antibiotics. The aim of this study was to analyze the changes in the oral microbiota and the prevalence of antimicrobial resistance genes (ARGs) due to CHX treatment. Materials and methods We analyzed the oral metagenome of 20 patients who applied a 0.2% CHX mouthwash twice daily for 4 weeks following periodontal surgical procedures. Saliva and supragingival plaque samples were examined before, directly after 4 weeks, and another 4 weeks after discontinuing the CHX treatment. Results Alpha-diversity decreased significantly with CHX use. The Bray-Curtis dissimilarity increased in both sample sites and mainly streptococci showed a higher relative abundance after CHX treatment. Although no significant changes of ARGs could be detected, an increase in prevalence was found for genes that encode for tetracycline efflux pumps. Conclusion CHX treatment appears to promote a caries-associated bacterial community and the emergence of tetracycline resistance genes. Future research should focus on CHX-related changes in the microbial community and whether the discovered tetracycline resistance genes promote resistance to CHX.
Collapse
Affiliation(s)
- Sibylle Bartsch
- Center for Dental Medicine, Department of Operative Dentistry and Periodontology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Eva Kohnert
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Clemens Kreutz
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Johan P. Woelber
- Policlinic of Operative Dentistry, Periodontology, and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Annette Anderson
- Center for Dental Medicine, Department of Operative Dentistry and Periodontology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ann-Sophie Burkhardt
- Center for Dental Medicine, Department of Operative Dentistry and Periodontology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Elmar Hellwig
- Center for Dental Medicine, Department of Operative Dentistry and Periodontology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Karl-Anton Hiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Petra Ratka-Krueger
- Center for Dental Medicine, Department of Operative Dentistry and Periodontology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Fabian Cieplik
- Center for Dental Medicine, Department of Operative Dentistry and Periodontology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Ali Al-Ahmad
- Center for Dental Medicine, Department of Operative Dentistry and Periodontology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
5
|
Qian J, Lu J, Cheng S, Zou X, Tao Q, Wang M, Wang N, Zheng L, Liao W, Li Y, Yan F. Periodontitis salivary microbiota exacerbates colitis-induced anxiety-like behavior via gut microbiota. NPJ Biofilms Microbiomes 2023; 9:93. [PMID: 38062089 PMCID: PMC10703887 DOI: 10.1038/s41522-023-00462-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The gut-brain axis is a bidirectional communication system between the gut and central nervous system. Many host-related factors can affect gut microbiota, including oral bacteria, making the brain a vulnerable target via the gut-brain axis. Saliva contains a large number of oral bacteria, and periodontitis, a common oral disease, can change the composition of salivary microbiota. However, the role and mechanism of periodontitis salivary microbiota (PSM) on the gut-brain axis remain unclear. Herein, we investigated the nature and mechanisms of this relationship using the mice with dextran sulfate sodium salt (DSS)-induced anxiety-like behavior. Compared with healthy salivary microbiota, PSM worsened anxiety-like behavior; it significantly reduced the number of normal neurons and activated microglia in DSS mice. Antibiotic treatment eliminated the effect of PSM on anxiety-like behavior, and transplantation of fecal microbiota from PSM-gavaged mice exacerbated anxiety-like behavior. These observations indicated that the anxiety-exacerbating effect of PSM was dependent on the gut microbiota. Moreover, the PSM effect on anxiety-like behavior was not present in non-DSS mice, indicating that DSS treatment was a prerequisite for PSM to exacerbate anxiety. Mechanistically, PSM altered the histidine metabolism in both gut and brain metabolomics. Supplementation of histidine-related metabolites had a similar anxiety-exacerbating effect as that of PSM, suggesting that histidine metabolism may be a critical pathway in this process. Our results demonstrate that PSM can exacerbate colitis-induced anxiety-like behavior by directly affecting the host gut microbiota, emphasizing the importance of oral diseases in the gut-brain axis.
Collapse
Affiliation(s)
- Jun Qian
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jiangyue Lu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shuyu Cheng
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xihong Zou
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qing Tao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Min Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Nannan Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lichun Zheng
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenzheng Liao
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yanfen Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Antezack A, Etchecopar-Etchart D, La Scola B, Monnet-Corti V. New putative periodontopathogens and periodontal health-associated species: A systematic review and meta-analysis. J Periodontal Res 2023; 58:893-906. [PMID: 37572051 DOI: 10.1111/jre.13173] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
To investigate the existence of any association between new putative periodontal pathogens and periodontitis. Two independent reviewers conducted electronic literature searches in the MEDLINE (PubMed), EMBASE, DOSS and Google Scholar databases as well as a manual search to identify eligible clinical studies prior to November 2022. Studies comparing the prevalence of microorganisms other than the already-known periodontal pathogens in subgingival plaque and/or saliva samples between subjects with periodontitis and subject with periodontal health were included. Meta-analyses were performed on data provided by the included studies. Fifty studies including a total of 2739 periodontitis subjects and 1747 subjects with periodontal health were included. The Archaea domain and 25 bacterial species (Anaeroglobus geminatus, Bacteroidales [G-2] bacterium HMT 274, Desulfobulbus sp. HMT 041, Dialister invisus, Dialister pneumosintes, Eubacterium brachy, Enterococcus faecalis, Eubacterium nodatum, Eubacterium saphenum, Filifactor alocis, Fretibacterium sp. HMT 360, Fretibacterium sp. HMT 362, Mogibacterium timidum, Peptoniphilaceae sp. HMT 113, Peptostreptococcus stomatis, Porphyromonas endodontalis, Slackia exigua, Streptococcus gordonii, Selenomonas sputigena, Treponema amylovorum, Treponema lecithinolyticum, Treponema maltophilum, Treponema medium, Treponema parvum and Treponema socranskii) were found to be statistically significantly associated with periodontitis. Network studies should be conducted to investigate the role of these newly identified periodontitis-associated microorganisms through interspecies interaction and host-microbe crosstalk analyses.
Collapse
Affiliation(s)
- Angéline Antezack
- Faculté des Sciences Médicales et Paramédicales, Ecole de Médecine Dentaire, Aix-Marseille Univ, Marseille, France
- AP-HM, Hôpital Timone, Pôle Odontologie, Service de Parodontologie, Marseille, France
- MEPHI, IRD, AP-HM, IHU Méditerranée Infection, Aix Marseille Univ, Marseille, France
| | - Damien Etchecopar-Etchart
- EA 3279: CEREeSS-Health Service Research and Quality of Life Center, Aix-Marseille Univ, Marseille, France
- Département de Psychiatrie, Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
- FondaMental Foundation, Creteil, France
| | - Bernard La Scola
- MEPHI, IRD, AP-HM, IHU Méditerranée Infection, Aix Marseille Univ, Marseille, France
| | - Virginie Monnet-Corti
- Faculté des Sciences Médicales et Paramédicales, Ecole de Médecine Dentaire, Aix-Marseille Univ, Marseille, France
- AP-HM, Hôpital Timone, Pôle Odontologie, Service de Parodontologie, Marseille, France
- MEPHI, IRD, AP-HM, IHU Méditerranée Infection, Aix Marseille Univ, Marseille, France
| |
Collapse
|
7
|
Dias S, Pheiffer C, Adam S. The Maternal Microbiome and Gestational Diabetes Mellitus: Cause and Effect. Microorganisms 2023; 11:2217. [PMID: 37764061 PMCID: PMC10535124 DOI: 10.3390/microorganisms11092217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a growing public health concern that affects many pregnancies globally. The condition is associated with adverse maternal and neonatal outcomes including gestational hypertension, preeclampsia, placental abruption, preterm birth, stillbirth, and fetal growth restriction. In the long-term, mothers and children have an increased risk of developing metabolic diseases such as type 2 diabetes and cardiovascular disease. Accumulating evidence suggest that alterations in the maternal microbiome may play a role in the pathogenesis of GDM and adverse pregnancy outcomes. This review describes changes in the maternal microbiome during the physiological adaptations of pregnancy, GDM and adverse maternal and neonatal outcomes. Findings from this review highlight the importance of understanding the link between the maternal microbiome and GDM. Furthermore, new therapeutic approaches to prevent or better manage GDM are discussed. Further research and clinical trials are necessary to fully realize the therapeutic potential of the maternal microbiome and translate these findings into clinical practice.
Collapse
Affiliation(s)
- Stephanie Dias
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.D.); (C.P.)
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.D.); (C.P.)
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
- Department of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Sumaiya Adam
- Department of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- Diabetes Research Centre, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
8
|
Sakata S, Sakamaki Y, Yuki M, Sugaya T, Hirota T. Screening of heat-killed lactic acid bacteria based on inhibitory activity against oral bacteria and effects of oral administration of heat-killed Ligilactobacillus salivarius CP3365 on periodontal health in healthy participants: a double-blinded, randomized, placebo-controlled trial. J Oral Microbiol 2023; 15:2250649. [PMID: 37649969 PMCID: PMC10464545 DOI: 10.1080/20002297.2023.2250649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/25/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Objectives The aims of this study were to select heat-killed lactic acid bacteria (HKL) with antibiotic activity and investigate the efficacy of this bacteria in maintaining periodontal parameters in healthy participants. Materials and methods An in vitro evaluation was conducted to assess the inhibitory efficacy of lactic acid bacteria against Porphyromonas gingivalis and Fusobacterium nucleatum subsp. nucleatum. The effects of HKL administration on various parameters (plaque control record, bleeding on probing, and probing pocket depth) were assessed in a randomized, placebo-controlled trial. Participants in the test and placebo groups (n = 32) consumed oral tablets containing placebo or HKL daily for 8 weeks. Oral bacteria in supra-plaque and saliva were identified using 16S rRNA gene community profiling analysis. Results Heat-killed Ligilactobacillus salivarius CP3365 significantly (p < 0.05) decreased the viability of oral bacteria and was selected for clinical trials. Administration of HKL CP3365 significantly (p < 0.05) inhibited increases in each parameter. No changes in the relative abundance of P. gingivalis or F. nucleatum subsp. nucleatum were detected by HKL CP3365, but the relative abundance of oral bacteria (genera Porphyromonas, Fusobacterium, and Haemophilus) was significantly (p < 0.05) decreased. Conclusion HKL CP3365 effectively inhibited oral bacteria growth and was useful for maintaining periodontal health. Clinical Trial Registration [https://www.umin.ac.jp/ctr/index.htm], identifier [UMIN000045656].
Collapse
Affiliation(s)
- Shinji Sakata
- Core Technology Laboratories, Asahi Quality & Innovations, Ltd, Moriya-Shi, Ibaraki, Japan
| | - Yukiko Sakamaki
- Core Technology Laboratories, Asahi Quality & Innovations, Ltd, Moriya-Shi, Ibaraki, Japan
| | - Masahiro Yuki
- Core Technology Laboratories, Asahi Quality & Innovations, Ltd, Moriya-Shi, Ibaraki, Japan
| | - Tsutomu Sugaya
- Periodontology & Endodontology Department of Oral Health Science Faculty of Dental Medicine, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Tatsuhiko Hirota
- Core Technology Laboratories, Asahi Quality & Innovations, Ltd, Moriya-Shi, Ibaraki, Japan
| |
Collapse
|
9
|
Belibasakis GN, Belstrøm D, Eick S, Gursoy UK, Johansson A, Könönen E. Periodontal microbiology and microbial etiology of periodontal diseases: Historical concepts and contemporary perspectives. Periodontol 2000 2023. [PMID: 36661184 DOI: 10.1111/prd.12473] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 01/21/2023]
Abstract
This narrative review summarizes the collective knowledge on periodontal microbiology, through a historical timeline that highlights the European contribution in the global field. The etiological concepts on periodontal disease culminate to the ecological plaque hypothesis and its dysbiosis-centered interpretation. Reference is made to anerobic microbiology and to the discovery of select periodontal pathogens and their virulence factors, as well as to biofilms. The evolution of contemporary molecular methods and high-throughput platforms is highlighted in appreciating the breadth and depth of the periodontal microbiome. Finally clinical microbiology is brought into perspective with the contribution of different microbial species in periodontal diagnosis, the combination of microbial and host biomarkers for this purpose, and the use of antimicrobials in the treatment of the disease.
Collapse
Affiliation(s)
- Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Belstrøm
- Section for Clinical Oral Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Ulvi K Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | | | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
10
|
qPCR Detection and Quantification of Aggregatibacter actinomycetemcomitans and Other Periodontal Pathogens in Saliva and Gingival Crevicular Fluid among Periodontitis Patients. Pathogens 2023; 12:pathogens12010076. [PMID: 36678429 PMCID: PMC9861831 DOI: 10.3390/pathogens12010076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE The detection of special bacterial species in patients with periodontitis is considered useful for clinical diagnosis and treatment. The aim of this study was to investigate the presence of specific periopathogens and investigate whether there is a correlation between the results of different bacterial species in whole saliva and pooled subgingival plaque samples (healthy and diseased sites) from individuals with periodontitis and periodontally healthy subjects. MATERIALS AND METHODS In total, 52 patients were recruited and divided into two groups: non-periodontitis and periodontitis patients. For each group, the following periodontal pathogens were detected using real-time polymerase chain reaction: A. actinomycetemcomitans JP2 clone, A. actinomycetemcomitans non JP2 clone, Porphyromonasgingivalis, and total eubacteria. RESULTS Higher levels of the various studied bacteria were present in both saliva and plaque samples from the periodontitis group in comparison to non-periodontitis subjects. There were significant differences in P. gingivalis and A. actinomycetemcomitans JP2 clones in the saliva of periodontitis patient compared to the control group. Subgingival plaque of diseased sites presented a significant and strong positive correlation between A. actinomycetemcomitans and P. gingivalis. In saliva samples, there was a significant positive correlation between A. actinomycetemcomitans JP2 clone and P. gingivalis (p ≤ 0.002). CONCLUSION Quantifying and differentiating these periodontal species from subgingival plaque and saliva samples showed a good potential as diagnostic markers for periodontal disease. Regarding the prevalence of the studied bacteria, specifically A. actinomycetemcomitans JP2 clone, found in this work, and the high rate of susceptibility to periodontal species in Africa, future larger studies are recommended.
Collapse
|
11
|
Ammar N, El-Tekeya MM, Essa S, Essawy MM, Talaat DM. Antibacterial effect and impact on caries activity of nanosilver fluoride and silver diamine fluoride in dentin caries of primary teeth: a randomized controlled clinical trial. BMC Oral Health 2022; 22:657. [PMID: 36585664 PMCID: PMC9805097 DOI: 10.1186/s12903-022-02697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The use of silver diamine fluoride (SDF) in caries treatment in children has increased despite the disadvantage of causing tooth discoloration. Nanosilver fluoride (NSF) is a possible alternative. This study aimed to assess the antibacterial effect of NSF and SDF and their impact on the activity of dentin caries in primary teeth. METHODS Synthesis and characterization of the physical and biological properties of NSF were conducted. Fifty children aged 4-6 years with dentin caries (active caries corresponding to ICDAS code 5) in deciduous teeth were randomly assigned to treatment by NSF or SDF. Baseline assessment of Streptococcus mutans (S. mutans) and lactobacilli counts as CFU/mL in caries lesions was done, followed by the application of the agents. After one month, microbiological samples were recollected, and lesion activity was reassessed. Groups were compared using Mann-Whitney and Chi-Square tests, while intragroup comparisons were done using Wilcoxon and McNemar tests. Multilevel logistic regression analysis was used to assess the effect of different variables on the outcomes. RESULTS There were 130 teeth in 50 children; mean ± SD age = 4.75 ± 0.76 years, 63% were posterior teeth. At the one-month follow-up appointment, both groups showed a significant decrease from baseline bacterial counts. There was a significant difference in the reduction of S. mutans between NSF and SDF (21.3% and 10.5%, respectively, p = 0.002), while not in lactobacilli (13.9% and 6.0%, respectively, p = 0.094). In both groups, there was a significant reduction in the number of active caries from baseline (p < 0.0001) with no significant difference between groups (percentage inactive = 64.4% and 63.4%, p = 0.903). Multilevel regression revealed non-significant differences in S. mutans and lactobacilli counts (AOR 1.281, p = 0.737 and 1.888, p = 0.341, respectively), and in the number of inactive lesions (AOR 1.355, p = 0.731) between groups. CONCLUSION The short-term antibacterial efficacy of NSF was similar to that of SDF. In both groups there was a significant reduction of S. mutans and lactobacilli counts in active dentin caries, and two-thirds of the lesions became inactive with no differences between the two interventions. Further research is needed to investigate the long-term efficacy of NSF and its suitability for clinical use in caries management. TRIAL REGISTRATION This trial was prospectively registered on the clinicaltrials.gov registry with ID: NCT05221749 on 03/02/2022.
Collapse
Affiliation(s)
- Nour Ammar
- grid.7155.60000 0001 2260 6941Department of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Magda M. El-Tekeya
- grid.7155.60000 0001 2260 6941Department of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Sara Essa
- grid.7155.60000 0001 2260 6941Department of Medical Microbiology and Immunology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Marwa M. Essawy
- grid.7155.60000 0001 2260 6941Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt ,grid.7155.60000 0001 2260 6941Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Dalia M. Talaat
- grid.7155.60000 0001 2260 6941Department of Pediatric Dentistry and Dental Public Health, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
Application of Fluorescence In Situ Hybridization (FISH) in Oral Microbial Detection. Pathogens 2022; 11:pathogens11121450. [PMID: 36558784 PMCID: PMC9788346 DOI: 10.3390/pathogens11121450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Varieties of microorganisms reside in the oral cavity contributing to the occurrence and development of microbes associated with oral diseases; however, the distribution and in situ abundance in the biofilm are still unclear. In order to promote the understanding of the ecosystem of oral microbiota and the diagnosis of oral diseases, it is necessary to monitor and compare the oral microorganisms from different niches of the oral cavity in situ. The fluorescence in situ hybridization (FISH) has proven to be a powerful tool for representing the status of oral microorganisms in the oral cavity. FISH is one of the most routinely used cytochemical techniques for genetic detection, identification, and localization by a fluorescently labeled nucleic acid probe, which can hybridize with targeted nucleic acid sequences. It has the advantages of rapidity, safety, high sensitivity, and specificity. FISH allows the identification and quantification of different oral microorganisms simultaneously. It can also visualize microorganisms by combining with other molecular biology technologies to represent the distribution of each microbial community in the oral biofilm. In this review, we summarized and discussed the development of FISH technology and the application of FISH in oral disease diagnosis and oral ecosystem research, highlighted its advantages in oral microbiology, listed the existing problems, and provided suggestions for future development..
Collapse
|
13
|
Korona-Glowniak I, Skawinska-Bednarczyk A, Wrobel R, Pietrak J, Tkacz-Ciebiera I, Maslanko-Switala M, Krawczyk D, Bakiera A, Borek A, Malm A, Mielnik-Blaszczak M. Streptococcus sobrinus as a Predominant Oral Bacteria Related to the Occurrence of Dental Caries in Polish Children at 12 Years Old. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192215005. [PMID: 36429724 PMCID: PMC9690266 DOI: 10.3390/ijerph192215005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 05/31/2023]
Abstract
Dental caries is listed by the WHO as one of the major non-communicable diseases that need to be prevented and treated. The aim of the study was to evaluate the prevalence and severity of caries expressed as the Decayed, Missing and Filled Permanent Teeth (DMFT) index in 12-year-old Polish children and to verify bacterial species related to the occurrence of dental caries. Quantitative real-time PCR analysis of DNA isolated from saliva samples was performed to detect 8 cariogenic and periopathogenic bacterial strains. A total of 118 Polish children were enrolled in the study. They had low mean DMFT scores of 1.58 ± 1.98. The prevalence of dental caries in the children tested was low (53.4%), with a tendency to decrease compared to previous oral surveys. Bacterial abundance of other species in the dental caries and caries-free groups did not differ; however, periopathogenic Prevotella pallens, Fusobacterium nucleatum along with cariogenic Streptococcus mutans and Lactobacillus fermentum were significantly strongly correlated in the caries-active subjects. The prevalence of S. sobrinus was significantly higher in children with dental caries (p = 0.023) and correlated with higher DMFT. It may temporarily play an important role in the initiation of the cariogenic process or in its enhancement due to an ecological imbalance in dental microbiota.
Collapse
Affiliation(s)
- Izabela Korona-Glowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland
| | | | - Rafal Wrobel
- Department of Paediatric Dentistry, Medical University of Lublin, 20-093 Lublin, Poland
| | - Justyna Pietrak
- Department of Paediatric Dentistry, Medical University of Lublin, 20-093 Lublin, Poland
| | | | | | - Dorota Krawczyk
- Department of Paediatric Dentistry, Medical University of Lublin, 20-093 Lublin, Poland
| | - Adrian Bakiera
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Anna Borek
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland
| | | |
Collapse
|
14
|
Lu J, Zhang S, Huang Y, Qian J, Tan B, Qian X, Zhuang J, Zou X, Li Y, Yan F. Periodontitis-related salivary microbiota aggravates Alzheimer's disease via gut-brain axis crosstalk. Gut Microbes 2022; 14:2126272. [PMID: 36175166 PMCID: PMC9542625 DOI: 10.1080/19490976.2022.2126272] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The oral cavity is the initial chamber of digestive tract; the saliva swallowed daily contains an estimated 1.5 × 1012 oral bacteria. Increasing evidence indicates that periodontal pathogens and subsequent inflammatory responses to them contribute to the pathogenesis of Alzheimer's disease (AD). The intestine and central nervous system jointly engage in crosstalk; microbiota-mediated immunity significantly impacts AD via the gut-brain axis. However, the exact mechanism linking periodontitis to AD remains unclear. In this study, we explored the influence of periodontitis-related salivary microbiota on AD based on the gut-brain crosstalk in APPswe/PS1ΔE9 (PAP) transgenic mice. Saliva samples were collected from patients with periodontitis and healthy individuals. The salivary microbiota was gavaged into PAP mice for two months. Continuous gavage of periodontitis-related salivary microbiota in PAP mice impaired cognitive function and increased β-amyloid accumulation and neuroinflammation. Moreover, these AD-related pathologies were consistent with gut microbial dysbiosis, intestinal pro-inflammatory responses, intestinal barrier impairment, and subsequent exacerbation of systemic inflammation, suggesting that the periodontitis-related salivary microbiota may aggravate AD pathogenesis through crosstalk of the gut-brain axis. In this study, we demonstrated that periodontitis might participate in the pathogenesis of AD by swallowing salivary microbiota, verifying the role of periodontitis in AD progression and providing a novel perspective on the etiology and intervention strategies of AD.
Collapse
Affiliation(s)
- Jiangyue Lu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shuang Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuezhen Huang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jun Qian
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Baochun Tan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xueshen Qian
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jia Zhuang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xihong Zou
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yanfen Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China,CONTACT Fuhua Yan
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China,Yanfen Li Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| |
Collapse
|
15
|
Lorenzini EC, Lazzari B, Tartaglia GM, Farronato G, Lanteri V, Botti S, Biscarini F, Cozzi P, Stella A. Oral ecological environment modifications by hard-cheese: from pH to microbiome: a prospective cohort study based on 16S rRNA metabarcoding approach. J Transl Med 2022; 20:312. [PMID: 35810305 PMCID: PMC9271248 DOI: 10.1186/s12967-022-03506-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
Background The oral ecosystem conditions dental health, and is known to be positively modified by oral hygiene which cannot always be performed between meals, especially outside home. It is therefore important to identify the practices to be adopted to influence the oral environment in an anticariogenic direction. Milk and cheese are considered functional foods and have a role on oral health. There are several mechanisms by which cheese exerts its beneficial effects on teeth. The aim of the present study was to examine whether short term consumption of hard cheese would affect the oral pH and microbial flora of healthy adults modifying ecological oral environment. The Next Generation Sequencing (NGS) approach was applied to study the effect of Italian Grana Padano (GP), as a prototype of typical hard cheese, on the oral microbiota composition. Finally, we explored Streptococcusmutans/sanguinis ratio as a marker of protective biofilm composition. Methods Nine oral-healthy adults were instructed to eat 25 gr of GP cheese for 5 consecutive days. Three time points were chosen for supragingival samples collection and pH measurement. 16S rRNA-gene sequences were obtained both from oral samples and GP cheese using the MiSeq platform and analyzed against the expanded Human Oral Microbiome Database (eHOMD). ProgPerm was used to perform statistical analyses to investigate strain differential representation after cheese consumption. Results Taxonomic analyses of the oral microbiota revealed that Firmicutes was the most abundant phylum, followed by Proteobacteria and Actinobacteria. GP cheese significantly modifies oral pH, causing a shift toward basic conditions which are kept for a few hours. The Streptococcus mutans/Streptococcus sanguinis ratio lowers in the last observed timepoint. Conclusion Our results reveal that a portion of GP cheese eaten after dinner provides important micronutrients (i.e. calcium, vitamins and some aminoacids such as arginine) and changes oral pH toward basic conditions, resulting in a light modification of the oral microbiome towards the reduction of the overall amount of acidophilic bacteria. Furthermore, the S.mutans/S. sanguinis ratio is reduced, contributing to obtain a more protecting environment towards caries establishment and evolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03506-4.
Collapse
Affiliation(s)
- Erna Cecilia Lorenzini
- Department of Biomedical Science for Health, University of Milan, 20100, Milan, Italy.,Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Via Bassini 15, 20133, Milan, Italy
| | - Barbara Lazzari
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Via Bassini 15, 20133, Milan, Italy.
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20100, Milan, Italy.,UOC Maxillo-Facial Surgery and Dentistry. Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20100, Milan, Italy
| | - Giampietro Farronato
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20100, Milan, Italy
| | - Valentina Lanteri
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20100, Milan, Italy
| | - Sara Botti
- Parco Tecnologico Padano, Loc. Cascina Codazza, Via Einstein, 26900, Lodi, Italy
| | - Filippo Biscarini
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Via Bassini 15, 20133, Milan, Italy
| | - Paolo Cozzi
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Via Bassini 15, 20133, Milan, Italy
| | - Alessandra Stella
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Via Bassini 15, 20133, Milan, Italy
| |
Collapse
|
16
|
Zhang Y, Fang J, Yang J, Gao X, Dong L, Zheng X, Sun L, Xia B, Zhao N, Ma Z, Wang Y. Streptococcus mutans-associated bacteria in dental plaque of severe early childhood caries. J Oral Microbiol 2022; 14:2046309. [PMID: 35251525 PMCID: PMC8896182 DOI: 10.1080/20002297.2022.2046309] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Streptococcus mutans (S. mutans) is a potential pathogenic bacteria of dental caries. However, the level of S. mutans is low in some children with severe early childhood caries (SECC) Aim To evaluate the effect of S. mutans level on dental microbiome and cariogenesis. Methods The oral microbiota was compared between caries-free group (CF) and SECC group.16S rRNA gene sequencing was used for S. mutans level bacterial community analysis. The candidate bacteria that were closely related with S. mutans abundance were identified and confirmed by absolute quantitative real-time PCR in clinical dental plaque samples from CF and SECC groups. Results Through in-depth analysis of dental plaque microorganism, Leptotrichia, Selenomonas and Prevotella_7 were found in the S. mutans-low group (p < 0.05) and Porphyromonas, Selenomonas_3 were found in the S. mutans-high group (p < 0.05). Through quantitative real-time PCR, Leptotrichia, Selenomonas and Prevotella_7 were identified as the potential biomarkers of SECC when S. mutans was at a low level. Conclusion Leptotrichia, Selenomonas and Prevotella_7 are identified as potential biomarkers in SECC with a low abundance or without S. mutans. Our study may shed light on the understanding of caries occurrence in SECC with low abundance of S. mutans. Abbreviations S. mutans, Streptococcus mutans; CF, caries-free; SECC, severe early childhood caries; ECC, early childhood caries; rRNA, ribosome RNA; qPCR, Quantitative real-time PCR; OTUs, operational taxonomic units; ANOVA, analysis of variance; LDA, Linear discriminant analysis; LEfSe, Linear discriminant analysis effect size; COG, Groups of proteins; NMDS, Non-MetricMulti-Dimensional Scaling; IL-1β, interleukin −1β; IL-6, interleukin-6; IL-8, interleukin-8; IL-10, interleukin-10.
Collapse
Affiliation(s)
- Yixin Zhang
- Central Laboratory Peking University School and Hospital of Stomatology, Beijing, China
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
- Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jiakun Fang
- Office of Operations Management, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jingyi Yang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaolei Gao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Liying Dong
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuan Zheng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Liangjie Sun
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Bin Xia
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Na Zhao
- Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Zeyun Ma
- Department of VIP Service, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yixiang Wang
- Central Laboratory Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
17
|
Diao J, Yuan C, Tong P, Ma Z, Sun X, Zheng S. Potential Roles of the Free Salivary Microbiome Dysbiosis in Periodontal Diseases. Front Cell Infect Microbiol 2021; 11:711282. [PMID: 34631597 PMCID: PMC8493099 DOI: 10.3389/fcimb.2021.711282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
Saliva is a vital mediator in the oral cavity. The dysbiosis of free bacteria in saliva might be related to the onset, development, prognosis, and recurrence of periodontal diseases, but this potential relationship is still unclear. The objective of this study was to investigate the potential roles of the free salivary microbiome in different periodontal statuses, their reaction to nonsurgical periodontal therapy, and differences between diseased individuals after treatment and healthy persons. We recruited 15 healthy individuals, 15 individuals with gingivitis, and 15 individuals with stage I/II generalized periodontitis. A total of 90 unstimulated whole saliva samples were collected and sequenced using full-length bacterial 16S rRNA gene sequencing. We found that as the severity of disease increased, from healthy to gingivitis and periodontitis, the degree of dysbiosis also increased. A higher abundance of Prevotella intermedia and Catonella morbi and a lower abundance of Porphyromonas pasteri, Prevotella nanceiensis, and Haemophilus parainfluenzae might be biomarkers of periodontitis, with an area under curve (AUC) reaching 0.9733. When patients received supragingival scaling, there were more pathogens related to recolonization in the saliva of periodontitis patients than in healthy persons. Even after effective nonsurgical periodontal therapy, individuals with periodontitis displayed a more dysbiotic and pathogenic microbial community in their saliva than healthy individuals. Therefore, the gradual transition in the entire salivary microbial community from healthy to diseased includes a gradual shift to dysbiosis. Free salivary pathogens might play an important role in the recolonization of bacteria as well as the prognosis and recurrence of periodontal diseases.
Collapse
Affiliation(s)
- Jing Diao
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Chao Yuan
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Peiyuan Tong
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Department of Stomatology, Peking University Third Hospital, Beijing, China
| | - Zhangke Ma
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Department of Paediatric Dentistry, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Centre of Tooth Restoration and Regeneration, Shanghai, China
| | - Xiangyu Sun
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Shuguo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| |
Collapse
|
18
|
Bhaumik D, Manikandan D, Foxman B. Cariogenic and oral health taxa in the oral cavity among children and adults: A scoping review. Arch Oral Biol 2021; 129:105204. [PMID: 34246103 PMCID: PMC8364507 DOI: 10.1016/j.archoralbio.2021.105204] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/08/2021] [Accepted: 06/26/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To review published oral microbiome studies and create a comprehensive list of bacterial species found in saliva and dental plaque among healthy children and adults associated with presence of carious lesions and caries-free state (oral health). DESIGN This review followed PRISMA-ScR guidelines. We searched published studies querying PUBMED and EMBASE using the following keywords: (plaque OR saliva) AND caries AND (next generation sequencing OR checkerboard OR 16s rRNA or qPCR). Studies were limited to human studies published in English between January 1, 2010 and June 24, 2020 that included > 10 caries-active and > 10 caries-free participants, and assessed the entire bacterial community. RESULTS Our search strategy identified 298 articles. After exclusion criteria, 22 articles remained; we considered 2 studies that examined saliva and plaque as separate studies, for a total of 24 studies. Species associated with caries or oral health varied widely among studies reviewed, with notable differences by age and biologic sample type. No bacterial species was associated with caries in all studies. Streptococcus mutans was found more frequently among those with caries (14/24 (58.3 %)) and Fusobacterium periodonticum was found more frequently among those that were caries-free (5/24 (20.8 %)). CONCLUSION No bacterial species was associated with caries or oral health across all studies supporting multiple pathways to cariogenesis. However, the variation may be due to sampling at different time points during caries development, varying methods of specimen sampling, storage, sequencing or analysis or differences in host factors such as age.
Collapse
Affiliation(s)
- Deesha Bhaumik
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, United States.
| | - Divya Manikandan
- University of Michigan College of Literature, Science, and the Arts, Ann Arbor, MI, United States.
| | - Betsy Foxman
- Center of Molecular and Clinical Epidemiology of Infectious Diseases, Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, United States.
| |
Collapse
|
19
|
Lundtorp-Olsen C, Enevold C, Juel Jensen CA, Stofberg SN, Twetman S, Belstrøm D. Impact of Probiotics on the Salivary Microbiota and Salivary Levels of Inflammation-Related Proteins during Short-Term Sugar Stress: A Randomized Controlled Trial. Pathogens 2021; 10:pathogens10040392. [PMID: 33805894 PMCID: PMC8064398 DOI: 10.3390/pathogens10040392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
Background: The purpose of the present investigation was to characterize the effect of probiotics on the composition of the salivary microbiota and salivary levels of inflammation-related proteins during short-term sugar stress. We tested the hypotheses that consumption of probiotics may partly counteract the detrimental influence of sugar stress on oral homeostasis. Methods: The present study was a five-week, blinded, randomized controlled trial with four study arms—A: sucrose and probiotic (n = 20); B: sucrose and placebo (n = 20); C: xylitol and probiotic (n = 20); D: xylitol and placebo (n = 20). Saliva samples were collected at baseline and after two and five weeks. The salivary microbiota was characterized by means of 16S rDNA sequencing, and sequences were referenced against the Human Oral Microbiome Database (HOMD). Neutrophil gelatinase-associated lipocalin (NGAL) and transferrin levels were quantified using immunoassays. Results: Sugar stress induced a significant increase in the relative abundance of the genus Streptococcus from 29.8% at baseline to 42.9% after two weeks. Changes were transient and were completely reversed three weeks after discontinuation of sugar stress. Xylitol and probiotics alone had no effect on the salivary microbiota, whereas the combination of xylitol and probiotics induced a significant decrease in the relative abundance of Streptococcus species from 37.6% at baseline to 23.0% at week 2. Sugar stress significantly increased salivary transferrin levels, and the effect was partly counteracted by concomitant use of probiotics. Conclusions: The data clearly demonstrate an impact of combined consumption of xylitol and probiotics on the composition of the salivary microbiota. Future studies are needed to evaluate whether the combined use of xylitol and the probiotic strains tested could have clinically protective effects during periods of sugar stress.
Collapse
Affiliation(s)
- Christine Lundtorp-Olsen
- Department of Odontology, Section for Clinical Oral Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (C.L.-O.); (S.T.)
| | - Christian Enevold
- Center for Rheumatology and Spine Diseases, Institute for Inflammation Research, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark;
| | - Claus Antonio Juel Jensen
- Department of Clinical Biochemistry, Nordsjællands Hospital, 3400 Hillerød, Denmark; (C.A.J.J.); (S.N.S.)
| | - Steen Nymann Stofberg
- Department of Clinical Biochemistry, Nordsjællands Hospital, 3400 Hillerød, Denmark; (C.A.J.J.); (S.N.S.)
| | - Svante Twetman
- Department of Odontology, Section for Clinical Oral Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (C.L.-O.); (S.T.)
| | - Daniel Belstrøm
- Department of Odontology, Section for Clinical Oral Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (C.L.-O.); (S.T.)
- Correspondence: ; Tel.: +45-21-30-05-80
| |
Collapse
|
20
|
Li X, Zheng J, Ma X, Zhang B, Zhang J, Wang W, Sun C, Wang Y, Zheng J, Chen H, Tao J, Wang H, Zhang F, Wang J, Zhang H. The oral microbiome of pregnant women facilitates gestational diabetes discrimination. J Genet Genomics 2021; 48:32-39. [PMID: 33663937 DOI: 10.1016/j.jgg.2020.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
The oral microbiota plays an important role in the development of various diseases, whereas its association with gestational diabetes mellitus (GDM) remains largely unclear. The aim of this study is to identify biomarkers from the oral microbiota of GDM patients by analyzing the microbiome of the saliva and dental plaque samples of 111 pregnant women. We find that the microbiota of both types of oral samples in GDM patients exhibits differences and significantly varies from that of patients with periodontitis or dental caries. Using bacterial biomarkers from the oral microbiota, GDM classification models based on support vector machine and random forest algorithms are constructed. The area under curve (AUC) value of the classification model constructed by combination of Lautropia and Neisseria in dental plaque and Streptococcus in saliva reaches 0.83, and the value achieves a maximum value of 0.89 by adding clinical features. These findings suggest that certain bacteria in either saliva or dental plaque can effectively distinguish women with GDM from healthy pregnant women, which provides evidence of oral microbiome as an informative source for developing noninvasive biomarkers of GDM.
Collapse
Affiliation(s)
- Xiaoqing Li
- Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Jiayong Zheng
- Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Xiuling Ma
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Zhang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyang Zhang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhuan Wang
- Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Congcong Sun
- Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Yeping Wang
- Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Jianqiong Zheng
- Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Haiying Chen
- Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Jiejing Tao
- Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Hai Wang
- Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Fengyi Zhang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Wang
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongping Zhang
- Wenzhou People's Hospital/Wenzhou Maternal and Child Health Care Hospital/The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
21
|
Relvas M, Regueira-Iglesias A, Balsa-Castro C, Salazar F, Pacheco JJ, Cabral C, Henriques C, Tomás I. Relationship between dental and periodontal health status and the salivary microbiome: bacterial diversity, co-occurrence networks and predictive models. Sci Rep 2021; 11:929. [PMID: 33441710 PMCID: PMC7806737 DOI: 10.1038/s41598-020-79875-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
The present study used 16S rRNA gene amplicon sequencing to assess the impact on salivary microbiome of different grades of dental and periodontal disease and the combination of both (hereinafter referred to as oral disease), in terms of bacterial diversity, co-occurrence network patterns and predictive models. Our scale of overall oral health was used to produce a convenience sample of 81 patients from 270 who were initially recruited. Saliva samples were collected from each participant. Sequencing was performed in Illumina MiSeq with 2 × 300 bp reads, while the raw reads were processed according to the Mothur pipeline. The statistical analysis of the 16S rDNA sequencing data at the species level was conducted using the phyloseq, DESeq2, Microbiome, SpiecEasi, igraph, MixOmics packages. The simultaneous presence of dental and periodontal pathology has a potentiating effect on the richness and diversity of the salivary microbiota. The structure of the bacterial community in oral health differs from that present in dental, periodontal or oral disease, especially in high grades. Supragingival dental parameters influence the microbiota’s abundance more than subgingival periodontal parameters, with the former making a greater contribution to the impact that oral health has on the salivary microbiome. The possible keystone OTUs are different in the oral health and disease, and even these vary between dental and periodontal disease: half of them belongs to the core microbiome and are independent of the abundance parameters. The salivary microbiome, involving a considerable number of OTUs, shows an excellent discriminatory potential for distinguishing different grades of dental, periodontal or oral disease; considering the number of predictive OTUs, the best model is that which predicts the combined dental and periodontal status.
Collapse
Affiliation(s)
- M Relvas
- Institute of Research and Advanced Training in Health Sciences and Tecnologies (IINFACTS), IUCS-Cespu-Instituto Universitário de Ciencias da Saúde, Gandra, Paredes, Portugal
| | - A Regueira-Iglesias
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Galicia, 15872, Santiago de Compostela, Spain
| | - C Balsa-Castro
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Galicia, 15872, Santiago de Compostela, Spain
| | - F Salazar
- Institute of Research and Advanced Training in Health Sciences and Tecnologies (IINFACTS), IUCS-Cespu-Instituto Universitário de Ciencias da Saúde, Gandra, Paredes, Portugal
| | - J J Pacheco
- Institute of Research and Advanced Training in Health Sciences and Tecnologies (IINFACTS), IUCS-Cespu-Instituto Universitário de Ciencias da Saúde, Gandra, Paredes, Portugal
| | - C Cabral
- Institute of Research and Advanced Training in Health Sciences and Tecnologies (IINFACTS), IUCS-Cespu-Instituto Universitário de Ciencias da Saúde, Gandra, Paredes, Portugal
| | - C Henriques
- Institute of Research and Advanced Training in Health Sciences and Tecnologies (IINFACTS), IUCS-Cespu-Instituto Universitário de Ciencias da Saúde, Gandra, Paredes, Portugal
| | - I Tomás
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Galicia, 15872, Santiago de Compostela, Spain.
| |
Collapse
|
22
|
Dental plaque microbiota profiles of children with caries-free and caries-active dentition. J Dent 2020; 104:103539. [PMID: 33248211 DOI: 10.1016/j.jdent.2020.103539] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Microbiota comparisons between healthy and diseased dental tissues have accentuated the importance of cultivating and identifying bacterial species that play a role in the initiation and progression of dental caries. The objective of this study was to evaluate the bacterial community composition in caries-active and caries-free children. METHODS Supragingival plaque samples were collected from 64 caries-active and 64 caries-free Middle Eastern children. The hypervariable V3-V4 of the bacterial 16S rRNA gene was sequenced with Human Oral Microbe Identification using Next Generation Sequencing. Microbial community structure and composition analyses were performed by processing operational taxonomic units. Bioinformatic analyses, including analysis of similarity, alpha and beta diversities, and principal coordinate analysis, were carried out. RESULTS Diversity indices did not find differences between the caries-active and caries-free groups (p > 0.05). Similarity analysis demonstrated that the microbiota composition did not differ between the two groups. Comparative analysis at the species level revealed a significantly higher relative abundance of Leptotrichia shahii, Prevotella melaninogenica, Veillonella dispar, Leptotrichia HOT 498, and Streptococcus mutans in caries-active children (p < 0.05). Corynebacterium matruchotii, Lautropia mirabilis, Neisseria elongata, and Corynebacterium durum were relatively more abundant in the caries-free group (p < 0.05). Species belonging to the Leptotrichia, Prevotella, and Veillonella genera were significantly predominant in the caries-active subjects. CONCLUSION In view of the lack of a clear association between Corynebacterium spp. and dental caries status in the literature, the predominance of these species in caries-free children warrants further research to understand their possible role in a health-associated microbial community. CLINICAL SIGNIFICANCE Understanding the relationship between specific bacteria present in dental biofilms and health and disease is essential for preventing and combating dental caries. Using advanced next generation sequencing techniques, the present study demonstrated the complexity of the caries microbiome and identified species/genera whose virulence or protective properties should be further explored.
Collapse
|
23
|
Velsko IM, Harrison P, Chalmers N, Barb J, Huang H, Aukhil I, Shaddox L. Grade C molar-incisor pattern periodontitis subgingival microbial profile before and after treatment. J Oral Microbiol 2020; 12:1814674. [PMID: 33062199 PMCID: PMC7534306 DOI: 10.1080/20002297.2020.1814674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Aim: This study evaluated the influence of periodontal therapy on the microbiological profile of individuals with Grade C Molar-Incisor Pattern Periodontitis (C/MIP). Methods: Fifty-three African-American participants between the ages of 5–25, diagnosed with C/MIP were included. Patients underwent full mouth mechanical debridement with systemic antibiotics (metronidazole 250 mg + amoxicillin 500 mg, tid, 7 days). Subgingival samples were collected from a diseased and a healthy site from each individual prior to treatment and at 3, 6, 12, 18 and 24 months after therapy from the same sites. Samples were subjected to a 16S rRNA gene based-microarray. Results: Treatment was effective in reducing the main clinical parameters of disease. Aggregatibacter actinomycetemcomitans (A.a.) was the strongest species associated with diseased sites. Other species associated with diseased sites were Treponema lecithinolyticum and Tannerella forsythia. Species associated with healthy sites were Rothia dentocariosa/mucilaginosa, Eubacterium yurii, Parvimonas micra, Veillonella spp., Selenomonas spp., and Streptococcus spp. Overall, treatment was effective in strongly reducing A.a. and other key pathogens, as well as increasing health-associated species. These changes were maintained for at least 6 months. Conclusions:Treatment reduced putative disease-associated species, particularly A.a., and shifted the microbial profile to more closely resemble a healthy-site profile. (Clinicaltrials.gov registration #NCT01330719).
Collapse
Affiliation(s)
- Irina M Velsko
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Peter Harrison
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA.,Department of Periodontology, Trinity College, Dublin, Ireland
| | | | - Jennifer Barb
- Clinical Center Nursing Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Hong Huang
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Ikramuddin Aukhil
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Luciana Shaddox
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA.,Center for Oral Health Research, University of Kentucky College of Dentistry, Lexington, KY, USA
| |
Collapse
|
24
|
Guedes SFF, Neves BG, Bezerra DS, Souza GHMF, Lima-Neto ABM, Guedes MIF, Duarte S, Rodrigues LKA. Saliva proteomics from children with caries at different severity stages. Oral Dis 2020; 26:1219-1229. [PMID: 32285988 DOI: 10.1111/odi.13352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To perform a comparative analysis of saliva protein profile of patients with early childhood caries at different levels of severity and caries-free individuals. MATERIALS AND METHODS Stimulated saliva samples were collected from 126 children (2-6 years old), classified according to the ICDAS II, and divided into 3 groups (n = 42): caries-free (CF), enamel caries (EC), and dentine caries (DC). Samples were digested and analyzed by nanoUPLC coupled with a mass spectrometry. Data analyses were conducted with Progenesis QI for Proteomics Software v2.0. Gene Ontology (GO) terms and protein-protein interaction analysis were obtained. RESULTS A total of 306 proteins (≈6 peptides) were identified. Among them, 122 were differentially expressed in comparisons among children with different caries status. Out of the 122 proteins, the proteins E2AK4 and SH3L2 were exclusively present in groups CF and EC, respectively, and 8 proteins (HAUS4, CAH1, IL36A, IL36G, AIMP1, KLHL8, KLH13, and SAA1) were considered caries-related proteins when compared to caries-free children; they were up-regulated proteins in the caries groups (EC and DC). CONCLUSION The identification of exclusive proteins for caries-free or carious-related conditions may help in understanding the mechanisms of caries and predicting risk as well as advancing in caries control or anti-caries approaches.
Collapse
Affiliation(s)
- Sarah F F Guedes
- Faculty of Pharmacy, Dentistry and Nursing, Postgraduate Program in Dentistry, Federal University of Ceará, Fortaleza, Brazil
| | - Beatriz G Neves
- School of Dentistry, Federal University of Ceará, Sobral, Brazil
| | | | - Gustavo H M F Souza
- MS Applications Development Laboratory, Waters Corporation, São Paulo, Brazil
| | - Abelardo B M Lima-Neto
- Laboratory of Biotechnology and Molecular Biology, State University of Ceará, Fortaleza, Brazil
| | - Maria Izabel F Guedes
- Laboratory of Biotechnology and Molecular Biology, State University of Ceará, Fortaleza, Brazil
| | - Simone Duarte
- Department of Cariology, Operative Dentistry and Dental Public Health, School of Dentistry, Indiana University - Purdue University Indianapolis, Indianapolis, IN, USA
| | - Lidiany K A Rodrigues
- Faculty of Pharmacy, Dentistry and Nursing, Postgraduate Program in Dentistry, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
25
|
Papapanou PN, Park H, Cheng B, Kokaras A, Paster B, Burkett S, Watson CWM, Annavajhala MK, Uhlemann AC, Noble JM. Subgingival microbiome and clinical periodontal status in an elderly cohort: The WHICAP ancillary study of oral health. J Periodontol 2020; 91 Suppl 1:S56-S67. [PMID: 32533776 DOI: 10.1002/jper.20-0194] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND There is a sparsity of data describing the periodontal microbiome in elderly individuals. We analyzed the association of subgingival bacterial profiles and clinical periodontal status in a cohort of participants in the Washington Heights-Inwood Columbia Aging Project (WHICAP). METHODS Dentate individuals underwent a full-mouth periodontal examination at six sites/tooth. Up to four subgingival plaque samples per person, each obtained from the mesio-lingual site of the most posterior tooth in each quadrant, were harvested and pooled. Periodontal status was classified according to the Centers for Disease Control/American Academy of Periodontology (CDC/AAP) criteria as well as based on the percentage of teeth/person with pockets ≥4 mm deep. Bacterial DNA was isolated and was processed and analyzed using Human Oral Microbe Identification using Next Generation Sequencing (HOMINGS). Differential abundance across the periodontal phenotypes was calculated using the R package DESeq2. α- and β-diversity metrics were calculated using DADA2-based clustering. RESULTS The mean age of the 739 participants was 74.5 years, and 32% were male. Several taxa including Sneathia amnii-like sp., Peptoniphilaceae [G-1] bacterium HMT 113, Porphyromonas gingivalis, Fretibacterium fastidiosum, Filifactor alocis, and Saccharibacteria (TM7) [G-1] bacterium HMT 346 were more abundant with increasing severity of periodontitis. In contrast, species such as Veillonella parvula, Veillonella dispar, Rothia dentocariosa, and Lautropia mirabilis were more abundant in health. Microbial diversity increased in parallel with the severity and extent of periodontitis. CONCLUSIONS The observed subgingival bacterial patterns in these elderly individuals corroborated corresponding findings in younger cohorts and were consistent with the concept that periodontitis is associated with perturbations in the resident microbiome.
Collapse
Affiliation(s)
- Panos N Papapanou
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, New York, NY
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University, New York, NY
| | - Bin Cheng
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY
| | | | | | - Sandra Burkett
- Division of Periodontics, Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, New York, NY
| | - Caitlin Wei-Ming Watson
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, GH Sergievsky Center, New York, NY
| | - Medini K Annavajhala
- Division of Infectious Diseases, Department of Medicine, Columbia University, New York, NY
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University, New York, NY
| | - James M Noble
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, GH Sergievsky Center, New York, NY.,Department of Neurology, Vagelos College of Physicians and Surgeons, New York, NY
| |
Collapse
|
26
|
Jalili M, Mahmoodabadi KA, Sayehmiri K. Relationship between Helicobacter pylori and Periodontal Diseases: A Meta-Analysis Study and Systematic Review. Open Dent J 2020. [DOI: 10.2174/1874210602014010362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Objective:
The present study aimed at the evaluation of the association between H. pylori and periodontal diseases by systematic review and meta-analysis study.
Materials and Methods:
We searched databases, including PubMed, SID, Magiran, Google Scholar, and Iranmedex using the following keywords in English: H. pylori, tooth decay, oral infection, dental infection, gingival infection and periodontal diseases. Data was analyzed using a meta-analysis and random effect model. Heterogeneity of studies was assessed using the I2 index, and data was finally analyzed with STATA (Version 11.2).
Results:
Among 10 articles reviewed that included 56,334 samples, results showed that association between H. pylori and periodontal diseases was significant with OR (odds ratio) = 1.13 (95% CI: 1.04 to 1.24).
Conclusion:
The results reveal that H. pylori can be one of the main causes of periodontal diseases. Thus, a novel way should be employed for the complete management of H. pylori infections.
Collapse
|
27
|
The apical root canal system microbial communities determined by next-generation sequencing. Sci Rep 2020; 10:10932. [PMID: 32616783 PMCID: PMC7331743 DOI: 10.1038/s41598-020-67828-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/09/2020] [Indexed: 12/30/2022] Open
Abstract
The aim of this study was to explore the microbial communities of endodontic infections at their apical portion by 16S rRNA Illumina sequencing and delineate the core microbiome of root canal infections and that of their associated clinical symptomatology. Samples were collected from fifteen subjects presenting one tooth with a root canal infection, and their associated symptoms were recorded. Samples were collected from the apical third of roots using a #10 K file and then amplified using multiple displacement amplification and PCR-amplified with universal primers. Amplicons were sequenced (V3–V4 hypervariable region of the 16S rRNA gene) using MiSeq (Illumina, CA). The microbial composition of the samples was determined using QIIME and HOMINGS. Data were analyzed using t tests and ANOVA. A total of 1,038,656 good quality sequences were obtained, and OTUs were assigned to 10 bacterial phyla, led by Bacteroidetes (51.2%) and Firmicutes (27.1%), and 94 genera were represented primarily by Prevotella (17.9%) and Bacteroidaceae G-1 (14.3%). Symptomatic teeth were associated with higher levels of Porphyromonas (p < 0.05) and Prevotella. P. endodontalis and P. oris were present in both cores. The present study demonstrated the complexity of the root canal microbiome and the “common denominators” of root canal infections and identified taxa whose virulence properties should be further explored. The polymicrobial etiology of endodontic infections has long been established. However, few studies have focused on expanding the breadth and depth of coverage of microbiome-infected root canals at their apical portion.
Collapse
|
28
|
Belstrøm D. The salivary microbiota in health and disease. J Oral Microbiol 2020; 12:1723975. [PMID: 32128039 PMCID: PMC7034443 DOI: 10.1080/20002297.2020.1723975] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022] Open
Abstract
The salivary microbiota (SM), comprising bacteria shed from oral surfaces, has been shown to be individualized, temporally stable and influenced by diet and lifestyle. SM reflects local bacterial alterations of the supragingival and subgingival microbiota, and periodontitis and dental-caries associated characteristics of SM have been reported. Also, data suggest an impact of systemic diseases on SM as demonstrated in patients with a wide variety of systemic diseases including diabetes, cancer, HIV and rheumatoid arthritis. The presence of systemic diseases seems to influence salivary levels of specific bacterial species, as well as α- and β-diversity of SM. The composition of SM might thereby potentially mirror oral and general health status. The contentious development of advanced molecular techniques such as metagenomics, metatranscriptomics and metabolomics has enabled the possibility to address bacterial functions rather than presence in microbial samples. However, at present only a few studies have employed such techniques on SM to reveal functional and metabolic characteristics in oral health and disease. Future studies are therefore warranted to illuminate the possible impact of metabolic functions of SM on oral and general health status. Ultimately, such an approach has the possibility to reveal novel and personalized therapeutic avenues in oral and general medicine.
Collapse
Affiliation(s)
- Daniel Belstrøm
- Section for Periodontology and Microbiology, Department of Odontology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Chen Q, Wu G, Chen H, Li H, Li S, Zhang C, Pang X, Wang L, Zhao L, Shen J. Quantification of Human Oral and Fecal Streptococcus parasanguinis by Use of Quantitative Real-Time PCR Targeting the groEL Gene. Front Microbiol 2020; 10:2910. [PMID: 31921079 PMCID: PMC6933288 DOI: 10.3389/fmicb.2019.02910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 12/03/2019] [Indexed: 11/13/2022] Open
Abstract
Two pairs of species-specific PCR primers targeting the housekeeping groEL gene, Spa146f-Spa525r and Spa93f-Spa525r, were designed to quantify human oral and fecal Streptococcus parasanguinis. Blast analysis against reference sequences of NCBI nucleotide collection database and the Chaperonin Sequence Database showed the forward primers Spa146f and Spa93f 100% matched only with S. parasanguinis, and the in silico Simulated PCR algorithm showed both primer pairs hit only S. parasanguinis groEL gene in Chaperonin Sequence Database. The two primer pairs were respectively used to perform PCR with saliva DNA of each of 6 human subjects, and the amplicons of individual PCR reactions were cloned. The phylogenetic analysis showed cloned sequences were all affiliated to S. parasanguinis, which further validates the specificity of two primer pairs, and that individual subjects harbored multiple genotypes of S. parasanguinis in saliva. By spiking S. parasanguinis into human fecal samples, we found the quantification limit of quantitative real-time PCR (qPCR) assays for both primer pairs was 5-6 log10 groEL copies/g feces. Human fecal S. parasanguinis amounts quantified with qPCR using each of the two primer pairs correlated well with those determined with metagenomic sequencing. qPCR with either primer pair showed periodontitis patients had significantly lower level of saliva S. parasanguinis than healthy people. In both feces and saliva, the S. parasanguinis abundances quantified with two primer pairs exhibited strong and significant correlation. Our results show that the two S. parasanguinis-specific primer pairs can be used to quantify and profile human saliva and fecal S. parasanguinis.
Collapse
Affiliation(s)
- Qiurong Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guojun Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Pang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Linghua Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Zhao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Shen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
Grande MA, Belstrøm D, Damgaard C, Holmstrup P, Könönen E, Gursoy M, Gursoy UK. Salivary concentrations of macrophage activation-related chemokines are influenced by non-surgical periodontal treatment: a 12-week follow-up study. J Oral Microbiol 2019; 12:1694383. [PMID: 31893018 PMCID: PMC6913660 DOI: 10.1080/20002297.2019.1694383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/09/2019] [Accepted: 10/02/2019] [Indexed: 02/08/2023] Open
Abstract
Background: During periodontal inflammation, bacteria induces chemokine expression and migration of various inflammatory cells. The aim of the study was to learn if periodontal treatment alters salivary concentrations of macrophage activation-related chemokines and if such alterations correlate with abundance of periodontitis-associated bacteria. Methods: Twenty-five patients with periodontitis completed the study (NCT02913248 at clinicaltrials.gov). Periodontal parameters and stimulated saliva samples were obtained at baseline and 2, 6 and 12 weeks after non-surgical periodontal treatment. Salivary concentrations of monocyte chemoattractant proteins (MCP-1-4), macrophage-derived chemokine (MDC), macrophage migration inhibitory factor (MIF), monokine induced by interferon-gamma (MIG), macrophage inflammatory protein (MIP-1α) and interferon-inducible protein (IP-10) were quantified using the Luminex® xMAP™ technique and abundance of bacteria was quantified using next-generation sequencing. Results: The treatment improved all periodontal parameters and caused an increase in the concentrations of MCP-2, MDC and MIP-1α at week 12 compared to baseline, week 2 and week 6, respectively. Salivary concentrations of MCP-1-2, MDC, MIG, MIP-1α and IP-10 correlated with the abundance of specific periodontitis-associated bacteria. Conclusions: Periodontal treatment impacts salivary concentrations of MCP-2, MDC and MIP-1α, which correlate with the abundance of specific periodontitis-associated bacteria. This indicates that these chemokines reflect periodontal status and possess potential in illustrating a response to treatment.
Collapse
Affiliation(s)
- Maria A. Grande
- Section for Periodontology, Microbiology and Community Dentistry, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Belstrøm
- Section for Periodontology, Microbiology and Community Dentistry, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Damgaard
- Section for Periodontology, Microbiology and Community Dentistry, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Cancer and Inflammation, Institute of Molecular Medicine, Faculty of Health and Medical Sciences, University of Southern Denmark, Odense, Denmark
| | - Palle Holmstrup
- Section for Periodontology, Microbiology and Community Dentistry, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Mervi Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Ulvi Kahraman Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
31
|
Rabe A, Gesell Salazar M, Michalik S, Fuchs S, Welk A, Kocher T, Völker U. Metaproteomics analysis of microbial diversity of human saliva and tongue dorsum in young healthy individuals. J Oral Microbiol 2019; 11:1654786. [PMID: 31497257 PMCID: PMC6720020 DOI: 10.1080/20002297.2019.1654786] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/29/2022] Open
Abstract
Background: The human oral microbiome influences initiation or progression of diseases like caries or periodontitis. Metaproteomics approaches enable the simultaneous investigation of microbial and host proteins and their interactions to improve understanding of oral diseases. Objective: In this study, we provide a detailed metaproteomics perspective of the composition of salivary and tongue microbial communities of young healthy subjects. Design: Stimulated saliva and tongue samples were collected from 24 healthy volunteers, subjected to shotgun nLC-MS/MS and analyzed by the Trans-Proteomic Pipeline and the Prophane tool. Results: 3,969 bacterial and 1,857 human proteins could be identified from saliva and tongue, respectively. In total, 1,971 bacterial metaproteins and 1,154 human proteins were shared in both sample types. Twice the amount of bacterial metaproteins were uniquely identified for the tongue dorsum compared to saliva. Overall, 107 bacterial genera of seven phyla formed the microbiome. Comparative analysis identified significant functional differences between the microbial biofilm on the tongue and the microbiome of saliva. Conclusion: Even if the microbial communities of saliva and tongue dorsum showed a strong similarity based on identified protein functions and deduced bacterial composition, certain specific characteristics were observed. Both microbiomes exhibit a great diversity with seven genera being most abundant.
Collapse
Affiliation(s)
- Alexander Rabe
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Fuchs
- Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch-Institute, Wernigerode, Germany
| | - Alexander Welk
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
32
|
Damgaard C, Danielsen AK, Enevold C, Massarenti L, Nielsen CH, Holmstrup P, Belstrøm D. Porphyromonas gingivalis in saliva associates with chronic and aggressive periodontitis. J Oral Microbiol 2019; 11:1653123. [PMID: 31489129 PMCID: PMC6713147 DOI: 10.1080/20002297.2019.1653123] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 12/27/2022] Open
Abstract
Objective: To characterize the salivary microbiota of patients with aggressive periodontitis, patients with chronica periodontitis and orally healthy individuals. Methods: A total of 81 unstimulated saliva samples from aggressive periodontitis patients (n = 31), chronic periodontitis patients (n = 25), and orally healthy controls (n = 25) were examined. The V1-V3 region of the 16S rDNA gene was sequenced with Illumina® MiSeqTM, and sequences were annotated to the expanded Human Oral Microbiome Database (eHOMD). Results: A mean percentage of 97.6 (range: 89.8–99.7) of sequences could be identified at species level. Seven bacterial species, including Porphyromonas gingivalis, were identified with significantly higher relative abundance in saliva from aggressive periodontitis patients than in saliva from orally healthy controls. Salivary abundance of P. gingivalis could discriminate aggressive (AUC: 0.80, p = 0.0001) and chronic periodontitis (AUC: 0.72, p = 0.006) from healthy controls. Likewise, salivary presence of P. gingivalis was significantly associated with aggressive (p < 0.0001, RR: 8.1 (95% CI 2.1–31.2)) and chronic periodontitis (p = 0.002, RR: 6.5 (95% CI: 1.6–25.9)). Conclusion: Salivary presence and relative abundance of P. gingivalis associate with aggressive and chronic periodontitis, but do not discriminate between aggressive and chronic periodontitis.
Collapse
Affiliation(s)
- Christian Damgaard
- Section for Periodontology and Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne Katrine Danielsen
- Section for Periodontology and Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian Enevold
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Laura Massarenti
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Claus Henrik Nielsen
- Section for Periodontology and Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Palle Holmstrup
- Section for Periodontology and Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Belstrøm
- Section for Periodontology and Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
33
|
Schoilew K, Ueffing H, Dalpke A, Wolff B, Frese C, Wolff D, Boutin S. Bacterial biofilm composition in healthy subjects with and without caries experience. J Oral Microbiol 2019; 11:1633194. [PMID: 31275531 PMCID: PMC6598481 DOI: 10.1080/20002297.2019.1633194] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 01/03/2023] Open
Abstract
Objective:The composition of the oral microbiome differs distinctively between subjects with and without active caries. Still, caries research has mainly been focused on states of disease; aspects about how biofilm composition and structure maintain oral health still remain widely unclear. Therefore, the aim of the study was to compare the healthy oral microbiome of caries-free adult subjects with and without former caries experience using next generation sequencing methods. Methods: 46 samples were collected from subjects without any signs of untreated active caries. Samples of pooled supragingival plaque from 19 subjects without caries experience (NH; DMFT = 0) and 27 subjects with 'caries experience' ( CE; DMFT > 0 [F(T)> 0; D(T)= 0]) were analyzed by 16S ribosomal RNA amplicon sequencing. Results: Subjects with caries experience did not exhibit a dramatically modified supragingival plaque microbiome. However, we observed a slight and significant modification between the two groups, validated by PERMANOVA ( NH vs. CE: R2 0.04; p= 0.039). The composition of the microbiome of subjects with caries experience indicates a tendency to lower α-diversity and richness. Subjects without caries experience showed a significant higher evenness compared to patients with previous caries. LDA effect size (LEfSe) analysis demonstrated that the genus Haemophilus is significantly more frequent in patients with caries experience. For the group without caries experience LefSe analysis showed a set of 11 genera being significantly more frequent, including Corynebacterium, Fusobacterium, Capnocytophaga, Porphyromonas, Prevotella,and Leptotrichia. Conclusion: The analysis of the oral microbiome of subjects with and without caries experience indicates specific differences. With the presence of Corynebacterium and Fusobacterium subjects without caries experience exhibited more frequently organisms that are considered to be main actors in structural plaque formation and integration. The abundance of Corynebacterium might be interpreted as a signature for dental health.
Collapse
Affiliation(s)
- Kyrill Schoilew
- Department of Conservative Dentistry, School of Dental Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Helena Ueffing
- Department of Conservative Dentistry, School of Dental Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Alexander Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany.,Institute of Medical Microbiology and Hygiene, Technical University Dresden, Dresden, Germany
| | - Björn Wolff
- Department of Conservative Dentistry, School of Dental Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Cornelia Frese
- Department of Conservative Dentistry, School of Dental Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Diana Wolff
- Department of Conservative Dentistry and Periodontology, Center of Dentistry, Oral Medicine and Maxillofacial Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
34
|
Yu XL, Chan Y, Zhuang L, Lai HC, Lang NP, Keung Leung W, Watt RM. Intra-oral single-site comparisons of periodontal and peri-implant microbiota in health and disease. Clin Oral Implants Res 2019; 30:760-776. [PMID: 31102416 DOI: 10.1111/clr.13459] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Periodontitis and peri-implantitis are oral infectious-inflammatory diseases that share similarities in their pathology and etiology. Our objective was to characterize the single-site subgingival and submucosal microbiomes of implant-rehabilitated, partially dentate Chinese subjects (n = 18) presenting with both periodontitis and peri-implantitis. MATERIALS AND METHODS Subgingival/submucosal plaque samples were collected from four clinically distinct sites in each subject: peri-implantitis submucosa (DI), periodontal pocket (DT), clinically healthy (unaffected) peri-implant submucosa (HI), and clinically healthy (unaffected) subgingival sulcus (HT). The bacterial microbiota present was analyzed using Illumina MiSeq sequencing. RESULTS Twenty-six phyla and 5,726 operational taxonomic units (OTUs, 97% sequence similarity cutoff) were identified. Firmicutes, Proteobacteria, Fusobacteria, Bacteroidetes, Actinobacteria, Synergistetes, TM7, and Spirochaetes comprised 99.6% of the total reads detected. Bacterial communities within the DI, DT, HI, and HT sites shared high levels of taxonomic similarity. Thirty-one "core species" were present in >90% sites, with Streptococcus infantis/mitis/oralis (HMT-070/HMT-071/HMT-638/HMT-677) and Fusobacterium sp. HMT-203/HMT-698 being particularly prevalent and abundant. Beta-diversity analyses (PERMANOVA test, weighted UniFrac) revealed the largest variance in the microbiota was at the subject level (46%), followed by periodontal health status (4%). Differing sets of OTUs were associated with periodontitis and peri-implantitis sites, respectively. This included putative "periodontopathogens," such as Prevotella, Porphyromonas, Tannerella, Bacteroidetes [G-5], and Treponema spp. Interaction network analysis identified several putative patterns underlying dysbiosis in periodontitis/peri-implantitis sites. CONCLUSIONS Species (OTU) composition of the periodontal and peri-implant microbiota varied widely between subjects. The inter-subject variations in subgingival/submucosal microbiome composition outweighed differences observed between implant vs. tooth sites, or between diseased vs. healthy (unaffected) peri-implant/periodontal sites.
Collapse
Affiliation(s)
- Xiao-Lin Yu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.,Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yuki Chan
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | | - Hong-Chang Lai
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | - Wai Keung Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Rory M Watt
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
35
|
Rafeek R, Carrington CVF, Gomez A, Harkins D, Torralba M, Kuelbs C, Addae J, Moustafa A, Nelson KE. Xylitol and sorbitol effects on the microbiome of saliva and plaque. J Oral Microbiol 2018; 11:1536181. [PMID: 30598728 PMCID: PMC6225370 DOI: 10.1080/20002297.2018.1536181] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023] Open
Abstract
Chewing gum containing xylitol may help prevent caries by reducing levels of mutans streptococci (MS) and lactobacilli in saliva and plaque. Very little is known about other species which are possibly beneficial to oral health. In this study, we employed high-throughput sequencing of the 16S rRNA gene to profile microbial communities of saliva and plaque following short-term consumption of xylitol and sorbitol containing chewing gum. Participants (n = 30) underwent a washout period and were randomly assigned to one of two groups. Each group chewed either xylitol or sorbitol gum for three weeks, before undergoing a second four-week washout period after which they switched to the alternate gum for three weeks. Analysis of samples collected before and after each intervention identified distinct plaque and saliva microbial communities that altered dependent on the order in which gum treatments were given. Neither the xylitol nor sorbitol treatments significantly affected the bacterial composition of plaque. Lactobacilli were undetected and the number of Streptococcus mutans sequence reads was very low and unaffected by either xylitol or sorbitol. However, sorbitol affected several other streptococcal species in saliva including increasing the abundance of S. cristatus, an oral commensal shown to inhibit bacteria associated with chronic periodontitis.
Collapse
Affiliation(s)
- Reisha Rafeek
- School of Dentistry, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Christine V F Carrington
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Andres Gomez
- Department of Genomic Medicine, J. Craig Venter Institute, La Jolla, CA, USA
| | - Derek Harkins
- Department of Genomic Medicine, J. Craig Venter Institute, La Jolla, CA, USA
| | - Manolito Torralba
- Department of Genomic Medicine, J. Craig Venter Institute, La Jolla, CA, USA
| | - Claire Kuelbs
- Department of Genomic Medicine, J. Craig Venter Institute, La Jolla, CA, USA
| | - Jonas Addae
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Ahmed Moustafa
- Department of Genomic Medicine, J. Craig Venter Institute, La Jolla, CA, USA.,Department of Biology, The American University in Cairo, New Cairo, Egypt
| | - Karen E Nelson
- Department of Genomic Medicine, J. Craig Venter Institute, La Jolla, CA, USA
| |
Collapse
|
36
|
Velsko IM, Shaddox LM. Consistent and reproducible long-term in vitro growth of health and disease-associated oral subgingival biofilms. BMC Microbiol 2018; 18:70. [PMID: 29996764 PMCID: PMC6042318 DOI: 10.1186/s12866-018-1212-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Several in vitro oral biofilm growth systems can reliably construct oral microbiome communities in culture, yet their stability and reproducibility through time has not been well characterized. Long-term in vitro growth of natural biofilms would enable use of these biofilms in both in vitro and in vivo studies that require complex microbial communities with minimal variation over a period of time. Understanding biofilm community dynamics in continuous culture, and whether they maintain distinct signatures of health and disease, is necessary to determine the reliability and applicability of such models to broader studies. To this end, we performed next-generation sequencing on biofilms grown from healthy and disease-site subgingival plaque for 80 days to assess stability and reliability of continuous oral biofilm growth. RESULTS Biofilms were grown from subgingival plaque collected from periodontitis-affected sites and healthy individuals for ten eight-day long generations, using hydroxyapatite disks. The bacterial community in each generation was determined using Human Oral Microbe Identification by Next-Generation Sequencing (HOMINGS) technology, and analyzed in QIIME. Profiles were steady through the ten generations, as determined by species abundance and prevalence, Spearman's correlation coefficient, and Faith's phylogenetic distance, with slight variation predominantly in low abundance species. Community profiles were distinct between healthy and disease site-derived biofilms as demonstrated by weighted UniFrac distance throughout the ten generations. Differentially abundant species between healthy and disease site-derived biofilms were consistent throughout the generations. CONCLUSIONS Healthy and disease site-derived biofilms can reliably maintain consistent communities through ten generations of in vitro growth. These communities maintain signatures of health and disease and of individual donors despite culture in identical environments. This subgingival oral biofilm growth and perpetuation model may prove useful to studies involving oral infection or cell stimulation, or those measuring microbial interactions, which require the same biofilms over a period of time.
Collapse
Affiliation(s)
- Irina M Velsko
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, 32610, USA
- Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, OX1 3QY, UK
- Present Address: Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Luciana M Shaddox
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, 32610, USA.
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
37
|
Belstrøm D, Grande MA, Sembler-Møller ML, Kirkby N, Cotton SL, Paster BJ, Holmstrup P. Influence of periodontal treatment on subgingival and salivary microbiotas. J Periodontol 2018. [DOI: 10.1002/jper.17-0377] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Daniel Belstrøm
- Section for Periodontology; Microbiology and Community Dentistry; Department of Odontology; Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
| | - Maria Anastasia Grande
- Section for Periodontology; Microbiology and Community Dentistry; Department of Odontology; Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
| | - Maria Lynn Sembler-Møller
- Section for Oral Medicine; Department of Odontology; Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
| | - Nikolai Kirkby
- Department of Medical Microbiology; Copenhagen University Hospital; Copenhagen Denmark
| | | | - Bruce J. Paster
- The Forsyth Institute; Cambridge MA United States
- Department of Oral Medicine; Infection & Immunity; Harvard School of Dental Medicine; Boston MA United States
| | - Palle Holmstrup
- Section for Periodontology; Microbiology and Community Dentistry; Department of Odontology; Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
38
|
Colombo APV, Paster BJ, Grimaldi G, Lourenço TGB, Teva A, Campos-Neto A, McCluskey J, Kleanthous H, Van Dyke TE, Stashenko P. Clinical and microbiological parameters of naturally occurring periodontitis in the non-human primate Macaca mulatta. J Oral Microbiol 2017; 9:1403843. [PMID: 29805776 PMCID: PMC5963701 DOI: 10.1080/20002297.2017.1403843] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/08/2017] [Indexed: 01/07/2023] Open
Abstract
Background: Non-human primates appear to represent the most faithful model of human disease, but to date the oral microbiome in macaques has not been fully characterized using next-generation sequencing. Objective: In the present study, we characterized the clinical and microbiological features of naturally occurring periodontitis in non-human primates (Macaca mulatta). Design: Clinical parameters of periodontitis including probing pocket depth (PD) and bleeding on probing (BOP) were measured in 40 adult macaques (7–22 yrs), at six sites per tooth. Subgingival plaque was collected from diseased and healthy sites, and subjected to 16S rDNA sequencing and identification at the species or higher taxon level. Results: All macaques had mild periodontitis at minimum, with numerous sites of PD ≥ 4 mm and BOP. A subset (14/40) had moderate-severe disease, with >2 sites with PD ≥ 5mm, deeper mean PD, and more BOP. Animals with mild vs moderate-severe disease were identical in age, suggesting genetic heterogeneity. 16S rDNA sequencing revealed that all macaques had species that were identical to those in humans or closely related to human counterparts, including Porphyromonas gingivalis which was present in all animals. Diseased and healthy sites harboured distinct microbiomes; however there were no significant differences in the microbiomes in moderate-severe vs. mild periodontitis. Conclusions: Naturally occurring periodontitis in older macaques closely resembles human adult periodontitis, thus validating a useful model to evaluate novel anti-microbial therapies.
Collapse
Affiliation(s)
- A P V Colombo
- Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - B J Paster
- Departments of Microbiology and Applied Oral Sciences, Forsyth Institute, Cambridge, MA, USA
| | - G Grimaldi
- Department of Immunology, Fiocruz Primate Research Center, Rio de Janeiro, Brazil
| | - T G B Lourenço
- Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A Teva
- Department of Immunology, Fiocruz Primate Research Center, Rio de Janeiro, Brazil
| | - A Campos-Neto
- Departments of Microbiology and Applied Oral Sciences, Forsyth Institute, Cambridge, MA, USA
| | | | | | - T E Van Dyke
- Departments of Microbiology and Applied Oral Sciences, Forsyth Institute, Cambridge, MA, USA
| | - P Stashenko
- Departments of Microbiology and Applied Oral Sciences, Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
39
|
Sanz-Martin I, Doolittle-Hall J, Teles RP, Patel M, Belibasakis GN, Hämmerle CHF, Jung RE, Teles FRF. Exploring the microbiome of healthy and diseased peri-implant sites using Illumina sequencing. J Clin Periodontol 2017; 44:1274-1284. [PMID: 28766745 DOI: 10.1111/jcpe.12788] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2017] [Indexed: 01/02/2023]
Abstract
AIM To compare the microbiome of healthy (H) and diseased (P) peri-implant sites and determine the core peri-implant microbiome. MATERIALS AND METHODS Submucosal biofilms from 32 H and 35 P sites were analysed using 16S rRNA sequencing (MiSeq, Illumina), QIIME and HOMINGS. Differences between groups were determined using principal coordinate analysis (PCoA), t tests and Wilcoxon rank sum test and FDR-adjusted. The peri-implant core microbiome was determined. RESULTS PCoA showed partitioning between H and P at all taxonomic levels. Bacteroidetes, Spirochetes and Synergistetes were higher in P, while Actinobacteria prevailed in H (p < .05). Porphyromonas and Treponema were more abundant in P while Rothia and Neisseria were higher in H (p < .05). The core peri-implant microbiome contained Fusobacterium, Parvimonas and Campylobacter sp. T. denticola, and P. gingivalis levels were higher in P, as well as F. alocis, F. fastidiosum and T. maltophilum (p < .05). CONCLUSION The peri-implantitis microbiome is commensal-depleted and pathogen-enriched, harbouring traditional and new pathogens. The core peri-implant microbiome harbours taxa from genera often associated with periodontal inflammation.
Collapse
Affiliation(s)
- Ignacio Sanz-Martin
- Section of Periodontology, Faculty of Odontology, University Complutense of Madrid, Madrid, Spain
| | - Janet Doolittle-Hall
- Department of Dental Ecology, University of North Carolina at Chapel Hill School of Dentistry, Chapel Hill, NC, USA
| | - Ricardo P Teles
- Department of Periodontology, University of North Carolina at Chapel Hill School of Dentistry, Chapel Hill, NC, USA
| | - Michele Patel
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA
| | | | - Christoph H F Hämmerle
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| | - Ronald E Jung
- Clinic of Fixed and Removable Prosthodontics and Dental Material Science, Center of Dental Medicine, University of Zürich, Zürich, Switzerland
| | - Flavia R F Teles
- Department of Periodontology, University of North Carolina at Chapel Hill School of Dentistry, Chapel Hill, NC, USA
| |
Collapse
|
40
|
Metagenomic and metatranscriptomic analysis of saliva reveals disease-associated microbiota in patients with periodontitis and dental caries. NPJ Biofilms Microbiomes 2017; 3:23. [PMID: 28979798 PMCID: PMC5624903 DOI: 10.1038/s41522-017-0031-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 08/03/2017] [Accepted: 09/01/2017] [Indexed: 12/13/2022] Open
Abstract
The taxonomic composition of the salivary microbiota has been reported to differentiate between oral health and disease. However, information on bacterial activity and gene expression of the salivary microbiota is limited. The purpose of this study was to perform metagenomic and metatranscriptomic characterization of the salivary microbiota and test the hypothesis that salivary microbial presence and activity could be an indicator of the oral health status. Stimulated saliva samples were collected from 30 individuals (periodontitis: n = 10, dental caries: n = 10, oral health: n = 10). Salivary microbiota was characterized using metagenomics and metatranscriptomics in order to compare community composition and the gene expression between the three groups. Streptococcus was the predominant bacterial genus constituting approx. 25 and 50% of all DNA and RNA reads, respectively. A significant disease-associated higher relative abundance of traditional periodontal pathogens such as Porphyromonas gingivalis and Filifactor alocis and salivary microbial activity of F. alocis was associated with periodontitis. Significantly higher relative abundance of caries-associated bacteria such as Streptococcus mutans and Lactobacillus fermentum was identified in saliva from patients with dental caries. Multiple genes involved in carbohydrate metabolism were significantly more expressed in healthy controls compared to periodontitis patients. Using metagenomics and metatranscriptomics we show that relative abundance of specific oral bacterial species and bacterial gene expression in saliva associates with periodontitis and dental caries. Further longitudinal studies are warranted to evaluate if screening of salivary microbial activity of specific oral bacterial species and metabolic gene expression can identify periodontitis and dental caries at preclinical stages. Genetic analysis of saliva reveals the activity of bacteria linked to gum disease and tooth decay and may prove useful in early diagnosis. Daniel Belstrøm and colleagues at the University of Copenhagen, Denmark, with co-workers at Nanyang Technological University in Singapore, analyzed saliva from 10 patients with periodontitis gum disease, 10 with dental caries and 10 with good oral health. DNA analysis revealed which bacteria were present, while examining RNA revealed which bacterial genes were most active. The procedure identified greater abundance and activity of bacteria linked to each specific oral condition in the oral disease groups, and also found distinctive bacterial activity in those people with good oral health. Further studies should investigate the possibility of testing bacterial gene activity in saliva to identify oral diseases before they become clinically evident.
Collapse
|
41
|
A cytometric approach to follow variation and dynamics of the salivary microbiota. Methods 2017; 134-135:67-79. [PMID: 28842259 DOI: 10.1016/j.ymeth.2017.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/07/2017] [Accepted: 08/16/2017] [Indexed: 01/16/2023] Open
Abstract
Microbial flow cytometry is an established fast and economic technique for complex ecosystem studies and enables visualization of rapidly changing community structures by measuring characteristics of single microbial cells. Cytometric evaluation routines are available such as flowCyBar which are useful for automatic data processing. Here, a cytometric workflow was established which allows to routinely analyze salivary microbiomes on the example of ten oral healthy subjects. First, saliva was collected within a 3-month period, cytometrically analyzed and the evolution of the microbiomes followed as well as the calculation of their intra- and inter-subject similarity. Second, the respective microbiomes were stressed by exposition to high sugar or acid concentrations and immediate changes were recorded. Third, bactericide solutions were tested on their impact on the microbiomes. In all three set ups huge intra-individual variations in cytometric community structures were found to be largely absent, even under stress, while inter-individual diversity was obvious. The bacterial cell counts of saliva samples were found to vary between 3.0×107 and 6.2×108 cells per sample and subject in undisturbed environments. The application of the two bactericides did not cause noteworthy diversity changes but the loss in cell numbers by about 50% was high after treatment. Illumina® sequencing of whole microbiomes or sorted sub-microbiomes revealed typical phyla such as Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes and Fusobacteria. This approach is useful for fast monitoring of individual salivary microbiomes and automatic calculation of intra- and inter-individual dynamic changes and variability and opens insight into ecological principles leading to their sustainment in their individual environment.
Collapse
|
42
|
Belstrøm D, Sembler-Møller ML, Grande MA, Kirkby N, Cotton SL, Paster BJ, Holmstrup P. Microbial profile comparisons of saliva, pooled and site-specific subgingival samples in periodontitis patients. PLoS One 2017; 12:e0182992. [PMID: 28800622 PMCID: PMC5553731 DOI: 10.1371/journal.pone.0182992] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/27/2017] [Indexed: 11/24/2022] Open
Abstract
Objectives The purpose of this study was to compare microbial profiles of saliva, pooled and site-specific subgingival samples in patients with periodontitis. We tested the hypotheses that saliva can be an alternative to pooled subgingival samples, when screening for presence of periopathogens. Design Site specific subgingival plaque samples (n = 54), pooled subgingival plaque samples (n = 18) and stimulated saliva samples (n = 18) were collected from 18 patients with generalized chronic periodontitis. Subgingival and salivary microbiotas were characterized by means of HOMINGS (Human Oral Microbe Identification using Next Generation Sequencing) and microbial community profiles were compared using Spearman rank correlation coefficient. Results Pronounced intraindividual differences were recorded in site-specific microbial profiles, and site-specific information was in general not reflected by pooled subgingival samples. Presence of Porphyromonas gingivalis, Treponema denticola, Prevotella intermedia, Filifactor alocis, Tannerella forsythia and Parvimona micra in site-specific subgingival samples were detected in saliva with an AUC of 0.79 (sensitivity: 0.61, specificity: 0.94), compared to an AUC of 0.76 (sensitivity: 0.56, specificity: 0.94) in pooled subgingival samples. Conclusions Site-specific presence of periodontal pathogens was detected with comparable accuracy in stimulated saliva samples and pooled subgingival plaque samples. Consequently, saliva may be a reasonable surrogate for pooled subgingival samples when screening for presence of periopathogens. Future large-scale studies are needed to confirm findings from this study.
Collapse
Affiliation(s)
- Daniel Belstrøm
- Section for Periodontology, Microbiology, and Community Dentistry, Department of Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Maria Lynn Sembler-Møller
- Section for Oral Medicine, Department of Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria Anastasia Grande
- Section for Periodontology, Microbiology, and Community Dentistry, Department of Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nikolai Kirkby
- Department of Medical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Bruce J. Paster
- The Forsyth Institute, Cambridge, MA, United States of America
- Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Boston, MA, United States of America
| | - Palle Holmstrup
- Section for Periodontology, Microbiology, and Community Dentistry, Department of Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
Belstrøm D, Sembler-Møller ML, Grande MA, Kirkby N, Cotton SL, Paster BJ, Twetman S, Holmstrup P. Impact of Oral Hygiene Discontinuation on Supragingival and Salivary Microbiomes. JDR Clin Trans Res 2017; 3:57-64. [PMID: 29662960 PMCID: PMC5896869 DOI: 10.1177/2380084417723625] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The purpose of the present study was to characterize and compare supragingival and salivary microbiotas during a 10-d period of oral hygiene discontinuation. We tested the hypothesis that the composition of the salivary microbiota will reflect local microbial changes associated with accumulated biofilm formation and maturation. Pooled supragingival plaque (n = 145) and stimulated saliva (n = 145) samples were collected and plaque and gingival indices were recorded from 29 orally healthy individuals at baseline, during oral hygiene discontinuation (days 4, 7, and 10), and 14 d after resumption of oral hygiene. Supragingival and salivary microbiotas were processed by next-generation sequencing (Human Oral Microbe Identification using Next Generation Sequencing) and microbial community profiles were compared. Microbial composition of supragingival plaque samples collected after 4, 7, and 10 d of oral hygiene discontinuation, as well as 14 d after reuptake of oral hygiene, differed significantly from baseline samples, by a 3-fold increase in relative abundance Leptotrichia species and a 2-fold decrease in Streptococcus species (adjusted P < 0.01). In saliva samples, a significant increase in relative abundance of Leptotrichia species (adjusted P < 0.01) was evident at day 7 but completely reversed 14 d after resumption of oral hygiene. While the salivary microbiota was resistant to accumulated local biofilm formation, data from this study showed that compositional changes of supragingival microbiotas were not reversed 14 d after resumption of oral hygiene, despite the restoration of plaque to baseline levels. (ClinicalTrials.gov UCPH_OI_002, NCT02913235). Knowledge Transfer Statement: Data from this study showed compositional changes of supragingival microbiotas as a consequence of a 10-d period of oral hygiene discontinuation, that was not reversed 14 d after resumption of oral hygiene. Notably, oral hygiene discontinuation was associated with a significant increase in relative abundance of potential cariogenic Leptotrichia species and a decrease in Streptococcus species. Thus, findings from this study highlight the necessity of regular oral hygiene in the maintenance of oral homeostasis.
Collapse
Affiliation(s)
- D Belstrøm
- Section for Periodontology, Microbiology, and Community Dentistry, Department of Odontology, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - M L Sembler-Møller
- Section for Oral Medicine, Department of Odontology, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - M A Grande
- Section for Periodontology, Microbiology, and Community Dentistry, Department of Odontology, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - N Kirkby
- Department of Medical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - S L Cotton
- The Forsyth Institute, Cambridge, MA, USA
| | - B J Paster
- The Forsyth Institute, Cambridge, MA, USA.,Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - S Twetman
- Section for Cariology, Department of Odontology, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - P Holmstrup
- Section for Periodontology, Microbiology, and Community Dentistry, Department of Odontology, Faculty of Health Sciences, University of Copenhagen, Denmark
| |
Collapse
|
44
|
Eriksson L, Lif Holgerson P, Johansson I. Saliva and tooth biofilm bacterial microbiota in adolescents in a low caries community. Sci Rep 2017; 7:5861. [PMID: 28724921 PMCID: PMC5517611 DOI: 10.1038/s41598-017-06221-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/08/2017] [Indexed: 12/16/2022] Open
Abstract
The oral cavity harbours a complex microbiome that is linked to dental diseases and serves as a route to other parts of the body. Here, the aims were to characterize the oral microbiota by deep sequencing in a low-caries population with regular dental care since childhood and search for association with caries prevalence and incidence. Saliva and tooth biofilm from 17-year-olds and mock bacteria communities were analysed using 16S rDNA Illumina MiSeq (v3-v4) and PacBio SMRT (v1-v8) sequencing including validity and reliability estimates. Caries was scored at 17 and 19 years of age. Both sequencing platforms revealed that Firmicutes dominated in the saliva, whereas Firmicutes and Actinobacteria abundances were similar in tooth biofilm. Saliva microbiota discriminated caries-affected from caries-free adolescents, with enumeration of Scardovia wiggsiae, Streptococcus mutans, Bifidobacterium longum, Leptotrichia sp. HOT498, and Selenomonas spp. in caries-affected participants. Adolescents with B. longum in saliva had significantly higher 2-year caries increment. PacBio SMRT revealed Corynebacterium matruchotii as the most prevalent species in tooth biofilm. In conclusion, both sequencing methods were reliable and valid for oral samples, and saliva microbiota was associated with cross-sectional caries prevalence, especially S. wiggsiae, S. mutans, and B. longum; the latter also with the 2-year caries incidence.
Collapse
Affiliation(s)
- Linda Eriksson
- Department of Odontology, section of Cariology, Umeå University, Umeå, Sweden
- Department of Odontology,section of Pedodontics, Umeå University, Umeå, Sweden
| | | | - Ingegerd Johansson
- Department of Odontology, section of Cariology, Umeå University, Umeå, Sweden.
| |
Collapse
|
45
|
Ribeiro AA, Azcarate-Peril MA, Cadenas MB, Butz N, Paster BJ, Chen T, Bair E, Arnold RR. The oral bacterial microbiome of occlusal surfaces in children and its association with diet and caries. PLoS One 2017; 12:e0180621. [PMID: 28678838 PMCID: PMC5498058 DOI: 10.1371/journal.pone.0180621] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 06/19/2017] [Indexed: 11/19/2022] Open
Abstract
Dental caries is the most prevalent disease in humans globally. Efforts to control it have been invigorated by an increasing knowledge of the oral microbiome composition. This study aimed to evaluate the bacterial diversity in occlusal biofilms and its relationship with clinical surface diagnosis and dietary habits. Anamneses were recorded from thirteen 12-year-old children. Biofilm samples collected from occlusal surfaces of 46 permanent second molars were analyzed by 16S rRNA amplicon sequencing combined with the BLASTN-based search algorithm for species identification. The overall mean decayed, missing and filled surfaces modified index [DMFSm Index, including active white spot lesions (AWSL)] value was 8.77±7.47. Biofilm communities were highly polymicrobial collectively, representing 10 bacterial phyla, 25 classes, 29 orders, 58 families, 107 genera, 723 species. Streptococcus sp_Oral_Taxon_065, Corynebacterium matruchotii, Actinomyces viscosus, Actinomyces sp_Oral_Taxon_175, Actinomyces sp_Oral_Taxon_178, Actinomyces sp_Oral_Taxon_877, Prevotella nigrescens, Dialister micraerophilus, Eubacterium_XI G 1 infirmum were more abundant among surfaces with AWSL, and Streptococcus gordonii, Streptococcus sp._Oral_Taxon_058, Enterobacter sp._str._638 Streptococcus australis, Yersinia mollaretii, Enterobacter cloacae, Streptococcus sp._Oral_Taxon_71, Streptococcus sp._Oral_Taxon_F11, Centipeda sp._Oral_Taxon_D18 were more abundant among sound surfaces. Streptococcus mutans was detected on all surfaces in all patients, while Streptococcus sobrinus was detected only in three patients (mean relative abundances 7.1% and 0.6%, respectively). Neither species differentiated healthy from diseased sites. Diets of nine of the subjects were scored as high in fermentable carbohydrates (≧2X/day between meals). A direct association between relative abundances of bacteria and carbohydrate consumption was observed among 18 species. High consumption of fermentable carbohydrates and sound surfaces were associated with a reduction in bacterial diversity. PCoA plots displayed differences in bacterial community profiles between sound and diseased surfaces. Our study showed that, in addition to mutans streptococci, other species may be associated with the initiation of dental caries on occlusal surfaces, and that biofilm diversity of tooth surfaces is influenced by carbohydrate consumption and a surface's health status.
Collapse
Affiliation(s)
- Apoena Aguiar Ribeiro
- Department of Pediatric Dentistry and Cariology, School of Dentistry, Fluminense Federal University, Nova Friburgo, Brazil
- Department of Diagnostic Sciences, School of Dentistry, University of North Carolina, Chapel Hill, United States of America
| | - Maria Andrea Azcarate-Peril
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, United States of America
- Microbiome Core Facility, School of Medicine, University of North Carolina, Chapel Hill, United States of America
| | - Maria Belen Cadenas
- Microbiome Core Facility, School of Medicine, University of North Carolina, Chapel Hill, United States of America
| | - Natasha Butz
- Microbiome Core Facility, School of Medicine, University of North Carolina, Chapel Hill, United States of America
| | - Bruce J. Paster
- Department of Microbiology, Forsyth Institute, Cambridge, United States of America
- Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Boston, United States of America
| | - Tsute Chen
- Department of Microbiology, Forsyth Institute, Cambridge, United States of America
| | - Eric Bair
- Department of Endodontics and Biostatistics, School of Dentistry, University of North Carolina, Chapel Hill, United States of America
| | - Roland R. Arnold
- Department of Diagnostic Sciences, School of Dentistry, University of North Carolina, Chapel Hill, United States of America
| |
Collapse
|
46
|
Holmstrup P, Damgaard C, Olsen I, Klinge B, Flyvbjerg A, Nielsen CH, Hansen PR. Comorbidity of periodontal disease: two sides of the same coin? An introduction for the clinician. J Oral Microbiol 2017; 9:1332710. [PMID: 28748036 PMCID: PMC5508374 DOI: 10.1080/20002297.2017.1332710] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/07/2017] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence has suggested an independent association between periodontitis and a range of comorbidities, for example cardiovascular disease, type 2 diabetes, rheumatoid arthritis, osteoporosis, Parkinson’s disease, Alzheimer’s disease, psoriasis, and respiratory infections. Shared inflammatory pathways are likely to contribute to this association, but distinct causal mechanisms remain to be defined. Some of these comorbid conditions may improve by periodontal treatment, and a bidirectional relationship may exist, where, for example, treatment of diabetes can improve periodontal status. The present article presents an overview of the evidence linking periodontitis with selected systemic diseases and calls for increased cooperation between dentists and medical doctors to provide optimal screening, treatment, and prevention of both periodontitis and its comorbidities.
Collapse
Affiliation(s)
- Palle Holmstrup
- Section for Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Damgaard
- Section for Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Björn Klinge
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden.,Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Claus Henrik Nielsen
- Section for Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Riis Hansen
- Section for Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Cardiology Department, Herlev and Gentofte Hospital, Hellerup, Denmark
| |
Collapse
|
47
|
Barenghi L, Di Blasio A. Orthodontic instruments and supplies: Are they semicritical or critical items? Am J Infect Control 2017; 45:210-211. [PMID: 27856075 DOI: 10.1016/j.ajic.2016.09.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 09/12/2016] [Indexed: 11/19/2022]
Affiliation(s)
| | - Alberto Di Blasio
- Department of Orthodontics, Parma University, Parma, Italy; Department of Biomedical, Biotechnological, and Translational Sciences, Parma University, Parma, Italy
| |
Collapse
|
48
|
Belstrøm D, Holmstrup P, Fiehn NE, Kirkby N, Kokaras A, Paster BJ, Bardow A. Salivary microbiota in individuals with different levels of caries experience. J Oral Microbiol 2017; 9:1270614. [PMID: 28326153 PMCID: PMC5328370 DOI: 10.1080/20002297.2016.1270614] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/02/2022] Open
Abstract
This study compared salivary bacterial profiles in two groups having a 10-fold difference in levels of caries experience, as it was hypothesized that the composition of the salivary microbiota might associate with the levels of caries experience. Bacterial profiles in stimulated saliva samples from 85 individuals with low levels of caries experience (healthy group) and 79 individuals with high levels of caries experience (caries group) were analyzed by means of the Human Oral Microbiome Identification Next Generation Sequencing (HOMINGS) technique. Subsequently, saliva samples from caries-free individuals in the healthy group (n = 57) and the caries group (n = 31) were compared. A significantly higher α-diversity (p < 0.0001) and a twofold higher relative abundance of Neisseria, Haemophilus, and Fusobacterium were recorded in saliva samples from the healthy group compared with the caries group. Differences observed were more pronounced when limiting the analyses to caries-free individuals in each group. Data from this cross-sectional analysis suggest that low levels of caries experience might associate with a characteristic salivary bacterial composition different from that in individuals with high caries experience. Consequently, longitudinal studies are required to determine if the composition of the salivary microbiota might be a predictive factor of caries risk at the individual level.
Collapse
Affiliation(s)
- Daniel Belstrøm
- Section for Periodontology, Microbiology, and Community Dentistry, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Palle Holmstrup
- Section for Periodontology, Microbiology, and Community Dentistry, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Nils-Erik Fiehn
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Nikolai Kirkby
- Department of Medical Microbiology, Copenhagen University Hospital , Copenhagen , Denmark
| | - Alexis Kokaras
- Department of Microbiology, The Forsyth Institute , Cambridge , MA , USA
| | - Bruce J Paster
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Allan Bardow
- Section for Oral Medicine, Department of Odontology, Faculty of Health Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
49
|
Spooner R, Weigel KM, Harrison PL, Lee K, Cangelosi GA, Yilmaz Ö. In Situ Anabolic Activity of Periodontal Pathogens Porphyromonas gingivalis and Filifactor alocis in Chronic Periodontitis. Sci Rep 2016; 6:33638. [PMID: 27642101 PMCID: PMC5027532 DOI: 10.1038/srep33638] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/31/2016] [Indexed: 12/17/2022] Open
Abstract
Porphyromonas gingivalis and Filifactor alocis are fastidious anaerobic bacteria strongly associated with chronic forms of periodontitis. Our understanding of the growth activities of these microorganisms in situ is very limited. Previous studies have shown that copy numbers of ribosomal-RNA precursor (pre-rRNA) of specific pathogen species relative to genomic-DNA (gDNA) of the same species (P:G ratios) are greater in actively growing bacterial cells than in resting cells. The method, so-called steady-state pre-rRNA-analysis, represents a novel culture-independent approach to study bacteria. This study employed this technique to examine the in situ growth activities of oral bacteria in periodontitis before and after non-surgical periodontal therapy. Sub-gingival paper-point samples were taken at initial and re-evaluation appointments. Pre-rRNA and gDNA levels of P. gingivalis and F. alocis were quantified and compared using reverse-transcriptase qPCR. The results indicate significantly reduced growth activity of P. gingivalis, but not F. alocis, after therapy. The P:G ratios of P. gingivalis and F. alocis were compared and a low-strength, but statistically significant inter-species correlation was detected. Our study demonstrates that steady-state pre-rRNA-analysis can be a valuable culture-independent approach to studying opportunistic bacteria in periodontitis.
Collapse
Affiliation(s)
- Ralee Spooner
- Divison of Periodontics, Department of Stomatology, Medical University of South Carolina, Charleston, SC 29425, USA.,Lieutenant, Dental Corps, Navy Professional Medicine Development Center, Bethesda, MD 20889, USA
| | - Kris M Weigel
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Peter L Harrison
- Department of Periodontology, University of Florida, Gainesville, FL 32610, USA
| | - KyuLim Lee
- Department of Periodontology, University of Florida, Gainesville, FL 32610, USA
| | - Gerard A Cangelosi
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Özlem Yilmaz
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
50
|
Belstrøm D, Jersie-Christensen RR, Lyon D, Damgaard C, Jensen LJ, Holmstrup P, Olsen JV. Metaproteomics of saliva identifies human protein markers specific for individuals with periodontitis and dental caries compared to orally healthy controls. PeerJ 2016; 4:e2433. [PMID: 27672500 PMCID: PMC5028799 DOI: 10.7717/peerj.2433] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/12/2016] [Indexed: 01/10/2023] Open
Abstract
Background The composition of the salivary microbiota has been reported to differentiate between patients with periodontitis, dental caries and orally healthy individuals. To identify characteristics of diseased and healthy saliva we thus wanted to compare saliva metaproteomes from patients with periodontitis and dental caries to healthy individuals. Methods Stimulated saliva samples were collected from 10 patients with periodontitis, 10 patients with dental caries and 10 orally healthy individuals. The proteins in the saliva samples were subjected to denaturing buffer and digested enzymatically with LysC and trypsin. The resulting peptide mixtures were cleaned up by solid-phase extraction and separated online with 2 h gradients by nano-scale C18 reversed-phase chromatography connected to a mass spectrometer through an electrospray source. The eluting peptides were analyzed on a tandem mass spectrometer operated in data-dependent acquisition mode. Results We identified a total of 35,664 unique peptides from 4,161 different proteins, of which 1,946 and 2,090 were of bacterial and human origin, respectively. The human protein profiles displayed significant overexpression of the complement system and inflammatory markers in periodontitis and dental caries compared to healthy controls. Bacterial proteome profiles and functional annotation were very similar in health and disease. Conclusions Overexpression of proteins related to the complement system and inflammation seems to correlate with oral disease status. Similar bacterial proteomes in healthy and diseased individuals suggests that the salivary microbiota predominantly thrives in a planktonic state expressing no disease-associated characteristics of metabolic activity.
Collapse
Affiliation(s)
- Daniel Belstrøm
- Section of Periodontology and Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rosa R Jersie-Christensen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Lyon
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Damgaard
- Section of Periodontology and Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lars J Jensen
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Palle Holmstrup
- Section of Periodontology and Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper V Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|