1
|
Lal BB, Khanna R, Sood V, Alam S, Nagral A, Ravindranath A, Kumar A, Deep A, Gopan A, Srivastava A, Maria A, Pawaria A, Bavdekar A, Sindwani G, Panda K, Kumar K, Sathiyasekaran M, Dhaliwal M, Samyn M, Peethambaran M, Sarma MS, Desai MS, Mohan N, Dheivamani N, Upadhyay P, Kale P, Maiwall R, Malik R, Koul RL, Pandey S, Ramakrishna SH, Yachha SK, Lal S, Shankar S, Agarwal S, Deswal S, Malhotra S, Borkar V, Gautam V, Sivaramakrishnan VM, Dhawan A, Rela M, Sarin SK. Diagnosis and management of pediatric acute liver failure: consensus recommendations of the Indian Society of Pediatric Gastroenterology, Hepatology, and Nutrition (ISPGHAN). Hepatol Int 2024; 18:1343-1381. [PMID: 39212863 DOI: 10.1007/s12072-024-10720-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Timely diagnosis and management of pediatric acute liver failure (PALF) is of paramount importance to improve survival. The Indian Society of Pediatric Gastroenterology, Hepatology, and Nutrition invited national and international experts to identify and review important management and research questions. These covered the definition, age appropriate stepwise workup for the etiology, non-invasive diagnosis and management of cerebral edema, prognostic scores, criteria for listing for liver transplantation (LT) and bridging therapies in PALF. Statements and recommendations based on evidences assessed using the modified Grading of Recommendations Assessment, Development and Evaluation (GRADE) system were developed, deliberated and critically reappraised by circulation. The final consensus recommendations along with relevant published background information are presented here. We expect that these recommendations would be followed by the pediatric and adult medical fraternity to improve the outcomes of PALF patients.
Collapse
Affiliation(s)
- Bikrant Bihari Lal
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Rajeev Khanna
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Vikrant Sood
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | - Seema Alam
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India.
| | - Aabha Nagral
- Department of Gastroenterology, Jaslok Hospital and Research Center, Mumbai, India
- Apollo Hospital, Navi Mumbai, India
| | - Aathira Ravindranath
- Department of Pediatric Gastroenterology, Apollo BGS Hospital, Mysuru, Karnataka, India
| | - Aditi Kumar
- Department of Pediatrics, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Akash Deep
- Department of Pediatric Intensive Care, King's College Hospital, London, UK
| | - Amrit Gopan
- Department of Pediatric Gastroenterology and Hepatology, Sir H.N Reliance Foundation Hospital, Mumbai, India
| | - Anshu Srivastava
- Department of Pediatric Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Arjun Maria
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Institute of Child Health, Sir Ganga Ram Hospital, New Delhi, India
| | - Arti Pawaria
- Department of Pediatric Hepatology and Gastroenterology, Amrita Institute of Medical Sciences, Faridabad, India
| | - Ashish Bavdekar
- Department of Pediatrics, KEM Hospital and Research Centre, Pune, India
| | - Gaurav Sindwani
- Department of Organ Transplant Anesthesia and Critical Care, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Kalpana Panda
- Department of Pediatrics, Institute of Medical Sciences & SUM Hospital, Bhubaneshwar, India
| | - Karunesh Kumar
- Department of Pediatric Gastroenterology and Liver Transplantation, Indraprastha Apollo Hospitals, New Delhi, India
| | | | - Maninder Dhaliwal
- Department of Pediatric Intensive Care, Amrita Institute of Medical Sciences, Faridabad, India
| | - Marianne Samyn
- Department of Pediatric Hepatology, King's College Hospital, London, UK
| | - Maya Peethambaran
- Department of Pediatric Gastroenterology and Hepatology, VPS Lakeshore Hospital, Kochi, Kerala, India
| | - Moinak Sen Sarma
- Department of Pediatric Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Moreshwar S Desai
- Department of Paediatric Critical Care and Liver ICU, Baylor College of Medicine &Texas Children's Hospital, Houston, TX, USA
| | - Neelam Mohan
- Department of Pediatric Gastroenterology and Hepatology, Medanta the Medicity Hospital, Gurugram, India
| | - Nirmala Dheivamani
- Department of Paediatric Gastroenterology, Institute of Child Health and Hospital for Children, Egmore, Chennai, India
| | - Piyush Upadhyay
- Department of Pediatrics, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Pratibha Kale
- Department of Microbiology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rohan Malik
- Department of Pediatric Gastroenterology and Hepatology, All India Institute of Medical Sciences, New Delhi, India
| | - Roshan Lal Koul
- Department of Neurology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Snehavardhan Pandey
- Department of Pediatric Hepatology and Liver Transplantation, Sahyadri Superspeciality Hospital Pvt Ltd Pune, Pune, India
| | | | - Surender Kumar Yachha
- Department of Pediatric Gastroenterology, Hepatology and Liver Transplantation, Sakra World Hospital, Bangalore, India
| | - Sadhna Lal
- Division of Pediatric Gastroenterology and Hepatology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sahana Shankar
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Mazumdar Shaw Medical Centre, Narayana Health City, Bangalore, India
| | - Sajan Agarwal
- Department of Pediatric Gastroenterology and Hepatology, Gujarat Gastro Hospital, Surat, Gujarat, India
| | - Shivani Deswal
- Department of Pediatric Gastroenterology, Hepatology and Liver Transplant, Narayana Health, DLF Phase 3, Gurugram, India
| | - Smita Malhotra
- Department of Pediatric Gastroenterology and Hepatology, Indraprastha Apollo Hospitals, New Delhi, India
| | - Vibhor Borkar
- Department of Paediatric Hepatology and Gastroenterology, Nanavati Max Super Speciality Hospital, Mumbai, Maharashtra, India
| | - Vipul Gautam
- Department of Pediatric Gastroenterology, Hepatology and Liver Transplantation, Max Superspeciality Hospital, New Delhi, India
| | | | - Anil Dhawan
- Department of Pediatric Hepatology, King's College Hospital, London, UK
| | - Mohamed Rela
- Department of Liver Transplantation and HPB (Hepato-Pancreatico-Biliary) Surgery, Dr. Rela Institute & Medical Center, Chennai, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
2
|
Yuan M, Han N, Lv D, Huang W, Zhou M, Yan L, Tang H. Invasive Pulmonary Aspergillosis in Patients with HBV-Related Acute on Chronic Liver Failure. J Fungi (Basel) 2024; 10:571. [PMID: 39194897 DOI: 10.3390/jof10080571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND We aim to investigate the characteristics of invasive pulmonary aspergillosis (IPA) in patients with HBV-related acute on chronic liver failure (HBV-ACLF). METHODS A total of 44 patients with probable IPA were selected as the case group, and another 88 patients without lung infections were chosen as the control group. RESULTS HBV-ACLF patients with probable IPA had more significant 90-day mortality (38.6% vs. 15.9%, p = 0.0022) than those without. The white blood cell (WBC) count was the independent factor attributed to the IPA development [odds ratio (OR) 1.468, p = 0.027]. Respiratory failure was associated with the mortality of HBV-ACLF patients with IPA [OR 26, p = 0.000]. Twenty-seven patients received voriconazole or voriconazole plus as an antifungal treatment. Plasma voriconazole concentration measurements were performed as therapeutic drug monitoring in 55.6% (15/27) of the patients. The drug concentrations exceeded the safe range with a reduced dosage. CONCLUSIONS The WBC count might be used to monitor patients' progress with HBV-ACLF and IPA. The presence of IPA increases the 90-day mortality of HBV-ACLF patients mainly due to respiratory failure. An optimal voriconazole regimen is needed for such critical patients, and voriconazole should be assessed by closely monitoring blood levels.
Collapse
Affiliation(s)
- Man Yuan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Ning Han
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Duoduo Lv
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Wei Huang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Mengjie Zhou
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Libo Yan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Li C, Cao J, Chen Z, Su Z, Bao H, Li X, Liu L, Xiao Z, Duan J, Zhou T, Xu F. Gastrodin alleviates the deterioration of depressive-like behavior and glucolipid metabolism promoted by chronic stress in type 2 diabetic mice. Eur J Pharmacol 2024; 973:176582. [PMID: 38642668 DOI: 10.1016/j.ejphar.2024.176582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024]
Abstract
The growing burden of psychological stress among diabetes patients has contributed to a rising incidence of depression within this population. It is of significant importance to conduct research on the impact of stress on diabetes patients and to explore potential pharmacological interventions to counteract the stress-induced exacerbation of their condition. Gastrodin is a low molecular weight bioactive compound extracted from the rhizome of Gastrodiae elata Blume, and it may be a preventive strategy for diabetes and a novel treatment for depression symptoms. However, its relevant pharmacological mechanisms for protecting against the impacts of psychological stress in diabetic patients are unclear. In this study, we performed 5 weeks CUMS intervention and simultaneously administered gastrodin (140 mg/kg, once daily) on T2DM mice, to investigate the potential protective effects of gastrodin. The protective effect of gastrodin was evaluated by behavioral tests, biochemical analysis, histopathological examination, RT-qPCR and gut microbiota analysis. We found that the depressive-like behavior and glucolipid metabolism could be deteriorated by chronic stress in type 2 diabetic mice, while gastrodin showed a protective effect against these exacerbations by regulating HPA hormones, activating FXR and Cyp7a1, reducing inflammatory and oxidative stress responses, and regulating ileal gut microbiota abundance. Gastrodin might be a potential therapeutic agent for mitigating the deterioration of diabetes conditions due to chronic stress.
Collapse
MESH Headings
- Animals
- Benzyl Alcohols/pharmacology
- Benzyl Alcohols/therapeutic use
- Glucosides/pharmacology
- Glucosides/therapeutic use
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/psychology
- Depression/drug therapy
- Depression/metabolism
- Male
- Mice
- Stress, Psychological/drug therapy
- Stress, Psychological/complications
- Stress, Psychological/metabolism
- Stress, Psychological/psychology
- Gastrointestinal Microbiome/drug effects
- Behavior, Animal/drug effects
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/complications
- Mice, Inbred C57BL
- Oxidative Stress/drug effects
- Chronic Disease
Collapse
Affiliation(s)
- Canye Li
- Fengxian Hospital, School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China
| | - Jinming Cao
- Fengxian Hospital, School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China
| | - Zhicong Chen
- Fengxian Hospital, School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China
| | - Zuanjun Su
- Fengxian Hospital, School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China
| | - Huimin Bao
- Fengxian Hospital, School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China
| | - Xue Li
- Fengxian Hospital, School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China
| | - Luping Liu
- Fengxian Hospital, School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China
| | - Zhijun Xiao
- Fengxian Hospital, School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China
| | - Jingjing Duan
- Fengxian Hospital, School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China
| | - Ting Zhou
- Fengxian Hospital, School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China.
| | - Feng Xu
- Fengxian Hospital, School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China.
| |
Collapse
|
4
|
Baba C, Funaki T, Uranaka M, Hashiya M, Ninagawa J, Sakamoto S, Kasahara M, Nagasaka Y, Suzuki Y, Kasuya S. Impact of preoperative bloodstream infection on outcomes of pediatric liver transplant recipients treated for acute liver failure. Transpl Infect Dis 2024; 26:e14200. [PMID: 38010711 DOI: 10.1111/tid.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/30/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Acute liver failure (ALF) is a component of multisystem organ failure that causes severe liver dysfunction in patients without underlying chronic liver disease. The patients with ALF are prone to have infections, including bacteremia. However, studies of the infectious impact for post liver transplantation (LT) in pediatric ALF are limited. We aimed to evaluate our current practice for pediatric LT cases of ALF with preoperative bacteremia. METHODS The records of all patients under 18 years old undergoing LT for ALF in our center from November 2005 to December 2021 were collected. They were divided into two groups: those with a preoperative bloodstream infection (BSI) and those without (NBSI). We compared the preoperative status and also reviewed the details of the BSI group. Intraoperative course and postoperative outcomes were also compared. RESULTS There were 19 BSI patients and 66 NBSI patients. One BSI case was detected on the day of LT. This patient had no changes in vital signs and general condition. After evaluation and therapeutic intervention by pediatric infectious disease specialists, LT was performed on the same day. Five cases developed septic shock at the time of detection of BSI. All BSI patients were in stable condition on the operation day with proper interventions. There were no significant differences in mortality and hospital stay between both groups. CONCLUSIONS LT might be able to be performed for pediatric ALF even with positive blood cultures. In addition, appropriate therapeutic intervention by specialists and patient's stable condition before LT are essential.
Collapse
Affiliation(s)
- Chiaki Baba
- Division of Anesthesia, Department of Anesthesia and Critical Care, National Center for Child Health and Development, Tokyo, Japan
- Department of Anesthesia, Tokyo Women's Medical University, School of Medicine, Tokyo, Japan
| | - Takanori Funaki
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan
| | - Makoto Uranaka
- Division of Anesthesia, Department of Anesthesia and Critical Care, National Center for Child Health and Development, Tokyo, Japan
| | - Mai Hashiya
- Division of Anesthesia, Department of Anesthesia and Critical Care, National Center for Child Health and Development, Tokyo, Japan
| | - Jun Ninagawa
- Division of Anesthesia, Department of Anesthesia and Critical Care, National Center for Child Health and Development, Tokyo, Japan
| | - Seisuke Sakamoto
- Center for Organ Transplantation, National Center for Child Health and Development, Tokyo, Japan
| | - Mureo Kasahara
- Center for Organ Transplantation, National Center for Child Health and Development, Tokyo, Japan
| | - Yasuko Nagasaka
- Department of Anesthesia, Tokyo Women's Medical University, School of Medicine, Tokyo, Japan
| | - Yasuyuki Suzuki
- Division of Anesthesia, Department of Anesthesia and Critical Care, National Center for Child Health and Development, Tokyo, Japan
- Department of Anesthesia, Tokyo Women's Medical University, School of Medicine, Tokyo, Japan
| | - Shugo Kasuya
- Division of Anesthesia, Department of Anesthesia and Critical Care, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
5
|
Amer K, Flikshteyn B, Lingiah V, Tafesh Z, Pyrsopoulos NT. Mechanisms of Disease and Multisystemic Involvement. Clin Liver Dis 2023; 27:563-579. [PMID: 37380283 DOI: 10.1016/j.cld.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Affiliation(s)
- Kamal Amer
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers University, 185 South Orange Avenue, MSB H Room - 538, Newark, NJ 07101-1709, USA
| | - Ben Flikshteyn
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers University, 185 South Orange Avenue, MSB H Room - 538, Newark, NJ 07101-1709, USA
| | - Vivek Lingiah
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers University, 185 South Orange Avenue, MSB H Room - 538, Newark, NJ 07101-1709, USA
| | - Zaid Tafesh
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers University, 185 South Orange Avenue, MSB H Room - 53, Newark, NJ 07101-1709, USA
| | - Nikolaos T Pyrsopoulos
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers University, 185 South Orange Avenue, MSB H Room - 536, Newark, NJ 07101-1709, USA.
| |
Collapse
|
6
|
Zhang X, Qin D, Liu G, Li F, Peng J, Xiang Y. Risk factors of nosocomial infection in patients underwent artificial liver support system: a retrospective case-control study. Eur J Gastroenterol Hepatol 2023; 35:604-608. [PMID: 36966761 DOI: 10.1097/meg.0000000000002547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
BACKGROUND Although nosocomial infection is one of the most discussed problems in patients undergoing artificial liver support system (ALSS) treatment, only few solutions have been proposed so far. This study aimed to explore the risk factors of nosocomial infection in patients treated with ALSS in order to aid in the development of future preventive measures. METHODS This retrospective case-control study included patients treated with ALSS at the Department of Infectious Diseases, First Affiliated Hospital of xxx Medical University between January 2016 and December 2021. RESULTS One hundred seventy-four patients were included. There were 57 patients in the nosocomial infection group and 117 patients in the non-nosocomial infection group, of them 127 males (72.99%) and 47 females (27.01%) with an average age of 48.15 ± 14.19 years old. Multivariate logistic regression analysis revealed that total bilirubin [odds ratio (OR) = 1.004; 95% confidence interval (CI), 1.001-1.007; P = 0.020], number of invasive procedures (OR = 2.161; 95% CI, 1.500-3.313; P < 0.001), blood transfusion (OR = 2.526; 95% CI, 1.312-4.864; P = 0.006) were independent risk factors and haemoglobin (Hb) (OR = 0.973; 95% CI, 0.953-0.994; P = 0.011) was a protective factor for nosocomial infection in patients treated with ALSS. CONCLUSION The total bilirubin, transfusion of blood products and higher number of invasive operations were independent risk factors for nosocomial infection in patients treated with ALSS, while higher Hb was a protective factor.
Collapse
Affiliation(s)
| | - Deyu Qin
- Department of Infectious Disease
| | | | | | - Jingjing Peng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University
| | - Yanling Xiang
- Department of Surgery and Anesthesiology, University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Popescu M, David C, Marcu A, Olita MR, Mihaila M, Tomescu D. Artificial Liver Support with CytoSorb and MARS in Liver Failure: A Retrospective Propensity Matched Analysis. J Clin Med 2023; 12:jcm12062258. [PMID: 36983259 PMCID: PMC10058971 DOI: 10.3390/jcm12062258] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Background: Liver failure represents a life-threatening organ dysfunction with liver transplantation as the only proven curable therapy to date. Liver assist devices have been extensively researched to either bridge such patients to transplantation or promote spontaneous recovery. The aim of our study was to compare two such devices, the Molecular Adsorbent Recirculating System (MARS) and CytoSorb, in patients with liver failure. Methods: We retrospectively included 15 patients who underwent MARS during their intensive care unit stay and matched them to 15 patients who underwent hemoadsorption using CytoSorb. Clinical and paraclinical data obtained after each individual session, after the course of treatment, as well as at the end of the intensive care unit stay were compared between the two groups. Results: Single sessions of CytoSorb and MARS were both associated with a significant decrease in bilirubin (p = 0.04 and p = 0.04, respectively) and ammonia levels (p = 0.04 and p = 0.04, respectively), but only CytoSorb therapy was associated with a decrease in lactate dehydrogenase levels (p = 0.04) and in platelet count (p = 0.04). After the course of treatment, only CytoSorb was associated with a significant decrease in lactate (p = 0.01), bilirubin (p = 0.01), ammonia (p = 0.02), and lactate dehydrogenase levels (p = 0.01), while patients treated with MARS did not show any improvement in paraclinical liver tests. In addition, only CytoSorb treatment was associated with a significant improvement in the Model for End-Stage Liver Disease Score (p = 0.04). Conclusion: In conclusion, our results show a potential benefit of CytoSorb in rebalancing liver functional tests in patients with liver failure compared to MARS but the exact effects on patient outcome, including hospital length of stay and survival, should be further investigated in randomized control trials.
Collapse
Affiliation(s)
- Mihai Popescu
- Department of Anaesthesia and Intensive Care, “Carol Davila” University of Medicine and Pharmacy, 022328 Bucharest, Romania
- Department of Anaesthesia and Intensive Care, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Correspondence: ; Tel.: +40-75-107-5995
| | - Corina David
- Department of Anaesthesia and Intensive Care, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Alexandra Marcu
- Department of Anaesthesia and Intensive Care, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Mihaela Roxana Olita
- Department of Anaesthesia and Intensive Care, “Carol Davila” University of Medicine and Pharmacy, 022328 Bucharest, Romania
- Department of Anaesthesia and Intensive Care, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Mariana Mihaila
- Department of Internal Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Dana Tomescu
- Department of Anaesthesia and Intensive Care, “Carol Davila” University of Medicine and Pharmacy, 022328 Bucharest, Romania
- Department of Anaesthesia and Intensive Care, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
8
|
Ma JF, Gao JP, Shao ZW. Acute liver failure: A systematic review and network meta-analysis of optimal type of stem cells in animal models. World J Stem Cells 2023; 15:1-15. [PMID: 36713788 PMCID: PMC9850664 DOI: 10.4252/wjsc.v15.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The therapeutic effects of various stem cells in acute liver failure (ALF) have been demonstrated in preclinical studies. However, the specific type of stem cells with the highest therapeutic potential has not been determined.
AIM To validate the efficacy of stem cells in ALF model and to identify the most promising stem cells.
METHODS A search was conducted on the PubMed, Web of Science, Embase, Scopus, and Cochrane databases from inception to May 3, 2022, and updated on November 16, 2022 to identify relevant studies. Two independent reviewers performed the literature search, identification, screening, quality assessment, and data extraction.
RESULTS A total of 89 animal studies were included in the analysis. The results of traditional meta-analysis showed that stem cell therapy could significantly reduce the serum levels of alanine aminotransferase [weighted mean difference (WMD) = -181.05 (-191.71, -170.39)], aspartate aminotransferase [WMD = -309.04 (-328.45, -289.63)], tumor necrosis factor-alpha [WMD = -8.75 (-9.93, -7.56)], and interleukin-6 [WMD = -10.43 (-12.11, -8.76)] in animal models of ALF. Further subgroup analysis and network meta-analysis showed that although mesenchymal stem cells are the current research hotspot, the effect of liver stem cells (LSCs) on improving liver function is significantly better than that of the other five types of stem cells. In addition, the ranking results showed that the possibility of LSCs improving liver function ranked first. This fully proves the great therapeutic potential of LSCs, which needs to be paid more attention in the future.
CONCLUSION LSCs may have a higher therapeutic potential. Further high-quality animal experiments are needed to explore the most effective stem cells for ALF.
Collapse
Affiliation(s)
- Jun-Feng Ma
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou 730030, Gansu Province, China
| | - Jian-Ping Gao
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou 730030, Gansu Province, China
| | - Zi-Wei Shao
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou 730030, Gansu Province, China
| |
Collapse
|
9
|
Kim C, Jeong YH, Kim N, Ryu SH, Bae JS. Hepatoprotective functions of jujuboside B. J Nat Med 2023; 77:87-95. [PMID: 36064835 DOI: 10.1007/s11418-022-01648-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/14/2022] [Indexed: 01/06/2023]
Abstract
Jujuboside B (JB) found in the seeds of Zizyphi Spinosi Semen possesses pharmacological functions, such as anti-inflammatory, antiplatelet aggregation, and antianxiety potentials. This study evaluated the effect of JB on liver failure in cecal ligation and puncture (CLP)-induced sepsis. First, we observed histopathological changes in the liver by optical microscopy and the activity of enzymes in serum such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST). We further measured the levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, nitric oxide (NO), and antioxidative parameters in liver homogenate. The expression of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), and glucocorticoid receptor (GR) in the liver was observed by Western blotting. CLP enhanced the migration of inflammatory cells, ALT and AST concentrations, and necrosis, which were reduced by JB. In addition, JB reduced 11β-HSD2 expression and levels of inflammatory mediators (TNF-α, IL-1β, and NO) in the liver, increased GR expression, enhanced endogenous antioxidative capacity. These results further suggest that JB may protect the liver against CLP-induced damage by regulating anti-inflammatory responses, downregulating 11β-HSD2 expression and antioxidation, and up-regulating GR expression.
Collapse
Affiliation(s)
- Chaeyeong Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Yun Hee Jeong
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu, 41062, Republic of Korea
| | - Nayeon Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Soo Ho Ryu
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
10
|
Zhao Q, Sheng MF, Wang YY, Wang XY, Liu WY, Zhang YY, Ke TY, Chen S, Pang GZ, Yong L, Ding Z, Shen YJ, Shen YX, Shao W. LncRNA Gm26917 regulates inflammatory response in macrophages by enhancing Annexin A1 ubiquitination in LPS-induced acute liver injury. Front Pharmacol 2022; 13:975250. [PMID: 36386180 PMCID: PMC9663662 DOI: 10.3389/fphar.2022.975250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are defined as transcripts of more than 200 nucleotides that have little or no coding potential. LncRNAs function as key regulators in diverse physiological and pathological processes. However, the roles of lncRNAs in lipopolysaccharide (LPS)-induced acute liver injury (ALI) are still elusive. In this study, we report the roles of lncRNA Gm26917 induced by LPS in modulating liver inflammation. As key components of the innate immune system, macrophages play critical roles in the initiation, progression and resolution of ALI. Our studies demonstrated that Gm26917 localized in the cytoplasm of hepatic macrophages and globally regulated the expression of inflammatory genes and the differentiation of macrophages. In vivo study showed that lentivirus-mediated gene silencing of Gm26917 attenuated liver inflammation and protected mice from LPS-induced ALI. Furthermore, mechanistic study showed that the 3'-truncation of Gm26917 interacted with the N-terminus of Annexin A1, a negative regulator of the NF-κB signaling pathway. We also found that Gm26917 knockdown suppressed NF-κB activity by decreasing the ubiquitination of Annexin A1 and its interaction with NEMO. In addition, expression of Gm26917 in inflammatory macrophages was regulated by the transcription factor forkhead box M1 (FOXM1). LPS treatment dramatically increased the binding of FOXM1 to the promoter region of Gm26917 in macrophages. In summary, our findings suggest that lncRNA Gm26917 silencing protects against LPS-induced liver injury by regulating the TLR4/NF-κB signaling pathway in macrophages.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Meng-Fei Sheng
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Yao-Yun Wang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Xing-Yu Wang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Wei-Yi Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Yuan-Yuan Zhang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Tiao-Ying Ke
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Shu Chen
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Gao-Zong Pang
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Liang Yong
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Zhan Ding
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei, China
| | - Yu-Jun Shen
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Yu-Xian Shen
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| | - Wei Shao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
11
|
Alexander EC, Deep A. Therapeutic plasma exchange in children with acute liver failure (ALF): is it time for incorporation into the ALF armamentarium? Pediatr Nephrol 2022; 37:1775-1788. [PMID: 34647173 PMCID: PMC9239959 DOI: 10.1007/s00467-021-05289-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022]
Abstract
Paediatric acute liver failure (PALF) is a rare but devastating condition with high mortality. An exaggerated inflammatory response is now recognised as pivotal in the pathogenesis and prognosis of ALF, with cytokine spill from the liver to systemic circulation implicated in development of multi-organ failure associated with ALF. With advances in medical management, especially critical care, there is an increasing trend towards spontaneous liver regeneration, averting the need for emergency liver transplantation or providing stability to the patient awaiting a graft. Hence, research is ongoing for therapies, including extracorporeal liver support devices, that can bridge patients to transplant or spontaneous liver recovery. Considering the immune-related pathogenesis and inflammatory phenotype of ALF, plasma exchange serves as an ideal liver assist device as it performs both the excretory and synthetic functions of the liver and, in addition, works as an immunomodulatory therapy by suppressing the early innate immune response in ALF. After a recent randomised controlled trial in adults demonstrated a beneficial effect of high-volume plasma exchange on clinical outcomes, this therapy was incorporated in European Association for the Study of Liver (EASL) recommendations for managing adult patients with ALF, but no guidelines exist for PALF. In this review, we discuss rationale, timing, practicalities, and existing evidence regarding the use of plasma exchange as an immunomodulatory treatment in PALF. We discuss controversies in delivery of this therapy as an extracorporeal device, and practicalities of use of plasma exchange as a 'hybrid' therapy alongside other extracorporeal liver assist devices, before finally reviewing outstanding research questions for the future.
Collapse
Affiliation(s)
- Emma C Alexander
- Paediatric Intensive Care Unit, King's College Hospital NHS Foundation Trust, Denmark Hill, London, UK
| | - Akash Deep
- Paediatric Intensive Care Unit, King's College Hospital NHS Foundation Trust, Denmark Hill, London, UK.
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK.
| |
Collapse
|
12
|
Lamm V, Ekser B, Vagefi PA, Cooper DK. Bridging to Allotransplantation-Is Pig Liver Xenotransplantation the Best Option? Transplantation 2022; 106:26-36. [PMID: 33653996 PMCID: PMC10124768 DOI: 10.1097/tp.0000000000003722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the past 20 y, the number of patients in the United States who died while waiting for a human donor liver totaled >52 000. The median national wait time for patients with acute liver failure and the most urgent liver transplant listing was 7 d in 2018. The need for a clinical "bridge" to allotransplantation is clear. Current options for supporting patients with acute liver failure include artificial liver support devices, extracorporeal liver perfusion, and hepatocyte transplantation, all of which have shown mixed results with regard to survival benefit and are largely experimental. Progress in the transplantation of genetically engineered pig liver grafts in nonhuman primates has grown steadily, with survival of the pig graft extended to almost 1 mo in 2017. Further advances may justify consideration of a pig liver transplant as a clinical bridge to allotransplantation. We provide a brief history of pig liver xenotransplantation, summarize the most recent progress in pig-to-nonhuman primate liver transplantation models, and suggest criteria that may be considered for patient selection for a clinical trial of bridging by genetically engineered pig liver xenotransplantation to liver allotransplantation.
Collapse
Affiliation(s)
- Vladimir Lamm
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Parsia A. Vagefi
- Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - David K.C. Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
13
|
Ma S, Sun Y, Zheng X, Yang Y. Gastrodin attenuates perfluorooctanoic acid-induced liver injury by regulating gut microbiota composition in mice. Bioengineered 2021; 12:11546-11556. [PMID: 34866532 PMCID: PMC8810172 DOI: 10.1080/21655979.2021.2009966] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 01/09/2023] Open
Abstract
Perfluorooctanoic acid (PFOA) can accumulate in the livers of humans and animals via the food chain, resulting into liver injury, which is closely related to intestinal flora dysbiosis. Gastrodin has been reported to have hepatoprotective effect. However, whether gastrodin can alleviate PFOA-induced liver injury via modulating gut microbiota remains unclear. Herein, a PFOA-induced liver injury model was established by gavage of PFOA (5 mg/kg body weight) in 2% Tween 80 solution once daily for 6 weeks in mice, and then gastrodin in saline (20 mg/kg body weight) was used once daily for 8 weeks to treat liver damage. The biochemical indexes associated with liver function, oxidative stress, and inflammatory factors were examined. Hematoxylin-eosin staining was used to determine the liver histopathological changes. Besides, 16S rRNA sequencing was used to analyze the difference of gut microbiota between the model and treatment groups. The results showed that gastrodin significantly improved the oxidative stress caused by PFOA. Intestinal flora analysis showed that gastrodin treatment significantly increased the relative abundance of probiotics, such as Lactobacillus, Bifidobacterium, and Bacteroides, while the harmful bacteria, including Desulfovibrio were decreased. Gastrodin treatment also significantly increased the level of short-chain fatty acids (SCFAs), such as butyric acid and isobutyric acid. Spearman correlation analysis showed that the composition changes of gut microbiota and SCFAs increase were both beneficial to alleviate the liver injury caused by PFOA. To sum up, gastrodin can effectively alleviate PFOA-induced liver injury through regulating gut microbiota composition.
Collapse
Affiliation(s)
- Shumin Ma
- Department of Hepatology, Shandong Provincial Public Health Clinical Center, Jinan, China
| | - Yanyan Sun
- Fever Observation Ward, Shandong Provincial Public Health Clinical Center, Jinan, China
| | - Xueting Zheng
- Department of Gastroenterology, People’s Hospital of Yangxin County, Binzhou, China
| | - Yang Yang
- Department of Hepatology, Shandong Provincial Public Health Clinical Center, Jinan, China
| |
Collapse
|
14
|
Chen D, Zeng R, Teng G, Cai C, Pan T, Tu H, Lin H, Du Q, Wang H, Chen Y. Menstrual blood-derived mesenchymal stem cells attenuate inflammation and improve the mortality of acute liver failure combining with A2AR agonist in mice. J Gastroenterol Hepatol 2021; 36:2619-2627. [PMID: 33729623 PMCID: PMC8518829 DOI: 10.1111/jgh.15493] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIM Acute liver failure (ALF) poses a serious public health issue. The menstrual blood-derived mesenchymal stem cells (MenSCs) have been applied to cure various liver-related diseases. However, the efficacy and mechanism are far from clear. This study aims to explore the efficacy and potential mechanism of MenSCs to cure ALF. METHODS We investigate the potential mechanism of MenSCs on the ALF in vitro and in vivo. A2A adenosine receptor (A2AR) activation was investigated as the potential reinforcer for MenSCs treatment. Lipid polysaccharide/d-galactosamine (d-GalN) was employed to induce ALF. Diverse techniques were used to measure the inflammatory cytokines and key signaling molecules. Hematoxylin-eosin stain and aminotransaminases were applied to evaluate the liver injury. Flow cytometry was employed to assess the T cells. RESULTS The MenSCs can decrease the lipid polysaccharide-induced inflammatory cytokine elevation and related signaling molecules in ALF, including TLR4, phosphorylated-NF-kBp65 (p-NF-kBp65), PI3K, and p-AKT, p-mTOR and p-IKK in vitro. Moreover, MenSCs also can significantly reverse the liver injury, inflammatory cytokines elevation and related signaling molecules increase, and Treg/Th17 ratio decrease in vivo. In addition, MenSCs plus A2AR agonist can enhance the above changes. CONCLUSIONS The MenSCs can attenuate the ALF-induced liver injury via inhibition of TLR4-mediated PI3K/Akt/mTOR/IKK signaling. Then, this inhibits the p-NF-κBp65 translocate into nuclear, which causes a decrease of inflammatory cytokines release. Moreover, A2AR agonist can play a synergic role with MenSCs and enhance the above-mentioned effects.
Collapse
Affiliation(s)
- Dazhi Chen
- Department of GastroenterologyPeking University First HospitalBeijingChina
| | - Ruichao Zeng
- Department of Oncological SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- Precision and Systems BiomedicineQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
- Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
| | - Guigen Teng
- Department of GastroenterologyPeking University First HospitalBeijingChina
| | - Chao Cai
- Department of Infectious Diseases, Wenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Tongtong Pan
- Department of Infectious Diseases, Wenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Hanxiao Tu
- Department of Infectious Diseases, Wenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Hongwei Lin
- Department of Infectious Diseases, Wenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Qingjing Du
- Department of Infectious Diseases, Wenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Huahong Wang
- Department of GastroenterologyPeking University First HospitalBeijingChina
| | - Yongping Chen
- Department of Infectious Diseases, Wenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
15
|
Higher circulating natural killer cells and lower lactate levels at admission predict spontaneous survival in non-acetaminophen induced acute liver failure. Clin Immunol 2021; 231:108829. [PMID: 34419620 DOI: 10.1016/j.clim.2021.108829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 11/20/2022]
Abstract
Massive cellular necrosis in acute liver failure (ALF) is dominantly immune mediated and innate immune cells are major pathophysiological determinants in liver damage. In fifty ALF and fifteen healthy, immune cells phenotyping by flow-cytometry, DAMPs using ELISA were analysed and correlated with clinical and biochemical parameters. ALF patients (aged 27 ± 9 yr, 56% males, 78% viral aetiology) showed no difference in neutrophils and classical monocytes, but significantly increased intermediate monocytes (CD14+CD16+) (p < 0.01), decreased non-classical monocytes (CD14-CD16+) and CD3-veCD16+CD56+ NK cells compared to HC. ALF patients who survived, showed higher NK cells (9.28 vs. 5.1%, p < 0.001) among lymphocytes and lower serum lactate levels (6.1 vs. 28, Odds ratio 2.23, CI 1.27-3.94) than non- survivors had higher. Logistic regression model predicted the combination of lactate levels with NK cell percentage at admission for survival. In conclusion, Combination of NK cell frequency among lymphocytes and lactate levels at admission can reliably predict survival of ALF patients.
Collapse
|
16
|
Tomescu D, Popescu M, David C, Sima R, Dima S. Haemoadsorption by CytoSorb® in patients with acute liver failure: A case series. Int J Artif Organs 2021; 44:560-564. [PMID: 33302765 DOI: 10.1177/0391398820981383] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute liver failure (ALF) is a life-threatening disease associated with multi-organ failure and increased mortality. Severe inflammation is now considered the main pathophysiological mechanism for organ dysfunction, thus rebalancing pro- and anti- inflammatory cytokines may improve liver function and outcome. The aim of this study was to assess the clinical effects of a haemoadsorption column on biochemical parameters in patients with ALF. We prospectively included 28 patients with ALF who were treated with three consecutive sessions of continuous venovenous haemofiltration in combination with CytoSorb®. Our results show an improvement in liver functional tests and a decrease in Creactive protein. Thrombocytopenia remains one of the most important side effects of this treatment and careful consideration should be made before initiation of treatment.
Collapse
Affiliation(s)
- Dana Tomescu
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Fundeni Clinical Institute, Department of Anaesthesia and Intensive Care, Bucharest, Romania
| | - Mihai Popescu
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Fundeni Clinical Institute, Department of Anaesthesia and Intensive Care, Bucharest, Romania
| | - Corina David
- Fundeni Clinical Institute, Department of Anaesthesia and Intensive Care, Bucharest, Romania
| | - Romina Sima
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Simona Dima
- Fundeni Clinical Institute, Department of General Surgery and Liver Transplantation, Bucharest, Romania
| |
Collapse
|
17
|
Yang Y, Zhao Y, Zhang L, Zhang F, Li L. The Application of Mesenchymal Stem Cells in the Treatment of Liver Diseases: Mechanism, Efficacy, and Safety Issues. Front Med (Lausanne) 2021; 8:655268. [PMID: 34136500 PMCID: PMC8200416 DOI: 10.3389/fmed.2021.655268] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation is a novel treatment for liver diseases due to the roles of MSCs in regeneration, fibrosis inhibition and immune regulation. However, the mechanisms are still not completely understood. Despite the significant efficacy of MSC therapy in animal models and preliminary clinical trials, issues remain. The efficacy and safety of MSC-based therapy in the treatment of liver diseases remains a challenging issue that requires more investigation. This article reviews recent studies on the mechanisms of MSCs in liver diseases and the associated challenges and suggests potential future applications.
Collapse
Affiliation(s)
- Ya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yalei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lingjian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Fen Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Yan R, Wang K, Wang Q, Jiang H, Lu Y, Chen X, Zhang H, Su X, Du Y, Chen L, Li L, Lv L. Probiotic Lactobacillus casei Shirota prevents acute liver injury by reshaping the gut microbiota to alleviate excessive inflammation and metabolic disorders. Microb Biotechnol 2021; 15:247-261. [PMID: 33492728 PMCID: PMC8719798 DOI: 10.1111/1751-7915.13750] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Millions of people die from liver diseases annually, and liver failure is one of the three major outcomes of liver disease. The gut microbiota plays a crucial role in liver diseases. This study aimed to explore the effects of Lactobacillus casei strain Shirota (LcS), a probiotics used widely around the world, on acute liver injury (ALI), as well as the underlying mechanism. Sprague Dawley rats were intragastrically administered LcS suspensions or placebo once daily for 7 days before induction of ALI by intraperitoneal injection of D-galactosamine (D-GalN). Histopathological examination and assessments of liver biochemical markers, inflammatory cytokines, and the gut microbiota, metabolome and transcriptome were conducted. Our results showed that pretreatment with LcS reduced hepatic and intestinal damage and reduced the elevation of serum gamma-glutamyltranspeptidase (GGT), total bile acids, IL-5, IL-10, G-CSF and RANTES. The analysis of the gut microbiota, metabolome and transcriptome showed that LcS lowered the ratio of Firmicutes to Bacteroidetes; reduced the enrichment of metabolites such as chenodeoxycholic acid, deoxycholic acid, lithocholic acid, d-talose and N-acetyl-glucosamine, reduce the depletion of d-glucose and l-methionine; and alleviated the downregulation of retinol metabolism and PPAR signalling and the upregulation of the pyruvate metabolism pathway in the liver. These results indicate the promising prospect of using LcS for the treatment of liver diseases, particularly ALI.
Collapse
Affiliation(s)
- Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Huiyong Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yingfeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaoxiao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaoling Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yiling Du
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lifeng Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
19
|
Hu J, Zhu Z, Ying H, Yao J, Ma H, Li L, Zhao Y. Oleoylethanolamide Protects Against Acute Liver Injury by Regulating Nrf-2/HO-1 and NLRP3 Pathways in Mice. Front Pharmacol 2021; 11:605065. [PMID: 33536915 PMCID: PMC7848133 DOI: 10.3389/fphar.2020.605065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Acute liver injury is a rapidly deteriorating clinical condition with markedly high morbidity and mortality. Oleoylethanolamide (OEA) is an endogenous lipid messenger with multiple bioactivities, and has therapeutic effects on various liver diseases. However, effects of OEA on acute liver injury remains unknown. In this study, effects and mechanisms of OEA in lipopolysaccharide (LPS)/d-galactosamine (D-Gal)-induced acute liver injury in mice were investigated. We found that OEA treatment significantly attenuated LPS/D-Gal-induced hepatocytes damage, reduced liver index (liver weight/body weight), decreased plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) levels. Moreover, mechanism study suggested that OEA pretreatment significantly reduced hepatic MDA levels, increased Superoxide dismutase (SOD) and Glutathione peroxidase (GSH-PX) activities via up-regulate Nrf-2 and HO-1 expression to exert anti-oxidation activity. Additionally, OEA markedly reduced the expression levels of Bax, Bcl-2 and cleaved caspase-3 to suppress hepatocyte apoptosis. Meanwhile, OEA remarkedly reduced the number of activated intrahepatic macrophages, and alleviated the mRNA expression of pro-inflammatory factors, including TNF-α, IL-6, MCP1 and RANTES. Furthermore, OEA obviously reduced the expression of IL-1β in liver and plasma through inhibit protein levels of NLRP3 and caspase-1, which indicated that OEA could suppress NLRP3 inflammasome pathway. We further determined the protein expression of PPAR-α in liver and found that OEA significantly increase hepatic PPAR-α expression. In addition, HO-1 inhibitor ZnPP blocked the therapeutic effects of OEA on LPS/D-Gal-induced liver damage and oxidative stress, suggesting crucial role of Nrf-2/HO-1 pathway in the protective effects of OEA in acute liver injury. Together, these findings demonstrated that OEA protect against the LPS/D-Gal-induced acute liver injury in mice through the inhibition of apoptosis, oxidative stress and inflammation, and its mechanisms might be associated with the Nrf-2/HO-1 and NLRP3 inflammasome signaling pathways.
Collapse
Affiliation(s)
- Jiaji Hu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Zhoujie Zhu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Hanglu Ying
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Jie Yao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Huabin Ma
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Long Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| |
Collapse
|
20
|
Shulyatnikova T, Shavrin V. Mobilisation and redistribution of multivesicular bodies to the endfeet of reactive astrocytes in acute endogenous toxic encephalopathies. Brain Res 2020; 1751:147174. [PMID: 33172595 DOI: 10.1016/j.brainres.2020.147174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/27/2020] [Accepted: 10/20/2020] [Indexed: 02/08/2023]
Abstract
Endogenous toxicity caused by systemic inflammation as well as by acute liver failure triggers a wide range of dysfunctional disorders in the brain ranging from delirium and acute psychosis to coma. Astrocytes, the main homeostatic cells of the central nervous system (CNS), play a key role in pathophysiology of neurotoxic insults. We examined the cecal ligation and puncture (CLP) and acetaminophen-induced liver failure (AILF) of Wistar rats, and analysed ultrastructure of astrocytes in the brain cortex and subcortical white matter of sensorimotor zone with transmission electron microscopy. Both models showed significant similarities in reactive changes of astroglial endosomal machinery. In survived animals (with relative prevalence in the CLP-model), at 24 h after intervention we found an increase in number of multivesicular bodies (MVBs) in astroglial perikarya and astroglial processes. In particular, the number of MVBs substantially (3 times of control values) increased in the perivascular astroglial endfeet. Increased number of MVBs in astrocytes was associated with the lesser degree of intracellular oedema and with signs of compensated oedematous tissue changes. In deceased animals, up to 24 h after intervention, single MVBs were localised mainly in astroglial perikarya, and their number was not significantly changed compared to control. Activation of astroglial endosomal-exosomal machinery in both models reflects the uniform pattern of reactive changes of astroglia in these two systemic conditions and may represent activation of astroglial defence in sepsis-associated encephalopathy (SAE) and acute hepatic encephalopathy (AHE). Our data highlight the special role of astroglial adaptive activity in the counterbalancing of an impaired brain homeostasis under action of endogenous toxins. Accumulation of MVBs in astrocytic processes indicates the activation of their intercellular and gliovascular interactions through endo- and exocytosis in SAE and AHE.
Collapse
Affiliation(s)
- Tatyana Shulyatnikova
- Zaporizhzhia State Medical University, Department of Pathological Anatomy and Forensic Medicine, Zaporizhzhia, Mayakovsky Avenue, 26, 69035, Ukraine.
| | - Vladimir Shavrin
- Zaporizhzhia State Medical University, Department of Pathological Anatomy and Forensic Medicine, Zaporizhzhia, Mayakovsky Avenue, 26, 69035, Ukraine
| |
Collapse
|
21
|
Saleh M, Taher M, Sohrabpour AA, Vaezi AA, Nasiri Toosi M, Kavianpour M, Ghazvinian Z, Abdolahi S, Verdi J. Perspective of placenta derived mesenchymal stem cells in acute liver failure. Cell Biosci 2020; 10:71. [PMID: 32483484 PMCID: PMC7245988 DOI: 10.1186/s13578-020-00433-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/16/2020] [Indexed: 02/07/2023] Open
Abstract
Acute Liver failure (ALF) is a life-threatening disease and is determined by coagulopathy (with INR ≥ 1.5) and hepatic encephalopathy as a result of severe liver injury in patients without preexisting liver disease. Since there are problems with liver transplantation including lack of donors, use of immunosuppressive drugs, and high costs of this process, new therapeutic approaches alongside current treatments are needed. The placenta is a tissue that is normally discarded after childbirth. On the other hand, human placenta is a rich source of mesenchymal stem cells (MSCs), which is easily available, without moral problems, and its derived cells are less affected by age and environmental factors. Therefore, placenta-derived mesenchymal stem cells (PD-MSCs) can be considered as an allogeneic source for liver disease. Considering the studies on MSCs and their effects on various diseases, it can be stated that MSCs are among the most important agents to be used for novel future therapies of liver diseases. In this paper, we will investigate the effects of mesenchymal stem cells through migration and immigration to the site of injury, cell-to-cell contact, immunomodulatory effects, and secretory factors in ALF.
Collapse
Affiliation(s)
- Mahshid Saleh
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taher
- 2Gastroenterology and Hepatology, Tehran University of Medical Sciences, Imam Hospital Complex, Tehran, Iran
| | - Amir Ali Sohrabpour
- 3Gastroenterology and Hepatology, School of Medicine Shariati Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Amir Abbas Vaezi
- 4Department of Internal Medicine, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohsen Nasiri Toosi
- 5Internal Medicine, School of Medicine Liver Transplantation Research Center Imam, Khomeini Hospital Tehran University of Medical Sciences, Tehran, Iran
| | - Maria Kavianpour
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Ghazvinian
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Abdolahi
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Li ZH, Xie ZY, Ouyang XX, Huang KZ, Yu XP, Zhao YL, Zhang YH, Zhu DH, Yu J, Li LJ. Assessment of biological functions for C3A cells interacting with adverse environments of liver failure plasma. Hepatobiliary Pancreat Dis Int 2020; 19:129-137. [PMID: 31704080 DOI: 10.1016/j.hbpd.2019.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND For its better differentiated hepatocyte phenotype, C3A cell line has been utilized in bioartificial liver system. However, up to now, there are only a few of studies working at the metabolic alternations of C3A cells under the culture conditions with liver failure plasma, which mainly focus on carbohydrate metabolism, total protein synthesis and ureagenesis. In this study, we investigated the effects of acute liver failure plasma on the growth and biological functions of C3A cells, especially on CYP450 enzymes. METHODS C3A cells were treated with fresh DMEM medium containing 10% FBS, fresh DMEM medium containing 10% normal plasma and acute liver failure plasma, respectively. After incubation, the C3A cells were assessed for cell viabilities, lactate dehydrogenase leakage, gene transcription, protein levels, albumin secretion, ammonia metabolism and CYP450 enzyme activities. RESULTS Cell viabilities decreased 15%, and lactate dehydrogenase leakage had 1.3-fold elevation in acute liver failure plasma group. Gene transcription exhibited up-regulation, down-regulation or stability for different hepatic genes. In contrast, protein expression levels for several CYP450 enzymes kept constant, while the CYP450 enzyme activities decreased or remained stable. Albumin secretion reduced about 48%, and ammonia accumulation increased approximately 41%. CONCLUSIONS C3A cells cultured with acute liver failure plasma showed mild inhibition of cell viabilities, reduction of albumin secretion, and increase of ammonia accumulation. Furthermore, CYP450 enzymes demonstrated various alterations on gene transcription, protein expression and enzyme activities.
Collapse
Affiliation(s)
- Zu-Hong Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhong-Yang Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiao-Xi Ouyang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kai-Zhou Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiao-Peng Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ya-Lei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yan-Hong Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Dan-Hua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
23
|
Abstract
There is abundant evidence that infectious sepsis both in humans and mice with polymicrobial sepsis results in robust activation of complement. Major complement activation products involved in sepsis include C5a anaphylatoxin and its receptors (C5aR1 and C5aR2) and, perhaps, the terminal complement activation product, C5b-9. These products (and others) also cause dysfunction of the innate immune system, with exaggerated early proinflammatory responses, followed by decline of the innate immune system, leading to immunosuppression and multiorgan dysfunction. Generation of C5a during sepsis also leads to activation of neutrophils and macrophages and ultimate appearance of extracellular histones, which have powerful proinflammatory and prothrombotic activities. The distal complement activation product, C5b-9, triggers intracellular Ca fluxes in epithelial and endothelial cells. Histones activate the NLRP3 inflammasome, products of which can damage cells. C5a also activates MAPKs and Akt signaling pathways in cardiomyocytes, causing buildup of [Ca]i, defective action potentials and substantial cell dysfunction, resulting in cardiac and other organ dysfunction. Cardiac dysfunction can be quantitated by ECHO-Doppler parameters. In vivo interventions that block these complement-dependent products responsible for organ dysfunction in sepsis reduce the intensity of sepsis. The obvious targets in sepsis are C5a and its receptors, histones, and perhaps the MAPK pathways. Blockade of C5 has been considered in sepsis, but the FDA-approved antibody (eculizumab) is known to compromise defenses against neisseria and pneumonococcal bacteria, and requires immunization before the mAb to C5 can be used clinically. Small molecular blocking agents for C5aRs are currently in development and may be therapeutically effective for treatment of sepsis.
Collapse
|
24
|
Lu C, Wen T, Zheng M, Liu D, Quan G, Pan X, Wu C. Poly(Ethylene Glycol) Crosslinked Multi-Armed Poly(l-Lysine) with Encapsulating Capacity and Antimicrobial Activity for the Potential Treatment of Infection-Involved Multifactorial Diseases. Pharmaceutics 2020; 12:pharmaceutics12010047. [PMID: 31935837 PMCID: PMC7022689 DOI: 10.3390/pharmaceutics12010047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/23/2019] [Accepted: 01/03/2020] [Indexed: 02/05/2023] Open
Abstract
With the development of modern medical technology, common diseases usually can be treated by traditional medicines and their formulation, while diseases with multiple etiologies still remain a great challenge in clinic. Nanoformulation was widely explored to address this problem. However, due to limited drug loading space of nanocarriers, co-delivery strategy usually fails to achieve sufficient loading of multiple drugs simultaneously. In this research, we explored the potential of poly(ethylene glycol) (PEG) crosslinked alternating copolymers MPLL-alt-PEG as both an anionic drug carrier and antimicrobial agent. The high cationic charge density of multi-armed poly(l-lysine) (MPLL) segments in MPLL-alt-PEG could endow the electrostatic encapsulation of anionic model drugs through the formation of polyion complex micelles with a MPLL/drug complex core and crosslinked PEG outer shell, enabling pH-sensitive drug release. Meanwhile, the MPLL-alt-PEG copolymer exhibits a broad spectrum of antimicrobial activities against various clinically relevant microorganisms with low hemolytic activity. Studies on antibacterial mechanism revealed that MPLL-alt-PEG attacked bacteria through the membrane disruption mechanism which is similar to that of typical antimicrobial peptides. Taken together, the present study shed light on the possibility of endowing a polymeric carrier with therapeutic effect and thus offered a promising strategy for achieving a comprehensive treatment of bacterial infection-involved multifactorial diseases.
Collapse
Affiliation(s)
- Chao Lu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ting Wen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- Correspondence: (T.W.); (G.Q.); Tel.: +86-20-39943115 (G.Q.)
| | - Maochao Zheng
- Department of chemistry, Shantou University Medical College, Shantou 515041, China
| | - Daojun Liu
- Department of chemistry, Shantou University Medical College, Shantou 515041, China
| | - Guilan Quan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
- Correspondence: (T.W.); (G.Q.); Tel.: +86-20-39943115 (G.Q.)
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
25
|
Saunders JM, González-Maeso J, Bajaj JS. The Toll of Hyperammonemia on the Brain. Cell Mol Gastroenterol Hepatol 2019; 8:649-650. [PMID: 31536718 PMCID: PMC6889707 DOI: 10.1016/j.jcmgh.2019.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/10/2022]
Affiliation(s)
- Justin M Saunders
- Department of Physiology and Biophysics, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, Virginia.
| |
Collapse
|
26
|
Yang J, Li R, Zhao D, Zheng S. Downregulation of microRNA-214 improves therapeutic potential of allogeneic bone marrow-derived mesenchymal stem cell by targeting PIM-1 in rats with acute liver failure. J Cell Biochem 2019; 120:12887-12903. [PMID: 30938885 DOI: 10.1002/jcb.28560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/14/2018] [Accepted: 01/10/2019] [Indexed: 01/08/2023]
Abstract
Acute liver failure (ALF) is a disease resulted from diverse etiology, which generally leads to a rapid degenerated hepatic function. However, transplantation bone marrow-derived mesenchymal stem cells (BMSCs) transplantation has been suggested to relieve ALF. Interestingly, microRNA-214 (miR-214) could potentially regulate differentiation and migration of BMSCs. The present study aims to inquire whether miR-214 affects therapeutic potential of BMSCs transplantation by targeting PIM-1 in ALF. 120 male Wistar rats were induced as ALF model rats and transplanted with BMSCs post-alteration of miR-214 or PIM-1 expression. Further experiments were performed to detect biochemical index (alanine aminotransferase [ALT], aspartate transaminase [AST], total bilirubin [TBiL]), and expression of miR-214, PIM-1, hepatocyte growth factor (HGF), caspase 3, tumor necrosis factor-α (TNF-α), and interleukin-10 (IL-10) in rat serum. Apart from the above detection, apoptosis of hepatocytes and Ki67 protein expression in hepatic tissues of rats were additionally assessed. After BMSCs transplantation with miR-214 inhibition, a decreased expression of ALT, AST, and TBiL yet an increased expression of HGF was shown, coupled with a decline in the expression of caspase 3, TNF-α, and IL-10. Meanwhile, alleviated hepatic injury and decreased apoptotic index of hepatic cells were observed and the positive rate of Ki67 protein expression was significantly increased. Moreover, miR-214 and caspase 3, TNF-α, and IL-10 decreased notably, while PIM-1 was upregulated in response to miR-214 inhibition. Strikingly, the inhibition of PIM-1 reversed effects triggered by miR-214 inhibition. These findings indicated that downregulation of miR-214 improves therapeutic potential of BMSCs transplantation by upregulating PIM-1 for ALF.
Collapse
Affiliation(s)
- Juan Yang
- Department of Gastroenterology and Hepatology, The Third People's Hospital of Yunnan Province, Kunming, People's Republic of China
| | - Rui Li
- Department of Obstetrics, Kunming Dongfang Hospital, Kunming, People's Republic of China
| | - Dan Zhao
- Life Science Academy of Yunnan University, Kunming, People's Republic of China
| | - Sheng Zheng
- Department of Gastroenterology and Hepatology, The Third People's Hospital of Yunnan Province, Kunming, People's Republic of China
| |
Collapse
|
27
|
Li J, Zhao YR, Tian Z. Roles of hepatic stellate cells in acute liver failure: From the perspective of inflammation and fibrosis. World J Hepatol 2019; 11:412-420. [PMID: 31183002 PMCID: PMC6547291 DOI: 10.4254/wjh.v11.i5.412] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/14/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023] Open
Abstract
Acute liver failure (ALF) usually results in hepatocellular dysfunction and coagulopathy and carries a high mortality rate. Hepatic stellate cells (HSCs) are famous for their role in liver fibrosis. Although some recent studies revealed that HSCs might participate in the pathogenesis of ALF, the accurate mechanism is still not fully understood. This review focuses on the recent advances in understanding the functions of HSCs in ALF and revealed both protective and promotive roles during the pathogenesis of ALF: HSC activation participates in the maintenance of cell attachment and the architecture of liver tissue via extracellular matrix production and assists liver regeneration by producing growth factors; and HSC inflammation plays a role in relaying inflammation signaling from sinusoids to parenchyma via secretion of inflammatory cytokines. A better understanding of roles of HSCs in the pathogenesis of ALF may lead to improvements and novel strategies for treating ALF patients.
Collapse
Affiliation(s)
- Juan Li
- Department of Infectious Diseases, Institute of Hepatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Ying-Ren Zhao
- Department of Infectious Diseases, Institute of Hepatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Zhen Tian
- Department of Infectious Diseases, Institute of Hepatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|
28
|
Ding HR, Wang JL, Tang ZT, Wang Y, Zhou G, Liu Y, Ren HZ, Shi XL. Mesenchymal Stem Cells Improve Glycometabolism and Liver Regeneration in the Treatment of Post-hepatectomy Liver Failure. Front Physiol 2019; 10:412. [PMID: 31024348 PMCID: PMC6468048 DOI: 10.3389/fphys.2019.00412] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/26/2019] [Indexed: 12/18/2022] Open
Abstract
Background The mortality rate of post-hepatectomy liver failure (PHLF) remains very high, and liver transplantation is the only effective treatment regimen for PHLF. Cell transplantation is a potential treatment for liver diseases. Previous studies have proved that mesenchymal stem cells (MSCs) have immunomodulatory functions. In the present study, we found that MSCs promoted glycogen synthesis and liver regeneration in the treatment of PHLF. MSC transplantation also improved the survival rate of rats after 90% partial hepatectomy (PH). In our current study, we aimed to determine the efficacy and mechanism of MSC transplantation in the treatment of PHLF. Methods Mesenchymal stem cells were isolated from Sprague-Dawley rats and cultured using a standardized protocol. The MSCs were transplanted to treat acute liver failure induced by 90% PH. The therapeutic efficacy of MSCs on PHLF was verified through measuring alanine transaminase (ALT), aspartate aminotransferase (AST), international normalized ratio (INR), serum ammonia, liver weight to body weight ratio, blood glucose, and histology. To further study the mechanism of MSC transplantation in treatment for PHLF, we assessed the changes in the AKT/glycogen synthase kinase-3β (GSK-3β)/β-catenin pathway. A-674563 (AKT inhibitor) and SB216763 (GSK-3β inhibitor) were employed to validate our findings. SPSS version 19.0 was used for statistical analysis, and the independent-samples t-test was carried out to analyze the collected data. Results Mesenchymal stem cell transplantation attenuated the liver injury in acute liver failure induced by 90% PH. MSC transplantation improved the glucose metabolism and survival rate in the PHLF model. The effect of MSC transplantation on hepatocyte proliferation might be related to AKT/GSK-3β/β-catenin pathway. Conclusion Mesenchymal stem cell transplantation could be use as a potential treatment for PHLF.
Collapse
Affiliation(s)
- Hao-Ran Ding
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jing-Lin Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhen-Ting Tang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Wang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Guang Zhou
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Liu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hao-Zhen Ren
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiao-Lei Shi
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
29
|
Huang C, Yu KK, Zheng JM, Li N. Steroid treatment in patients with acute-on-chronic liver failure precipitated by hepatitis B: A 10-year cohort study in a university hospital in East China. J Dig Dis 2019; 20:38-44. [PMID: 30515980 DOI: 10.1111/1751-2980.12691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/23/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate retrospectively the efficacy of steroids in patients with acute-on-chronic liver failure (ACLF) precipitated by hepatitis B. METHODS Patients with ACLF precipitated by hepatitis B were included and categorized according to treatment modalities (steroid vs. control). Survival and clinical characteristics, including patients' age, baseline ACLF grade, the model for end-stage liver disease (MELD) score, and occurrence of infection were compared between the two groups. Survival analyses of subgroups classified by their age, ACLF grade and MELD score were performed. Cox regression analyses were conducted to identify factors associated with 60-day cumulative and transplant-free mortality. RESULTS From 2007 to 2016, 293 patients with hepatitis B-precipitated ACLF were recruited, among whom 162 received at least five consecutive doses of corticosteroids. By day 60 transplant-free survival was 62.6% in the control group compared with 53.7% in the steroid group (P = 0.126). Steroid treatment failed to show a survival benefit in the survival analysis among the subgroup. Within 60 days, pulmonary and overall infections occurred with higher frequency in the steroid-treated group than in the controls (P = 0.003 and < 0.001, respectively). In the univariate analysis, age, baseline MELD score >20, CLIF consortium (CLIF-C) ACLF grade 2-3, pulmonary infection and overall infection were associated with 60-day mortality. In the multivariate analysis, older age, baseline MELD score >20 and CLIF-C ACLF grade 2-3 were independent risk factors of 60-day mortality. CONCLUSION Steroid treatment did not improve transplant-free survival in patients with ACLF precipitated by hepatitis B.
Collapse
Affiliation(s)
- Chong Huang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Kang Kang Yu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Ming Zheng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ning Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Zhao Q, Wu CS, Fang Y, Qian Y, Wang H, Fan YC, Wang K. Glucocorticoid Regulates NLRP3 in Acute-On-Chronic Hepatitis B Liver Failure. Int J Med Sci 2019; 16:461-469. [PMID: 30911280 PMCID: PMC6428984 DOI: 10.7150/ijms.30424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/12/2019] [Indexed: 12/13/2022] Open
Abstract
Acute-on-chronic hepatitis B liver failure (ACHBLF) refers to the acute deterioration of liver function during chronic hepatitis B virus infection, and is associated with high mortality, with rapid progression to death. Nucleotide-binding oligomerisation domain-like receptors (NLRs) Family Pyrin Domain Containing 3(NLRP3) inflammasome contributed to the pathogenesis of D-galactosamine and lipopolysaccharide-induced acute liver failure. However, the profile of NLRP3 in patients with ACHBLF has not been demonstrated. This study was therefore conducted to investigate the expression of NLRP3 in patients with ACHBLF and identify the effect of glucocorticoid on NLRP3. We recruited 70 patients with ACHBLF undergoing glucocorticoid treatment for 28 days, 30 patients with chronic hepatitis B (CHB), and 24 healthy controls (HCs) in this study. The relative messenger RNA (mRNA) level of NLRP3 and related genes were measured by reverse transcription polymerase chain reaction, the plasma levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18) were measured by enzyme-linked immunosorbent assay. The mRNA level of NLRP3 was significantly higher in patients with ACHBLF than in patients with CHB as well as HCs (P<0.05). The plasma levels of IL-1β and IL-18 in patients with ACHBLF were significantly higher than in patients with CHB and HCs (P<0.05). The relative mRNA level of NLRP3 in surviving patients decreased significantly compared with that in patients who did not survive after glucocorticoid treatment (P<0.05). In conclusion, NLRP3 increased in patients with ACHBLF. Glucocorticoid could downregulate the expression of NLRP3 in surviving patients with ACHBLF.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Chen-Si Wu
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yu Fang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yu Qian
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - He Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China.,Institute of Hepatology, Shandong University, Jinan 250012, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China.,Institute of Hepatology, Shandong University, Jinan 250012, China
| |
Collapse
|
31
|
Comparative Analysis of Expression Profiles of Reg Signaling Pathways-Related Genes Between AHF and HCC. Biochem Genet 2019; 57:382-402. [PMID: 30600408 DOI: 10.1007/s10528-018-9900-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022]
Abstract
Regenerating islet-derived protein (Reg) could participate in the occurrence of diabetes mellitus, inflammation, tumors, and other diseased or damaged tissues. However, the correlation of Reg with acute hepatic failure (AHF) and hepatocellular carcinoma (HCC) is poorly defined. To reveal the expression profiles of Reg family and their possible regulatory roles in AHF and HCC, rat models of HCC and AHF were separately established, and Rat Genome 230 2.0 was used to detect expression profiles of Reg-mediated signaling pathways-associated genes from liver tissues in AHF and HCC. The results showed that a total of 79 genes were significantly changed. Among these genes, 67 genes were the AHF-specific genes, 45 genes were the HCC-specific genes, and 33 genes were the common genes. Then, K-means clustering classified these genes into 4 clusters based on the gene expression similarity, and DAVID analysis showed that the above altered genes were mainly associated with stress response, inflammatory response, and cell cycle regulation. Thereafter, IPA software was used to analyze potential effects of these genes, and the predicted results suggested that the Reg-mediated JAK/STAT, NF-κB, MAPK (ERK1/2, P38 and JNK), PLC, and PI3K/AKT signaling pathways may account for the activated inflammation and cell proliferation, and the attenuated apoptosis and cell death during the occurrence of AHF and HCC.
Collapse
|
32
|
Acid-triggered echogenic nanoparticles for contrast-enhanced ultrasound imaging and therapy of acute liver failure. Biomaterials 2018; 186:22-30. [DOI: 10.1016/j.biomaterials.2018.09.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023]
|
33
|
Brown SA, Axenfeld E, Stonesifer EG, Hutson W, Hanish S, Raufman JP, Urrunaga NH. Current and prospective therapies for acute liver failure. Dis Mon 2018; 64:493-522. [DOI: 10.1016/j.disamonth.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Piceatannol attenuates D-GalN/LPS-induced hepatoxicity in mice: Involvement of ER stress, inflammation and oxidative stress. Int Immunopharmacol 2018; 64:131-139. [DOI: 10.1016/j.intimp.2018.08.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/20/2018] [Accepted: 08/26/2018] [Indexed: 12/12/2022]
|
35
|
Markose D, Kirkland P, Ramachandran P, Henderson N. Immune cell regulation of liver regeneration and repair. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.regen.2018.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Buechter M, Gerken G, Hoyer DP, Bertram S, Theysohn JM, Thodou V, Kahraman A. Liver maximum capacity (LiMAx) test as a helpful prognostic tool in acute liver failure with sepsis: a case report. BMC Anesthesiol 2018; 18:71. [PMID: 29925334 PMCID: PMC6011251 DOI: 10.1186/s12871-018-0538-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/30/2018] [Indexed: 12/21/2022] Open
Abstract
Background Acute liver failure (ALF) is a life-threatening entity particularly when infectious complications worsen the clinical course. Urgent liver transplantation (LT) is frequently the only curative treatment. However, in some cases, recovery is observed under conservative treatment. Therefore, prognostic tools for estimating course of the disease are of great clinical interest. Since laboratory parameters sometimes lack sensitivity and specificity, enzymatic liver function measured by liver maximum capacity (LiMAx) test may offer novel and valuable additional information in this setting. Case presentation We here report the case of a formerly healthy 20-year old male caucasian patient who was admitted to our clinic for ALF of unknown origin in December 2017. Laboratory parameters confirmed the diagnosis with an initial MELD score of 28 points. Likewise, enzymatic liver function was significantly impaired with a value of 147 [> 315] μg/h/kg. Clinical and biochemical analyses for viral-, autoimmune-, or drug-induced hepatitis were negative. Liver synthesis parameters further deteriorated reaching a MELD score of 40 points whilst clinical course was complicated by septic pneumonia leading to severe hepatic encephalopathy grade III-IV, finally resulting in mechanical ventilation of the patient. Interestingly, although clinical course and laboratory data suggested poor outcome, serial LiMAx test revealed improvement of the enzymatic liver function at this time point increasing to 169 μg/h/kg. Clinical condition and laboratory data slowly improved likewise, however with significant time delay of 11 days. Finally, the patient could be dismissed from our clinic after 37 days. Conclusion Estimating prognosis in patients with ALF is challenging by use of the established scores. In our case, improvement of enzymatic liver function measured by the LiMAx test was the first parameter predicting beneficial outcome in a patient with ALF complicated by sepsis.
Collapse
Affiliation(s)
- Matthias Buechter
- Department of Gastroenterology and Hepatology, University Clinic of Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Guido Gerken
- Department of Gastroenterology and Hepatology, University Clinic of Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Dieter P Hoyer
- Department of General, Visceral, and Transplantation Surgery, University Clinic of Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Stefanie Bertram
- Institute of Pathology, University Clinic of Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Jens M Theysohn
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Clinic of Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Viktoria Thodou
- Department of Gastroenterology and Hepatology, University Clinic of Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Alisan Kahraman
- Department of Gastroenterology and Hepatology, University Clinic of Essen, Hufelandstr. 55, 45147, Essen, Germany
| |
Collapse
|
37
|
Krawitz S, Lingiah V, Pyrsopoulos NT. Acute Liver Failure: Mechanisms of Disease and Multisystemic Involvement. Clin Liver Dis 2018; 22:243-256. [PMID: 29605064 DOI: 10.1016/j.cld.2018.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acute liver failure is accompanied by a pathologic syndrome common to numerous different etiologies of liver injury. This acute liver failure syndrome leads to potentially widespread devastating end-organ consequences. Systemic dysregulation and dysfunction is likely propagated via inflammation as well as underlying hepatic failure itself. Decoding the mechanisms of the disease process and multisystemic involvement of acute liver failure offers potential for targeted treatment opportunities and improved clinical outcomes in this sick population.
Collapse
Affiliation(s)
- Steven Krawitz
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, 185 South Orange Avenue, H-534, Newark, NJ 07103, USA.
| | - Vivek Lingiah
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, 185 South Orange Avenue, H-530, Newark, NJ 07103, USA
| | - Nikolaos T Pyrsopoulos
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, H-536, Newark, NJ 07103, USA
| |
Collapse
|
38
|
Yang Y, Zhong Z, Ding Y, Zhang W, Ma Y, Zhou L. Bioinformatic identification of key genes and pathways that may be involved in the pathogenesis of HBV-associated acute liver failure. Genes Dis 2018; 5:349-357. [PMID: 30591937 PMCID: PMC6303483 DOI: 10.1016/j.gendis.2018.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 02/13/2018] [Indexed: 02/07/2023] Open
Abstract
In order to explore the molecular mechanisms behind the pathogenesis of acute liver failure (ALF) associated with hepatitis B virus (HBV) infection, the present study aimed to identify potential key genes and pathways involved using samples from patients with HBV-associated ALF. The GSE38941 array dataset was downloaded from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between 10 liver samples from 10 healthy donors and 17 liver specimens from 4 patients with HBV-associated ALF were analyzed using the Linear Models for Microarray Data package. Gene Ontology and KEGG pathway enrichment analyses of the DEGs were performed, followed by functional annotation of the genes and construction of a protein–protein interaction (PPI) network. Subnetwork modules were subsequently identified and analyzed. In total, 3142 DEGs were identified, of which 1755 were upregulated and 1387 were downregulated. The extracellular exosome, immune response, and inflammatory response pathways may potentially be used as biomarkers of ALF pathogenesis. In total, 17 genes (including CCR5, CXCR4, ALB, C3, VGEFA, and IGF1) were identified as hub genes in the PPI network and may therefore be potential marker genes for HBV-associated ALF.
Collapse
Key Words
- ALF, acute liver failure
- BP, biological processes
- CC, cell components
- DEGs, differentially expressed genes
- Differentially expressed genes
- Function enrichment analysis
- GEO, Gene Expression Omnibus
- GO, Gene Ontology
- HBV, Hepatitis B Virus
- HBV-associated ALF
- HSPC, hepatic stem/progenitor cells
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- MF, molecular functions
- Module analysis
- OLT, orthotopic liver transplantation
- PPI, protein–protein interaction
- Protein–protein interaction network
- STRING, the Search Tool for the Retrieval of Interacting Genes
Collapse
Affiliation(s)
- Yalan Yang
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Research Center for Medicine and Social Development, Chongqing, 400016, China.,Innovation Center for Social Risk Governance in Health, Chongqing, 400016, China
| | - Zhaohui Zhong
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Research Center for Medicine and Social Development, Chongqing, 400016, China.,Innovation Center for Social Risk Governance in Health, Chongqing, 400016, China
| | - Yubin Ding
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Research Center for Medicine and Social Development, Chongqing, 400016, China.,Innovation Center for Social Risk Governance in Health, Chongqing, 400016, China
| | - Wanfeng Zhang
- Department of Bioinformatics, Chongqing Medical University, Chongqing, 400016, China
| | - Yang Ma
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Research Center for Medicine and Social Development, Chongqing, 400016, China.,Innovation Center for Social Risk Governance in Health, Chongqing, 400016, China
| | - Li Zhou
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Research Center for Medicine and Social Development, Chongqing, 400016, China.,Innovation Center for Social Risk Governance in Health, Chongqing, 400016, China
| |
Collapse
|
39
|
Yang X, Chen Y, Zhang J, Tang T, Kong Y, Ye F, Zhang X, Liu X, Lin S. Thymosin α1 treatment reduces hepatic inflammation and inhibits hepatocyte apoptosis in rats with acute liver failure. Exp Ther Med 2018; 15:3231-3238. [PMID: 29545840 PMCID: PMC5840938 DOI: 10.3892/etm.2018.5843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 11/20/2017] [Indexed: 12/18/2022] Open
Abstract
The present study aimed to evaluate whether thymosin α1 (Tα1) increases survival rates through the improvement of immunofunction and inhibition of hepatocyte apoptosis in rats with acute liver failure (ALF). A total of 25 rats were randomly divided into the control group (CG), the model group (MG) and the treatment group (TG). The CG received an intraperitoneal injection of saline (2 ml). The ALF rat model was established by the intraperitoneal injection of D-galactosamine (700 mg/kg) and lipopolysaccharide (10 µg/kg). The TG received an intraperitoneal injection of Tα1 (0.03 mg/kg) 1 h prior to and 30 min after modeling. The survival rates of the rats were recorded. An additional 63 rats were randomly divided into a CG (n=3), MG (n=30) and TG (n=30). Three rats were sacrificed at 3, 6, 9 and 12 h after establishment of the rat model to detect plasma alanine transaminase (ALT), aspartate transaminase (AST), total bilirubin (TBIL), tumor necrosis factor (TNF)-α and interleukin-10 (IL-10). Liver samples were stained with hematoxylin and eosin and TUNEL, and reverse transcription-quantitative polymerase chain reaction and western blot analysis were performed to detect B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) in liver tissue. The results indicated that the survival rate of the TG was significantly higher compared with that of the MG at 24 h (P<0.05). Plasma ALT, AST and TBIL in the MG and TG increased over time (3–12 h), with ALT, AST and TBIL observed to be significantly lower in the TG compared with the MG at each time-point (P<0.05). Hepatocellular necrosis, hemorrhage and inflammatory cell infiltration of ALF were aggravated over time (3–12 h) in the MG and TG. Notably, in the Tα1-treated rats, the hepatocytes appeared healthier with fewer apoptotic cells compared with those from the MG at the same time-points. Hepatocyte apoptotic index increased in the TG and MG, but was significantly lower in the TG compared with the MG at each time-point (P<0.05) in TUNEL assays. Plasma TNF-α and IL-10 in the MG and TG increased over time (3–12 h), with TNF-α observed to be significantly lower in the TG compared with the MG at each time-point (P<0.05), however, IL-10 was observed to be significantly higher in the TG compared with the MG at each time-point (P<0.05). Bax mRNA expression was significantly lower in the TG compared with the MG at each time-point (P<0.05), whereas Bcl-2 was significantly higher (P<0.05). In conclusion, Tα1 improved survival rates in an ALF rat model by downregulating TNF-α and upregulating IL-10, leading to the attenuation of hepatic inflammation and hepatocyte apoptosis.
Collapse
Affiliation(s)
- Xueliang Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yunru Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jian Zhang
- The Second Department of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Tiantian Tang
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Ying Kong
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Feng Ye
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xi Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaojing Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shumei Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
40
|
Ison MG, Heldman M. Bacterial Infections. HEPATIC CRITICAL CARE 2018. [PMCID: PMC7120903 DOI: 10.1007/978-3-319-66432-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial infections are the most significant infectious source of morbidity and mortality in cirrhotic patients. Bacteria infections result is both acute decompensation in chronic liver disease and mortality in patients with decompensated cirrhosis. Spontaneous bacterial peritonitis (SBP), bacteremia, pneumonia, urinary tract infections (UTI) and skin and soft tissue infection (SSTI) are the most significant sources of infection in cirrhosis. Bacterial infections can precipitate renal failure and worsening hepatic encephalopathy, and patients with sepsis and liver disease have higher rates of acute respiratory distress syndrome (ARDS) and coagulopathy.
Collapse
|
41
|
Yan L, Hu X, Wu Q, Jiang R, Zhang S, Ling Q, Liu H, Jiang X, Wan J, Liu Y. CQMUH-011, a novel adamantane sulfonamide compound, inhibits lipopolysaccharide- and D-galactosamine-induced fulminant hepatic failure in mice. Int Immunopharmacol 2017; 47:231-243. [PMID: 28433945 DOI: 10.1016/j.intimp.2017.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 12/11/2022]
Abstract
CQMUH-011, a novel adamantane sulfonamide compound, was shown to suppress macrophage activation and proliferation in our previous study. However, it is unknown whether CQMUH-011 has anti-inflammatory and hepatoprotective properties. In this study, we investigated the potential effects and mechanisms of CQMUH-011 on lipopolysaccharide (LPS)-induced RAW264.7 cell activation in vitro and LPS- and D-galactosamine (D-GalN)-induced fulminant hepatic failure (FHF) in vivo. The results showed that in RAW264.7 cells challenged by LPS, CQMUH-011 inhibited cell proliferation and induced cell cycle arrest and apoptosis. Furthermore, CQMUH-011 reduced tumor necrosis factor (TNF)-α and interleukin (IL)-1β production and down-regulated the overexpression of toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB induced by LPS in RAW264.7 cells. In vivo, CQMUH-011 reduced serum levels of aspartic aminotransferase and alanine transaminase and improved the mortality and hepatic pathological damage induced by LPS/D-GalN in mice. Moreover, CQMUH-011 significantly inhibited the serum levels of proinflammatory mediators, including TNF-α, IL-6, IL-1β, nitric oxide (NO), and prostaglandin E2 (PGE2), and down-regulated the protein expression of TLR4, p38 mitogen-activated protein kinases, NF-κB, NF-κB inhibitor α (IκBα), IκB kinase β (IKKβ), cyclooxygenase-2 (COX-2) and inducible NO synthases (iNOS) induced by LPS/D-GalN in mice. In conclusion, these results demonstrated that CQMUH-011 has a notable anti-inflammatory effect and protects mice from LPS/D-GalN-induced FHF and that the molecular mechanisms might be related to the inhibition of the TLR4/NF-κB signaling pathway activation, the subsequent decrease in proinflammatory mediator production, and the inhibition of macrophage activation.
Collapse
Affiliation(s)
- Liping Yan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Xiangnan Hu
- College of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Qihong Wu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Rong Jiang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Sisi Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Qiao Ling
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Hailin Liu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Xuejun Jiang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Jingyuan Wan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Yingju Liu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
42
|
Rajakumar A, Kaliamoorthy I, Rela M, Mandell MS. Small-for-Size Syndrome: Bridging the Gap Between Liver Transplantation and Graft Recovery. Semin Cardiothorac Vasc Anesth 2017; 21:252-261. [DOI: 10.1177/1089253217699888] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In living donor liver transplantation, optimal graft size is estimated from values like graft volume/standard liver volume and graft/recipient body weight ratio but the final functional hepatic mass is influenced by other donor and recipient factors. Grafts with insufficient functional hepatic mass can produce a life-threatening condition with rapidly progressive liver failure called small-for-size syndrome (SFSS). Diagnosis of SFSS requires careful surveillance for signs of inadequate hepatocellular function, residual portal hypertension, and systemic inflammation that suggest rapidly progressive liver failure. Early diagnosis, symptom control, and addressing the cause of SFSS may prevent the need for retransplantation. With increased attention to avoiding donor risk, intensivists will be confronted with more SFSS recipients. In this review, we aim to outline a systematic approach to the medical management of patients with SFSS by providing a concise synopsis of general supportive care—neurological, cardiovascular, and renal support, mechanical ventilation, nutritional support, infection control, and tailored immunosuppression—with an aim to avoid end-organ damage or death and a review of current interventions including liver support devices, portal flow modulating drugs, and other experimental interventions that aim to preserve existing hepatic mass and improve conditions for hepatic regeneration. We examine evidence for SFSS interventions to provide the reader with information that may assist in clinical decision making. Points of controversy in care are purposefully highlighted to identify areas where additional experimental work is still needed. A full understanding of the pathophysiology of SFSS and measures to support liver regeneration will guide effective management.
Collapse
|