1
|
Fujita Y, Kosakamoto H, Obata F. Microbiota-derived acetylcholine can promote gut motility in Drosophila melanogaster. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230075. [PMID: 38497270 PMCID: PMC10945411 DOI: 10.1098/rstb.2023.0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/04/2023] [Indexed: 03/19/2024] Open
Abstract
The gut microbiota is crucial for intestinal health, including gastrointestinal (GI) motility. How commensal bacterial species influence GI motility has not been fully elucidated. A major factor of GI motility is the gut contraction promoting the propulsive movement of orally ingested materials. Here, we developed a method to monitor and quantify gut contractions in living Drosophila melanogaster larvae. We found that the culture medium of an isolated strain Lactiplantibacillus plantarum Lsi promoted gut contraction in vivo, which was not observed in Leuconostoc sp. Leui nor Acetobacter persici Ai culture medium. To identify bacteria-derived metabolites, we performed metabolome analysis of the culture media by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Of the 66 metabolites detected, we found that some metabolites changed in a species-specific manner. Among them, acetylcholine was specifically produced by L. plantarum. Feeding exogenous acetylcholine increased the frequency of gut contractions, which was blocked by D-tubocurarine, an inhibitor of nicotinic acetylcholine receptors. In this study, we propose a mechanism by which the gut microbiota influences Drosophila gut motility. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Yuka Fujita
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Hina Kosakamoto
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Fumiaki Obata
- RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Nardini L, Brito-Fravallo E, Campagne P, Pain A, Genève C, Vernick KD, Mitri C. The voltage-gated sodium channel, para, limits Anopheles coluzzii vector competence in a microbiota dependent manner. Sci Rep 2023; 13:14572. [PMID: 37666840 PMCID: PMC10477260 DOI: 10.1038/s41598-023-40432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023] Open
Abstract
The voltage-gated sodium channel, para, is a target of DDT and pyrethroid class insecticides. Single nucleotide mutations in para, called knockdown resistant or kdr, which contribute to resistance against DDT and pyrethroid insecticides, have been correlated with increased susceptibility of Anopheles to the human malaria parasite Plasmodium falciparum. However, a direct role of para activity on Plasmodium infection has not yet been established. Here, using RNA-mediated silencing, we provide in vivo direct evidence for the requirement of wild-type (wt) para function for insecticide activity of deltamethrin. Depletion of wt para, which is susceptible to insecticide, causes deltamethrin tolerance, indicating that insecticide-resistant kdr alleles are likely phenocopies of loss of para function. We then show that normal para activity in An. coluzzii limits Plasmodium infection prevalence for both P. falciparum and P. berghei. A transcriptomic analysis revealed that para activity does not modulate the expression of immune genes. However, loss of para function led to enteric dysbiosis with a significant increase in the total bacterial abundance, and we show that para function limiting Plasmodium infection is microbiota dependent. In the context of the bidirectional "enteric microbiota-brain" axis studied in mammals, these results pave the way for studying whether the activity of the nervous system could control Anopheles vector competence.
Collapse
Affiliation(s)
- Luisa Nardini
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, CNRS, Institut Pasteur, UMR2000, Université de Paris, 75015, Paris, France
| | - Emma Brito-Fravallo
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, CNRS, Institut Pasteur, UMR2000, Université de Paris, 75015, Paris, France
| | - Pascal Campagne
- Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Université de Paris, 75015, Paris, France
| | - Adrien Pain
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, CNRS, Institut Pasteur, UMR2000, Université de Paris, 75015, Paris, France
| | - Corinne Genève
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, CNRS, Institut Pasteur, UMR2000, Université de Paris, 75015, Paris, France
| | - Kenneth D Vernick
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, CNRS, Institut Pasteur, UMR2000, Université de Paris, 75015, Paris, France
| | - Christian Mitri
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, CNRS, Institut Pasteur, UMR2000, Université de Paris, 75015, Paris, France.
| |
Collapse
|
3
|
Corbin KD, Carnero EA, Dirks B, Igudesman D, Yi F, Marcus A, Davis TL, Pratley RE, Rittmann BE, Krajmalnik-Brown R, Smith SR. Host-diet-gut microbiome interactions influence human energy balance: a randomized clinical trial. Nat Commun 2023; 14:3161. [PMID: 37258525 PMCID: PMC10232526 DOI: 10.1038/s41467-023-38778-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023] Open
Abstract
The gut microbiome is emerging as a key modulator of human energy balance. Prior studies in humans lacked the environmental and dietary controls and precision required to quantitatively evaluate the contributions of the gut microbiome. Using a Microbiome Enhancer Diet (MBD) designed to deliver more dietary substrates to the colon and therefore modulate the gut microbiome, we quantified microbial and host contributions to human energy balance in a controlled feeding study with a randomized crossover design in young, healthy, weight stable males and females (NCT02939703). In a metabolic ward where the environment was strictly controlled, we measured energy intake, energy expenditure, and energy output (fecal and urinary). The primary endpoint was the within-participant difference in host metabolizable energy between experimental conditions [Control, Western Diet (WD) vs. MBD]. The secondary endpoints were enteroendocrine hormones, hunger/satiety, and food intake. Here we show that, compared to the WD, the MBD leads to an additional 116 ± 56 kcals (P < 0.0001) lost in feces daily and thus, lower metabolizable energy for the host (89.5 ± 0.73%; range 84.2-96.1% on the MBD vs. 95.4 ± 0.21%; range 94.1-97.0% on the WD; P < 0.0001) without changes in energy expenditure, hunger/satiety or food intake (P > 0.05). Microbial 16S rRNA gene copy number (a surrogate of biomass) increases (P < 0.0001), beta-diversity changes (whole genome shotgun sequencing; P = 0.02), and fermentation products increase (P < 0.01) on an MBD as compared to a WD along with significant changes in the host enteroendocrine system (P < 0.0001). The substantial interindividual variability in metabolizable energy on the MBD is explained in part by fecal SCFAs and biomass. Our results reveal the complex host-diet-microbiome interplay that modulates energy balance.
Collapse
Affiliation(s)
- Karen D Corbin
- AdventHealth Translational Research Institute, Orlando, FL, USA
| | - Elvis A Carnero
- AdventHealth Translational Research Institute, Orlando, FL, USA
| | - Blake Dirks
- Biodesign Center for Health through Microbiomes, Arizona State University, Tempe, AZ, USA
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Daria Igudesman
- AdventHealth Translational Research Institute, Orlando, FL, USA
| | - Fanchao Yi
- AdventHealth Translational Research Institute, Orlando, FL, USA
| | - Andrew Marcus
- Biodesign Center for Health through Microbiomes, Arizona State University, Tempe, AZ, USA
- Skyology Inc, San Francisco, CA, USA
| | - Taylor L Davis
- Biodesign Center for Health through Microbiomes, Arizona State University, Tempe, AZ, USA
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | | | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Center for Health through Microbiomes, Arizona State University, Tempe, AZ, USA.
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA.
| | - Steven R Smith
- AdventHealth Translational Research Institute, Orlando, FL, USA.
| |
Collapse
|
4
|
Corbin KD, Carnero EA, Dirks B, Igudesman D, Yi F, Marcus A, Davis TL, Pratley RE, Rittmann BE, Krajmalnik-Brown R, Smith SR. Reprogramming the Human Gut Microbiome Reduces Dietary Energy Harvest. RESEARCH SQUARE 2023:rs.3.rs-2382790. [PMID: 36747835 PMCID: PMC9901041 DOI: 10.21203/rs.3.rs-2382790/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The gut microbiome is emerging as a key modulator of host energy balance1. We conducted a quantitative bioenergetics study aimed at understanding microbial and host factors contributing to energy balance. We used a Microbiome Enhancer Diet (MBD) to reprogram the gut microbiome by delivering more dietary substrates to the colon and randomized healthy participants into a within-subject crossover study with a Western Diet (WD) as a comparator. In a metabolic ward where the environment was strictly controlled, we measured energy intake, energy expenditure, and energy output (fecal, urinary, and methane)2. The primary endpoint was the within-participant difference in host metabolizable energy between experimental conditions. The MBD led to an additional 116 ± 56 kcals lost in feces daily and thus, lower metabolizable energy for the host by channeling more energy to the colon and microbes. The MBD drove significant shifts in microbial biomass, community structure, and fermentation, with parallel alterations to the host enteroendocrine system and without altering appetite or energy expenditure. Host metabolizable energy on the MBD had quantitatively significant interindividual variability, which was associated with differences in the composition of the gut microbiota experimentally and colonic transit time and short-chain fatty acid absorption in silico. Our results provide key insights into how a diet designed to optimize the gut microbiome lowers host metabolizable energy in healthy humans.
Collapse
Affiliation(s)
- Karen D. Corbin
- AdventHealth Translational Research Institute, Orlando, Florida
| | | | - Blake Dirks
- Biodesign Center for Health through Microbiomes, Tempe, AZ
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ
| | - Daria Igudesman
- AdventHealth Translational Research Institute, Orlando, Florida
| | - Fanchao Yi
- AdventHealth Translational Research Institute, Orlando, Florida
| | - Andrew Marcus
- Biodesign Center for Health through Microbiomes, Tempe, AZ
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ
| | - Taylor L. Davis
- Biodesign Center for Health through Microbiomes, Tempe, AZ
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ
| | | | - Bruce E. Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ
| | - Rosa Krajmalnik-Brown
- Biodesign Center for Health through Microbiomes, Tempe, AZ
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ
| | - Steven R. Smith
- AdventHealth Translational Research Institute, Orlando, Florida
| |
Collapse
|
5
|
Procházková N, Falony G, Dragsted LO, Licht TR, Raes J, Roager HM. Advancing human gut microbiota research by considering gut transit time. Gut 2023; 72:180-191. [PMID: 36171079 PMCID: PMC9763197 DOI: 10.1136/gutjnl-2022-328166] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/10/2022] [Indexed: 02/04/2023]
Abstract
Accumulating evidence indicates that gut transit time is a key factor in shaping the gut microbiota composition and activity, which are linked to human health. Both population-wide and small-scale studies have identified transit time as a top covariate contributing to the large interindividual variation in the faecal microbiota composition. Despite this, transit time is still rarely being considered in the field of the human gut microbiome. Here, we review the latest research describing how and why whole gut and segmental transit times vary substantially between and within individuals, and how variations in gut transit time impact the gut microbiota composition, diversity and metabolism. Furthermore, we discuss the mechanisms by which the gut microbiota may causally affect gut motility. We argue that by taking into account the interindividual and intraindividual differences in gut transit time, we can advance our understanding of diet-microbiota interactions and disease-related microbiome signatures, since these may often be confounded by transient or persistent alterations in transit time. Altogether, a better understanding of the complex, bidirectional interactions between the gut microbiota and transit time is required to better understand gut microbiome variations in health and disease.
Collapse
Affiliation(s)
- Nicola Procházková
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Gwen Falony
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
- Center for Microbiology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Tine Rask Licht
- National Food Institute, Technical University, Kgs. Lyngby, Denmark
| | - Jeroen Raes
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
- Center for Microbiology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Henrik M Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
6
|
Bozomitu L, Miron I, Adam Raileanu A, Lupu A, Paduraru G, Marcu FM, Buga AML, Rusu DC, Dragan F, Lupu VV. The Gut Microbiome and Its Implication in the Mucosal Digestive Disorders. Biomedicines 2022; 10:biomedicines10123117. [PMID: 36551874 PMCID: PMC9775516 DOI: 10.3390/biomedicines10123117] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/10/2022] Open
Abstract
The gastrointestinal (GI) tract is one of the most studied compartments of the human body as it hosts the largest microbial community including trillions of germs. The relationship between the human and its associated flora is complex, as the microbiome plays an important role in nutrition, metabolism and immune function. With a dynamic composition, influenced by many intrinsic and extrinsic factors, there is an equilibrium maintained in the composition of GI microbiota, translated as "eubiosis". Any disruption of the microbiota leads to the development of different local and systemic diseases. This article reviews the human GI microbiome's composition and function in healthy individuals as well as its involvement in the pathogenesis of different digestive disorders. It also highlights the possibility to consider flora manipulation a therapeutic option when treating GI diseases.
Collapse
Affiliation(s)
- Laura Bozomitu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ingrith Miron
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Anca Adam Raileanu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (A.A.R.); (A.L.)
| | - Ancuta Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (A.A.R.); (A.L.)
| | - Gabriela Paduraru
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Florin Mihai Marcu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Ana Maria Laura Buga
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Daniela Carmen Rusu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Felicia Dragan
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Vasile Valeriu Lupu
- Pediatrics Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
7
|
Liu J, Tan Y, Cheng H, Zhang D, Feng W, Peng C. Functions of Gut Microbiota Metabolites, Current Status and Future Perspectives. Aging Dis 2022; 13:1106-1126. [PMID: 35855347 PMCID: PMC9286904 DOI: 10.14336/ad.2022.0104] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota, a collection of microorganisms that live within gastrointestinal tract, provides crucial signaling metabolites for the physiological of hosts. In healthy state, gut microbiota metabolites are helpful for maintaining the basic functions of hosts, whereas disturbed production of these metabolites can lead to numerous diseases such as metabolic diseases, cardiovascular diseases, gastrointestinal diseases, neurodegenerative diseases, and cancer. Although there are many reviews about the specific mechanisms of gut microbiota metabolites on specific diseases, there is no comprehensive summarization of the functions of these metabolites. In this Opinion, we discuss the knowledge of gut microbiota metabolites including the types of gut microbiota metabolites and their ways acting on targets. In addition, we summarize their physiological and pathologic functions in health and diseases, such as shaping the composition of gut microbiota and acting as nutrition. This paper can be helpful for understanding the roles of gut microbiota metabolites and thus provide guidance for developing suitable therapeutic strategies to combat microbial-driven diseases and improve health.
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
8
|
Layunta E, Forcén R, Grasa L. TLR2 and TLR4 Modulate Mouse Ileal Motility by the Interaction with Muscarinic and Nicotinic Receptors. Cells 2022; 11:cells11111791. [PMID: 35681486 PMCID: PMC9180263 DOI: 10.3390/cells11111791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a chronic functional bowel disorder characterized by intestinal dysmotility. Changes in intestinal microbiota (dysbiosis) can lead to alterations in neuro-muscular functions in the gut. Toll-like receptors (TLRs) 2 and 4 recognize intestinal bacteria and are involved in the motor response induced by gastrointestinal (GI) neurotransmitters. Acetylcholine (ACh) is a well-known neurotransmitter involved in the regulation of GI motility. This study aimed to evaluate the role of TLR2 and TLR4 in the intestinal motor-response induced by ACh in the mouse ileum, as well as the expression and function of the muscarinic and nicotinic ACh receptors. Muscle contractility studies showed that the contractions induced by ACh were significantly lower in TLR2−/− and TLR4−/− with respect to WT mice. In WT mice, the contractions induced by ACh were reduced in the presence of AF-DX AF-DX 116 (a muscarinic ACh receptor (mAChR) M2 antagonist), 4-DAMP (a mAChR M3 antagonist), mecamylamine (a nicotinic AChR receptor (nAChR) α3β4 antagonist) and α-bungarotoxin (a nAChR α7 antagonist). In TLR2−/− mice, the contractions induced by ACh were increased by AF-DX 116 and mecamylamine. In TLR4−/− mice, the contractions induced by ACh were reduced by α-bungarotoxin and 4-DAMP. The mRNA and protein expressions of M3 and α3 receptors were diminished in the ileum from TLR2−/− and TLR4−/− with respect to WT mice. However, the levels of mRNA and protein of β4 were diminished only in TLR4−/− but not in TLR2−/− mice. In conclusion, our results show that TLR2 and TLR4 modulates the motor responses to ACh in the mouse ileum. TLR2 acts on muscarinic M2 and M3 and nicotinic α3β4 ACh receptors, while TLR4 acts on muscarinic M3 and nicotinic α3β4 and α7 ACh receptors.
Collapse
Affiliation(s)
- Elena Layunta
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 9C, 41390 Gothenburg, Sweden;
| | - Raquel Forcén
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain;
| | - Laura Grasa
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain;
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
- Instituto Agroalimentario de Aragón—IA2—(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
- Correspondence:
| |
Collapse
|
9
|
Ma H, Li X, Yang H, Qiu Y, Xiao W. The Pathology and Physiology of Ileostomy. Front Nutr 2022; 9:842198. [PMID: 35529469 PMCID: PMC9072868 DOI: 10.3389/fnut.2022.842198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
An ileostomy is a surgery that is commonly performed to protect low pelvic anastomoses or prevent high-risk anastomotic leakages. However, various postoperative complications remain of major concern. After an ileostomy, the distal intestinal segment is left open for an extended period and is in a non-functional state. Consequently, the intestinal mucosa, smooth muscle, and microbiota undergo significant changes that are closely related to postoperative recovery and complications. A systematic description of these changes is necessary to understand the relationship among them and take more effective measures for postoperative intervention.
Collapse
Affiliation(s)
- Haitao Ma
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiaolong Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
10
|
The Interplay between Nutrition, Innate Immunity, and the Commensal Microbiota in Adaptive Intestinal Morphogenesis. Nutrients 2021; 13:nu13072198. [PMID: 34206809 PMCID: PMC8308283 DOI: 10.3390/nu13072198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022] Open
Abstract
The gastrointestinal tract is a functionally and anatomically segmented organ that is colonized by microbial communities from birth. While the genetics of mouse gut development is increasingly understood, how nutritional factors and the commensal gut microbiota act in concert to shape tissue organization and morphology of this rapidly renewing organ remains enigmatic. Here, we provide an overview of embryonic mouse gut development, with a focus on the intestinal vasculature and the enteric nervous system. We review how nutrition and the gut microbiota affect the adaptation of cellular and morphologic properties of the intestine, and how these processes are interconnected with innate immunity. Furthermore, we discuss how nutritional and microbial factors impact the renewal and differentiation of the epithelial lineage, influence the adaptation of capillary networks organized in villus structures, and shape the enteric nervous system and the intestinal smooth muscle layers. Intriguingly, the anatomy of the gut shows remarkable flexibility to nutritional and microbial challenges in the adult organism.
Collapse
|
11
|
Vona R, Pallotta L, Cappelletti M, Severi C, Matarrese P. The Impact of Oxidative Stress in Human Pathology: Focus on Gastrointestinal Disorders. Antioxidants (Basel) 2021; 10:201. [PMID: 33573222 PMCID: PMC7910878 DOI: 10.3390/antiox10020201] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence shows that oxidative stress plays an essential role in the pathogenesis and progression of many diseases. The imbalance between the production of reactive oxygen species (ROS) and the antioxidant systems has been extensively studied in pulmonary, neurodegenerative cardiovascular disorders; however, its contribution is still debated in gastrointestinal disorders. Evidence suggests that oxidative stress affects gastrointestinal motility in obesity, and post-infectious disorders by favoring the smooth muscle phenotypic switch toward a synthetic phenotype. The aim of this review is to gain insight into the role played by oxidative stress in gastrointestinal pathologies (GIT), and the involvement of ROS in the signaling underlying the muscular alterations of the gastrointestinal tract (GIT). In addition, potential therapeutic strategies based on the use of antioxidants for the treatment of inflammatory gastrointestinal diseases are reviewed and discussed. Although substantial progress has been made in identifying new techniques capable of assessing the presence of oxidative stress in humans, the biochemical-molecular mechanisms underlying GIT mucosal disorders are not yet well defined. Therefore, further studies are needed to clarify the mechanisms through which oxidative stress-related signaling can contribute to the alteration of the GIT mucosa in order to devise effective preventive and curative therapeutic strategies.
Collapse
Affiliation(s)
- Rosa Vona
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Lucia Pallotta
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (L.P.); (M.C.); (C.S.)
| | - Martina Cappelletti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (L.P.); (M.C.); (C.S.)
| | - Carola Severi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (L.P.); (M.C.); (C.S.)
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
12
|
Deschenes MR, Tufts HL, Oh J, Li S, Noronha AL, Adan MA. Effects of exercise training on neuromuscular junctions and their active zones in young and aged muscles. Neurobiol Aging 2020; 95:1-8. [PMID: 32739557 DOI: 10.1016/j.neurobiolaging.2020.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/28/2022]
Abstract
The neuromuscular junction (NMJ) connects the motor neuron with myofibers allowing muscle contraction. Both aging and increased activity result in NMJ remodeling. Here, the effects of exercise were examined in young and aged soleus muscles. Using immunofluorescent staining procedures, cellular and active zone components of the NMJ were quantified following a treadmill running program. Immunofluorescence was employed to determine myofiber profiles (size and type). Two-way analysis of variance procedures with main effects of age and treatment showed that when analyzing NMJs at the cellular level, significant (p ≤ 0.05) effects were identified for age, but not treatment. However, when examining subcellular active zones, effects for exercise, but not for age, were detected. Myofiber cross-sectional area showed that aging elicited atrophy and that among younger muscles endurance exercise training yielded decrements in myofiber size. Conversely, among aged muscles training elicited whole muscle and myofiber trends (p < 0.10) toward hypertrophy. Thus, different components of the neuromuscular system harbor unique sensitivities to various stimuli enabling proper adaptations to attain optimal function under differing conditions.
Collapse
Affiliation(s)
- Michael R Deschenes
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA, USA; Program in Neuroscience, College of William & Mary, Williamsburg, VA, USA.
| | - Hannah L Tufts
- Program in Neuroscience, College of William & Mary, Williamsburg, VA, USA
| | - Jeongeun Oh
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA, USA
| | - Shuhan Li
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA, USA
| | - Alexa L Noronha
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA, USA
| | - Matthew A Adan
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA, USA
| |
Collapse
|
13
|
Arnaboldi F, Sommariva M, Opizzi E, Rasile M, Camelliti S, Busnelli M, Menegola E, Di Renzo F, Menon A, Barajon I. Expression of Toll-like receptors 4 and 7 in murine peripheral nervous system development. Ann Anat 2020; 231:151526. [PMID: 32380196 DOI: 10.1016/j.aanat.2020.151526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 02/03/2020] [Accepted: 04/10/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Toll-Like Receptors (TLRs) play a critical role in the innate and adaptive immune system. They are the mammalian orthologs of Drosophila melanogaster protein Toll, which has been proved to have an early morphogenetic role in invertebrate embryogenesis that in the adult switches to an immune function. AIM The aim of this study was to evaluate the expression of TLR4 and TLR7 during dorsal root ganglia (DRG), paravertebral ganglia (PVG), and enteric nervous system (ENS) murine development. METHODS Mouse embryos from different stages (i.e. E12 to E18) were processed for immunolocalization analysis on formalin-fixed paraffin-embedded sections, and isolated intestine were processed for whole-mount preparations. RESULTS We observed a differentially regulated expression of TLR4 and TLR7 during embryogenesis and an overall increased expression of both receptors during development. While TLR4 was detectable in neurons of DRG and PVG starting from E14 and only from E18 in the ENS, TLR7 was already expressed in scattered neurons of all the investigated regions at E12. CONCLUSIONS TLR4 and TRL7 expression temporal patterns suggest a morphogenetic role for these receptors in the development of neural crest derivatives in mammals.
Collapse
Affiliation(s)
- Francesca Arnaboldi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy.
| | - Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy
| | - Emanuela Opizzi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy
| | - Marco Rasile
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Milano, Italy; Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milano, Italy
| | - Simone Camelliti
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy
| | - Marco Busnelli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti, 9/11/13, 20133 Milano, Italy
| | - Elena Menegola
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Francesca Di Renzo
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Alessandra Menon
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133 Milano, Italy; Clinica Ortopedica, ASST Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milan, Italy
| | - Isabella Barajon
- Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milano, Italy
| |
Collapse
|
14
|
Pados BF, Davitt ES. Pathophysiology of Gastroesophageal Reflux Disease in Infants and Nonpharmacologic Strategies for Symptom Management. Nurs Womens Health 2020; 24:101-114. [PMID: 32101759 DOI: 10.1016/j.nwh.2020.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/10/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Gastroesophageal reflux is common in young infants, particularly those born prematurely or with a history of medical complexity. The most recent clinical practice guidelines recommend the use of nonpharmacologic management strategies because of concerns about the safety of acid-reducing medications and a lack of evidence of their effectiveness. Our purpose in this article is to holistically review the pathophysiology of gastroesophageal reflux disease, identify symptom management targets, and describe nonpharmacologic strategies that nurses can implement and/or teach to parents to manage symptoms of gastroesophageal reflux. Strategies targeting stress, dysbiosis, food intolerances, feeding difficulties, and positioning are discussed. Nurses can work with families to identify factors contributing to gastroesophageal reflux disease and determine individualized strategies that can be used in lieu of, or in addition to, medication.
Collapse
|
15
|
Ranjbar S, Seyednejad SA, Nikfar S, Rahimi R, Abdollahi M. How can we develop better antispasmodics for irritable bowel syndrome? Expert Opin Drug Discov 2019; 14:549-562. [DOI: 10.1080/17460441.2019.1593369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sheyda Ranjbar
- Evidence-based Evaluation of Cost-Effectiveness and Clinical Outcomes, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Afshin Seyednejad
- Evidence-based Evaluation of Cost-Effectiveness and Clinical Outcomes, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Shekoufeh Nikfar
- Evidence-based Evaluation of Cost-Effectiveness and Clinical Outcomes, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Roja Rahimi
- Evidence-based Evaluation of Cost-Effectiveness and Clinical Outcomes, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Quigley EMM. Prebiotics and Probiotics in Digestive Health. Clin Gastroenterol Hepatol 2019; 17:333-344. [PMID: 30267869 DOI: 10.1016/j.cgh.2018.09.028] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
As the importance of the gut microbiota in health and disease is increasingly recognized interest in interventions that can modulate the microbiota and its interactions with its host has soared. Apart from diet, prebiotics and probiotics represent the most commonly used substances taken in an effort to sustain a healthy microbiome or restore balance when it is believed bacterial homeostasis has been disturbed in disease. While a considerable volume of basic science attests to the ability of various prebiotic molecules and probiotic strains to beneficially influence host immune responses, metabolic processes and neuro-endocrine pathways, the evidence base from human studies leaves much to be desired. This translational gap owes much to the manner in which this sector is regulated but also speaks to the challenges that confront the investigator who seeks to explore microbiota modulation in either healthy populations or those who suffer from common digestive ailments. For many products marketed as probiotics, some of the most fundamental issues relating to quality control, such as characterization, formulation, viability safety are scarcely addressed.
Collapse
Affiliation(s)
- Eamonn M M Quigley
- Division of Gastroenterology and Hepatology, Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas.
| |
Collapse
|
17
|
Müller M, Canfora EE, Blaak EE. Gastrointestinal Transit Time, Glucose Homeostasis and Metabolic Health: Modulation by Dietary Fibers. Nutrients 2018; 10:nu10030275. [PMID: 29495569 PMCID: PMC5872693 DOI: 10.3390/nu10030275] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/16/2018] [Accepted: 02/26/2018] [Indexed: 12/19/2022] Open
Abstract
Gastrointestinal transit time may be an important determinant of glucose homeostasis and metabolic health through effects on nutrient absorption and microbial composition, among other mechanisms. Modulation of gastrointestinal transit may be one of the mechanisms underlying the beneficial health effects of dietary fibers. These effects include improved glucose homeostasis and a reduced risk of developing metabolic diseases such as obesity and type 2 diabetes mellitus. In this review, we first discuss the regulation of gastric emptying rate, small intestinal transit and colonic transit as well as their relation to glucose homeostasis and metabolic health. Subsequently, we briefly address the reported health effects of different dietary fibers and discuss to what extent the fiber-induced health benefits may be mediated through modulation of gastrointestinal transit.
Collapse
Affiliation(s)
- Mattea Müller
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Universiteitssingel 50, 6229 ER, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Emanuel E Canfora
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Universiteitssingel 50, 6229 ER, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Ellen E Blaak
- Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Universiteitssingel 50, 6229 ER, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
18
|
Stern EK, Brenner DM. Gut Microbiota-Based Therapies for Irritable Bowel Syndrome. Clin Transl Gastroenterol 2018; 9:e134. [PMID: 29446765 PMCID: PMC5830546 DOI: 10.1038/ctg.2018.2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/11/2017] [Indexed: 11/15/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a common, heterogeneous disorder characterized by abdominal pain associated with changes in bowel habits. The pathogenesis of IBS is multifactorial and may relate to alterations in the gut microbiota, changes in visceral sensation and motility, and genetic and environmental factors. Administration of systemic antibiotics may increase the risk of IBS by altering gastrointestinal homeostasis. Therapeutic interventions for IBS with diarrhea that are thought to target alterations in the gut microbiota include the nonsystemic antibiotic rifaximin, the medical food serum-derived bovine immunoglobulin, prebiotics, probiotics, and dietary modification. SYN-010 is a modified-release statin formulation that reduces methane production by Methanobrevibacter smithii and is currently in development for the treatment of patients with constipation-predominant IBS. Use of these interventions in the management of patients with IBS may function to restore a healthy gut microbiota and ameliorate symptoms of IBS.
Collapse
Affiliation(s)
- Emily K Stern
- Division of Gastroenterology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Darren M Brenner
- Division of Gastroenterology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
19
|
Severi C, Carabotti M, Cicenia A, Pallotta L, Annibale B. Recent advances in understanding and managing diverticulitis. F1000Res 2018; 7:F1000 Faculty Rev-971. [PMID: 30026920 PMCID: PMC6039950 DOI: 10.12688/f1000research.14299.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2018] [Indexed: 02/05/2023] Open
Abstract
In the past few decades, the increasing socioeconomic burden of acute diverticulitis (AD) has become evident, and with the growth of the population age, this significant economic impact will likely continue to rise. Furthermore, recent evidence showed an increased rate of hospital admissions especially evident among women and younger individuals. The natural history and pathophysiology of this clinical condition is still to be fully defined, and efforts continue to be made in the identification of risk factors and the establishment of relative preventive strategies. The actual therapeutic strategies aimed to modulate gut microbiota, such as rifaximin or probiotics, or to reduce mucosal inflammation, such as mesalazine, present a relatively poor efficacy for both the prevention of the first AD episode (primary prevention) and its recurrence (secondary prevention). In the last few years, the main goal achieved has been in the management of AD in that uncomplicated AD can, to a larger extent, be managed in an outpatient setting with no or little supportive therapy, a strategy that will certainly impact on the health costs of this disease. The problem of AD recurrence remains a topic of debate. The aim of this review is to present updated evidence on AD epidemiology and relative open clinical questions and to analyze in detail predisposing and protective factors with an attempt to integrate their possible modes of action into the several pathogenic mechanisms that have been suggested to contribute to this multifactorial disease. A unifying hypothesis dealing with the colonic luminal and extra-luminal microenvironments separately is provided. Finally, evidence-based changes in therapeutic management will be summarized. Because of an ascertained multifactorial pathogenesis of uncomplicated and complicated AD, it is probable that a single 'causa prima' will not be identifiable, and a better stratification of patients could allow one to pursue tailored therapeutic algorithm strategies.
Collapse
Affiliation(s)
- Carola Severi
- Department of Internal Medicine and Medical Specialties, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Marilia Carabotti
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Hospital S. Andrea, University Sapienza of Rome, Via di Grottarossa 1035-1039, 00189 Roma, Italy
| | - Alessia Cicenia
- Department of Internal Medicine and Medical Specialties, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Lucia Pallotta
- Department of Internal Medicine and Medical Specialties, University Sapienza of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Bruno Annibale
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Hospital S. Andrea, University Sapienza of Rome, Via di Grottarossa 1035-1039, 00189 Roma, Italy
| |
Collapse
|
20
|
Baldascino E, Di Cristina G, Tedesco P, Hobbs C, Shaw TJ, Ponte G, Andrews PLR. The Gastric Ganglion of Octopus vulgaris: Preliminary Characterization of Gene- and Putative Neurochemical-Complexity, and the Effect of Aggregata octopiana Digestive Tract Infection on Gene Expression. Front Physiol 2017; 8:1001. [PMID: 29326594 PMCID: PMC5736919 DOI: 10.3389/fphys.2017.01001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/20/2017] [Indexed: 12/19/2022] Open
Abstract
The gastric ganglion is the largest visceral ganglion in cephalopods. It is connected to the brain and is implicated in regulation of digestive tract functions. Here we have investigated the neurochemical complexity (through in silico gene expression analysis and immunohistochemistry) of the gastric ganglion in Octopus vulgaris and tested whether the expression of a selected number of genes was influenced by the magnitude of digestive tract parasitic infection by Aggregata octopiana. Novel evidence was obtained for putative peptide and non-peptide neurotransmitters in the gastric ganglion: cephalotocin, corticotrophin releasing factor, FMRFamide, gamma amino butyric acid, 5-hydroxytryptamine, molluscan insulin-related peptide 3, peptide PRQFV-amide, and tachykinin-related peptide. Receptors for cholecystokininA and cholecystokininB, and orexin2 were also identified in this context for the first time. We report evidence for acetylcholine, dopamine, noradrenaline, octopamine, small cardioactive peptide related peptide, and receptors for cephalotocin and octopressin, confirming previous publications. The effects of Aggregata observed here extend those previously described by showing effects on the gastric ganglion; in animals with a higher level of infection, genes implicated in inflammation (NFκB, fascin, serpinB10 and the toll-like 3 receptor) increased their relative expression, but TNF-α gene expression was lower as was expression of other genes implicated in oxidative stress (i.e., superoxide dismutase, peroxiredoxin 6, and glutathione peroxidase). Elevated Aggregata levels in the octopuses corresponded to an increase in the expression of the cholecystokininA receptor and the small cardioactive peptide-related peptide. In contrast, we observed decreased relative expression of cephalotocin, dopamine β-hydroxylase, peptide PRQFV-amide, and tachykinin-related peptide genes. A discussion is provided on (i) potential roles of the various molecules in food intake regulation and digestive tract motility control and (ii) the difference in relative gene expression in the gastric ganglion in octopus with relatively high and low parasitic loads and the similarities to changes in the enteric innervation of mammals with digestive tract parasites. Our results provide additional data to the described neurochemical complexity of O. vulgaris gastric ganglion.
Collapse
Affiliation(s)
- Elena Baldascino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Giulia Di Cristina
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Perla Tedesco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Carl Hobbs
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Tanya J. Shaw
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
- Association for Cephalopod Research - CephRes, Napoli, Italy
| | - Paul L. R. Andrews
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
- Association for Cephalopod Research - CephRes, Napoli, Italy
| |
Collapse
|
21
|
Indrio F, Riezzo G, Giordano P, Ficarella M, Miolla MP, Martini S, Corvaglia L, Francavilla R. Effect of a Partially Hydrolysed Whey Infant Formula Supplemented with Starch and Lactobacillus reuteri DSM 17938 on Regurgitation and Gastric Motility. Nutrients 2017; 9:E1181. [PMID: 29143799 PMCID: PMC5707653 DOI: 10.3390/nu9111181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/22/2017] [Accepted: 10/25/2017] [Indexed: 12/12/2022] Open
Abstract
Functional regurgitation (FR) is common in early infancy and represents a major drain on healthcare resources. This double-blind, randomized controlled trial investigated the effects of a formula containing partially hydrolysed, 100% whey protein, starch and Lactobacillus reuteri (DSM 17938) on gastric emptying rate (GErate) and regurgitation frequency in infants with FR. Enrolled infants were randomly allocated to receive either the test formula or a standard starter formula for four weeks. Ultrasound GErate assessment was performed at baseline (week 0) and at week 4; the number of regurgitations, feed volumes and potential adverse events were recorded in a daily diary. Eighty infants aged four weeks to five months were enrolled; 72 (test group = 37; control group = 35) completed the study. Compared to controls, the test group showed greater percentage changes in GErate (12.3% vs. 9.1%, p < 0.01). Mean daily regurgitations decreased from 7.4 (0.8) at week 0 to 2.6 (1.0) at week 4 in the test group and from 7.5 (1.0) to 5.3 (1.0) in controls (between-group difference, p < 0.0001). Compared to a standard formula, a starch-thickened partially hydrolysed whey protein formula supplemented with Lactobacillus reuteri is more effective in decreasing the frequency of regurgitation and improving GErate, and can be of benefit to infants with FR.
Collapse
Affiliation(s)
- Flavia Indrio
- Department of Pediatrics, University of Bari Aldo Moro, 70125 Bari, Italy.
| | - Giuseppe Riezzo
- Laboratory of Experimental Pathophysiology, National Institute for Digestive Diseases, IRCCS Saverio de Bellis, 70013 Castellana Grotte, Italy.
| | - Paola Giordano
- Department of Pediatrics, University of Bari Aldo Moro, 70125 Bari, Italy.
| | - Maria Ficarella
- Department of Pediatrics, University of Bari Aldo Moro, 70125 Bari, Italy.
| | - Maria Paola Miolla
- Department of Pediatrics, University of Bari Aldo Moro, 70125 Bari, Italy.
| | - Silvia Martini
- Neonatology and Neonatal Intensive Care Unit, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy.
| | - Luigi Corvaglia
- Neonatology and Neonatal Intensive Care Unit, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy.
| | | |
Collapse
|
22
|
Zhao M, Liao D, Zhao J. Diabetes-induced mechanophysiological changes in the small intestine and colon. World J Diabetes 2017; 8:249-269. [PMID: 28694926 PMCID: PMC5483424 DOI: 10.4239/wjd.v8.i6.249] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/05/2017] [Accepted: 05/05/2017] [Indexed: 02/05/2023] Open
Abstract
The disorders of gastrointestinal (GI) tract including intestine and colon are common in the patients with diabetes mellitus (DM). DM induced intestinal and colonic structural and biomechanical remodeling in animals and humans. The remodeling is closely related to motor-sensory abnormalities of the intestine and colon which are associated with the symptoms frequently encountered in patients with DM such as diarrhea and constipation. In this review, firstly we review DM-induced histomorphological and biomechanical remodeling of intestine and colon. Secondly we review motor-sensory dysfunction and how they relate to intestinal and colonic abnormalities. Finally the clinical consequences of DM-induced changes in the intestine and colon including diarrhea, constipation, gut microbiota change and colon cancer are discussed. The final goal is to increase the understanding of DM-induced changes in the gut and the subsequent clinical consequences in order to provide the clinicians with a better understanding of the GI disorders in diabetic patients and facilitates treatments tailored to these patients.
Collapse
|