1
|
El Hajra I, Llop E, Blanco S, Perelló C, Fernández-Carrillo C, Calleja JL. Portal Vein Thrombosis in COVID-19: An Underdiagnosed Disease? J Clin Med 2024; 13:5599. [PMID: 39337086 PMCID: PMC11433429 DOI: 10.3390/jcm13185599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Multiple studies have linked COVID-19 to a higher incidence of thromboembolic disorders. However, the association of COVID-19 with other potentially life-threatening complications, such as splanchnic vein thrombosis, is less well understood. This study aims to assess the prevalence, patient characteristics, clinical presentation, and outcomes of patients with portal vein thrombosis (PVT) and COVID-19. Methods: This was a retrospective observational study. From all positive patients for a reverse-transcription polymerase chain reaction (RT-PCR) swab test from March 2020 to June 2020, we included those who were older than 18 years, had received abdominal contrast-enhanced computed tomography (CT) in the 6 months following the positive RT-PCR swab, and had no previously known splanchnic vein thrombosis. Results: A total of 60 patients with abdominal CT were selected from all those positive for SARS-CoV-2 (n = 2987). The prevalence of PVT was 3/60 (5%). The mean age was 66.1 ± 16.5 years and 51.7% were male. In two of the three patients, there was no underlying pathology as a risk factor for PVT and one of them presented cirrhosis. The number of days from the start of COVID-19 symptoms until the PVT diagnosis were 21, 12, and 10 days. Anticoagulation treatment achieved recanalization in 100% of cases. During a mean follow-up of 803 days, none of the patients experienced long-term complications. Conclusions: Portal vein thrombosis is uncommon, and its incidence may be higher in COVID-19 patients. A greater understanding of the features of this disease in the context of COVID-19 could aid towards its diagnosis and allow for early detection and management.
Collapse
Affiliation(s)
- Ismael El Hajra
- Department of Gastroenterology and Hepatology, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain
| | - Elba Llop
- Department of Gastroenterology and Hepatology, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain
- Instituto de Investigación Sanitaria Puerta Hierro-Segovia Arana (IDIPHISA) Majadahonda, 28222 Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 28029 Madrid, Spain
| | - Santiago Blanco
- Department of Gastroenterology and Hepatology, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain
| | - Christie Perelló
- Department of Gastroenterology and Hepatology, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain
- Instituto de Investigación Sanitaria Puerta Hierro-Segovia Arana (IDIPHISA) Majadahonda, 28222 Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 28029 Madrid, Spain
| | - Carlos Fernández-Carrillo
- Department of Gastroenterology and Hepatology, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain
- Instituto de Investigación Sanitaria Puerta Hierro-Segovia Arana (IDIPHISA) Majadahonda, 28222 Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 28029 Madrid, Spain
| | - José Luis Calleja
- Department of Gastroenterology and Hepatology, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain
- Instituto de Investigación Sanitaria Puerta Hierro-Segovia Arana (IDIPHISA) Majadahonda, 28222 Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBEREHD), 28029 Madrid, Spain
| |
Collapse
|
2
|
Narro GEC, Díaz LA, Ortega EK, Garín MFB, Reyes EC, Delfin PSM, Arab JP, Bataller R. Alcohol-related liver disease: A global perspective. Ann Hepatol 2024; 29:101499. [PMID: 38582247 DOI: 10.1016/j.aohep.2024.101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/08/2024]
Abstract
Alcohol-associated liver disease (ALD) represents one of the deadliest yet preventable consequences of excessive alcohol use. It represents 5.1 % of the global burden of disease, mainly involving the productive-age population (15-44 years) and leading to an increased mortality risk from traffic road injuries, suicide, violence, cardiovascular disease, neoplasms, and liver disease, among others, accounting for 5.3 % of global deaths. Daily alcohol consumption, binge drinking (BD), and heavy episodic drinking (HED) are the patterns associated with a higher risk of developing ALD. The escalating global burden of ALD, even exceeding what was predicted, is the result of a complex interaction between the lack of public policies that regulate alcohol consumption, low awareness of the scope of the disease, late referral to specialists, underuse of available medications, insufficient funds allocated to ALD research, and non-predictable events such as the COVID-19 pandemic, where increases of up to 477 % in online alcohol sales were registered in the United States. Early diagnosis, referral, and treatment are pivotal to achieving the therapeutic goal in patients with alcohol use disorder (AUD) and ALD, where complete alcohol abstinence and prevention of alcohol relapse are expected to enhance overall survival. This can be achieved through a combination of cognitive behavioral, motivational enhancement and pharmacological therapy. Furthermore, the appropriate use of available pharmacological therapy and implementation of public policies that comprehensively address this disease will make a real difference.
Collapse
Affiliation(s)
- Graciela Elia Castro Narro
- Hepatology and Transplant Unit, Hospital Médica Sur. Mexico City, Mexico; Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubiran". Mexico City, Mexico; Latin-American Association for the Study of the Liver (ALEH). Santiago de Chile, Chile.
| | - Luis Antonio Díaz
- Latin-American Association for the Study of the Liver (ALEH). Santiago de Chile, Chile; Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile. Santiago, Chile
| | - Eric Kauffman Ortega
- Internal Medicine Department, Centenario Hospital Miguel Hidalgo. Aguascalientes, Mexico
| | - María Fernanda Bautista Garín
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubiran". Mexico City, Mexico
| | - Eira Cerda Reyes
- Investigation Department, Central Military Hospital. Mexico City, Mexico; Military School of Health Graduates, Mexico City, Mexico
| | | | - Juan Pablo Arab
- Latin-American Association for the Study of the Liver (ALEH). Santiago de Chile, Chile; Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile. Santiago, Chile; Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University & London Health Sciences Centre. London, Ontario, Canada; Department of Epidemiology and Biostatistics, Schulich School of Medicine, Western University, London, Ontario, Canada.
| | - Ramón Bataller
- Liver Unit, Hospital Clinic. Institut d'Investigacions Biomediques August Pi i Sunyer (IDI-BAPS). Barcelona, Spain.
| |
Collapse
|
3
|
Conte C, Cipponeri E, Roden M. Diabetes Mellitus, Energy Metabolism, and COVID-19. Endocr Rev 2024; 45:281-308. [PMID: 37934800 PMCID: PMC10911957 DOI: 10.1210/endrev/bnad032] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/30/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Obesity, diabetes mellitus (mostly type 2), and COVID-19 show mutual interactions because they are not only risk factors for both acute and chronic COVID-19 manifestations, but also because COVID-19 alters energy metabolism. Such metabolic alterations can lead to dysglycemia and long-lasting effects. Thus, the COVID-19 pandemic has the potential for a further rise of the diabetes pandemic. This review outlines how preexisting metabolic alterations spanning from excess visceral adipose tissue to hyperglycemia and overt diabetes may exacerbate COVID-19 severity. We also summarize the different effects of SARS-CoV-2 infection on the key organs and tissues orchestrating energy metabolism, including adipose tissue, liver, skeletal muscle, and pancreas. Last, we provide an integrative view of the metabolic derangements that occur during COVID-19. Altogether, this review allows for better understanding of the metabolic derangements occurring when a fire starts from a small flame, and thereby help reducing the impact of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome 00166, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Elisa Cipponeri
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg 85764, Germany
| |
Collapse
|
4
|
Michalak A, Lach T, Szczygieł K, Cichoż-Lach H. COVID-19, Possible Hepatic Pathways and Alcohol Abuse-What Do We Know up to 2023? Int J Mol Sci 2024; 25:2212. [PMID: 38396888 PMCID: PMC10888568 DOI: 10.3390/ijms25042212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The pandemic period due to coronavirus disease 2019 (COVID-19) revolutionized all possible areas of global health. Significant consequences were also related to diverse extrapulmonary manifestations of this pathology. The liver was found to be a relatively common organ, beyond the respiratory tract, affected by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Multiple studies revealed the essential role of chronic liver disease (CLD) in the general outcome of coronavirus infection. Present concerns in this field are related to the direct hepatic consequences caused by COVID-19 and pre-existing liver disorders as risk factors for the severe course of the infection. Which mechanism has a key role in this phenomenon-previously existing hepatic disorder or acute liver failure due to SARS-CoV-2-is still not fully clarified. Alcoholic liver disease (ALD) constitutes another not fully elucidated context of coronavirus infection. Should the toxic effects of ethanol or already developed liver cirrhosis and its consequences be perceived as a causative or triggering factor of hepatic impairment in COVID-19 patients? In the face of these discrepancies, we decided to summarize the role of the liver in the whole picture of coronavirus infection, paying special attention to ALD and focusing on the pathological pathways related to COVID-19, ethanol toxicity and liver cirrhosis.
Collapse
Affiliation(s)
- Agata Michalak
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
| | - Tomasz Lach
- Department of Orthopedics and Traumatology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
| | - Karolina Szczygieł
- Clinical Dietetics Unit, Department of Bioanalytics, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland;
| | - Halina Cichoż-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
| |
Collapse
|
5
|
Quarleri J, Delpino MV. Molecular mechanisms underlying SARS-CoV-2 hepatotropism and liver damage. World J Hepatol 2024; 16:1-11. [PMID: 38313242 PMCID: PMC10835487 DOI: 10.4254/wjh.v16.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
In coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) primarily targets the respiratory system, but evidence suggests extrapulmonary organ involvement, notably in the liver. Viral RNA has been detected in hepatic tissues, and in situ hybridization revealed virions in blood vessels and endothelial cells. Electron microscopy confirmed viral particles in hepatocytes, emphasizing the need for understanding hepatotropism and direct cytopathic effects in COVID-19-related liver injury. Various factors contribute to liver injury, including direct cytotoxicity, vascular changes, inflammatory responses, immune reactions from COVID-19 and vaccinations, and drug-induced liver injury. Although a typical hepatitis presentation is not widely documented, elevated liver biochemical markers are common in hospitalized COVID-19 patients, primarily showing a hepatocellular pattern of elevation. Long-term studies suggest progressive cholestasis may affect 20% of patients with chronic liver disease post-SARS-CoV-2 infection. The molecular mechanisms underlying SARS-CoV-2 infection in the liver and the resulting liver damage are complex. This "Editorial" highlights the expression of the Angiotensin-converting enzyme-2 receptor in liver cells, the role of inflammatory responses, the impact of hypoxia, the involvement of the liver's vascular system, the infection of bile duct epithelial cells, the activation of hepatic stellate cells, and the contribution of monocyte-derived macrophages. It also mentions that pre-existing liver conditions can worsen the outcomes of COVID-19. Understanding the interaction of SARS-CoV-2 with the liver is still evolving, and further research is required.
Collapse
Affiliation(s)
- Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1121, Argentina.
| | - M Victoria Delpino
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1121, Argentina
| |
Collapse
|
6
|
Takaya H, Ueyama S, Osaki Y, Kaji K, Kawaratani H, Saito K, Aizawa S, Namisaki T, Morioka C, Yoshida M, Akahane T, Yoshiji H. Aspartate aminotransferase to platelet ratio index has utility as a biomarker of COVID-19 severity in patients with nonalcoholic fatty liver disease. Hepatol Res 2023; 53:1047-1058. [PMID: 37469098 DOI: 10.1111/hepr.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
AIM Patients with nonalcoholic fatty liver disease (NAFLD) are reported to have greater coronavirus disease 2019 (COVID-19) severity compared with patients without NAFLD. Previous studies have reported that noninvasive liver fibrosis scores, including the Fibrosis-4 index, NAFLD fibrosis score, and aspartate aminotransferase to platelet ratio index (APRI), have utility in predicting COVID-19 mortality and disease severity in patients without NAFLD. However, the utility of liver fibrosis scores in predicting COVID-19 mortality and disease severity among patients with NAFLD infected with SARS-CoV-2 has yet to be evaluated. METHODS This retrospective observational study comprised 126 patients with NAFLD and active SARS-CoV-2 infection. Patients were classified into low COVID-19 severity (mild or moderate I disease) and high COVID-19 severity (moderate II or severe disease) groups based on the therapeutic guideline implemented by the Ministry of Health, Labor, and Welfare of Japan. RESULTS Of the 126 patients, only one had been diagnosed with NAFLD before admission. Age; levels of serum aspartate aminotransferase, γ-glutamyl transpeptidase, lactate dehydrogenase, blood urea nitrogen, and serum C-reactive protein; Fibrosis-4 index; NAFLD fibrosis score; and APRI levels on admission were higher in the high COVID-19 severity group compared with the low COVID-19 severity group. Serum albumin levels, platelet counts, and lymphocyte counts on admission were lower in the high COVID-19 severity group compared with the low COVID-19 severity group. Univariate and multivariate analysis revealed that APRI values were significantly associated with COVID-19 severity and hospitalization duration for COVID-19. CONCLUSIONS APRI was independently associated with COVID-19 severity and hospitalization duration for COVID-19 in patients with NAFLD.
Collapse
Affiliation(s)
- Hiroaki Takaya
- Department of Gastroenterology, Nara Prefecture Seiwa Medical Center, Sango, Nara, Japan
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Shunichi Ueyama
- Department of Gastroenterology, Nara Prefecture Seiwa Medical Center, Sango, Nara, Japan
| | - Yui Osaki
- Department of Gastroenterology, Nara Prefecture Seiwa Medical Center, Sango, Nara, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Hideto Kawaratani
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Ko Saito
- Department of Gastroenterology, Nara Prefecture Seiwa Medical Center, Sango, Nara, Japan
| | - Shigeyuki Aizawa
- Department of Gastroenterology, Nara Prefecture Seiwa Medical Center, Sango, Nara, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Chie Morioka
- Department of Gastroenterology, Nara Prefecture Seiwa Medical Center, Sango, Nara, Japan
| | - Motoyuki Yoshida
- Department of Gastroenterology, Nara Prefecture Seiwa Medical Center, Sango, Nara, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
7
|
Lim JK, Njei B. Clinical and Histopathological Discoveries in Patients with Hepatic Injury and Cholangiopathy Who Have Died of COVID-19: Insights and Opportunities for Intervention. Hepat Med 2023; 15:151-164. [PMID: 37814605 PMCID: PMC10560482 DOI: 10.2147/hmer.s385133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
The COVID-19 pandemic has had a profound impact on global health, necessitating a comprehensive understanding of its diverse manifestations. Cholangiopathy, a condition characterized by biliary dysfunction, has emerged as a significant complication in COVID-19 patients. In this review, we report the epidemiology of COVID-19, describe the hepatotropism of SARS-CoV-2, and present the histopathology of acute liver injury (ALI) in COVID-19. Additionally, we explore the relationship between pre-existing chronic liver disease and COVID-19, shedding light on the increased susceptibility of these individuals to develop cholangiopathy. Through an in-depth analysis of cholangiopathy in COVID-19 patients, we elucidate its clinical manifestations, diagnostic criteria, and underlying pathogenesis involving inflammation, immune dysregulation, and vascular changes. Furthermore, we provide a summary of studies investigating post-COVID-19 cholangiopathy, highlighting the long-term effects and potential management strategies for this condition, and discussing opportunities for intervention, including therapeutic targets, diagnostic advancements, supportive care, and future research needs.
Collapse
Affiliation(s)
- Joseph K Lim
- Yale Liver Center and Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Basile Njei
- Yale Liver Center and Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
Tirupakuzhi Vijayaraghavan BK, Bishnu S, Baruch J, Citarella BW, Kartsonaki C, Meeyai A, Mohamed Z, Ohshimo S, Lefèvre B, Al-Fares A, Calvache JA, Taccone FS, Olliaro P, Merson L, Adhikari NK. Liver injury in hospitalized patients with COVID-19: An International observational cohort study. PLoS One 2023; 18:e0277859. [PMID: 37703268 PMCID: PMC10499210 DOI: 10.1371/journal.pone.0277859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 08/13/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Using a large dataset, we evaluated prevalence and severity of alterations in liver enzymes in COVID-19 and association with patient-centred outcomes. METHODS We included hospitalized patients with confirmed or suspected SARS-CoV-2 infection from the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) database. Key exposure was baseline liver enzymes (AST, ALT, bilirubin). Patients were assigned Liver Injury Classification score based on 3 components of enzymes at admission: Normal; Stage I) Liver injury: any component between 1-3x upper limit of normal (ULN); Stage II) Severe liver injury: any component ≥3x ULN. Outcomes were hospital mortality, utilization of selected resources, complications, and durations of hospital and ICU stay. Analyses used logistic regression with associations expressed as adjusted odds ratios (OR) with 95% confidence intervals (CI). RESULTS Of 17,531 included patients, 46.2% (8099) and 8.2% (1430) of patients had stage 1 and 2 liver injury respectively. Compared to normal, stages 1 and 2 were associated with higher odds of mortality (OR 1.53 [1.37-1.71]; OR 2.50 [2.10-2.96]), ICU admission (OR 1.63 [1.48-1.79]; OR 1.90 [1.62-2.23]), and invasive mechanical ventilation (OR 1.43 [1.27-1.70]; OR 1.95 (1.55-2.45). Stages 1 and 2 were also associated with higher odds of developing sepsis (OR 1.38 [1.27-1.50]; OR 1.46 [1.25-1.70]), acute kidney injury (OR 1.13 [1.00-1.27]; OR 1.59 [1.32-1.91]), and acute respiratory distress syndrome (OR 1.38 [1.22-1.55]; OR 1.80 [1.49-2.17]). CONCLUSIONS Liver enzyme abnormalities are common among COVID-19 patients and associated with worse outcomes.
Collapse
Affiliation(s)
- Bharath Kumar Tirupakuzhi Vijayaraghavan
- Department of Critical Care Medicine, Apollo Main Hospital, Chennai, India and Honorary Senior Fellow, The George Institute for Global Health, New Delhi, India
- ISARIC, Pandemic Science Institute, University of Oxford, Oxford, United Kingdom
| | - Saptarshi Bishnu
- Department of Hepatology, Apollo Main Hospital, Chennai, India and Department of Gastroenterology and Hepatology, Sharanya Multi-specialty Hospital, Burdwan, India
| | - Joaquin Baruch
- ISARIC, Pandemic Science Institute, University of Oxford, Oxford, United Kingdom
| | | | - Christiana Kartsonaki
- MRC Population Health Research Unit, Clinical Trials Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Aronrag Meeyai
- ISARIC, Pandemic Science Institute, University of Oxford, Oxford, United Kingdom
| | - Zubair Mohamed
- Department of Critical Care Medicine, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Benjamin Lefèvre
- Université de Lorraine, CHRU-Nancy, Service des Maladies Infectieuses et Tropicales, Nancy, France
- Université de Lorraine, APEMAC, Nancy, France
| | - Abdulrahman Al-Fares
- Department of Anaesthesia, Critical Care Medicine and Pain Medicine, Al-Amiri Hospital, Ministry of Health, Kuwait, Kuwait
- Kuwait Extracorporeal Life Support program, Al-Amiri Hospital, Ministry of Health, Kuwait, Kuwait
| | - Jose A. Calvache
- Departamento de Anestesiologia, Universidad del Cauca, Popayan, Colombia
- Department of Anaesthesiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Fabio Silvio Taccone
- Department of Intensive Care Medicine, Erasme Hospital, Universite Libre de Bruxelles, Brussels, Belgium
| | - Piero Olliaro
- ISARIC, Pandemic Science Institute, University of Oxford, Oxford, United Kingdom
| | - Laura Merson
- ISARIC, Pandemic Science Institute, University of Oxford, Oxford, United Kingdom
| | - Neill K.J. Adhikari
- Interdepartmental Division of Critical Care Medicine, University of Toronto and Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, Canada
| | | |
Collapse
|
9
|
Backer S, Khanna D. The Lasting Effects of COVID-19 on the Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Cureus 2023; 15:e45231. [PMID: 37842470 PMCID: PMC10576539 DOI: 10.7759/cureus.45231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
It is estimated that around 30% of the population living in Western countries has metabolic dysfunction-associated steatotic liver disease (MASLD), a spectrum of pathology (not attributed to alcohol/substance intake) initiated by steatosis and progression toward inflammation and irreversible fibrosis metabolic dysfunction-associated steatohepatitis (MASH). With inflammation being a key component of the transition to MASH, it raises the question of whether the ongoing COVID-19 pandemic, which has notoriously induced hyperinflammatory states, may influence the progression of MASLD. Specifically, it remains unclear if the potential chronic sequelae of COVID-19 in patients who recovered from it may increase the predisposition for MASH. Since MASH maintains a high risk for hepatocellular carcinoma, liver failure, and the need for a liver transplant, the potential additive effects of COVID-19 could prove critical to study. Thus, the objective of this study was to conduct a literature review to examine if COVID-19 could have chronic sequelae that affect the progression of MASLD pathogenesis. It was hypothesized that severe cases of COVID-19 could induce systemic inflammation, metabolic changes, and lasting gut microbiome alterations that lead to inflammatory and fibrotic changes in the liver, similar to those seen in MASH. A scoping review of the literature was conducted utilizing the PubMed database. Studies that examined hepatobiliary pathology, gut microbiome, systemic inflammation, metabolic changes, drug-induced liver injury (DILI), and hypoxia seen in COVID-19 were included. Human studies of adult cohorts, animal models, and in vitro experiments were included. Genetic components of MASLD were not examined. Exclusion criteria also encompassed any studies not referencing the hepatobiliary, gastrointestinal tract, portal system, or systemic circulation. Findings indicated a frequent trend of elevated liver enzymes, mild steatosis, Kupffer cell hyperplasia, and hepatobiliary congestion. It was found that direct cytopathic effects on hepatocytes were unlikely, but the direct viral insult of cholangiocytes was a potential complication. High serum levels of IL-1, TNF-a, and MCP-1, in COVID-19 were found as potential risk factors for MASH development. Hypoxia, altered lipid metabolism, and iatrogenic DILI were also proposed as potential precipitators of MASH development. Notably, lasting changes in gut microbiome were also frequently observed and correlated closely with those seen in MASH.
Collapse
Affiliation(s)
- Sean Backer
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| | - Deepesh Khanna
- Foundational Sciences, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| |
Collapse
|
10
|
Abstract
Convergence of the two pandemics: metabolic syndrome and COVID-19 over last two years has posed unprecedented challenges to individuals as well as healthcare systems. Epidemiological data suggest a close association between metabolic syndrome and COVID-19 while variety of possible pathogenic connections have been proposed while some have been proven. Despite the evidence of high risk for adverse COVID-19 outcomes in people with metabolic syndrome, little is known about the differences in efficacy and safety among people with metabolic syndrome and without. It is important to recognize that among people with metabolic syndrome This review summarizes the current knowledge and epidemiological evidence on the association between metabolic syndrome and adverse COVID-19 outcomes, pathogenic interrelationships, management considerations for acute COVID-19 and post-COVID sequalae and sustaining care of people living with metabolic syndrome with appraisal of evidence and gaps in knowledge.
Collapse
Affiliation(s)
- Harsha Dissanayake
- Diabetes Research Unit, Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Sri Lanka; Postgraduate Institute of Medicine, University of Colombo, Sri Lanka.
| |
Collapse
|
11
|
Imam MT, Almalki ZS, Alzahrani AR, Al-Ghamdi SS, Falemban AH, Alanazi IM, Shahzad N, Muhammad Alrooqi M, Jabeen Q, Shahid I. COVID-19 and severity of liver diseases: Possible crosstalk and clinical implications. Int Immunopharmacol 2023; 121:110439. [PMID: 37315370 PMCID: PMC10247890 DOI: 10.1016/j.intimp.2023.110439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
COVID-19-infected individuals and those who recovered from the infection have been demonstrated to have elevated liver enzymes or abnormal liver biochemistries, particularly with preexisting liver diseases, liver metabolic disorders, viral hepatitis, and other hepatic comorbidities. However, possible crosstalk and intricate interplay between COVID-19 and liver disease severity are still elusive, and the available data are murky and confined. Similarly, the syndemic of other blood-borne infectious diseases, chemical-induced liver injuries, and chronic hepatic diseases continued to take lives while showing signs of worsening due to the COVID-19 crisis. Moreover, the pandemic is not over yet and is transitioning to becoming an epidemic in recent years; hence, monitoring liver function tests (LFTs) and assessing hepatic consequences of COVID-19 in patients with or without liver illnesses would be of paramount interest. This pragmatic review explores the correlations between COVID-19 and liver disease severity based on abnormal liver biochemistries and other possible mechanisms in individuals of all ages from the emergence of the COVID-19 pandemic to the post-pandemic period. The review also alludes to clinical perspectives of such interactions to curb overlapping hepatic diseases in people who recovered from the infection or living with long COVID-19.
Collapse
Affiliation(s)
- Mohammad T Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Ziyad S Almalki
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, Makkah 21955, Saudi Arabia
| | - Saeed S Al-Ghamdi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, Makkah 21955, Saudi Arabia
| | - Alaa H Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, Makkah 21955, Saudi Arabia
| | - Ibrahim M Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, Makkah 21955, Saudi Arabia
| | - Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, Makkah 21955, Saudi Arabia
| | | | - Qaisar Jabeen
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, Makkah 21955, Saudi Arabia.
| |
Collapse
|
12
|
Khonsari M, Boostani K, Farnood F. Post-COVID-19 syndrome mimicking cholangiocarcinoma: A case report. Clin Case Rep 2023; 11:e7449. [PMID: 37266346 PMCID: PMC10229748 DOI: 10.1002/ccr3.7449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Key Clinical Message The differential diagnosis of post-COVID-19 syndrome is important in patients with symptoms of biliary obstruction. This patient had severe COVID-19 who underwent ERCP and mimicked cholangiocarcinoma. Abstract Patients with severe coronavirus disease 2019 (COVID-19) manifest liver injuries with pathological changes because of lowered blood oxygen saturation, cardiac malfunction, hepatotoxic drugs during treatment, and cellular injury. This paper reports a patient with a history of severe COVID-19 who mimics cholangiocarcinoma after undergoing endoscopic retrograde cholangiopancreatography (ERCP). It was shown that differential diagnosis of post-COVID-19 syndrome is greatly important mostly in patients with symptoms of biliary obstruction.
Collapse
Affiliation(s)
- Mahmoodreza Khonsari
- Gastrointestinal and liver diseases research center (GILDRC), Firoozgar HospitalIran University of Medical Sciences (IUMS)TehranIran
| | - Kamal Boostani
- Gastrointestinal and liver diseases research center (GILDRC), Firoozgar HospitalIran University of Medical Sciences (IUMS)TehranIran
- Kidney Research CenterTabriz University of Medical SciencesTabrizIran
| | | |
Collapse
|
13
|
Abstract
In addition to being the primary target of infections such as viral hepatitis, the liver may also be affected by systemic disease. These include bacterial, mycotic, and viral infections, as well as autoimmune and infiltrative diseases. These conditions generally manifest as abnormal liver biochemistries, often with a cholestatic profile, and may present with additional signs/symptoms such as jaundice and fever. A high index of suspicion and familiarity with potential causal entities is necessary to guide appropriate testing, diagnosis, and treatment.
Collapse
Affiliation(s)
- Humberto C Gonzalez
- Division of Gastroenterology and Hepatology, Henry Ford Health, 2799 West Grand Boulevard, Detroit, MI 48202, USA; Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI 48201, USA.
| | - Stuart C Gordon
- Division of Gastroenterology and Hepatology, Henry Ford Health, 2799 West Grand Boulevard, Detroit, MI 48202, USA; Wayne State University School of Medicine, 540 E Canfield St, Detroit, MI 48201, USA
| |
Collapse
|
14
|
Liatsos GD. SARS-CoV-2 induced liver injury: Incidence, risk factors, impact on COVID-19 severity and prognosis in different population groups. World J Gastroenterol 2023; 29:2397-2432. [PMID: 37179584 PMCID: PMC10167898 DOI: 10.3748/wjg.v29.i16.2397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/17/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023] Open
Abstract
Liver is unlikely the key organ driving mortality in coronavirus disease 2019 (COVID-19) however, liver function tests (LFTs) abnormalities are widely observed mostly in moderate and severe cases. According to this review, the overall prevalence of abnormal LFTs in COVID-19 patients ranges from 2.5% to 96.8% worldwide. The geographical variability in the prevalence of underlying diseases is the determinant for the observed discrepancies between East and West. Multifactorial mechanisms are implicated in COVID-19-induced liver injury. Among them, hypercytokinemia with "bystander hepatitis", cytokine storm syndrome with subsequent oxidative stress and endotheliopathy, hypercoagulable state and immuno-thromboinflammation are the most determinant mechanisms leading to tissue injury. Liver hypoxia may also contribute under specific conditions, while direct hepatocyte injury is an emerging mechanism. Except for initially observed severe acute respiratory distress syndrome corona virus-2 (SARS-CoV-2) tropism for cholangiocytes, more recent cumulative data show SARS-CoV-2 virions within hepatocytes and sinusoidal endothelial cells using electron microscopy (EM). The best evidence for hepatocellular invasion by the virus is the identification of replicating SARS-CoV-2 RNA, S protein RNA and viral nucleocapsid protein within hepatocytes using in-situ hybridization and immunostaining with observed intrahepatic presence of SARS-CoV-2 by EM and by in-situ hybridization. New data mostly derived from imaging findings indicate possible long-term sequelae for the liver months after recovery, suggesting a post-COVID-19 persistent live injury.
Collapse
Affiliation(s)
- George D Liatsos
- Department of Internal Medicine, Hippokration General Hospital, Athens 11527, Attiki, Greece
| |
Collapse
|
15
|
Roshanshad R, Roshanshad A, Fereidooni R, Hosseini-Bensenjan M. COVID-19 and liver injury: Pathophysiology, risk factors, outcome and management in special populations. World J Hepatol 2023; 15:441-459. [PMID: 37206656 PMCID: PMC10190688 DOI: 10.4254/wjh.v15.i4.441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/05/2023] [Accepted: 03/20/2023] [Indexed: 04/20/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 is an ongoing health concern. In addition to affecting the respiratory system, COVID-19 can potentially damage other systems in the body, leading to extra-pulmonary manifestations. Hepatic manifestations are among the common consequences of COVID-19. Although the precise mechanism of liver injury is still questionable, several mechanisms have been hypothesized, including direct viral effect, cytokine storm, hypoxic-ischemic injury, hypoxia-reperfusion injury, ferroptosis, and hepatotoxic medications. Risk factors of COVID-19-induced liver injury include severe COVID-19 infection, male gender, advanced age, obesity, and underlying diseases. The presentations of liver involvement comprise abnormalities in liver enzymes and radiologic findings, which can be utilized to predict the prognosis. Increased gamma-glutamyltransferase, aspartate aminotransferase, and alanine aminotransferase levels with hypoalbuminemia can indicate severe liver injury and anticipate the need for intensive care units’ hospitalization. In imaging, a lower liver-to-spleen ratio and liver computed tomography attenuation may indicate a more severe illness. Furthermore, chronic liver disease patients are at a higher risk for severe disease and death from COVID-19. Nonalcoholic fatty liver disease had the highest risk of advanced COVID-19 disease and death, followed by metabolic-associated fatty liver disease and cirrhosis. In addition to COVID-19-induced liver injury, the pandemic has also altered the epidemiology and pattern of some hepatic diseases, such as alcoholic liver disease and hepatitis B. Therefore, it warrants special vigilance and awareness by healthcare professionals to screen and treat COVID-19-associated liver injury accordingly.
Collapse
Affiliation(s)
- Romina Roshanshad
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7184731443, Iran
| | | | - Reza Fereidooni
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | | |
Collapse
|
16
|
Sanyaolu A, Marinkovic A, Abbasi AF, Prakash S, Patidar R, Desai P, Williams M, Jan A, Hamdy K, Solomon R, Balendra V, Ansari M, Shazley O, Khan N, Annan R, Dixon Y, Okorie C, Antonio A. Effect of SARS-CoV-2 infection on the liver. World J Virol 2023; 12:109-121. [PMID: 37033147 PMCID: PMC10075054 DOI: 10.5501/wjv.v12.i2.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/04/2023] [Accepted: 02/02/2023] [Indexed: 03/21/2023] Open
Abstract
There have been numerous concerns about the disease and how it affects the human body since the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic began in December 2019. The impact of SARS-CoV-2 on the liver is being carefully investigated due to an increase in individuals with hepatitis and other liver illnesses, such as alcoholic liver disease. Additionally, the liver is involved in the metabolism of numerous drugs used to treat comorbidities and coronavirus disease 2019 (COVID-19). Determining how SARS-CoV-2 affects the liver and what factors place individuals with COVID-19 at a higher risk of developing liver problems are the two main objectives of this study. This evaluation of the literature included research from three major scientific databases. To provide an update on the current impact of COVID-19 on the liver, data was collected and relevant information was incorporated into the review. With more knowledge about the effect of the disease on the liver, better management and therapeutics can be developed, and education can ultimately save lives and reduce the long-term impact of the pandemic on our population.
Collapse
Affiliation(s)
- Adekunle Sanyaolu
- Department of Public Health, Federal Ministry of Health, Abuja, Nigeria, Abuja 0000, FCT, Nigeria
| | - Aleksandra Marinkovic
- Department of Basic Medical Science, Saint James School of Medicine, The Quarter 2640 0000, Anguilla
| | - Abu Fahad Abbasi
- Department of Internal Medicine, Loyola University Medical Center, Maywood, Illinois, IL 60153, United States
| | - Stephanie Prakash
- Department of Basic Medical Science, Saint James School of Medicine, The Quarter 2640 0000, Anguilla
| | - Risha Patidar
- Department of Basic Medical Science, Saint James School of Medicine, The Quarter 2640 0000, Anguilla
| | - Priyank Desai
- Department of Basic Medical Science, American University of Saint Vincent School of Medicine, Saint Vincent and the Grenadines 0000, Saint Vincent and the Grenadines
| | - Martina Williams
- Department of Basic Medical Science, Saint James School of Medicine, The Quarter 2640 0000, Anguilla
| | - Abdul Jan
- Department of Basic Medical Science, Windsor University School of Medicine, Cayon 0000, Saint Kitts and Nevis
| | - Kareem Hamdy
- Department of Basic Medical Science, Saint James School of Medicine, The Quarter 2640 0000, Anguilla
| | - Rachael Solomon
- Department of Basic Medical Science, Caribbean Medical University School of Medicine, Willemstad 0000, Curaçao, Netherlands Antilles
| | - Vyshnavy Balendra
- Department of Basic Medical Science, Saint James School of Medicine, The Quarter 2640 0000, Anguilla
| | - Maaz Ansari
- Department of Basic Medical Science, Saint James School of Medicine, The Quarter 2640 0000, Anguilla
| | - Omar Shazley
- Basic Medical Science, Saint James School of Medicine, Saint Vincent and the Grenadines 0000, Saint Vincent and the Grenadines
| | - Nasar Khan
- Department of Basic Medical Science, Windsor University School of Medicine, Cayon 0000, Saint Kitts and Nevis
| | - Rochelle Annan
- University of Health Sciences Antigua School of Medicine, Piccadilly, St. John's Antigua
| | - Yashika Dixon
- Department of Basic Medical Science, Windsor University School of Medicine, Cayon 0000, Saint Kitts and Nevis
| | - Chuku Okorie
- Department of Science, Union County College, Plainfield, New Jersey, NJ 07016, United States
| | - Afolabi Antonio
- Department of Internal Medicine, Lloydminster Regional Hospital, Lloydminster S9V 1Y5, Saskatchewan, Canada
| |
Collapse
|
17
|
Ippolito D, Maino C, Vernuccio F, Cannella R, Inchingolo R, Dezio M, Faletti R, Bonaffini PA, Gatti M, Sironi S. Liver involvement in patients with COVID-19 infection: A comprehensive overview of diagnostic imaging features. World J Gastroenterol 2023; 29:834-850. [PMID: 36816623 PMCID: PMC9932422 DOI: 10.3748/wjg.v29.i5.834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/06/2022] [Accepted: 01/20/2023] [Indexed: 02/06/2023] Open
Abstract
During the first wave of the pandemic, coronavirus disease 2019 (COVID-19) infection has been considered mainly as a pulmonary infection. However, different clinical and radiological manifestations were observed over time, including involvement of abdominal organs. Nowadays, the liver is considered one of the main affected abdominal organs. Hepatic involvement may be caused by either a direct damage by the virus or an indirect damage related to COVID-19 induced thrombosis or to the use of different drugs. After clinical assessment, radiology plays a key role in the evaluation of liver involvement. Ultrasonography (US), computed tomography (CT) and magnetic resonance imaging (MRI) may be used to evaluate liver involvement. US is widely available and it is considered the first-line technique to assess liver involvement in COVID-19 infection, in particular liver steatosis and portal-vein thrombosis. CT and MRI are used as second- and third-line techniques, respectively, considering their higher sensitivity and specificity compared to US for assessment of both parenchyma and vascularization. This review aims to the spectrum of COVID-19 liver involvement and the most common imaging features of COVID-19 liver damage.
Collapse
Affiliation(s)
- Davide Ippolito
- Milano Bicocca School of Medicine and Surgery, Milano 20126, Italy
- Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Cesare Maino
- Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Federica Vernuccio
- Institute of Radiology (DIMED), University Hospital of Padova, Padova 35128, Italy
| | - Roberto Cannella
- Section of Radiology-Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo 90127, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo 90127, Italy
| | - Riccardo Inchingolo
- Division of Interventional Radiology, Department of Radiology, Madonna delle Grazie Hospital, Matera 75100, Italy
| | - Michele Dezio
- Division of Interventional Radiology, Department of Radiology, Madonna delle Grazie Hospital, Matera 75100, Italy
| | - Riccardo Faletti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Pietro Andrea Bonaffini
- Milano Bicocca School of Medicine and Surgery, Milano 20126, Italy
- Department of Diagnostic Radiology, Papa Giovanni XXIII Hospital, Bergamo 24127, Italy
| | - Marco Gatti
- Department of Diagnostic Radiology, University of Turin, Turin 10126, Italy
| | - Sandro Sironi
- Milano Bicocca School of Medicine and Surgery, Milano 20126, Italy
- Department of Diagnostic Radiology, Papa Giovanni XXIII Hospital, Bergamo 24127, Italy
| |
Collapse
|
18
|
Abstract
The coronavirus disease-2019 (COVID-19) pandemic has had a large impact on patients with chronic liver disease (CLD) and liver transplantation (LT) recipients. Patients with advanced CLD are at a significantly increased risk of poor outcomes in the setting of severe acute respiratory syndrome coronavirus 2 infection. The pandemic has also considerably altered the management and care that is provided to patients with CLD, pre-LT patients, and LT recipients. Vaccination against COVID-19 protects patients with CLD and LT recipients from adverse outcomes and is safe in these patients; however, vaccine efficacy may be reduced in LT recipients and other immunosuppressed patients.
Collapse
|
19
|
Goudswaard LJ, Williams CM, Khalil J, Burley KL, Hamilton F, Arnold D, Milne A, Lewis PA, Heesom KJ, Mundell SJ, Davidson AD, Poole AW, Hers I. Alterations in platelet proteome signature and impaired platelet integrin α IIbβ 3 activation in patients with COVID-19. J Thromb Haemost 2023; 21:1307-1321. [PMID: 36716966 PMCID: PMC9883069 DOI: 10.1016/j.jtha.2023.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/30/2023]
Abstract
BACKGROUND Patients with COVID-19 are at increased risk of thrombosis, which is associated with altered platelet function and coagulopathy, contributing to excess mortality. OBJECTIVES To characterize the mechanism of altered platelet function in COVID-19 patients. METHODS The platelet proteome, platelet functional responses, and platelet-neutrophil aggregates were compared between patients hospitalized with COVID-19 and healthy control subjects using tandem mass tag proteomic analysis, Western blotting, and flow cytometry. RESULTS COVID-19 patients showed a different profile of platelet protein expression (858 altered of the 5773 quantified). Levels of COVID-19 plasma markers were enhanced in the platelets of COVID-19 patients. Gene ontology pathway analysis demonstrated that the levels of granule secretory proteins were raised, whereas those of platelet activation proteins, such as the thrombopoietin receptor and protein kinase Cα, were lowered. Basally, platelets of COVID-19 patients showed enhanced phosphatidylserine exposure, with unaltered integrin αIIbβ3 activation and P-selectin expression. Agonist-stimulated integrin αIIbβ3 activation and phosphatidylserine exposure, but not P-selectin expression, were decreased in COVID-19 patients. COVID-19 patients had high levels of platelet-neutrophil aggregates, even under basal conditions, compared to controls. This association was disrupted by blocking P-selectin, demonstrating that platelet P-selectin is critical for the interaction. CONCLUSIONS Overall, our data suggest the presence of 2 platelet populations in patients with COVID-19: one of circulating platelets with an altered proteome and reduced functional responses and another of P-selectin-expressing neutrophil-associated platelets. Platelet-driven thromboinflammation may therefore be one of the key factors enhancing the risk of thrombosis in COVID-19 patients.
Collapse
Affiliation(s)
- Lucy J Goudswaard
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK; Population Health Sciences, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK. https://twitter.com/lucygoudswaard
| | - Christopher M Williams
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Jawad Khalil
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Kate L Burley
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Fergus Hamilton
- Population Health Sciences, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK; Department of Infection Sciences, North Bristol NHS Trust, Bristol, BS10 5NB, UK
| | - David Arnold
- Academic Respiratory Unit, North Bristol NHS Trust, Bristol, BS10 5NB, UK
| | - Alice Milne
- Academic Respiratory Unit, North Bristol NHS Trust, Bristol, BS10 5NB, UK
| | - Phil A Lewis
- Proteomics Facility, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Kate J Heesom
- Proteomics Facility, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Stuart J Mundell
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Andrew D Davidson
- School of Cellular and Molecular Medicine, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Alastair W Poole
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
20
|
Gupta T, Sharma H. COVID-19 and the liver: Are footprints still there? World J Gastroenterol 2023; 29:656-669. [PMID: 36742164 PMCID: PMC9896610 DOI: 10.3748/wjg.v29.i4.656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/13/2022] [Accepted: 11/21/2022] [Indexed: 01/20/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) hit the entire world as a global pandemic and soon became the most important concern for all patients with chronic diseases. An early trend in higher mortality in patients with acute respiratory distress attracted all researchers to closely monitor patients for the involvement of other systems. It soon became apparent that patients with chronic liver diseases are at increased risk of mortality given their cirrhosis-associated immune dysfunction. Additionally, liver function abnormalities were noted in patients with severe COVID-19. Profound cytokine storm, direct viral infection, drugs and reactivation of viral infections were causes of deranged liver functions. Here, we discuss the relation between COVID-19 and chronic liver disease, specifically cirrhosis, hepatitis B, hepatitis C, and non-alcoholic fatty liver disease (NAFLD), as well as the liver manifestations of COVID-19. The metabolic syndrome, obesity, diabetes mellitus and NAFLD were found to worsen outcome in different studies reported worldwide. Decompensated cirrhosis should be considered a risk factor for death and severe COVID-19. Recently, COVID-19 related cholangiopathy has also been reported with changes of secondary sclerosing cholangitis. The long-term persistence of viral antigens in gut epithelia raises concern regarding the future risk of autoimmune liver diseases.
Collapse
Affiliation(s)
- Tarana Gupta
- Department of Medicine, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak 124001, Haryana, India
| | - Hemant Sharma
- Department of Medicine, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak 124001, Haryana, India
| |
Collapse
|
21
|
Baldelli L, Marjot T, Barnes E, Barritt AS, Webb GJ, Moon AM. SARS-CoV-2 Infection and Liver Disease: A Review of Pathogenesis and Outcomes. Gut Liver 2023; 17:12-23. [PMID: 36457261 PMCID: PMC9840920 DOI: 10.5009/gnl220327] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022] Open
Abstract
The impact of the coronavirus disease 2019 (COVID-19) pandemic has been immense, and it continues to have lasting repercussions. While the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus primarily infects the respiratory system, other organ systems are affected, including the liver. Scientific knowledge on the role of SARS-CoV-2 infection and liver injury has evolved rapidly, with recent data suggesting specific hepatotropism of SARS-CoV-2. Moreover, additional concerns have been raised in regard to long-term liver damage, related to emerging cases of post-COVID-19 cholangiopathy and chronic cholestasis. Great effort has also been focused on studying how specific subpopulations with chronic medical conditions might be disproportionately impacted by COVID-19. One such population includes individuals with chronic liver disease (CLD) and cirrhosis, with an expanding body of research indicating these patients being particularly susceptible to adverse outcomes. In this review, we provide an updated summary on the current pathogenesis and mechanism of liver injury in the setting of SARS-CoV-2 infection, the association between health outcomes and SARS-CoV-2 infection in patients with CLD, and the unique consequences of the COVID-19 pandemic on the routine care of patients with CLD.
Collapse
Affiliation(s)
- Luke Baldelli
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas Marjot
- Oxford Liver Unit, Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Oxford Liver Unit, Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, UK
| | - A. Sidney Barritt
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
| | - Gwilym J. Webb
- Cambridge Liver Unit, Addenbrooke's Hospital, Cambridge, UK
| | - Andrew M. Moon
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
22
|
Liver alterations and detection of SARS-CoV-2 RNA and proteins in COVID-19 autopsies. GeroScience 2022; 45:1015-1031. [PMID: 36527584 PMCID: PMC9759055 DOI: 10.1007/s11357-022-00700-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/20/2022] [Indexed: 12/23/2022] Open
Abstract
The most severe alterations in Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) infection are seen in the lung. However, other organs also are affected. Here, we report histopathologic findings in the liver and detection of viral proteins and RNA in COVID-19 autopsies performed at the Semmelweis University (Budapest, Hungary). Between March 2020 through March 2022, 150 autopsies on patients who died of COVID-19 were analyzed. Cause-of-death categories were formed based on the association with SARS-CoV-2 as strong, contributive, or weak. Samples for histopathologic study were obtained from all organs, fixed in formalin, and embedded in paraffin (FFPE). Immunohistochemical study (IHC) to detect SARS-CoV-2 spike protein and nucleocapsid protein (NP), CD31, claudin-5, factor VIII, macrosialin (CD68), and cytokeratin 7, with reverse transcriptase polymerase chain reaction (RT-PCR), and in situ hybridization (ISH, RNAscope®) for SARS-CoV-2 RNA were conducted using FFPE samples of livers taken from 20 autopsies performed ≤ 2 days postmortem. All glass slides were scanned; the digital images were evaluated by semiquantitative scoring and scores were analyzed statistically. Steatosis, single-cell and focal/zonal hepatocyte necrosis, portal fibrosis, and chronic inflammation were found in varying percentages. Sinusoidal ectasia, endothelial cell disruption, and fibrin-filled sinusoids were seen in all cases; these were assessed semiquantitatively for severity (SEF scored). SEF scores did not correlate with cause-of-death categories (p = 0.92) or with severity of lung alterations (p = 0.96). SARS-CoV-2 RNA was detected in 13/20 cases by PCR and in 9/20 by ISH, with IHC demonstration of spike protein in 4/20 cases and NP in 15/20. Viral RNA and proteins were located in endothelial and Kupffer cells, and in portal macrophages, but not in hepatocytes and cholangiocytes. In conclusion, endothelial damage (SEF scores) was the most common alteration in the liver and was a characteristic, but not specific alteration in COVID-19, suggesting an important role in the pathogenesis of COVID-19-associated liver disease. Detection of SARS-CoV-2 RNA and viral proteins in liver non-parenchymal cells suggests that while the most extended primary viral cytotoxic effect occurs in the lung, viral components are present in other organs too, as in the liver. The necrosis/apoptosis and endothelial damage associated with viral infection in COVID-19 suggest that those patients who survive more severe COVID-19 may face prolonged liver repair and accordingly should be followed regularly in the post-COVID period.
Collapse
|
23
|
Zheng W, Zeng Z, Lin S, Hou P. Revisiting potential value of antitumor drugs in the treatment of COVID-19. Cell Biosci 2022; 12:165. [PMID: 36182930 PMCID: PMC9526459 DOI: 10.1186/s13578-022-00899-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/12/2022] [Indexed: 01/08/2023] Open
Abstract
Since an outbreak started in China in 2019, coronavirus disease 2019 (COVID-19) has rapidly become a worldwide epidemic with high contagiousness and caused mass mortalities of infected cases around the world. Currently, available treatments for COVID-19, including supportive care, respiratory support and antiviral therapy, have shown limited efficacy. Thus, more effective therapeutic modalities are highly warranted. Drug repurposing, as an efficient strategy to explore a potential broader scope of the application of approved drugs beyond their original indications, accelerates the process of discovering safe and effective agents for a given disease. Since the outbreak of COVID-19 pandemic, drug repurposing strategy has been widely used to discover potential antiviral agents, and some of these drugs have advanced into clinical trials. Antitumor drugs compromise a vast variety of compounds and exhibit extensive mechanism of action, showing promising properties in drug repurposing. In this review, we revisit the potential value of antitumor drugs in the treatment of COVID-19 and systematically discuss their possible underlying mechanisms of the antiviral actions.
Collapse
Affiliation(s)
- Wenfang Zheng
- grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 People’s Republic of China
| | - Zekun Zeng
- grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 People’s Republic of China
| | - Shumei Lin
- grid.452438.c0000 0004 1760 8119Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 People’s Republic of China
| | - Peng Hou
- grid.452438.c0000 0004 1760 8119Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 People’s Republic of China ,grid.452438.c0000 0004 1760 8119Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 People’s Republic of China
| |
Collapse
|
24
|
Canastar M, Okumura K, Bodin R, Gilet A, Dhand A. Cirrhosis and COVID-19: Diffuse venous thrombosis and its clinical implication. JOURNAL OF LIVER TRANSPLANTATION 2022; 8:100105. [PMID: 38013900 PMCID: PMC9213027 DOI: 10.1016/j.liver.2022.100105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
A 60-year-old woman with Hepatitis C infection, cirrhosis, recurrent hepatic hydrothorax, and hepatocellular carcinoma was hospitalized with Coronavirus disease-2019 (COVID-19). After her initial discharge, she was re-admitted three weeks later with decompensated liver disease. Imaging revealed extensive thrombosis in the portal vein, superior mesenteric vein, splenic vein and bilateral brachial veins. Given the acute onset and extent of the thrombosis, the patient received therapeutic anticoagulation despite elevated prothrombin time/ international normalized ratio, thrombocytopenia and low fibrinogen. Cirrhotic patients with COVID-19 maybe at high risk of thrombosis, which can present with significant hepatic decompensation.
Collapse
Affiliation(s)
- Mehtap Canastar
- Gastroenterology and Hepatology, Westchester Medical Center / New York Medical College, Valhalla, United States
| | - Kenji Okumura
- Surgery, Westchester Medical Center / New York Medical College, Valhalla, United States
| | - Roxana Bodin
- Gastroenterology and Hepatology, Westchester Medical Center / New York Medical College, Valhalla, United States
- Surgery, Westchester Medical Center / New York Medical College, Valhalla, United States
| | - Anthony Gilet
- Radiology, NY IMAGING Specialists, Port Jefferson Station, United States
| | - Abhay Dhand
- Surgery, Westchester Medical Center / New York Medical College, Valhalla, United States
- Medicine/Infectious Diseases, Westchester Medical Center / New York Medical College, Valhalla, United States
| |
Collapse
|
25
|
Alnamshan MM. Potential histopathological and immunological effects of SARS-CoV-2 on the liver. BRAZ J BIOL 2022; 82:e262008. [PMID: 36074418 DOI: 10.1590/1519-6984.262008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease outbreak of 2019 (COVID-19) poses a serious threat to public health worldwide. Lung injury is the most common complication of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. However, other organs, including the liver, can also be affected. Currently, there is limited evidence that liver impairment is associated with severe SARS-CoV-2 infection. Clinicians will need to determine whether liver injury is caused by an underlying liver condition, COVID-19 therapy, the virus directly, or immune-mediated inflammation or represents a complicated disease course in the context of COVID-19. To address the scarcity of data on histopathological changes and immunological effects on the liver with COVID-19 positivity, we analyze and summarize recent findings. We searched PubMed, Medline, Google Scholar, Science Direct, Scopus, and Web of Science databases up to December 1, 2021, identifying published studies with the search terms "Histopathology in COVID-19," "COVID-19," "Pathological changes in liver in COVID-19," "Liver pathology in COVID-19," "immunological effects in liver in COVID-19," and "SARS-CoV-2." This concise review will aid clinicians and researchers in better understanding the tissue histopathology and immunological consequences of SARS-CoV-2 on the liver, enabling improved care planning and avoiding future dangers.
Collapse
Affiliation(s)
- M M Alnamshan
- Imam Abdulrahman Bin Faisal University, College of Science, Department of Biology, Dammam, Saudi Arabia
| |
Collapse
|
26
|
Wang T, Cao Y, Zhang H, Wang Z, Man CH, Yang Y, Chen L, Xu S, Yan X, Zheng Q, Wang Y. COVID-19 metabolism: Mechanisms and therapeutic targets. MedComm (Beijing) 2022; 3:e157. [PMID: 35958432 PMCID: PMC9363584 DOI: 10.1002/mco2.157] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 01/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) dysregulates antiviral signaling, immune response, and cell metabolism in human body. Viral genome and proteins hijack host metabolic network to support viral biogenesis and propagation. However, the regulatory mechanism of SARS-CoV-2-induced metabolic dysfunction has not been elucidated until recently. Multiomic studies of coronavirus disease 2019 (COVID-19) revealed an intensive interaction between host metabolic regulators and viral proteins. SARS-CoV-2 deregulated cellular metabolism in blood, intestine, liver, pancreas, fat, and immune cells. Host metabolism supported almost every stage of viral lifecycle. Strikingly, viral proteins were found to interact with metabolic enzymes in different cellular compartments. Biochemical and genetic assays also identified key regulatory nodes and metabolic dependencies of viral replication. Of note, cholesterol metabolism, lipid metabolism, and glucose metabolism are broadly involved in viral lifecycle. Here, we summarized the current understanding of the hallmarks of COVID-19 metabolism. SARS-CoV-2 infection remodels host cell metabolism, which in turn modulates viral biogenesis and replication. Remodeling of host metabolism creates metabolic vulnerability of SARS-CoV-2 replication, which could be explored to uncover new therapeutic targets. The efficacy of metabolic inhibitors against COVID-19 is under investigation in several clinical trials. Ultimately, the knowledge of SARS-CoV-2-induced metabolic reprogramming would accelerate drug repurposing or screening to combat the COVID-19 pandemic.
Collapse
Affiliation(s)
- Tianshi Wang
- Shanghai Key Laboratory for Tumor Microenvironment and InflammationDepartment of Biochemistry and Molecular Cell BiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ying Cao
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haiyan Zhang
- Bai Jia Obstetrics and Gynecology HospitalShanghaiChina
| | - Zihao Wang
- Fudan University Shanghai Cancer CenterKey Laboratory of Breast Cancer in ShanghaiShanghai Key Laboratory of Radiation OncologyCancer Instituteand The Shanghai Key Laboratory of Medical EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- The International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghaiChina
| | - Cheuk Him Man
- Division of HematologyDepartment of MedicineUniversity of Hong KongPokfulamHong Kong, China
| | - Yunfan Yang
- Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
| | - Lingchao Chen
- Department of NeurosurgeryHuashan HospitalShanghai Medical CollegeFudan UniversityNational Center for Neurological DisordersShanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationNeurosurgical Institute of Fudan UniversityShanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Shuangnian Xu
- Department of HematologySouthwest HospitalArmy Medical UniversityChongqingChina
| | - Xiaojing Yan
- Department of HematologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Quan Zheng
- Center for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi‐Ping Wang
- Fudan University Shanghai Cancer CenterKey Laboratory of Breast Cancer in ShanghaiShanghai Key Laboratory of Radiation OncologyCancer Instituteand The Shanghai Key Laboratory of Medical EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- The International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghaiChina
| |
Collapse
|
27
|
Moctezuma-Velázquez P, Miranda-Zazueta G, Ortiz-Brizuela E, Garay-Mora JA, González-Lara MF, Tamez-Torres KM, Román-Montes CM, Díaz-Mejía BA, Pérez-García E, Villanueva-Reza M, Chapa-Ibargüengoitia M, Uscanga-Domínguez L, Sifuentes-Osornio J, Ponce-de-León A, Kershenobich-Stalnikowitz D, Mota-Ayala B, Moctezuma-Velázquez C. NAFLD determined by Dallas Steatosis Index is associated with poor outcomes in COVID-19 pneumonia: a cohort study. Intern Emerg Med 2022; 17:1355-1362. [PMID: 35138548 DOI: 10.1007/s11739-022-02933-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/15/2022] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 is a worldwide health challenge. Liver steatosis diagnosis based on imaging studies has been implicated in poor outcomes of COVID-19 pneumonia, but results are inconsistent. The Dallas Steatosis Index (DSI) is an available calculator developed to identify patients with non-alcoholic fatty liver disease (NAFLD). We hypothesized that it would be associated with in-hospital mortality, intensive care unit admission (ICU), and invasive mechanical ventilation (IMV). We conducted a retrospective cohort study on inpatients with confirmed COVID-19 pneumonia between February 26 and April 11, 2020. We computed the DSI on admission, and patients with high DSI were considered with NAFLD. We employed logistic regression to study the association between NAFLD, mortality, ICU admission, and IMV. We studied the association between liver steatosis on computed tomography (CT) and these outcomes, and also between Metabolic Associated Fatty Liver Disease (MAFLD) based on CT findings and risk factors and the outcomes. 470 patients were included; 359 had NAFLD according to the DSI. They had a higher frequency of type 2 diabetes (31% vs 14%, p < 0.001), obesity (58% vs 14%, p < 0.001), and arterial hypertension (34% vs 22%, p = 0.02). In univariable analysis, NAFLD was associated with mortality, ICU admission, and IMV. Liver steatosis by CT and MAFLD were not associated with any of these outcomes. In multivariable logistic regression, high DSI remained significantly associated with IMV and death. High DSI, which can be easily computed on admission, was associated with IMV and death, and its use to better stratify the prognosis of these patients should be explored. On the other hand, liver steatosis by CT and MAFLD were not associated with poor outcomes.
Collapse
Affiliation(s)
- Paulina Moctezuma-Velázquez
- Department of Surgery, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, 14080, Mexico City, Mexico
| | - Godolfino Miranda-Zazueta
- Department of Surgery, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, 14080, Mexico City, Mexico
| | - Edgar Ortiz-Brizuela
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, 14080, Mexico City, Mexico
| | - Juan Alberto Garay-Mora
- Department of Radiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, 14080, Mexico City, Mexico
| | - María Fernanda González-Lara
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, 14080, Mexico City, Mexico
| | - Karla Maria Tamez-Torres
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, 14080, Mexico City, Mexico
| | - Carla Marina Román-Montes
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, 14080, Mexico City, Mexico
| | - Bruno Alejandro Díaz-Mejía
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, 14080, Mexico City, Mexico
| | - Esteban Pérez-García
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, 14080, Mexico City, Mexico
| | - Marco Villanueva-Reza
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, 14080, Mexico City, Mexico
| | - Monica Chapa-Ibargüengoitia
- Department of Radiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, 14080, Mexico City, Mexico
| | - Luis Uscanga-Domínguez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, 14080, Mexico City, Mexico
| | - José Sifuentes-Osornio
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, 14080, Mexico City, Mexico
| | - Alfredo Ponce-de-León
- Department of Infectious Diseases, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, 14080, Mexico City, Mexico
| | - David Kershenobich-Stalnikowitz
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, 14080, Mexico City, Mexico
| | - Blanca Mota-Ayala
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, 14080, Mexico City, Mexico
| | - Carlos Moctezuma-Velázquez
- Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Sección 16, Tlalpan, 14080, Mexico City, Mexico.
- Division of Gastroenterology, Liver Unit, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
28
|
Hoffmann C, Gerber PA, Cavelti-Weder C, Licht L, Kotb R, Al Dweik R, Cherfane M, Bornstein SR, Perakakis N. Liver, NAFLD and COVID-19. Horm Metab Res 2022; 54:522-531. [PMID: 35468630 DOI: 10.1055/a-1834-9008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is characterized by a wide clinical spectrum that includes abnormalities in liver function indicative of liver damage. Conversely, people with liver diseases are at higher risk of severe COVID-19. In the current review, we summarize first the epidemiologic evidence describing the bidirectional relationship between COVID-19 and liver function/liver diseases. Additionally, we present the most frequent histologic findings as well as the most important direct and indirect mechanisms supporting a COVID-19 mediated liver injury. Furthermore, we focus on the most frequent liver disease in the general population, non-alcoholic or metabolic-associated fatty liver disease (NAFLD/MAFLD), and describe how COVID-19 may affect NAFLD/MAFLD development and progression and conversely how NAFLD/MAFLD may further aggravate a COVID-19 infection. Finally, we present the long-term consequences of the pandemic on the development and management of NAFLD.
Collapse
Affiliation(s)
- Carlotta Hoffmann
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany, Department of Internal Medicine III, Dresden, Germany
| | - Philipp A Gerber
- University Hospital Zurich (USZ) and University of Zurich (UZH), Switzerland, Department of Endocrinology, Diabetology and Clinical Nutrition, Zurich, Switzerland
| | - Claudia Cavelti-Weder
- University Hospital Zurich (USZ) and University of Zurich (UZH), Switzerland, Department of Endocrinology, Diabetology and Clinical Nutrition, Zurich, Switzerland
| | - Louisa Licht
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany, Department of Internal Medicine III, Dresden, Germany
| | - Reham Kotb
- Abu Dhabi University, Abu Dhabi, United Arab Emirates, College of Health Sciences, Abu Dhabi, United Arab Emirates
| | - Rania Al Dweik
- Abu Dhabi University, Abu Dhabi, United Arab Emirates, Department of Public Health, Abu Dhabi, United Arab Emirates
| | - Michele Cherfane
- Abu Dhabi University, Abu Dhabi, United Arab Emirates, College of Health Sciences, Abu Dhabi, United Arab Emirates
| | - Stefan R Bornstein
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany, Department of Internal Medicine III, Dresden, Germany
| | - Nikolaos Perakakis
- University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany, Department of Internal Medicine III, Dresden, Germany
- University Hospital and Faculty of Medicine, TU Dresden, Dresden, Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, Dresden, Germany
- Neuherberg, German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
29
|
Chen Y, Xu Y, Zhang K, Shen L, Deng M. Ferroptosis in COVID-19-related liver injury: A potential mechanism and therapeutic target. Front Cell Infect Microbiol 2022; 12:922511. [PMID: 35967872 PMCID: PMC9363633 DOI: 10.3389/fcimb.2022.922511] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/01/2022] [Indexed: 01/08/2023] Open
Abstract
The outbreak and worldwide spread of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been a threat to global public health. SARS-CoV-2 infection not only impacts the respiratory system but also causes hepatic injury. Ferroptosis, a distinct iron-dependent form of non-apoptotic cell death, has been investigated in various pathological conditions, such as cancer, ischemia/reperfusion injury, and liver diseases. However, whether ferroptosis takes part in the pathophysiological process of COVID-19-related liver injury has not been evaluated yet. This review highlights the pathological changes in COVID-19-related liver injury and presents ferroptosis as a potential mechanism in the pathological process. Ferroptosis, as a therapeutic target for COVID-19-related liver injury, is also discussed. Discoveries in these areas will improve our understanding of strategies to prevent and treat hepatic injuries caused by COVID-19.
Collapse
Affiliation(s)
- Yunqing Chen
- Department of Infectious Diseases, Affiliated Hospital of Jiaxing University, Jiaxing, China
- *Correspondence: Yunqing Chen,
| | - Yan Xu
- Department of Infectious Diseases, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Kan Zhang
- Department of Infectious Diseases, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Liang Shen
- Department of Cardiology, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Min Deng
- Department of Infectious Diseases, Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
30
|
DEMİRCİOĞLU Ö, KOCAKAYA D, ÇİMŞİT C, SARİNOĞLU RC, ÜLGER N, ÇİMŞİT C. Radiological comparison of the Wuhan and B.1.1.7 variant COVID-19 infection; are there any differences in chest CT scans? JOURNAL OF HEALTH SCIENCES AND MEDICINE 2022. [DOI: 10.32322/jhsm.1114475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Aim: In September 2020, a variant of the SARS-CoV-2 virus was detected in England and it became the dominant type in most of the countries. The clinical behavior of the B.1.1.7 variant COVID-19 infectionis different from the Wuhan type.So we aimed to investigate whether there are any differences in computed tomography (CT) imaging findings of pneumonia caused by COVID-19 variants.
Material and Method: 340 patients who admitted to the emergency departmentwith symptoms of dyspnea and chest pain suspecting COVID-19 pneumonia and pulmonary embolism were included in the study. Oncology (n:12) and pediatric (n:8) patients, patients with negative PCR test (n:56), and patients infected with different variant (n:6) were excluded leaving 258 patients grouped into two (B.1.1.7 and Wuhan type) for evaluation of CT findings such as pleural thickening,pleural and pericardial effusion, consolidation, GGO presence and distribution, upper lobe involvement, pulmonary embolism, tree in bud pattern, centrilobuler nodule, revers halo sign, and hepatosteatosis.
Results: A statistically significant difference was obtained between the two groups in terms of pleural thickening (p=0.020), upper lobe involvement (p=0.037), localization of GGO (p=0.001), presence of pleural effusion (p=0.025), embolism (p=0.011) and presence of consolidation (p=0.042). However, no significant difference was found for the development of hepatosteatosis (p=0.520).
Conclusion: There aredifferences in radiological findings between B.1.1.7 variant and Wuhan type. In our study atypical radiological findings are more common in B.1.1.7 type. In addition, radiological findings that seen in severe COVID-19 pneumonia are more common in B.1.1.7.
Collapse
|
31
|
Săbiescu DM, Kamal AM, Kamal CK, Alexandru DO, Mitruț P. Liver damage in the context of SARS-CoV-2. Covid-19 treatment and its effects on the liver. J Med Life 2022; 15:727-734. [PMID: 35928369 PMCID: PMC9321495 DOI: 10.25122/jml-2022-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
Since COVID-19 was declared a pandemic by the World Health Organization, the scientific community has tried to protect the population from the infection and its effects through multiple lines of evidence. Patients at high risk of developing severe disease were advised to protect themselves and practice effective physical distancing. Phenotypes specific to this infection need to be reviewed to understand COVID-19 and its clinical manifestations. When the pandemic began, the scientific community was concerned with the unfavorable outcome of cases with pre-existing liver disease. There have been speculations about risk factors for severe diseases such as liver disease, age, gender, and association with obesity or diabetes.
Collapse
Affiliation(s)
- Denisa Marilena Săbiescu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Adina Maria Kamal
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Constantin Kamal Kamal
- Department of Family Medicine, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Dragos Ovidiu Alexandru
- Department of Informatics and Biostatistics, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Paul Mitruț
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
32
|
Evidence showing lipotoxicity worsens outcomes in covid-19 patients and insights about the underlying mechanisms. iScience 2022; 25:104322. [PMID: 35502320 PMCID: PMC9045865 DOI: 10.1016/j.isci.2022.104322] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 01/08/2023] Open
Abstract
We compared three hospitalized patient cohorts and conducted mechanistic studies to determine if lipotoxicity worsens COVID-19. Cohort-1 (n = 30) compared COVID-19 patients dismissed home to those requiring intensive-care unit (ICU) transfer. Cohort-2 (n = 116) compared critically ill ICU patients with and without COVID-19. Cohort-3 (n = 3969) studied hypoalbuminemia and hypocalcemia’s impact on COVID-19 mortality. Patients requiring ICU transfer had higher serum albumin unbound linoleic acid (LA). Unbound fatty acids and LA were elevated in ICU transfers, COVID-19 ICU patients and ICU non-survivors. COVID-19 ICU patients (cohort-2) had greater serum lipase, damage-associated molecular patterns (DAMPs), cytokines, hypocalcemia, hypoalbuminemia, organ failure and thrombotic events. Hypocalcemia and hypoalbuminemia independently associated with COVID-19 mortality in cohort-3. Experimentally, LA reacted with albumin, calcium and induced hypocalcemia, hypoalbuminemia in mice. Endothelial cells took up unbound LA, which depolarized their mitochondria. In mice, unbound LA increased DAMPs, cytokines, causing endothelial injury, organ failure and thrombosis. Therefore, excessive unbound LA in the circulation may worsen COVID-19 outcomes. Three cohorts of hospitalized COVID-19 patients with different severities were studied Severe COVID-19 increased serum linoleic acid (LA) and unbound fatty acid levels Endothelial cell uptake of unbound LA dose-dependently depolarized mitochondria Unbound LA increased cytokines, endothelial injury, organ failure and thrombosis
Collapse
|
33
|
Elnaggar M, Abomhya A, Elkhattib I, Dawoud N, Doshi R. COVID-19 and liver diseases, what we know so far. World J Clin Cases 2022; 10:3969-3980. [PMID: 35665122 PMCID: PMC9131221 DOI: 10.12998/wjcc.v10.i13.3969] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/15/2021] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) pneumonia outbreak started in December 2019. On March 12, 2020, the World Health Organization (WHO) declared that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) constitutes a pandemic, and as of May 2021, SARS-CoV-2 has infected over 167.3 million patients, including 3.4 million deaths, reported to WHO. In this review, we will focus on the relationship between SARS-CoV-2 infection and the liver. We will discuss how chronic liver diseases affect the COVID-19 disease course and outcomes. We will also discuss the SARS-CoV-2 effects on the liver, mechanisms of acute liver injury, and potential management plans.
Collapse
Affiliation(s)
- Mohamed Elnaggar
- Department of Internal Medicine, University of Nevada Reno School of Medicine, Reno, NV 89052, United States
| | - Ahmed Abomhya
- Department of Internal Medicine, The Brooklyn Hospital Center, Brooklyn, NY 11200, United States
| | - Ismail Elkhattib
- Department of Internal Medicine, University of Connecticut, Farmington, CT 06030, United States
| | - Nabila Dawoud
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40508, United States
| | - Rajkumar Doshi
- Department of Cardiology, St Joseph's University Medical Center, Paterson, NJ 07503, United States
| |
Collapse
|
34
|
Abstract
With the spread of coronavirus disease 2019 (COVID-19) worldwide, extrapulmonary lesions, including liver dysfunction, have attracted growing attention. The mechanisms underlying liver dysfunction in COVID-19 remain unclear. The reported prevalence of liver dysfunction varies widely across studies. In addition, its impact on clinical outcomes and its recovery after discharge are still controversial. In this review, pathological and laboratory findings were analyzed to reveal the potential mechanisms of COVID-19-induced liver injury from onset to recovery. Four patterns of liver damage were summarized according to the pathological findings, including hypoxemia and shock changes, vascular thrombosis and vascular damage, bile duct damage, and other histological changes. With a strict definition, the prevalence of liver dysfunction was not as high as reported. Meanwhile, liver dysfunction improved during the process of recovery. Nevertheless, the definite liver dysfunction was significantly associated with severe clinical course, which should not be ignored.
Collapse
Affiliation(s)
- Wen-Zheng Yuan
- Department of Gastrointestinal Surgery II, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Tao Fu
- Department of Gastrointestinal Surgery II, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
35
|
Yao L, Lu L, Ma W. Immunopathological changes, complications, sequelae and immunological memory in COVID-19 patients. Heliyon 2022; 8:e09302. [PMID: 35497026 PMCID: PMC9040416 DOI: 10.1016/j.heliyon.2022.e09302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/25/2021] [Accepted: 04/14/2022] [Indexed: 01/09/2023] Open
Abstract
Confirmed SARS-CoV-2-caused disease (COVID-19) cases have reached 275.65 million worldwide. Although the majority of COVID-19 patients present mild to moderate symptoms, some have severe complications including death. We first reviewed the pathogenesis on ACE2, a binding receptor of SARS-CoV-2 expressed in multiple organs, and prevalent multinucleate syncytia in the lung tissues of COVID-19 patients. Then, we evaluated the pathological, immunological changes and sequelae in the major organs. Finally, we reviewed the immunological memory after SARS-CoV-2 infection and vaccination. The binding of SARS-Cov-2 to ACE2 receptor results in reduced ACE2 protein levels, which may lead to elevated susceptibility to inflammation, cell death, organ failure, and potentially severe illness. These damages increase the risk of health problems over a long period, which result in many complications. The complications in multiple organs lead to the increased risk of long-term health problems that require additional attention. A multidisciplinary care team is necessary for further management and recovery of the COVID-19 survivors. Many COVID-19 patients will probably make antibodies against SARS-CoV-2 virus for most of their lives, and the immunity against reinfection would last for 3-61 months.
Collapse
Affiliation(s)
- Liqin Yao
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, Huzhou University School of Medicine, Huzhou, Zhejiang, 313000, China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, School of Medicine, New Haven, CT, 06520, USA
- Center for Biomedical Data Science and Yale Cancer Center, Yale University, 60 College Street, New Haven, CT, 06520, USA
| | - Wenxue Ma
- Department of Medicine, Moores Cancer Center and Sanford Stem Cell Clinical Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
36
|
Li Z, Peng M, Chen P, Liu C, Hu A, Zhang Y, Peng J, Liu J, Li Y, Li W, Zhu W, Guan D, Zhang Y, Chen H, Li J, Fan D, Huang K, Lin F, Zhang Z, Guo Z, Luo H, He X, Zhu Y, Li L, Huang B, Cai W, Gu L, Lu Y, Deng K, Yan L, Chen S. Imatinib and methazolamide ameliorate COVID-19-induced metabolic complications via elevating ACE2 enzymatic activity and inhibiting viral entry. Cell Metab 2022; 34:424-440.e7. [PMID: 35150639 PMCID: PMC8832557 DOI: 10.1016/j.cmet.2022.01.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/22/2021] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) represents a systemic disease that may cause severe metabolic complications in multiple tissues including liver, kidney, and cardiovascular system. However, the underlying mechanisms and optimal treatment remain elusive. Our study shows that impairment of ACE2 pathway is a key factor linking virus infection to its secondary metabolic sequelae. By using structure-based high-throughput virtual screening and connectivity map database, followed with experimental validations, we identify imatinib, methazolamide, and harpagoside as direct enzymatic activators of ACE2. Imatinib and methazolamide remarkably improve metabolic perturbations in vivo in an ACE2-dependent manner under the insulin-resistant state and SARS-CoV-2-infected state. Moreover, viral entry is directly inhibited by these three compounds due to allosteric inhibition of ACE2 binding to spike protein on SARS-CoV-2. Taken together, our study shows that enzymatic activation of ACE2 via imatinib, methazolamide, or harpagoside may be a conceptually new strategy to treat metabolic sequelae of COVID-19.
Collapse
Affiliation(s)
- Zilun Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| | - Meixiu Peng
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Pin Chen
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Chenshu Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Ao Hu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yixin Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Jiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Yihui Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Wenxue Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong 510440, China
| | - Wei Zhu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong 510440, China
| | - Dongxian Guan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yang Zhang
- School of Public Health, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Hongyin Chen
- School of Public Health, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Jiuzhou Li
- School of Public Health, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Dongxiao Fan
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Kan Huang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Fen Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Zefeng Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Zeling Guo
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Hengli Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xi He
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Yuanyuan Zhu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Linghua Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Bingding Huang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong 518118, China
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Lei Gu
- Max Planck Institute for Heart and Lung Research and Cardiopulmonary Institute (CPI), Bad Nauheim 61231, Germany
| | - Yutong Lu
- National Supercomputer Center in Guangzhou, School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510006, China
| | - Kai Deng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China; Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| | - Li Yan
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China.
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China.
| |
Collapse
|
37
|
Moreira JLDS, Barbosa SMB, Vieira JG, Chaves NCB, Gonçalves Júnior J. Liver histopathological changes and COVID-19: What does literature have to tell us? Dig Liver Dis 2022; 54:296-298. [PMID: 35067462 PMCID: PMC8752316 DOI: 10.1016/j.dld.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022]
Affiliation(s)
| | | | | | | | - Jucier Gonçalves Júnior
- Division of Rheumathology, Universidade de Sao Paulo, São Paulo, Brazil,Corresponding author
| |
Collapse
|
38
|
Liu D, Zheng Y, Kang J, Wang D, Bai L, Mao Y, Zha G, Tang H, Zhang R. Not Only High Number and Specific Comorbidities but Also Age Are Closely Related to Progression and Poor Prognosis in Patients With COVID-19. Front Med (Lausanne) 2022; 8:736109. [PMID: 35071254 PMCID: PMC8782432 DOI: 10.3389/fmed.2021.736109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 12/02/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Some patients with comorbidities and rapid disease progression have a poor prognosis. Aim: We aimed to investigate the characteristics of comorbidities and their relationship with disease progression and outcomes of COVID-19 patients. Methods: A total of 718 COVID-19 patients were divided into five clinical type groups and eight age-interval groups. The characteristics of comorbidities were compared between the different clinical type groups and between the different age-interval groups, and their relationships with disease progression and outcomes of COVID-19 patients were assessed. Results: Approximately 91.23% (655/718) of COVID-19 patients were younger than 60 years old. Approximately 64.76% (465/718) had one or more comorbidities, and common comorbidities included non-alcoholic fatty liver disease (NAFLD), hyperlipidaemia, hypertension, diabetes mellitus (DM), chronic hepatitis B (CHB), hyperuricaemia, and gout. COVID-19 patients with comorbidities were older, especially those with chronic obstructive pulmonary disease (COPD) and cardiovascular disease (CVD). Hypertension, DM, COPD, chronic kidney disease (CKD) and CVD were mainly found in severe COVID-19 patients. According to spearman correlation analysis the number of comorbidities was correlated positively with disease severity, the number of comorbidities and NAFLD were correlated positively with virus negative conversion time, hypertension, CKD and CVD were primarily associated with those who died, and the above-mentioned correlation existed independently of age. Risk factors included age, the number of comorbidities and hyperlipidaemia for disease severity, the number of comorbidities, hyperlipidaemia, NAFLD and COPD for the virus negative conversion time, and the number of comorbidities and CKD for prognosis. Number of comorbidities and age played a predictive role in disease progression and outcomes. Conclusion: Not only high number and specific comorbidities but also age are closely related to progression and poor prognosis in patients with COVID-19. These findings provide a reference for clinicians to focus on not only the number and specific comorbidities but also age in COVID-19 patients to predict disease progression and prognosis. Clinical Trial Registry: Chinese Clinical Trial Register ChiCTR2000034563.
Collapse
Affiliation(s)
- Dafeng Liu
- Department of Internal Medicine, The Public and Health Clinic Centre of Chengdu, Chengdu, China.,The Public and Health Clinic Centre of Chengdu Substation, Chengdu New Emergent Infectious Disease Prevention and Control Workstation, Chengdu, China
| | - Yongli Zheng
- Department of Internal Medicine, The Public and Health Clinic Centre of Chengdu, Chengdu, China.,The Public and Health Clinic Centre of Chengdu Substation, Chengdu New Emergent Infectious Disease Prevention and Control Workstation, Chengdu, China
| | - Jun Kang
- Department of Internal Medicine, The Public and Health Clinic Centre of Chengdu, Chengdu, China.,The Public and Health Clinic Centre of Chengdu Substation, Chengdu New Emergent Infectious Disease Prevention and Control Workstation, Chengdu, China
| | - Dongmei Wang
- Department of Internal Medicine, The Public and Health Clinic Centre of Chengdu, Chengdu, China.,The Public and Health Clinic Centre of Chengdu Substation, Chengdu New Emergent Infectious Disease Prevention and Control Workstation, Chengdu, China
| | - Lang Bai
- Center of Infectious Diseases, Sichuan University West China Hospital, Chengdu, China
| | - Yi Mao
- Department of Internal Medicine, The Public and Health Clinic Centre of Chengdu, Chengdu, China.,The Public and Health Clinic Centre of Chengdu Substation, Chengdu New Emergent Infectious Disease Prevention and Control Workstation, Chengdu, China
| | - Guifang Zha
- Department of Internal Medicine, The Public and Health Clinic Centre of Chengdu, Chengdu, China.,The Public and Health Clinic Centre of Chengdu Substation, Chengdu New Emergent Infectious Disease Prevention and Control Workstation, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, Sichuan University West China Hospital, Chengdu, China
| | - Renqing Zhang
- Department of Internal Medicine, The Public and Health Clinic Centre of Chengdu, Chengdu, China.,The Public and Health Clinic Centre of Chengdu Substation, Chengdu New Emergent Infectious Disease Prevention and Control Workstation, Chengdu, China
| |
Collapse
|
39
|
Desai AD, Lavelle M, Boursiquot BC, Wan EY. Long-term complications of COVID-19. Am J Physiol Cell Physiol 2022; 322:C1-C11. [PMID: 34817268 PMCID: PMC8721906 DOI: 10.1152/ajpcell.00375.2021] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 has rapidly spread across the globe and infected hundreds of millions of people worldwide. As our experience with this virus continues to grow, our understanding of both short-term and long-term complications of infection with SARS-CoV-2 continues to grow as well. Just as there is heterogeneity in the acute infectious phase, there is heterogeneity in the long-term complications seen following COVID-19 illness. The purpose of this review article is to present the current literature with regards to the epidemiology, pathophysiology, and proposed management algorithms for the various long-term sequelae that have been observed in each organ system following infection with SARS-CoV-2. We will also consider future directions, with regards to newer variants of the virus and their potential impact on the long-term complications observed.
Collapse
Affiliation(s)
- Amar D Desai
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, New York
| | - Michael Lavelle
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, New York
| | - Brian C Boursiquot
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, New York
| | - Elaine Y Wan
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, New York
| |
Collapse
|
40
|
Kayaaslan B, Guner R. COVID-19 and the liver: A brief and core review. World J Hepatol 2021; 13:2013-2023. [PMID: 35070005 PMCID: PMC8727220 DOI: 10.4254/wjh.v13.i12.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/23/2021] [Accepted: 11/27/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 has a wide range of clinical spectrum from asymptomatic infection to severe infection resulting in death within a short time. Currently, it is known that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) does not only cause a respiratory tract infection but a more complicated disease that can lead to multiple system involvement including the liver. Herein, we evaluate the epidemiology, the impact of liver injury/ dysfunction on disease prognosis, the pathophysiological mechanisms and management of liver injury. More than one-fourth of the patients have abnormal liver function tests, mostly a mild-to-moderate liver dysfunction. Liver injury is significantly associated with a poor clinical outcome. Direct cytotoxic effect of SARS-CoV-2, the immune response ("cytokine storm"), the complications related to the disease, and drugs used in the treatments are the pathophysiological mechanisms responsible for liver injury. However, the exact mechanism is not yet clearly explained. The binding of SARS-CoV-2 to the angiotensin-converting enzyme 2 receptors and entering the hepatocyte and cholangiocytes can cause cytotoxic effects on the liver. Excessive immune response has an important role in disease progression and causes acute respiratory distress syndrome and multi-organ failures accompanied by liver injury. Treatment drugs, particularly lopinavir/ritonavir, remdesivir and antibiotics are a frequent reason for liver injury. The possible reasons should be meticulously investigated and resolved.
Collapse
Affiliation(s)
- Bircan Kayaaslan
- Department of Infectious Disease and Clinical Microbiology, Ankara City Hospital, Ankara Yildirim Beyazit University, Ankara 06800, Turkey.
| | - Rahmet Guner
- Department of Infectious Disease and Clinical Microbiology, Ankara City Hospital, Ankara Yildirim Beyazit University, Ankara 06800, Turkey
| |
Collapse
|
41
|
Mudenda V, Mumba C, Pieciak RC, Mwananyanda L, Chimoga C, Ngoma B, Mupila Z, Kwenda G, Forman L, Lapidot R, MacLeod WB, Thea DM, Gill CJ. Histopathological Evaluation of Deceased Persons in Lusaka, Zambia With or Without Coronavirus Disease 2019 (COVID-19) Infection: Results Obtained From Minimally Invasive Tissue Sampling. Clin Infect Dis 2021; 73:S465-S471. [PMID: 34910177 PMCID: PMC8672753 DOI: 10.1093/cid/ciab858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Although much has been learned about the pathophysiology of coronavirus disease 2019 (COVID-19) infections, pathology data from patients who have died of COVID-19 in low- and middle-income country settings remain sparse. We integrated minimally invasive tissue sampling (MITS) into an ongoing postmortem surveillance study of COVID-19 in deceased individuals of all ages in Lusaka, Zambia. Methods We enrolled deceased subjects from the University Teaching Hospital Morgue in Lusaka, Zambia within 48 hours of death. We collected clinical and demographic information, a nasopharyngeal swab, and core tissue biopsies from the lung, liver, and kidneys for pathologic analysis. Individuals were considered eligible for MITS if they had a respiratory syndrome prior to death or a COVID-19+ polymerase chain reaction (PCR) nasopharyngeal swab specimen. Samples were retested using quantitative reverse transcriptase PCR. Results From June to September 2020 we performed MITS on 29 deceased individuals. PCR results were available for 28/29 (96.5%) cases. Three had a COVID-19+ diagnosis antemortem, and 5 more were identified postmortem using the recommended cycle threshold cut-point <40. When expanding the PCR threshold to 40 ≤ cycle threshold (Ct) ≤ 45, we identified 1 additional case. Most cases were male and occurred in the community The median age at death was 47 years (range 40–64). Human immunodeficiency virus (HIV)/AIDS, tuberculosis, and diabetes were more common among the COVID-19+ cases. Diffuse alveolar damage and interstitial pneumonitis were common among COVID-19+ cases; nonspecific findings of hepatic steatosis and acute kidney injury were also prevalent in the COVID-19+ group. Vascular thrombi were rarely detected. Conclusions Lung abnormalities typical of viral pneumonias were common among deceased COVID-19+ individuals, as were nonspecific findings in the liver and kidneys. Pulmonary vascular thrombi were rarely detected, which could be a limitation of the MITS technique. Nonetheless, MITS offers a valuable alternative to open autopsy for understanding pathological changes due to COVID-19.
Collapse
Affiliation(s)
- Victor Mudenda
- University Teaching Hospital, Department of Pathology, Lusaka, Zambia
| | - Chibamba Mumba
- University Teaching Hospital, Department of Pathology, Lusaka, Zambia
| | - Rachel C Pieciak
- Boston University School of Public Health, Department of Global Health, Boston, Massachusetts, USA
| | - Lawrence Mwananyanda
- Boston University School of Public Health, Department of Global Health, Boston, Massachusetts, USA.,Right to Care Zambia, Lusaka, Zambia
| | | | | | | | - Geoffrey Kwenda
- University of Zambia, School of Health Sciences, Department of Biomedical Sciences, Lusaka, Zambia
| | - Leah Forman
- Boston University School of Public Health, Biostatistics and Epidemiology Data Analytics Center (BEDAC), Boston, Massachusetts, USA
| | - Rotem Lapidot
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - William B MacLeod
- Boston University School of Public Health, Department of Global Health, Boston, Massachusetts, USA
| | - Donald M Thea
- Boston University School of Public Health, Department of Global Health, Boston, Massachusetts, USA
| | - Christopher J Gill
- Boston University School of Public Health, Department of Global Health, Boston, Massachusetts, USA
| |
Collapse
|
42
|
Kanmaniraja D, Kurian J, Holder J, Gunther MS, Chernyak V, Hsu K, Lee J, Mcclelland A, Slasky SE, Le J, Ricci ZJ. Review of COVID-19, part 1: Abdominal manifestations in adults and multisystem inflammatory syndrome in children. Clin Imaging 2021; 80:88-110. [PMID: 34298343 PMCID: PMC8223038 DOI: 10.1016/j.clinimag.2021.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/23/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
The coronavirus disease 2019 (COVID -19) pandemic caused by the novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) has affected almost every country in the world, resulting in severe morbidity, mortality and economic hardship, and altering the landscape of healthcare forever. Although primarily a pulmonary illness, it can affect multiple organ systems throughout the body, sometimes with devastating complications and long-term sequelae. As we move into the second year of this pandemic, a better understanding of the pathophysiology of the virus and the varied imaging findings of COVID-19 in the involved organs is crucial to better manage this complex multi-organ disease and to help improve overall survival. This manuscript provides a comprehensive overview of the pathophysiology of the virus along with a detailed and systematic imaging review of the extra-thoracic manifestation of COVID-19 with the exception of unique cardiothoracic features associated with multisystem inflammatory syndrome in children (MIS-C). In Part I, extra-thoracic manifestations of COVID-19 in the abdomen in adults and features of MIS-C will be reviewed. In Part II, manifestations of COVID-19 in the musculoskeletal, central nervous and vascular systems will be reviewed.
Collapse
Affiliation(s)
- Devaraju Kanmaniraja
- Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, United States of America.
| | - Jessica Kurian
- Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, United States of America.
| | - Justin Holder
- Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, United States of America.
| | - Molly Somberg Gunther
- Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, United States of America.
| | - Victoria Chernyak
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Kevin Hsu
- Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, United States of America.
| | - Jimmy Lee
- Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, United States of America.
| | - Andrew Mcclelland
- Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, United States of America.
| | - Shira E Slasky
- Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, United States of America
| | - Jenna Le
- Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, United States of America.
| | - Zina J Ricci
- Department of Radiology, Montefiore Medical Center/Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467, United States of America.
| |
Collapse
|
43
|
Maricuto AL, Velásquez VL, Pineda J, Flora-Noda DM, Rodríguez I, Rodríguez-Inés CA, Noya-González ÓO, Contreras R, Omaña-Ávila ÓD, Escalante-Pérez IA, Camejo-Ávila NA, Kuffaty-Akkou NA, Carrión-Nessi FS, Carballo M, Landaeta ME, Forero-Peña DA. Amoebic liver abscess in a COVID-19 patient: a case report. BMC Infect Dis 2021; 21:1134. [PMID: 34736397 PMCID: PMC8567734 DOI: 10.1186/s12879-021-06819-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Amoebiasis is a parasitic disease caused by Entamoeba histolytica, which affects people living in low- and middle-income countries and has intestinal and extraintestinal manifestations. To date, knowledge on coronavirus disease 2019 (COVID-19) coinfection with enteric parasites is limited, and E. histolytica coinfection has not been previously described. Here we present the case of a patient with COVID-19 who, during hospitalisation, presented a clinical picture consistent with an amoebic liver abscess (ALA). CASE PRESENTATION A 54-year-old man, admitted as a suspected case of COVID-19, presented to our hospital with dyspnoea, malaise, fever and hypoxaemia. A nasopharyngeal swab was positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by reverse-transcription polymerase chain reaction. After 7 days, he developed diarrhoea, choluria and dysentery. An abdominal ultrasound showed a lesion compatible with a liver abscess; stool examination revealed E. histolytica trophozoites, and additional serology for E. histolytica was positive. After 12 days of treatment with metronidazole, ceftazidime and nitazoxanide, the patient reported acute abdominal pain, and an ultrasound examination revealed free liquid in the abdominal cavity. An emergency exploratory laparotomy was performed, finding 3000 mL of a thick fluid described as "anchovy paste". Computed tomography scan revealed a second abscess. He ended up receiving 21 days of antibiotic treatment and was discharged with satisfactory improvement. CONCLUSION Here we present, to the best of our knowledge, the first report of ALA and COVID-19 co-presenting. Based on their pathophysiological similarities, coinfection with SARS-CoV-2 and E. histolytica could change the patient's clinical course; however, larger studies are needed to fully understand the interaction between these pathogens.
Collapse
Affiliation(s)
- Andrea L Maricuto
- Infectious Diseases Department, University Hospital of Caracas, Caracas, Venezuela
| | - Viledy L Velásquez
- Infectious Diseases Department, University Hospital of Caracas, Caracas, Venezuela
| | - Jacinto Pineda
- "Dr. José Antonio O'Daly" Anatomopathological Institute, Central University of Venezuela, Caracas, Venezuela
| | - David M Flora-Noda
- Infectious Diseases Department, University Hospital of Caracas, Caracas, Venezuela
| | - Isaac Rodríguez
- Radiodiagnosis Department, University Hospital of Caracas, Caracas, Venezuela
| | | | - Óscar O Noya-González
- "Dr. Félix Pifano" Tropical Medicine Institute, Central University of Venezuela, Caracas, Venezuela
| | - Rosa Contreras
- "Dr. Félix Pifano" Tropical Medicine Institute, Central University of Venezuela, Caracas, Venezuela
| | - Óscar D Omaña-Ávila
- "Luis Razetti" School of Medicine, Central University of Venezuela, Caracas, Venezuela
- Biomedical Research and Therapeutic Vaccines Institute, Ciudad Bolivar, Venezuela
| | - Iván A Escalante-Pérez
- "Luis Razetti" School of Medicine, Central University of Venezuela, Caracas, Venezuela
- Biomedical Research and Therapeutic Vaccines Institute, Ciudad Bolivar, Venezuela
| | | | - Nicolle A Kuffaty-Akkou
- "Luis Razetti" School of Medicine, Central University of Venezuela, Caracas, Venezuela
- Biomedical Research and Therapeutic Vaccines Institute, Ciudad Bolivar, Venezuela
| | - Fhabián S Carrión-Nessi
- Biomedical Research and Therapeutic Vaccines Institute, Ciudad Bolivar, Venezuela
- "Dr. Francisco Battistini Casalta" Health Sciences School, University of Oriente - Bolivar Nucleus, Ciudad Bolivar, Venezuela
| | - Martín Carballo
- Infectious Diseases Department, University Hospital of Caracas, Caracas, Venezuela
| | - María E Landaeta
- Infectious Diseases Department, University Hospital of Caracas, Caracas, Venezuela
| | - David A Forero-Peña
- Infectious Diseases Department, University Hospital of Caracas, Caracas, Venezuela.
- Biomedical Research and Therapeutic Vaccines Institute, Ciudad Bolivar, Venezuela.
| |
Collapse
|
44
|
Chu H, Peng L, Hu L, Zhu Y, Zhao J, Su H, Yao L, Zhu Q, Nie X, Yang L, Hou X. Liver Histopathological Analysis of 24 Postmortem Findings of Patients With COVID-19 in China. Front Med (Lausanne) 2021; 8:749318. [PMID: 34708059 PMCID: PMC8543004 DOI: 10.3389/fmed.2021.749318] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/13/2021] [Indexed: 01/08/2023] Open
Abstract
Although the pathologic investigation of liver injury was observed in a couple of cases in China, the detailed description of liver histopathologic and ultrastructural changes in a relatively larger series of liver tissues from COVID-19 patients is lacking. Samples from the liver were obtained from 24 COVID-19 cases from February 1 to April 1, 2020. Light microscopy showed that all liver sections had different degrees of liver injury manifested as swelling of the hepatocytes, hepatocellular necrosis, steatosis, lobular inflammation, portal inflammation, dilatation of sinusoids, and so on. SARS-CoV-2 induced liver injury might be independent of pre-existing Schistosoma infection or obstructive cholestasis. Patients combined with respiratory failure had more severe hepatocellular necrosis and male patients were more susceptible to liver injury. Although coronavirus particles or viral inclusions were not detected in the liver tissues for all cases, vacuolar degenerations in hepatocytes, edematous of mitochondria with the disruption of cristae, and expansions of the endoplasmic reticulum were observed. In conclusion, pathologic changes of liver tissues provide us a further understanding of liver injury in COVID-19 patients. Changes in the liver seem to be related to the underlying diseases/conditions.
Collapse
Affiliation(s)
- Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Peng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lilin Hu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yixin Zhu
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Jinfang Zhao
- Center for Life Sciences, Tsinghua University, Beijing, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Yao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingjing Zhu
- Liver and Infectious Diseases Department, Wuhan Jinyintan Hospital, Wuhan, China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Idalsoaga F, Ayares G, Arab JP, Díaz LA. COVID-19 and Indirect Liver Injury: A Narrative Synthesis of the Evidence. J Clin Transl Hepatol 2021; 9:760-768. [PMID: 34722191 PMCID: PMC8516829 DOI: 10.14218/jcth.2020.00140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/16/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
The liver is frequently affected by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection. The most common manifestations are mildly elevated alanine aminotransferase and aspartate aminotransferase, with a prevalence of 16-53% among patients. Cases with severe coronavirus disease 2019 (COVID-19) seem to have higher rates of acute liver dysfunction, and the presence of abnormal liver tests at admission signifies a higher risk of severe disease during hospitalization. Patients with chronic liver diseases also have a higher risk of severe disease and mortality (mainly seen in patients with metabolic-associated fatty liver disease). Several pathways of damage have been proposed in the liver involvement of COVID-19 patients; although, the end-cause is most likely multifactorial. Abnormal liver tests have been attributed to the expression of angiotensin-converting enzyme 2 receptors in SARS-CoV-2 infection. This enzyme is expressed widely in cholangiocytes and less in hepatocytes. Other factors attributed to liver damage include drug-induced liver injury, uncontrolled release of proinflammatory molecules ("cytokine storm"), pneumonia-associated hypoxia, and direct damage by the infection. Hepatic steatosis, vascular thrombosis, fibrosis, and inflammatory features (including Kupffer cell hyperplasia) are the most common liver histopathological findings in deceased COVID-19 patients, suggesting important indirect mechanisms of liver damage. In this translational medicine-based narrative review, we summarize the current data on the possible indirect mechanisms involved in liver damage due to COVID-19, the histopathological findings, and the impact of these mechanisms in patients with chronic liver disease.
Collapse
Affiliation(s)
- Francisco Idalsoaga
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gustavo Ayares
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Antonio Díaz
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Correspondence to: Luis Antonio Díaz, Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Marcoleta 367, Santiago 8330024, Chile. ORCID: https://orcid.org/0000-0002-8540-4930. Tel/Fax:+56-2-2354-3820, E-mail:
| |
Collapse
|
46
|
Westheim AJF, Bitorina AV, Theys J, Shiri‐Sverdlov R. COVID-19 infection, progression, and vaccination: Focus on obesity and related metabolic disturbances. Obes Rev 2021; 22:e13313. [PMID: 34269511 PMCID: PMC8420274 DOI: 10.1111/obr.13313] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 01/08/2023]
Abstract
Coronaviruses are constantly circulating in humans, causing common colds and mild respiratory infections. In contrast, infection with the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for coronavirus disease-2019 (COVID-19), can cause additional severe complications, particularly in patients with obesity and associated metabolic disturbances. Obesity is a principal causative factor in the development of the metabolic syndrome; a series of physiological, biochemical, clinical, and metabolic factors that increase the risk of obesity-associated diseases. "Metabolically unhealthy" obesity is, in addition to metabolic disturbances, also associated with immunological disturbances. As such, patients with obesity are more prone to develop serious complications from infections, including those from SARS-CoV-2. In this review, we first describe how obesity and related metabolic disturbances increase the risk of SARS-CoV-2 infection. Then, mechanisms contributing to COVID-19 complications and poor prognosis in these patients are discussed. Finally, we discuss how obesity potentially reduces long-term COVID-19 vaccination efficacy. Despite encouraging COVID-19 vaccination results in patients with obesity and related metabolic disturbances in the short-term, it is becoming increasingly evident that long-term COVID-19 vaccination efficacy should be closely monitored in this vulnerable group.
Collapse
Affiliation(s)
- Annemarie J. F. Westheim
- Department of Precision Medicine, GROW‐Research School for Oncology and ReproductionMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Albert V. Bitorina
- Department of Molecular Genetics, NUTRIM‐School of Nutrition and Translational Research in MetabolismMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Jan Theys
- Department of Precision Medicine, GROW‐Research School for Oncology and ReproductionMaastricht University Medical Center+MaastrichtThe Netherlands
| | - Ronit Shiri‐Sverdlov
- Department of Molecular Genetics, NUTRIM‐School of Nutrition and Translational Research in MetabolismMaastricht University Medical Center+MaastrichtThe Netherlands
| |
Collapse
|
47
|
Bellanti F, Vendemiale G. Coronavirus disease 2019 and non-alcoholic fatty liver disease. World J Hepatol 2021; 13:969-978. [PMID: 34630869 PMCID: PMC8473503 DOI: 10.4254/wjh.v13.i9.969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/15/2021] [Accepted: 08/11/2021] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic may present with a broad range of clinical manifestations, from no or mild symptoms to severe disease. Patients with specific pre-existing comorbidities, such as obesity and type 2 diabetes, are at high risk of coming out with a critical form of COVID-19. Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and, because of its frequent association with metabolic alterations including obesity and type 2 diabetes, it has recently been re-named as metabolic-associated fatty liver disease (MAFLD). Several studies and systematic reviews pointed out the increased risk of severe COVID-19 in NAFLD/MAFLD patients. Even though dedicated mechanistic studies are missing, this higher probability may be justified by systemic low-grade chronic inflammation associated with immune dysregulation in NAFLD/MAFLD, which could trigger cytokine storm and hypercoagulable state after severe acute respiratory syndrome coronavirus 2 infection. This review focuses on the predisposing role of NAFLD/MAFLD in favoring severe COVID-19, discussing the available information on specific risk factors, clinical features, outcomes, and pathogenetic mechanisms.
Collapse
Affiliation(s)
- Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| | - Gianluigi Vendemiale
- Department of Medical and Surgical Sciences, University of Foggia, Foggia 71122, Italy
| |
Collapse
|
48
|
A COVID-19-association-dependent categorization of death causes in 100 autopsy cases. GeroScience 2021; 43:2265-2287. [PMID: 34510338 PMCID: PMC8435112 DOI: 10.1007/s11357-021-00451-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
From March through December 2020, 100 autopsies were performed (Semmelweis University, Budapest, Hungary), with chart review, of patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection demonstrated by real-time reverse-transcription polymerase chain reaction testing (mean age, 74.73 years, range 40–102 years; 50 males, mean age 71.96 years, and 50 females, mean age 77.5 years). Classified by the date of death, 21 cases were from the pandemic’s “first wave” (March through July) and 79 from the “second wave” (August through December). Three mortality categories were defined by relevance of SARS-CoV-2 infection: (1) “strong” association (n=57), in which COVID-19 was primary responsible for death; (2) “contributive” association (n=27), in which a pre-existing condition independent of COVID-19 was primary responsible for death, albeit with substantial COVID-19 co-morbidity; (3) “weak” association (n=16), in which COVID-19 was minimally or not at all responsible for death. Distributions among categories differed between the first wave, in which the “contributive” association cases dominated (strong: 24%, contributive: 48%, weak: 28%), and the second wave, in which the “strong” association cases dominated (strong: 66%, contributive: 21%, weak: 13%). Charted co-morbidities included hypertension (85 %), cardiovascular diseases (71 %), diabetes (40 %), cerebrovascular diseases (31 %), chronic respiratory diseases (30 %), malignant tumors (20 %), renal diseases (19 %), diseases of the central nervous system (15 %), and liver diseases (6 %). Autopsy evaluation analyzed alterations on macroscopy as well as findings on microscopy of scanned and scored sections of formalin-fixed, paraffin-embedded tissue samples (50–80 blocks/case). Severity of histological abnormalities in the lung differed significantly between “strong” and “contributive” (p<0.0001) and between “strong” and “weak” categories (p<0.0001). Abnormalities included diffuse alveolar damage, macrophage infiltration, and vascular and alveolar fibrin aggregates (lung), with macro- and microvascular thrombi and thromboemboli (lung, kidney, liver). In conclusion, autopsies clarified in what extent COVID-19 was responsible for death, demonstrated the pathological background of clinical signs and symptoms, and identified organ alterations that led to the death. Clinicopathologic correlation, with conference discussions of severity of co-morbidities and of direct pathological signs of disease, permitted accurate categorization of cause of death and COVID-19 association as “strong,” “contributive,” or “weak.” Lung involvement, with reduced ventilatory capacity, was the primary cause of death in the “strong” and “contributive” categories. Shifts in distribution among categories, with “strong” association between COVID-19 and death dominating in the second wave, may reflect improved clinical management of COVID-19 as expertise grew.
Collapse
|
49
|
Spearman CW, Aghemo A, Valenti L, Sonderup MW. COVID-19 and the liver: A 2021 update. Liver Int 2021; 41:1988-1998. [PMID: 34152690 DOI: 10.1111/liv.14984] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
In December 2019, a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in Wuhan, China and has since resulted in a global pandemic in excess of 165 million reported infections and 3.4 million attributable deaths. COVID-19 is primarily a respiratory illness, which may be complicated by pneumonia and acute respiratory distress syndrome. SARS-CoV-2 is also responsible for numerous extrapulmonary manifestations involving the haematologic, cardiovascular, renal, gastrointestinal and hepatobiliary, endocrinologic, neurologic, ophthalmologic and dermatologic systems. This review will discuss the pathophysiology of COVID-19; focusing on the mechanisms and outcomes of liver injury associated with COVID-19; its impact on chronic liver disease (CLD); management of CLD during the COVID-19 pandemic and the long-term impact of COVID-19 on CLD.
Collapse
Affiliation(s)
- Catherine W Spearman
- Division of Hepatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Alessio Aghemo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,Division of Internal Medicine and Hepatology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Milan, Italy.,Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Policlinico, Milan, Italy
| | - Mark W Sonderup
- Division of Hepatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
50
|
Buso G, Becchetti C, Berzigotti A. Acute splanchnic vein thrombosis in patients with COVID-19: A systematic review. Dig Liver Dis 2021; 53:937-949. [PMID: 34120860 PMCID: PMC8149197 DOI: 10.1016/j.dld.2021.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/16/2021] [Indexed: 02/08/2023]
Abstract
There is increasing evidence that coronavirus disease 2019 (COVID-19) is associated with a significant risk of venous thromboembolism. While information are mainly available for deep vein thrombosis of the lower limb and pulmonary embolism, scarce data exist regarding acute splanchnic vein thrombosis (SVT) in this setting. PubMed, EMBASE and Google Scholar English-language articles published up to 30 January 2021 on SVT in COVID-19 were searched. Overall, 21 articles reporting equal number of patients were identified. 15 subjects presented with portal vein thrombosis, 11 with mesenteric vein thrombosis, four with splenic vein thrombosis, and two with Budd-Chiari syndrome. Male sex was prevalent (15 patients), and median age was 43 years (range 26-79 years). Three patients had a history of liver disease, while no subject had known myeloproliferative syndrome. Clinical presentation included mainly gastrointestinal symptoms. Anticoagulation was started in 16 patients. Three patients underwent bowel resection. Ten subjects developed gastric or bowel ischemia, seven of whom underwent bowel resection, and four died after SVT diagnosis. Although rare, SVT should be seen as a complication of COVID-19. Patients with severe gastrointestinal symptoms should be screened for SVT, as rapid recognition and correct management are essential to improve the outcome of these patients.
Collapse
Affiliation(s)
- Giacomo Buso
- Angiology Division, Heart and Vessels Department, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Chiara Becchetti
- Hepatology, Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Switzerland,Hepatology, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Annalisa Berzigotti
- Hepatology, Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Switzerland,Hepatology, Department of Biomedical Research, University of Bern, Bern, Switzerland,Corresponding author at: Hepatology, Department for Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Switzerland
| |
Collapse
|