1
|
Park L, Tsai YT, Lim HK, Faulhaber LD, Burleigh K, Faulhaber EM, Bose M, Shih AY, Hirayama AY, Turtle CJ, Annesley CE, Gardner RA, Gustafson HH, Gust J. Cytokine-mediated increase in endothelial-leukocyte interaction mediates brain capillary plugging during CAR T cell neurotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.638920. [PMID: 40060404 PMCID: PMC11888194 DOI: 10.1101/2025.02.19.638920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
CD19-directed CAR T cells treat cancer, but also cause immune effector cell associated neurotoxicity syndrome (ICANS). Despite strong epidemiologic links between cytokine release syndrome and ICANS, it is uncertain how elevated systemic cytokines and activated immune cells cause brain dysfunction. We previously showed that leukocytes plug brain capillaries in an immunocompetent mouse model of CD19-CAR neurotoxicity. Here, we used the same model to explore how integrin activation and endothelial adhesion molecule expression contribute to capillary plugging. In vivo two-photon imaging revealed increased expression of ICAM-1 on brain capillaries, with spatially restricted VCAM-1 increases. TNF, IFN-γ, and IL-1β at concentrations equivalent to CAR T cell patient blood levels upregulated ICAM-1 and VCAM-1 in brain microendothelial cells. In mice, CAR T cells strongly upregulated VLA-4 (integrin α4β1) affinity to VCAM-1, but not affinity of LFA-1 (integrin αLβ2) to ICAM-1. Blocking integrin α4 but not integrin αL improved ICANS behavior in mice. In human CAR T cell patients, increased soluble ICAM-1 and VCAM-1 are associated with ICANS, and integrin α4 but not integrin αL is upregulated in CAR T cells after infusion. Our study highlights that cytokine-driven upregulation of endothelial-leukocyte adhesion may be sufficient to induce neurovascular dysfunction in CAR T cell patients.
Collapse
Affiliation(s)
- Lina Park
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Yu-Tung Tsai
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Hyun-Kyoung Lim
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Lila D. Faulhaber
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Katelyn Burleigh
- Ben Towne Center for Childhood Cancer and Blood Disorders Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Eli M. Faulhaber
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Mahashweta Bose
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Andy Y. Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Alexandre Y. Hirayama
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Hematology and Oncology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Cameron J. Turtle
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Royal North Shore Hospital, St. Leonards, NSW, Australia
- University of Sydney, Camperdown, NSW, Australia
| | - Colleen E. Annesley
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Center for Clinical and Translational Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Rebecca A. Gardner
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Center for Clinical and Translational Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Heather H. Gustafson
- Ben Towne Center for Childhood Cancer and Blood Disorders Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Juliane Gust
- Norcliffe Foundation Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Neurology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Turner KL, Brockway DF, Hossain MS, Griffith KR, Greenawalt DI, Zhang Q, Gheres KW, Crowley NA, Drew PJ. Type-I nNOS neurons orchestrate cortical neural activity and vasomotion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634042. [PMID: 39896560 PMCID: PMC11785022 DOI: 10.1101/2025.01.21.634042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
It is unknown how the brain orchestrates coordination of global neural and vascular dynamics. We sought to uncover the role of a sparse but unusual population of genetically-distinct interneurons known as type-I nNOS neurons, using a novel pharmacological strategic to unilaterally ablate these neurons from the somatosensory cortex of mice. Region-specific ablation produced changes in both neural activity and vascular dynamics, decreased power in the delta-band of the local field potential, reduced sustained vascular responses to prolonged sensory stimulation, and abolished the post-stimulus undershoot in cerebral blood volume. Coherence between the left and right somatosensory cortex gamma-band power envelope and blood volume at ultra-low frequencies was decreased, suggesting type-1 nNOS neurons integrate long-range coordination of brain signals. Lastly, we observed decreases in the amplitude of resting-state blood volume oscillations and decreased vasomotion following the ablation of type-I nNOS neurons. This demonstrates that a small population of nNOS-positive neurons are indispensable for regulating both neural and vascular dynamics in the whole brain and implicates disruption of these neurons in diseases ranging from neurodegeneration to sleep disturbances.
Collapse
Affiliation(s)
- Kevin L. Turner
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802
- Penn State Neuroscience Institute, The Pennsylvania State University, University Park, PA 16802
| | - Dakota F. Brockway
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Penn State Neuroscience Institute, The Pennsylvania State University, University Park, PA 16802
| | - Md Shakhawat Hossain
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802
- Penn State Neuroscience Institute, The Pennsylvania State University, University Park, PA 16802
| | - Keith R. Griffith
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Penn State Neuroscience Institute, The Pennsylvania State University, University Park, PA 16802
| | - Denver I. Greenawalt
- Graduate Program in Molecular Cellular and Integrative Biosciences, The Pennsylvania State University, University Park, PA 16802
- Penn State Neuroscience Institute, The Pennsylvania State University, University Park, PA 16802
| | - Qingguang Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802
- Penn State Neuroscience Institute, The Pennsylvania State University, University Park, PA 16802
- Department of Physiology, Michigan State University, East Lansing, MI 48824
| | - Kyle W. Gheres
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802
- Penn State Neuroscience Institute, The Pennsylvania State University, University Park, PA 16802
| | - Nicole A. Crowley
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Penn State Neuroscience Institute, The Pennsylvania State University, University Park, PA 16802
| | - Patrick J. Drew
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802
- Center for Neural Engineering, The Pennsylvania State University, University Park, PA 16802
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802
- Department of Neurosurgery, The Pennsylvania State University, University Park, PA 16802
- Penn State Neuroscience Institute, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
3
|
Chang KW, Wang X, Wong KY, Xu G. Label-free photoacoustic computed tomography of visually evoked responses in the primary visual cortex and four subcortical retinorecipient nuclei of anesthetized mice. NEUROPHOTONICS 2024; 11:035005. [PMID: 39081284 PMCID: PMC11286379 DOI: 10.1117/1.nph.11.3.035005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Significance Many techniques exist for screening retinal phenotypes in mouse models in vision research, but significant challenges remain for efficiently probing higher visual centers of the brain. Photoacoustic computed tomography (PACT), with optical sensitivity to hemodynamic response (HR) in brain and ultrasound resolution, provides unique advantages in comprehensively assessing higher visual function in the mouse brain. Aim We aim to examine the reliability of PACT in the functional phenotyping of mouse models for vision research. Approach A PACT-ultrasound (US) parallel imaging system was established with a one-dimensional (1D) US transducer array and a tunable laser. Imaging was performed at three coronal planes of the brain, covering the primary visual cortex and the four subcortical nuclei, including the superior colliculus, the dorsal lateral geniculate nucleus, the suprachiasmatic nucleus, and the olivary pretectal nucleus. The visual-evoked HR was isolated from background signals using an impulse-based data processing protocol. rd1 mice with rod/cone degeneration, melanopsin-knockout (mel-KO) mice with photoreceptive ganglion cells that lack intrinsic photosensitivity, and wild-type mice as controls were imaged. The quantitative characteristics of the visual-evoked HR were compared. Results Quantitative analysis of the HRs shows significant differences among the three mouse strains: (1) rd1 mice showed both smaller and slower responses compared with wild type ( n = 10,10 , p < 0.01 ) and (2) mel-KO mice had lower amplitude but not significantly delayed photoresponses than wild-type mice ( n = 10,10 , p < 0.01 ). These results agree with the known visual deficits of the mouse strains. Conclusions PACT demonstrated sufficient sensitivity to detecting post-retinal functional deficits.
Collapse
Affiliation(s)
- Kai-Wei Chang
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, Michigan, United States
| | - Xueding Wang
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, Michigan, United States
- University of Michigan, Department of Radiology, Ann Arbor, Michigan, United States
| | - Kwoon Y. Wong
- University of Michigan, Department of Ophthalmology and Visual Sciences, Ann Arbor, Michigan, United States
- University of Michigan, Department of Molecular, Cellular and Developmental Biology, Ann Arbor, Michigan, United States
| | - Guan Xu
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, Michigan, United States
- University of Michigan, Department of Ophthalmology and Visual Sciences, Ann Arbor, Michigan, United States
| |
Collapse
|
4
|
Lawlor J, Wohlgemuth MJ, Moss CF, Kuchibhotla KV. Spatially clustered neurons encode vocalization categories in the bat midbrain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.545029. [PMID: 37398454 PMCID: PMC10312733 DOI: 10.1101/2023.06.14.545029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Rapid categorization of vocalizations enables adaptive behavior across species. While categorical perception is thought to arise in the neocortex, humans and other animals could benefit from functional organization of ethologically-relevant sounds at earlier stages in the auditory hierarchy. Here, we developed two-photon calcium imaging in the awake echolocating bat (Eptesicus fuscus) to study encoding of sound meaning in the Inferior Colliculus, which is as few as two synapses from the inner ear. Echolocating bats produce and interpret frequency sweep-based vocalizations for social communication and navigation. Auditory playback experiments demonstrated that individual neurons responded selectively to social or navigation calls, enabling robust population-level decoding across categories. Strikingly, category-selective neurons formed spatial clusters, independent of tonotopy within the IC. These findings support a revised view of categorical processing in which specified channels for ethologically-relevant sounds are spatially segregated early in the auditory hierarchy, enabling rapid subcortical organization of call meaning.
Collapse
Affiliation(s)
- Jennifer Lawlor
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD, 21218, MD
| | | | - Cynthia F. Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD, 21218, MD
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kishore V. Kuchibhotla
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, MD, 21218, MD
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Lead contact
| |
Collapse
|
5
|
Abi Rached NM, Gbotosho OT, Archer DR, Jones JA, Sterling MS, Hyacinth HI. Adhesion molecules and cerebral microvascular hemodynamic abnormalities in sickle cell disease. Front Neurol 2022; 13:976063. [PMID: 36570439 PMCID: PMC9767957 DOI: 10.3389/fneur.2022.976063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Cerebrovascular abnormalities are a common feature of sickle cell disease that may be associated with risk of vaso-occlusive pain crises, microinfarcts, and cognitive impairment. An activated endothelium and adhesion factors, VCAM-1 and P-selectin, are implicated in sickle cell vasculopathy, including abnormal hemodynamics and leukocyte adherence. This study examined the association between cerebral expression of these adhesion factors and cortical microvascular blood flow dynamics by using in-vivo two-photon microscopy. We also examined the impact of blood transfusion treatment on these markers of vasculopathy. Results showed that sickle cell mice had significantly higher maximum red blood cell (RBC) velocity (6.80 ± 0.25 mm/sec, p ≤ 0.01 vs. 5.35 ± 0.35 mm/sec) and more frequent blood flow reversals (18.04 ± 0.95 /min, p ≤ 0.01 vs. 13.59 ± 1.40 /min) in the cortical microvasculature compared to controls. In addition, sickle cell mice had a 2.6-fold (RFU/mm2) increase in expression of VCAM-1 and 17-fold (RFU/mm2) increase in expression of P-selectin compared to controls. This was accompanied by an increased frequency in leukocyte adherence (4.83 ± 0.57 /100 μm/min vs. 2.26 ± 0.37 /100 μm/min, p ≤ 0.001). We also found that microinfarcts identified in sickle cell mice were 50% larger than in controls. After blood transfusion, many of these parameters improved, as results demonstrated that sickle cell mice had a lower post-transfusion maximum RBC velocity (8.30 ± 0.98 mm/sec vs. 11.29 ± 0.95 mm/sec), lower frequency of blood flow reversals (12.80 ± 2.76 /min vs. 27.75 ± 2.09 /min), and fewer instances of leukocyte adherence compared to their pre-transfusion imaging time point (1.35 ± 0.32 /100 μm/min vs. 3.46 ± 0.58 /100 μm/min). Additionally, we found that blood transfusion was associated with lower expression of adhesion factors. Our results suggest that blood transfusion and adhesion factors, VCAM-1 and P-selectin, are potential therapeutic targets for addressing cerebrovascular pathology, such as vaso-occlusion, in sickle cell disease.
Collapse
Affiliation(s)
- Noor Mary Abi Rached
- Neuroscience and Behavioral Biology Undergraduate Program, Emory University, Atlanta, GA, United States
| | - Oluwabukola T. Gbotosho
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David R. Archer
- Aflac Cancer and Blood Disorders Center, Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Jayre A. Jones
- Aflac Cancer and Blood Disorders Center, Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Morgan S. Sterling
- Aflac Cancer and Blood Disorders Center, Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Hyacinth I. Hyacinth
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
6
|
Mirg S, Turner KL, Chen H, Drew PJ, Kothapalli SR. Photoacoustic imaging for microcirculation. Microcirculation 2022; 29:e12776. [PMID: 35793421 PMCID: PMC9870710 DOI: 10.1111/micc.12776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 01/26/2023]
Abstract
Microcirculation facilitates the blood-tissue exchange of nutrients and regulates blood perfusion. It is, therefore, essential in maintaining tissue health. Aberrations in microcirculation are potentially indicative of underlying cardiovascular and metabolic pathologies. Thus, quantitative information about it is of great clinical relevance. Photoacoustic imaging (PAI) is a capable technique that relies on the generation of imaging contrast via the absorption of light and can image at micron-scale resolution. PAI is especially desirable to map microvasculature as hemoglobin strongly absorbs light and can generate a photoacoustic signal. This paper reviews the current state of the art for imaging microvascular networks using photoacoustic imaging. We further describe how quantitative information about blood dynamics such as the total hemoglobin concentration, oxygen saturation, and blood flow rate is obtained using PAI. We also discuss its importance in understanding key pathophysiological processes in neurovascular, cardiovascular, ophthalmic, and cancer research fields. We then discuss the current challenges and limitations of PAI and the approaches that can help overcome these limitations. Finally, we provide the reader with an overview of future trends in the field of PAI for imaging microcirculation.
Collapse
Affiliation(s)
- Shubham Mirg
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin L. Turner
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Haoyang Chen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick J. Drew
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA 17033, USA
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
7
|
Wu H, Gao X, Luo Y, Yu J, Long G, Jiang Z, Zhou J. Targeted Delivery of Chemo-Sonodynamic Therapy via Brain Targeting, Glutathione-Consumable Polymeric Nanoparticles for Effective Brain Cancer Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203894. [PMID: 35971187 PMCID: PMC9534955 DOI: 10.1002/advs.202203894] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 05/19/2023]
Abstract
Glioblastoma (GBM) is the most aggressive tumor of the central nervous system and remains universally lethal due to lack of effective treatment options and their inefficient delivery to the brain. Here the development of multifunctional polymeric nanoparticles (NPs) for effective treatment of GBM is reported. The NPs are synthesized using a novel glutathione (GSH)-reactive poly (2,2″-thiodiethylene 3,3″-dithiodipropionate) (PTD) polymer and engineered for brain penetration through neutrophil elastase-triggered shrinkability, iRGD-mediated targeted delivery, and lexiscan-induced autocatalysis. It is found that the resulting lexiscan-loaded, iRGD-conjugated, shrinkable PTD NPs, or LiPTD NPs, efficiently penetrate brain tumors with high specificity after intravenous administration. Furthermore, it is demonstrated that LiPTD NPs are capable of efficient encapsulation and delivery of chemotherapy doxorubicin and sonosensitizer chlorin e6 to achieve combined chemotherapy and sonodynamic therapy (SDT). It is demonstrated that the capability of GSH depletion of LiPTD NPs further augments the tumor cell killing effect triggered by SDT. As a result, treatment with LiPTD NPs effectively inhibits tumor growth and prolongs the survival of tumor-bearing mice. This study may suggest a potential new approach for effective GBM treatment.
Collapse
Affiliation(s)
- Haoan Wu
- Department of NeurosurgeryYale UniversityNew HavenCT06510USA
| | - Xingchun Gao
- Department of NeurosurgeryYale UniversityNew HavenCT06510USA
| | - Yuanyuan Luo
- Department of NeurosurgeryYale UniversityNew HavenCT06510USA
| | - Jiang Yu
- Department of NeurosurgeryYale UniversityNew HavenCT06510USA
| | - Gretchen Long
- Department of Biomedical EngineeringYale UniversityNew HavenCT06510USA
| | - Zhaozhong Jiang
- Department of Biomedical EngineeringYale UniversityNew HavenCT06510USA
- Integrated Science and Technology CenterYale University600 West Campus DriveWest HavenCT06516USA
| | - Jiangbing Zhou
- Department of NeurosurgeryYale UniversityNew HavenCT06510USA
- Department of Biomedical EngineeringYale UniversityNew HavenCT06510USA
| |
Collapse
|
8
|
Zak JD. Longitudinal imaging of individual olfactory sensory neurons in situ. Front Cell Neurosci 2022; 16:946816. [PMID: 35936493 PMCID: PMC9354957 DOI: 10.3389/fncel.2022.946816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/30/2022] [Indexed: 12/24/2022] Open
Abstract
Olfactory sensory neurons are found deep within the nasal cavity at a spatially restricted sheet of sensory epithelium. Due to their location behind the nasal turbinates, accessing these cells for physiological measurements in living animals is challenging, and until recently, not possible. As a further complication, damage to the overlying bone on the dorsal surface of the snout disrupts the negative pressure distribution throughout the nasal cavities, which fundamentally alters how odorants are delivered to the sensory epithelium and the inherent mechanosensory properties of olfactory sensory neurons in live animals. The approach described here circumvents these limitations and allows for optical access to olfactory sensory neurons in mice across time scales ranging from days to months.
Collapse
|
9
|
Faulhaber LD, D’Costa O, Shih AY, Gust J. Antibody-based in vivo leukocyte label for two-photon brain imaging in mice. NEUROPHOTONICS 2022; 9:031917. [PMID: 35637871 PMCID: PMC9128835 DOI: 10.1117/1.nph.9.3.031917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Significance: To study leukocyte-endothelial interactions in a living system, robust and specific leukocyte labeling techniques are needed for in vivo two-photon microscopy of the cerebral microvasculature. Aim: We tested fluorophore-conjugated anti-CD45.2 monoclonal antibodies (mAb) to optimize dosing and two-photon imaging parameters for leukocyte labeling in healthy mice and a venous microstroke model. Approach: We retro-orbitally injected anti-CD45.2 mAb at 0.04, 0.4, and 2 mg / kg into BALB/c mice and used flow cytometry to analyze antibody saturation. Leukocyte labeling in the cortical microvasculature was examined by two-photon imaging. We also tested the application of CD45.2 mAb in a pathological leukocyte-endothelial adhesion model by photothrombotically occluding cortical penetrating venules. Results: We found that 0.4 mg / kg of anti-CD45.2 antibody intravenously was sufficient to label 95% of circulating leukocytes. There was no depletion of circulating leukocytes after 24 h at the dosages tested. Labeled leukocytes could be observed as deep as 550 μ m from the cortical surface. The antibody reliably labeled rolling, crawling, and adherent leukocytes in venules around the stroke-affected tissues. Conclusion: We show that the anti-CD45.2 mAb is a robust reagent for acute labeling of leukocytes during in vivo two-photon microscopy of the cortical microvasculature.
Collapse
Affiliation(s)
- Lila D. Faulhaber
- Center for Developmental Biology and Regenerative Medicine, Seattle, Washington, United States
- Seattle Children’s Research Institute, Center for Integrative Brain Research, Seattle, Washington, United States
| | - Olivia D’Costa
- Seattle Children’s Research Institute, Center for Integrative Brain Research, Seattle, Washington, United States
| | - Andy Y. Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle, Washington, United States
- University of Washington, Department of Pediatrics, Seattle, Washington, United States
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Juliane Gust
- Seattle Children’s Research Institute, Center for Integrative Brain Research, Seattle, Washington, United States
- University of Washington, Department of Neurology, Seattle, Washington, United States
| |
Collapse
|
10
|
Yeon C, Im JM, Kim M, Kim YR, Chung E. Cranial and Spinal Window Preparation for in vivo Optical Neuroimaging in Rodents and Related Experimental Techniques. Exp Neurobiol 2022; 31:131-146. [PMID: 35786637 PMCID: PMC9272117 DOI: 10.5607/en22015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022] Open
Abstract
Optical neuroimaging provides an effective neuroscience tool for multi-scale investigation of the neural structures and functions, ranging from molecular, cellular activities to the inter-regional connectivity assessment. Amongst experimental preparations, the implementation of an artificial window to the central nervous system (CNS) is primarily required for optical visualization of the CNS and associated brain activities through the opaque skin and bone. Either thinning down or removing portions of the skull or spine is necessary for unobstructed long-term in vivo observations, for which types of the cranial and spinal window and applied materials vary depending on the study objectives. As diversely useful, a window can be designed to accommodate other experimental methods such as electrophysiology or optogenetics. Moreover, auxiliary apparatuses would allow the recording in synchrony with behavior of large-scale brain connectivity signals across the CNS, such as olfactory bulb, cerebral cortex, cerebellum, and spinal cord. Such advancements in the cranial and spinal window have resulted in a paradigm shift in neuroscience, enabling in vivo investigation of the brain function and dysfunction at the microscopic, cellular level. This Review addresses the types and classifications of windows used in optical neuroimaging while describing how to perform in vivo studies using rodent models in combination with other experimental modalities during behavioral tests. The cranial and spinal window has enabled longitudinal examination of evolving neural mechanisms via in situ visualization of the brain. We expect transformable and multi-functional cranial and spinal windows to become commonplace in neuroscience laboratories, further facilitating advances in optical neuroimaging systems.
Collapse
Affiliation(s)
- Chanmi Yeon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jeong Myo Im
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Minsung Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Young Ro Kim
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.,AI Graduate School, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.,Research Center for Photon Science Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
11
|
Bosch LFP, Kierdorf K. The Shape of μ—How Morphological Analyses Shape the Study of Microglia. Front Cell Neurosci 2022; 16:942462. [PMID: 35846562 PMCID: PMC9276927 DOI: 10.3389/fncel.2022.942462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/13/2022] [Indexed: 11/14/2022] Open
Abstract
Microglia, the innate immune cells of the CNS parenchyma, serve as the first line of defense in a myriad of neurodevelopmental, neurodegenerative, and neuroinflammatory conditions. In response to the peripheral inflammation, circulating mediators, and other external signals that are produced by these conditions, microglia dynamically employ different transcriptional programs as well as morphological adaptations to maintain homeostasis. To understand these cells’ function, the field has established a number of essential analysis approaches, such as gene expression, cell quantification, and morphological reconstruction. Although high-throughput approaches are becoming commonplace in regard to other types of analyses (e.g., single-cell scRNA-seq), a similar standard for morphological reconstruction has yet to be established. In this review, we offer an overview of microglial morphological analysis methods, exploring the advantages and disadvantages of each, highlighting a number of key studies, and emphasizing how morphological analysis has significantly contributed to our understanding of microglial function in the CNS parenchyma. In doing so, we advocate for the use of unbiased, automated morphological reconstruction approaches in future studies, in order to capitalize on the valuable information embedded in the cellular structures microglia inhabit.
Collapse
Affiliation(s)
- Lance Fredrick Pahutan Bosch
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS–Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- *Correspondence: Katrin Kierdorf,
| |
Collapse
|
12
|
Tran CHT. Toolbox for studying neurovascular coupling in vivo, with a focus on vascular activity and calcium dynamics in astrocytes. NEUROPHOTONICS 2022; 9:021909. [PMID: 35295714 PMCID: PMC8920490 DOI: 10.1117/1.nph.9.2.021909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/23/2022] [Indexed: 05/14/2023]
Abstract
Significance: Insights into the cellular activity of each member of the neurovascular unit (NVU) is critical for understanding their contributions to neurovascular coupling (NVC)-one of the key control mechanisms in cerebral blood flow regulation. Advances in imaging and genetic tools have enhanced our ability to observe, manipulate and understand the cellular activity of NVU components, namely neurons, astrocytes, microglia, endothelial cells, vascular smooth muscle cells, and pericytes. However, there are still many unresolved questions. Since astrocytes are considered electrically unexcitable,Ca 2 + signaling is the main parameter used to monitor their activity. It is therefore imperative to study astrocyticCa 2 + dynamics simultaneously with vascular activity using tools appropriate for the question of interest. Aim: To highlight currently available genetic and imaging tools for studying the NVU-and thus NVC-with a focus on astrocyteCa 2 + dynamics and vascular activity, and discuss the utility, technical advantages, and limitations of these tools for elucidating NVC mechanisms. Approach: We draw attention to some outstanding questions regarding the mechanistic basis of NVC and emphasize the role of astrocyticCa 2 + elevations in functional hyperemia. We further discuss commonly used genetic, and optical imaging tools, as well as some newly developed imaging modalities for studying NVC at the cellular level, highlighting their advantages and limitations. Results: We provide an overview of the current state of NVC research, focusing on the role of astrocyticCa 2 + elevations in functional hyperemia; summarize recent advances in genetically engineeredCa 2 + indicators, fluorescence microscopy techniques for studying NVC; and discuss the unmet challenges for future imaging development. Conclusions: Advances in imaging techniques together with improvements in genetic tools have significantly contributed to our understanding of NVC. Many pieces of the puzzle have been revealed, but many more remain to be discovered. Ultimately, optimizing NVC research will require a concerted effort to improve imaging techniques, available genetic tools, and analytical software.
Collapse
Affiliation(s)
- Cam Ha T. Tran
- University of Nevada, Reno School of Medicine, Department of Physiology and Cell Biology, Reno, Nevada, United States
| |
Collapse
|
13
|
Zhang Q, Turner KL, Gheres KW, Hossain MS, Drew PJ. Behavioral and physiological monitoring for awake neurovascular coupling experiments: a how-to guide. NEUROPHOTONICS 2022; 9:021905. [PMID: 35639834 PMCID: PMC8802326 DOI: 10.1117/1.nph.9.2.021905] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/28/2021] [Indexed: 06/15/2023]
Abstract
Significance: Functional brain imaging in awake animal models is a popular and powerful technique that allows the investigation of neurovascular coupling (NVC) under physiological conditions. However, ubiquitous facial and body motions (fidgeting) are prime drivers of spontaneous fluctuations in neural and hemodynamic signals. During periods without movement, animals can rapidly transition into sleep, and the hemodynamic signals tied to arousal state changes can be several times larger than sensory-evoked responses. Given the outsized influence of facial and body motions and arousal signals in neural and hemodynamic signals, it is imperative to detect and monitor these events in experiments with un-anesthetized animals. Aim: To cover the importance of monitoring behavioral state in imaging experiments using un-anesthetized rodents, and describe how to incorporate detailed behavioral and physiological measurements in imaging experiments. Approach: We review the effects of movements and sleep-related signals (heart rate, respiration rate, electromyography, intracranial pressure, whisking, and other body movements) on brain hemodynamics and electrophysiological signals, with a focus on head-fixed experimental setup. We summarize the measurement methods currently used in animal models for detection of those behaviors and arousal changes. We then provide a guide on how to incorporate this measurements with functional brain imaging and electrophysiology measurements. Results: We provide a how-to guide on monitoring and interpreting a variety of physiological signals and their applications to NVC experiments in awake behaving mice. Conclusion: This guide facilitates the application of neuroimaging in awake animal models and provides neuroscientists with a standard approach for monitoring behavior and other associated physiological parameters in head-fixed animals.
Collapse
Affiliation(s)
- Qingguang Zhang
- The Pennsylvania State University, Center for Neural Engineering, Department of Engineering Science and Mechanics, University Park, Pennsylvania, United States
| | - Kevin L. Turner
- The Pennsylvania State University, Department of Biomedical Engineering, University Park, Pennsylvania, United States
| | - Kyle W. Gheres
- The Pennsylvania State University, Graduate Program in Molecular Cellular and Integrative Biosciences, University Park, Pennsylvania, United States
| | - Md Shakhawat Hossain
- The Pennsylvania State University, Department of Biomedical Engineering, University Park, Pennsylvania, United States
| | - Patrick J. Drew
- The Pennsylvania State University, Center for Neural Engineering, Department of Engineering Science and Mechanics, University Park, Pennsylvania, United States
- The Pennsylvania State University, Department of Biomedical Engineering, University Park, Pennsylvania, United States
- The Pennsylvania State University, Department of Neurosurgery, University Park, Pennsylvania, United States
| |
Collapse
|
14
|
Zhang H, Roman RJ, Fan F. Hippocampus is more susceptible to hypoxic injury: has the Rosetta Stone of regional variation in neurovascular coupling been deciphered? GeroScience 2022; 44:127-130. [PMID: 34453273 PMCID: PMC8810993 DOI: 10.1007/s11357-021-00449-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022] Open
Abstract
Alzheimer's disease and Alzheimer's disease-related dementias (AD/ADRD) are associated with cerebral hypoperfusion or reductions in baseline cerebral blood flow (CBF). The neurovascular coupling (NVC) response or functional hyperemia regulates brain perfusion via a retrograde (capillary-to-arteriole) pathway by increasing regional CBF in response to local neuron activation. The hippocampus plays a significant role in spatial and non-spatial memory. Functional MRI (fMRI) has not established a solid positive correlation between hippocampal blood oxygen level-dependent (BOLD) signal and local neuronal activity. The inconsistency of NVC in the hippocampus compared to the neocortex is possibly due to anatomical and methodological difficulties to accurately detect hippocampal blood flow. A recent study reported that NVC and oxygenation are reduced in the hippocampus compared to the cortex using a novel invasive surgical approach by creating a cranial window with and without removing the neocortex. Results from these studies suggest that the hippocampus is more susceptible to hypoxic injury in pathological conditions when NVC is impaired, such as AD/ADRD, stroke, and traumatic brain injury (TBI). The Rosetta Stone of regional variation in the NVC and its significance in AD/ADRD has not been fully deciphered based on these results without addressing remaining concerns; however, we are one step closer, indeed.
Collapse
Affiliation(s)
- Huawei Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
15
|
Li X, Vemireddy V, Cai Q, Xiong H, Kang P, Li X, Giannotta M, Hayenga HN, Pan E, Sirsi SR, Mateo C, Kleinfeld D, Greene C, Campbell M, Dejana E, Bachoo R, Qin Z. Reversibly Modulating the Blood-Brain Barrier by Laser Stimulation of Molecular-Targeted Nanoparticles. NANO LETTERS 2021; 21:9805-9815. [PMID: 34516144 PMCID: PMC8616836 DOI: 10.1021/acs.nanolett.1c02996] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The blood-brain barrier (BBB) is highly selective and acts as the interface between the central nervous system and circulation. While the BBB is critical for maintaining brain homeostasis, it represents a formidable challenge for drug delivery. Here we synthesized gold nanoparticles (AuNPs) for targeting the tight junction specifically and demonstrated that transcranial picosecond laser stimulation of these AuNPs post intravenous injection increases the BBB permeability. The BBB permeability change can be graded by laser intensity, is entirely reversible, and involves increased paracellular diffusion. BBB modulation does not lead to significant disruption in the spontaneous vasomotion or the structure of the neurovascular unit. This strategy allows the entry of immunoglobulins and viral gene therapy vectors, as well as cargo-laden liposomes. We anticipate this nanotechnology to be useful for tissue regions that are accessible to light or fiberoptic application and to open new avenues for drug screening and therapeutic interventions in the central nervous system.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United State
| | - Vamsidhara Vemireddy
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United State
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United State
| | - Qi Cai
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, United State
| | - Hejian Xiong
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, United State
| | - Peiyuan Kang
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, United State
| | - Xiuying Li
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, United State
| | - Monica Giannotta
- FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy
| | - Heather N. Hayenga
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United State
| | - Edward Pan
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United State
| | - Shashank R. Sirsi
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United State
| | - Celine Mateo
- Department of Physics, University of California San Diego, La Jolla, California 92093, United State
| | - David Kleinfeld
- Department of Physics, University of California San Diego, La Jolla, California 92093, United State
| | - Chris Greene
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2 D02 PN40, Ireland
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2 D02 PN40, Ireland
| | - Elisabetta Dejana
- FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy
| | - Robert Bachoo
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United State
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United State
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United State
| | - Zhenpeng Qin
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United State
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, United State
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United State
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas 75080, United State
| |
Collapse
|
16
|
Tognatta R, Merlini M, Yan Z, Schuck R, Davalos D, Akassoglou K. In vivo two-photon microscopy protocol for imaging microglial responses and spine elimination at sites of fibrinogen deposition in mouse brain. STAR Protoc 2021; 2:100638. [PMID: 34258598 PMCID: PMC8259313 DOI: 10.1016/j.xpro.2021.100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deposition of the blood coagulation factor fibrinogen in the central nervous system is a hallmark of neurological diseases with blood-brain barrier disruption. We describe in vivo two-photon imaging of microglial responses and neuronal spine elimination to either intracortical microinjection of fibrinogen in healthy mice or to endogenously labeled fibrinogen deposits in Alzheimer's disease mice. This protocol allows the longitudinal study of glial and neuronal responses to blood proteins and can be used to test drug efficacy at the neurovascular interface. For complete details on the use and execution of this protocol, please refer to Davalos et al. (2012), Ryu et al. (2018), and Merlini et al. (2019). In vivo two-photon imaging of acute microglial responses to fibrinogen in the mouse brain Longitudinal in vivo two-photon imaging of dendritic spine elimination to fibrinogen In vivo detection of endogenous fibrinogen in the brain by fluorescent dyes In vivo imaging of fibrinogen- and Aβ-associated spine elimination in AD mice
Collapse
Affiliation(s)
- Reshmi Tognatta
- Gladstone UCSF Center for Neurovascular Brain Immunology, San Francisco, CA 94158, USA.,Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Mario Merlini
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Zhaoqi Yan
- Gladstone UCSF Center for Neurovascular Brain Immunology, San Francisco, CA 94158, USA.,Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Renaud Schuck
- Gladstone UCSF Center for Neurovascular Brain Immunology, San Francisco, CA 94158, USA.,Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Dimitrios Davalos
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Katerina Akassoglou
- Gladstone UCSF Center for Neurovascular Brain Immunology, San Francisco, CA 94158, USA.,Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.,Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
17
|
Lynch CE, Eisenbaum M, Algamal M, Balbi M, Ferguson S, Mouzon B, Saltiel N, Ojo J, Diaz-Arrastia R, Mullan M, Crawford F, Bachmeier C. Impairment of cerebrovascular reactivity in response to hypercapnic challenge in a mouse model of repetitive mild traumatic brain injury. J Cereb Blood Flow Metab 2021; 41:1362-1378. [PMID: 33050825 PMCID: PMC8142124 DOI: 10.1177/0271678x20954015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Incidences of repetitive mild TBI (r-mTBI), like those sustained by contact sports athletes and military personnel, are thought to be a risk factor for development of neurodegenerative disorders. Those suffering from chronic TBI-related illness demonstrate deficits in cerebrovascular reactivity (CVR), the ability of the cerebral vasculature to respond to a vasoactive stimulus. CVR is thus an important measure of traumatic cerebral vascular injury (TCVI), and a possible in vivo endophenotype of TBI-related neuropathogenesis. We combined laser speckle imaging of CVR in response to hypercapnic challenge with neurobehavioral assessment of learning and memory, to investigate if decreased cerebrovascular responsiveness underlies impaired cognitive function in our mouse model of chronic r-mTBI. We demonstrate a profile of blunted hypercapnia-evoked CVR in the cortices of r-mTBI mice like that of human TBI, alongside sustained memory and learning impairment, without biochemical or immunohistopathological signs of cerebral vessel laminar or endothelium constituent loss. Transient decreased expression of alpha smooth muscle actin and platelet-derived growth factor receptor β, indicative of TCVI, is obvious only at the time of the most pronounced CVR deficit. These findings implicate CVR as a valid preclinical measure of TCVI, perhaps useful for developing therapies targeting TCVI after recurrent mild head trauma.
Collapse
Affiliation(s)
- Cillian E Lynch
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,James A. Haley Veteran's Administration, Tampa, FL, USA.,Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Maxwell Eisenbaum
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK
| | - Moustafa Algamal
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK
| | - Matilde Balbi
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott Ferguson
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK
| | - Benoit Mouzon
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,James A. Haley Veteran's Administration, Tampa, FL, USA
| | | | - Joseph Ojo
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,James A. Haley Veteran's Administration, Tampa, FL, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mike Mullan
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK
| | - Fiona Crawford
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,James A. Haley Veteran's Administration, Tampa, FL, USA
| | - Corbin Bachmeier
- The Roskamp Institute, Sarasota, FL, USA.,Department of Life Sciences, The Open University, Milton Keynes, UK.,Bay Pines VA Healthcare System, Bay Pines, FL, USA
| |
Collapse
|
18
|
Mächler P, Broggini T, Mateo C, Thunemann M, Fomin-Thunemann N, Doran PR, Sencan I, Kilic K, Desjardins M, Uhlirova H, Yaseen MA, Boas DA, Linninger AA, Vergassola M, Yu X, Lewis LD, Polimeni JR, Rosen BR, Sakadžić S, Buxton RB, Lauritzen M, Kleinfeld D, Devor A. A Suite of Neurophotonic Tools to Underpin the Contribution of Internal Brain States in fMRI. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 18:100273. [PMID: 33959688 PMCID: PMC8095678 DOI: 10.1016/j.cobme.2021.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Recent developments in optical microscopy, applicable for large-scale and longitudinal imaging of cortical activity in behaving animals, open unprecedented opportunities to gain a deeper understanding of neurovascular and neurometabolic coupling during different brain states. Future studies will leverage these tools to deliver foundational knowledge about brain state-dependent regulation of cerebral blood flow and metabolism as well as regulation as a function of brain maturation and aging. This knowledge is of critical importance to interpret hemodynamic signals observed with functional magnetic resonance imaging (fMRI).
Collapse
Affiliation(s)
- Philipp Mächler
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Thomas Broggini
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Celine Mateo
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Martin Thunemann
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | | | - Patrick R. Doran
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Ikbal Sencan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Kivilcim Kilic
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Michèle Desjardins
- Département de Physique, de Génie Physique et d’Optique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Hana Uhlirova
- Institute of Scientific Instruments of the Czech Academy of Science, Brno, Czech Republic
| | - Mohammad A. Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - David A. Boas
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Andreas A. Linninger
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Massimo Vergassola
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
- Département de Physique de l’Ecole Normale Supérieure, 75005 Paris, France
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Laura D. Lewis
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Jonathan R. Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Bruce R. Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Richard B. Buxton
- Department of Radiology, University of California San Diego, La Jolla, CA 92037, USA
| | - Martin Lauritzen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N 2200, Denmark
- Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup 2600, Denmark
| | - David Kleinfeld
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
- Section on Neurobiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Anna Devor
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
19
|
Cramer SW, Carter RE, Aronson JD, Kodandaramaiah SB, Ebner TJ, Chen CC. Through the looking glass: A review of cranial window technology for optical access to the brain. J Neurosci Methods 2021; 354:109100. [PMID: 33600850 PMCID: PMC8100903 DOI: 10.1016/j.jneumeth.2021.109100] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
Deciphering neurologic function is a daunting task, requiring understanding the neuronal networks and emergent properties that arise from the interactions among single neurons. Mechanistic insights into neuronal networks require tools that simultaneously assess both single neuron activity and the consequent mesoscale output. The development of cranial window technologies, in which the skull is thinned or replaced with a synthetic optical interface, has enabled monitoring neuronal activity from subcellular to mesoscale resolution in awake, behaving animals when coupled with advanced microscopy techniques. Here we review recent achievements in cranial window technologies, appraise the relative merits of each design and discuss the future research in cranial window design.
Collapse
Affiliation(s)
- Samuel W Cramer
- Department of Neurosurgery, University of Minnesota, 420 Delaware St SE, Mayo D429, MMC 96, Twin Cities, Minneapolis, MN, 55455, USA
| | - Russell E Carter
- Department of Neuroscience, University of Minnesota, Twin Cities, Room 421, 2001 Sixth Street S.E., Minneapolis, MN, 55455 MN, USA
| | - Justin D Aronson
- Department of Neuroscience, University of Minnesota, Twin Cities, Room 421, 2001 Sixth Street S.E., Minneapolis, MN, 55455 MN, USA
| | - Suhasa B Kodandaramaiah
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, MN, USA; Department of Biomedical Engineering, University of Minnesota, Twin Cities, MN, USA; Graduate Program in Neuroscience, University of Minnesota, Twin Cities, MN, USA
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Twin Cities, Room 421, 2001 Sixth Street S.E., Minneapolis, MN, 55455 MN, USA.
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, 420 Delaware St SE, Mayo D429, MMC 96, Twin Cities, Minneapolis, MN, 55455, USA.
| |
Collapse
|
20
|
Taranda J, Turcan S. 3D Whole-Brain Imaging Approaches to Study Brain Tumors. Cancers (Basel) 2021; 13:cancers13081897. [PMID: 33920839 PMCID: PMC8071100 DOI: 10.3390/cancers13081897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Brain tumors integrate into the brain and consist of tumor cells with different molecular alterations. During brain tumor pathogenesis, a variety of cell types surround the tumors to either inhibit or promote tumor growth. These cells are collectively referred to as the tumor microenvironment. Three-dimensional and/or longitudinal visualization approaches are needed to understand the growth of these tumors in time and space. In this review, we present three imaging modalities that are suitable or that can be adapted to study the volumetric distribution of malignant or tumor-associated cells in the brain. In addition, we highlight the potential clinical utility of some of the microscopy approaches for brain tumors using exemplars from solid tumors. Abstract Although our understanding of the two-dimensional state of brain tumors has greatly expanded, relatively little is known about their spatial structures. The interactions between tumor cells and the tumor microenvironment (TME) occur in a three-dimensional (3D) space. This volumetric distribution is important for elucidating tumor biology and predicting and monitoring response to therapy. While static 2D imaging modalities have been critical to our understanding of these tumors, studies using 3D imaging modalities are needed to understand how malignant cells co-opt the host brain. Here we summarize the preclinical utility of in vivo imaging using two-photon microscopy in brain tumors and present ex vivo approaches (light-sheet fluorescence microscopy and serial two-photon tomography) and highlight their current and potential utility in neuro-oncology using data from solid tumors or pathological brain as examples.
Collapse
|
21
|
McDowell KP, Berthiaume AA, Tieu T, Hartmann DA, Shih AY. VasoMetrics: unbiased spatiotemporal analysis of microvascular diameter in multi-photon imaging applications. Quant Imaging Med Surg 2021; 11:969-982. [PMID: 33654670 PMCID: PMC7829163 DOI: 10.21037/qims-20-920] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/17/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Multi-photon imaging of the cerebrovasculature provides rich data on the dynamics of cortical arterioles, capillaries, and venules. Vascular diameter is the major determinant of blood flow resistance, and is the most commonly quantified metric in studies of the cerebrovasculature. However, there is a lack of accessible and easy-to-use methods to quantify vascular diameter in imaging data. METHODS We created VasoMetrics, a macro written in ImageJ/Fiji for spatiotemporal analysis of microvascular diameter. The key feature of VasoMetrics is rapid analysis of many evenly spaced cross-sectional lines along the vessel of interest, permitting the extraction of numerous diameter measurements from individual vessels. Here we demonstrated the utility of VasoMetrics by analyzing in vivo multi-photon imaging stacks and movies collected from lightly sedated mice, as well as data from optical coherence tomography angiography (OCTA) of human retina. RESULTS Compared to the standard approach, which is to measure cross-sectional diameters at arbitrary points along a vessel, VasoMetrics accurately reported spatiotemporal features of vessel diameter, reduced measurement bias and time spent analyzing data, and improved the reproducibility of diameter measurements between users. VasoMetrics revealed the dynamics in pial arteriole diameters during vasomotion at rest, as well as changes in capillary diameter before and after pericyte ablation. Retinal arteriole diameter was quantified from a human retinal angiogram, providing proof-of-principle that VasoMetrics can be applied to contrast-enhanced clinical imaging of microvasculature. CONCLUSIONS VasoMetrics is a robust macro for spatiotemporal analysis of microvascular diameter in imaging applications.
Collapse
Affiliation(s)
- Konnor P. McDowell
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Andrée-Anne Berthiaume
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Taryn Tieu
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, USA
| | - David A. Hartmann
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Andy Y. Shih
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
22
|
Kılıç K, Desjardins M, Tang J, Thunemann M, Sunil S, Erdener ŞE, Postnov DD, Boas DA, Devor A. Chronic Cranial Windows for Long Term Multimodal Neurovascular Imaging in Mice. Front Physiol 2021; 11:612678. [PMID: 33551837 PMCID: PMC7862556 DOI: 10.3389/fphys.2020.612678] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/18/2020] [Indexed: 01/18/2023] Open
Abstract
Chronic cranial windows allow for longitudinal brain imaging experiments in awake, behaving mice. Different imaging technologies have their unique advantages and combining multiple imaging modalities offers measurements of a wide spectrum of neuronal, glial, vascular, and metabolic parameters needed for comprehensive investigation of physiological and pathophysiological mechanisms. Here, we detail a suite of surgical techniques for installation of different cranial windows targeted for specific imaging technologies and their combination. Following these techniques and practices will yield higher experimental success and reproducibility of results.
Collapse
Affiliation(s)
- Kıvılcım Kılıç
- Biomedical Engineering, Boston University, Boston, MA, United States
| | - Michèle Desjardins
- Centre de recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada
| | - Jianbo Tang
- Biomedical Engineering, Boston University, Boston, MA, United States.,Department of Biomedical Engineering, SUSTech, Shenzhen, China
| | - Martin Thunemann
- Biomedical Engineering, Boston University, Boston, MA, United States
| | - Smrithi Sunil
- Biomedical Engineering, Boston University, Boston, MA, United States
| | - Şefik Evren Erdener
- Biomedical Engineering, Boston University, Boston, MA, United States.,Institute of Neurological Sciences and Psychiatry, Hacettepe Üniversitesi, Ankara, Turkey
| | - Dmitry D Postnov
- Biomedical Engineering, Boston University, Boston, MA, United States.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David A Boas
- Biomedical Engineering, Boston University, Boston, MA, United States
| | - Anna Devor
- Biomedical Engineering, Boston University, Boston, MA, United States
| |
Collapse
|
23
|
L-3-n-Butylphthalide Effectively Improves the Glymphatic Clearance and Reduce Amyloid-β Deposition in Alzheimer's Transgenic Mice. J Mol Neurosci 2020; 71:1266-1274. [PMID: 33188502 DOI: 10.1007/s12031-020-01752-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/05/2020] [Indexed: 10/23/2022]
Abstract
Amyloid-β (Aβ) deposit in the parenchyma is a major characteristic in Alzheimer's disease (AD), and the impaired glymphatic clearance contributes to the Aβ accumulation. It was reported that L-3-n-butylphthalide (NBP) showed the potential neuroprotective effect in the rodent models of AD. The effects of NBP on the glymphatic system were explored in this study. In the wild-type mice, both CSF tracer influx and perivascular drainage increased after NBP treatment compared with vehicle treatment. Moreover, NBP promoted the perivascular drainage of Aβ via increased cerebral pulsation, which could be inhibited by propranolol. Then, we studied the potential of 3-month NBP treatment on Aβ deposits in 8-month-old APP/PS1 transgenic mice. NBP daily treatments remarkably improved cognitive behavior in Morris water maze. Furthermore, NBP could reduce Aβ deposition and decrease parenchymal Aβ levels. In addition, NBP markedly improved the perivascular AQP4 localization. Our results indicated that NBP could enhance the glymphatic clearance and reduce parenchymal Aβ deposit in the APP/PS1 mice, suggesting that it may have potential in the treatment of AD.
Collapse
|
24
|
Turner KL, Gheres KW, Proctor EA, Drew PJ. Neurovascular coupling and bilateral connectivity during NREM and REM sleep. eLife 2020; 9:62071. [PMID: 33118932 PMCID: PMC7758068 DOI: 10.7554/elife.62071] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
To understand how arousal state impacts cerebral hemodynamics and neurovascular coupling, we monitored neural activity, behavior, and hemodynamic signals in un-anesthetized, head-fixed mice. Mice frequently fell asleep during imaging, and these sleep events were interspersed with periods of wake. During both NREM and REM sleep, mice showed large increases in cerebral blood volume ([HbT]) and arteriole diameter relative to the awake state, two to five times larger than those evoked by sensory stimulation. During NREM, the amplitude of bilateral low-frequency oscillations in [HbT] increased markedly, and coherency between neural activity and hemodynamic signals was higher than the awake resting and REM states. Bilateral correlations in neural activity and [HbT] were highest during NREM, and lowest in the awake state. Hemodynamic signals in the cortex are strongly modulated by arousal state, and changes during sleep are substantially larger than sensory-evoked responses.
Collapse
Affiliation(s)
- Kevin L Turner
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, United States.,Center for Neural Engineering, The Pennsylvania State University, University Park, United States
| | - Kyle W Gheres
- Center for Neural Engineering, The Pennsylvania State University, University Park, United States.,Graduate Program in Molecular, Cellular, and Integrative Biosciences, The Pennsylvania State University, University Park, United States
| | - Elizabeth A Proctor
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, United States.,Center for Neural Engineering, The Pennsylvania State University, University Park, United States.,Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, United States.,Department of Neurosurgery, Penn State College of Medicine, Hershey, United States.,Department of Pharmacology, Penn State College of Medicine, Hershey, United States
| | - Patrick J Drew
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, United States.,Center for Neural Engineering, The Pennsylvania State University, University Park, United States.,Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, United States.,Department of Neurosurgery, Penn State College of Medicine, Hershey, United States
| |
Collapse
|
25
|
Echagarruga CT, Gheres KW, Norwood JN, Drew PJ. nNOS-expressing interneurons control basal and behaviorally evoked arterial dilation in somatosensory cortex of mice. eLife 2020; 9:e60533. [PMID: 33016877 PMCID: PMC7556878 DOI: 10.7554/elife.60533] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022] Open
Abstract
Cortical neural activity is coupled to local arterial diameter and blood flow. However, which neurons control the dynamics of cerebral arteries is not well understood. We dissected the cellular mechanisms controlling the basal diameter and evoked dilation in cortical arteries in awake, head-fixed mice. Locomotion drove robust arterial dilation, increases in gamma band power in the local field potential (LFP), and increases calcium signals in pyramidal and neuronal nitric oxide synthase (nNOS)-expressing neurons. Chemogenetic or pharmocological modulation of overall neural activity up or down caused corresponding increases or decreases in basal arterial diameter. Modulation of pyramidal neuron activity alone had little effect on basal or evoked arterial dilation, despite pronounced changes in the LFP. Modulation of the activity of nNOS-expressing neurons drove changes in the basal and evoked arterial diameter without corresponding changes in population neural activity.
Collapse
Affiliation(s)
| | - Kyle W Gheres
- Molecular, Cellular, and Integrative Biology Graduate Program, Pennsylvania State UniversityUniversity ParkUnited States
| | - Jordan N Norwood
- Cell and Developmental Biology Graduate Program, Pennsylvania State UniversityUniversity ParkUnited States
| | - Patrick J Drew
- Bioengineering Graduate Program, Pennsylvania State UniversityUniversity ParkUnited States
- Molecular, Cellular, and Integrative Biology Graduate Program, Pennsylvania State UniversityUniversity ParkUnited States
- Cell and Developmental Biology Graduate Program, Pennsylvania State UniversityUniversity ParkUnited States
- Departments of Engineering Science and Mechanics, Biomedical Engineering, and Neurosurgery, Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|
26
|
Moeini M, Cloutier-Tremblay C, Lu X, Kakkar A, Lesage F. Cerebral tissue pO 2 response to treadmill exercise in awake mice. Sci Rep 2020; 10:13358. [PMID: 32770089 PMCID: PMC7414913 DOI: 10.1038/s41598-020-70413-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
We exploited two-photon microscopy and Doppler optical coherence tomography to examine the cerebral blood flow and tissue pO2 response to forced treadmill exercise in awake mice. To our knowledge, this is the first study performing both direct measure of brain tissue pO2 during acute forced exercise and underlying microvascular response at capillary and non-capillary levels. We observed that cerebral perfusion and oxygenation are enhanced during running at 5 m/min compared to rest. At faster running speeds (10 and 15 m/min), decreasing trends in arteriolar and capillary flow speed were observed, which could be due to cerebral autoregulation and constriction of arterioles in response to blood pressure increase. However, tissue pO2 was maintained, likely due to an increase in RBC linear density. Higher cerebral oxygenation at exercise levels 5–15 m/min suggests beneficial effects of exercise in situations where oxygen delivery to the brain is compromised, such as in aging, atherosclerosis and Alzheimer Disease.
Collapse
Affiliation(s)
- Mohammad Moeini
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.,Research Center of Montreal Heart Institute, Montréal, QC, Canada
| | - Christophe Cloutier-Tremblay
- Biomedical Engineering Institute, École Polytechnique de Montréal, Succursale Centre-ville, P.O. Box 6079, Montréal, QC, H3C 3A7, Canada
| | - Xuecong Lu
- Research Center of Montreal Heart Institute, Montréal, QC, Canada.,Biomedical Engineering Institute, École Polytechnique de Montréal, Succursale Centre-ville, P.O. Box 6079, Montréal, QC, H3C 3A7, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, Montréal, QC, Canada
| | - Frédéric Lesage
- Research Center of Montreal Heart Institute, Montréal, QC, Canada. .,Biomedical Engineering Institute, École Polytechnique de Montréal, Succursale Centre-ville, P.O. Box 6079, Montréal, QC, H3C 3A7, Canada.
| |
Collapse
|
27
|
Halaney DL, Jonak CR, Liu J, Davoodzadeh N, Cano-Velázquez MS, Ehtiyatkar P, Park H, Binder DK, Aguilar G. Chronic Brain Imaging Across a Transparent Nanocrystalline Yttria-Stabilized-Zirconia Cranial Implant. Front Bioeng Biotechnol 2020; 8:659. [PMID: 32695757 PMCID: PMC7339873 DOI: 10.3389/fbioe.2020.00659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/28/2020] [Indexed: 12/28/2022] Open
Abstract
Repeated non-diffuse optical imaging of the brain is difficult. This is due to the fact that the cranial bone is highly scattering and thus a strong optical barrier. Repeated craniotomies increase the risk of complications and may disrupt the biological systems being imaged. We previously introduced a potential solution in the form of a transparent ceramic cranial implant called the Window to the Brain (WttB) implant. This implant is made of nanocrystalline Yttria-Stabilized Zirconia (nc-YSZ), which possesses the requisite mechanical strength to serve as a permanent optical access window in human patients. In this present study, we demonstrate repeated brain imaging of n = 5 mice using both OCT and LSI across the WttB implant over 4 weeks. The main objectives are to determine if the WttB implant allows for chronic OCT imaging, and to shed further light on the question of whether optical access provided by the WttB implant remains stable over this duration in the body. The Window to the Brain implant allowed for stable repeated imaging of the mouse brain with Optical Coherence Tomography over 28 days, without loss of signal intensity. Repeated Laser Speckle Imaging was also possible over this timeframe, but signal to noise ratio and the sharpness of vessels in the images decreased with time. This can be partially explained by elevated blood flow during the first imaging session in response to trauma from the surgery, which was also detected by OCT flow imaging. These results are promising for long-term optical access through the WttB implant, making feasible chronic in vivo studies in multiple neurological models of brain disease.
Collapse
Affiliation(s)
- David L Halaney
- Laboratory of Guillermo Aguilar, Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
| | - Carrie R Jonak
- Laboratory of Devin Binder, Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States
| | - Junze Liu
- Laboratory of Hyle Park, Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Nami Davoodzadeh
- Laboratory of Guillermo Aguilar, Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
| | - Mildred S Cano-Velázquez
- Laboratory of Juan Hernandez-Cordero, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Pasha Ehtiyatkar
- Laboratory of Guillermo Aguilar, Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States.,Department of Neuroscience, University of California, Riverside, Riverside, CA, United States
| | - Hyle Park
- Laboratory of Hyle Park, Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Devin K Binder
- Laboratory of Devin Binder, Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, United States
| | - Guillermo Aguilar
- Laboratory of Guillermo Aguilar, Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
28
|
Plog BA, Lou N, Pierre CA, Cove A, Kenney HM, Hitomi E, Kang H, Iliff JJ, Zeppenfeld DM, Nedergaard M, Vates GE. When the air hits your brain: decreased arterial pulsatility after craniectomy leading to impaired glymphatic flow. J Neurosurg 2020; 133:210-223. [PMID: 31100725 PMCID: PMC7331946 DOI: 10.3171/2019.2.jns182675] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/22/2019] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Cranial neurosurgical procedures can cause changes in brain function. There are many potential explanations, but the effect of simply opening the skull has not been addressed, except for research into syndrome of the trephined. The glymphatic circulation, by which CSF and interstitial fluid circulate through periarterial spaces, brain parenchyma, and perivenous spaces, depends on arterial pulsations to provide the driving force for bulk flow; opening the cranial cavity could dampen this force. The authors hypothesized that a craniectomy, without any other pathological insult, is sufficient to alter brain function due to reduced arterial pulsatility and decreased glymphatic flow. Furthermore, they postulated that glymphatic impairment would produce activation of astrocytes and microglia; with the reestablishment of a closed cranial compartment, the glymphatic impairment, astrocytic/microglial activation, and neurobehavioral decline caused by opening the cranial compartment might be reversed. METHODS Using two-photon in vivo microscopy, the pulsatility index of cortical vessels was quantified through a thinned murine skull and then again after craniectomy. Glymphatic influx was determined with ex vivo fluorescence microscopy of mice 0, 14, 28, and 56 days following craniectomy or cranioplasty; brain sections were immunohistochemically labeled for GFAP and CD68. Motor and cognitive performance was quantified with rotarod and novel object recognition tests at baseline and 14, 21, and 28 days following craniectomy or cranioplasty. RESULTS Penetrating arterial pulsatility decreased significantly and bilaterally following unilateral craniectomy, producing immediate and chronic impairment of glymphatic CSF influx in the ipsilateral and contralateral brain parenchyma. Craniectomy-related glymphatic dysfunction was associated with an astrocytic and microglial inflammatory response, as well as with the development of motor and cognitive deficits. Recovery of glymphatic flow preceded reduced gliosis and return of normal neurological function, and cranioplasty accelerated this recovery. CONCLUSIONS Craniectomy causes glymphatic dysfunction, gliosis, and changes in neurological function in this murine model of syndrome of the trephined.
Collapse
Affiliation(s)
- Benjamin A. Plog
- Center for Translational Neuromedicine, Department of Neurosurgery and Oregon Health & Science University, Portland, OR 97239, USA
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Nanhong Lou
- Center for Translational Neuromedicine, Department of Neurosurgery and Oregon Health & Science University, Portland, OR 97239, USA
| | - Clifford A. Pierre
- Center for Translational Neuromedicine, Department of Neurosurgery and Oregon Health & Science University, Portland, OR 97239, USA
| | - Alex Cove
- Center for Translational Neuromedicine, Department of Neurosurgery and Oregon Health & Science University, Portland, OR 97239, USA
| | - H. Mark Kenney
- Center for Translational Neuromedicine, Department of Neurosurgery and Oregon Health & Science University, Portland, OR 97239, USA
| | - Emi Hitomi
- Center for Translational Neuromedicine, Department of Neurosurgery and Oregon Health & Science University, Portland, OR 97239, USA
| | - Hongyi Kang
- Center for Translational Neuromedicine, Department of Neurosurgery and Oregon Health & Science University, Portland, OR 97239, USA
| | - Jeffrey J. Iliff
- Department of Anesthesiology and Peri-Operative Medicine, and Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Douglas M. Zeppenfeld
- Department of Anesthesiology and Peri-Operative Medicine, and Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Department of Neurosurgery and Oregon Health & Science University, Portland, OR 97239, USA
| | - G. Edward Vates
- Center for Translational Neuromedicine, Department of Neurosurgery and Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
29
|
Rynes ML, Ghanbari L, Schulman DS, Linn S, Laroque M, Dominguez J, Navabi ZS, Sherman P, Kodandaramaiah SB. Assembly and operation of an open-source, computer numerical controlled (CNC) robot for performing cranial microsurgical procedures. Nat Protoc 2020; 15:1992-2023. [PMID: 32405052 DOI: 10.1038/s41596-020-0318-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
Cranial microsurgery is an essential procedure for accessing the brain through the skull that can be used to introduce neural probes that measure and manipulate neural activity. Neuroscientists have typically used tools such as high-speed drills adapted from dentistry to perform these procedures. As the number of technologies available for neuroscientists has increased, the corresponding cranial microsurgery procedures to deploy them have become more complex. Using a robotic tool that automatically performs these procedures could standardize cranial microsurgeries across neuroscience laboratories and democratize the more challenging procedures. We have recently engineered a robotic surgery platform that utilizes principles of computer numerical control (CNC) machining to perform a wide variety of automated cranial procedures. Here, we describe how to adapt, configure and use an inexpensive desktop CNC mill equipped with a custom-built surface profiler for performing CNC-guided microsurgery on mice. Detailed instructions are provided to utilize this 'Craniobot' for performing circular craniotomies for coverslip implantation, large craniotomies for implanting transparent polymer skulls for cortex-wide imaging access and skull thinning for intact skull imaging. The Craniobot can be set up in <2 weeks using parts that cost <$1,500, and we anticipate that the Craniobot could be easily adapted for use in other small animals.
Collapse
Affiliation(s)
- Mathew L Rynes
- Department of Biomedical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Leila Ghanbari
- Department of Mechanical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Daniel Sousa Schulman
- Department of Mechanical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Samantha Linn
- Department of Mechanical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Michael Laroque
- Schools of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Judith Dominguez
- Department of Mechanical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Zahra S Navabi
- Department of Mechanical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Peter Sherman
- Department of Mechanical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Suhasa B Kodandaramaiah
- Department of Biomedical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA. .,Department of Mechanical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA.
| |
Collapse
|
30
|
Coste A, Oktay MH, Condeelis JS, Entenberg D. Intravital Imaging Techniques for Biomedical and Clinical Research. Cytometry A 2020; 97:448-457. [PMID: 31889408 PMCID: PMC7210060 DOI: 10.1002/cyto.a.23963] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/10/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022]
Abstract
Intravital imaging, the direct visualization of cells and tissues within a living animal, is a technique that has been employed for the better part of a century. The advent of confocal and multiphoton microscopy has dramatically improved the power of intravital imaging, making it possible to obtain optical sections of tissues non-destructively. This review discusses the various techniques used for intravital imaging, describes how intravital imaging provides information about cellular and tissue dynamics not possible to be garnered by other techniques, and details several ways in which intravital imaging is making a direct impact on the clinical care of patients. © 2019 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Anouchka Coste
- Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - Maja H. Oktay
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Department of Pathology, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - John S. Condeelis
- Department of Surgery, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| | - David Entenberg
- Department of Anatomy and Structural Biology, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Gruss-Lipper Biophotonics Center, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
- Integrated Imaging Program, Einstein College of Medicine/Montefiore Medical Center, Bronx, New York
| |
Collapse
|
31
|
Han X, Chai Z, Ping X, Song LJ, Ma C, Ruan Y, Jin X. In vivo Two-Photon Imaging Reveals Acute Cerebral Vascular Spasm and Microthrombosis After Mild Traumatic Brain Injury in Mice. Front Neurosci 2020; 14:210. [PMID: 32210758 PMCID: PMC7077429 DOI: 10.3389/fnins.2020.00210] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/25/2020] [Indexed: 12/23/2022] Open
Abstract
Mild traumatic brain injury (mTBI), or concussion, is reported to interfere with cerebral blood flow and microcirculation in patients, but our current understanding is quite limited and the results are often controversial. Here we used longitudinal in vivo two-photon imaging to investigate dynamic changes in cerebral vessels and velocities of red blood cells (RBC) following mTBI. Closed-head mTBI induced using a controlled cortical impact device resulted in a significant reduction of dwell time in a Rotarod test but no significant change in water maze test. Cerebral blood vessels were repeatedly imaged through a thinned skull window at baseline, 0.5, 1, 6 h, and 1 day following mTBI. In both arterioles and capillaries, their diameters and RBC velocities were significantly decreased at 0.5, 1, and 6 h after injury, and recovered in 1 day post-mTBI. In contrast, decreases in the diameter and RBC velocity of venules occurred only in 0.5–1 h after mTBI. We also observed formation and clearance of transient microthrombi in capillaries within 1 h post-mTBI. We concluded that in vivo two-photon imaging is useful for studying earlier alteration of vascular dynamics after mTBI and that mTBI induced reduction of cerebral blood flow, vasospasm, and formation of microthrombi in the acute stage following injury. These changes may contribute to early brain functional deficits of mTBI.
Collapse
Affiliation(s)
- Xinjia Han
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,GHM Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Zhi Chai
- Neurobiology Research Center, Shanxi Key Laboratory of Innovative Drugs for Serious Illness, College of Basic Medicine, Shaanxi University of Chinese Medicine, Jinzhong, China
| | - Xingjie Ping
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Li-Juan Song
- Neurobiology Research Center, Shanxi Key Laboratory of Innovative Drugs for Serious Illness, College of Basic Medicine, Shaanxi University of Chinese Medicine, Jinzhong, China
| | - Cungen Ma
- Neurobiology Research Center, Shanxi Key Laboratory of Innovative Drugs for Serious Illness, College of Basic Medicine, Shaanxi University of Chinese Medicine, Jinzhong, China
| | - Yiwen Ruan
- GHM Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaoming Jin
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
32
|
Soulet D, Lamontagne-Proulx J, Aubé B, Davalos D. Multiphoton intravital microscopy in small animals: motion artefact challenges and technical solutions. J Microsc 2020; 278:3-17. [PMID: 32072642 PMCID: PMC7187339 DOI: 10.1111/jmi.12880] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022]
Abstract
Since its invention 29 years ago, two‐photon laser‐scanning microscopy has evolved from a promising imaging technique, to an established widely available imaging modality used throughout the biomedical research community. The establishment of two‐photon microscopy as the preferred method for imaging fluorescently labelled cells and structures in living animals can be attributed to the biophysical mechanism by which the generation of fluorescence is accomplished. The use of powerful lasers capable of delivering infrared light pulses within femtosecond intervals, facilitates the nonlinear excitation of fluorescent molecules only at the focal plane and determines by objective lens position. This offers numerous benefits for studies of biological samples at high spatial and temporal resolutions with limited photo‐damage and superior tissue penetration. Indeed, these attributes have established two‐photon microscopy as the ideal method for live‐animal imaging in several areas of biology and have led to a whole new field of study dedicated to imaging biological phenomena in intact tissues and living organisms. However, despite its appealing features, two‐photon intravital microscopy is inherently limited by tissue motion from heartbeat, respiratory cycles, peristalsis, muscle/vascular tone and physiological functions that change tissue geometry. Because these movements impede temporal and spatial resolution, they must be properly addressed to harness the full potential of two‐photon intravital microscopy and enable accurate data analysis and interpretation. In addition, the sources and features of these motion artefacts are varied, sometimes unpredictable and unique to specific organs and multiple complex strategies have previously been devised to address them. This review will discuss these motion artefacts requirement and technical solutions for their correction and after intravital two‐photon microscopy.
Collapse
Affiliation(s)
- D Soulet
- Centre de recherche du CHUL, Department of Neurosciences, Quebec, Canada.,Faculty of Pharmacy, Université Laval, Quebec, Canada
| | - J Lamontagne-Proulx
- Centre de recherche du CHUL, Department of Neurosciences, Quebec, Canada.,Faculty of Pharmacy, Université Laval, Quebec, Canada
| | - B Aubé
- Centre de recherche du CHUL, Department of Neurosciences, Quebec, Canada
| | - D Davalos
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, U.S.A
| |
Collapse
|
33
|
Grubb S, Cai C, Hald BO, Khennouf L, Murmu RP, Jensen AGK, Fordsmann J, Zambach S, Lauritzen M. Precapillary sphincters maintain perfusion in the cerebral cortex. Nat Commun 2020; 11:395. [PMID: 31959752 PMCID: PMC6971292 DOI: 10.1038/s41467-020-14330-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/16/2019] [Indexed: 02/02/2023] Open
Abstract
Active nerve cells release vasodilators that increase their energy supply by dilating local blood vessels, a mechanism termed neurovascular coupling and the basis of BOLD functional neuroimaging signals. Here, we reveal a mechanism for cerebral blood flow control, a precapillary sphincter at the transition between the penetrating arteriole and first order capillary, linking blood flow in capillaries to the arteriolar inflow. The sphincters are encircled by contractile mural cells, which are capable of bidirectional control of the length and width of the enclosed vessel segment. The hemodynamic consequence is that precapillary sphincters can generate the largest changes in the cerebrovascular flow resistance of all brain vessel segments, thereby controlling capillary flow while protecting the downstream capillary bed and brain tissue from adverse pressure fluctuations. Cortical spreading depolarization constricts sphincters and causes vascular trapping of blood cells. Thus, precapillary sphincters are bottlenecks for brain capillary blood flow. Precapillary sphincters are mural cells encircling an indentation of blood vessels where capillaries branch off from penetrating arterioles (PAs), but their existence and role in the brain is not fully understood. Here authors describe these structures at PAs in the cortex and show that they constrict during cortical spreading depolarization in mice.
Collapse
Affiliation(s)
- Søren Grubb
- Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark.
| | - Changsi Cai
- Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Bjørn O Hald
- Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Lila Khennouf
- Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark.,Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Reena Prity Murmu
- Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Aske G K Jensen
- Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark.,Department of Neurosciences, University of California, San Diego, CA, 92093, USA
| | - Jonas Fordsmann
- Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Stefan Zambach
- Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Martin Lauritzen
- Department of Neuroscience, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark. .,Department of Clinical Neurophysiology, Rigshospitalet, 2600, Glostrup, Denmark.
| |
Collapse
|
34
|
Lu X, Moeini M, Li B, Lu Y, Damseh R, Pouliot P, Thorin É, Lesage F. A Pilot Study Investigating Changes in Capillary Hemodynamics and Its Modulation by Exercise in the APP-PS1 Alzheimer Mouse Model. Front Neurosci 2019; 13:1261. [PMID: 31920472 PMCID: PMC6915102 DOI: 10.3389/fnins.2019.01261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
Dysfunction in neurovascular coupling that results in a mismatch between cerebral blood flow and neuronal activity has been suggested to play a key role in the pathogenesis of Alzheimer's disease (AD). Meanwhile, physical exercise is a powerful approach for maintaining cognitive health and could play a preventive role against the progression of AD. Given the fundamental role of capillaries in oxygen transport to tissue, our pilot study aimed to characterize changes in capillary hemodynamics with AD and AD supplemented by exercise. Exploiting two-photon microscopy, intrinsic signal optical imaging, and magnetic resonance imaging, we found hemodynamic alterations and lower vascular density with AD that were reversed by exercise. We further observed that capillary properties were branch order-dependent and that stimulation-evoked changes were attenuated with AD but increased by exercise. Our study provides novel indications into cerebral microcirculatory disturbances with AD and the modulating role of voluntary exercise on these alterations.
Collapse
Affiliation(s)
- Xuecong Lu
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montreal, QC, Canada
- Montreal Heart Institute, Research Center, Montreal, QC, Canada
| | - Mohammad Moeini
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Baoqiang Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Yuankang Lu
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montreal, QC, Canada
- Montreal Heart Institute, Research Center, Montreal, QC, Canada
| | - Rafat Damseh
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montreal, QC, Canada
- Montreal Heart Institute, Research Center, Montreal, QC, Canada
| | - Philippe Pouliot
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montreal, QC, Canada
- Montreal Heart Institute, Research Center, Montreal, QC, Canada
| | - Éric Thorin
- Montreal Heart Institute, Research Center, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Frédéric Lesage
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montreal, QC, Canada
- Montreal Heart Institute, Research Center, Montreal, QC, Canada
| |
Collapse
|
35
|
Brodnick SK, Ness JP, Richner TJ, Thongpang S, Novello J, Hayat M, Cheng KP, Krugner-Higby L, Suminski AJ, Ludwig KA, Williams JC. μECoG Recordings Through a Thinned Skull. Front Neurosci 2019; 13:1017. [PMID: 31632232 PMCID: PMC6779785 DOI: 10.3389/fnins.2019.01017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
The studies described in this paper for the first time characterize the acute and chronic performance of optically transparent thin-film micro-electrocorticography (μECoG) grids implanted on a thinned skull as both an electrophysiological complement to existing thinned skull preparation for optical recordings/manipulations, and a less invasive alternative to epidural or subdurally placed μECoG arrays. In a longitudinal chronic study, μECoG grids placed on top of a thinned skull maintain impedances comparable to epidurally placed μECoG grids that are stable for periods of at least 1 month. Optogenetic activation of cortex is also reliably demonstrated through the optically transparent μECoG grids acutely placed on the thinned skull. Finally, spatially distinct electrophysiological recordings were evident on μECoG electrodes placed on a thinned skull separated by 500–750 μm, as assessed by stimulation evoked responses using optogenetic activation of cortex as well as invasive and epidermal stimulation of the sciatic and median nerve at chronic time points. Neural signals were collected through a thinned skull in mice and rats, demonstrating potential utility in neuroscience research applications such as in vivo imaging and optogenetics.
Collapse
Affiliation(s)
- Sarah K Brodnick
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Jared P Ness
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Thomas J Richner
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Sanitta Thongpang
- Department of Biomedical Engineering, Mahidol University, Salaya, Thailand
| | - Joseph Novello
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Mohammed Hayat
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Kevin P Cheng
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Lisa Krugner-Higby
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Aaron J Suminski
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States.,Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Kip A Ludwig
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States.,Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Justin C Williams
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States.,Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
36
|
Optical coherence tomography angiography in preclinical neuroimaging. Biomed Eng Lett 2019; 9:311-325. [PMID: 31456891 DOI: 10.1007/s13534-019-00118-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/29/2019] [Accepted: 06/27/2019] [Indexed: 01/22/2023] Open
Abstract
Preclinical neuroimaging allows for the assessment of brain anatomy, connectivity, and function in laboratory animals, such as mice and this imaging field has been a rapidly growing aimed at bridging the translation gap between animal and human research. The progress in the animal research could be accelerated by high-resolution in vivo optical imaging technologies. Optical coherence tomography-based angiography (OCTA) estimates the scattering from moving red blood cells, providing the visualization of functional micro-vessel networks within tissue beds in vivo without a need for exogenous contrast agents. Recent advancement of OCTA methods have expanded its application to neuroimaging of small animal models of brain disorders. In this paper, we overview the recent development of OCTA techniques for blood flow imaging and its preclinical applications in neuroimaging. In specific, a summary of preclinical OCTA studies for traumatic brain injury, cerebral stroke, and aging brain on mice is reviewed.
Collapse
|
37
|
Direct wavefront sensing enables functional imaging of infragranular axons and spines. Nat Methods 2019; 16:615-618. [PMID: 31209383 DOI: 10.1038/s41592-019-0434-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 04/29/2019] [Indexed: 11/09/2022]
Abstract
We advance two-photon microscopy for near-diffraction-limited imaging up to 850 µm below the pia in awake mice. Our approach combines direct wavefront sensing of light from a guidestar (formed by descanned fluorescence from Cy5.5-conjugated dextran in brain microvessels) with adaptive optics to compensate for tissue-induced aberrations in the wavefront. We achieve high signal-to-noise ratios in recordings of glutamate release from thalamocortical axons and calcium transients in spines of layer 5b basal dendrites during active tactile sensing.
Collapse
|
38
|
Norwood JN, Zhang Q, Card D, Craine A, Ryan TM, Drew PJ. Anatomical basis and physiological role of cerebrospinal fluid transport through the murine cribriform plate. eLife 2019; 8:44278. [PMID: 31063132 PMCID: PMC6524970 DOI: 10.7554/elife.44278] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/06/2019] [Indexed: 12/25/2022] Open
Abstract
Cerebrospinal fluid (CSF) flows through the brain, transporting chemical signals and removing waste. CSF production in the brain is balanced by a constant outflow of CSF, the anatomical basis of which is poorly understood. Here, we characterized the anatomy and physiological function of the CSF outflow pathway along the olfactory sensory nerves through the cribriform plate, and into the nasal epithelia. Chemical ablation of olfactory sensory nerves greatly reduced outflow of CSF through the cribriform plate. The reduction in CSF outflow did not cause an increase in intracranial pressure (ICP), consistent with an alteration in the pattern of CSF drainage or production. Our results suggest that damage to olfactory sensory neurons (such as from air pollution) could contribute to altered CSF turnover and flow, providing a potential mechanism for neurological diseases.
Collapse
Affiliation(s)
- Jordan N Norwood
- Cellular and Developmental Biology Graduate Program, Pennsylvania State University, University Park, United States
| | - Qingguang Zhang
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, United States
| | - David Card
- Department of Physics, Pennsylvania State University, University Park, United States
| | - Amanda Craine
- Department of Biomedical Engineering, Pennsylvania State University, University Park, United States
| | - Timothy M Ryan
- Department of Anthropology, Pennsylvania State University, University Park, United States
| | - Patrick J Drew
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, United States.,Department of Biomedical Engineering, Pennsylvania State University, University Park, United States.,Department of Neurosurgery, Pennsylvania State University, University Park, United States
| |
Collapse
|
39
|
Koletar MM, Dorr A, Brown ME, McLaurin J, Stefanovic B. Refinement of a chronic cranial window implant in the rat for longitudinal in vivo two-photon fluorescence microscopy of neurovascular function. Sci Rep 2019; 9:5499. [PMID: 30940849 PMCID: PMC6445076 DOI: 10.1038/s41598-019-41966-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
Longitudinal studies using two–photon fluorescence microscopy (TPFM) are critical for facilitating cellular scale imaging of brain morphology and function. Studies have been conducted in the mouse due to their relatively higher transparency and long term patency of a chronic cranial window. Increasing availability of transgenic rat models, and the range of established behavioural paradigms, necessitates development of a chronic preparation for the rat. However, surgical craniotomies in the rat present challenges due to craniotomy closure by wound healing and diminished image quality due to inflammation, restricting most rat TPFM experiments to acute preparations. Long-term patency is enabled by employing sterile surgical technique, minimization of trauma with precise tissue handling during surgery, judicious selection of the size and placement of the craniotomy, diligent monitoring of animal physiology and support throughout the surgery, and modification of the home cage for long-term preservation of cranial implants. Immunohistochemical analysis employing the glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule-1 (Iba-1) showed activation and recruitment of astrocytes and microglia/macrophages directly inferior to the cranial window at one week after surgery, with more diffuse response in deeper cortical layers at two weeks, and amelioration around four weeks post craniotomy. TPFM was conducted up to 14 weeks post craniotomy, reaching cortical depths of 400 µm to 600 µm at most time-points. The rate of signal decay with increasing depth and maximum cortical depth attained had greater variation between individual rats at a single time-point than within a rat across time.
Collapse
Affiliation(s)
- Margaret M Koletar
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada.
| | - Adrienne Dorr
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Mary E Brown
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - JoAnne McLaurin
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A1, Canada
| | - Bojana Stefanovic
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada.,Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| |
Collapse
|
40
|
De Niz M, Nacer A, Frischknecht F. Intravital microscopy: Imaging host-parasite interactions in the brain. Cell Microbiol 2019; 21:e13024. [PMID: 30830993 DOI: 10.1111/cmi.13024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/14/2019] [Accepted: 02/24/2019] [Indexed: 12/31/2022]
Abstract
Intravital fluorescence microscopy (IVM) is a powerful technique for imaging multiple organs, including the brain of living mice and rats. It enables the direct visualisation of cells in situ providing a real-life view of biological processes that in vitro systems cannot. In addition, to the technological advances in microscopy over the last decade, there have been supporting innovations in data storage and analytical packages that enable the visualisation and analysis of large data sets. Here, we review the advantages and limitations of techniques predominantly used for brain IVM, including thinned skull windows, open skull cortical windows, and a miniaturised optical system based on microendoscopic probes that can be inserted into deep tissues. Further, we explore the relevance of these techniques for the field of parasitology. Several protozoan infections are associated with neurological symptoms including Plasmodium spp., Toxoplasma spp., and Trypanosoma spp. IVM has led to crucial findings on these parasite species, which are discussed in detail in this review.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, University of Bern, Bern, Switzerland.,Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasglow, UK
| | - Adéla Nacer
- Division of Bacteriology, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, EN63QG, Potters Bar, UK
| | - Friedrich Frischknecht
- Parasitology-Centre for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| |
Collapse
|
41
|
Cerebral tissue pO 2 response to stimulation is preserved with age in awake mice. Neurosci Lett 2019; 699:160-166. [PMID: 30738870 DOI: 10.1016/j.neulet.2019.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/11/2019] [Accepted: 02/06/2019] [Indexed: 12/15/2022]
Abstract
Compromised oxygen supply to cerebral tissue could be an important mechanism contributing to age-related cognition decline. We recently showed in awake mice that resting cerebral tissue pO2 decreases with age, a phenomenon that manifests mainly after middle-age. To extend these findings, here we aimed to study how tissue pO2 response to neuronal stimulation is affected by aging. We used two-photon phosphorescence lifetime microscopy to directly measure the brain tissue pO2 response to whisker stimulation in healthy awake young, middle-aged and old mice. We show that despite a decrease in baseline tissue pO2, the amplitude of the tissue pO2 response to stimulation is well preserved with age. However, the response dynamics are altered towards a slower response with reduced post-stimulus undershoot in older ages, possibly due to stiffer vessel wall among other factors. An estimation of the net oxygen consumption rate using a modified Krogh model suggests that the O2 overshoot during stimulation may be necessary to secure a higher capillary O2 delivery to the tissue proportional to increased CMRO2 to maintain the capillary tissue pO2. It was observed that the coupling between the CMRO2 and capillary O2 delivery is preserved with age.
Collapse
|
42
|
Hyacinth HI, Sugihara CL, Spencer TL, Archer DR, Shih AY. Higher prevalence of spontaneous cerebral vasculopathy and cerebral infarcts in a mouse model of sickle cell disease. J Cereb Blood Flow Metab 2019; 39:342-351. [PMID: 28925802 PMCID: PMC6365608 DOI: 10.1177/0271678x17732275] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Stroke is a dramatic complication of sickle cell disease (SCD), which is associated with cerebral vasculopathies including moya moya, intravascular thrombi, cerebral hyperemia, and increased vessel tortuosity. The spontaneous occurrence of these pathologies in the sickle cell mouse model has not been described. Here, we studied Townes humanized sickle cell and age-matched control mice that were 13 months old. We used in vivo two-photon microscopy to assess blood flow dynamics, vascular topology, and evidence of cerebral vasculopathy. Results showed that compared to controls, sickle cell mice had significantly higher red blood cell (RBC) velocity (0.73 mm/s vs. 0.55 mm/s, p = 0.013), capillary vessel diameter (4.84 µM vs. 4.50 µM, p = 0.014), and RBC volume flux (0.015 nL/s vs. 0.010 nL/s, p = 0.021). Also, sickle cell mice had significantly more tortuous capillary vessels ( p < 0.0001) and significantly shorter capillary vessel branches ( p = 0.0065) compared to controls. Sickle cell mice also had significantly higher number of capillary occlusive events (3.4% vs. 1.9%, p < 0.0001) and RBC stalls (3.8% vs. 2.1%, p < 0.0001) in the cerebral capillary bed. In post-mortem immunohistochemical analyses, sickle cell mice had a 2.5-fold higher frequency of cortical microinfarcts compared to control mice. Our results suggest that aged Townes sickle cell mice spontaneously develop SCD-associated cerebral vasculopathy.
Collapse
Affiliation(s)
- Hyacinth I Hyacinth
- 1 Department of Pediatrics, Aflac Cancer and Blood Disorder Center of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - Courtney L Sugihara
- 2 Neuroscience and Behavioral Biology Program, Emory University, Atlanta, GA, USA
| | - Thomas L Spencer
- 3 Department of Mechanical Engineering, Georgia Technical Institute, Atlanta, GA, USA
| | - David R Archer
- 1 Department of Pediatrics, Aflac Cancer and Blood Disorder Center of Children's Healthcare of Atlanta and Emory University, Atlanta, GA, USA
| | - Andy Y Shih
- 4 Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA.,5 Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
43
|
Ghanbari L, Rynes ML, Hu J, Schulman DS, Johnson GW, Laroque M, Shull GM, Kodandaramaiah SB. Craniobot: A computer numerical controlled robot for cranial microsurgeries. Sci Rep 2019; 9:1023. [PMID: 30705287 PMCID: PMC6355931 DOI: 10.1038/s41598-018-37073-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022] Open
Abstract
Over the last few decades, a plethora of tools has been developed for neuroscientists to interface with the brain. Implementing these tools requires precisely removing sections of the skull to access the brain. These delicate cranial microsurgical procedures need to be performed on the sub-millimeter thick bone without damaging the underlying tissue and therefore, require significant training. Automating some of these procedures would not only enable more precise microsurgical operations, but also facilitate widespread use of advanced neurotechnologies. Here, we introduce the "Craniobot", a cranial microsurgery platform that combines automated skull surface profiling with a computer numerical controlled (CNC) milling machine to perform a variety of cranial microsurgical procedures on mice. The Craniobot utilizes a low-force contact sensor to profile the skull surface and uses this information to perform precise milling operations within minutes. We have used the Craniobot to perform intact skull thinning and open small to large craniotomies over the dorsal cortex.
Collapse
Affiliation(s)
- Leila Ghanbari
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minnesota, USA
| | - Mathew L Rynes
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minnesota, USA
| | - Jia Hu
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minnesota, USA
| | - Daniel S Schulman
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minnesota, USA
| | - Gregory W Johnson
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minnesota, USA
| | - Michael Laroque
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minnesota, USA
| | - Gabriella M Shull
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minnesota, USA
| | - Suhasa B Kodandaramaiah
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, Minnesota, USA.
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, Minnesota, USA.
| |
Collapse
|
44
|
Park H, You N, Lee J, Suh M. Longitudinal study of hemodynamics and dendritic membrane potential changes in the mouse cortex following a soft cranial window installation. NEUROPHOTONICS 2019; 6:015006. [PMID: 30820438 PMCID: PMC6387987 DOI: 10.1117/1.nph.6.1.015006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/25/2019] [Indexed: 05/21/2023]
Abstract
The soft cranial window using polydimethylsiloxane allows direct multiple access to neural tissue during long-term monitoring. However, the chronic effects of soft window installation on the brain have not been fully studied. Here, we investigate the long-term effects of soft window installation on sensory-evoked cerebral hemodynamics and neuronal activity. We monitored the brain tissue immunocytohistology for 6 weeks postinstallation. Heightened reactive astrocytic and microglia levels were found at 2 weeks postinstallation. By 6 weeks postinstallation, mice had expression levels similar to those of normal animals. We recorded sensory-evoked hemodynamics of the barrel cortex and LFP during whisker stimulation at these time points. Animals at 6 weeks postinstallation showed stronger hemodynamic responses and focalized barrel mapping than 2-week postoperative mice. LFP recordings of 6-week postoperative mice also showed higher neural activity at the barrel column corresponding to the stimulated whisker. Furthermore, the expression level of interleukin- 1 β was highly upregulated at 2 weeks postinstallation. When we treated animals postoperatively with minocycline plus N-acetylcystein, a drug-suppressing inflammatory cytokine, these animals did not show declined hemodynamic responses and neuronal activities. This result suggests that neuroinflammation following soft window installation may alter hemodynamic and neuronal responses upon sensory stimulation.
Collapse
Affiliation(s)
- Hyejin Park
- Institute for Basic Science, Center for Neuroscience Imaging Research, Suwon, Republic of Korea
- Sungkyunkwan University, Department of Biological Sciences, Suwon, Republic of Korea
- Sungkyunkwan University, Biomedical Institute for Convergence, Suwon, Republic of Korea
| | - Nayeon You
- Institute for Basic Science, Center for Neuroscience Imaging Research, Suwon, Republic of Korea
- Sungkyunkwan University, Department of Biomedical Engineering, Suwon, Republic of Korea
| | - Juheon Lee
- Institute for Basic Science, Center for Neuroscience Imaging Research, Suwon, Republic of Korea
- Sungkyunkwan University, Department of Biomedical Engineering, Suwon, Republic of Korea
| | - Minah Suh
- Institute for Basic Science, Center for Neuroscience Imaging Research, Suwon, Republic of Korea
- Sungkyunkwan University, Biomedical Institute for Convergence, Suwon, Republic of Korea
- Sungkyunkwan University, Department of Biomedical Engineering, Suwon, Republic of Korea
- Sungkyunkwan University, SAHIST, Suwon, Republic of Korea
- Address all correspondence to Minah Suh, E-mail:
| |
Collapse
|
45
|
Mestre H, Tithof J, Du T, Song W, Peng W, Sweeney AM, Olveda G, Thomas JH, Nedergaard M, Kelley DH. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat Commun 2018; 9:4878. [PMID: 30451853 PMCID: PMC6242982 DOI: 10.1038/s41467-018-07318-3] [Citation(s) in RCA: 565] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/26/2018] [Indexed: 01/18/2023] Open
Abstract
Flow of cerebrospinal fluid (CSF) through perivascular spaces (PVSs) in the brain is important for clearance of metabolic waste. Arterial pulsations are thought to drive flow, but this has never been quantitatively shown. We used particle tracking to quantify CSF flow velocities in PVSs of live mice. CSF flow is pulsatile and driven primarily by the cardiac cycle. The speed of the arterial wall matches that of the CSF, suggesting arterial wall motion is the principal driving mechanism, via a process known as perivascular pumping. Increasing blood pressure leaves the artery diameter unchanged but changes the pulsations of the arterial wall, increasing backflow and thereby reducing net flow in the PVS. Perfusion-fixation alters the normal flow direction and causes a 10-fold reduction in PVS size. We conclude that particle tracking velocimetry enables the study of CSF flow in unprecedented detail and that studying the PVS in vivo avoids fixation artifacts.
Collapse
Affiliation(s)
- Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Ting Du
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- China Medical University, Shenyang, 110122, China
| | - Wei Song
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Weiguo Peng
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Amanda M Sweeney
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Genaro Olveda
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - John H Thomas
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Douglas H Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, NY, 14627, USA.
| |
Collapse
|
46
|
Davoodzadeh N, Cano-Velázquez MS, Halaney DL, Jonak CR, Binder DK, Aguilar G. Evaluation of a transparent cranial implant as a permanent window for cerebral blood flow imaging. BIOMEDICAL OPTICS EXPRESS 2018; 9:4879-4892. [PMID: 30319909 PMCID: PMC6179387 DOI: 10.1364/boe.9.004879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/27/2018] [Accepted: 09/12/2018] [Indexed: 05/11/2023]
Abstract
Laser speckle imaging (LSI) of mouse cerebral blood flow was compared through a transparent nanocrystalline yttria-stabilized zirconia (nc-YSZ) cranial implant over time (at days 0, 14, and 28, n = 3 mice), and vs. LSI through native skull (at day 60, n = 1 mouse). The average sharpness of imaged vessels was found to remain stable, with relative change in sharpness under 7.69% ± 1.2% over 28 days. Through-implant images of vessels at day 60 appeared sharper and smaller on average, with microvessels clearly visible, compared to through-skull images where vessels appeared blurred and distorted. These results suggest that long-term imaging through this implant is feasible.
Collapse
Affiliation(s)
- Nami Davoodzadeh
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
| | | | - David L Halaney
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
| | - Carrie R Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Guillermo Aguilar
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
| |
Collapse
|
47
|
Kelly P, Hudry E, Hou SS, Bacskai BJ. In Vivo Two Photon Imaging of Astrocytic Structure and Function in Alzheimer's Disease. Front Aging Neurosci 2018; 10:219. [PMID: 30072889 PMCID: PMC6060286 DOI: 10.3389/fnagi.2018.00219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/26/2018] [Indexed: 12/17/2022] Open
Abstract
The physiological function of the neurovascular unit is critically dependent upon the complex structure and functions of astrocytes for optimal preservation of cerebral homeostasis. While it has been shown that astrocytes exhibit aberrant changes in both structure and function in transgenic murine models of Alzheimer’s disease (AD), it is not fully understood how this altered phenotype contributes to the pathogenesis of AD or whether this alteration predicts a therapeutic target in AD. The mechanisms underlying the spatiotemporal relationship between astrocytes, neurons and the vasculature in their orchestrated regulation of local cerebral flow in active brain regions has not been fully elucidated in brain physiology and in AD. As there is an incredible urgency to identify therapeutic targets that are well-tolerated and efficacious in protecting the brain against the pathological impact of AD, here we use the current body of literature to evaluate the hypothesis that pathological changes in astrocytes are central to the pathogenesis of AD. We also examine the current tools available to assess astrocytic calcium signaling in the living murine brain as it has an important role in the complex interaction between astrocytes, neurons and the vasculature. Furthermore, we discuss the altered function of astrocytes in their interaction with neurons in the preservation of glutamate homeostasis and additionally address the role of astrocytes at the vascular interface and their contribution to functional hyperemia within the living murine brain in health and in AD.
Collapse
Affiliation(s)
- Patricia Kelly
- Massachusetts Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Eloise Hudry
- Massachusetts Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Steven S Hou
- Massachusetts Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Brian J Bacskai
- Massachusetts Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| |
Collapse
|
48
|
Kisler K, Lazic D, Sweeney MD, Plunkett S, Khatib ME, Vinogradov SA, Boas DA, Sakadžić S, Zlokovic BV. In vivo imaging and analysis of cerebrovascular hemodynamic responses and tissue oxygenation in the mouse brain. Nat Protoc 2018; 13:1377-1402. [PMID: 29844521 PMCID: PMC6402338 DOI: 10.1038/nprot.2018.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebrovascular dysfunction has an important role in the pathogenesis of multiple brain disorders. Measurement of hemodynamic responses in vivo can be challenging, particularly as techniques are often not described in sufficient detail and vary between laboratories. We present a set of standardized in vivo protocols that describe high-resolution two-photon microscopy and intrinsic optical signal (IOS) imaging to evaluate capillary and arteriolar responses to a stimulus, regional hemodynamic responses, and oxygen delivery to the brain. The protocol also describes how to measure intrinsic NADH fluorescence to understand how blood O2 supply meets the metabolic demands of activated brain tissue, and to perform resting-state absolute oxygen partial pressure (pO2) measurements of brain tissue. These methods can detect cerebrovascular changes at far higher resolution than MRI techniques, although the optical nature of these techniques limits their achievable imaging depths. Each individual procedure requires 1-2 h to complete, with two to three procedures typically performed per animal at a time. These protocols are broadly applicable in studies of cerebrovascular function in healthy and diseased brain in any of the existing mouse models of neurological and vascular disorders. All these procedures can be accomplished by a competent graduate student or experienced technician, except the two-photon measurement of absolute pO2 level, which is better suited to a more experienced, postdoctoral-level researcher.
Collapse
Affiliation(s)
- Kassandra Kisler
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089
| | - Divna Lazic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089
- Department of Neurobiology, Institute for Biological Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Melanie D. Sweeney
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089
| | - Shane Plunkett
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Mirna El Khatib
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Sergei A. Vinogradov
- Departments of Biochemistry and Biophysics and of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - David A. Boas
- Optics Division, MGH/HMS/MIT Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| | - Sava Sakadžić
- Optics Division, MGH/HMS/MIT Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129
| | - Berislav V. Zlokovic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
49
|
Moeini M, Lu X, Avti PK, Damseh R, Bélanger S, Picard F, Boas D, Kakkar A, Lesage F. Compromised microvascular oxygen delivery increases brain tissue vulnerability with age. Sci Rep 2018; 8:8219. [PMID: 29844478 PMCID: PMC5974237 DOI: 10.1038/s41598-018-26543-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/16/2018] [Indexed: 11/22/2022] Open
Abstract
Despite the possible role of impaired cerebral tissue oxygenation in age-related cognition decline, much is still unknown about the changes in brain tissue pO2 with age. Using a detailed investigation of the age-related changes in cerebral tissue oxygenation in the barrel cortex of healthy, awake aged mice, we demonstrate decreased arteriolar and tissue pO2 with age. These changes are exacerbated after middle-age. We further uncovered evidence of the presence of hypoxic micro-pockets in the cortex of awake old mice. Our data suggests that from young to middle-age, a well-regulated capillary oxygen supply maintains the oxygen availability in cerebral tissue, despite decreased tissue pO2 next to arterioles. After middle-age, due to decreased hematocrit, reduced capillary density and higher capillary transit time heterogeneity, the capillary network fails to compensate for larger decreases in arterial pO2. The substantial decrease in brain tissue pO2, and the presence of hypoxic micro-pockets after middle-age are of significant importance, as these factors may be related to cognitive decline in elderly people.
Collapse
Affiliation(s)
- Mohammad Moeini
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montréal, QC, Canada.,Research Center of Montreal Heart Institute, Montréal, QC, Canada.,Department of Chemistry, McGill University, Montréal, QC, Canada
| | - Xuecong Lu
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montréal, QC, Canada.,Research Center of Montreal Heart Institute, Montréal, QC, Canada
| | - Pramod K Avti
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montréal, QC, Canada.,Research Center of Montreal Heart Institute, Montréal, QC, Canada.,Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rafat Damseh
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montréal, QC, Canada
| | - Samuel Bélanger
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montréal, QC, Canada.,Research Center of Montreal Heart Institute, Montréal, QC, Canada
| | - Frédéric Picard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec (IUCPQ), Québec, QC, Canada
| | - David Boas
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,Biomedical Engineering Department, College of Engineering, Boston University, Boston, MA, USA
| | - Ashok Kakkar
- Department of Chemistry, McGill University, Montréal, QC, Canada
| | - Frédéric Lesage
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montréal, QC, Canada. .,Research Center of Montreal Heart Institute, Montréal, QC, Canada.
| |
Collapse
|
50
|
Zhao YJ, Yu TT, Zhang C, Li Z, Luo QM, Xu TH, Zhu D. Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution. LIGHT, SCIENCE & APPLICATIONS 2018; 7:17153. [PMID: 30839532 PMCID: PMC6060065 DOI: 10.1038/lsa.2017.153] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 05/05/2023]
Abstract
Imaging cells and microvasculature in the living brain is crucial to understanding an array of neurobiological phenomena. Here, we introduce a skull optical clearing window for imaging cortical structures at synaptic resolution. Combined with two-photon microscopy, this technique allowed us to repeatedly image neurons, microglia and microvasculature of mice. We applied it to study the plasticity of dendritic spines in critical periods and to visualize dendrites and microglia after laser ablation. Given its easy handling and safety, this method holds great promise for application in neuroscience research.
Collapse
Affiliation(s)
- Yan-Jie Zhao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ting-Ting Yu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chao Zhang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhao Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qing-Ming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tong-Hui Xu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|