1
|
Alibhai FJ, Tobin SW. Characterization of Age-Dependent Changes in Skeletal Muscle Repair and Regeneration Using a Mouse Model of Acute Muscle Injury. Methods Mol Biol 2025; 2857:169-180. [PMID: 39348065 DOI: 10.1007/978-1-0716-4128-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Acute skeletal muscle injury initiates a process of necrosis, debris clearance, and ultimately tissue regeneration via myogenesis. While skeletal muscle stem cells (MuSCs) are responsible for populating the proliferative myogenic progenitor pool to fuel muscle repair, recruited and resident immune cells have a central role in the regulation of muscle regeneration via the execution of phagocytosis and release of soluble factors that act directly on MuSCs to regulate myogenic differentiation. Therefore, the timing of MuSC proliferation and differentiation is closely linked to the populations and behaviors of immune cells present within skeletal muscle. This has important implications for aging and muscle repair, as systemic changes in immune system function contribute to a decline in muscle regenerative capacity. Here, we present adapted protocols for the isolation of mononuclear cells from skeletal muscles for the quantification of immune cell populations using flow cytometry. We also describe a cardiotoxin skeletal muscle injury protocol and detail the expected outcomes including immune cell infiltration to the injured sites and formation of new myocytes. As immune cell function is substantially influenced by aging, we extend these approaches and outcomes to aged mice.
Collapse
Affiliation(s)
| | - Stephanie W Tobin
- Department of Biology, Trent University, Peterborough, ON, Canada.
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada.
| |
Collapse
|
2
|
Huang X, Jiang J, Shen J, Xu Z, Gu F, Pei J, Zhang L, Tang P, Yin P. The Influences of Cryopreservation Methods on RNA, Protein, Microstructure and Cell Viability of Skeletal Muscle Tissue. Biopreserv Biobank 2024; 22:225-234. [PMID: 37594856 DOI: 10.1089/bio.2023.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023] Open
Abstract
Background: Different experiments require different sample storage methods. The commonly used preservation methods in biobank practice cannot fully meet the multifarious requirements of experimental techniques. Programmable controlled slow freezing (PCSF) can maintain the viability of tissue. In this study, we hypothesized that PCSF-preserved samples have potential advantages in matching subsequent experiments compared with existing methods. Methods: We compared the differences on skeletal muscle tissue RNA integrity, protein integrity, microstructure integrity, and cell viability between four existing cryopreservation methods: liquid nitrogen (LN2) snap-freezing, LN2-cooled isopentane snap-freezing, RNAlater®-based freezing, and PCSF. RNA integrity was evaluated using agarose gel electrophoresis and RNA integrity number. Freezing-related microstructural damage in the muscle tissue was evaluated using ice crystal diameter and muscle fiber cross-sectional area. Protein integrity was evaluated using immunofluorescence staining. Cell viability was evaluated using trypan blue staining after primary muscle cell isolation. Results: PCSF preserved RNA integrity better than LN2 and isopentane, with a statistically significant difference. RNAlater preserved RNA integrity best. PCSF best controlled ice crystal size in myofibers, with a significant difference compared with LN2. The PCSF method best preserved the integrity of protein epitopes according to the mean fluorescence intensity results, with a significant difference. Cell viability was best preserved in the PCSF method compared with the other three methods, with a significant difference. Conclusion: PCSF protected the RNA integrity, microstructural integrity, protein integrity, and cell viability of skeletal muscle tissue. The application of PCSF in biobank practice is recommended as a multi-experiment-compatible cryopreservation method.
Collapse
Affiliation(s)
- Xiang Huang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, People's Republic of China
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, People's Republic of China
| | - Jingjing Jiang
- Medical Innovation Research Division of Chinese PLA General Hospital, Clinical Biobank Center, Beijing, People's Republic of China
| | - Junmin Shen
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, People's Republic of China
- School of Medicine, Nankai University, Tianjin, People's Republic of China
| | - Ziying Xu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, People's Republic of China
| | - Fangyan Gu
- Medical Innovation Research Division of Chinese PLA General Hospital, Clinical Biobank Center, Beijing, People's Republic of China
| | - Jinlian Pei
- Medical Innovation Research Division of Chinese PLA General Hospital, Clinical Biobank Center, Beijing, People's Republic of China
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, People's Republic of China
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, People's Republic of China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, People's Republic of China
| |
Collapse
|
3
|
Caine S, Alaverdashvili M, Colbourne F, Muir GD, Paterson PG. A modified rehabilitation paradigm bilaterally increased rat extensor digitorum communis muscle size but did not improve forelimb function after stroke. PLoS One 2024; 19:e0302008. [PMID: 38603768 PMCID: PMC11008896 DOI: 10.1371/journal.pone.0302008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Malnutrition after stroke may lessen the beneficial effects of rehabilitation on motor recovery through influences on both brain and skeletal muscle. Enriched rehabilitation (ER), a combination of environmental enrichment and forelimb reaching practice, is used preclinically to study recovery of skilled reaching after stroke. However, the chronic food restriction typically used to motivate engagement in reaching practice is a barrier to using ER to investigate interactions between nutritional status and rehabilitation. Thus, our objectives were to determine if a modified ER program comprised of environmental enrichment and skilled reaching practice motivated by a short fast would enhance post-stroke forelimb motor recovery and preserve forelimb muscle size and metabolic fiber type, relative to a group exposed to stroke without ER. At one week after photothrombotic cortical stroke, male, Sprague-Dawley rats were assigned to modified ER or standard care for 2 weeks. Forelimb recovery was assessed in the Montoya staircase and cylinder task before stroke and on days 5-6, 22-23, and 33-34 after stroke. ER failed to improve forelimb function in either task (p > 0.05). Atrophy of extensor digitorum communis (EDC) and triceps brachii long head (TBL) muscles was not evident in the stroke-targeted forelimb on day 35, but the area occupied by hybrid fibers was increased in the EDC muscle (p = 0.038). ER bilaterally increased EDC (p = 0.046), but not TBL, muscle size; EDC muscle fiber type was unchanged by ER. While the modified ER did not promote forelimb motor recovery, it does appear to have utility for studying the role of skeletal muscle plasticity in post-stroke recovery.
Collapse
Affiliation(s)
- Sally Caine
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| | | | - Frederick Colbourne
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Psychology, University of Alberta, Edmonton, Canada
| | - Gillian D. Muir
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Phyllis G. Paterson
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
4
|
Larrinaga TM, Farman GP, Mayfield RM, Yuen M, Ahrens-Nicklas RC, Cooper ST, Pappas CT, Gregorio CC. Lmod2 is necessary for effective skeletal muscle contraction. SCIENCE ADVANCES 2024; 10:eadk1890. [PMID: 38478604 PMCID: PMC10936868 DOI: 10.1126/sciadv.adk1890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/06/2024] [Indexed: 03/17/2024]
Abstract
Muscle contraction is a regulated process driven by the sliding of actin-thin filaments over myosin-thick filaments. Lmod2 is an actin filament length regulator and essential for life since human mutations and complete loss of Lmod2 in mice lead to dilated cardiomyopathy and death. To study the little-known role of Lmod2 in skeletal muscle, we created a mouse model with Lmod2 expressed exclusively in the heart but absent in skeletal muscle. Loss of Lmod2 in skeletal muscle results in decreased force production in fast- and slow-twitch muscles. Soleus muscle from rescued Lmod2 knockout mice have shorter thin filaments, increased Lmod3 levels, and present with a myosin fiber type switch from fast myosin heavy chain (MHC) IIA to the slower MHC I isoform. Since Lmod2 regulates thin-filament length in slow-twitch but not fast-twitch skeletal muscle and force deficits were observed in both muscle types, this work demonstrates that Lmod2 regulates skeletal muscle contraction, independent of its role in thin-filament length regulation.
Collapse
Affiliation(s)
- Tania M. Larrinaga
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85724, USA
| | - Gerrie P. Farman
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85724, USA
| | - Rachel M. Mayfield
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85724, USA
| | - Michaela Yuen
- Kids Neuroscience Centre, Kids Research, The Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- The Children’s Medical Research Institute, 214 Hawkesbury Road, Westmead, NSW 2145, Australia
| | | | - Sandra T. Cooper
- Kids Neuroscience Centre, Kids Research, The Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
- The Children’s Medical Research Institute, 214 Hawkesbury Road, Westmead, NSW 2145, Australia
| | - Christopher T. Pappas
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85724, USA
| | - Carol C. Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85724, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
5
|
Jorgenson KW, Hibbert JE, Sayed RKA, Lange AN, Godwin JS, Mesquita PHC, Ruple BA, McIntosh MC, Kavazis AN, Roberts MD, Hornberger TA. A novel imaging method (FIM-ID) reveals that myofibrillogenesis plays a major role in the mechanically induced growth of skeletal muscle. eLife 2024; 12:RP92674. [PMID: 38466320 PMCID: PMC10928493 DOI: 10.7554/elife.92674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
An increase in mechanical loading, such as that which occurs during resistance exercise, induces radial growth of muscle fibers (i.e. an increase in cross-sectional area). Muscle fibers are largely composed of myofibrils, but whether radial growth is mediated by an increase in the size of the myofibrils (i.e. myofibril hypertrophy) and/or the number of myofibrils (i.e. myofibrillogenesis) is not known. Electron microscopy (EM) can provide images with the level of resolution that is needed to address this question, but the acquisition and subsequent analysis of EM images is a time- and cost-intensive process. To overcome this, we developed a novel method for visualizing myofibrils with a standard fluorescence microscope (fluorescence imaging of myofibrils with image deconvolution [FIM-ID]). Images from FIM-ID have a high degree of resolution and contrast, and these properties enabled us to develop pipelines for automated measurements of myofibril size and number. After extensively validating the automated measurements, we used both mouse and human models of increased mechanical loading to discover that the radial growth of muscle fibers is largely mediated by myofibrillogenesis. Collectively, the outcomes of this study offer insight into a fundamentally important topic in the field of muscle growth and provide future investigators with a time- and cost-effective means to study it.
Collapse
Affiliation(s)
- Kent W Jorgenson
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin-MadisonMadisonUnited States
| | - Jamie E Hibbert
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin-MadisonMadisonUnited States
| | - Ramy KA Sayed
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin-MadisonMadisonUnited States
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag UniversitySohagEgypt
| | - Anthony N Lange
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin-MadisonMadisonUnited States
| | | | | | | | | | | | | | - Troy A Hornberger
- School of Veterinary Medicine and the Department of Comparative Biosciences, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
6
|
Malta FAPS, Gonçalves DC. A triple-masked, two-center, randomized parallel clinical trial to assess the superiority of eight weeks of grape seed flour supplementation against placebo for weight loss attenuation during perioperative period in patients with cachexia associated with colorectal cancer: a study protocol. Front Endocrinol (Lausanne) 2024; 14:1146479. [PMID: 38313843 PMCID: PMC10834683 DOI: 10.3389/fendo.2023.1146479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 12/07/2023] [Indexed: 02/06/2024] Open
Abstract
Background Progressive, involuntary weight and lean mass loss in cancer are linked to cachexia, a prevalent syndrome in gastrointestinal malignancies that impacts quality of life, survival and postoperative complications. Its pathophysiology is complex and believed to involve proinflammatory cytokine-mediated systemic inflammation resulting from tumor-host interaction, oxidative stress, abnormal metabolism and neuroendocrine changes. Therapeutic options for cachexia remain extremely limited, highlighting the need for clinical research targeting new interventions. Thus, this study primarily assesses the effects of grape-seed flour (GSF), rich in polyphenols and fibers, for attenuating perioperative weight loss in colorectal cancer. Methods This is a dual-center, triple-masked, placebo-controlled, parallel-group, phase II, randomized clinical trial designed to investigate GSF supplementation in subjects with pre- or cachexia associated with colorectal cancer during the perioperative period. Eighty-two participants will receive 8g of GSF or cornstarch (control) for 8 weeks. Assessments are scheduled around surgery: pre-intervention (4 weeks prior), day before, first week after, and post-intervention (4 weeks later). The primary endpoint is the difference in body weight mean change from baseline to week 8. The secondary endpoints describe the harms from 8-week supplementation and assess its superiority to improve body composition, post-surgical complications, quality of life, anorexia, fatigue, gastrointestinal symptoms, and handgrip strength. The study will also explore its effects on gut bacteria activity and composition, systemic inflammation, and muscle metabolism. Discussion The current trial addresses a gap within the field of cancer cachexia, specifically focusing on the potential role of a nutritional intervention during the acute treatment phase. GSF is expected to modulate inflammation and oxidative stress, both involved in muscle and intestinal dysfunction. The research findings hold substantial implications for enhancing the understanding about cachexia pathophysiology and may offer a new clinical approach to managing cachexia at a critical point in treatment, directly impacting clinical outcomes. Trial registration The Brazilian Registry of Clinical Trials (ReBEC), RBR-5p6nv8b; UTN: U1111-1285-9594. Prospectively registered on February 07, 2023.
Collapse
|
7
|
Lawlor MW, Schoser B, Margeta M, Sewry CA, Jones KA, Shieh PB, Kuntz NL, Smith BK, Dowling JJ, Müller-Felber W, Bönnemann CG, Seferian AM, Blaschek A, Neuhaus S, Foley AR, Saade DN, Tsuchiya E, Qasim UR, Beatka M, Prom MJ, Ott E, Danielson S, Krakau P, Kumar SN, Meng H, Vanden Avond M, Wells C, Gordish-Dressman H, Beggs AH, Christensen S, Conner E, James ES, Lee J, Sadhu C, Miller W, Sepulveda B, Varfaj F, Prasad S, Rico S. Effects of gene replacement therapy with resamirigene bilparvovec (AT132) on skeletal muscle pathology in X-linked myotubular myopathy: results from a substudy of the ASPIRO open-label clinical trial. EBioMedicine 2024; 99:104894. [PMID: 38086156 PMCID: PMC10758703 DOI: 10.1016/j.ebiom.2023.104894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND X-linked myotubular myopathy (XLMTM) is a rare, life-threatening congenital muscle disease caused by mutations in the MTM1 gene that result in profound muscle weakness, significant respiratory insufficiency, and high infant mortality. There is no approved disease-modifying therapy for XLMTM. Resamirigene bilparvovec (AT132; rAAV8-Des-hMTM1) is an investigational adeno-associated virus (AAV8)-mediated gene replacement therapy designed to deliver MTM1 to skeletal muscle cells and achieve long-term correction of XLMTM-related muscle pathology. The clinical trial ASPIRO (NCT03199469) investigating resamirigene bilparvovec in XLMTM is currently paused while the risk:benefit balance associated with this gene therapy is further investigated. METHODS Muscle biopsies were taken before treatment and 24 and 48 weeks after treatment from ten boys with XLMTM in a clinical trial of resamirigene bilparvovec (ASPIRO; NCT03199469). Comprehensive histopathological analysis was performed. FINDINGS Baseline biopsies uniformly showed findings characteristic of XLMTM, including small myofibres, increased internal or central nucleation, and central aggregates of organelles. Biopsies taken at 24 weeks post-treatment showed marked improvement of organelle localisation, without apparent increases in myofibre size in most participants. Biopsies taken at 48 weeks, however, did show statistically significant increases in myofibre size in all nine biopsies evaluated at this timepoint. Histopathological endpoints that did not demonstrate statistically significant changes with treatment included the degree of internal/central nucleation, numbers of triad structures, fibre type distributions, and numbers of satellite cells. Limited (predominantly mild) treatment-associated inflammatory changes were seen in biopsy specimens from five participants. INTERPRETATION Muscle biopsies from individuals with XLMTM treated with resamirigene bilparvovec display statistically significant improvement in organelle localisation and myofibre size during a period of substantial improvements in muscle strength and respiratory function. This study identifies valuable histological endpoints for tracking treatment-related gains with resamirigene bilparvovec, as well as endpoints that did not show strong correlation with clinical improvement in this human study. FUNDING Astellas Gene Therapies (formerly Audentes Therapeutics, Inc.).
Collapse
Affiliation(s)
- Michael W Lawlor
- Medical College of Wisconsin, Department of Pathology and Laboratory Medicine, Milwaukee, WI, 53226, USA; Diverge Translational Science Laboratory, Milwaukee, WI, 53204, USA.
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, Ludwig Maximilian University of Munich, 80336, Germany
| | - Marta Margeta
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Caroline A Sewry
- Wolfson Centre of Inherited Neuromuscular Disorders, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK; Dubowitz Neuromuscular Centre, UCL Institute of Child Health and Great Ormond Street Hospital for Children, 30 Guilford Street, London, WC1N 1EH, UK
| | - Karra A Jones
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Perry B Shieh
- Department of Neurology, University of California Los Angeles School of Medicine, Los Angeles, CA, 90095, USA
| | - Nancy L Kuntz
- Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Barbara K Smith
- Department of Physical Therapy, University of Florida, Gainesville, FL, 32610-0154, USA
| | | | - Wolfgang Müller-Felber
- Dr. von Hauner Children's Hospital, Klinikum der Universität München, 80337, Munich, Germany
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, NIH, Bethesda, MD, 20892-1477, USA
| | | | - Astrid Blaschek
- Dr. von Hauner Children's Hospital, Klinikum der Universität München, 80337, Munich, Germany
| | - Sarah Neuhaus
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, NIH, Bethesda, MD, 20892-1477, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, NIH, Bethesda, MD, 20892-1477, USA
| | - Dimah N Saade
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, NIH, Bethesda, MD, 20892-1477, USA
| | | | - Ummulwara R Qasim
- Department of Neurology, University of California Los Angeles School of Medicine, Los Angeles, CA, 90095, USA
| | - Margaret Beatka
- Medical College of Wisconsin, Department of Pathology and Laboratory Medicine, Milwaukee, WI, 53226, USA; Diverge Translational Science Laboratory, Milwaukee, WI, 53204, USA
| | - Mariah J Prom
- Medical College of Wisconsin, Department of Pathology and Laboratory Medicine, Milwaukee, WI, 53226, USA; Diverge Translational Science Laboratory, Milwaukee, WI, 53204, USA
| | - Emily Ott
- Medical College of Wisconsin, Department of Pathology and Laboratory Medicine, Milwaukee, WI, 53226, USA; Diverge Translational Science Laboratory, Milwaukee, WI, 53204, USA
| | - Susan Danielson
- Medical College of Wisconsin, Department of Pathology and Laboratory Medicine, Milwaukee, WI, 53226, USA
| | - Paul Krakau
- Medical College of Wisconsin, Department of Pathology and Laboratory Medicine, Milwaukee, WI, 53226, USA; Diverge Translational Science Laboratory, Milwaukee, WI, 53204, USA
| | - Suresh N Kumar
- Medical College of Wisconsin, Department of Pathology and Laboratory Medicine, Milwaukee, WI, 53226, USA
| | - Hui Meng
- Medical College of Wisconsin, Department of Pathology and Laboratory Medicine, Milwaukee, WI, 53226, USA; Diverge Translational Science Laboratory, Milwaukee, WI, 53204, USA
| | - Mark Vanden Avond
- Medical College of Wisconsin, Department of Pathology and Laboratory Medicine, Milwaukee, WI, 53226, USA
| | - Clive Wells
- Medical College of Wisconsin, Department of Pathology and Laboratory Medicine, Milwaukee, WI, 53226, USA
| | - Heather Gordish-Dressman
- Children's National Hospital and George Washington University School of Medicine and Health Sciences Department of Pediatrics, Washington, DC, 20037, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sarah Christensen
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics, Inc.), San Francisco, CA, 94108, USA
| | - Edward Conner
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics, Inc.), San Francisco, CA, 94108, USA
| | - Emma S James
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics, Inc.), San Francisco, CA, 94108, USA
| | - Jun Lee
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics, Inc.), San Francisco, CA, 94108, USA
| | - Chanchal Sadhu
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics, Inc.), San Francisco, CA, 94108, USA
| | - Weston Miller
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics, Inc.), San Francisco, CA, 94108, USA
| | - Bryan Sepulveda
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics, Inc.), San Francisco, CA, 94108, USA
| | - Fatbardha Varfaj
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics, Inc.), San Francisco, CA, 94108, USA
| | - Suyash Prasad
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics, Inc.), San Francisco, CA, 94108, USA
| | - Salvador Rico
- Formerly of Astellas Gene Therapies (formerly Audentes Therapeutics, Inc.), San Francisco, CA, 94108, USA
| |
Collapse
|
8
|
Jorgenson KW, Hibbert JE, Sayed RKA, Lange AN, Godwin JS, Mesquita PHC, Ruple BA, McIntosh MC, Kavazis AN, Roberts MD, Hornberger TA. A Novel Imaging Method (FIM-ID) Reveals that Myofibrillogenesis Plays a Major Role in the Mechanically Induced Growth of Skeletal Muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557204. [PMID: 37745462 PMCID: PMC10515927 DOI: 10.1101/2023.09.13.557204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
An increase in mechanical loading, such as that which occurs during resistance exercise, induces radial growth of muscle fibers (i.e., an increase in cross-sectional area). Muscle fibers are largely composed of myofibrils, but whether radial growth is mediated by an increase in the size of the myofibrils (i.e., myofibril hypertrophy) and/or the number of myofibrils (i.e., myofibrillogenesis) is not known. Electron microscopy (EM) can provide images with the level of resolution that is needed to address this question, but the acquisition and subsequent analysis of EM images is a time- and cost-intensive process. To overcome this, we developed a novel method for visualizing myofibrils with a standard fluorescence microscope (FIM-ID). Images from FIM-ID have a high degree of resolution and contrast, and these properties enabled us to develop pipelines for automated measurements of myofibril size and number. After extensively validating the automated measurements, we used both mouse and human models of increased mechanical loading to discover that the radial growth of muscle fibers is largely mediated by myofibrillogenesis. Collectively, the outcomes of this study offer insight into a fundamentally important topic in the field of muscle growth and provide future investigators with a time- and cost-effective means to study it.
Collapse
|
9
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
10
|
Dubuisson N, Versele R, Planchon C, Selvais CM, Noel L, Abou-Samra M, Davis-López de Carrizosa MA. Histological Methods to Assess Skeletal Muscle Degeneration and Regeneration in Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:16080. [PMID: 36555721 PMCID: PMC9786356 DOI: 10.3390/ijms232416080] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive disease caused by the loss of function of the protein dystrophin. This protein contributes to the stabilisation of striated cells during contraction, as it anchors the cytoskeleton with components of the extracellular matrix through the dystrophin-associated protein complex (DAPC). Moreover, absence of the functional protein affects the expression and function of proteins within the DAPC, leading to molecular events responsible for myofibre damage, muscle weakening, disability and, eventually, premature death. Presently, there is no cure for DMD, but different treatments help manage some of the symptoms. Advances in genetic and exon-skipping therapies are the most promising intervention, the safety and efficiency of which are tested in animal models. In addition to in vivo functional tests, ex vivo molecular evaluation aids assess to what extent the therapy has contributed to the regenerative process. In this regard, the later advances in microscopy and image acquisition systems and the current expansion of antibodies for immunohistological evaluation together with the development of different spectrum fluorescent dyes have made histology a crucial tool. Nevertheless, the complexity of the molecular events that take place in dystrophic muscles, together with the rise of a multitude of markers for each of the phases of the process, makes the histological assessment a challenging task. Therefore, here, we summarise and explain the rationale behind different histological techniques used in the literature to assess degeneration and regeneration in the field of dystrophinopathies, focusing especially on those related to DMD.
Collapse
Affiliation(s)
- Nicolas Dubuisson
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
- Neuromuscular Reference Center, Cliniques Universitaires Saint-Luc (CUSL), Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Romain Versele
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Chloé Planchon
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Camille M. Selvais
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Laurence Noel
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - Michel Abou-Samra
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
| | - María A. Davis-López de Carrizosa
- Endocrinology, Diabetes and Nutrition Unit, Institute of Experimental and Clinical Research, Medical Sector, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
11
|
Wieser M, Burger S, Ertl R, Kummer S, Stargardt M, Walter I. Example for process validation in biobanking: Fit for purpose testing of a cryopreservation method without isopentane. Front Mol Biosci 2022; 9:876670. [PMID: 36250023 PMCID: PMC9562646 DOI: 10.3389/fmolb.2022.876670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The freezing process of tissue samples is crucial for the preservation of morphological and molecular features. Several biobanking guidelines describe freezing techniques for optimal outcomes. As the Vetbiobank standard freezing protocol does not comply with those recommendations in detail, a process validation was performed to demonstrate that samples are suitable for downstream applications. Here we give a formal example of a process validation in the biobanking setting, as required by the biobanking guideline ISO 20387 (2018).Methods: Three different freezing protocols, freezing in liquid nitrogen, freezing via isopentane precooled on dry ice and freezing via liquid nitrogen vapor, were assessed based on morphological integrity of mouse liver and muscle tissue samples. Samples were either frozen in cryotubes (without Optimal Cutting Temperature compound, OCT) or in cryomolds (with OCT). The protocol providing the best results was validated for reproducibility and robustness in terms of defined acceptance criteria for morphological evaluability, A260/A280 ratio, and RNA integrity number values (RIN). In addition, performance tests were run by gene expression analyzes of selected, tissue specific biomarkers to confirm that processed samples are fit for purpose.Results: From the three applied freezing protocols, freezing in liquid nitrogen generated best results. Reproducibility acceptance criteria were met for both, morphological integrity and RNA quality. The freezing method was robust for the tested tissue types and the application of OCT, with exception of liver tissue, where it led to a significant decrease of the RIN value. Gene expression analyzes showed good comparability of results regardless of the applied freezing method.Conclusion: Freezing of tissue samples in liquid nitrogen provides samples of adequate quality for subsequent RNA investigations. A negative impact of OCT on the RIN value of liver samples was observed, which was independent from the applied freezing protocol and showed no impact on subsequent gene expression analysis.
Collapse
|
12
|
Stephan A, Graca FA, Hunt LC, Demontis F. Electroporation of Small Interfering RNAs into Tibialis Anterior Muscles of Mice. Bio Protoc 2022; 12:e4428. [PMID: 35799907 PMCID: PMC9244496 DOI: 10.21769/bioprotoc.4428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/08/2022] [Accepted: 04/06/2022] [Indexed: 12/29/2022] Open
Abstract
Aging and wasting of skeletal muscle reduce organismal fitness. Regrettably, only limited interventions are currently available to address this unmet medical need. Many methods have been developed to study this condition, including the intramuscular electroporation of DNA plasmids. However, this technique requires surgery and high electrical fields, which cause tissue damage. Here, we report an optimized protocol for the electroporation of small interfering RNAs (siRNAs) into the tibialis anterior muscle of mice. This protocol does not require surgery and, because of the small siRNA size, mild electroporation conditions are utilized. By inducing target mRNA knockdown, this method can be used to interrogate gene function in muscles of mice from different strains, genotypes, and ages. Moreover, a complementary method for siRNA transfection into differentiated myotubes can be used for testing siRNA efficacy before in vivo use. Altogether, this streamlined protocol is instrumental for basic science and translational studies in muscles of mice and other animal models.
Collapse
Affiliation(s)
- Anna Stephan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Flavia A. Graca
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Liam C. Hunt
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
,
*For correspondence:
| |
Collapse
|
13
|
Ehmsen JT, Kawaguchi R, Kaval D, Johnson AE, Nachun D, Coppola G, Höke A. GADD45A is a protective modifier of neurogenic skeletal muscle atrophy. JCI Insight 2021; 6:e149381. [PMID: 34128833 PMCID: PMC8410074 DOI: 10.1172/jci.insight.149381] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Neurogenic muscle atrophy is the loss of skeletal muscle mass and function that occurs with nerve injury and in denervating diseases, such as amyotrophic lateral sclerosis. Aside from prompt restoration of innervation and exercise where feasible, there are currently no effective strategies for maintaining skeletal muscle mass in the setting of denervation. We conducted a longitudinal analysis of gene expression changes occurring in atrophying skeletal muscle and identified growth arrest and DNA damage-inducible A (Gadd45a) as a gene that shows one of the earliest and most sustained increases in expression in skeletal muscle after denervation. We evaluated the role of this induction using genetic mouse models and found that mice lacking GADD45A showed accelerated and exacerbated neurogenic muscle atrophy, as well as loss of fiber type identity. Our genetic analyses demonstrate that, rather than directly contributing to muscle atrophy as proposed in earlier studies, GADD45A induction likely represents a protective negative feedback response to denervation. Establishing the downstream effectors that mediate this protective effect and the pathways they participate in may yield new opportunities to modify the course of muscle atrophy.
Collapse
Affiliation(s)
- Jeffrey T Ehmsen
- Neuromuscular Division, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Riki Kawaguchi
- Department of Neurology and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Damlanur Kaval
- Neuromuscular Division, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Anna E Johnson
- Neuromuscular Division, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Daniel Nachun
- Department of Neurology and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Giovanni Coppola
- Department of Neurology and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Ahmet Höke
- Neuromuscular Division, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Costa DM, Cruz-Filho JD, Vasconcelos ABS, Gomes-Santos JV, Reis LC, de Lucca W, Camargo EA, Lauton-Santos S, Zanon NM, Kettelhut ÍDC, Navegantes LC, Mecawi ADS, Badauê-Passos D, Lustrino D. Oxytocin induces anti-catabolic and anabolic effects on protein metabolism in the female rat oxidative skeletal muscle. Life Sci 2021; 279:119665. [PMID: 34087281 DOI: 10.1016/j.lfs.2021.119665] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/26/2022]
Abstract
AIMS Although it is well established that skeletal muscle contains oxytocin (OT) receptors and OT-knockout mice show premature development of sarcopenia, the role of OT in controlling skeletal muscle mass is still unknown. Therefore, the present work aimed to determine OT's effects on skeletal muscle protein metabolism. MAIN METHODS Total proteolysis, proteolytic system activities and protein synthesis were assessed in isolated soleus muscle from prepubertal female rats. Through in vivo experiments, rats received 3-day OT treatment (3UI.kg-1.day-1, i.p.) or saline, and muscles were harvested for mass-gain assessment. KEY FINDINGS In vitro OT receptor stimulation reduced total proteolysis, specifically through attenuation of the lysosomal and proteasomal proteolytic systems, and in parallel activated the Akt/FoxO1 signaling and suppressed atrogenes (e.g., MuRF-1 and atrogin-1) expression induced by motor denervation. On the other hand, the protein synthesis was not altered by in vitro treatment with the OT receptor-selective agonist. Although short-term OT treatment did not change the atrogene mRNA levels, the protein synthesis was stimulated, resulting in soleus mass gain, probably through an indirect effect. SIGNIFICANCE Taken together, these data show for the first time that OT directly inhibits the proteolytic activities of the lysosomal and proteasomal systems in rat oxidative skeletal muscle by suppressing atrogene expression via stimulation of Akt/FoxO signaling. Moreover, the data obtained from in vivo experiments suggest OT's ability to control rat oxidative skeletal muscle mass.
Collapse
Affiliation(s)
- Daniely Messias Costa
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - João da Cruz-Filho
- Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Alan Bruno Silva Vasconcelos
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - João Victor Gomes-Santos
- Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Luis Carlos Reis
- Department of Physiological Sciences, Center for Biological and Health Sciences, Rural Federal University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Waldecy de Lucca
- Department of Morphology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Enilton Aparecido Camargo
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Sandra Lauton-Santos
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Neusa Maria Zanon
- Department of Physiology and Biochemistry & Immunology, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, SP, Brazil
| | - Ísis do Carmo Kettelhut
- Department of Physiology and Biochemistry & Immunology, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, SP, Brazil
| | - Luiz Carlos Navegantes
- Department of Physiology and Biochemistry & Immunology, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, SP, Brazil
| | - André de Souza Mecawi
- Department of Biophysics, São Paulo Medical School, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Daniel Badauê-Passos
- Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Danilo Lustrino
- Graduate Program in Physiological Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil; Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
15
|
Kolluru C, Subramaniam A, Liu Y, Upadhye A, Khela M, Druschel L, Fereidouni F, Levenson R, Shoffstall A, Jenkins M, Wilson DL. 3D imaging of the vagus nerve fascicular anatomy with cryo-imaging and UV excitation. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2021; 11649:1164910. [PMID: 35313654 PMCID: PMC8934573 DOI: 10.1117/12.2577037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Vagus nerve stimulation (VNS) is a method to treat drug-resistant epilepsy and depression, but therapeutic outcomes are often not ideal. Newer electrode designs such as intra-fascicular electrodes offer potential improvements in reducing off-target effects but require a detailed understanding of the fascicular anatomy of the vagus nerve. We have adapted a section-and-image technique, cryo-imaging, with UV excitation to visualize fascicles along the length of the vagus nerve. In addition to offering optical sectioning at the surface via reduced penetration depth, UV illumination also produces sufficient contrast between fascicular structures and connective tissue. Here we demonstrate the utility of this approach in pilot experiments. We imaged fixed, cadaver vagus nerve samples, segmented fascicles, and demonstrated 3D tracking of fascicles. Such data can serve as input for computer models of vagus nerve stimulation.
Collapse
Affiliation(s)
- Chaitanya Kolluru
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Ananya Subramaniam
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Yehe Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Aniruddha Upadhye
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Monty Khela
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Lindsey Druschel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | | | | - Andrew Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Michael Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - David L. Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
16
|
Ding X, Xiang Z, Qin C, Chen Y, Tian H, Meng L, Xia D, Liu H, Song J, Fu J, Ma M, Wang X. Spreading of TDP-43 pathology via pyramidal tract induces ALS-like phenotypes in TDP-43 transgenic mice. Acta Neuropathol Commun 2021; 9:15. [PMID: 33461623 PMCID: PMC7814549 DOI: 10.1186/s40478-020-01112-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
Transactive response DNA-binding protein 43 kDa (TDP-43) has been identified as the major component of ubiquitinated inclusions found in patients with sporadic amyotrophic lateral sclerosis (ALS). Increasing evidence suggests prion-like transmission of TDP-43 aggregates via neuroanatomic connection in vitro and pyramidal tract in vivo. However, it is still unknown whether the spreading of pathological TDP-43 sequentially via pyramidal tract can initiate ALS-like pathology and phenotypes. In this study, we reported that injection of TDP-43 preformed fibrils (PFFs) into the primary motor cortex (M1) of Thy1-e (IRES-TARDBP) 1 mice induced the spreading of pathological TDP-43 along pyramidal tract axons anterogradely. Moreover, TDP-43 PFFs-injected Thy1-e (IRES-TARDBP) 1 mice displayed ALS-like neuropathological features and symptoms, including motor dysfunctions and electrophysiological abnormalities. These findings provide direct evidence that transmission of pathological TDP-43 along pyramidal tract induces ALS-like phenotypes, which further suggest the potential mechanism for TDP-43 proteinopathy.
Collapse
|
17
|
Nix JS, Moore SA. What Every Neuropathologist Needs to Know: The Muscle Biopsy. J Neuropathol Exp Neurol 2020; 79:719-733. [PMID: 32529201 PMCID: PMC7304986 DOI: 10.1093/jnen/nlaa046] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Competence in muscle biopsy evaluation is a core component of neuropathology practice. The practicing neuropathologist should be able to prepare frozen sections of muscle biopsies with minimal artifacts and identify key histopathologic features of neuromuscular disease in hematoxylin and eosin-stained sections as well as implement and interpret a basic panel of additional histochemical, enzyme histochemical, and immunohistochemical stains. Important to everyday practice is a working knowledge of normal muscle histology at different ages, muscle motor units, pitfalls of myotendinous junctions, nonpathologic variations encountered at traditional and nontraditional muscle sites, the pathophysiology of myonecrosis and regeneration, and approaches to distinguish muscular dystrophies from inflammatory myopathies and other necrotizing myopathies. Here, we provide a brief overview of what every neuropathologist needs to know concerning the muscle biopsy.
Collapse
Affiliation(s)
- James S Nix
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven A Moore
- Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| |
Collapse
|
18
|
Hall A, Fontelonga T, Wright A, Bugda Gwilt K, Widrick J, Pasut A, Villa F, Miranti CK, Gibbs D, Jiang E, Meng H, Lawlor MW, Gussoni E. Tetraspanin CD82 is necessary for muscle stem cell activation and supports dystrophic muscle function. Skelet Muscle 2020; 10:34. [PMID: 33243288 PMCID: PMC7693590 DOI: 10.1186/s13395-020-00252-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Background Tetraspanins are a family of proteins known to assemble protein complexes at the cell membrane. They are thought to play diverse cellular functions in tissues by modifying protein-binding partners, thus bringing complexity and diversity in their regulatory networks. Previously, we identified the tetraspanin KAI/CD82 as a prospective marker for human muscle stem cells. CD82 expression appeared decreased in human Duchenne muscular dystrophy (DMD) muscle, suggesting a functional link to muscular dystrophy, yet whether this decrease is a consequence of dystrophic pathology or a compensatory mechanism in an attempt to rescue muscle from degeneration is currently unknown. Methods We studied the consequences of loss of CD82 expression in normal and dystrophic skeletal muscle and examined the dysregulation of downstream functions in mice aged up to 1 year. Results Expression of CD82 is important to sustain satellite cell activation, as in its absence there is decreased cell proliferation and less efficient repair of injured muscle. Loss of CD82 in dystrophic muscle leads to a worsened phenotype compared to control dystrophic mice, with decreased pulmonary function, myofiber size, and muscle strength. Mechanistically, decreased myofiber size in CD82−/− dystrophic mice is not due to altered PTEN/AKT signaling, although increased phosphorylation of mTOR at Ser2448 was observed. Conclusion Basal CD82 expression is important to dystrophic muscle, as its loss leads to significantly weakened myofibers and impaired muscle function, accompanied by decreased satellite cell activity that is unable to protect and repair myofiber damage. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-020-00252-3.
Collapse
Affiliation(s)
- Arielle Hall
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Tatiana Fontelonga
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Alec Wright
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Katlynn Bugda Gwilt
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jeffrey Widrick
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Alessandra Pasut
- Laboratory of Angiogenesis and Vascular metabolism, Center for Cancer Biology, VIB and KU Leuven, 3000, Leuven, Belgium
| | - Francesco Villa
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cynthia K Miranti
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Devin Gibbs
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Evan Jiang
- The University of Pennsylvania, College of Arts and Sciences, Philadelphia, PA, 19104, USA
| | - Hui Meng
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA. .,The Stem Cell Program at Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
19
|
Lindner C, PrÖhl A, Abels M, LÖffler T, Batinic M, Jung O, Barbeck M. Specialized Histological and Histomorphometrical Analytical Methods for Biocompatibility Testing of Biomaterials for Maxillofacial Surgery in (Pre-) Clinical Studies. In Vivo 2020; 34:3137-3152. [PMID: 33144417 PMCID: PMC7811667 DOI: 10.21873/invivo.12148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022]
Abstract
Both preclinical in vivo experiments and clinical trials are indispensable for analysis of tissue reactions in evaluating the compatibility of biomaterials or medical devices, i.e. the cell types interacting with the material, integration or degradation behavior, implant bed vascularization and immunological response. In particular, both the histological workup (including the processes such as embedding, cutting, histochemical and immunohistochemical staining methods), as well as qualitative and quantitative analysis are crucial steps enabling the final evaluation of biocompatibility. We present a short overview of the most important steps of the different workup and analytical methods used in preclinical and clinical biopsies for both novice and experienced researchers in the field of biomaterial science.
Collapse
Affiliation(s)
| | | | | | | | | | - Ole Jung
- Clinic for Dermatology and Venereology, Rostock University Medical Center, Rostock, Germany
| | | |
Collapse
|
20
|
Roberts MD, Haun CT, Vann CG, Osburn SC, Young KC. Sarcoplasmic Hypertrophy in Skeletal Muscle: A Scientific "Unicorn" or Resistance Training Adaptation? Front Physiol 2020; 11:816. [PMID: 32760293 PMCID: PMC7372125 DOI: 10.3389/fphys.2020.00816] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle fibers are multinucleated cells that contain mostly myofibrils suspended in an aqueous media termed the sarcoplasm. Select evidence suggests sarcoplasmic hypertrophy, or a disproportionate expansion of the sarcoplasm relative to myofibril protein accretion, coincides with muscle fiber or tissue growth during resistance training. There is also evidence to support other modes of hypertrophy occur during periods of resistance training including a proportional accretion of myofibril protein with fiber or tissue growth (i.e., conventional hypertrophy), or myofibril protein accretion preceding fiber or tissue growth (i.e., myofibril packing). In this review, we discuss methods that have been used to investigate these modes of hypertrophy. Particular attention is given to sarcoplasmic hypertrophy throughout. Thus, descriptions depicting this process as well as the broader implications of this phenomenon will be posited. Finally, we propose future human and rodent research that can further our understanding in this area of muscle physiology.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn, AL, United States.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine - Auburn Campus, Auburn, AL, United States
| | - Cody T Haun
- Fitomics, LLC, Birmingham, AL, United States
| | | | | | - Kaelin C Young
- School of Kinesiology, Auburn, AL, United States.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine - Auburn Campus, Auburn, AL, United States
| |
Collapse
|
21
|
Helbling DC, Mendoza D, McCarrier J, Vanden Avond MA, Harmelink MM, Barkhaus PE, Basel D, Lawlor MW. Severe Neonatal RYR1 Myopathy With Pathological Features of Congenital Muscular Dystrophy. J Neuropathol Exp Neurol 2020; 78:283-287. [PMID: 30715496 DOI: 10.1093/jnen/nlz004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The phenotypes associated with pathogenic variants in the ryanodine receptor 1 gene (RYR1, OMIM# 180901) have greatly expanded over the last few decades as genetic testing for RYR1 variants has become more common. Initially described in association with malignant hyperthermia, pathogenic variants in RYR1 are typically associated with core pathology in muscle biopsies (central core disease or multiminicore disease) and symptomatic myopathies with symptoms ranging from mild weakness to perinatal lethality. We describe a 2-week-old male patient with multiple congenital dysmorphisms, severe perinatal weakness, and subsequent demise, whose histopathology on autopsy was consistent with congenital muscular dystrophy. Immunohistochemical analysis of dystrophy-associated proteins was normal. Rapid exome sequencing revealed a novel heterozygous nonsense variant (p.Trp661Ter) in RYR1, as well as a previously described RYR1 pathogenic variant associated with congenital myopathy (p.Phe4976Leu). This highlights the potential for RYR1 pathogenic variants to produce pathological findings most consistent with congenital muscular dystrophy.
Collapse
Affiliation(s)
- Daniel C Helbling
- Human Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David Mendoza
- Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Julie McCarrier
- Division of Genetics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mark A Vanden Avond
- Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Paul E Barkhaus
- Department of Neurology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Donald Basel
- Division of Genetics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
22
|
Triggering typical nemaline myopathy with compound heterozygous nebulin mutations reveals myofilament structural changes as pathomechanism. Nat Commun 2020; 11:2699. [PMID: 32483185 PMCID: PMC7264197 DOI: 10.1038/s41467-020-16526-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/06/2020] [Indexed: 12/26/2022] Open
Abstract
Nebulin is a giant protein that winds around the actin filaments in the skeletal muscle sarcomere. Compound-heterozygous mutations in the nebulin gene (NEB) cause typical nemaline myopathy (NM), a muscle disorder characterized by muscle weakness with limited treatment options. We created a mouse model with a missense mutation p.Ser6366Ile and a deletion of NEB exon 55, the Compound-Het model that resembles typical NM. We show that Compound-Het mice are growth-retarded and have muscle weakness. Muscles have a reduced myofibrillar fractional-area and sarcomeres are disorganized, contain rod bodies, and have longer thin filaments. In contrast to nebulin-based severe NM where haplo-insufficiency is the disease driver, Compound-Het mice express normal amounts of nebulin. X-ray diffraction revealed that the actin filament is twisted with a larger radius, that tropomyosin and troponin behavior is altered, and that the myofilament spacing is increased. The unique disease mechanism of nebulin-based typical NM reveals novel therapeutic targets. Nebulin-based nemaline myopathy is a heterogenous disease with unclear pathological mechanisms. Here, the authors generate a mouse model that mimics the most common genetic cause of the disease and demonstrate that muscle weakness in this model is associated with twisted actin filaments and altered tropomyosin and troponin behaviour.
Collapse
|
23
|
Kammoun M, Pouletaut P, Nguyen TN, Subramaniam M, Hawse JR, Bensamoun SF. The Effect of Freezing Time on Muscle Fiber Mechanical Properties. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:5356-5359. [PMID: 31947066 DOI: 10.1109/embc.2019.8857804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The purpose of this study was to investigate the effect of freezing time on the functional behavior of mouse muscle fibers. Passive mechanical tests were performed on single soleus muscle fibers from fresh (0 month) and preserved (stored at -20°C for 3, 6, 9 and 12 months) 3 month old mice. The Young's modulus and the dynamic and the static stresses were measured. A viscoelastic Hill model of 3rd order was used to fit the experimental relaxation test data. The statistical analysis corresponding to the elastic modulus of single muscle fibers did not differ when comparing fresh and stored samples for 3 and 6 months at -20 °C. From 9 months, fibers were less resistant and the mechanical properties were damaged. The primary goal of this study was to complete the gold standard process of muscle fiber preservation for subsequent mechanical property studies. We have demonstrated that muscle fibers can be stored at -20°C for up to 6 months without altering their mechanical properties.
Collapse
|
24
|
Skeletal muscle alterations in tachycardia-induced heart failure are linked to deficient natriuretic peptide signalling and are attenuated by RAS-/NEP-inhibition. PLoS One 2019; 14:e0225937. [PMID: 31800630 PMCID: PMC6892497 DOI: 10.1371/journal.pone.0225937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Background Heart failure induced cachexia is highly prevalent. Insights into disease progression are lacking. Methods Early state of left ventricular dysfunction (ELVD) and symptomatic systolic heart failure (HF) were both induced in rabbits by tachypacing. Tissue of limb muscle (LM) was subjected to histologic assessment. For unbiased characterisation of early and late myopathy, a proteomic approach followed by computational pathway-analyses was performed and combined with pathway-focused gene expression analyses. Specimen of thoracic diaphragm (TD) served as control for inactivity-induced skeletal muscle alterations. In a subsequent study, inhibition of the renin-angiotensin-system and neprilysin (RAS-/NEP) was compared to placebo. Results HF was accompanied by loss of protein content (8.7±0.4% vs. 7.0±0.5%, mean±SEM, control vs. HF, p<0.01) and a slow-to-fast fibre type switch, establishing hallmarks of cachexia. In ELVD, the enzymatic set-up of LM and TD shifted to a catabolic state. A disturbed malate-aspartate shuttle went well with increased enzymes of glycolysis, forming the enzymatic basis for enforced anoxic energy regeneration. The histological findings and the pathway analysis of metabolic results drew the picture of suppressed PGC-1α signalling, linked to the natriuretic peptide system. In HF, natriuretic peptide signalling was desensitised, as confirmed by an increase in the ratio of serum BNP to tissue cGMP (57.0±18.6pg/ml/nM/ml vs. 165.8±16.76pg/ml/nM/ml, p<0.05) and a reduced expression of natriuretic peptide receptor-A. In HF, combined RAS-/NEP-inhibition prevented from loss in protein content (8.7±0.3% vs. 6.0±0.6% vs. 8.3±0.9%, Baseline vs. HF-Placebo vs. HF-RAS/NEP, p<0.05 Baseline vs. HF-Placebo, p = 0.7 Baseline vs. HF-RAS/NEP). Conclusions Tachypacing-induced heart failure entails a generalised myopathy, preceding systolic dysfunction. The characterisation of “pre-cachectic” state and its progression is feasible. Early enzymatic alterations of LM depict a catabolic state, rendering LM prone to futile substrate metabolism. A combined RAS-/NEP-inhibition ameliorates cardiac-induced myopathy independent of systolic function, which could be linked to stabilised natriuretic peptide/cGMP/PGC-1α signalling.
Collapse
|
25
|
Dias PRF, Gandra PG, Brenzikofer R, Macedo DV. Subcellular fractionation of frozen skeletal muscle samples. Biochem Cell Biol 2019; 98:293-298. [PMID: 31608669 DOI: 10.1139/bcb-2019-0219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cell fractionation can be used to determine the localization and trafficking of proteins between cellular compartments such as the cytosol, mitochondria, and nuclei. Subcellular fractionation is usually performed immediately after tissue dissection because freezing may fragment cell membranes and induce organellar cross-contamination. Mitochondria are especially sensitive to freezing/thawing and mechanical homogenization. We proposed a protocol to improve the retention of soluble proteins in the mitochondrial fraction obtained from small amounts of frozen skeletal muscle. Fifty milligrams of the red portion of gastrocnemius muscle from Wistar rats were immediately processed or frozen in liquid nitrogen and stored at -80 °C for further processing. We compared the enrichment of subcellular fractions from frozen/fresh samples obtained with the modified protocol with those obtained by standard fractionation. Western blot analyses of marker proteins for cytosolic (alpha-tubulin), mitochondrial (VDAC1), and nuclear (histone-H3) fractions indicated that all of the procedures resulted in enriched subcellular fractions with minimal organellar cross-contamination. Notably, the activity of the soluble protein citrate synthase was higher in the mitochondrial fractions obtained with the modified protocol from frozen/fresh samples compared with the standard protocol. Therefore, our protocol improved the retention of soluble proteins in the mitochondrial fraction and may be suitable for subcellular fractionation of small amounts of frozen skeletal muscle samples.
Collapse
Affiliation(s)
- Pedro Rafael Firmino Dias
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Paulo Guimarães Gandra
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - René Brenzikofer
- School of Physical Education, University of Campinas, Campinas, Brazil
| | - Denise Vaz Macedo
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
26
|
Cui L, Feng J, Yang L. Towards Fine Whole-Slide Skeletal Muscle Image Segmentation through Deep Hierarchically Connected Networks. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:5191630. [PMID: 31346401 PMCID: PMC6620852 DOI: 10.1155/2019/5191630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/14/2019] [Indexed: 11/28/2022]
Abstract
Automatic skeletal muscle image segmentation (MIS) is crucial in the diagnosis of muscle-related diseases. However, accurate methods often suffer from expensive computations, which are not scalable to large-scale, whole-slide muscle images. In this paper, we present a fast and accurate method to enable the more clinically meaningful whole-slide MIS. Leveraging on recently popular convolutional neural network (CNN), we train our network in an end-to-end manner so as to directly perform pixelwise classification. Our deep network is comprised of the encoder and decoder modules. The encoder module captures rich and hierarchical representations through a series of convolutional and max-pooling layers. Then, the multiple decoders utilize multilevel representations to perform multiscale predictions. The multiscale predictions are then combined together to generate a more robust dense segmentation as the network output. The decoder modules have independent loss function, which are jointly trained with a weighted loss function to address fine-grained pixelwise prediction. We also propose a two-stage transfer learning strategy to effectively train such deep network. Sufficient experiments on a challenging muscle image dataset demonstrate the significantly improved efficiency and accuracy of our method compared with recent state of the arts.
Collapse
Affiliation(s)
- Lei Cui
- Department of Information Science and Technology, Northwest University, Xi'an, China
| | - Jun Feng
- Department of Information Science and Technology, Northwest University, Xi'an, China
| | - Lin Yang
- The College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
27
|
Cheng X, Huang H, Shi B, Li J. A novel intraoral injection technique for rat levator veli palatini muscle regeneration. Ann Anat 2019; 223:77-84. [DOI: 10.1016/j.aanat.2019.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 11/17/2022]
|
28
|
Sheth VR, Duran P, Wong J, Shah S, Du J, Christman KL, Chang EY, Alperin M. Multimodal imaging assessment and histologic correlation of the female rat pelvic floor muscles' anatomy. J Anat 2019; 234:543-550. [PMID: 30740685 DOI: 10.1111/joa.12943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2018] [Indexed: 10/27/2022] Open
Abstract
Pelvic floor disorders negatively impact millions of women worldwide. Although there is a strong epidemiological association with childbirth, the mechanisms leading to the dysfunction of the integral constituents of the female pelvic floor, including pelvic floor skeletal muscles, are not well understood. This is in part due to the constraints associated with directly probing these muscles, which are located deep in the pelvis. Thus, experimental models and non-invasive techniques are essential for advancing knowledge of various phenotypes of pelvic floor muscle injury and pathogenesis of muscle dysfunction, as well as developing minimally invasive approaches for the delivery of novel therapeutics. The most widely used animal model for pelvic floor disorders is the rat. However, the radiological anatomy of rat pelvic floor muscles has not been described. To remedy this gap, the current study provides the first detailed description of the female rat pelvic floor muscles' radiological appearance on MR and ultrasound images, validated by correlation with gross anatomy and histology. We also demonstrate that ultrasound guidance can be used to target rat pelvic floor muscles for possible interventional therapies.
Collapse
Affiliation(s)
- Vipul R Sheth
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Pamela Duran
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jonathan Wong
- Department of Radiology, University of California San Diego, La Jolla, CA, USA.,Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Sameer Shah
- Department of Orthopedic Surgery, University of California San Diego, La Jolla, CA, USA
| | - Jiang Du
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Karen L Christman
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California San Diego, La Jolla, CA, USA.,Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Marianna Alperin
- Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
29
|
McCall AL, Stankov SG, Cowen G, Cloutier D, Zhang Z, Yang L, Clement N, Falk DJ, Byrne BJ. Reduction of Autophagic Accumulation in Pompe Disease Mouse Model Following Gene Therapy. Curr Gene Ther 2019; 19:197-207. [PMID: 31223086 DOI: 10.2174/1566523219666190621113807] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pompe disease is a fatal neuromuscular disorder caused by a deficiency in acid α-glucosidase, an enzyme responsible for glycogen degradation in the lysosome. Currently, the only approved treatment for Pompe disease is enzyme replacement therapy (ERT), which increases patient survival, but does not fully correct the skeletal muscle pathology. Skeletal muscle pathology is not corrected with ERT because low cation-independent mannose-6-phosphate receptor abundance and autophagic accumulation inhibits the enzyme from reaching the lysosome. Thus, a therapy that more efficiently targets skeletal muscle pathology, such as adeno-associated virus (AAV), is needed for Pompe disease. OBJECTIVE The goal of this project was to deliver a rAAV9-coGAA vector driven by a tissue restrictive promoter will efficiently transduce skeletal muscle and correct autophagic accumulation. METHODS Thus, rAAV9-coGAA was intravenously delivered at three doses to 12-week old Gaa-/- mice. 1 month after injection, skeletal muscles were biochemically and histologically analyzed for autophagy-related markers. RESULTS At the highest dose, GAA enzyme activity and vacuolization scores achieved therapeutic levels. In addition, resolution of autophagosome (AP) accumulation was seen by immunofluorescence and western blot analysis of autophagy-related proteins. Finally, mice treated at birth demonstrated persistence of GAA expression and resolution of lysosomes and APs compared to those treated at 3 months. CONCLUSION In conclusion, a single systemic injection of rAAV9-coGAA ameliorates vacuolar accumulation and prevents autophagic dysregulation.
Collapse
Affiliation(s)
- Angela L McCall
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Sylvia G Stankov
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Gabrielle Cowen
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Denise Cloutier
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Zizhao Zhang
- Department of Biomedical Engineering, College of Engineering, University of Florida, Gainesville, FL, United States
| | - Lin Yang
- Department of Biomedical Engineering, College of Engineering, University of Florida, Gainesville, FL, United States
| | - Nathalie Clement
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Darin J Falk
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Barry J Byrne
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
30
|
Cheng X, Huang H, Luo X, Shi B, Li J. Wnt7a induces satellite cell expansion, myofiber hyperplasia and hypertrophy in rat craniofacial muscle. Sci Rep 2018; 8:10613. [PMID: 30006540 PMCID: PMC6045621 DOI: 10.1038/s41598-018-28917-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/25/2018] [Indexed: 02/05/2023] Open
Abstract
Craniofacial muscles drive critical functions in the head, including speech, feeding and expression. Compared with their counterparts in trunk and limbs, craniofacial muscles are of distinct embryonic origins, which might consequently lead to different growth patterns and regenerative potential. In this study, rat levator veli palatini muscle and masseter muscle were compared with tibialis anterior muscle in their response to exogenous Wnt7a stimulus, which has been proved effective in promoting muscle regeneration in the limbs. Histological, cellular and molecular analyses were performed both under basal condition and after a single dose injection of recombinant human Wnt7a. Under basal condition, levator veli palatini muscle demonstrated considerably more satellite cells than the others. After Wnt7a administration, regeneration-related activities, including satellite cell expansion, myofiber hyperplasia and hypertrophy were generally observed in all three muscles, but with obvious differences in the extent. The composition of fast/slow myofibers underwent substantial alterations, and the pattern varied among the three muscles. Location-specific alterations in the expression level of core components in planar cell polarity pathway, Akt/mTOR pathway and myostatin pathway were also observed. In conclusion, both craniofacial and limb muscles could be effectively expanded by exogenous Wnt7a stimulus, but muscle-to-muscle variations in response patterns existed.
Collapse
Affiliation(s)
- Xu Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 14 Ren Min Nan Road, Chengdu, 610041, P. R. China
| | - Hanyao Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 14 Ren Min Nan Road, Chengdu, 610041, P. R. China
| | - Xiangyou Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 14 Ren Min Nan Road, Chengdu, 610041, P. R. China
| | - Bing Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 14 Ren Min Nan Road, Chengdu, 610041, P. R. China
| | - Jingtao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, 14 Ren Min Nan Road, Chengdu, 610041, P. R. China.
| |
Collapse
|
31
|
Carraro U. Exciting perspectives for Translational Myology in the Abstracts of the 2018Spring PaduaMuscleDays: Giovanni Salviati Memorial - Chapter III - Abstracts of March 16, 2018. Eur J Transl Myol 2018; 28:7365. [PMID: 30057727 PMCID: PMC6047881 DOI: 10.4081/ejtm.2018.7365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 11/23/2022] Open
Abstract
Myologists working in Padua (Italy) were able to continue a half-century tradition of studies of skeletal muscles, that started with a research on fever, specifically if and how skeletal muscle contribute to it by burning bacterial toxin. Beside main publications in high-impact-factor journals by Padua myologists, I hope to convince readers (and myself) of the relevance of the editing Basic and Applied Myology (BAM), retitled from 2010 European Journal of Translational Myology (EJTM), of the institution of the Interdepartmental Research Center of Myology of the University of Padova (CIR-Myo), and of a long series of International Conferences organized in Euganei Hills and Padova, that is, the PaduaMuscleDays. The 2018Spring PaduaMuscleDays (2018SpPMD), were held in Euganei Hills and Padua (Italy), in March 14-17, and were dedicated to Giovanni Salviati. The main event of the “Giovanni Salviati Memorial”, was held in the Aula Guariento, Accademia Galileiana di Scienze, Lettere ed Arti of Padua to honor a beloved friend and excellent scientist 20 years after his premature passing. Using the words of Prof. Nicola Rizzuto, we all share his believe that Giovanni “will be remembered not only for his talent and originality as a biochemist, but also for his unassuming and humanistic personality, a rare quality in highly successful people like Giovanni. The best way to remember such a person is to gather pupils and colleagues, who shared with him the same scientific interests and ask them to discuss recent advances in their own fields, just as Giovanni have liked to do”. Since Giovanni’s friends sent many abstracts still influenced by their previous collaboration with him, all the Sessions of the 2018SpPMD reflect both to the research aims of Giovanni Salviati and the traditional topics of the PaduaMuscleDays, that is, basics and applications of physical, molecular and cellular strategies to maintain or recover functions of skeletal muscles. The translational researches summarized in the 2018SpPMD Abstracts are at the appropriate high level to attract approval of Ethical Committees, the interest of International Granting Agencies and approval for publication in top quality, international journals. The abstracts of the March 16, 2018 Padua Muscle Day are listed in this chapter III. All 2018SpPMD Abstracts are indexed at the end of the Chapter IV.
Collapse
Affiliation(s)
- Ugo Carraro
- Laboratory of Translational Myology, Department of Biomedical Sciences, University of Padova.,A&C M-C Foundation for Translational Myology, Padova.,IRCCS Fondazione Ospedale San Camillo, Venezia-Lido, Italy
| |
Collapse
|
32
|
Cheng X, Song L, Lan M, Shi B, Li J. Morphological and molecular comparisons between tibialis anterior muscle and levator veli palatini muscle: A preliminary study on their augmentation potential. Exp Ther Med 2017; 15:247-253. [PMID: 29375687 PMCID: PMC5763646 DOI: 10.3892/etm.2017.5391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 09/14/2017] [Indexed: 02/05/2023] Open
Abstract
Tibialis anterior (TA) muscle and other somite-derived limb muscles remain the prototype in skeletal muscle study. The majority of head muscles, however, develop from branchial arches and maintain a number of heterogeneities in comparison with their limb counterparts. Levator veli palatini (LVP) muscle is a deep-located head muscle responsible for breathing, swallowing and speech, and is central to cleft palate surgery, yet lacks morphological and molecular investigation. In the present study, multiscale in vivo analyses were performed to compare TA and LVP muscle in terms of their myofiber composition, in-situ stem cell population and augmentation potential. TA muscle was identified to be primarily composed of type 2B myofibers while LVP muscle primarily consisted of type 2A and 2X myofibers. In addition, LVP muscle maintained a higher percentage of centrally-nucleated myofibers and a greater population of satellite cells. Notably, TA and LVP muscle responded to exogenous Wnt7a stimulus in different ways. Three weeks after Wnt7a administration, TA muscle exhibited an increase in myofiber number and a decrease in myofiber size, while LVP muscle demonstrated no significant changes in myofiber number or myofiber size. These results suggested that LVP muscle exhibits obvious differences in comparison with TA muscle. Therefore, knowledge acquired from TA muscle studies requires further testing before being applied to LVP muscle.
Collapse
Affiliation(s)
- Xu Cheng
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lei Song
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Min Lan
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bing Shi
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jingtao Li
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
33
|
Punsoni M, Mangray S, Lombardo KA, Heath N, Stopa EG, Yakirevich E. Succinate Dehydrogenase B (SDHB) Immunohistochemistry for the Evaluation of Muscle Biopsies. Appl Immunohistochem Mol Morphol 2017; 25:645-650. [PMID: 27556822 PMCID: PMC5323393 DOI: 10.1097/pai.0000000000000432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Succinate dehydrogenase (SDH) is a key mitochondrial enzyme complex composed of 4 subunits. SDH histochemistry is routinely utilized in the assessment of muscle biopsies to reveal underlying pathology such as subsarcolemmal mitochondrial aggregates. In this study, we evaluated the utility of succinate dehydrogenase B (SDHB) immunohistochemistry (IHC) in 27 muscle biopsies, including 13 mitochondrial myopathies (MMs), 9 inflammatory myopathies, and 5 controls. SDHB IHC was performed on formalin-fixed, paraffin-embedded tissue sections with a mouse monoclonal antibody (Abcam 21A11AE7) in parallel with histochemical SDH stains on a fresh-frozen tissue. In all muscle biopsies, SDHB IHC exhibited granular immunoreactivity and highlighted the dark type 1 and lighter type 2 staining pattern observed by histochemistry. In all cases of MM, SDHB IHC showed subsarcolemmal granular aggregates involving the entire periphery of the fibers that were more distinct than those seen by SDH histochemistry. In 3 extraocular muscle biopsies, SDHB immunoreactive speckles of various sizes were distributed throughout the entire sarcoplasm that were more prominent than those seen on SDH histochemistry. Subsarcolemmal and cytoplasmic granular aggregates seen on SDHB IHC correlated with mitochondrial pathology on electron microscopy. In cases of inflammatory myopathy, there was diffuse sarcoplasmic SDHB immunoreactivity in degenerating fibers, but no evidence of subsarcolemmal aggregates. This study demonstrates that SDHB IHC is highly sensitive and specific in the identification of MM. The automation, reproducibility, and cost efficiency of SDHB IHC offer advantages over the labor-intensive histochemical method requiring frozen sections. As this technique is performed on formalin-fixed, paraffin-embedded tissues, it can be easily applied for retrospective studies.
Collapse
Affiliation(s)
- Michael Punsoni
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, and Warren Alpert Medical School of Brown University, Providence, RI
| | - Shamlal Mangray
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, and Warren Alpert Medical School of Brown University, Providence, RI
| | - Kara A Lombardo
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, and Warren Alpert Medical School of Brown University, Providence, RI
| | - Nancy Heath
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, and Warren Alpert Medical School of Brown University, Providence, RI
| | - Edward G Stopa
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, and Warren Alpert Medical School of Brown University, Providence, RI
| | - Evgeny Yakirevich
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, and Warren Alpert Medical School of Brown University, Providence, RI
| |
Collapse
|
34
|
Elverman M, Goddard MA, Mack D, Snyder JM, Lawlor MW, Meng H, Beggs AH, Buj-Bello A, Poulard K, Marsh AP, Grange RW, Kelly VE, Childers MK. Long-term effects of systemic gene therapy in a canine model of myotubular myopathy. Muscle Nerve 2017; 56:943-953. [PMID: 28370029 DOI: 10.1002/mus.25658] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2017] [Indexed: 01/11/2023]
Abstract
INTRODUCTION X-linked myotubular myopathy (XLMTM), a devastating pediatric disease caused by the absence of the protein myotubularin, results from mutations in the MTM1 gene. While there is no cure for XLMTM, we previously reported effects of MTM1 gene therapy using adeno-associated virus (AAV) vector on muscle weakness and pathology in MTM1-mutant dogs. Here, we followed 2 AAV-infused dogs over 4 years. METHODS We evaluated gait, strength, respiration, neurological function, muscle pathology, AAV vector copy number (VCN), and transgene expression. RESULTS Four years following AAV-mediated gene therapy, gait, respiratory performance, neurological function and pathology in AAV-infused XLMTM dogs remained comparable to their healthy littermate controls despite a decline in VCN and muscle strength. CONCLUSIONS AAV-mediated gene transfer of MTM1 in young XLMTM dogs results in long-term expression of myotubularin transgene with normal muscular performance and neurological function in the absence of muscle pathology. These findings support a clinical trial in patients. Muscle Nerve 56: 943-953, 2017.
Collapse
Affiliation(s)
- Matthew Elverman
- Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Melissa A Goddard
- Department of Physiology and Pharmacology, School of Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - David Mack
- Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Campus Box 357340, Seattle, Washington, USA
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Anthony P Marsh
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Robert W Grange
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Valerie E Kelly
- Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Martin K Childers
- Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
35
|
Huang Y, He M, Zeng Q, Li L, Zhang Z, Ma J, Duan Y. A Multi-hole Cryovial Eliminates Freezing Artifacts when Muscle Tissues are Directly Immersed in Liquid Nitrogen. J Vis Exp 2017. [PMID: 28448056 DOI: 10.3791/55616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Studies on skeletal muscle physiology face the technical challenge of appropriately processing the specimens to obtain sections with clearly visible cytoplasmic compartments. Another hurdle is the tight apposition of myofibers to the surrounding tissues. Because the process of tissue fixation and paraffin embedding leads to the shrinkage of muscle fibers, freezing is an optimal means of hardening muscle tissue for sectioning. However, a commonly encountered issue, the formation of ice crystals, occurs during the preparation of frozen sections because of the high water content of muscle. The protocol presented here first describes a simple and efficient method for properly freezing muscle tissues by immersing them in liquid nitrogen. The problem with using liquid nitrogen alone is that it causes the formation of a nitrogen gas barrier next to the tissue, which acts as an insulator and inhibits the cooling of the tissues. To avoid this "vapor blanket" effect, a new cryovial was designed to increase the speed of liquid flow around the tissue surface. This was achieved by punching a total of 14 inlet holes in the wall of the vial. According to bubble dynamics, a higher rate of liquid flow results in smaller bubbles and fewer chances to form a gas barrier. When liquid nitrogen flows into the cryovial through the inlet holes, the flow velocity around the tissue is fast enough to eliminate the gas barrier. Compared to the method of freezing muscle tissues using pre-chilled isopentane, this protocol is simpler and more efficient and can be used to freeze muscle in a throughput manner. Furthermore, this method is optimal for institutions that do not have access to isopentane, which is extremely flammable at room temperature.
Collapse
Affiliation(s)
- Yizhong Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University
| | - Maozhang He
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University
| | - Qingjie Zeng
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University
| | - Lin Li
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University
| | - Zhen Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University
| | - Junwu Ma
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University
| | - Yanyu Duan
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University;
| |
Collapse
|
36
|
Bergmeister KD, Gröger M, Aman M, Willensdorfer A, Manzano-Szalai K, Salminger S, Aszmann OC. A Rapid Automated Protocol for Muscle Fiber Population Analysis in Rat Muscle Cross Sections Using Myosin Heavy Chain Immunohistochemistry. J Vis Exp 2017. [PMID: 28448058 DOI: 10.3791/55441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Quantification of muscle fiber populations provides a deeper insight into the effects of disease, trauma, and various other influences on skeletal muscle composition. Various time-consuming methods have traditionally been used to study fiber populations in many fields of research. However, recently developed immunohistochemical methods based on myosin heavy chain protein expression provide a quick alternative to identify multiple fiber types in a single section. Here, we present a rapid, reliable and reproducible protocol for improved staining quality, allowing automatic acquisition of whole cross sections and automatic quantification of fiber populations with ImageJ. For this purpose, embedded skeletal muscles are cut in cross sections, stained using myosin heavy chains antibodies with secondary fluorescent antibodies and DAPI for cell nuclei staining. Whole cross sections are then scanned automatically using a slide scanner to obtain high-resolution composite pictures of the entire specimen. Fiber population analyses are subsequently performed to quantify slow, intermediate and fast fibers using an automated macro for ImageJ. We have previously shown that this method can identify fiber populations reliably to a degree of ±4%. In addition, this method reduces inter-user variability and time per analyses significantly using the open source platform ImageJ.
Collapse
Affiliation(s)
- Konstantin D Bergmeister
- CD Laboratory for the Restoration of Extremity Function, Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna; Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic and Hand Surgery, University of Heidelberg
| | - Marion Gröger
- Core Facility Imaging, Core Facilities, Medical University Vienna
| | - Martin Aman
- CD Laboratory for the Restoration of Extremity Function, Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna
| | - Anna Willensdorfer
- CD Laboratory for the Restoration of Extremity Function, Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna
| | - Krisztina Manzano-Szalai
- CD Laboratory for the Restoration of Extremity Function, Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna
| | - Stefan Salminger
- CD Laboratory for the Restoration of Extremity Function, Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna
| | - Oskar C Aszmann
- CD Laboratory for the Restoration of Extremity Function, Division of Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Vienna;
| |
Collapse
|
37
|
Mack DL, Poulard K, Goddard MA, Latournerie V, Snyder JM, Grange RW, Elverman MR, Denard J, Veron P, Buscara L, Le Bec C, Hogrel JY, Brezovec AG, Meng H, Yang L, Liu F, O'Callaghan M, Gopal N, Kelly VE, Smith BK, Strande JL, Mavilio F, Beggs AH, Mingozzi F, Lawlor MW, Buj-Bello A, Childers MK. Systemic AAV8-Mediated Gene Therapy Drives Whole-Body Correction of Myotubular Myopathy in Dogs. Mol Ther 2017; 25:839-854. [PMID: 28237839 DOI: 10.1016/j.ymthe.2017.02.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/13/2017] [Accepted: 02/01/2017] [Indexed: 12/18/2022] Open
Abstract
X-linked myotubular myopathy (XLMTM) results from MTM1 gene mutations and myotubularin deficiency. Most XLMTM patients develop severe muscle weakness leading to respiratory failure and death, typically within 2 years of age. Our objective was to evaluate the efficacy and safety of systemic gene therapy in the p.N155K canine model of XLMTM by performing a dose escalation study. A recombinant adeno-associated virus serotype 8 (rAAV8) vector expressing canine myotubularin (cMTM1) under the muscle-specific desmin promoter (rAAV8-cMTM1) was administered by simple peripheral venous infusion in XLMTM dogs at 10 weeks of age, when signs of the disease are already present. A comprehensive analysis of survival, limb strength, gait, respiratory function, neurological assessment, histology, vector biodistribution, transgene expression, and immune response was performed over a 9-month study period. Results indicate that systemic gene therapy was well tolerated, prolonged lifespan, and corrected the skeletal musculature throughout the body in a dose-dependent manner, defining an efficacious dose in this large-animal model of the disease. These results support the development of gene therapy clinical trials for XLMTM.
Collapse
MESH Headings
- Animals
- Biopsy
- Dependovirus/classification
- Dependovirus/genetics
- Disease Models, Animal
- Disease Progression
- Dogs
- Gait
- Gene Expression
- Genetic Therapy/adverse effects
- Genetic Therapy/methods
- Genetic Vectors/administration & dosage
- Genetic Vectors/adverse effects
- Genetic Vectors/genetics
- Genetic Vectors/pharmacokinetics
- Immunity, Cellular
- Immunity, Humoral
- Kaplan-Meier Estimate
- Muscle Strength
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscle, Skeletal/ultrastructure
- Myopathies, Structural, Congenital/diagnosis
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/mortality
- Myopathies, Structural, Congenital/therapy
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Recovery of Function
- Reflex
- Respiratory Function Tests
- Tissue Distribution
- Transgenes/genetics
- Transgenes/immunology
- Treatment Outcome
Collapse
Affiliation(s)
- David L Mack
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98104, USA; Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98107, USA
| | - Karine Poulard
- Genethon, 91000 Evry, France; INSERM, UMR_S951, 91002 Evry, France
| | - Melissa A Goddard
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98107, USA
| | | | - Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Robert W Grange
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Matthew R Elverman
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98107, USA
| | | | - Philippe Veron
- Genethon, 91000 Evry, France; INSERM, UMR_S951, 91002 Evry, France
| | - Laurine Buscara
- Genethon, 91000 Evry, France; INSERM, UMR_S951, 91002 Evry, France
| | | | - Jean-Yves Hogrel
- Neuromuscular Physiology and Evaluation Lab, Institut de Myologie, 75651 Paris, France
| | - Annie G Brezovec
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lin Yang
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Fujun Liu
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | | | - Nikhil Gopal
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98019, USA
| | - Valerie E Kelly
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98104, USA
| | - Barbara K Smith
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA
| | - Jennifer L Strande
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Fulvio Mavilio
- Genethon, 91000 Evry, France; INSERM, UMR_S951, 91002 Evry, France
| | - Alan H Beggs
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Federico Mingozzi
- Genethon, 91000 Evry, France; INSERM, UMR_S951, 91002 Evry, France; Institut de Myologie, University Pierre and Marie Curie, 75005 Paris, France
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ana Buj-Bello
- Genethon, 91000 Evry, France; INSERM, UMR_S951, 91002 Evry, France.
| | - Martin K Childers
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98104, USA; Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA 98107, USA.
| |
Collapse
|
38
|
Palmdelphin promotes myoblast differentiation and muscle regeneration. Sci Rep 2017; 7:41608. [PMID: 28148961 PMCID: PMC5288731 DOI: 10.1038/srep41608] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/21/2016] [Indexed: 11/08/2022] Open
Abstract
Differentiation of myoblasts is essential in the development and regeneration of skeletal muscles to form multinucleated, contractile muscle fibers. However, the process of myoblast differentiation in mammals is complicated and requires to be further investigated. In this study, we found Palmdelphin (Palmd), a cytosolic protein, promotes myoblast differentiation. Palmd is predominantly expressed in the cytosol of myoblasts and is gradually up-regulated after differentiation. Knockdown of Palmd by small interfering RNA (siRNA) in C2C12 markedly inhibits myogenic differentiation, suggesting a specific role of Palmd in the morphological changes of myoblast differentiation program. Overexpression of Palmd in C2C12 enhances myogenic differentiation. Remarkably, inhibition of Palmd results in impaired myotube formation during muscle regeneration after injury. These findings reveal a new cytosolic protein that promotes mammalian myoblast differentiation and provide new insights into the molecular regulation of muscle formation.
Collapse
|
39
|
Abstract
Skeletal muscles are composed of myofibers, the biggest cells in the mammalian body and one of the few syncytia. How the complex and evolutionarily conserved structures that compose it are assembled remains under investigation. Their size and physiological features often constrain manipulation and imaging applications. The culture of immortalized cell lines is widely used, but it can only replicate the early steps of differentiation. Here, we describe a protocol that enables easy genetic manipulation of myofibers originating from primary mouse myoblasts. After one week of differentiation, the myofibers display contractility, aligned sarcomeres and triads, as well as peripheral nuclei. The entire differentiation process can be followed by live imaging or immunofluorescence. This system combines the advantages of the existing ex vivo and in vitro protocols. The possibility of easy and efficient transfection as well as the ease of access to all differentiation stages broadens the potential applications. Myofibers can subsequently be used not only to address relevant developmental and cell biology questions, but also to reproduce muscle disease phenotypes for clinical applications.
Collapse
Affiliation(s)
- Mafalda R Pimentel
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa
| | - Sestina Falcone
- Myology Research Center, UM76-INSERM U974-CNRS FRE 361, Sorbonne University, UPMC University of Paris 6
| | - Bruno Cadot
- Myology Research Center, UM76-INSERM U974-CNRS FRE 361, Sorbonne University, UPMC University of Paris 6
| | - Edgar R Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa; Myology Research Center, UM76-INSERM U974-CNRS FRE 361, Sorbonne University, UPMC University of Paris 6;
| |
Collapse
|
40
|
Guardiola O, Andolfi G, Tirone M, Iavarone F, Brunelli S, Minchiotti G. Induction of Acute Skeletal Muscle Regeneration by Cardiotoxin Injection. J Vis Exp 2017. [PMID: 28117768 DOI: 10.3791/54515] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Skeletal muscle regeneration is a physiological process that occurs in adult skeletal muscles in response to injury or disease. Acute injury-induced skeletal muscle regeneration is a widely used, powerful model system to study the events involved in muscle regeneration as well as the mechanisms and different players. Indeed, a detailed knowledge of this process is essential for a better understanding of the pathological conditions that lead to skeletal muscle degeneration, and it aids in identifying new targeted therapeutic strategies. The present work describes a detailed and reproducible protocol to induce acute skeletal muscle regeneration in mice through a single intramuscular injection of cardiotoxin (CTX). CTX belongs to the family of snake venom toxins and causes myolysis of myofibers, which eventually triggers the regeneration events. The dynamics of skeletal muscle regeneration is evaluated by histological analysis of muscle sections. The protocol also illustrates the experimental procedures for dissecting, freezing, and cutting the Tibialis Anterior muscle, as well as the routine Hematoxylin & Eosin staining that is widely used for subsequent morphological and morphometric analysis.
Collapse
Affiliation(s)
- Ombretta Guardiola
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR;
| | - Gennaro Andolfi
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR
| | - Mario Tirone
- School of Medicine and Surgery, University of Milano-Bicocca; Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute
| | | | - Silvia Brunelli
- School of Medicine and Surgery, University of Milano-Bicocca
| | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR
| |
Collapse
|
41
|
Alexander MS, Rozkalne A, Colletta A, Spinazzola JM, Johnson S, Rahimov F, Meng H, Lawlor MW, Estrella E, Kunkel LM, Gussoni E. CD82 Is a Marker for Prospective Isolation of Human Muscle Satellite Cells and Is Linked to Muscular Dystrophies. Cell Stem Cell 2016; 19:800-807. [PMID: 27641304 DOI: 10.1016/j.stem.2016.08.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 05/17/2016] [Accepted: 08/05/2016] [Indexed: 12/23/2022]
Abstract
Cell-surface markers for prospective isolation of stem cells from human skeletal muscle have been difficult to identify. Such markers would be powerful tools for studying satellite cell function during homeostasis and in pathogenesis of diseases such as muscular dystrophies. In this study, we show that the tetraspanin KAI/CD82 is an excellent marker for prospectively isolating stem cells from human fetal and adult skeletal muscle. Human CD82+ muscle cells robustly engraft into a mouse model of muscular dystrophy. shRNA knockdown of CD82 in myogenic cells reduces myoblast proliferation, suggesting it is functionally involved in muscle homeostasis. CD82 physically interacts with alpha7beta1 integrin (α7β1-ITG) and with α-sarcoglycan, a member of the Dystrophin-Associated Glycoprotein Complex (DAPC), both of which have been linked to muscular dystrophies. Consistently, CD82 expression is decreased in Duchenne muscular dystrophy patients. Together, these findings suggest that CD82 function may be important for muscle stem cell function in muscular disorders.
Collapse
Affiliation(s)
- Matthew S Alexander
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; The Stem Cell Program at Boston Children's Hospital, Boston, MA 02115, USA
| | - Anete Rozkalne
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alessandro Colletta
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Boston University School of Medicine, Boston, MA 02215, USA
| | - Janelle M Spinazzola
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; The Stem Cell Program at Boston Children's Hospital, Boston, MA 02115, USA
| | - Samuel Johnson
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Fedik Rahimov
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; The Stem Cell Program at Boston Children's Hospital, Boston, MA 02115, USA
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elicia Estrella
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Louis M Kunkel
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; The Stem Cell Program at Boston Children's Hospital, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; The Stem Cell Program at Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Goddard MA, Mack DL, Czerniecki SM, Kelly VE, Snyder JM, Grange RW, Lawlor MW, Smith BK, Beggs AH, Childers MK. Muscle pathology, limb strength, walking gait, respiratory function and neurological impairment establish disease progression in the p.N155K canine model of X-linked myotubular myopathy. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:262. [PMID: 26605308 DOI: 10.3978/j.issn.2305-5839.2015.10.31] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Loss-of-function mutations in the myotubularin (MTM1) gene cause X-linked myotubular myopathy (XLMTM), a fatal, inherited pediatric disease that affects the entire skeletal musculature. Labrador retriever dogs carrying an MTM1 missense mutation exhibit strongly reduced synthesis of myotubularin, the founder member of a lipid phosphatase required for normal skeletal muscle function. The resulting canine phenotype resembles that of human patients with comparably severe mutations, and survival does not normally exceed 4 months. METHODS We studied MTM1 mutant dogs (n=7) and their age-matched control littermates (n=6) between the ages of 10 and 25 weeks. Investigators blinded to the animal identities sequentially measured limb muscle pathology, fore- and hind limb strength, walking gait, respiratory function and neurological impairment. RESULTS MTM1-mutant puppies display centrally-nucleated myofibers of reduced size and disrupted sarcotubular architecture progressing until the end of life, an average of 17 weeks. In-life measures of fore- and hind limb strength establish the rate at which XLMTM muscles weaken, and their corresponding decrease in gait velocity and stride length. Pulmonary function tests in affected dogs reveal a right-shifted relationship between peak inspiratory flow (PIF) and inspiratory time (TI); neurological assessments indicate that affected puppies as young as 10 weeks show early signs of neurological impairment (neurological severity score, NSS =8.6±0.9) with progressive decline (NSS =5.6±1.7 at 17 weeks-of-age). CONCLUSIONS Our findings document the rate of disease progression in a large animal model of XLMTM and lay a foundation for preclinical studies.
Collapse
Affiliation(s)
- Melissa A Goddard
- 1 Institute for Stem Cell and Regenerative Medicine, 2 Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA ; 3 Department of Comparative Medicine, University of Washington, Seattle, Washington, USA ; 4 Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic and State University, Blacksburg, Virginia, USA ; 5 Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA ; 6 Department of Physical Therapy, University of Florida, Gainesville, FL, USA ; 7 The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David L Mack
- 1 Institute for Stem Cell and Regenerative Medicine, 2 Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA ; 3 Department of Comparative Medicine, University of Washington, Seattle, Washington, USA ; 4 Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic and State University, Blacksburg, Virginia, USA ; 5 Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA ; 6 Department of Physical Therapy, University of Florida, Gainesville, FL, USA ; 7 The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stefan M Czerniecki
- 1 Institute for Stem Cell and Regenerative Medicine, 2 Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA ; 3 Department of Comparative Medicine, University of Washington, Seattle, Washington, USA ; 4 Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic and State University, Blacksburg, Virginia, USA ; 5 Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA ; 6 Department of Physical Therapy, University of Florida, Gainesville, FL, USA ; 7 The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Valerie E Kelly
- 1 Institute for Stem Cell and Regenerative Medicine, 2 Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA ; 3 Department of Comparative Medicine, University of Washington, Seattle, Washington, USA ; 4 Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic and State University, Blacksburg, Virginia, USA ; 5 Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA ; 6 Department of Physical Therapy, University of Florida, Gainesville, FL, USA ; 7 The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jessica M Snyder
- 1 Institute for Stem Cell and Regenerative Medicine, 2 Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA ; 3 Department of Comparative Medicine, University of Washington, Seattle, Washington, USA ; 4 Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic and State University, Blacksburg, Virginia, USA ; 5 Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA ; 6 Department of Physical Therapy, University of Florida, Gainesville, FL, USA ; 7 The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert W Grange
- 1 Institute for Stem Cell and Regenerative Medicine, 2 Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA ; 3 Department of Comparative Medicine, University of Washington, Seattle, Washington, USA ; 4 Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic and State University, Blacksburg, Virginia, USA ; 5 Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA ; 6 Department of Physical Therapy, University of Florida, Gainesville, FL, USA ; 7 The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael W Lawlor
- 1 Institute for Stem Cell and Regenerative Medicine, 2 Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA ; 3 Department of Comparative Medicine, University of Washington, Seattle, Washington, USA ; 4 Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic and State University, Blacksburg, Virginia, USA ; 5 Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA ; 6 Department of Physical Therapy, University of Florida, Gainesville, FL, USA ; 7 The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Barbara K Smith
- 1 Institute for Stem Cell and Regenerative Medicine, 2 Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA ; 3 Department of Comparative Medicine, University of Washington, Seattle, Washington, USA ; 4 Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic and State University, Blacksburg, Virginia, USA ; 5 Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA ; 6 Department of Physical Therapy, University of Florida, Gainesville, FL, USA ; 7 The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan H Beggs
- 1 Institute for Stem Cell and Regenerative Medicine, 2 Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA ; 3 Department of Comparative Medicine, University of Washington, Seattle, Washington, USA ; 4 Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic and State University, Blacksburg, Virginia, USA ; 5 Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA ; 6 Department of Physical Therapy, University of Florida, Gainesville, FL, USA ; 7 The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Martin K Childers
- 1 Institute for Stem Cell and Regenerative Medicine, 2 Department of Rehabilitation Medicine, School of Medicine, University of Washington, Seattle, Washington, USA ; 3 Department of Comparative Medicine, University of Washington, Seattle, Washington, USA ; 4 Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic and State University, Blacksburg, Virginia, USA ; 5 Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, USA ; 6 Department of Physical Therapy, University of Florida, Gainesville, FL, USA ; 7 The Manton Center for Orphan Disease Research, Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Suh J, Moncaster JA, Wang L, Hafeez I, Herz J, Tanzi RE, Goldstein LE, Guénette SY. FE65 and FE65L1 amyloid precursor protein-binding protein compound null mice display adult-onset cataract and muscle weakness. FASEB J 2015; 29:2628-39. [PMID: 25757569 DOI: 10.1096/fj.14-261453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/19/2015] [Indexed: 12/11/2022]
Abstract
FE65 and FE65L1 are cytoplasmic adaptor proteins that bind a variety of proteins, including the amyloid precursor protein, and that mediate the assembly of multimolecular complexes. We previously reported that FE65/FE65L1 double knockout (DKO) mice display disorganized laminin in meningeal fibroblasts and a cobblestone lissencephaly-like phenotype in the developing cortex. Here, we examined whether loss of FE65 and FE65L1 causes ocular and muscular deficits, 2 phenotypes that frequently accompany cobblestone lissencephaly. Eyes of FE65/FE65L1 DKO mice develop normally, but lens degeneration becomes apparent in young adult mice. Abnormal lens epithelial cell migration, widespread small vacuole formation, and increased laminin expression underneath lens capsules suggest impaired interaction between epithelial cells and capsular extracellular matrix in DKO lenses. Cortical cataracts develop in FE65L1 knockout (KO) mice aged 16 months or more but are absent in wild-type or FE65 KO mice. FE65 family KO mice show attenuated grip strength, and the nuclei of DKO muscle cells frequently locate in the middle of muscle fibers. These findings reveal that FE65 and FE65L1 are essential for the maintenance of lens transparency, and their loss produce phenotypes in brain, eye, and muscle that are comparable to the clinical features of congenital muscular dystrophies in humans.
Collapse
Affiliation(s)
- Jaehong Suh
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Juliet A Moncaster
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lirong Wang
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Imran Hafeez
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joachim Herz
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rudolph E Tanzi
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lee E Goldstein
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Suzanne Y Guénette
- *Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, and Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA; and Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|