1
|
Sezgin Y, Bora ES, Arda DB, Uyanikgil Y, Erbaş O. Caffeine mitigates tamoxifen-induced fatty liver in Wistar rats. Acta Cir Bras 2024; 39:e396924. [PMID: 39356936 PMCID: PMC11441146 DOI: 10.1590/acb396924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/19/2024] [Indexed: 10/04/2024] Open
Abstract
PURPOSE Tamoxifen, a widely used drug for breast cancer treatment, is associated with adverse effects on the liver, including the development of fatty liver. This study aimed to investigate the potential protective effect of caffeine against tamoxifen-induced fatty liver in Wistar rats. METHODS Rats were divided into normal control, tamoxifen + saline, and tamoxifen + caffeine. Plasma samples were assessed for biochemical markers related to oxidative stress, inflammation, liver function, and cell damage. Additionally, liver histopathology was examined to quantify the extent of fatty infiltration. RESULTS In the tamoxifen + saline group, elevated levels of plasma malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), alanine aminotransferase (ALT), cytokeratin 18, and soluble ST2 were observed compared to the normal control group, indicating increased oxidative stress, inflammation, and liver injury (p < 0.01). Moreover, histopathological examination revealed a significant increase in fatty infiltration (p < 0.001). However, in the tamoxifen + caffeine group, these markers were markedly reduced (p < 0.05, p < 0.01), and fatty infiltration was significantly mitigated (p < 0.001). CONCLUSIONS The findings suggest that caffeine administration attenuates tamoxifen-induced fatty liver in rats by ameliorating oxidative stress, inflammation, liver injury, and cell damage. Histopathological evidence further supports the protective role of caffeine. This study highlights the potential of caffeine as a therapeutic intervention to counter tamoxifen-induced hepatic complications, contributing to the optimization of breast cancer treatment strategies.
Collapse
Affiliation(s)
- Yasin Sezgin
- Yüzüncü Yıl University - Faculty of Medicine - Clinic of Medical Oncology - Van - Turkey
| | - Ejder Saylav Bora
- İzmir Katip Çelebi University - Faculty of Medicine - Department of Emergency Medicine - Izmir - Turkey
| | - Duygu Burcu Arda
- Ege University - Faculty of Medicine - Department of Histology and Embryology - Izmir - Turkey
| | - Yiğit Uyanikgil
- Taksim Research and Training Hospital - Department of Pediatrics - Istanbul - Turkey
| | - Oytun Erbaş
- Demiroğlu Bilim University - Department of Physiology - Istanbul - Turkey
| |
Collapse
|
2
|
Maddineni G, Obulareddy SJ, Paladiya RD, Korsapati RR, Jain S, Jeanty H, Vikash F, Tummala NC, Shetty S, Ghazalgoo A, Mahapatro A, Polana V, Patel D. The role of gut microbiota augmentation in managing non-alcoholic fatty liver disease: an in-depth umbrella review of meta-analyses with grade assessment. Ann Med Surg (Lond) 2024; 86:4714-4731. [PMID: 39118769 PMCID: PMC11305784 DOI: 10.1097/ms9.0000000000002276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/03/2024] [Indexed: 08/10/2024] Open
Abstract
Background and aim Currently, there are no authorized medications specifically for non-alcoholic fatty liver disease (NAFLD) treatment. Studies indicate that changes in gut microbiota can disturb intestinal balance and impair the immune system and metabolism, thereby elevating the risk of developing and exacerbating NAFLD. Despite some debate, the potential benefits of microbial therapies in managing NAFLD have been shown. Methods A systematic search was undertaken to identify meta-analyses of randomized controlled trials that explored the effects of microbial therapy on the NAFLD population. The goal was to synthesize the existing evidence-based knowledge in this field. Results The results revealed that probiotics played a significant role in various aspects, including a reduction in liver stiffness (MD: -0.38, 95% CI: [-0.49, -0.26]), hepatic steatosis (OR: 4.87, 95% CI: [1.85, 12.79]), decrease in body mass index (MD: -1.46, 95% CI: [-2.43, -0.48]), diminished waist circumference (MD: -1.81, 95% CI: [-3.18, -0.43]), lowered alanine aminotransferase levels (MD: -13.40, 95% CI: [-17.02, -9.77]), decreased aspartate aminotransferase levels (MD: -13.54, 95% CI: [-17.85, -9.22]), lowered total cholesterol levels (MD: -15.38, 95% CI: [-26.49, -4.26]), decreased fasting plasma glucose levels (MD: -4.98, 95% CI: [-9.94, -0.01]), reduced fasting insulin (MD: -1.32, 95% CI: [-2.42, -0.21]), and a decline in homeostatic model assessment of insulin resistance (MD: -0.42, 95% CI: [-0.72, -0.11]) (P<0.05). Conclusion Overall, the results demonstrated that gut microbiota interventions could ameliorate a wide range of indicators including glycemic profile, dyslipidemia, anthropometric indices, and liver injury, allowing them to be considered a promising treatment strategy.
Collapse
Affiliation(s)
| | | | | | | | - Shika Jain
- MVJ Medical College and Research Hospital, Bengaluru, Karnataka, India
| | | | - Fnu Vikash
- Jacobi Medical Center, Albert Einstein College of Medicine, Bronx
| | - Nayanika C. Tummala
- Gitam Institute of Medical Sciences and Research, Visakhapatnam, Andhra Pradesh
| | | | - Arezoo Ghazalgoo
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | | | - Dhruvan Patel
- Drexel University College of Medicine, Philadelphia, Pennsylvania, PA
| |
Collapse
|
3
|
McHenry S, Glover M, Ahmed A, Alayo Q, Zulfiqar M, Ludwig DR, Ciorba MA, Davidson NO, Deepak P. NAFLD Is Associated With Quiescent Rather Than Active Crohn's Disease. Inflamm Bowel Dis 2024; 30:757-767. [PMID: 37454277 PMCID: PMC11491614 DOI: 10.1093/ibd/izad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND AND AIMS Crohn's disease (CD) confers an increased risk of nonalcoholic fatty liver disease (NAFLD), but the pathogenesis remains poorly understood. We determined if active intestinal inflammation increases the risk of NAFLD in patients with CD. METHODS Two cohorts (2017/2018 and 2020) with CD and no known liver disease were enrolled consecutively during staging magnetic resonance enterography. We quantified proton density fat fraction, MaRIA (Magnetic Resonance Index of Activity), and visceral adipose tissue. NAFLD was diagnosed when proton density fat fraction ≥5.5%. Synchronous endoscopy was graded by the Simple Endoscopic Score for CD and Rutgeerts score, while clinical activity was graded by the Harvey-Bradshaw index. Cytokine profiling was performed for the 2020 cohort. Transient elastography and liver biopsy were requested by standard of care. RESULTS NAFLD was diagnosed in 40% (n = 144 of 363), with higher prevalence during radiographically quiescent disease (odds ratio, 1.7; P = .01), independent of body mass index/visceral adipose tissue (adjusted odds ratio, 7.8; P = .03). These findings were corroborated by endoscopic disease activity, but not by aggregate clinical symptoms. Circulating interleukin-8 was independent of body mass index to predict NAFLD, but traditional proinflammatory cytokines were not. NAFLD subjects had similar liver stiffness estimates regardless of CD activity. Definitive or borderline steatohepatitis was present in most patients that underwent liver biopsy. CONCLUSIONS Quiescent CD is associated with risk of NAFLD. These findings suggest potentially distinct pathogenic mechanisms of NAFLD in patients with CD compared with the prevailing leaky gut hypothesis proposed for individuals without inflammatory bowel disease. Future validation and mechanistic studies are needed to dissect these distinct disease modifying factors.
Collapse
Affiliation(s)
- Scott McHenry
- Division of Gastroenterology, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew Glover
- Division of Gastroenterology, Washington University in St. Louis, St. Louis, MO, USA
| | - Ali Ahmed
- Division of Gastroenterology, Washington University in St. Louis, St. Louis, MO, USA
- Inflammatory Bowel Disease Section, Washington University in St. Louis, St. Louis, MO, USA
| | - Quazim Alayo
- Division of Gastroenterology, Washington University in St. Louis, St. Louis, MO, USA
- Inflammatory Bowel Disease Section, Washington University in St. Louis, St. Louis, MO, USA
| | - Maria Zulfiqar
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Daniel R Ludwig
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Matthew A Ciorba
- Division of Gastroenterology, Washington University in St. Louis, St. Louis, MO, USA
- Inflammatory Bowel Disease Section, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicholas O Davidson
- Division of Gastroenterology, Washington University in St. Louis, St. Louis, MO, USA
| | - Parakkal Deepak
- Division of Gastroenterology, Washington University in St. Louis, St. Louis, MO, USA
- Inflammatory Bowel Disease Section, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
4
|
Jung I, Koo DJ, Lee WY. Insulin Resistance, Non-Alcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus: Clinical and Experimental Perspective. Diabetes Metab J 2024; 48:327-339. [PMID: 38310873 PMCID: PMC11140401 DOI: 10.4093/dmj.2023.0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/26/2024] [Indexed: 02/06/2024] Open
Abstract
It has been generally accepted that insulin resistance (IR) and reduced insulin secretory capacity are the basic pathogenesis of type 2 diabetes mellitus (T2DM). In addition to genetic factors, the persistence of systemic inflammation caused by obesity and the associated threat of lipotoxicity increase the risk of T2DM. In particular, the main cause of IR is obesity and subjects with T2DM have a higher body mass index (BMI) than normal subjects according to recent studies. The prevalence of T2DM with IR has increased with increasing BMI during the past three decades. According to recent studies, homeostatic model assessment of IR was increased compared to that of the 1990s. Rising prevalence of obesity in Korea have contributed to the development of IR, non-alcoholic fatty liver disease and T2DM and cutting this vicious cycle is important. My colleagues and I have investigated this pathogenic mechanism on this theme through clinical and experimental studies over 20 years and herein, I would like to summarize some of our studies with deep gratitude for receiving the prestigious 2023 Sulwon Award.
Collapse
Affiliation(s)
- Inha Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Dae-Jeong Koo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Changwon Fatima Hospital, Changwon, Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Sun HJ, Jiao B, Wang Y, Zhang YH, Chen G, Wang ZX, Zhao H, Xie Q, Song XH. Necroptosis contributes to non-alcoholic fatty liver disease pathoetiology with promising diagnostic and therapeutic functions. World J Gastroenterol 2024; 30:1968-1981. [PMID: 38681120 PMCID: PMC11045491 DOI: 10.3748/wjg.v30.i14.1968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/15/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent type of chronic liver disease. However, the disease is underappreciated as a remarkable chronic disorder as there are rare managing strategies. Several studies have focused on determining NAFLD-caused hepatocyte death to elucidate the disease pathoetiology and suggest functional therapeutic and diagnostic options. Pyroptosis, ferroptosis, and necroptosis are the main subtypes of non-apoptotic regulated cell deaths (RCDs), each of which represents particular characteristics. Considering the complexity of the findings, the present study aimed to review these types of RCDs and their contribution to NAFLD progression, and subsequently discuss in detail the role of necroptosis in the pathoetiology, diagnosis, and treatment of the disease. The study revealed that necroptosis is involved in the occurrence of NAFLD and its progression towards steatohepatitis and cancer, hence it has potential in diagnostic and therapeutic approaches. Nevertheless, further studies are necessary.
Collapse
Affiliation(s)
- Hong-Ju Sun
- Department of General Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| | - Bo Jiao
- Department of General Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| | - Yan Wang
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| | - Yue-Hua Zhang
- Department of Medical Administration, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| | - Ge Chen
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
- Qingdao Medical College, Qingdao University, Qingdao 266042, Shandong Province, China
| | - Zi-Xuan Wang
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
- Qingdao Medical College, Qingdao University, Qingdao 266042, Shandong Province, China
| | - Hong Zhao
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Hua Song
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| |
Collapse
|
6
|
Lin X, Zhang J, Chu Y, Nie Q, Zhang J. Berberine prevents NAFLD and HCC by modulating metabolic disorders. Pharmacol Ther 2024; 254:108593. [PMID: 38301771 DOI: 10.1016/j.pharmthera.2024.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global metabolic disease with high prevalence in both adults and children. Importantly, NAFLD is becoming the main cause of hepatocellular carcinoma (HCC). Berberine (BBR), a naturally occurring plant component, has been demonstrated to have advantageous effects on a number of metabolic pathways as well as the ability to kill liver tumor cells by causing cell death and other routes. This permits us to speculate and make assumptions about the value of BBR in the prevention and defense against NAFLD and HCC by a global modulation of metabolic disorders. Herein, we briefly describe the etiology of NAFLD and NAFLD-related HCC, with a particular emphasis on analyzing the potential mechanisms of BBR in the treatment of NAFLD from aspects including increasing insulin sensitivity, controlling the intestinal milieu, and controlling lipid metabolism. We also elucidate the mechanism of BBR in the treatment of HCC. More significantly, we provided a list of clinical studies for BBR in NAFLD. Taking into account our conclusions and perspectives, we can make further progress in the treatment of BBR in NAFLD and NAFLD-related HCC.
Collapse
Affiliation(s)
- Xinyue Lin
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Juanhong Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Yajun Chu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
7
|
Li L, Sun L, Liang X, Ou Q, Tan X, Li F, Lai Z, Ding C, Chen H, Yu X, Wu Q, Wei J, Wu F, Wang L. Maternal betaine supplementation ameliorates fatty liver disease in offspring mice by inhibiting hepatic NLRP3 inflammasome activation. Nutr Res Pract 2023; 17:1084-1098. [PMID: 38053832 PMCID: PMC10694418 DOI: 10.4162/nrp.2023.17.6.1084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND/OBJECTIVES Previous research has shown maternal betaine supplementation alleviates fetal-derived hepatic steatosis. Therefore, this study examined the anti-inflammatory effect of maternal betaine intake in offspring mice and its mechanism. MATERIALS/METHODS Female C57BL/6J mice and their offspring were randomly divided into 3 groups according to the treatment received during gestation and lactation: control diet (CD), fatty liver disease (FLD), and fatty liver disease + 1% betaine (FLD-BET). The FLD group was given a high-fat diet and streptozotocin (HFD + STZ), and the FLD-BET group was treated with HFD + STZ + 1% betaine. After weaning, the offspring mice were given a normal diet for 5 weeks and then dissected to measure the relevant indexes. RESULTS Compared to the CD group, the offspring mice in the FLD group revealed obvious hepatic steatosis and increased serum levels of alanine aminotransferase, interleukin (IL)-6, and tumor necrosis factor (TNF)-α; maternal betaine supplementation reversed these changes. The hepatic mRNA expression levels of IL-6, IL-18, and Caspase-1 were significantly higher in the FLD group than in the CD group. Maternal betaine supplementation reduced the expression of IL-1β, IL-6, IL-18, and apoptosis-associated speck-like protein containing C-terminal caspase recruitment domain (ASC). Maternal betaine supplementation also reversed the increasing protein expressions of nitric oxide dioxygenase-like receptor family pyrin domain containing 3 (NLRP3), ASC, Caspase-1, IL-1β, and IL-18 in offspring mice exposed to HFD + STZ. Maternal betaine supplementation decreased the homocysteine (Hcy) and s-adenosine homocysteine (SAH) levels significantly in the livers. Furthermore, the hepatic Hcy concentrations showed significant inverse relationships with the mRNA expression of TNF-α, NLRP3, ASC, and IL-18. The hepatic SAH concentration was inversely associated with the IL-1β mRNA expression. CONCLUSIONS The lipotropic and anti-inflammatory effect of maternal betaine supplementation may be associated with the inhibition of NLRP3 inflammasome in the livers of the offspring mice.
Collapse
Affiliation(s)
- Lun Li
- Department of Delivery Room, Guangzhou Women and Children’s Medical Center, Guangzhou 510623, People’s Republic of China
| | - Liuqiao Sun
- Department of Maternal, Child and Adolescent Health, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Xiaoping Liang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Qian Ou
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Xuying Tan
- Department of Child Health Care, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, People’s Republic of China
| | - Fangyuan Li
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Zhiwei Lai
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Chenghe Ding
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Hangjun Chen
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Xinxue Yu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Qiongmei Wu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Jun Wei
- Department of Science and Technology, Guangzhou Customs, Guangzhou 510623, People’s Republic of China
| | - Feng Wu
- Department of Science and Technology, Guangzhou Customs, Guangzhou 510623, People’s Republic of China
| | - Lijun Wang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| |
Collapse
|
8
|
Sandoval C, Reyes C, Rosas P, Godoy K, Souza-Mello V, Farías J. Effectiveness of Cerium Oxide Nanoparticles in Non-Alcoholic Fatty Liver Disease Evolution Using In Vivo and In Vitro Studies: A Systematic Review. Int J Mol Sci 2023; 24:15728. [PMID: 37958712 PMCID: PMC10648767 DOI: 10.3390/ijms242115728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/09/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) describes a spectrum of liver abnormalities, from benign steatosis to nonalcoholic steatohepatitis (NASH). Because of their antioxidant capabilities, CeNPs have sparked a lot of interest in biological applications. This review evaluated the effectiveness of CeNPs in NAFLD evolution through in vivo and in vitro studies. Databases such as MEDLINE, EMBASE, Scopus, and Web of Science were looked for studies published between 2012 and June 2023. Quality was evaluated using PRISMA guidelines. We looked at a total of nine primary studies in English carried out using healthy participants or HepG2 or LX2 cells. Quantitative data such as blood chemical markers, lipid peroxidation, and oxidative status were obtained from the studies. Our findings indicate that NPs are a possible option to make medications safer and more effective. In fact, CeNPs have been demonstrated to decrease total saturated fatty acids and foam cell production (steatosis), reactive oxygen species production and TNF-α (necrosis), and vacuolization in hepatic tissue when used to treat NAFLD. Thus, CeNP treatment may be considered promising for liver illnesses. However, limitations such as the variation in durations between studies and the utilization of diverse models to elucidate the etiology of NAFLD must be considered. Future studies must include standardized NAFLD models.
Collapse
Affiliation(s)
- Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile; (C.R.); (P.R.)
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Carolina Reyes
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile; (C.R.); (P.R.)
| | - Pamela Rosas
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile; (C.R.); (P.R.)
| | - Karina Godoy
- Núcleo Científico y Tecnológico en Biorecursos (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile;
| | - Vanessa Souza-Mello
- Laboratorio de Morfometría, Metabolismo y Enfermedades Cardiovasculares, Centro Biomédico, Instituto de Biología, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 22775-000, Brazil;
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
9
|
Takeuchi F, Liang YQ, Shimizu-Furusawa H, Isono M, Ang MY, Mori K, Mori T, Kakazu E, Yoshio S, Kato N. Gene-regulation modules in nonalcoholic fatty liver disease revealed by single-nucleus ATAC-seq. Life Sci Alliance 2023; 6:e202301988. [PMID: 37491046 PMCID: PMC10368228 DOI: 10.26508/lsa.202301988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023] Open
Abstract
We investigated the progression of nonalcoholic fatty liver disease from fatty liver to steatohepatitis using single-nucleus and bulk ATAC-seq on the livers of rats fed a high-fat diet (HFD). Rats fed HFD for 4 wk developed fatty liver, and those fed HFD for 8 wk further progressed to steatohepatitis. We observed an increase in the proportion of inflammatory macrophages, consistent with the pathological progression. Utilizing machine learning, we divided global gene regulation into modules, wherein transcription factors within a module could regulate genes within the same module, reaffirming known regulatory relationships between transcription factors and biological processes. We identified core genes-central to co-expression and protein-protein interaction-for the biological processes discovered. Notably, a large part of the core genes overlapped with genes previously implicated in nonalcoholic fatty liver disease. Single-nucleus ATAC-seq, combined with data-driven statistical analysis, offers insight into in vivo global gene regulation as a combination of modules and assists in identifying core genes of relevant biological processes.
Collapse
Affiliation(s)
- Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Systems Genomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Yi-Qiang Liang
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hana Shimizu-Furusawa
- Department of Hygiene and Public Health, School of Medicine, Teikyo University, Tokyo, Japan
| | - Masato Isono
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Mia Yang Ang
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Clinical Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kotaro Mori
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Taizo Mori
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Eiji Kakazu
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Sachiyo Yoshio
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Clinical Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Vachliotis ID, Polyzos SA. The Role of Tumor Necrosis Factor-Alpha in the Pathogenesis and Treatment of Nonalcoholic Fatty Liver Disease. Curr Obes Rep 2023; 12:191-206. [PMID: 37407724 PMCID: PMC10482776 DOI: 10.1007/s13679-023-00519-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
PURPOSE OF REVIEW To summarize experimental and clinical evidence on the association between tumor necrosis factor-α (TNF-α) and nonalcoholic fatty liver disease (NAFLD) and discuss potential treatment considerations. RECENT FINDINGS Experimental evidence suggests that TNF-α is a cytokine with a critical role in the pathogenesis of NAFLD. Although, the production of TNF-α may be an early event during the course of nonalcoholic fatty liver (NAFL), TNF-α may play a more substantial role in the pathogenesis of nonalcoholic steatohepatitis (NASH) and NAFLD-associated fibrosis. Moreover, TNF-α may potentiate hepatic insulin resistance, thus interconnecting inflammatory with metabolic signals and possibly contributing to the development of NAFLD-related comorbidities, including cardiovascular disease, hepatocellular carcinoma, and extra-hepatic malignancies. In clinical terms, TNF-α is probably associated with the severity of NAFLD; circulating TNF-α gradually increases from controls to patients with NAFL, and then, to patients with NASH. Given this potential association, various therapeutic interventions (obeticholic acid, peroxisome proliferator-activated receptors, sodium-glucose co-transporter 2 inhibitors, glucagon-like peptide-1 receptor agonists, probiotics, synbiotics, rifaximin, vitamin E, pentoxifylline, ursodeoxycholic acid, fibroblast growth factor-21, n-3 polyunsaturated fatty acids, statins, angiotensin receptor blockers) have been evaluated for their effect on TNF-α and NAFLD. Interestingly, anti-TNF biologics have shown favorable metabolic and hepatic effects, which may open a possible therapeutic window for the management of advanced NAFLD. The potential key pathogenic role of TNF-α in NAFLD warrants further investigation and may have important diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Ilias D. Vachliotis
- First Department of Pharmacology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Second Department of Internal Medicine, 424 General Military Hospital, Thessaloniki, Greece
| | - Stergios A. Polyzos
- First Department of Pharmacology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
11
|
Dong W, Jin Y, Shi H, Zhang X, Chen J, Jia H, Zhang Y. Using bioinformatics and systems biology methods to identify the mechanism of interaction between COVID-19 and nonalcoholic fatty liver disease. Medicine (Baltimore) 2023; 102:e33912. [PMID: 37335656 DOI: 10.1097/md.0000000000033912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered a risk factor for severe COVID-19, but the mechanism remains unknown. This study used bioinformatics to help define the relationship between these diseases. The GSE147507 (COVID-19), GSE126848 (NAFLD), and GSE63067 (NAFLD-2) datasets were screened using the Gene Expression Omnibus. Common differentially expressed genes were then identified using a Venn diagram. Gene ontology analysis and KEGG pathway enrichment were performed on the differentially expressed genes. A protein-protein interaction network was also constructed using the STRING platform, and key genes were identified using the Cytoscape plugin. GES63067 was selected for validation of the results. Analysis of ferroptosis gene expression during the development of the 2 diseases and prediction of their upstream miRNAs and lncRNAs. In addition, transcription factors (TFs) and miRNAs related to key genes were identified. Effective drugs that act on target genes were found in the DSigDB. The GSE147507 and GSE126848 datasets were crossed to obtain 28 co-regulated genes, 22 gene ontology terms, 3 KEGG pathways, and 10 key genes. NAFLD may affect COVID-19 progression through immune function and inflammatory signaling pathways. CYBB was predicted to be a differential ferroptosis gene associated with 2 diseases, and the CYBB-hsa-miR-196a/b-5p-TUG1 regulatory axis was identified. TF-gene interactions and TF-miRNA coregulatory network were constructed successfully. A total of 10 drugs, (such as Eckol, sulfinpyrazone, and phenylbutazone) were considered as target drugs for Patients with COVID-19 and NAFLD. This study identified key gene and defined molecular mechanisms associated with the progression of COVID-19 and NAFLD. COVID-19 and NAFLD progression may regulate ferroptosis through the CYBB-hsa-miR-196a/b-5p-TUG1 axis. This study provides additional drug options for the treatment of COVID-19 combined with NAFLD disease.
Collapse
Affiliation(s)
- Wenbo Dong
- Shandong Traditional Chinese Medicine University, Jinan, China
| | - Yan Jin
- Shandong Traditional Chinese Medicine University, Jinan, China
| | - Hongshuo Shi
- Shandong Traditional Chinese Medicine University, Jinan, China
| | | | - Jinshu Chen
- Shandong Traditional Chinese Medicine University, Jinan, China
| | - Hongling Jia
- The Second Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Yongchen Zhang
- Shandong Traditional Chinese Medicine University, Jinan, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
12
|
Maleki E, Sadeghpour A, Taherifard E, Izadi B, Pasalar M, Akbari M. The effects of chicory supplementation on liver enzymes and lipid profiles in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis of clinical evidence. Clin Nutr ESPEN 2023; 55:447-454. [PMID: 37202083 DOI: 10.1016/j.clnesp.2023.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND & AIMS The beneficial effects of Cichorium intybus L., chicory, in patients with non-alcoholic fatty liver disease (NAFLD) are controversial. This review aimed to systematically summarize the evidence on the effects of chicory on liver function and lipid profile in patients with NAFLD. METHODS Online databases of Scopus, Web of Science, PubMed, EMBASE, Cochrane Library, and grey literature were searched for relevant randomized clinical trials. Weighted mean differences (WMD) with 95% confidence intervals (CIs) were used as effect sizes and a random-effects model was used to pool the data. Besides, sensitivity analyses and publication bias analysis were performed. RESULTS In total, five articles containing 197 patients with NAFLD were included. The study showed that chicory significantly decreased the levels of both aspartate transaminase (WMD: -7.07 U/L, 95%CI: -13.82 to -0.32) and alanine transaminase (WMD: -17.53 U/L, 95%CI: -32.64 to -2.42). However, no significant effects on alkaline phosphatase and gamma-glutamyl transferase levels and the components of the lipid profile were observed with the use of chicory. CONCLUSIONS This meta-analysis showed that chicory supplementation may exert potential hepatoprotective effects in patients with NAFLD. However, for widespread recommendations, more studies with a higher number of patients and longer periods of intervention are mandatory.
Collapse
Affiliation(s)
- Elham Maleki
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Sadeghpour
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Erfan Taherifard
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz School for Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Izadi
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Pasalar
- Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Akbari
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
13
|
Nemati A, Nikniaz Z, Mota A. Effects of Resveratrol Supplementation on Nonalcoholic Fatty Liver Disease Management. TOP CLIN NUTR 2023. [DOI: 10.1097/tin.0000000000000314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
14
|
1,25-Dihydroxycholecalciferol down-regulates 3-mercaptopyruvate sulfur transferase and caspase-3 in rat model of non-alcoholic fatty liver disease. J Mol Histol 2023; 54:119-134. [PMID: 36930413 DOI: 10.1007/s10735-023-10118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the commonest cause of liver morbidity and mortality and has multiple unclear pathogenic mechanisms. Vitamin D deficiency was associated with increased incidence and severity of NAFLD. Increased hepatic expression of 3-mercaptopyruvate sulfur transferase (MPST) and dysregulated hepatocyte apoptosis were involved in NAFLD pathogenesis. We aimed to explore the protective effect of 1,25-Dihydroxycholecalciferol (1,25-(OH)2 D3) against development of NAFLD and the possible underlying mechanisms, regarding hepatic MPST and caspase-3 expression. 60 male adult rats were divided into 4 and 12 week fed groups; each was subdivided into control, high-fat diet (HFD), and HFD + VD. Serum levels of lipid profile parameters, liver enzymes, insulin, glucose, C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), and hepatic levels of malondialdehyde (MDA), total antioxidant capacity (TAC), and reactive oxygen species (ROS) were measured. BMI and HOMA-IR were calculated, and liver tissues were processed for histopathological and immunohistochemical studies. The present study found that 1,25-(OH)2 D3 significantly decreased BMI, HOMA-IR, serum levels of glucose, insulin, liver enzymes, lipid profile parameters, CRP, TNF-α, hepatic levels of MDA, ROS, hepatic expression of MPST, TNF-α, 8-hydroxy-2'-deoxyguanosine (8-OHdG), and caspase-3; and significantly increased hepatic TAC in both HFD-fed groups. In conclusion: Administration of 1,25-(OH)2 D3 with HFD abolished the NAFLD changes associated with HFD in 4-week group, and markedly attenuated the changes in 12-week group. The anti-apoptotic effect via decrement of caspase-3 and MPST expression are novel mechanisms suggested to be implicated in the protective effect of 1,25-(OH)2 D3.
Collapse
|
15
|
Wikan N, Tocharus J, Oka C, Sivasinprasasn S, Chaichompoo W, Suksamrarn A, Tocharus C. The capsaicinoid nonivamide suppresses the inflammatory response and attenuates the progression of steatosis in a NAFLD-rat model. J Biochem Mol Toxicol 2023; 37:e23279. [PMID: 36541345 DOI: 10.1002/jbt.23279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 04/28/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is relatively associated with comorbidities in obesity and metabolic inflammation. Low-grade inflammation following the high-fat diet (HFD)-induced NAFLD can promote the development of nonalcoholic steatohepatitis (NASH) through particularly liver-resident immune cell recruitment and hepatic nuclear factor kappa B (NF-κB) pathway. Therefore, inflammatory intervention may contribute to NASH reduction. Pelargonic acid vanillylamide (PAVA) or nonivamide is one of the pungent capsaicinoids of Capsicum species and has been found in chili peppers. Our previous study demonstrated that PAVA improved hepatic function, decreased oxidative stress and reduced apoptotic cell death but the insight role of PAVA on NAFLD is still unclear. Thus, this study aimed to investigate the underlying anti-inflammatory mechanism of PAVA in an NAFLD-rat model. Male Sprague Dawley rats were fed with normal diet or HFD for 16 weeks. Then high-fat rats were given vehicle or PAVA (1 mg/kg/day) for another 4 weeks. We found that PAVA alleviated hepatic inflammation associated with the reducing toll-like receptor 4/NF-κB pathway, showing significantly lower recruitment of cluster of differentiation 44. PAVA also maintained activity of insulin signaling pathway, and attenuated NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome formation. NAFLD progresses to NASH through transforming growth factor (TGF-β1), and also recovery to simple stage followed by PAVA suppresses pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1β, interleukin-6, and Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway. Therefore, our findings suggest that PAVA provides a novel therapeutic approach for NAFLD and slows the progression to NASH.
Collapse
Affiliation(s)
- Naruemon Wikan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chio Oka
- Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
16
|
Oates JR, Sawada K, Giles DA, Alarcon PC, Damen MS, Szabo S, Stankiewicz TE, Moreno-Fernandez ME, Divanovic S. Thermoneutral housing shapes hepatic inflammation and damage in mouse models of non-alcoholic fatty liver disease. Front Immunol 2023; 14:1095132. [PMID: 36875069 PMCID: PMC9982161 DOI: 10.3389/fimmu.2023.1095132] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/27/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction Inflammation is a common unifying factor in experimental models of non-alcoholic fatty liver disease (NAFLD) progression. Recent evidence suggests that housing temperature-driven alterations in hepatic inflammation correlate with exacerbated hepatic steatosis, development of hepatic fibrosis, and hepatocellular damage in a model of high fat diet-driven NAFLD. However, the congruency of these findings across other, frequently employed, experimental mouse models of NAFLD has not been studied. Methods Here, we examine the impact of housing temperature on steatosis, hepatocellular damage, hepatic inflammation, and fibrosis in NASH diet, methionine and choline deficient diet, and western diet + carbon tetrachloride experimental models of NAFLD in C57BL/6 mice. Results We show that differences relevant to NAFLD pathology uncovered by thermoneutral housing include: (i) augmented NASH diet-driven hepatic immune cell accrual, exacerbated serum alanine transaminase levels and increased liver tissue damage as determined by NAFLD activity score; (ii) augmented methionine choline deficient diet-driven hepatic immune cell accrual and increased liver tissue damage as indicated by amplified hepatocellular ballooning, lobular inflammation, fibrosis and overall NAFLD activity score; and (iii) dampened western diet + carbon tetrachloride driven hepatic immune cell accrual and serum alanine aminotransferase levels but similar NAFLD activity score. Discussion Collectively, our findings demonstrate that thermoneutral housing has broad but divergent effects on hepatic immune cell inflammation and hepatocellular damage across existing experimental NAFLD models in mice. These insights may serve as a foundation for future mechanistic interrogations focused on immune cell function in shaping NAFLD progression.
Collapse
Affiliation(s)
- Jarren R. Oates
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Keisuke Sawada
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Daniel A. Giles
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Pablo C. Alarcon
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Michelle S.M.A. Damen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Sara Szabo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Traci E. Stankiewicz
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Maria E. Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
17
|
Basak M, Das K, Mahata T, Sengar AS, Verma SK, Biswas S, Bhadra K, Stewart A, Maity B. RGS7-ATF3-Tip60 Complex Promotes Hepatic Steatosis and Fibrosis by Directly Inducing TNFα. Antioxid Redox Signal 2023; 38:137-159. [PMID: 35521658 DOI: 10.1089/ars.2021.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Aims: The pathophysiological mechanism(s) underlying non-alcoholic fatty liver disease (NAFLD) have yet to be fully delineated and only a single drug, peroxisome proliferator-activated receptor (PPAR) α/γ agonist saroglitazar, has been approved. Here, we sought to investigate the role of Regulator of G Protein Signaling 7 (RGS7) in hyperlipidemia-dependent hepatic dysfunction. Results: RGS7 is elevated in the livers of NAFLD patients, particularly those with severe hepatic damage, pronounced insulin resistance, and high inflammation. In the liver, RGS7 forms a unique complex with transcription factor ATF3 and histone acetyltransferase Tip60, which is implicated in NAFLD. The removal of domains is necessary for ATF3/Tip60 binding compromises RGS7-dependent reactive oxygen species generation and cell death. Hepatic RGS7 knockdown (KD) prevented ATF3/Tip60 induction, and it provided protection against fibrotic remodeling and inflammation in high-fat diet-fed mice translating to improvements in liver function. Hyperlipidemia-dependent oxidative stress and metabolic dysfunction were largely reversed in RGS7 KD mice. Interestingly, saroglitazar failed to prevent RGS7/ATF3 upregulation but it did partially restore Tip60 levels. RGS7 drives the release of particularly tumor necrosis factor α (TNFα) from isolated hepatocytes, stellate cells and its depletion reverses steatosis, oxidative stress by direct TNFα exposure. Conversely, RGS7 overexpression in the liver is sufficient to trigger oxidative stress in hepatocytes that can be mitigated via TNFα inhibition. Innovation: We discovered a novel non-canonical function for an R7RGS protein, which usually functions to regulate G protein coupled receptor (GPCR) signaling. This is the first demonstration for a functional role of RGS7 outside the retina and central nervous system. Conclusion: RGS7 represents a potential novel target for the amelioration of NAFLD. Antioxid. Redox Signal. 38, 137-159.
Collapse
Affiliation(s)
| | - Kiran Das
- Centre of Biomedical Research, Lucknow, India
| | | | | | | | - Sayan Biswas
- Department of Forensic Medicine, College of Medicine and Sagore Dutta Hospital, Kolkata, India
| | - Kakali Bhadra
- Department of Zoology, University of Kalyani, Kalyani, India
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida, USA
| | | |
Collapse
|
18
|
Duan Y, Luo J, Pan X, Wei J, Xiao X, Li J, Luo M. Association between inflammatory markers and non-alcoholic fatty liver disease in obese children. Front Public Health 2022; 10:991393. [PMID: 36530698 PMCID: PMC9751435 DOI: 10.3389/fpubh.2022.991393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Background Given the high prevalence of non-alcoholic fatty liver disease (NAFLD) in obese children, non-invasive markers of disease to date are still limited and worth exploring. Objective This study aimed to evaluate the association between inflammatory markers and NAFLD in obese children. Methods We performed a case-control study in Hunan Children's Hospital from September 2020 to September 2021. Study participants were children with obesity diagnosed with NAFLD by abdominal ultrasound examination. Mean platelet volume (MPV), platelet distribution width (PDW), neutrophil, lymphocyte, monocyte, and platelet counts were extracted from medical records and inflammatory cytokines were measured by enzyme-linked immunosorbent assay (ELISA). Multivariable logistic regression analysis was performed to evaluate the association between inflammatory markers and NAFLD. We also used receiver operating characteristic curve analysis to assess the discriminative ability of inflammatory cytokines for NAFLD. Results Two hundred and sixty-seven obese children were enrolled, including 176 NAFLD patients and 91 simple obesity controls. Multivariable logistic model indicated that increased interleukin (IL)-1β [odds ratio (OR) = 1.15, 95% confidence interval (CI): 1.04-1.27], IL-6 (OR = 1.28, 95% CI: 1.07-1.53), and IL-17 (OR = 1.04, 95% CI: 1.02-1.07) levels were significantly associated with NAFLD. In contrast, we observed non-significant associations for IL-8, IL-12, IL-21, IL-32, tumor necrosis factor-α (TNF-α), neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), lymphocyte to monocyte ratio (LMR), mean platelet volume (MPV), and platelet distribution width (PDW) with NAFLD. The area under the curves (AUCs) of IL-1β, IL-6, and IL-17 to discriminate obese children with or without NAFLD were 0.94, 0.94, and 0.97, respectively. Conclusions Our results indicated that IL-1β, IL-6, and IL-17 levels were significantly associated with NAFLD. These inflammatory cytokines may serve as non-invasive markers to determine the development of NAFLD and potentially identify additional avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Yamei Duan
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jiayou Luo
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Xiongfeng Pan
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jia Wei
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Xiang Xiao
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jingya Li
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Miyang Luo
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China,*Correspondence: Miyang Luo
| |
Collapse
|
19
|
Hildebrand Budke CR, Thomaz DMC, Oliveira RJD, Guimarães RDCA, Ramires AD, Dourado DM, Santos EFD, Menezes ACG, Antoniolli-Silva ACMB. Effect of Fiber Supplementation on Systemic Inflammation and Liver Steatosis in Mice Fed with High-Carbohydrate Diets. Metab Syndr Relat Disord 2022; 20:558-566. [PMID: 36318486 DOI: 10.1089/met.2022.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background: High consumption of carbohydrates can trigger metabolic and inflammatory disorders in the body. Thus, the aim of this study was to evaluate the effect of fiber supplementation on inflammation and hepatic steatosis in mice fed high-carbohydrate diets. Methods: Swiss male mice were distributed into two control groups and two experimental groups that received isocaloric diet rich in starch (55%) or rich in fructose (55%). In the last 4 weeks of the experiment, the animals received 5% fructo-oligosaccharide (FOS) supplementation via gavage, or water in the control groups. After 16 weeks, biochemical analyses, inflammatory cytokines, and histology of the liver of the animals were performed. Results: The animals that received fructose had higher weight at the end of the experiment as well as liver weight, consumed more feed, had higher levels of tumor necrosis factor (TNF) and monocyte chemoattractant protein-1 (MCP-1), and a higher degree of hepatic steatosis when compared with the animals that received starch. However, the animals that received starch showed a higher inflammatory process. FOS supplementation was efficient in reducing liver weight and hepatic steatosis degree in animals fed with fructose diet but showed more degeneration of liver tissue and high levels of inflammatory cytokines. FOS reduced the levels of urea and total cholesterol in the starch-fed animals. Conclusions: Diets rich in carbohydrates such as starch and fructose cause deleterious effects in animals, and fiber supplementation can bring beneficial effects.
Collapse
Affiliation(s)
| | | | | | | | - Amariles Diniz Ramires
- Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul/UFMS, Campo Grande, Brazil
| | - Doroty Mesquita Dourado
- Histologia, Universidade para o Desenvolvimento do Estado e Região do Pantanal/Uniderp, Campo Grande, Brazil
| | | | | | | |
Collapse
|
20
|
Larion S, Padgett CA, Butcher JT, Mintz JD, Fulton DJ, Stepp DW. The biological clock enhancer nobiletin ameliorates steatosis in genetically obese mice by restoring aberrant hepatic circadian rhythm. Am J Physiol Gastrointest Liver Physiol 2022; 323:G387-G400. [PMID: 35997288 PMCID: PMC9602907 DOI: 10.1152/ajpgi.00130.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/13/2022] [Accepted: 08/03/2022] [Indexed: 01/31/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is associated with disruption of homeostatic lipid metabolism, but underlying processes are poorly understood. One possible mechanism is impairment in hepatic circadian rhythm, which regulates key lipogenic mediators in the liver and whose circadian oscillation is diminished in obesity. Nobiletin enhances biological rhythms by activating RAR-related orphan receptor nuclear receptor, protecting against metabolic syndrome in a clock-dependent manner. The effect of nobiletin in NAFLD is unclear. In this study, we investigate the clock-enhancing effects of nobiletin in genetically obese (db/db) PER2::LUCIFERASE reporter mice with fatty liver. We report microarray expression data suggesting hepatic circadian signaling is impaired in db/db mice with profound hepatic steatosis. Circadian PER2 activity, as assessed by mRNA and luciferase assay, was significantly diminished in liver of db/db PER2::LUCIFERASE reporter mice. Continuous animal monitoring systems and constant dark studies suggest the primary circadian defect in db/db mice lies within peripheral hepatic oscillators and not behavioral rhythms or the master clock. In vitro, nobiletin restored PER2 amplitude in lipid-laden PER2::LUCIFERASE reporter macrophages. In vivo, nobiletin dramatically upregulated core clock gene expression, hepatic PER2 activity, and ameliorated steatosis in db/db PER2::LUCIFERASE reporter mice. Mechanistically, nobiletin reduced serum insulin levels, decreased hepatic Srebp1c, Acaca1, Tnfα, and Fgf21 expression, but did not improve Plin2, Plin5, or Cpt1, suggesting nobiletin attenuates steatosis in db/db mice via downregulation of hepatic lipid accumulation. These data suggest restoring endogenous rhythm with nobiletin resolves steatosis in obesity, proposing that hypothesis that targeting the biological clock may be an attractive therapeutic strategy for NAFLD.NEW & NOTEWORTHY NAFLD is the most common chronic liver disease, but underlying mechanisms are unclear. We show here that genetically obese (db/db) mice with fatty liver have impaired hepatic circadian rhythm. Hepatic Per2 expression and PER2 reporter activity are diminished in db/db PER2::LUCIFERASE mice. The biological clock-enhancer nobiletin restores hepatic PER2 in db/db PER2::LUCIFERASE mice, resolving steatosis via downregulation of Srebp1c. These studies suggest targeting the circadian clock may be beneficial strategy in NAFLD.
Collapse
Affiliation(s)
- Sebastian Larion
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Caleb A Padgett
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Joshua T Butcher
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - James D Mintz
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - David J Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - David W Stepp
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, Georgia
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
21
|
Xiong J, Chen X, Zhao Z, Liao Y, Zhou T, Xiang Q. A potential link between plasma short‑chain fatty acids, TNF‑α level and disease progression in non‑alcoholic fatty liver disease: A retrospective study. Exp Ther Med 2022; 24:598. [PMID: 35949337 PMCID: PMC9353543 DOI: 10.3892/etm.2022.11536] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
The onset and progression of non-alcoholic fatty liver disease (NAFLD) remains unclear, but short-chain fatty acids (SCFAs) in circulation may participate in its pathogenesis by acting as inflammation inhibitors. The aim of this retrospective study was to investigate plasma concentrations of general SCFAs in healthy individuals and in patients with distinct stages of NAFLD. Three main SCFAs (including acetate, propionate and butyrate) were analyzed by gas chromatography. The plasma TNF-α concentration was measured by ELISA. One-way ANOVA, Spearman's correlation and Pearson's correlation analysis were performed to estimate the associations between SCFAs, TNF-α and disease progression. Multiple linear stepwise regression was computed to explore the predictor variables of TNF-α in circulation. A total of 71 patients with NAFLD [including 27 patients with NAFL, 20 patients with non-alcoholic steatohepatitis (NASH) and 24 patients with NAFLD-related cirrhosis (NAFLD-cirrhosis)] and 9 healthy control (HC) subjects were enrolled for analysis. Although not statistically significant, plasma SCFAs were elevated in patients with NAFL compared with HC subjects, whereas the vast majority of SCFAs were statistically reduced in patients with NASH or NAFLD-cirrhosis compared with patients with NAFL. Plasma SCFAs had no significant differences in NASH or NAFLD-cirrhosis patients compared with HC subjects. In addition, significant negative correlations were observed between TNF-α and SCFAs. The progression of NAFLD (β=0.849; P<0.001) and the decline of the total three SCFA concentrations (β=-0.189; P<0.001) were recognized as independent risk variables related to the elevated peripheral TNF-α in the multiple linear stepwise regression model. Plasma SCFA concentrations may alter with the development of NAFLD and may have a potential link to TNF-α and the progression of NAFLD, which may serve a protective role toward disease advancement. Further mechanistic studies, such as analysis of gastrointestinal microecology, signaling pathways and functions involved in TNF-α, need to be performed. Also, therapeutic supplementation of SCFAs for NASH and NAFLD-cirrhosis needs further research and verification.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Gastroenterology, The Sixth People's Hospital of Chengdu, Chengdu, Sichuan 610051, P.R. China
| | - Xia Chen
- Department of Gastroenterology, The Sixth People's Hospital of Chengdu, Chengdu, Sichuan 610051, P.R. China
| | - Zhijing Zhao
- Department of Gastroenterology, The Sixth People's Hospital of Chengdu, Chengdu, Sichuan 610051, P.R. China
| | - Ying Liao
- Department of Gastroenterology, The Sixth People's Hospital of Chengdu, Chengdu, Sichuan 610051, P.R. China
| | - Ting Zhou
- Department of Gastroenterology, The Sixth People's Hospital of Chengdu, Chengdu, Sichuan 610051, P.R. China
| | - Qian Xiang
- Department of Gastroenterology, The Sixth People's Hospital of Chengdu, Chengdu, Sichuan 610051, P.R. China
| |
Collapse
|
22
|
Update on Non-Alcoholic Fatty Liver Disease-Associated Single Nucleotide Polymorphisms and Their Involvement in Liver Steatosis, Inflammation, and Fibrosis: A Narrative Review. IRANIAN BIOMEDICAL JOURNAL 2022; 26:252-68. [PMID: 36000237 PMCID: PMC9432469 DOI: 10.52547/ibj.3647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Genetic factors are involved in the development, progression, and severity of NAFLD. Polymorphisms in genes regulating liver functions may increase liver susceptibility to NAFLD. Therefore, we conducted this literature study to present recent findings on NAFLD-associated polymorphisms from published articles in PubMed from 2016 to 2021. From 69 selected research articles, 20 genes and 34 SNPs were reported to be associated with NAFLD. These mutated genes affect NAFLD by promoting liver steatosis (PNPLA3, MBOAT7, TM2SF6, PTPRD, FNDC5, IL-1B, PPARGC1A, UCP2, TCF7L2, SAMM50, IL-6, AGTR1, and NNMT), inflammation (PNPLA3, TNF-α, AGTR1, IL-17A, IL-1B, PTPRD, and GATAD2A), and fibrosis (IL-1B, PNPLA3, MBOAT7, TCF7L2, GATAD2A, IL-6, NNMT, UCP, AGTR1, and TM2SF6). The identification of these genetic factors helps to better understand the pathogenesis pathways of NAFLD
Collapse
|
23
|
Duan Y, Pan X, Luo J, Xiao X, Li J, Bestman PL, Luo M. Association of Inflammatory Cytokines With Non-Alcoholic Fatty Liver Disease. Front Immunol 2022; 13:880298. [PMID: 35603224 PMCID: PMC9122097 DOI: 10.3389/fimmu.2022.880298] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/11/2022] [Indexed: 01/30/2023] Open
Abstract
Background Inflammatory cytokines have been considered to be significant factors contributing to the development and progression of non-alcoholic fatty liver disease (NAFLD). However, the role of inflammatory cytokines in NAFLD remains inconclusive. Objective This study aimed to evaluate the association between inflammatory cytokines and NAFLD. Methods PubMed, Web of Science, the Cochrane Library, and EMBASE databases were searched until 31 December 2021 to identify eligible studies that reported the association of inflammatory cytokine with NAFLD and its subtypes. We pooled odds ratios (ORs) and hazard risk (HRs) with 95% confidence intervals (CIs) and conducted heterogeneity tests. Sensitivity analysis and analysis for publication bias were also carried out. Results The search in the databases identified 51 relevant studies that investigated the association between 19 different inflammatory cytokines and NAFLD based on 36,074 patients and 47,052 controls. The results of the meta-analysis showed significant associations for C-reactive protein (CRP), interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and intercellular adhesion molecule-1 (ICAM-1) with NAFLD (ORs of 1.41, 1.08, 1.50, 1.15 and 2.17, respectively). In contrast, we observed non-significant associations for interferon-γ (IFN-γ), insulin-like growth factor (IGF-II), interleukin-2 (IL-2), interleukin-4 (IL-4), interleukin-5 (IL-5), interleukin-7 (IL-7), interleukin-8 (IL-8), interleukin-10 (IL-10), interleukin-12 (IL-12), monocyte chemoattractant protein-1(MCP-1), and transforming growth factor-β (TGF-β) with NAFLD. Our results also showed that CRP, IL-1β, and TNF-α were significantly associated with non-alcoholic steatohepatitis (NASH) and hepatic fibrosis. Conclusions Our results indicated that increased CRP, IL‐1β, IL-6, TNF‐α, and ICAM-1 concentrations were significantly associated with increased risks of NAFLD. These inflammatory mediators may serve as biomarkers for NAFLD subjects and expect to provide new insights into the aetiology of NAFLD as well as early diagnosis and intervention.
Collapse
Affiliation(s)
- Yamei Duan
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiongfeng Pan
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jiayou Luo
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiang Xiao
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jingya Li
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Prince L. Bestman
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Miyang Luo
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- *Correspondence: Miyang Luo,
| |
Collapse
|
24
|
Torre P, Motta BM, Sciorio R, Masarone M, Persico M. Inflammation and Fibrogenesis in MAFLD: Role of the Hepatic Immune System. Front Med (Lausanne) 2021; 8:781567. [PMID: 34957156 PMCID: PMC8695879 DOI: 10.3389/fmed.2021.781567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic (dysfunction)-associated fatty liver disease (MAFLD) is the definition recently proposed to better circumscribe the spectrum of conditions long known as non-alcoholic fatty liver disease (NAFLD) that range from simple steatosis without inflammation to more advanced liver diseases. The progression of MAFLD, as well as other chronic liver diseases, toward cirrhosis, is driven by hepatic inflammation and fibrogenesis. The latter, result of a "chronic wound healing reaction," is a dynamic process, and the understanding of its underlying pathophysiological events has increased in recent years. Fibrosis progresses in a microenvironment where it takes part an interplay between fibrogenic cells and many other elements, including some cells of the immune system with an underexplored or still unclear role in liver diseases. Some therapeutic approaches, also acting on the immune system, have been probed over time to evaluate their ability to improve inflammation and fibrosis in NAFLD, but to date no drug has been approved to treat this condition. In this review, we will focus on the contribution of the liver immune system in the progression of NAFLD, and on therapies under study that aim to counter the immune substrate of the disease.
Collapse
Affiliation(s)
- Pietro Torre
- Internal Medicine and Hepatology Unit, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Salerno, Italy
| | - Benedetta Maria Motta
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Roberta Sciorio
- Internal Medicine and Hepatology Unit, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Salerno, Italy
| | - Mario Masarone
- Internal Medicine and Hepatology Unit, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Salerno, Italy
| | - Marcello Persico
- Internal Medicine and Hepatology Unit, Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Salerno, Italy
| |
Collapse
|
25
|
Pyun DH, Kim TJ, Park SY, Lee HJ, Abd El-Aty AM, Jeong JH, Jung TW. Patchouli alcohol ameliorates skeletal muscle insulin resistance and NAFLD via AMPK/SIRT1-mediated suppression of inflammation. Mol Cell Endocrinol 2021; 538:111464. [PMID: 34601002 DOI: 10.1016/j.mce.2021.111464] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 02/06/2023]
Abstract
Obesity-induced chronic low-grade inflammation and thus causes various metabolic diseases, such as insulin resistance and non-alcoholic fatty liver disease (NAFLD). Patchouli alcohol (PA), an active component extracted from patchouli, displayed anti-inflammatory effects on different cell types. However, the impact of PA on skeletal muscle insulin signaling and hepatic lipid metabolism remains unclear. This study aimed to investigate whether PA would affect insulin signaling impairment in myocytes and lipid metabolism in hepatocytes. Treatment with PA ameliorated palmitate-induced inflammation and aggravation of insulin signaling in C2C12 myocytes and lipid accumulation in HepG2 hepatocytes. Treatment of C2C12 myocytes and HepG2 cells with PA augmented AMP-activated protein kinase (AMPK) phosphorylation and Sirtuin 1 (SIRT1) expression in a dose-dependent manner. siRNA-mediated suppression of AMPK or SIRT1 mitigated the effects of PA on palmitate-induced inflammation and insulin resistance in C2C12 myocytes and lipid accumulation in HepG2 cells. Animal experiments demonstrated that PA administration increased AMPK phosphorylation and SIRT1 expression, and ameliorated inflammation, thereby attenuating skeletal muscle insulin resistance and hepatic steatosis in high-fat diet-fed mice. These results denote that PA alleviates skeletal muscle insulin resistance and hepatic steatosis through AMPK/SIRT1-dependent signaling. This study might provide a novel therapeutic approach for treating obesity-related insulin resistance and NAFLD.
Collapse
Affiliation(s)
- Do Hyeon Pyun
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Tae Jin Kim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Seung Yeon Park
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea; Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Dare A, Channa ML, Nadar A. L-ergothioneine and metformin alleviates liver injury in experimental type-2 diabetic rats via reduction of oxidative stress, inflammation, and hypertriglyceridemia. Can J Physiol Pharmacol 2021; 99:1137-1147. [PMID: 34582252 DOI: 10.1139/cjpp-2021-0247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type-2 diabetes (T2D) is associated with liver toxicity. L-ergothioneine (L-egt) has been reported to reduce toxicity in tissues exposed to injury, while metformin is commonly prescribed to manage T2D. Hence, this study evaluates the hepatoprotective role of L-egt, with or without metformin, in T2D male rats. A total of 36 adult male Sprague-Dawley rats were randomly divided into non-diabetic (n = 12) and diabetic (n = 24) groups. After induction of diabetes, animals were divided into six groups (n = 6) and treated orally either with deionized water, L-egt (35 mg/kg bodyweight (bwt)), metformin (500 mg/kg bwt), or a combination of L-egt and metformin for 7 weeks. Body weight and blood glucose were monitored during the experiment. Thereafter, animals were euthanized and liver tissue was excised for biochemical, ELISA, real-time quantitative PCR, and histopathological analysis. L-egt with or without metformin reduced liver hypertrophy, liver injury, triglycerides, oxidative stress, and inflammation. Also, L-egt normalized mRNA expression of SREBP-1c, fatty acid synthase, nuclear factor kappa B, transforming growth factor β1, nuclear factor erythroid 2-related factor 2, and sirtuin-1 in diabetic rats. Furthermore, co-administration of L-egt with metformin to diabetic rats reduced blood glucose and insulin resistance. These results provide support to the therapeutic benefits of L-egt in the management of liver complications associated with T2D.
Collapse
Affiliation(s)
- Ayobami Dare
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban X54001, South Africa
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban X54001, South Africa
| | - Mahendra L Channa
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban X54001, South Africa
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban X54001, South Africa
| | - Anand Nadar
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban X54001, South Africa
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban X54001, South Africa
| |
Collapse
|
27
|
Slaughter VL, Rumsey JW, Boone R, Malik D, Cai Y, Sriram NN, Long CJ, McAleer CW, Lambert S, Shuler ML, Hickman JJ. Validation of an adipose-liver human-on-a-chip model of NAFLD for preclinical therapeutic efficacy evaluation. Sci Rep 2021; 11:13159. [PMID: 34162924 PMCID: PMC8222323 DOI: 10.1038/s41598-021-92264-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and strongly correlates with the growing incidence of obesity and type II diabetes. We have developed a human-on-a-chip model composed of human hepatocytes and adipose tissue chambers capable of modeling the metabolic factors that contribute to liver disease development and progression, and evaluation of the therapeutic metformin. This model uses a serum-free, recirculating medium tailored to represent different human metabolic conditions over a 14-day period. The system validated the indirect influence of adipocyte physiology on hepatocytes that modeled important aspects of NAFLD progression, including insulin resistant biomarkers, differential adipokine signaling in different media and increased TNF-α-induced steatosis observed only in the two-tissue model. This model provides a simple but unique platform to evaluate aspects of an individual factor's contribution to NAFLD development and mechanisms as well as evaluate preclinical drug efficacy and reassess human dosing regimens.
Collapse
Affiliation(s)
- Victoria L Slaughter
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - John W Rumsey
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL, 32826, USA
| | - Rachel Boone
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Duaa Malik
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Yunqing Cai
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL, 32826, USA
| | | | - Christopher J Long
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL, 32826, USA
| | | | - Stephen Lambert
- College of Medicine, University of Central Florida, 6850 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Michael L Shuler
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL, 32826, USA
| | - J J Hickman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA.
- Hesperos, Inc., 12501 Research Parkway, Suite 100, Orlando, FL, 32826, USA.
| |
Collapse
|
28
|
Acharya P, Chouhan K, Weiskirchen S, Weiskirchen R. Cellular Mechanisms of Liver Fibrosis. Front Pharmacol 2021; 12:671640. [PMID: 34025430 PMCID: PMC8134740 DOI: 10.3389/fphar.2021.671640] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
The liver is a central organ in the human body, coordinating several key metabolic roles. The structure of the liver which consists of the distinctive arrangement of hepatocytes, hepatic sinusoids, the hepatic artery, portal vein and the central vein, is critical for its function. Due to its unique position in the human body, the liver interacts with components of circulation targeted for the rest of the body and in the process, it is exposed to a vast array of external agents such as dietary metabolites and compounds absorbed through the intestine, including alcohol and drugs, as well as pathogens. Some of these agents may result in injury to the cellular components of liver leading to the activation of the natural wound healing response of the body or fibrogenesis. Long-term injury to liver cells and consistent activation of the fibrogenic response can lead to liver fibrosis such as that seen in chronic alcoholics or clinically obese individuals. Unidentified fibrosis can evolve into more severe consequences over a period of time such as cirrhosis and hepatocellular carcinoma. It is well recognized now that in addition to external agents, genetic predisposition also plays a role in the development of liver fibrosis. An improved understanding of the cellular pathways of fibrosis can illuminate our understanding of this process, and uncover potential therapeutic targets. Here we summarized recent aspects in the understanding of relevant pathways, cellular and molecular drivers of hepatic fibrosis and discuss how this knowledge impact the therapy of respective disease.
Collapse
Affiliation(s)
- Pragyan Acharya
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Komal Chouhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
29
|
Milaciu MV, Ciumărnean L, Matei DM, Vesa ȘC, Sabin O, Bocșan IC, Pop RM, Negrean V, Buzoianu AD, Acalovschi M. Cytokines, paraoxonase-1, periostin and non-invasive liver fibrosis scores in patients with non-alcoholic fatty liver disease and persistently elevated aminotransferases: A pilot study. Exp Ther Med 2021; 21:533. [PMID: 33815606 PMCID: PMC8014973 DOI: 10.3892/etm.2021.9965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. The aim of this study was to evaluate the possible association between paraoxonase-1 (PON1), periostin (POSTN), tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-10 serum concentration with non-invasive liver fibrosis scores, in a cohort of patients with NAFLD. We studied a cohort of 52 patients diagnosed with NAFLD. The NAFLD fibrosis score (NFS), Fibrosis-4 Index (FIB-4), AST to platelet ratio index (APRI) and BARD scores were calculated for each patient. We determined the PON1, POSTN, TNF-α, IL-6, and IL-10 serum values using ELISA kits. There was no correlation between PON1 or POSTN serum levels and non-invasive liver fibrosis. The TNF-α serum values were independently associated with the liver fibrosis scores (P=0.02 for NFS and P=0.002 for FIB-4). Age and metabolic syndrome were also independently linked to the fibrosis scores. In conclusion, serum levels of TNF-α, age and metabolic syndrome were associated with the non-invasive liver fibrosis scores.
Collapse
Affiliation(s)
- Mircea Vasile Milaciu
- Department 5-Internal Medicine, 4th Medical Clinic, Faculty of Medicine, ‘Iuliu Haţieganu’ University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania
| | - Lorena Ciumărnean
- Department 5-Internal Medicine, 4th Medical Clinic, Faculty of Medicine, ‘Iuliu Haţieganu’ University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania
| | - Daniela Maria Matei
- Department 5-Internal Medicine, 3rd Medical Clinic, Faculty of Medicine, ‘Iuliu Haţieganu’ University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Ștefan Cristian Vesa
- Department 2-Functional Sciences, Discipline of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, ‘Iuliu Haţieganu’ University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Octavia Sabin
- Department 2-Functional Sciences, Discipline of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, ‘Iuliu Haţieganu’ University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Ioana Corina Bocșan
- Department 2-Functional Sciences, Discipline of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, ‘Iuliu Haţieganu’ University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Raluca Maria Pop
- Department 2-Functional Sciences, Discipline of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, ‘Iuliu Haţieganu’ University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Vasile Negrean
- Department 5-Internal Medicine, 4th Medical Clinic, Faculty of Medicine, ‘Iuliu Haţieganu’ University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania
| | - Anca Dana Buzoianu
- Department 5-Internal Medicine, 3rd Medical Clinic, Faculty of Medicine, ‘Iuliu Haţieganu’ University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Monica Acalovschi
- Doctoral School, ‘Iuliu Haţieganu’ University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
30
|
Koh YC, Lin YC, Lee PS, Lu TJ, Lin KY, Pan MH. A multi-targeting strategy to ameliorate high-fat-diet- and fructose-induced (western diet-induced) non-alcoholic fatty liver disease (NAFLD) with supplementation of a mixture of legume ethanol extracts. Food Funct 2021; 11:7545-7560. [PMID: 32815965 DOI: 10.1039/d0fo01405b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
NAFLD (non-alcoholic fatty liver disease) is a multifactorial liver disease related to multiple causes or unhealthy conditions, including obesity and chronic inflammation. The accumulation of excess triglycerides, called steatosis, is known as a hallmark of an imbalance between the rates of hepatic fatty acid uptake/synthesis and oxidation/export. Furthermore, occurrence of NAFLD may lead to a cocktail of disease consequences caused by the altered metabolism of glucose, lipids, and lipoproteins, for instance, insulin resistance, type II diabetes, nonalcoholic steatohepatitis (NASH), liver fibrosis, and even hepatocarcinogenesis. Due to the complexity of the occurrence of NAFLD, a multi-targeting strategy is highly recommended to effectively address the issue and combat the causal loop. Ethanol extracts of legumes are popular supplements due to their richness and diversity in phytochemicals, especially isoflavones and anthocyanins. Although many of them have been reported to have efficacy in the treatment of different metabolic syndromes and obesity, there have not been many studies on them as a supplemental mixture. In this study, the alleviative effects of selected legume ethanol extracts (CrE) on high-fat-diet- and fructose-induced obesity, liver steatosis, and hyperglycemia are discussed. As revealed by the findings, CrE not only ameliorated obesity in terms of weight gained and enlargement of adipose tissue, but also significantly reduced the incidence of steatosis via phosphorylation of AMPK, resulting in inhibition of the downstream SREBP-1c/FAS pathway and an increase in an indicator of β-oxidation (carnitine palmitoyl transferase 1a, CPT1A). Furthermore, CrE dramatically alleviated inflammatory responses, including both plasma and hepatic TNF-α, IL-6, and MCP-1 levels. CrE also had attenuating effects on hyperglycemia and insulin resistance and significantly reduced the fasting glucose level, fasting insulin level, and plasma leptin, and it exhibited positive effects in the Oral glucose tolerance test (OGTT) and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR). At the molecular level, CrE could activate the PI3K/Akt/Glut2 pathway, which indicated an increase in insulin sensitivity and glucose uptake. Taken together, these results suggest that ethanol extracts of legumes could be potential supplements for metabolic syndromes, and their efficacy and effectiveness might facilitate the multi-targeting strategy required to mitigate NAFLD.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Yen-Cheng Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Pei-Sheng Lee
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Ting-Jang Lu
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Kai-Yi Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan. and Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan and Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
31
|
Zhao M, Chen S, Ji X, Shen X, You J, Liang X, Yin H, Zhao L. Current innovations in nutraceuticals and functional foods for intervention of non-alcoholic fatty liver disease. Pharmacol Res 2021; 166:105517. [PMID: 33636349 DOI: 10.1016/j.phrs.2021.105517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/27/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023]
Abstract
As innovations in global agricultural production and food trading systems lead to major dietary shifts, high morbidity rates from non-alcoholic fatty liver disease (NAFLD), accompanied by elevated risk of lipid metabolism-related complications, has emerged as a growing problem worldwide. Treatment and prevention of NAFLD and chronic liver disease depends on the availability of safe, effective, and diverse therapeutic agents, the development of which is urgently needed. Supported by a growing body of evidence, considerable attention is now focused on interventional approaches that combines nutraceuticals and functional foods. In this review, we summarize the pathological progression of NAFLD and discuss the beneficial effects of nutraceuticals and the active ingredients in functional foods. We also describe the underlying mechanisms of these compounds in the intervention of NAFLD, including their effects on regulation of lipid homeostasis, activation of signaling pathways, and their role in gut microbial community dynamics and the gut-liver axis. In order to identify novel targets for treatment of lipid metabolism-related diseases, this work broadly explores the molecular mechanism linking nutraceuticals and functional foods, host physiology, and gut microbiota. Additionally, the limitations in existing knowledge and promising research areas for development of active interventions and treatments against NAFLD are discussed.
Collapse
Affiliation(s)
- Mengyao Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Shumin Chen
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoguo Ji
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Xin Shen
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Jiangshan You
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyi Liang
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Yin
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai 200003, China.
| | - Liming Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; School of Life Science, Shandong University of Technology, Zibo, Shandong 255000, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China.
| |
Collapse
|
32
|
Damavandi N, Zeinali S. Association of xenobiotic-metabolizing enzymes (GSTM1 and GSTT 1), and pro-inflammatory cytokines (TNF-α and IL-6) genetic polymorphisms with non-alcoholic fatty liver disease. Mol Biol Rep 2021; 48:1225-1231. [PMID: 33492571 DOI: 10.1007/s11033-021-06142-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
Previous studies have revealed that genetic polymorphisms of the Glutathione S-transferase M1 and T1 (GSTM1 and GSTT1), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6) are associated with the presence of non-alcoholic fatty liver disease (NAFLD) in many populations. This study was conducted to investigate the association of the GSTM1, GSTT1, TNF-α rs1800629, and IL-6 rs1800795 with NAFLD in the general Iranian population. A case-control analysis included 242 NAFLD patients and 324 healthy controls from Iranian adults. After the physical examination, the genotypes were determined by polymerase chain reaction(PCR). The GSTM1 null, GSTT1 null, TNF-α AG/AA, and IL-6 CG/CC genotypes were deemed to be high-risk. The null allele of GSTM1 and A allele of TNF-α were more frequent in NAFLD patients even after Bonferroni's correction (P values<0.005, adjusted odds ratio (OR), 1.66 and 2.02; 95% confidence intervals (CI), (1.18-2.32) and (1.34-3.34), respectively. The IL-6 CC/CG genotype association with NAFLD was not significant after correction (P value = 0.04) Polymorphisms of xenobiotic and pro-inflammatory genes are associated with NAFLD in the Iranian population and seem to be a useful tool for NAFLD prevention and care.
Collapse
Affiliation(s)
- Narges Damavandi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.,Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran
| | - Sirous Zeinali
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran. .,Dr. Zeinali's Medical Genetics Laboratory, Kawsar Human Genetics Research Center, Tehran, Iran. .,Department of Molecular Medicine, Pasteur Institute of Iran, Biotechnology Research Center, Tehran, Iran.
| |
Collapse
|
33
|
Kozaczek M, Bottje W, Kong B, Dridi S, Albataineh D, Lassiter K, Hakkak R. Long-Term Soy Protein Isolate Consumption Reduces Liver Steatosis Through Changes in Global Transcriptomics in Obese Zucker Rats. Front Nutr 2020; 7:607970. [PMID: 33363197 PMCID: PMC7759473 DOI: 10.3389/fnut.2020.607970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
To determine how soy protein isolate (SPI) ameliorated liver steatosis in male obese Zucker rats, we conducted global transcriptomic expression (RNAseq) analysis on liver samples of male rats fed either the SPI or a control casein (CAS)-based diet (n = 8 per group) for 16 weeks. Liver transcriptomics were analyzed using an Ilumina HiSeq system with 2 × 100 base pair paired-end reads method. Bioinformatics was conducted using Ingenuity Pathway Analysis (IPA) software (Qiagen, CA) with P < 0.05 and 1.3-fold differential expression cutoff values. Regression analysis between RNAseq data and targeted mRNA expression analysis of 12 top differentially expressed genes (from the IPA program) using quantitative PCR (qPCR) revealed a significant regression analysis (r2 = 0.69, P = 0.0008). In addition, all qPCR values had qualitatively similar direction of up- or down-regulation compared to the RNAseq transcriptomic data. Diseases and function analyses that were based on differentially expressed target molecules in the dataset predicted that lipid metabolism would be enhanced whereas inflammation was predicted to be inhibited in SPI-fed compared to CAS-fed rats at 16 weeks. Combining upstream regulator and regulator effects functions in IPA facilitates the prediction of upstream regulators (e.g., transcription regulators) that could play important roles in attenuating or promoting liver steatosis due to SPI or CAS diets. Upstream regulators that were predicted to be activated (from expression of down-stream targets) linked to increased conversion of lipid and transport of lipid in SPI-fed rats included hepatocyte nuclear factor 4 alpha (HNF4A) and aryl hydrocarbon receptor (AHR). Upstream regulators that were predicted to be activated in CAS-fed rats linked to activation of phagocytosis and neutrophil chemotaxis included colony stimulating factor 2 and tumor necrosis factor. The results provide clear indication that long-term SPI-fed rats exhibited diminished inflammatory response and increased lipid transport in liver compared to CAS-fed rats that likely would contribute to reduced liver steatosis in this obese Zucker rat model.
Collapse
Affiliation(s)
- Melisa Kozaczek
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Poultry Science & The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Walter Bottje
- Department of Poultry Science & The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Byungwhi Kong
- Department of Poultry Science & The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Department of Poultry Science & The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Diyana Albataineh
- Department of Poultry Science & The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Kentu Lassiter
- Department of Poultry Science & The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Reza Hakkak
- Department of Poultry Science & The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| |
Collapse
|
34
|
Rafiee S, Mohammadi H, Ghavami A, Sadeghi E, Safari Z, Askari G. Efficacy of resveratrol supplementation in patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis of clinical trials. Complement Ther Clin Pract 2020; 42:101281. [PMID: 33321448 DOI: 10.1016/j.ctcp.2020.101281] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/02/2020] [Accepted: 11/25/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and refers to the accumulation of triglycerides in hepatocytes. Recent studies have showed that resveratrol (antioxidant of grape) can be effective in the treatment of NAFLD through its inhibitory effect on lipid accumulation. METHOD We systematically searched databases including: ISI web of science, Scopus, PubMed and Embase by using related keywords. Then, by considering inclusion and exclusion criteria, appropriate articles were selected. All the analyses were conducted in Review Manager (RevMan) Version 5.3. RESULTS Finally, 6 RCTs were included in meta-analysis and systematic review. Our results showed that resveratrol supplementation significantly reduced levels of TNF-alpha (SMD = -0.46; 95% CI (-0.78, 0.14); P = 0.005) and hs-CRP (SMD = -0.53; 95% CI (-1.01, -0.05); P = 0.030), but for other markers (BW, BMI, WC, HC, WHR, SBP, DBP, ALT, AST, GGT, ALP, bilirubin, TC, TG, HDL, LDL, LDL to HDL ratio, apo-A1, apo-B, insulin, HOMA-IR, glucose, creatinine and IL-6), no significant change was observed. CONCLUSION Overall, the results of the present study show that resveratrol supplementation does not affect the management of NAFLD although it can improve some inflammatory markers.
Collapse
Affiliation(s)
- Sahar Rafiee
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Abed Ghavami
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Erfan Sadeghi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Department of Biostatistics and Epidemiology, Faculty of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Biostatistics and Epidemiology, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Safari
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
35
|
Musaogullari A, Chai YC. Redox Regulation by Protein S-Glutathionylation: From Molecular Mechanisms to Implications in Health and Disease. Int J Mol Sci 2020; 21:ijms21218113. [PMID: 33143095 PMCID: PMC7663550 DOI: 10.3390/ijms21218113] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
S-glutathionylation, the post-translational modification forming mixed disulfides between protein reactive thiols and glutathione, regulates redox-based signaling events in the cell and serves as a protective mechanism against oxidative damage. S-glutathionylation alters protein function, interactions, and localization across physiological processes, and its aberrant function is implicated in various human diseases. In this review, we discuss the current understanding of the molecular mechanisms of S-glutathionylation and describe the changing levels of expression of S-glutathionylation in the context of aging, cancer, cardiovascular, and liver diseases.
Collapse
|
36
|
Shabalala SC, Dludla PV, Mabasa L, Kappo AP, Basson AK, Pheiffer C, Johnson R. The effect of adiponectin in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and the potential role of polyphenols in the modulation of adiponectin signaling. Biomed Pharmacother 2020; 131:110785. [PMID: 33152943 DOI: 10.1016/j.biopha.2020.110785] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide, as it affects up to 30 % of adults in Western countries. Moreover, NAFLD is also considered an independent risk factor for cardiovascular diseases. Insulin resistance and inflammation have been identified as key factors in the pathophysiology of NAFLD. Although the mechanisms associated with the development of NAFLD remain to be fully elucidated, a complex interaction between adipokines and cytokines appear to play a crucial role in the development of this condition. Adiponectin is the most common adipokine known to be inversely linked with insulin resistance, lipid accumulation, inflammation and NAFLD. Consequently, the focus has been on the use of new therapies that may enhance hepatic expression of adiponectin downstream targets or increase the serum levels of adiponectin in the treatment NAFLD. While currently used therapies show limited efficacy in this aspect, accumulating evidence suggest that various dietary polyphenols may stimulate adiponectin levels, offering potential protection against the development of insulin resistance, inflammation and NAFLD as well as associated conditions of metabolic syndrome. As such, this review provides a better understanding of the role polyphenols play in modulating adiponectin signaling to protect against NAFLD. A brief discussion on the regulation of adiponectin during disease pathophysiology is also covered to underscore the potential protective effects of polyphenols against NAFLD. Some of the prominent polyphenols described in the manuscript include aspalathin, berberine, catechins, chlorogenic acid, curcumin, genistein, piperine, quercetin, and resveratrol.
Collapse
Affiliation(s)
- Samukelisiwe C Shabalala
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60131, Italy
| | - Lawrence Mabasa
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa
| | - Abidemi P Kappo
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Albertus K Basson
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Department of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Department of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa.
| |
Collapse
|
37
|
Hong KS, Kim MC, Ahn JH. Sarcopenia Is an Independent Risk Factor for NAFLD in COPD: A Nationwide Survey (KNHANES 2008-2011). Int J Chron Obstruct Pulmon Dis 2020; 15:1005-1014. [PMID: 32440112 PMCID: PMC7213902 DOI: 10.2147/copd.s249534] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is highly prevalent in patients with chronic obstructive pulmonary disease (COPD) and is independently associated with cardiometabolic comorbidities and systemic inflammation. Although several factors are associated with NAFLD, the influence of sarcopenia on NAFLD has not been fully determined in patients with COPD. We explored whether sarcopenia is associated with NAFLD in a COPD population. Methods Data from the Korean National Health and Nutrition Examination Surveys 2008–2011 were analyzed. The subjects were defined as having NAFLD when they had a hepatic steatosis index (HSI) score >36, which is a previously validated NAFLD prediction score. Sarcopenia_BMI (=total appendicular skeletal muscle mass [kg]/body mass index [kg/m2]), sarcopenia_BW (=total appendicular skeletal muscle mass [kg]/body weight [kg] × 100), and sarcopenia_height (= total appendicular skeletal muscle mass (kg)/height2 (m)) measured using dual-energy X-ray absorptiometry was used to diagnose sarcopenia. Results NAFLD was identified in 124 (14.6%) of 850 COPD subjects using the HSI. Multivariable logistic analyses adjusted for age, sex, hypertension, diabetes mellitus (DM), forced vital capacity (FVC), and metabolic syndrome demonstrated that sarcopenia (sarcopenia_BMI, odds ratio [OR] = 1.95; 95% confidence interval [CI], 1.11–3.46, p = 0.022; sarcopenia_BW, OR = 2.25; 95% CI, 1.30–3.92, p = 0.004) was associated with NAFLD in patients with COPD. The proportion of sarcopenia_BMI was higher in patients with a high fibrotic burden from NAFLD (Q3, Q4) than in subjects with a low fibrotic burden from NALFD (Q1, Q2) (54.8% vs 24.2%, p = 0.024). The proportion of sarcopenia_BW was also higher in patients with a high fibrotic burden from NAFLD than in patients with a low fibrotic burden from NAFLD (51.6% vs 30.6%, p = 0.029). Conclusion Sarcopenia was associated with an increased risk for NAFLD in patients with COPD, independent of age, sex, lung function, and metabolic factors. Sarcopenic COPD was also associated with a high fibrotic burden in NAFLD patients. Pulmonologists should be aware of possible liver comorbidities in the sarcopenic COPD phenotype.
Collapse
Affiliation(s)
- Kyung Soo Hong
- Division of Pulmonary and Allergy, Department of Internal Medicine, College of Medicine, Yeungnam University and Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, South Korea
| | - Min Cheol Kim
- Division of Gastroenterology, Department of Internal Medicine, Yeungnam University Medical Center, College of Medicine, Yeungnam University, Daegu, South Korea
| | - June Hong Ahn
- Division of Pulmonary and Allergy, Department of Internal Medicine, College of Medicine, Yeungnam University and Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, South Korea
| |
Collapse
|
38
|
Zhong GC, Liu S, Wu YL, Xia M, Zhu JX, Hao FB, Wan L. ABO blood group and risk of newly diagnosed nonalcoholic fatty liver disease: A case-control study in Han Chinese population. PLoS One 2019; 14:e0225792. [PMID: 31800606 PMCID: PMC6892526 DOI: 10.1371/journal.pone.0225792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/12/2019] [Indexed: 01/02/2023] Open
Abstract
Background ABO blood group has been associated with cardiovascular disease and cancer. However, whether ABO blood group is associated with nonalcoholic fatty liver disease (NAFLD) remains unknown. The present study aimed to clarify this issue. Methods A hospital-based case-control study was performed in southwestern China. A total of 583 newly ultrasound-diagnosed NAFLD cases and 2068 controls were included. The adjusted odds ratios (ORs) and 95% confidence intervals (CIs) of developing NAFLD were calculated by multivariate logistic regression. A propensity score was developed for adjustment and matching. Results The proportions of blood groups A, B, AB and O were 31%, 26%, 8% and 35%, respectively. Non-O blood groups were found to be significantly associated with an increased risk of NAFLD (the fully adjusted OR = 1.51, 95% CI: 1.19, 1.91); moreover, compared with blood group O, the fully adjusted ORs of developing NAFLD were 1.50 (95% CI: 1.13, 1.99) for blood group A, 1.59 (95% CI: 1.19, 2.14) for blood group B, and 1.37 (95% CI: 0.86, 2.18) for blood group AB. Similar results were obtained in both propensity-score-adjusted and propensity-score-matched analyses. No evidence of significant effect modification for the association of ABO blood group with the risk of NAFLD was found (all Pinteraction>0.05). Conclusions Non-O blood groups are significantly associated with an increased risk of NAFLD. Our findings provide some epidemiological evidence for a possible role of ABO glycosyltransferase in the pathogenesis of NAFLD. However, these findings need to be validated by future studies.
Collapse
Affiliation(s)
- Guo-Chao Zhong
- Graduate School, Chongqing Medical University, Chongqing, China
| | - Shan Liu
- Department of Pediatrics, the People’s Hospital of Dazu District, Chongqing, China
| | - Yi-Lin Wu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mei Xia
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin-Xian Zhu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fa-Bao Hao
- Pediatric Surgery Center, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, Shandong, China
| | - Lun Wan
- Department of Hepatobiliary Surgery, the People’s Hospital of Dazu District, Chongqing, China
- * E-mail:
| |
Collapse
|
39
|
Zeaxanthin Dipalmitate in the Treatment of Liver Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1475163. [PMID: 31531108 PMCID: PMC6721266 DOI: 10.1155/2019/1475163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/16/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
Goji berry, Lycium barbarum, has been widely used in traditional Chinese medicine (TCM), but its properties have not been studied until recently. The fruit is a major source of zeaxanthin dipalmitate (ZD), a xanthophyll carotenoid shown to benefit the liver. Liver disease is one of the most prevalent diseases in the world. Some conditions, such as chronic hepatitis B virus, liver cirrhosis, and hepatocellular carcinoma, remain incurable. Managing them can constitute an economic burden for patients and healthcare systems. Hence, development of more effective pharmacological drugs is warranted. Studies have shown the hepatoprotective, antifibrotic, antioxidant, anti-inflammatory, antiapoptotic, antitumor, and chemopreventive properties of ZD. These findings suggest that ZD-based drugs could hold promise for many liver disorders. In this paper, we reviewed the current literature regarding the therapeutic effects of ZD in the treatment of liver disease.
Collapse
|
40
|
Rhee EJ. Nonalcoholic Fatty Liver Disease and Diabetes: An Epidemiological Perspective. Endocrinol Metab (Seoul) 2019; 34:226-233. [PMID: 31565874 PMCID: PMC6769345 DOI: 10.3803/enm.2019.34.3.226] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is thought to stem from the body's inability to store excess energy in adipocytes; as such, it is commonly viewed as the hepatic manifestation of metabolic syndrome. The pathogenesis of NAFLD involves ectopic fat accumulation, which also takes place in the liver, muscle and visceral fat. NAFLD is rapidly becoming more widespread in Korea, with an estimated prevalence of 30% in adults. Type 2 diabetes mellitus (T2DM) and NAFLD share insulin resistance as a common pathophysiological mechanism, and each of these two diseases affects the development of the other. Recent studies have suggested that NAFLD is often present as a comorbidity in T2DM patients. The mutual interrelationship between these conditions is shown by findings suggesting that T2DM can exacerbate NAFLD by promoting progression to nonalcoholic hepatosteatosis or fibrosis, while NAFLD causes the natural course of diabetic complications to worsen in T2DM patients. It remains unknown whether one disease is the cause of the other or vice versa. In this review, I would like to discuss current epidemiological data on the associations between NAFLD and T2DM, and how each disease affects the course of the other.
Collapse
Affiliation(s)
- Eun Jung Rhee
- Department of Endocrinology and Metabolism, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
41
|
Róvero Costa M, Leite Garcia J, Cristina Vágula de Almeida Silva C, Junio Togneri Ferron A, Valentini Francisqueti-Ferron F, Kurokawa Hasimoto F, Schmitt Gregolin C, Henrique Salomé de Campos D, Roberto de Andrade C, Dos Anjos Ferreira AL, Renata Corrêa C, Moreto F. Lycopene Modulates Pathophysiological Processes of Non-Alcoholic Fatty Liver Disease in Obese Rats. Antioxidants (Basel) 2019; 8:E276. [PMID: 31387231 PMCID: PMC6720442 DOI: 10.3390/antiox8080276] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
Background: The higher consumption of fat and sugar are associated with obesity development and its related diseases such as non-alcoholic fatty liver disease (NAFLD). Lycopene is an antioxidant whose protective potential on fatty liver degeneration has been investigated. The aim of this study was to present the therapeutic effects of lycopene on NAFLD related to the obesity induced by a hypercaloric diet. Methods: Wistar rats were distributed in two groups: Control (Co, n = 12) and hypercaloric (Ob, n = 12). After 20 weeks, the animals were redistributed into the control group (Co, n = 6), control group supplemented with lycopene (Co+Ly, n = 6), obese group (Ob, n = 6), and obese group supplemented with lycopene (Ob+Ly, n = 6). Ob groups also received water + sucrose (25%). Animals received lycopene solution (10 mg/kg/day) or vehicle (corn oil) via gavage for 10 weeks. Results: Animals which consumed the hypercaloric diet had higher adiposity index, increased fasting blood glucose, hepatic and blood triglycerides, and also presented in the liver macro and microvesicular steatosis, besides elevated levels of tumor necrosis factor-α (TNF-α). Lycopene has shown therapeutic effects on blood and hepatic lipids, increased high-density lipoprotein cholesterol (HDL), mitigated TNF-α, and malondialdehyde (MDA) and further improved the hepatic antioxidant capacity. Conclusion: Lycopene shows therapeutic potential to NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Fernando Moreto
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, Brazil
| |
Collapse
|
42
|
Abstract
Background General overnutrition is one of the key factors involved in the development of nonalcoholic fatty liver disease (NAFLD) as the most common liver disease occur by two steps of liver injury ranges from steatosis to nonalcoholic steatohepatitis (NASH). Here the effect of fructose, fat-rich and western diet (WD) feeding was studied along with aggravative effect of cigarette smoking on liver status in mice. Methods Sixty-four male NMRI mice were included in this study and assigned into 4 groups that fed standard, fructose-rich, high fat-, and western-diet for 8 weeks and then each group divided in two smoker and nonsmoker subgroups according to smoke exposing in the last 4 weeks of feeding time (n = 8). Histopathological studies, serum biochemical analyses and hepatic TNF-α level were evaluated in mice to compare alone or combination effects of dietary regimen and cigarette smoking. Results Serum liver enzymes and lipid profile levels in WD fed mice were significantly higher than in other studied diets. Exposing to cigarette smoke led to more elevation of serum biochemical parameters that was also accompanied by a significant increase in hepatic damage shown as more severe fat accumulation, hepatocyte ballooning and inflammation infiltrate. Elevated TNF-α level confirmed incidence of liver injury. Conclusion The finding of this study demonstrated that a combination of cigarette smoke exposure and WD (rich in fat, fructose, and cholesterol) could induce a more reliable mouse model of NASH.
Collapse
|
43
|
Al-Nimer MS, Esmail VA, Mohammad O. Telmisartan improves the metabolic, hematological and inflammasome indices in non-alcoholic fatty liver infiltration: A pilot open-label placebo-controlled study. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2019. [DOI: 10.29333/ejgm/104568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Sangouni AA, Ghavamzadeh S, Jamalzehi A. A narrative review on effects of vitamin D on main risk factors and severity of Non-Alcoholic Fatty Liver Disease. Diabetes Metab Syndr 2019; 13:2260-2265. [PMID: 31235166 DOI: 10.1016/j.dsx.2019.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
The global prevalence of Non-alcoholic fatty liver disease (NAFLD) is increasing rapidly. Many studies have been conducted on the treatment of NAFLD; nevertheless, there is still no approved drug treatment for this disease. Although the pathogenesis of NAFLD is not fully understood, but inflammation, insulin resistance, oxidative stress, obesity and dyslipidemia are among the main causes. Epidemiological studies have shown that hypovitaminosis D is associated with these factors causing NAFLD. In addition, rate of Vitamin D deficiency has been shown to be directly related to the severity of NAFLD. Accordingly, it is believed that vitamin D may help to treatment of NAFLD by improving the above-mentioned risk factors. The purpose of this review is to survey the recent advances in the field of Vitamin D efficacy on risk factors and the severity of NAFLD based on existing evidence, especially the clinical efficiency of vitamin D supplementation in patients with NAFLD.
Collapse
Affiliation(s)
- Abbas Ali Sangouni
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Human Nutrition, Medicine Faculty, Urmia University of Medical Sciences, Urmia, Iran
| | - Saeid Ghavamzadeh
- Department of Human Nutrition, Medicine Faculty, Urmia University of Medical Sciences, Urmia, Iran; Food and Beverage Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| | - Atena Jamalzehi
- Department of Nutrition, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
45
|
Amirkalali B, Sohrabi MR, Esrafily A, Jalali M, Gholami A, Hosseinzadeh P, Keyvani H, Shidfar F, Zamani F. Erythrocyte membrane fatty acid profile & serum cytokine levels in patients with non-alcoholic fatty liver disease. Indian J Med Res 2018; 147:352-360. [PMID: 29998870 PMCID: PMC6057244 DOI: 10.4103/ijmr.ijmr_1065_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background & objectives Fatty acids may affect the expression of genes, and this process is influenced by sex hormones. Cytokines are involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), so this study was aimed to assess the association of erythrocyte membrane fatty acids with three cytokines and markers of hepatic injury in NAFLD patients and to explore whether these associations were the same in both sexes. Methods In this cross-sectional study, 62 consecutive patients (32 men and 30 women) with NAFLD during the study period. Tumour necrosis factor-α (TNF-α), interleukin 6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), aspartate aminotransferase and alanine aminotransferase were measured in a fasting serum sample, and Fibroscan was conducted for each individual. Gas chromatography was used to measure erythrocyte membrane fatty acids. Univariate and multiple linear regressions were used to analyze data. Results In men, IL-6 had a significant (P <0.05) positive association with total ω-3 polyunsaturated fatty acids (PUFAs). In women, TNF-α had a significant positive association with total ω-3 (P <0.05) and ω-6 (P <0.01) PUFAs, IL-6 had a significant (P <0.05) positive association with total monounsaturated fatty acids and MCP-1 had a significant positive association with total trans-fatty acids (P <0.05). No significant associations were observed between erythrocyte membrane fatty acids and liver enzymes or Fibroscan report in both sexes. In this study, women were significantly older than men [51 (42.75-55) vs 35.5 (29-52), P <0.01], so the associations were adjusted for age and other confounders. Interpretation & conclusions Erythrocyte membrane fatty acid profile was not associated with serum liver enzymes or Fibroscan reports in NAFLD patients, but it had significant associations with serum TNF-α, IL-6 and MCP-1 and these associations were probably sex dependent.
Collapse
Affiliation(s)
- Bahareh Amirkalali
- Gastrointestinal & Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Reza Sohrabi
- Gastrointestinal & Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Esrafily
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Jalali
- Department of Nutrition & Biochemistry, School of Nutritional Sciences & Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Gholami
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran; Department of Public Health, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Payam Hosseinzadeh
- Gastrointestinal & Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Department of Medical Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Zamani
- Gastrointestinal & Liver Disease Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Yu CJ, Wang QS, Wu MM, Song BL, Liang C, Lou J, Tang LL, Yu XD, Niu N, Yang X, Zhang BL, Qu Y, Liu Y, Dong ZC, Zhang ZR. TRUSS Exacerbates NAFLD Development by Promoting IκBα Degradation in Mice. Hepatology 2018; 68:1769-1785. [PMID: 29704259 DOI: 10.1002/hep.30066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/20/2018] [Indexed: 12/15/2022]
Abstract
There is no effective treatment method for nonalcoholic fatty liver disease (NAFLD), the most common liver disease. The exact mechanism underlying the pathogenesis of NAFLD remains to be elucidated. Here, we report that tumor necrosis factor receptor-associated ubiquitous scaffolding and signaling protein (TRUSS) acts as a positive regulator of NAFLD and in a variety of metabolic disorders. TRUSS expression was increased in the human liver specimens with NAFLD or nonalcoholic steatohepatitis, and in the livers of high-fat diet (HFD)-induced and genetically obese mice. Conditional knockout of TRUSS in hepatocytes significantly ameliorated hepatic steatosis, insulin resistance, glucose intolerance, and inflammatory responses in mice after HFD challenge or in spontaneous obese mice with normal chow feeding. All of these HFD-induced pathological phenotypes were exacerbated in mice overexpressing TRUSS in hepatocytes. We show that TRUSS physically interacts with the inhibitor of nuclear factor κB α (IκBα) and promotes the ubiquitination and degradation of IκBα, which leads to aberrant activation of nuclear factor κB (NF-κB). Overexpressing IκBαS32A/S36A , a phosphorylation-resistant mutant of IκBα, in the hepatocyte-specific TRUSS overexpressing mice almost abolished HFD-induced NAFLD and metabolic disorders. Conclusion: Hepatocyte TRUSS promotes pathological stimuli-induced NAFLD and metabolic disorders, through activation of NF-κB by promoting ubiquitination and degradation of IκBα. Our findings may provide a strategy for the prevention and treatment of NAFLD by targeting TRUSS.
Collapse
Affiliation(s)
- Chang-Jiang Yu
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Qiu-Shi Wang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Ming-Ming Wu
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Bin-Lin Song
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Chen Liang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Jie Lou
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Liang-Liang Tang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Xiao-Di Yu
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Na Niu
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Xu Yang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Bao-Long Zhang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Yao Qu
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Yang Liu
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Zhi-Chao Dong
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Zhi-Ren Zhang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| |
Collapse
|
47
|
Kosmalski M, Mokros Ł, Kuna P, Witusik A, Pietras T. Changes in the immune system - the key to diagnostics and therapy of patients with non-alcoholic fatty liver disease. Cent Eur J Immunol 2018; 43:231-239. [PMID: 30135638 PMCID: PMC6102613 DOI: 10.5114/ceji.2018.77395] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 06/12/2017] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common pathologies of that organ. The development of the disease involves a variety of mechanisms, including insulin resistance, oxidative stress, endoplasmic reticulum stress, endotoxins from the intestinal flora and genetic predispositions. Additionally, clinical data suggest that the presence of NAFLD is associated with excessive activation of the immune system. For practical purposes, attention should be paid to the moment when the subjects predisposed to NAFLD develop inflammatory infiltration and signs of fibrosis in the liver (non-alcoholic steatohepatitis - NASH). Their presence is an important risk factor for hepatic cirrhosis, hepatic failure, and hepatocellular carcinoma, as well as for the occurrence of cardiovascular events. Regardless of the diagnostic methods used, including laboratory tests and imaging, liver biopsy remains the gold standard to identify and differentiate patients with NAFLD and NASH. The search for other, safer, cheaper and more readily available diagnostic tests is still being continued. Attention has been drawn to the usefulness of markers of immune status of the organism, not only for the diagnosis of NASH, but also for the identification of NAFLD patients at risk of disease progression. Despite the effectiveness of medication, no recommendations have been established for pharmacotherapy of NAFLD. Data indicate the primary need for non-pharmacological interventions to reduce body weight. However, there is evidence of the applicability of certain drugs and dietary supplements, which, by their effect on the immune system, inhibit its excessive activity, thus preventing the progression of NAFLD to NASH.
Collapse
Affiliation(s)
- Marcin Kosmalski
- Department of Clinical Pharmacology, Medical University of Lodz, Poland
| | - Łukasz Mokros
- Department of Clinical Pharmacology, Medical University of Lodz, Poland
| | - Piotr Kuna
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Poland
| | - Andrzej Witusik
- Department of Psychology, Piotrków Trybunalski Branch, Jan Kochanowski University in Kielce, Poland
| | - Tadeusz Pietras
- Department of Clinical Pharmacology, Medical University of Lodz, Poland
| |
Collapse
|
48
|
Association Between Tumor Necrosis Factor-α and the Risk of Hepatic Events: A Median 3 Years Follow-Up Study. HEPATITIS MONTHLY 2018. [DOI: 10.5812/hepatmon.65537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
49
|
|
50
|
Wang X, Meng Y, Zhang J. Ezetimibe alleviates non-alcoholic fatty liver disease through the miR-16 inhibiting mTOR/p70S6K1 pathway. RSC Adv 2017. [DOI: 10.1039/c7ra03949b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Emerging studies have indicated the role of ezetimibe, miR-16 and mTOR signaling in non-alcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Xiang Wang
- Department of Endocrinology and Metabolism
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou
- China
| | - Yunbing Meng
- Department of Endocrinology and Metabolism
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou
- China
| | - Junrong Zhang
- Department of Endocrinology and Metabolism
- The First Affiliated Hospital of Zhengzhou University
- Zhengzhou
- China
| |
Collapse
|