1
|
Xu K, Ren X, Wang J, Zhang Q, Fu X, Zhang PC. Clinical development and informatics analysis of natural and semi-synthetic flavonoid drugs: A critical review. J Adv Res 2024; 63:269-284. [PMID: 37949300 PMCID: PMC11380023 DOI: 10.1016/j.jare.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Flavonoids are one of the most important metabolites with vast structural diversity and a plethora of potential pharmacological applications, which have drawn considerable attention in the laboratory. Nevertheless, it remains uncertain how many candidates were progressed to clinical application. AIM OF REVIEW We carried out a critical review of natural and semi-synthetic flavonoid drugs and candidates undergoing different clinical phases worldwide by applying an adequate search method and conducted a brief cheminformatic and bioinformatic analysis. It was expected that the obtained results might narrow the screening scope and reduce the cost of drug research and development. KEY SCIENTIFIC CONCEPTS OF REVIEW To our knowledge, this is the most systematic summarization of flavonoid-based drugs and clinical candidates to date. It was found that a total of 19 flavonoid-based drugs have been approved for the market, and of these, natural flavonoids accounted for 52.6%. Besides, a total of 36 flavonoid-based clinical candidates are undergoing or suspended in different phases, and of these, natural flavonoids account for 44.4%. Thus, natural flavonoids remain the best option for finding novel agents/active templates, and when investigated in conjunction with synthetic chemicals and biologicals, they offer the potential to discover novel structures that can lead to effective agents against a variety of human diseases. Additionally, flavonoid-based marketed drugs have been successful in cardiovascular treatment, and the related drugs account for more than 30% of marketed drugs. However, the use of flavonoids as antineoplastic and immunomodulating agents is not likely for approximately 50% of the candidates suspended in the clinical stage. Interestingly, the marketed drugs covered a broader range of chemical spaces based on size, polarity, and three-dimensional structure compared to the clinical candidates. In addition, flavonoid glycosides with poor oral bioavailability account for 36.8% of the marketed drugs, and thus, they could be thoroughly investigated.
Collapse
Affiliation(s)
- Kuo Xu
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine's Deep Development and Industrialization, Qingdao 266114, China
| | - Xia Ren
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine's Deep Development and Industrialization, Qingdao 266114, China
| | - Jintao Wang
- Chongqing Kangzhou Big Data (Group) Co., Ltd., Chongqing 401336, China
| | - Qin Zhang
- Chongqing Kangzhou Big Data (Group) Co., Ltd., Chongqing 401336, China
| | - Xianjun Fu
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine's Deep Development and Industrialization, Qingdao 266114, China.
| | - Pei-Cheng Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| |
Collapse
|
2
|
Mandal A, Hazra B. Medicinal plant molecules against hepatitis C virus: Current status and future prospect. Phytother Res 2023; 37:4353-4374. [PMID: 37439007 DOI: 10.1002/ptr.7936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/14/2023]
Abstract
Hepatitis C virus (HCV), a global malady, causes acute and chronic hepatitis leading to permanent liver damage, hepatocellular carcinoma, and death. Modern anti-HCV therapies are efficient, but mostly inaccessible for residents of underdeveloped regions. To innovate more effective treatments at affordable cost, medicinal plant-based products need to be explored. The aim of this article is to review plant constituents in the light of putative anti-HCV mechanisms of action, and discuss existing problems, challenges, and future directions for their potential application in therapeutic settings. One hundred sixty literatures were collected by using appropriate search strings via scientific search engines: Google Scholar, PubMed, ScienceDirect, and Scopus. Bibliography was prepared using Mendeley desktop software. We found a substantial number of plants that were reported to inhibit different stages of HCV life cycle. Traditional medicinal plants such as Phyllanthus amarus Schumach. and Thonn., Eclipta alba (L.) Hassk., and Acacia nilotica (L.) Delile exhibited strong anti-HCV activities. Again, several phytochemicals such as epigallocatechin-3-gallate, honokilol, punicalagin, and quercetin have shown broad-spectrum anti-HCV effect. We have presented promising phytochemicals like silymarin, curcumin, glycyrrhizin, and camptothecin for nanoparticle-based hepatocyte-targeted drug delivery. Nevertheless, only a few animal studies have been performed to validate the anti-HCV effect of these plant products. Again, insufficient clinical evaluation of the safety and effectiveness of herbal medications remain a problem. Selected plants products could be developed as novel therapeutics for HCV patients only after scrupulous evaluation of their safety and efficacy in a clinical set-up.
Collapse
Affiliation(s)
- Anirban Mandal
- Department of Microbiology, Mrinalini Datta Mahavidyapith, Birati, Kolkata, India
| | - Banasri Hazra
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
3
|
Yang JY, Ma YX, Liu Y, Peng XJ, Chen XZ. A Comprehensive Review of Natural Flavonoids with Anti-SARS-CoV-2 Activity. Molecules 2023; 28:molecules28062735. [PMID: 36985705 PMCID: PMC10054335 DOI: 10.3390/molecules28062735] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has majorly impacted public health and economies worldwide. Although several effective vaccines and drugs are now used to prevent and treat COVID-19, natural products, especially flavonoids, showed great therapeutic potential early in the pandemic and thus attracted particular attention. Quercetin, baicalein, baicalin, EGCG (epigallocatechin gallate), and luteolin are among the most studied flavonoids in this field. Flavonoids can directly or indirectly exert antiviral activities, such as the inhibition of virus invasion and the replication and inhibition of viral proteases. In addition, flavonoids can modulate the levels of interferon and proinflammatory factors. We have reviewed the previously reported relevant literature researching the pharmacological anti-SARS-CoV-2 activity of flavonoids where structures, classifications, synthetic pathways, and pharmacological effects are summarized. There is no doubt that flavonoids have great potential in the treatment of COVID-19. However, most of the current research is still in the theoretical stage. More studies are recommended to evaluate the efficacy and safety of flavonoids against SARS-CoV-2.
Collapse
Affiliation(s)
- Jun-Yu Yang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Yi-Xuan Ma
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Yan Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Xiang-Jun Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Xiang-Zhao Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Jiangxi Province Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
4
|
Koltai T, Fliegel L. Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions. J Evid Based Integr Med 2022; 27:2515690X211068826. [PMID: 35018864 PMCID: PMC8814827 DOI: 10.1177/2515690x211068826] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/20/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
The flavonoid silymarin extracted from the seeds of Sylibum marianum is a mixture of 6 flavolignan isomers. The 3 more important isomers are silybin (or silibinin), silydianin, and silychristin. Silybin is functionally the most active of these compounds. This group of flavonoids has been extensively studied and they have been used as hepato-protective substances for the mushroom Amanita phalloides intoxication and mainly chronic liver diseases such as alcoholic cirrhosis and nonalcoholic fatty liver. Hepatitis C progression is not, or slightly, modified by silymarin. Recently, it has also been proposed for SARS COVID-19 infection therapy. The biochemical and molecular mechanisms of action of these substances in cancer are subjects of ongoing research. Paradoxically, many of its identified actions such as antioxidant, promoter of ribosomal synthesis, and mitochondrial membrane stabilization, may seem protumoral at first sight, however, silymarin compounds have clear anticancer effects. Some of them are: decreasing migration through multiple targeting, decreasing hypoxia inducible factor-1α expression, inducing apoptosis in some malignant cells, and inhibiting promitotic signaling among others. Interestingly, the antitumoral activity of silymarin compounds is limited to malignant cells while the nonmalignant cells seem not to be affected. Furthermore, there is a long history of silymarin use in human diseases without toxicity after prolonged administration. The ample distribution and easy accessibility to milk thistle-the source of silymarin compounds, its over the counter availability, the fact that it is a weed, some controversial issues regarding bioavailability, and being a nutraceutical rather than a drug, has somehow led medical professionals to view its anticancer effects with skepticism. This is a fundamental reason why it never achieved bedside status in cancer treatment. However, in spite of all the antitumoral effects, silymarin actually has dual effects and in some cases such as pancreatic cancer it can promote stemness. This review deals with recent investigations to elucidate the molecular actions of this flavonoid in cancer, and to consider the possibility of repurposing it. Particular attention is dedicated to silymarin's dual role in cancer and to some controversies of its real effectiveness.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
5
|
Fatima S, Kumari A, Dwivedi VP. Advances in adjunct therapy against tuberculosis: Deciphering the emerging role of phytochemicals. MedComm (Beijing) 2021; 2:494-513. [PMID: 34977867 PMCID: PMC8706769 DOI: 10.1002/mco2.82] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Eastern countries are a major source of medicinal plants, which set up a rich source of ethnopharmacologically known medicines used in the treatment of various diseases. These traditional medicines have been known as complementary, alternative, or nonconventional therapy across globe for ages. Tuberculosis (TB) poses a huge global burden and leads to maximum number of deaths due to an infectious agent. Treatment of TB using Directly Observed Treatment Short-course (DOTS) therapy comprises multiple antibiotics is quite lengthy and causes serious side-effects in different organs. The length of the TB treatment leads to withdrawal from the patients, which paves the way for the emergence of drug resistance in the bacterial population. These concerns related to therapy need serious and immediate interventions. Traditional medicines using phytochemicals has shown to provide tremendous potential in TB treatment, mainly in the eradication of Mycobacterium tuberculosis (M.tb), increasing natural immunity, and managing the side effects of anti-TB drugs. This review describes the antituberculosis potential of selected ethnopharmacologically important phytochemicals as potential immune-modulator and as an adjunct-therapy in TB. This review will be a useful reference for researchers working on ethnopharmacology and will open the door for the discovery of novel agents as an adjunct-therapy to tuberculosis.
Collapse
Affiliation(s)
- Samreen Fatima
- Immunobiology GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Anjna Kumari
- Immunobiology GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Ved Prakash Dwivedi
- Immunobiology GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| |
Collapse
|
6
|
Low ZX, OuYong BM, Hassandarvish P, Poh CL, Ramanathan B. Antiviral activity of silymarin and baicalein against dengue virus. Sci Rep 2021; 11:21221. [PMID: 34707245 PMCID: PMC8551334 DOI: 10.1038/s41598-021-98949-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Dengue is an arthropod-borne viral disease that has become endemic and a global threat in many countries with no effective antiviral drug available currently. This study showed that flavonoids: silymarin and baicalein could inhibit the dengue virus in vitro and were well tolerated in Vero cells with a half-maximum cytotoxic concentration (CC50) of 749.70 µg/mL and 271.03 µg/mL, respectively. Silymarin and baicalein exerted virucidal effects against DENV-3, with a selective index (SI) of 10.87 and 21.34, respectively. Baicalein showed a better inhibition of intracellular DENV-3 progeny with a SI of 7.82 compared to silymarin. Baicalein effectively blocked DENV-3 attachment (95.59%) to the Vero cells, while silymarin prevented the viral entry (72.46%) into the cells, thus reducing viral infectivity. Both flavonoids showed promising antiviral activity against all four dengue serotypes. The in silico molecular docking showed that silymarin could bind to the viral envelope (E) protein with a binding affinity of - 8.5 kcal/mol and form hydrogen bonds with the amino acids GLN120, TRP229, ASN89, and THR223 of the E protein. Overall, this study showed that silymarin and baicalein exhibited potential anti-DENV activity and could serve as promising antiviral agents for further development against dengue infection.
Collapse
Affiliation(s)
- Zhao Xuan Low
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Kuala Lumpur, Malaysia
| | - Brian Ming OuYong
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Kuala Lumpur, Malaysia
| | - Pouya Hassandarvish
- Tropical Infectious Diseases Research and Education Centre, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Kuala Lumpur, Malaysia
| | - Babu Ramanathan
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
El-Yazbi AF, Khalifa Y, Elkhatib MA, El-Yazbi AF. Green analytical method for the determination of sofosbuvir, ledipasvir, ribavirin and complex silymarin flavonoids simultaneously in biological fluids. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Khan T, Khan MA, Mashwani ZUR, Ullah N, Nadhman A. Therapeutic potential of medicinal plants against COVID-19: The role of antiviral medicinal metabolites. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020; 31:101890. [PMID: 33520034 PMCID: PMC7831775 DOI: 10.1016/j.bcab.2020.101890] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022]
Abstract
There are numerous trials underway to find treatment for the COVID-19 through testing vaccines as well as existing drugs. Apart from the many synthetic chemical compounds, plant-based compounds could provide an array of \suitable candidates for testing against the virus. Studies have confirmed the role of many plants against respiratory viruses when employed either as crude extracts or their active ingredients in pure form. The purpose of this review article is to highlight the importance of phytomedicine against COVID-19. The main aim is to review the mechanistic aspects of most important phytochemical compounds that have showed potential against coronaviruses. Glycyrrhizin from the roots of Glycyrrhiza glabra has shown promising potential against the previously epidemic coronavirus, SARS-CoV. Other important plants such as Artemisia annua, Isatis indigotica, Lindera aggregate, Pelargonium sidoides, and Glychirrhiza spp. have been employed against SARS-CoV. Active ingredients (e.g. emodin, reserpine, aescin, myricetin, scutellarin, apigenin, luteolin, and betulonic acid) have shown promising results against the coronaviruses. Phytochemicals have demonstrated activity against the coronaviruses through mechanisms such as viral entry inhibition, inhibition of replication enzymes and virus release blockage. However, compared to synthetic drugs, phytomedicine are mechanistically less understood and should be properly evaluated before application. Nonetheless, phytochemicals reduce the tedious job of drug discovery and provide a less time-consuming alternative for drug testing. Therefore, along with other drugs currently tested against COVID-19, plant-based drugs should be included for speedy development of COVID-19 treatment.
Collapse
Affiliation(s)
- Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara, KP, Pakistan
| | - Mubarak Ali Khan
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan (AWKUM), Mardan, 23390, Pakistan
| | | | - Nazif Ullah
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan (AWKUM), Mardan, 23390, Pakistan
| | - Akhtar Nadhman
- Department of Integrative Biosciences, CECOS University, Peshawar, Pakistan
| |
Collapse
|
9
|
Antiviral effect of silymarin against Zika virus in vitro. Acta Trop 2020; 211:105613. [PMID: 32621935 DOI: 10.1016/j.actatropica.2020.105613] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
Zika virus (ZIKV) epidemic and its association with severe neurological syndromes have raised worldwide concern. Despite the great clinical relevance of this infection, no vaccine or specific treatment is available and the search for antiviral compounds against ZIKV is extremely necessary. Several natural compounds, such as silymarin, exhibit antioxidant, hepatoprotective, and antiviral properties; however, the antiviral potential of this compound remains partially investigated. Therefore, the objective of this study was to evaluate in vitro the antiviral activity of silymarin against ZIKV infection. Global antiviral activity, dose-dependent, plaque reduction, and time-of-drug-addition assays were used to determine the anti-ZIKV activity of silymarin. Additionally, to start characterizing the mechanisms of action we determined whether silymarin could have a virucidal effect and inhibit viral adsorption and penetration stages. Regarding its global antiviral activity, silymarin showed significant inhibition of ZIKV infection, protecting cells infected with EC50 equal to 34.17μg/mL, with a selectivity index greater than 17 and 4x greater than that of the positive control (ribavirin). Its greatest efficiency was achieved at 125μg/mL, whose cell viability did not differ from the control without infection and treatment. Furthermore, treatment with silymarin reduced viral load by up to two logs (> 90%) concerning viral control, when evaluating virucidal activity and the precocious times of infection. Thus, our results set to show the promising anti-ZIKV activity of silymarin, which does not seem to have a single inhibition mechanism, acting at different times of infection, and still has the advantage of silymarin be a phytotherapy already available on the market.
Collapse
|
10
|
Bolchi C, Bavo F, Appiani R, Roda G, Pallavicini M. 1,4-Benzodioxane, an evergreen, versatile scaffold in medicinal chemistry: A review of its recent applications in drug design. Eur J Med Chem 2020; 200:112419. [PMID: 32502862 DOI: 10.1016/j.ejmech.2020.112419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/14/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022]
Abstract
1,4-Benzodioxane has long been a versatile template widely employed to design molecules endowed with diverse bioactivities. Its use spans the last decades of medicinal chemistry until today concerning many strategies of drug discovery, not excluding the most advanced ones. Here, more than fifty benzodioxane-related lead compounds, selected from recent literature, are presented showing the different approaches with which they have been developed. Agonists and antagonists at neuronal nicotinic, α1 adrenergic and serotoninergic receptor subtypes and antitumor and antibacterial agents form the most representative classes, but a variety of other biological targets are addressed by benzodioxane-containing compounds.
Collapse
Affiliation(s)
- Cristiano Bolchi
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Mangiagalli 25, I-20133, Milano, Italy
| | - Francesco Bavo
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Mangiagalli 25, I-20133, Milano, Italy
| | - Rebecca Appiani
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Mangiagalli 25, I-20133, Milano, Italy
| | - Gabriella Roda
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Mangiagalli 25, I-20133, Milano, Italy
| | - Marco Pallavicini
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Mangiagalli 25, I-20133, Milano, Italy.
| |
Collapse
|
11
|
Abstract
Chronic hepatitis C virus (HCV) infection is a significant public health problem, with a worldwide prevalence of approximately 170 million. Current therapy for HCV infection includes the prolonged administration of a combination of ribavirin and PEGylated interferon-α, for over a decade. This regimen is expensive and often associated with a poor antiviral response and unwanted side effects. A highly effective combination treatment is likely required for the future management of HCV infections and entry inhibitors could play an important role. Currently, no entry inhibitor has been licensed for the prophylactic treatment of hepatitis C. Therefore, additional agents that combat HCV infection are urgently needed and must be developed. Many phytochemical constituents have been identified that display considerable inhibition of HCV at some stage of the life cycle. This review will summarise the current state of knowledge on natural products and their possible activities in the context of HCV infection.
Collapse
Affiliation(s)
| | - Abeer Temraz
- Pharmacognosy Department College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
- Pharmacognosy Department Faculty of Pharmacy For Girls, Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
12
|
Lalani SS, Anasir MI, Poh CL. Antiviral activity of silymarin in comparison with baicalein against EV-A71. BMC Complement Med Ther 2020; 20:97. [PMID: 32293397 PMCID: PMC7092479 DOI: 10.1186/s12906-020-2880-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/04/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The hand, foot and mouth disease (HFMD) is a febrile and exanthematous childhood disease mainly caused by Enterovirus 71 (EV-A71). In severe HFMD, virulent EV-A71 strains can cause acute flaccid paralysis and cardiopulmonary edema leading to death. Currently, no FDA approved antiviral treatment or vaccine is available for EV-A71. Flavonoids such as silymarin and baicalein are known to possess in vitro antiviral properties against viruses. In this study, the cytotoxicity and antiviral activity of silymarin, baicalein and baicalin were investigated. METHODS The cytotoxic effects of three flavonoids towards rhabdomyosarcoma (RD) cells were first examined using cell proliferation MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay. Compounds found to be non-cytotoxic in RD cells were evaluated for their in vitro antiviral properties against the EV-A71 subgenotype B4 strain 41 (5865/SIN/000009) using antiviral assays. Viral infectivity was determined by reduction of the formation of plaques in RD cells. For the measurement of RNA copy number, the real time quantitative reverse transcription PCR (qRT-PCR) was used. The most potent compound was further evaluated to determine the mode of action of inhibition by time course, virus attachment and entry assays in Vero cells. RESULTS Silymarin was shown to exert direct extracellular virucidal effects against EV-A71 at 50% inhibitory concentration (IC50) of 15.2 ± 3.53 μg/mL with SI of 10.53. Similarly, baicalein exhibited direct extracellular virucidal effects against EV-A71 at a higher IC50 value of 30.88 ± 5.50 μg/mL with SI of 13.64. Besides virucidal activity, silymarin was shown to block both viral attachment and entry of EV-A71 to inhibit infection in Vero cells. CONCLUSIONS Silymarin has a stronger inhibition activity against EV-A71 in comparison to baicalein. It could serve as a promising antiviral drug to treat EV-A71 infections.
Collapse
Affiliation(s)
- Salima S Lalani
- Centre for Virus and Vaccine Research, Sunway University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Mohd Ishtiaq Anasir
- Centre for Virus and Vaccine Research, Sunway University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, Sunway University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
13
|
Camini FC, Costa DC. Silymarin: not just another antioxidant. J Basic Clin Physiol Pharmacol 2020; 31:/j/jbcpp.2020.31.issue-4/jbcpp-2019-0206/jbcpp-2019-0206.xml. [PMID: 32134732 DOI: 10.1515/jbcpp-2019-0206] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Silymarin (Silybum marianum; SM), popularly known as milk thistle, is an extract that has been used for many centuries to treat liver diseases. In recent years, several studies have shown that SM is not only just another antioxidant but also a multifunctional compound that exhibits several beneficial properties for use in the treatment and prevention of different types of pathologies and disorders. This review aims at demonstrating the main protective activities of SM in diseases, such as cancer, diabetes, hepatitis, non-alcoholic fatty liver disease, alcoholic liver disease, hepatitis C virus, hepatitis B virus, metabolic syndrome, depression, cardiovascular diseases and thalassemia, in addition to its photoprotective activity in in vitro tests and preclinical studies. Its main functions include antioxidant and anti-inflammatory effects, and it acts as modulator of signaling pathways. It has been suggested that SM presents great multifunctional potential and is capable of achieving promising results in different types of research. However, caution is still needed regarding its indiscriminate use in humans as there are only a few clinical studies relating to the adequate dose and the actual efficacy of this extract in different types of diseases.
Collapse
Affiliation(s)
- Fernanda Caetano Camini
- Laboratory of Metabolic Biochemistry, Post-Graduate Program in Biological Sciences, Nucleus of Research in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Daniela Caldeira Costa
- Laboratory of Metabolic Biochemistry, Post-Graduate Program in Biological Sciences, Nucleus of Research in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
- Laboratory of Metabolic Biochemistry, Department of Biological Sciences, Federal University of Ouro Preto, Morro do Cruzeiro University Campus, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
14
|
Dehydrojuncusol, a Natural Phenanthrene Compound Extracted from Juncus maritimus, Is a New Inhibitor of Hepatitis C Virus RNA Replication. J Virol 2019; 93:JVI.02009-18. [PMID: 30842319 DOI: 10.1128/jvi.02009-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/21/2019] [Indexed: 12/17/2022] Open
Abstract
Recent emergence of direct-acting antivirals (DAAs) targeting hepatitis C virus (HCV) proteins has considerably enhanced the success of antiviral therapy. However, the appearance of DAA-resistant-associated variants is a cause of treatment failure, and the high cost of DAAs renders the therapy not accessible in countries with inadequate medical infrastructures. Therefore, the search for new inhibitors with a lower cost of production should be pursued. In this context, the crude extract of Juncus maritimus Lam. was shown to exhibit high antiviral activity against HCV in cell culture. Bio-guided fractionation allowed the isolation and identification of the active compound, dehydrojuncusol. A time-of-addition assay showed that dehydrojuncusol significantly inhibited HCV infection when added after virus inoculation of HCV genotype 2a (50% effective concentration [EC50] = 1.35 µM). This antiviral activity was confirmed with an HCV subgenomic replicon, and no effect on HCV pseudoparticle entry was observed. Antiviral activity of dehydrojuncusol was also demonstrated in primary human hepatocytes. No in vitro toxicity was observed at active concentrations. Dehydrojuncusol is also efficient on HCV genotype 3a and can be used in combination with sofosbuvir. Interestingly, dehydrojuncusol was able to inhibit RNA replication of two frequent daclatasvir-resistant mutants (L31M or Y93H in NS5A). Finally, mutants resistant to dehydrojuncusol were obtained and showed that the HCV NS5A protein is the target of the molecule. In conclusion, dehydrojuncusol, a natural compound extracted from J. maritimus, inhibits infection of different HCV genotypes by targeting the NS5A protein and is active against resistant HCV variants frequently found in patients with treatment failure.IMPORTANCE Tens of millions of people are infected with hepatitis C virus (HCV) worldwide. Recently marketed direct-acting antivirals (DAAs) targeting HCV proteins have enhanced the efficacy of treatment. However, due to its high cost, this new therapy is not accessible to the vast majority of infected patients. Furthermore, treatment failures have also been reported due to the appearance of viral resistance. Here, we report on the identification of a new HCV inhibitor, dehydrojuncusol, that targets HCV NS5A and is able to inhibit RNA replication of replicons harboring resistance mutations to anti-NS5A DAAs used in current therapy. Dehydrojuncusol is a natural compound isolated from Juncus maritimus, a halophilic plant species that is very common in coastlines worldwide. This molecule might serve as a lead for the development of a new therapy that is more accessible to hepatitis C patients in the future.
Collapse
|
15
|
Sharifpanah F, Ali EH, Wartenberg M, Sauer H. The milk thistle (Silybum marianum) compound Silibinin stimulates leukopoiesis from mouse embryonic stem cells. Phytother Res 2019; 33:452-460. [PMID: 30548344 DOI: 10.1002/ptr.6241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 01/02/2023]
Abstract
The milk thistle compound Silibinin (i.e., a 1:1 mixture of Silybin A and Silybin B) stimulates vasculogenesis of mouse embryonic stem (ES) cells. Because vasculogenesis and leukopoiesis are interrelated, the effect of Silibinin on leukopoiesis of ES cells was investigated. Treatment of differentiating ES cells with hydrosoluble Silibinin-C-2',3-dihydrogen succinate dose-dependent increased the number of CD18+ , CD45+ , and CD68+ cells, indicating leukocyte/macrophage differentiation. Silibinin treatment activated phosphoinositide 3-kinase (PI3K), AKT (protein kinase B), signal transducer and activator of transcription 3 (STAT3), stimulated hypoxia-induced factor-1α (HIF-1α), and vascular endothelial growth factor receptor 2 (VEGFR2) expression and raised intracellular nitric oxide (NO). Western blot experiments showed that upon coincubation with either the PI3K inhibitor LY294002, the STAT3 inhibitor Stattic, the AKT antagonist AKT inhibitor VIII, or the NO inhibitor L-NAME, the Silibinin-induced expression of CD18, CD45, and CD68 was abolished. Moreover, the stimulation of HIF-1α and VEGFR2 expression was blunted upon STAT3 and PI3K/AKT inhibition. Treatment of differentiating ES cells with L-NAME abolished the stimulation of VEGFR2 and VE-cadherin expression achieved with Silibinin, indicating that NO is involved in vasculogenesis and leukocyte differentiation pathways. In summary, the data of the present study demonstrate that Silibinin stimulates leukocyte differentiation of ES cells, which is associated to vasculogenesis and regulated by PI3K/AKT-, STAT3-, and NO-mediated signaling.
Collapse
Affiliation(s)
- Fatemeh Sharifpanah
- Department of Physiology, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Enas Hussein Ali
- Department of Physiology, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Maria Wartenberg
- Department of Internal Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| | - Heinrich Sauer
- Department of Physiology, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
16
|
Fukano K, Tsukuda S, Oshima M, Suzuki R, Aizaki H, Ohki M, Park SY, Muramatsu M, Wakita T, Sureau C, Ogasawara Y, Watashi K. Troglitazone Impedes the Oligomerization of Sodium Taurocholate Cotransporting Polypeptide and Entry of Hepatitis B Virus Into Hepatocytes. Front Microbiol 2019; 9:3257. [PMID: 30671048 PMCID: PMC6331526 DOI: 10.3389/fmicb.2018.03257] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022] Open
Abstract
Current anti-hepatitis B virus (HBV) agents, which include nucleos(t)ide analogs and interferons, can significantly suppress HBV infection. However, there are limitations in the therapeutic efficacy of these agents, indicating the need to develop anti-HBV agents with different modes of action. In this study, through a functional cell-based chemical screening, we found that a thiazolidinedione, troglitazone, inhibits HBV infection independently of the compound's ligand activity for peroxisome proliferator-activated receptor γ (PPARγ). Analog analysis suggested chemical moiety required for the anti-HBV activity and identified ciglitazone as an analog having higher anti-HBV potency. Whereas, most of the reported HBV entry inhibitors target viral attachment to the cell surface, troglitazone blocked a process subsequent to viral attachment, i.e., internalization of HBV preS1 and its receptor, sodium taurocholate cotransporting polypeptide (NTCP). We also found that NTCP was markedly oligomerized in the presence of HBV preS1, but such NTCP oligomerization was abrogated by treatment with troglitazone, but not with pioglitazone, correlating with inhibition activity to viral internalization. Also, competitive peptides that blocked NTCP oligomerization impeded viral internalization and infection. This work represents the first report identifying small molecules and peptides that specifically inhibit the internalization of HBV. This study is also significant in proposing a possible role for NTCP oligomerization in viral entry, which will shed a light on a new aspect of the cellular mechanisms regulating HBV infection.
Collapse
Affiliation(s)
- Kento Fukano
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Analytical Biochemistry, Meiji Pharmaceutical University, Kiyose, Japan
| | - Senko Tsukuda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Liver Cancer Prevention Research Unit, Center for Integrative Medical Sciences, RIKEN, Wako, Japan
| | - Mizuki Oshima
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mio Ohki
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Sam-Yong Park
- Drug Design Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Camille Sureau
- Laboratoire de Virologie Moléculaire, Institut National de la Transfusion Sanguine, CNRS, INSERM U1134, Paris, France
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Kiyose, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Applied Biological Science, Tokyo University of Science, Noda, Japan.,JST CREST, Saitama, Japan
| |
Collapse
|
17
|
Hartati S, Aoki C, Hanafi M, Angelina M, Soedarmono P, Hotta H. Antiviral effect of <em>Archidendron pauciflorum</em> leaves extract to hepatitis C virus: An <em>in vitro</em> study in JFH-1 strain. MEDICAL JOURNAL OF INDONESIA 2018. [DOI: 10.13181/mji.v27i1.2189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Background: Hepatitis C virus (HCV) is a leading cause of chronic liver diseases. Drug resistance to the regimen is also increasing. Hence, there is a need for new anti-HCV agents that are less toxic and more efficacious. The aim of this study is to evaluate the possibility of A. pauciflorum extracts can be a antiviral drug.Methods: Huh-7it cells were infected with the HCV genotype 2a strain JFH-I in the presence of methanol extracts of Archidenron pauciflorum. The methanol extract further partition used n-hexane, ethyl acetate, n-butanol, and water showed in which butanol extracts exerted the strongest IC50 (6.3 g/ml). Further, the butanol fraction was fractionated and yielded into 13 fractions.Results: The methanol extract of the leaves of A. pauciflorum exhibited concentration dependent inhibition against the JFH1 strain of HCV genotype 2a with an IC50 is 72.5 μg/ml. The butanol fraction exhibited the highest anti-HCV activity with an IC50 is 6.3 μg/ml. The butanol fraction was fractionated which yielded 13 fractions. Fractions 5 and 13 exhibited high anti-HCV activities with IC50 is 5.0 μg/ml and 8.5 μg/ml and a time-of-addition study demonstrated that fraction 5 inhibited viral infection at the post-entry step, whereas fraction 13 primarily inhibited the viral entry step.Conclusion: The extract A. pauciflorum can be used as a herbal-based antiviral drug.
Collapse
|
18
|
Safarpoor M, Ghaedi M, Asfaram A, Yousefi-Nejad M, Javadian H, Zare Khafri H, Bagherinasab M. Ultrasound-assisted extraction of antimicrobial compounds from Thymus daenensis and Silybum marianum: Antimicrobial activity with and without the presence of natural silver nanoparticles. ULTRASONICS SONOCHEMISTRY 2018; 42:76-83. [PMID: 29429729 DOI: 10.1016/j.ultsonch.2017.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 06/08/2023]
Abstract
The present study is devoted to prepare a new antibacterial and antifungal agent based on in situ-synthesized silver nanoparticles at room temperature using Rosmarinus officinalis (R. officinalis) leaf extract. The Ag-NPs characterization by UV-visible, SEM, TEM and XRD revealed that the particles sizes were in the range of 10-33 nm. In this study, hydroalcoholic extracts were used with ultrasonic method. Ultrasonication has recently received attention as a novel bioprocessing tool for process intensification in many areas of downstream processing. The antimicrobial activities of T. daenensis and S. marianum extracts with and without the presence of Ag-NPs were investigated at concentrations from 12.5 to 50 mg/mL against Staphylococcus aureus (S. aureus, Gram-positive organism) and Escherichia coli (E. coli, Gram-negative organism), and fungal strains were Aspergillus oryzae (A. oryzae) and Candida albicans (C. albicans). Antimicrobial activity determined using agar disc diffusion method revealed that the activities of Ag-NPs/T. daenensis were superior to Ag-NPs/S. marianum and extracts (T. daenensis and S. marianum). The medicinal plant extract can be used to synthesize the Ag-NPs as an eco-friendly and inexpensive method in large scale. The results showed that the prepared Ag-NPs/extracts as good antibacterial and antifungal agents can be potentially applied against rapidly increasing of antibiotic resistance.
Collapse
Affiliation(s)
| | - Mehrorang Ghaedi
- Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran.
| | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Hamedreza Javadian
- Universitat Politècnica de Catalunya, Department of Chemical Engineering, ETSEIB, Diagonal 647, 08028 Barcelona, Spain
| | | | - Marzieh Bagherinasab
- Department of Animal Science, Kermanshah University, Kermanshah 67156-85438, Iran
| |
Collapse
|
19
|
|
20
|
Spahis S, Delvin E, Borys JM, Levy E. Oxidative Stress as a Critical Factor in Nonalcoholic Fatty Liver Disease Pathogenesis. Antioxid Redox Signal 2017; 26:519-541. [PMID: 27452109 DOI: 10.1089/ars.2016.6776] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
SIGNIFICANCE Nonalcoholic fatty liver disease (NAFLD), characterized by liver triacylglycerol build-up, has been growing in the global world in concert with the raised prevalence of cardiometabolic disorders, including obesity, diabetes, and hyperlipemia. Redox imbalance has been suggested to be highly relevant to NAFLD pathogenesis. Recent Advances: As a major health problem, NAFLD progresses to the more severe nonalcoholic steatohepatitis (NASH) condition and predisposes susceptible individuals to liver and cardiovascular disease. Although NAFLD represents the predominant cause of chronic liver disorders, the mechanisms of its development and progression remain incompletely understood, even if various scientific groups ascribed them to the occurrence of insulin resistance, dyslipidemia, inflammation, and apoptosis. Nevertheless, oxidative stress (OxS) more and more appears as the most important pathological event during NAFLD development and the hallmark between simple steatosis and NASH manifestation. CRITICAL ISSUES The purpose of this article is to summarize recent developments in the understanding of NAFLD, essentially focusing on OxS as a major pathogenetic mechanism. Various attempts to translate reactive oxygen species (ROS) scavenging by antioxidants into experimental and clinical studies have yielded mostly encouraging results. FUTURE DIRECTIONS Although augmented concentrations of ROS and faulty antioxidant defense have been associated to NAFLD and related complications, mechanisms of action and proofs of principle should be highlighted to support the causative role of OxS and to translate its concept into the clinic. Antioxid. Redox Signal. 26, 519-541.
Collapse
Affiliation(s)
- Schohraya Spahis
- 1 GI-Nutrition Unit, Research Centre, CHU Ste-Justine, Université de Montréal , Montreal, Quebec, Canada .,2 Department of Nutrition, Université de Montréal , Montreal, Quebec, Canada
| | - Edgard Delvin
- 1 GI-Nutrition Unit, Research Centre, CHU Ste-Justine, Université de Montréal , Montreal, Quebec, Canada .,3 Department of Biochemistry, Université de Montréal , Montreal, Quebec, Canada
| | | | - Emile Levy
- 1 GI-Nutrition Unit, Research Centre, CHU Ste-Justine, Université de Montréal , Montreal, Quebec, Canada .,2 Department of Nutrition, Université de Montréal , Montreal, Quebec, Canada .,4 EPODE International Network , Paris, France
| |
Collapse
|
21
|
Lovelace ES, Maurice NJ, Miller HW, Slichter CK, Harrington R, Magaret A, Prlic M, De Rosa S, Polyak SJ. Silymarin suppresses basal and stimulus-induced activation, exhaustion, differentiation, and inflammatory markers in primary human immune cells. PLoS One 2017; 12:e0171139. [PMID: 28158203 PMCID: PMC5291532 DOI: 10.1371/journal.pone.0171139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/15/2017] [Indexed: 12/13/2022] Open
Abstract
Silymarin (SM), and its flavonolignan components, alter cellular metabolism and inhibit inflammatory status in human liver and T cell lines. In this study, we hypothesized that SM suppresses both acute and chronic immune activation (CIA), including in the context of HIV infection. SM treatment suppressed the expression of T cell activation and exhaustion markers on CD4+ and CD8+ T cells from chronically-infected, HIV-positive subjects. SM also showed a trend towards modifying CD4+ T cell memory subsets from HIV+ subjects. In the HIV-negative setting, SM treatment showed trends towards suppressing pro-inflammatory cytokines from non-activated and pathogen-associated molecular pattern (PAMP)-activated primary human monocytes, and non-activated and cytokine- and T cell receptor (TCR)-activated mucosal-associated invariant T (MAIT) cells. The data suggest that SM elicits broad anti-inflammatory and immunoregulatory activity in primary human immune cells. By using novel compounds to alter cellular inflammatory status, it may be possible to regulate inflammation in both non-disease and disease states.
Collapse
Affiliation(s)
- Erica S. Lovelace
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States of America
| | - Nicholas J. Maurice
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Hannah W. Miller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Chloe K. Slichter
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| | - Robert Harrington
- Division of Allergy and Infectious Disease, University of Washington, Seattle, WA, United States of America
| | - Amalia Magaret
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Biostatistics, University of Washington, Seattle, WA, United States of America
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
| | - Stephen De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Stephen J. Polyak
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States of America
- Department of Global Health, University of Washington, Seattle, WA, United States of America
- Department of Microbiology, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
22
|
Ganta KK, Mandal A, Debnath S, Hazra B, Chaubey B. Anti-HCV Activity from Semi-purified Methanolic Root Extracts of Valeriana wallichii. Phytother Res 2017; 31:433-440. [PMID: 28078810 DOI: 10.1002/ptr.5765] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/08/2016] [Accepted: 12/13/2016] [Indexed: 01/10/2023]
Abstract
Hepatitis C virus (HCV) is a serious global health problem affecting approximately 130-150 million individuals. Presently available direct-acting anti-HCV drugs have higher barriers to resistance and also improved success rate; however, cost concerns limit their utilization, especially in developing countries like India. Therefore, development of additional agents to combat HCV infection is needed. In the present study, we have evaluated anti-HCV potential of water, chloroform, and methanol extracts from roots of Valeriana wallichii, a traditional Indian medicinal plant. Huh-7.5 cells infected with J6/JFH chimeric HCV strain were treated with water, chloroform, and methanol extracts at different concentrations. Semi-quantitative reverse transcription polymerase chain reaction result demonstrated that methanolic extract showed reduction in HCV replication. The methanolic extract was fractionated by thin layer chromatography, and the purified fractions (F1, F2, F3, and F4) were checked for anti-HCV activity. Significant viral inhibition was noted only in F4 fraction. Further, intrinsic fluorescence assay of purified HCV RNA-dependent RNA polymerase NS5B in the presence of F4 resulted in sharp quenching of intrinsic fluorescence with increasing amount of plant extract. Our results indicated that methanolic extract of V. wallichii and its fraction (F4) inhibited HCV by binding with HCV NS5B protein. The findings would be further investigated to identify the active principle/lead molecule towards development of complementary and alternative therapeutics against HCV. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Krishna Kumar Ganta
- Functional Genomics Lab, Centre for Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Anirban Mandal
- Functional Genomics Lab, Centre for Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sukalyani Debnath
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Banasri Hazra
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Binay Chaubey
- Functional Genomics Lab, Centre for Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| |
Collapse
|
23
|
Chen WC, Tseng CK, Chen BH, Lin CK, Lee JC. Grape Seed Extract Attenuates Hepatitis C Virus Replication and Virus-Induced Inflammation. Front Pharmacol 2016; 7:490. [PMID: 28066241 PMCID: PMC5174132 DOI: 10.3389/fphar.2016.00490] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/29/2016] [Indexed: 12/28/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a causative factor leading to hepatocellular carcinoma due to chronic inflammation and cirrhosis. The aim of the study was first to explore the effects of grape seed extract (GSE) in HCV replication, and then to study mechanisms. The results indicated that a GSE treatment showed significant anti-HCV activity and suppressed HCV-elevated cyclooxygenase-2 (COX-2) expression. In contrast, exogenous COX-2 expression gradually attenuated antiviral effects of GSE, suggesting that GSE inhibited HCV replication by suppressing an aberrant COX-2 expression caused by HCV, which was correlated with the inactivation of IKK-regulated NF-κB and MAPK/ERK/JNK signaling pathways. In addition, GSE also attenuated HCV-induced inflammatory cytokine gene expression. Notably, a combined administration of GSE with interferon or other FDA-approved antiviral drugs revealed a synergistic anti-HCV effect. Collectively, these findings demonstrate the possibility of developing GSE as a dietary supplement to treat patients with a chronic HCV infection.
Collapse
Affiliation(s)
- Wei-Chun Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University Kaohsiung, Taiwan
| | - Chin-Kai Tseng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, College of Life Science, Kaohsiung Medical UniversityKaohsiung, Taiwan; Institute of Biomedical Science, National Sun Yat-Sen UniversityKaohsiung, Taiwan
| | - Chun-Kuang Lin
- Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, National Sun Yat-Sen University Kaohsiung, Taiwan
| | - Jin-Ching Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan; Department of Biotechnology, College of Life Science, Kaohsiung Medical UniversityKaohsiung, Taiwan; Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical UniversityKaohsiung, Taiwan; Research Center for Natural Products and Drug Development, Kaohsiung Medical UniversityKaohsiung, Taiwan
| |
Collapse
|
24
|
Csupor D, Csorba A, Hohmann J. Recent advances in the analysis of flavonolignans of Silybum marianum. J Pharm Biomed Anal 2016; 130:301-317. [PMID: 27321822 DOI: 10.1016/j.jpba.2016.05.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 01/05/2023]
Abstract
Extracts of milk thistle (Silybum marianum, Asteraceae) have been recognized for centuries as remedies for liver and gallbladder disorders. The active constituents of milk thistle fruits are flavonolignans, collectively known as silymarin. Flavonolignans in S. marianum are structurally diverse, 23 constituents have been isolated from purple- and white-flowering variants. Flavonolignans have a broad spectrum of bioactivities and silymarin has been the subject of intensive research for its profound pharmacological activities. Silymarin is extracted from the seeds, commercialized in standardized form, and widely used in drugs and dietary supplements. The thorough analysis of silymarin, its constituents and silymarin-containing products has a key role in the quality control of milk thistle-based products. Due to the low concentration of analytes, especially pharmacological and pharmacokinetic studies require more and more selective and sensitive, advanced techniques. The objective of the present review is to summarize the recent advances in the chemical analysis of S. marianum extracts, including the chemical composition, isolation and identification of flavonolignans, sample preparation, and methods used for qualitative and quantitative analysis. Various analytical approaches have been surveyed, and their respective advantages and limits are discussed.
Collapse
Affiliation(s)
- Dezső Csupor
- Department of Pharmacognosy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary; Interdisciplinary Centre of Natural Compounds, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary
| | - Attila Csorba
- Department of Pharmacognosy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary; Interdisciplinary Centre of Natural Compounds, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary
| | - Judit Hohmann
- Department of Pharmacognosy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary; Interdisciplinary Centre of Natural Compounds, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary.
| |
Collapse
|
25
|
Wahyuni TS, Utsubo CA, Hotta H. Promising Anti-Hepatitis C Virus Compounds from Natural Resources. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major worldwide problem, which involves approximately 170 million people. High morbidity of patients is caused by chronic infection, which leads to liver cirrhosis, hepatocellular carcinoma and other HCV-related diseases. The sustained virological response (SVR) has been markedly improved to be >90% by the current standard interferon (IFN)-free treatment regimens with a combination of direct-acting antiviral agents (DAAs) targeting the viral NS3 protease, NS5A multi-function protein and NS5B RNA-dependent RNA polymerase, compared with 50–70% of SVR rates achieved by the previous standard IFN-based treatment regimens with or without an NS3 protease inhibitor. However, the emergence of DAA-resistant HCV strains and the limited access to the DAAs due to their high cost could be major concerns. Also, the long-term prognosis of patients treated with DAAs, such as the possible development of hepatocellular carcinoma, still needs to be further evaluated. Natural resources are considered to be good candidates to develop anti-HCV agents. Here, we summarize anti-HCV compounds obtained from natural resources, including medicinal plant extracts, their isolated compounds and some of their derivatives that possess high antiviral potency against HCV.
Collapse
Affiliation(s)
- Tutik Sri Wahyuni
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Airlangga University, Jl. Dharmawangsa Dalam, Surabaya 60286, Indonesia
| | - Chie Aoki Utsubo
- Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan
| | - Hak Hotta
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Department of Oral Vaccine and Drug Development, Kobe University Graduate School of Health Sciences, 1-5-6 Minatojima-minamimachi, Chou-ku, Kobe 650-0047, Japan
| |
Collapse
|
26
|
Graf TN, Cech NB, Polyak SJ, Oberlies NH. A validated UHPLC-tandem mass spectrometry method for quantitative analysis of flavonolignans in milk thistle (Silybum marianum) extracts. J Pharm Biomed Anal 2016; 126:26-33. [PMID: 27136284 PMCID: PMC4893890 DOI: 10.1016/j.jpba.2016.04.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 04/15/2016] [Accepted: 04/17/2016] [Indexed: 11/25/2022]
Abstract
Validated methods are needed for the analysis of natural product secondary metabolites. These methods are particularly important to translate in vitro observations to in vivo studies. Herein, a method is reported for the analysis of the key secondary metabolites, a series of flavonolignans and a flavonoid, from an extract prepared from the seeds of milk thistle [Silybum marianum (L.) Gaertn. (Asteraceae)]. This report represents the first UHPLC MS-MS method validated for quantitative analysis of these compounds. The method takes advantage of the excellent resolution achievable with UHPLC to provide a complete analysis in less than 7min. The method is validated using both UV and MS detectors, making it applicable in laboratories with different types of analytical instrumentation available. Lower limits of quantitation achieved with this method range from 0.0400μM to 0.160μM with UV and from 0.0800μM to 0.160μM with MS. The new method is employed to evaluate variability in constituent composition in various commercial S. marianum extracts, and to show that storage of the milk thistle compounds in DMSO leads to degradation.
Collapse
Affiliation(s)
- Tyler N Graf
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Nadja B Cech
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Stephen J Polyak
- Department of Laboratory Medicine, University of Washington, Seattle, WA, 98104, USA; Department of Global Health, University of Washington, Seattle, WA, 98104, USA; Department of Microbiology, University of Washington, Seattle, WA, 98104, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA.
| |
Collapse
|
27
|
Yu JS, Chen WC, Tseng CK, Lin CK, Hsu YC, Chen YH, Lee JC. Sulforaphane Suppresses Hepatitis C Virus Replication by Up-Regulating Heme Oxygenase-1 Expression through PI3K/Nrf2 Pathway. PLoS One 2016; 11:e0152236. [PMID: 27023634 PMCID: PMC4811417 DOI: 10.1371/journal.pone.0152236] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/10/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection-induced oxidative stress is a major risk factor for the development of HCV-associated liver disease. Sulforaphane (SFN) is an antioxidant phytocompound that acts against cellular oxidative stress and tumorigenesis. However, there is little known about its anti-viral activity. In this study, we demonstrated that SFN significantly suppressed HCV protein and RNA levels in HCV replicon cells and infectious system, with an IC50 value of 5.7 ± 0.2 μM. Moreover, combination of SFN with anti-viral drugs displayed synergistic effects in the suppression of HCV replication. In addition, we found nuclear factor erythroid 2-related factor 2 (Nrf2)/HO-1 induction in response to SFN and determined the signaling pathways involved in this process, including inhibition of NS3 protease activity and induction of IFN response. In contrast, the anti-viral activities were attenuated by knockdown of HO-1 with specific inhibitor (SnPP) and shRNA, suggesting that anti-HCV activity of SFN is dependent on HO-1 expression. Otherwise, SFN stimulated the phosphorylation of phosphoinositide 3-kinase (PI3K) leading Nrf2-mediated HO-1 expression against HCV replication. Overall, our results indicated that HO-1 is essential in SFN-mediated anti-HCV activity and provide new insights in the molecular mechanism of SFN in HCV replication.
Collapse
Affiliation(s)
- Jung-Sheng Yu
- Department of Chinese Medicine, Chi Mei Medical Center, Tainan, 71004, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Wei-Chun Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Kai Tseng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Kuang Lin
- Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yao-Chin Hsu
- Department of Chinese Medicine, Chi Mei Medical Center, Tainan, 71004, Taiwan
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center for Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, HsinChu, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail: (J-CL); (Y-HC)
| | - Jin-Ching Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail: (J-CL); (Y-HC)
| |
Collapse
|
28
|
Khaya grandifoliola C.DC: a potential source of active ingredients against hepatitis C virus in vitro. Arch Virol 2016; 161:1169-81. [PMID: 26843184 DOI: 10.1007/s00705-016-2771-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 01/24/2016] [Indexed: 01/11/2023]
Abstract
In this study, we examined the antiviral properties of Khaya grandifoliola C.DC (Meliaceae) on the hepatitis C virus (HCV) life cycle in vitro and identified some of the chemical constituents contained in the fraction with the most antiviral activity. Dried bark powder was extracted by maceration in a methylene chloride/methanol (MCM) system (50:50; v/v) and separated on silica gel by flash chromatography. Infection and replication rates in Huh-7 cells were investigated by luciferase reporter assay and indirect immunofluorescence assay using subgenomic replicons, HCV pseudotyped particles, and cell-culture-derived HCV (HCVcc), respectively. Cell viability was assessed by MTT assay, and cellular gene expression was analysed by qRT-PCR. The chemical composition of the fraction with the most antiviral activity was analysed by coupled gas chromatography and mass spectrometry (GC-MS). Five fractions of different polarities (F0-F100) were obtained from the MCM extract. One fraction (KgF25) showed the strongest antiviral effect on LucUbiNeoET replicons at nontoxic concentrations. Tested at 100 µg/mL, KgF25 had a high inhibitory effect on HCV replication, comparable to that of 0.01 µM daclatasvir or 1 µM telaprevir. This fraction also inhibited HCVcc infection by mostly targeting the entry step. KgF25 inhibited HCV entry in a pan-genotypic manner by directly inactivating free viral particles. Its antiviral effects were mediated by the transcriptional upregulation of the haem oxygenase-1 gene and interferon antiviral response. Three constituents, namely, benzene, 1,1'-(oxydiethylidene)bis (1), carbamic acid, (4-methylphenyl)-, 1-phenyl (2), and 6-phenyl, 4-(1'-oxyethylphenyl) hexene (3), were identified from the active fraction KgF25 by GC-MS. Khaya grandifoliola contains ingredients capable of acting on different steps of the HCV life cycle.
Collapse
|
29
|
Zhang S, Pan H, Peng X, Lu H, Fan H, Zheng X, Xu G, Wang M, Wang J. Preventive use of a hepatoprotectant against anti-tuberculosis drug-induced liver injury: A randomized controlled trial. J Gastroenterol Hepatol 2016; 31:409-16. [PMID: 26243373 DOI: 10.1111/jgh.13070] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/22/2015] [Accepted: 07/10/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIM Hepatoprotectants are routinely prescribed in China to prevent anti-tuberculosis drug-induced liver injury (ATLI). However, their biological mechanisms have not yet been clearly demonstrated. This study aims to evaluate the preventive effects of Silybum marianum against drug-induced liver injury among tuberculosis patients and to provide clinical guidelines for tuberculosis management in China. METHODS A randomized controlled trial was performed in Jiangsu, China. Tuberculosis patients were randomly allocated to the experimental group (anti-tuberculosis therapy plus S. marianum capsule) or the control group (anti-tuberculosis therapy plus vitamin C tablet). The primary outcomes were the occurrence of probable and possible ATLI, the peak aspartate aminotransferase/alanine aminotransferase ratio and the maximum altered alkaline phosphatase or gamma-glutamyl transferase. RESULTS The final analysis comprised 183 cases in the experiment group and 187 cases in the control group. The risk of developing probable ATLI was not significantly different between the two groups. During the follow-up period, 43.72% of cases in the experiment group and 35.83% of cases in the control group were determined to have possible ATLI (relative risk = 1.23, 95% confidence interval: 0.94-1.54). When using a more strict definition of possible ATLI, the adjusted relative risk (95% confidence interval) was 1.76 (1.14-2.56). The risks of adverse drug reactions, prolonged treatment length, taking second-line tuberculosis drugs, and the clearance of tuberculosis bacteria were similar between the two groups. CONCLUSIONS No significant preventive effect of silymarin was found for either lowering the risk of liver injury or boosting the positive outcomes. Worse, we even found a potential risk of liver damage caused by the hepatoprotectant.
Collapse
Affiliation(s)
- Simin Zhang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Social Medicine and Health Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongqiu Pan
- Department of Tuberculosis, The Third Hospital of Zhenjiang City, Zhenjiang, China
| | - Xianzhen Peng
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hui Lu
- Department of Social Medicine and Health Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hong Fan
- Department of Social Medicine and Health Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xianzhi Zheng
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Guisheng Xu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianming Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Social Medicine and Health Education, School of Public Health, Nanjing Medical University, Nanjing, China
- The Innovation Center for Social Risk Governance in Health, Nanjing, China
| |
Collapse
|
30
|
Gufford BT, Barr JT, González-Pérez V, Layton ME, White JR, Oberlies NH, Paine MF. Quantitative prediction and clinical evaluation of an unexplored herb-drug interaction mechanism in healthy volunteers. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2015; 4:701-10. [PMID: 26904384 PMCID: PMC4759704 DOI: 10.1002/psp4.12047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/21/2015] [Indexed: 12/11/2022]
Abstract
Quantitative prediction of herb–drug interaction risk remains challenging. A quantitative framework to assess a potential interaction was used to evaluate a mechanism not previously tested in humans. The semipurified milk thistle product, silibinin, was selected as an exemplar herbal product inhibitor of raloxifene intestinal glucuronidation. Physiologically based pharmacokinetic (PBPK) model simulations of the silibinin–raloxifene interaction predicted up to 30% increases in raloxifene area under the curve (AUC0‐inf) and maximal concentration (Cmax). Model‐informed clinical evaluation of the silibinin–raloxifene interaction indicated minimal clinical interaction liability, with observed geometric mean raloxifene AUC0‐inf and Cmax ratios lying within the predefined no effect range (0.75–1.33). Further refinement of PBPK modeling and simulation approaches will enhance confidence in predictions and facilitate generalizability to additional herb–drug combinations. This quantitative framework can be used to develop guidances to evaluate potential herb–drug interactions prospectively, providing evidenced‐based information about the risk or safety of these interactions.
Collapse
Affiliation(s)
- B T Gufford
- College of Pharmacy Washington State University Spokane, Washington USA
| | - J T Barr
- College of Pharmacy Washington State University Spokane, Washington USA
| | - V González-Pérez
- College of Pharmacy Washington State University Spokane, Washington USA
| | - M E Layton
- College of Medical Sciences Washington State University Spokane, Washington USA
| | - J R White
- College of Pharmacy Washington State University Spokane, Washington USA
| | - N H Oberlies
- Department of Chemistry and Biochemistry University of North Carolina at Greensboro Greensboro North Carolina USA
| | - M F Paine
- College of Pharmacy Washington State University Spokane, Washington USA
| |
Collapse
|
31
|
Gufford BT, Graf TN, Paguigan ND, Oberlies NH, Paine MF. Chemoenzymatic Synthesis, Characterization, and Scale-Up of Milk Thistle Flavonolignan Glucuronides. Drug Metab Dispos 2015; 43:1734-43. [PMID: 26316643 PMCID: PMC4613946 DOI: 10.1124/dmd.115.066076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/26/2015] [Indexed: 11/22/2022] Open
Abstract
Plant-based therapeutics, including herbal products, continue to represent a growing facet of the contemporary health care market. Mechanistic descriptions of the pharmacokinetics and pharmacodynamics of constituents composing these products remain nascent, particularly for metabolites produced following herbal product ingestion. Generation and characterization of authentic metabolite standards are essential to improve the quantitative mechanistic understanding of herbal product disposition in both in vitro and in vivo systems. Using the model herbal product, milk thistle, the objective of this work was to biosynthesize multimilligram quantities of glucuronides of select constituents (flavonolignans) to fill multiple knowledge gaps in the understanding of herbal product disposition and action. A partnership between clinical pharmacology and natural products chemistry expertise was leveraged to optimize reaction conditions for efficient glucuronide formation and evaluate alternate enzyme and reagent sources to improve cost effectiveness. Optimized reaction conditions used at least one-fourth the amount of microsomal protein (from bovine liver) and cofactor (UDP glucuronic acid) compared with typical conditions using human-derived subcellular fractions, providing substantial cost savings. Glucuronidation was flavonolignan-dependent. Silybin A, silybin B, isosilybin A, and isosilybin B generated five, four, four, and three monoglucuronides, respectively. Large-scale synthesis (40 mg of starting material) generated three glucuronides of silybin A: silybin A-7-O-β-D-glucuronide (15.7 mg), silybin A-5-O-β-D-glucuronide (1.6 mg), and silybin A-4´´-O-β-D-glucuronide (11.1 mg). This optimized, cost-efficient method lays the foundation for a systematic approach to synthesize and characterize herbal product constituent glucuronides, enabling an improved understanding of mechanisms underlying herbal product disposition and action.
Collapse
Affiliation(s)
- Brandon T Gufford
- Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, Washington (B.T.G., M.F.P.); and Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.D.P., N.H.O.)
| | - Tyler N Graf
- Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, Washington (B.T.G., M.F.P.); and Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.D.P., N.H.O.)
| | - Noemi D Paguigan
- Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, Washington (B.T.G., M.F.P.); and Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.D.P., N.H.O.)
| | - Nicholas H Oberlies
- Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, Washington (B.T.G., M.F.P.); and Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.D.P., N.H.O.)
| | - Mary F Paine
- Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, Washington (B.T.G., M.F.P.); and Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.D.P., N.H.O.)
| |
Collapse
|
32
|
Calland N, Sahuc ME, Belouzard S, Pène V, Bonnafous P, Mesalam AA, Deloison G, Descamps V, Sahpaz S, Wychowski C, Lambert O, Brodin P, Duverlie G, Meuleman P, Rosenberg AR, Dubuisson J, Rouillé Y, Séron K. Polyphenols Inhibit Hepatitis C Virus Entry by a New Mechanism of Action. J Virol 2015; 89:10053-63. [PMID: 26202241 PMCID: PMC4577911 DOI: 10.1128/jvi.01473-15] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/17/2015] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Despite the validation of direct-acting antivirals for hepatitis C treatment, the discovery of new compounds with different modes of action may still be of importance for the treatment of special patient populations. We recently identified a natural molecule, epigallocatechin-3-gallate (EGCG), as an inhibitor of hepatitis C virus (HCV) targeting the viral particle. The aim of this work was to discover new natural compounds with higher anti-HCV activity than that of EGCG and determine their mode of action. Eight natural molecules with structure similarity to EGCG were selected. HCV JFH1 in cell culture and HCV pseudoparticle systems were used to determine the antiviral activity and mechanism of action of the compounds. We identified delphinidin, a polyphenol belonging to the anthocyanidin family, as a new inhibitor of HCV entry. Delphinidin inhibits HCV entry in a pangenotypic manner by acting directly on the viral particle and impairing its attachment to the cell surface. Importantly, it is also active against HCV in primary human hepatocytes, with no apparent cytotoxicity and in combination with interferon and boceprevir in cell culture. Different approaches showed that neither aggregation nor destruction of the particle occurred. Cryo-transmission electron microscopy observations of HCV pseudoparticles treated with delphinidin or EGCG showed a bulge on particles that was not observed under control conditions. In conclusion, EGCG and delphinidin inhibit HCV entry by a new mechanism, i.e., alteration of the viral particle structure that impairs its attachment to the cell surface. IMPORTANCE In this article, we identify a new inhibitor of hepatitis C virus (HCV) infection, delphinidin, that prevents HCV entry. This natural compound, a plant pigment responsible for the blue-purple color of flowers and berries, belongs to the flavonoid family, like the catechin EGCG, the major component present in green tea extract, which is also an inhibitor of HCV entry. We studied the mode of action of these two compounds against HCV and demonstrated that they both act directly on the virus, inducing a bulging of the viral envelope. This deformation might be responsible for the observed inhibition of virus attachment to the cell surface. The discovery of such HCV inhibitors with an unusual mode of action is important to better characterize the mechanism of HCV entry into hepatocytes and to help develop a new class of HCV entry inhibitors.
Collapse
Affiliation(s)
- Noémie Calland
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Marie-Emmanuelle Sahuc
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Sandrine Belouzard
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Véronique Pène
- University Paris Descartes, EA 4474, Hepatitis C Virology, Paris, France
| | - Pierre Bonnafous
- University Bordeaux, CBMN UMR 5248, Bordeaux INP, Pessac, France
| | - Ahmed Atef Mesalam
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Gaspard Deloison
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Véronique Descamps
- Virology Laboratory, EA 4294, Centre Hospitalier Universitaire d'Amiens, Université de Picardie Jules Verne, Amiens, France
| | - Sevser Sahpaz
- Laboratory of Pharmacognosy, EA 4481, Université Lille 2, Lille, France
| | - Czeslaw Wychowski
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Olivier Lambert
- University Bordeaux, CBMN UMR 5248, Bordeaux INP, Pessac, France
| | - Priscille Brodin
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Gilles Duverlie
- Virology Laboratory, EA 4294, Centre Hospitalier Universitaire d'Amiens, Université de Picardie Jules Verne, Amiens, France
| | - Philip Meuleman
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | | | - Jean Dubuisson
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Yves Rouillé
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Karin Séron
- Center for Infection & Immunity of Lille (CIIL), Inserm U1019, CNRS UMR8204, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| |
Collapse
|
33
|
Gufford BT, Chen G, Vergara AG, Lazarus P, Oberlies NH, Paine MF. Milk Thistle Constituents Inhibit Raloxifene Intestinal Glucuronidation: A Potential Clinically Relevant Natural Product-Drug Interaction. Drug Metab Dispos 2015; 43:1353-9. [PMID: 26070840 PMCID: PMC4538855 DOI: 10.1124/dmd.115.065086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/12/2015] [Indexed: 12/26/2022] Open
Abstract
Women at high risk of developing breast cancer are prescribed selective estrogen response modulators, including raloxifene, as chemoprevention. Patients often seek complementary and alternative treatment modalities, including herbal products, to supplement prescribed medications. Milk thistle preparations, including silibinin and silymarin, are top-selling herbal products that may be consumed by women taking raloxifene, which undergoes extensive first-pass glucuronidation in the intestine. Key constituents in milk thistle, flavonolignans, were previously shown to be potent inhibitors of intestinal UDP-glucuronosyl transferases (UGTs), with IC50s ≤ 10 μM. Taken together, milk thistle preparations may perpetrate unwanted interactions with raloxifene. The objective of this work was to evaluate the inhibitory effects of individual milk thistle constituents on the intestinal glucuronidation of raloxifene using human intestinal microsomes and human embryonic kidney cell lysates overexpressing UGT1A1, UGT1A8, and UGT1A10, isoforms highly expressed in the intestine that are critical to raloxifene clearance. The flavonolignans silybin A and silybin B were potent inhibitors of both raloxifene 4'- and 6-glucuronidation in all enzyme systems. The Kis (human intestinal microsomes, 27-66 µM; UGT1A1, 3.2-8.3 µM; UGT1A8, 19-73 µM; and UGT1A10, 65-120 µM) encompassed reported intestinal tissue concentrations (20-310 µM), prompting prediction of clinical interaction risk using a mechanistic static model. Silibinin and silymarin were predicted to increase raloxifene systemic exposure by 4- to 5-fold, indicating high interaction risk that merits further evaluation. This systematic investigation of the potential interaction between a widely used herbal product and chemopreventive agent underscores the importance of understanding natural product-drug interactions in the context of cancer prevention.
Collapse
Affiliation(s)
- Brandon T Gufford
- Experimental and Systems Pharmacology (B.T.G., M.F.P.) and Department of Pharmaceutical Sciences (G.C., A.G.V., P.L.), College of Pharmacy, Washington State University, Spokane, Washington; and Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, North Carolina (N.H.O.)
| | - Gang Chen
- Experimental and Systems Pharmacology (B.T.G., M.F.P.) and Department of Pharmaceutical Sciences (G.C., A.G.V., P.L.), College of Pharmacy, Washington State University, Spokane, Washington; and Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, North Carolina (N.H.O.)
| | - Ana G Vergara
- Experimental and Systems Pharmacology (B.T.G., M.F.P.) and Department of Pharmaceutical Sciences (G.C., A.G.V., P.L.), College of Pharmacy, Washington State University, Spokane, Washington; and Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, North Carolina (N.H.O.)
| | - Philip Lazarus
- Experimental and Systems Pharmacology (B.T.G., M.F.P.) and Department of Pharmaceutical Sciences (G.C., A.G.V., P.L.), College of Pharmacy, Washington State University, Spokane, Washington; and Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, North Carolina (N.H.O.)
| | - Nicholas H Oberlies
- Experimental and Systems Pharmacology (B.T.G., M.F.P.) and Department of Pharmaceutical Sciences (G.C., A.G.V., P.L.), College of Pharmacy, Washington State University, Spokane, Washington; and Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, North Carolina (N.H.O.)
| | - Mary F Paine
- Experimental and Systems Pharmacology (B.T.G., M.F.P.) and Department of Pharmaceutical Sciences (G.C., A.G.V., P.L.), College of Pharmacy, Washington State University, Spokane, Washington; and Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, North Carolina (N.H.O.)
| |
Collapse
|
34
|
Esser‐Nobis K, Harak C, Schult P, Kusov Y, Lohmann V. Novel perspectives for hepatitis A virus therapy revealed by comparative analysis of hepatitis C virus and hepatitis A virus RNA replication. Hepatology 2015; 62:397-408. [PMID: 25866017 PMCID: PMC7165973 DOI: 10.1002/hep.27847] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/10/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Hepatitis A virus (HAV) and hepatitis C virus (HCV) are two positive-strand RNA viruses sharing a similar biology, but causing opposing infection outcomes, with HAV always being cleared and HCV establishing persistence in the majority of infections. To gain deeper insight into determinants of replication, persistence, and treatment, we established a homogenous cell-culture model allowing a thorough comparison of RNA replication of both viruses. By screening different human liver-derived cell lines with subgenomic reporter replicons of HAV as well as of different HCV genotypes, we found that Huh7-Lunet cells supported HAV- and HCV-RNA replication with similar efficiency and limited interference between both replicases. HAV and HCV replicons were similarly sensitive to interferon (IFN), but differed in their ability to establish persistent replication in cell culture. In contrast to HCV, HAV replicated independently from microRNA-122 and phosphatidylinositol 4-kinase IIIα and β (PI4KIII). Both viruses were efficiently inhibited by cyclosporin A and NIM811, a nonimmunosuppressive analog thereof, suggesting an overlapping dependency on cyclophilins for replication. However, analysis of a broader set of inhibitors revealed that, in contrast to HCV, HAV does not depend on cyclophilin A, but rather on adenosine-triphosphate-binding cassette transporters and FK506-binding proteins. Finally, silibinin, but not its modified intravenous formulation, efficiently inhibited HAV genome replication in vitro, suggesting oral silibinin as a potential therapeutic option for HAV infections. CONCLUSION We established a cell-culture model enabling comparative studies on RNA replication of HAV and HCV in a homogenous cellular background with comparable replication efficiency. We thereby identified new host cell targets and potential treatment options for HAV and set the ground for future studies to unravel determinants of clearance and persistence.
Collapse
Affiliation(s)
- Katharina Esser‐Nobis
- Department of Infectious DiseasesMolecular Virology, University of HeidelbergGermany
| | - Christian Harak
- Department of Infectious DiseasesMolecular Virology, University of HeidelbergGermany
| | - Philipp Schult
- Department of Infectious DiseasesMolecular Virology, University of HeidelbergGermany
| | - Yuri Kusov
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine and German Center for Infection Research (DZIF), University of LübeckGermany
| | - Volker Lohmann
- Department of Infectious DiseasesMolecular Virology, University of HeidelbergGermany
| |
Collapse
|
35
|
Lani R, Hassandarvish P, Chiam CW, Moghaddam E, Chu JJH, Rausalu K, Merits A, Higgs S, Vanlandingham D, Abu Bakar S, Zandi K. Antiviral activity of silymarin against chikungunya virus. Sci Rep 2015; 5:11421. [PMID: 26078201 PMCID: PMC4468427 DOI: 10.1038/srep11421] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/26/2015] [Indexed: 12/26/2022] Open
Abstract
The mosquito-borne chikungunya virus (CHIKV) causes chikungunya fever, with clinical presentations such as severe back and small joint pain, and debilitating arthritis associated with crippling pains that persist for weeks and even years. Although there are several studies to evaluate the efficacy of drugs against CHIKV, the treatment for chikungunya fever is mainly symptom-based and no effective licensed vaccine or antiviral are available. Here, we investigated the antiviral activity of three types of flavonoids against CHIKV in vitro replication. Three compounds: silymarin, quercetin and kaempferol were evaluated for their in vitro antiviral activities against CHIKV using a CHIKV replicon cell line and clinical isolate of CHIKV of Central/East African genotype. A cytopathic effect inhibition assay was used to determine their activities on CHIKV viral replication and quantitative reverse transcription PCR was used to calculate virus yield. Antiviral activity of effective compound was further investigated by evaluation of CHIKV protein expression using western blotting for CHIKV nsP1, nsP3, and E2E1 proteins. Briefly, silymarin exhibited significant antiviral activity against CHIKV, reducing both CHIKV replication efficiency and down-regulating production of viral proteins involved in replication. This study may have important consequence for broaden the chance of getting the effective antiviral for CHIKV infection.
Collapse
Affiliation(s)
- Rafidah Lani
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Pouya Hassandarvish
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Chun Wei Chiam
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Ehsan Moghaddam
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kai Rausalu
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Stephen Higgs
- Biosecurity Research Institute, Kansas State University, Manhattan, USA
| | - Dana Vanlandingham
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, USA
| | - Sazaly Abu Bakar
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Keivan Zandi
- Tropical Infectious Disease Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Silibinin and STAT3: A natural way of targeting transcription factors for cancer therapy. Cancer Treat Rev 2015; 41:540-6. [PMID: 25944486 DOI: 10.1016/j.ctrv.2015.04.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/19/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in many different types of cancer and plays a pivotal role in tumor growth and metastasis. Retrospective studies have established that STAT3 expression or phospho-STAT3 (pSTAT3 or activated STAT3) are poor prognostic markers for breast, colon, prostate and non-small cell lung cancer. Silibinin or silybin is a natural polyphenolic flavonoid which is present in seed extracts of milk thistle (Silybum marianum). Silibinin has been shown to inhibit multiple cancer cell signaling pathways in preclinical models, demonstrating promising anticancer effects in vitro and in vivo. This review summarizes evidence suggesting that silibinin can inhibit pSTAT3 in preclinical cancer models. We also discuss current strategies to overcome the limitations of oral administration of silibinin to cancer patients to translate the bench results to the bed side. Finally, we review the ongoing clinical trials exploring the role of silibinin in cancer.
Collapse
|
37
|
Meissner EG. Continued value in understanding viral kinetic decline during interferon-free therapy for HCV. Liver Int 2015; 35:295-6. [PMID: 25424883 DOI: 10.1111/liv.12748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Eric G Meissner
- Division of Infectious Diseases, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
38
|
Dahari H, Shteingart S, Gafanovich I, Cotler SJ, D'Amato M, Pohl RT, Weiss G, Ashkenazi YJ, Tichler T, Goldin E, Lurie Y. Sustained virological response with intravenous silibinin: individualized IFN-free therapy via real-time modelling of HCV kinetics. Liver Int 2015; 35:289-94. [PMID: 25251042 PMCID: PMC4304917 DOI: 10.1111/liv.12692] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/15/2014] [Accepted: 09/18/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Intravenous silibinin (SIL) is a potent antiviral agent against hepatitis C virus (HCV) genotype-1. In this proof of concept case-study we tested: (i) whether interferon-alfa (IFN)-free treatment with SIL plus ribavirin (RBV) can achieve sustained virological response (SVR); (ii) whether SIL is safe and feasible for prolonged duration of treatment and (iii) whether mathematical modelling of early on-treatment HCV kinetics can guide duration of therapy to achieve SVR. METHODS A 44 year-old female HCV-(genotype-1)-infected patient who developed severe psychiatric adverse events to a previous course of pegIFN+RBV, initiated combination treatment with 1200 mg/day of SIL, 1200 mg/day of RBV and 6000 u/day vitamin D. Blood samples were collected frequently till week 4, thereafter every 1-12 weeks until the end of therapy. The standard biphasic mathematical model with time-varying SIL effectiveness was used to predict the duration of therapy to achieve SVR. RESULTS Based on modelling the observed viral kinetics during the first 3 weeks of treatment, SVR was predicted to be achieved within 34 weeks of therapy. Provided with this information, the patient agreed to complete 34 weeks of treatment. IFN-free treatment with SIL+RBV was feasible, safe and achieved SVR (week-33). CONCLUSIONS We report, for the first time, the use of real-time mathematical modelling of HCV kinetics to individualize duration of IFN-free therapy and to empower a patient to participate in shared decision making regarding length of treatment. SIL-based individualized therapy provides a treatment option for patients who do not respond to or cannot receive other HCV agents and should be further validated.
Collapse
Affiliation(s)
- Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA,Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA,To whom correspondence and questions regarding mathematical modeling should be addressed: Harel Dahari, Address: Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA; Fax: +1-708-216-6299; Tel: +1-708-216-4682;
| | - Shimon Shteingart
- Digestive Disease Institute, Share'e Zedek Medical Center, Jerusalem, Israel
| | - Inna Gafanovich
- Liver Unit, Digestive Disease Institute, Share'e Zedek Medical Center, Jerusalem, Israel
| | - Scott J. Cotler
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | | | | | - Gali Weiss
- Nursing Division, Share'e Zedek Medical Center, Jerusalem, Israel
| | | | - Thomas Tichler
- Internal medicine, Share'e Zedek Medical Center, Jerusalem, Israel
| | - Eran Goldin
- Digestive Disease Institute, Share'e Zedek Medical Center, Jerusalem, Israel
| | - Yoav Lurie
- Liver Unit, Digestive Disease Institute, Share'e Zedek Medical Center, Jerusalem, Israel,To whom correspondence and questions regarding mathematical modeling should be addressed: Harel Dahari, Address: Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA; Fax: +1-708-216-6299; Tel: +1-708-216-4682;
| |
Collapse
|
39
|
Raja HA, Kaur A, El-Elimat T, Figueroa M, Kumar R, Deep G, Agarwal R, Faeth SH, Cech NB, Oberlies NH. Phylogenetic and chemical diversity of fungal endophytes isolated from Silybum marianum (L) Gaertn. (milk thistle). Mycology 2015; 6:8-27. [PMID: 26000195 PMCID: PMC4409047 DOI: 10.1080/21501203.2015.1009186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/13/2015] [Indexed: 01/30/2023] Open
Abstract
Use of the herb milk thistle (Silybum marianum) is widespread, and its chemistry has been studied for over 50 years. However, milk thistle endophytes have not been studied previously for their fungal and chemical diversity. We examined the fungal endophytes inhabiting this medicinal herb to determine: (1) species composition and phylogenetic diversity of fungal endophytes; (2) chemical diversity of secondary metabolites produced by these organisms; and (3) cytotoxicity of the pure compounds against the human prostate carcinoma (PC-3) cell line. Forty-one fungal isolates were identified from milk thistle comprising 25 operational taxonomic units based on BLAST search via GenBank using published authentic sequences from nuclear ribosomal internal transcribed spacer sequence data. Maximum likelihood analyses of partial 28S rRNA gene showed that these endophytes had phylogenetic affinities to four major classes of Ascomycota, the Dothideomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes. Chemical studies of solid-substrate fermentation cultures led to the isolation of four new natural products. In addition, 58 known secondary metabolites, representing diverse biosynthetic classes, were isolated and characterized using a suite of nuclear magnetic resonance and mass spectrometry techniques. Selected pure compounds were tested against the PC-3 cell line, where six compounds displayed cytotoxicity.
Collapse
Affiliation(s)
- Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC27402, USA
| | - Amninder Kaur
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC27402, USA
| | - Tamam El-Elimat
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC27402, USA
| | - Mario Figueroa
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico, DF04510, Mexico
| | - Rahul Kumar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO80045, USA
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO80045, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO80045, USA
| | - Stanley H. Faeth
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC27402, USA
| | - Nadja B. Cech
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC27402, USA
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC27402, USA
| |
Collapse
|
40
|
El-Elimat T, Raja HA, Graf TN, Faeth SH, Cech NB, Oberlies NH. Flavonolignans from Aspergillus iizukae, a fungal endophyte of milk thistle (Silybum marianum). JOURNAL OF NATURAL PRODUCTS 2014; 77:193-9. [PMID: 24456525 DOI: 10.1021/np400955q] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Silybin A (1), silybin B (2), and isosilybin A (3), three of the seven flavonolignans that constitute silymarin, an extract of the fruits of milk thistle (Silybum marianum), were detected for the first time from a fungal endophyte, Aspergillus iizukae, isolated from the surface-sterilized leaves of S. marianum. The flavonolignans were identified using a UPLC-PDA-HRMS-MS/MS method by matching retention times, HRMS, and MS/MS data with authentic reference compounds. Attenuation of flavonolignan production was observed following successive subculturing of the original flavonolignan-producing culture, as is often the case with endophytes that produce plant-based secondary metabolites. However, production of 1 and 2 resumed when attenuated spores were harvested from cultures grown on a medium to which autoclaved leaves of S. marianum were added. The cycle of attenuation followed by resumed biosynthesis of these flavonolignans was replicated in triplicate.
Collapse
Affiliation(s)
- Tamam El-Elimat
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro , Greensboro, North Carolina 27402, United States
| | | | | | | | | | | |
Collapse
|
41
|
McClure J, Margineantu DH, Sweet IR, Polyak SJ. Inhibition of HIV by Legalon-SIL is independent of its effect on cellular metabolism. Virology 2014; 449:96-103. [PMID: 24418542 PMCID: PMC3909448 DOI: 10.1016/j.virol.2013.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/22/2013] [Accepted: 11/01/2013] [Indexed: 01/18/2023]
Abstract
In this report, we further characterized the effects of silibinin (SbN), derived from milk thistle extract, and Legalon-SIL (SIL), a water-soluble derivative of SbN, on T cell metabolism and HIV infection. We assessed the effects of SbN and SIL on peripheral blood mononuclear cells (PBMC) and CEM-T4 cells in terms of cellular growth, ATP content, metabolism, and HIV infection. SIL and SbN caused a rapid and reversible (upon removal) decrease in cellular ATP levels, which was associated with suppression of mitochondrial respiration and glycolysis. SbN, but not SIL inhibited glucose uptake. Exposure of T cells to SIL (but not SbN or metabolic inhibitors) during virus adsorption blocked HIV infection. Thus, both SbN and SIL rapidly perturb T cell metabolism in vitro, which may account for its anti-inflammatory and anti-proliferative effects that arise with prolonged exposure of cells. However, the metabolic effects are not involved in SIL's unique ability to block HIV entry.
Collapse
Affiliation(s)
- Janela McClure
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States
| | - Daciana H Margineantu
- Department of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Ian R Sweet
- Department of Medicine (Division of Metabolism, Endocrinology, and Nutrition), University of Washington, Seattle, WA, United States
| | - Stephen J Polyak
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States; Department of Global Health, University of Washington, Seattle, WA, United States.
| |
Collapse
|
42
|
Lied GA, Gilja OH, Hausken T. Har silibinin en plass i behandlingen av leversykdommer? TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2014; 134:392. [DOI: 10.4045/tidsskr.13.1531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
43
|
Blaising J, Lévy PL, Gondeau C, Phelip C, Varbanov M, Teissier E, Ruggiero F, Polyak SJ, Oberlies NH, Ivanovic T, Boulant S, Pécheur EI. Silibinin inhibits hepatitis C virus entry into hepatocytes by hindering clathrin-dependent trafficking. Cell Microbiol 2013; 15:1866-82. [PMID: 23701235 DOI: 10.1111/cmi.12155] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 05/01/2013] [Accepted: 05/20/2013] [Indexed: 12/17/2022]
Abstract
Hepatitis C virus (HCV) is a global health concern infecting 170 million people worldwide. Previous studies indicate that the extract from milk thistle known as silymarin and its main component silibinin inhibit HCV infection. Here we investigated the mechanism of anti-HCV action of silymarin-derived compounds at the molecular level. By using live-cell confocal imaging, single particle tracking, transmission electron microscopy and biochemical approaches on HCV-infected human hepatoma cells and primary hepatocytes, we show that silibinin potently inhibits HCV infection and hinders HCV entry by slowing down trafficking through clathrin-coated pits and vesicles. Detailed analyses revealed that silibinin altered the formation of both clathrin-coated pits and vesicles in cells and caused abnormal uptake and trafficking of transferrin, a well-known cargo of the clathrin endocytic pathway. Silibinin also inhibited infection by other viruses that enter cells by clathrin-mediated endocytosis including reovirus, vesicular stomatitis and influenza viruses. Our study demonstrates that silibinin inhibits HCV early steps of infection by affecting endosomal trafficking of virions. It provides new insights into the molecular mechanisms of action of silibinin against HCV entry and also suggests that silibinin is a potential broad-spectrum antiviral therapy.
Collapse
Affiliation(s)
- Julie Blaising
- UMR CNRS 5086, IBCP, Lyon, France; UMR Inserm U1052/CNRS 5286, Cancer Research Center of Lyon, University of Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Althagafy HS, Meza-Aviña ME, Oberlies NH, Croatt MP. Mechanistic study of the biomimetic synthesis of flavonolignan diastereoisomers in milk thistle. J Org Chem 2013; 78:7594-600. [PMID: 23876147 PMCID: PMC3855429 DOI: 10.1021/jo4011377] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mechanism for the biomimetic synthesis of flavonolignan diastereoisomers in milk thistle is proposed to proceed by single-electron oxidation of coniferyl alcohol, subsequent reaction with one of the oxygen atoms of taxifolin's catechol moiety, and finally, further oxidation to form four of the major components of silymarin: silybin A, silybin B, isosilybin A, and isosilybin B. This mechanism is significantly different from a previously proposed process that involves the coupling of two independently formed radicals.
Collapse
Affiliation(s)
- Hanan S Althagafy
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, 435 Sullivan Science Building, P.O. Box 26170, Greensboro, North Carolina 27402, USA
| | | | | | | |
Collapse
|
45
|
Althagafy HS, Graf TN, Sy-Cordero AA, Gufford BT, Paine MF, Wagoner J, Polyak SJ, Croatt MP, Oberlies NH. Semisynthesis, cytotoxicity, antiviral activity, and drug interaction liability of 7-O-methylated analogues of flavonolignans from milk thistle. Bioorg Med Chem 2013; 21:3919-26. [PMID: 23673225 PMCID: PMC3855444 DOI: 10.1016/j.bmc.2013.04.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/26/2013] [Accepted: 04/02/2013] [Indexed: 11/23/2022]
Abstract
Silymarin, an extract of the seeds of milk thistle (Silybum marianum), is used as an herbal remedy, particularly for hepatoprotection. The main chemical constituents in silymarin are seven flavonolignans. Recent studies explored the non-selective methylation of one flavonolignan, silybin B, and then tested those analogues for cytotoxicity and inhibition of both cytochrome P450 (CYP) 2C9 activity in human liver microsomes and hepatitis C virus infection in a human hepatoma (Huh7.5.1) cell line. In general, enhanced bioactivity was observed with the analogues. To further probe the biological consequences of methylation of the seven major flavonolignans, a series of 7-O-methylflavonolignans were generated. Optimization of the reaction conditions permitted selective methylation at the phenol in the 7-position in the presence of each metabolite's 4-5 other phenolic and/or alcoholic positions without the use of protecting groups. These 7-O-methylated analogues, in parallel with the corresponding parent compounds, were evaluated for cytotoxicity against Huh7.5.1 cells; in all cases the monomethylated analogues were more cytotoxic than the parent compounds. Moreover, parent compounds that were relatively non-toxic and inactive or weak inhibitors of hepatitis C virus infection had enhanced cytotoxicity and anti-HCV activity upon 7-O-methylation. Also, the compounds were tested for inhibition of major drug metabolizing enzymes (CYP2C9, CYP3A4/5, UDP-glucuronsyltransferases) in pooled human liver or intestinal microsomes. Methylation of flavonolignans differentially modified inhibitory potency, with compounds demonstrating both increased and decreased potency depending upon the compound tested and the enzyme system investigated. In total, these data indicated that monomethylation modulates the cytotoxic, antiviral, and drug interaction potential of silymarin flavonolignans.
Collapse
Affiliation(s)
- Hanan S. Althagafy
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Tyler N. Graf
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Arlene A. Sy-Cordero
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Brandon T. Gufford
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mary F. Paine
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica Wagoner
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98104, USA
| | - Stephen J. Polyak
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98104, USA
- Department of Global Health, University of Washington, Seattle, WA 98104, USA
| | - Mitchell P. Croatt
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| |
Collapse
|
46
|
Napolitano JG, Lankin DC, Graf TN, Friesen JB, Chen SN, McAlpine JB, Oberlies NH, Pauli GF. HiFSA fingerprinting applied to isomers with near-identical NMR spectra: the silybin/isosilybin case. J Org Chem 2013; 78:2827-39. [PMID: 23461697 PMCID: PMC3640553 DOI: 10.1021/jo302720h] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study demonstrates how regio- and diastereo-isomers with near-identical NMR spectra can be distinguished and unambiguously assigned using quantum mechanical driven (1)H iterative Full Spin Analysis (HiFSA). The method is illustrated with four natural products, the flavonolignans silybin A, silybin B, isosilybin A, and isosilybin B, which exhibit extremely similar coupling patterns and chemical shift differences well below the commonly reported level of accuracy of 0.01 ppm. The HiFSA approach generated highly reproducible (1)H NMR fingerprints that enable distinction of all four isomers at (1)H frequencies from 300 to 900 MHz. Furthermore, it is demonstrated that the underlying numeric (1)H NMR profiles, combined with iterative computational analysis, allow parallel quantification of all four isomers, even in difficult to characterize reference materials and mixtures. The results shed new light on the historical challenges to the qualitative and quantitative analysis of these therapeutically relevant flavonolignans and open new opportunities to explore hidden diversity in the chemical space of organic molecules.
Collapse
Affiliation(s)
- José G. Napolitano
- Department of Medicinal Chemistry & Pharmacognosy, and Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - David C. Lankin
- Department of Medicinal Chemistry & Pharmacognosy, and Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Tyler N. Graf
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, United States
| | - J. Brent Friesen
- Department of Medicinal Chemistry & Pharmacognosy, and Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
- Rosary College of Arts and Sciences, Dominican University, River Forest, IL 60305, United States
| | - Shao-Nong Chen
- Department of Medicinal Chemistry & Pharmacognosy, and Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - James B. McAlpine
- Department of Medicinal Chemistry & Pharmacognosy, and Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, United States
| | - Guido F. Pauli
- Department of Medicinal Chemistry & Pharmacognosy, and Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| |
Collapse
|