1
|
Babypriyanka S, Hepziba JS, Pushpam KA, Pillai AM, Vijayalakshmi R, Theradimani M. Exploring the bioactive components of millets for their nutraceutical potential. Food Sci Biotechnol 2025; 34:563-575. [PMID: 39958176 PMCID: PMC11822186 DOI: 10.1007/s10068-024-01707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 02/18/2025] Open
Abstract
Millets have gained significant attention in recent days due to their potential as nutritious and bioactive-rich food sources. Beyond their macronutrient content such as carbohydrates, fats, protein and minerals, possess impressive array of bioactive compounds viz., polyphenols, flavonoids and antioxidants. Ferulic acid is predominantly found among all the millets followed by caffeic acid and soluble/bound fractions of whole grains contain flavonoids. Their prebiotic properties contribute to gut health by promoting growth of beneficial gut microbiota. Phenolic compounds contribute to their antioxidant, anticancer and antiviral properties. Millets are rich in dietary fibre (15-20%), which has water absorbing and bulking property thereby increases transit time of food in the gut and helps in reducing risk of inflammatory bowel disease and acts as detoxifying agent in the body. The bioavailability of minerals is however hindered by the antinutritional factors like tannins and phytates. This review focuses on the nutraceutical potential of millets by exploring its bioactive components and its enhancement through biofortification strategies which is essential for utilizing and harnessing their health-promoting properties for the benefit of global nutrition and well-being.
Collapse
Affiliation(s)
- S. Babypriyanka
- Department of Genetics and Plant Breeding, V.O.C. Agricultural College and Research Institute, Killikulam, Thoothukudi, Tamil Nadu 628252 India
| | - Juliet S. Hepziba
- Department of Genetics and Plant Breeding, V.O.C. Agricultural College and Research Institute, Killikulam, Thoothukudi, Tamil Nadu 628252 India
| | - Kavitha A. Pushpam
- Department of Crop Physiology and Biochemistry, V.O.C Agricultural College and Research Institute, Killikulam, Thoothukudi, Tamil Nadu 628252 India
| | - Arumugam M. Pillai
- Department of Genetics and Plant Breeding, V.O.C. Agricultural College and Research Institute, Killikulam, Thoothukudi, Tamil Nadu 628252 India
| | - R. Vijayalakshmi
- Department of Family Resource Management and Consumer Studies, Community Science College and Research Institute, Madurai, Tamil Nadu 625104 India
| | - M. Theradimani
- Department of Plant Pathology, V.O.C. Agricultural College and Research Institute, Killikulam, Thoothukudi, Tamil Nadu 628252 India
| |
Collapse
|
2
|
Elmotasem H, Salama AAA, Shalaby ES. Hyaluronate functionalized Span-Labrasol nanovesicular transdermal therapeutic system of ferulic acid targeting diabetic nephropathy. Int J Biol Macromol 2024; 279:135292. [PMID: 39236956 DOI: 10.1016/j.ijbiomac.2024.135292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/19/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Diabetic kidney disease, known as diabetic nephropathy (DN), is a widespread severe diabetes complication leading to kidney failure. Due to the lack of efficacious therapies, this study endeavors to enhance DN therapeutic effectiveness of ferulic acid (FRA), a natural phenolic with poor oral bioavailability, by developing a transdermal kidney-targeted spanlastic formulation. Spanlastics (SP) nanovesicles were prepared using Span 60 and Labrasol or Brij35 as edge activators (EA). Cationic guar (CG) and hyaluronic acid (HA) were employed as coatings. The formulations were assessed for entrapment efficiency (EE), particle size (PS) and zeta potential (ZP). A 21 × 31 factorial optimization of FRA spanlastic formulations revealed the desirable nanoformula was FRA-L-H-SP comprising Labrasol and hyaluronate coating. Transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR), Diphenylpicrylhydrazyl (DPPH) antioxidant activity, in-vitro release, and rat skin ex-vivo permeation assessed this formula and the uncoated one (FRA-L-SP). Biochemical indicators and histopathology for diabetes and kidney injury were evaluated in the Streptozotocin (STZ)-induced DN rat model. Results showed significant improvements after treatment with FRA-L-H-SP compared to FRA-L-SP and free FRA, with decreased blood glucose, creatinine, and intercellular adhesion molecule-1 (ICAM-1) levels and increased insulin, AMP-activated protein kinase (AMPK), and sirtuins (SIRT). This enhancement can be acknowledged as passive targeting of SP and active targeting properties of hyaluronic to cluster of differentiation 44 (CD44) receptors, revealing the potential to improve DN pathophysiology.
Collapse
Affiliation(s)
- Heba Elmotasem
- Pharmaceutical Technology Department, Drug Industries Research Institute, National Research Centre, Cairo 12622, Egypt.
| | - Abeer A A Salama
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo 12622, Egypt
| | - Eman Samy Shalaby
- Pharmaceutical Technology Department, Drug Industries Research Institute, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
3
|
Elazab ST, Hsu WH. Ferulic acid ameliorates concanavalin A-induced hepatic fibrosis in mice via suppressing TGF-β/smad signaling. Toxicol Appl Pharmacol 2024; 492:117099. [PMID: 39260469 DOI: 10.1016/j.taap.2024.117099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/25/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND AND AIM Hepatic fibrosis, one of the main reasons for death globally, is a serious complication of chronic liver disorders. However, the available therapies for liver fibrosis are limited, ineffective, and often associated with adverse events. Hence, seeking for a novel, effective therapy is warranted. Our objective was to investigate the potential efficacy of ferulic acid (FA), a phenolic phytochemical, at different doses in hindering the progress of concanavalin A (Con A)-induced hepatic fibrosis and explore the involved mechanisms. METHODS Thirty-six mice were assorted into 6 groups (n = 6): Group I (control); group II received FA (20 mg/kg/day orally for 4 weeks); group III received Con A (6 mg/kg/week/i.v.) for 4 weeks; groups IV, V, and VI received Con A and were offered FA at 5, 10, and 20 mg/kg/day, respectively. RESULTS The data showed the palliative effect of FA against Con A-induced fibrosis in a dose-dependent manner. This was obvious from the recovery of liver markers and hepatic architecture with the regression of fibrosis in FA-treated mice. FA abolished Con A-mediated oxidative insults and promoted the antioxidant enzyme activities, which run through the Nrf2/HO-1 signaling. Additionally, FA suppressed Con A-induced increase in NF-kB and IL-β levels, and TNF-α immune-expression. The anti-fibrotic effect of FA was evident from the drop in TGF-β, smad3 levels, α-SMA expression, and hydroxyproline content. CONCLUSION FA attenuated Con A-induced liver fibrosis through stimulating Nrf2 signaling, suppressing NF-kB, and inhibiting the TGF-β/smad3 signaling pathway. Thus FA can be considered as a promising therapy for combating liver fibrosis.
Collapse
Affiliation(s)
- Sara T Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Walter H Hsu
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
4
|
Kumar M, Kaushik D, Shubham S, Kumar A, Kumar V, Oz E, Brennan C, Zeng M, Proestos C, Çadırcı K, Bayrak M, Elobeid T, Karav S, Oz F. Ferulic acid: extraction, estimation, bioactivity and applications for human health and food. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39354884 DOI: 10.1002/jsfa.13931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/13/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024]
Abstract
Ferulic acid ((E)-3-(4-hydroxy-3-methoxy-phenyl) prop-2-enoic acid) is a derivative of caffeic acid found in most plants. This abundant phenolic compound exhibits significant antioxidant capacity and a broad spectrum of therapeutic effects, including anti-inflammatory, antimicrobial, anticancer, antidiabetic, cardiovascular and neuroprotective activities. It is absorbed more quickly by the body and stays in the bloodstream for a longer period compared with other phenolic acids. It is widely used in the food (namely whole grains, fruits, vegetables and coffee), pharmaceutical and cosmetics industries. The current review highlights ferulic acid and its pharmacological activities, reported mechanisms of action, food applications (food preservative, food additive, food processing, food supplements and in food packaging in the form of edible films) and role in human health. In the future, the demand for ferulic acid in the food and pharmaceutical industries will increase. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Mukul Kumar
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, India
| | - Deepika Kaushik
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, India
| | - Shubham Shubham
- Department of Innovation Engineering, University of Salento, Brindisi, Italy
| | - Ashwani Kumar
- Institute of Food Technology, Bundelkhand University, Jhansi, India
| | - Vishal Kumar
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, India
| | - Emel Oz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum, Turkey
| | - Charles Brennan
- RMIT University, School of Science, Melbourne, Victoria, Australia
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Kenan Çadırcı
- Department of Internal Medicine, Erzurum Regional Training and Research Hospital, Health Sciences University, Erzurum, Turkey
| | - Muharrem Bayrak
- Department of Internal Medicine, Erzurum Regional Training and Research Hospital, Health Sciences University, Erzurum, Turkey
| | - Tahra Elobeid
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Sercan Karav
- Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
5
|
Khatun MM, Bhuia MS, Chowdhury R, Sheikh S, Ajmee A, Mollah F, Al Hasan MS, Coutinho HDM, Islam MT. Potential utilization of ferulic acid and its derivatives in the management of metabolic diseases and disorders: An insight into mechanisms. Cell Signal 2024; 121:111291. [PMID: 38986730 DOI: 10.1016/j.cellsig.2024.111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
Metabolic diseases are abnormal conditions that impair the normal metabolic process, which involves converting food into energy at a cellular level, and cause difficulties like obesity and diabetes. The study aimed to investigate how ferulic acid (FA) and its derivatives could prevent different metabolic diseases and disorders and to understand the specific molecular mechanisms responsible for their therapeutic effects. Information regarding FA associations with metabolic diseases and disorders was compiled from different scientific search engines, including Science Direct, Wiley Online, PubMed, Scopus, Web of Science, Springer Link, and Google Scholar. This review revealed that FA exerts protective effects against metabolic diseases such as diabetes, diabetic retinopathy, neuropathy, nephropathy, cardiomyopathy, obesity, and diabetic hypertension, with beneficial effects on pancreatic cancer. Findings also indicated that FA improves insulin secretion by increasing Ca2+ influx through the L-type Ca2+ channel, thus aiding in diabetes management. Furthermore, FA regulates the activity of inflammatory cytokines (TNF-α, IL-18, and IL-1β) and antioxidant enzymes (CAT, SOD, and GSH-Px) and reduces oxidative stress and inflammation, which are common features of metabolic diseases. FA also affects various signaling pathways, including the MAPK/NF-κB pathways, which play an important role in the progression of diabetic neuropathy and other metabolic disorders. Additionally, FA regulates apoptosis markers (Bcl-2, Bax, and caspase-3) and exerts its protective effects on cellular destruction. In conclusion, FA and its derivatives may act as potential medications for the management of metabolic diseases.
Collapse
Affiliation(s)
- Mst Muslima Khatun
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Salehin Sheikh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh
| | - Afiya Ajmee
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Faysal Mollah
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE 63105-000, Brazil.
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Gopalganj 8100, Dhaka, Bangladesh; Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh.
| |
Collapse
|
6
|
Enciso-Martínez Y, Zuñiga-Martínez BS, Ayala-Zavala JF, Domínguez-Avila JA, González-Aguilar GA, Viuda-Martos M. Agro-Industrial By-Products of Plant Origin: Therapeutic Uses as well as Antimicrobial and Antioxidant Activity. Biomolecules 2024; 14:762. [PMID: 39062476 PMCID: PMC11274454 DOI: 10.3390/biom14070762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The importance of bioactive compounds in agro-industrial by-products of plant origin lies in their direct impacts on human health. These compounds have been shown to possess antioxidant, anti-inflammatory, and antimicrobial properties, contributing to disease prevention and strengthening the immune system. In particular, the antimicrobial action of these compounds emerges as an important tool in food preservation, providing natural alternatives to synthetic preservatives and contributing to combating antimicrobial resistance. Using agro-industrial by-products of plant origin not only addresses the need to reduce waste and promote sustainability but also inaugurates a new era in the formulation of functional foods. From fruit peels to pulps and seeds, these by-products are emerging as essential ingredients in the creation of products that can promote health. Continued research in this area will unveil new applications and properties of these by-products and open doors to a food paradigm in which health and sustainability converge, paving the way to a healthier and more equitable future. The present review presents an overview of our knowledge of agro-industrial by-products and some of their more relevant health-promoting bioactivities.
Collapse
Affiliation(s)
- Yessica Enciso-Martínez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
- IPOA Research Group, Agro-Food Technology Department, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312 Alicante, Spain
| | - B. Shain Zuñiga-Martínez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
- IPOA Research Group, Agro-Food Technology Department, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312 Alicante, Spain
| | - Jesús Fernando Ayala-Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
| | - J. Abraham Domínguez-Avila
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
| | - Gustavo A. González-Aguilar
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas, La Victoria 46, Hermosillo 83304, Sonora, Mexico; (Y.E.-M.); (B.S.Z.-M.); (J.F.A.-Z.); (J.A.D.-A.); (G.A.G.-A.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312 Alicante, Spain
| |
Collapse
|
7
|
Liu Y, Meng X, Jin X, Wang L, Liu S, Chen S, Du K, Li J, Chang Y. A comprehensive review of the botany, ethnopharmacology, phytochemistry, pharmacology, quality control and other applications of Ligustici Rhizoma et Radix. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117687. [PMID: 38163554 DOI: 10.1016/j.jep.2023.117687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/06/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ligusticum sinense Oliv. and L. jeholense Nakai et Kitag. are globally recognized as medicinal botanical species, specifically the rhizomes and roots. These plant parts are collectively referred to as Ligustici Rhizoma et Radix (LReR), which is recorded in the Pharmacopoeia of the People's Republic of China (Ch. P). LReR enjoys widespread recognition in many countries such as China, Russia, Vietnam, and Korea. It is an herbal remedy traditionally employed for dispelling wind and cold, eliminating dampness, and alleviating pain. Numerous bioactive compounds have been successfully isolated and identified, displaying a diverse array of pharmacological activities and medicinal value. THE AIM OF THE REVIEW This review aims to primarily center on the botanical aspects, ethnopharmacology, phytochemistry, pharmacology, toxicity, quality control, and other applications of LReR to furnish a comprehensive and multidimensional foundation for future exploration and utilization. MATERIALS AND METHODS Relevant information about LReR was acquired from ancient books, doctoral and master's dissertations, Google Scholar, Web of Science, PubMed, China National Knowledge Infrastructure (CNKI), ScienceDirect, classical literature, and clinical reports. Several electronic databases were also incorporated. RESULTS In traditional usage, LReR had been traditionally employed for the treatment of anemofrigid headaches, colds, and joint pain. It possessed therapeutic properties for facial skin disorders, thereby facilitating skin regeneration. It has been subjected to comprehensive chemical analysis, resulting in the identification and isolation of 190 compounds, including phthalides, phenylpropanoids, flavonoids, phenolic acids, triterpenes, steroids, volatile oil, fatty acids, and other constituents. The pharmacological activities have been in-depth explored through modern in vivo and in vitro studies, confirming its anti-inflammatory, analgesic, and anti-melanin effects. Furthermore, it exhibited pharmacological activities such as antioxidant, anticancer, antibacterial, and vasodilatory properties. This study provides a basic to contribute to the advancement of research, medicinal applications and product development related to LReR. CONCLUSIONS Considering its traditional and contemporary applications, phytochemical composition, and pharmacological properties, LReR was regarded as a valuable botanical resource for pharmaceutical and pest control purposes. While certain constituents had demonstrated diverse pharmacological activities and application potential, further elucidation was required to fully understand their specific actions and underlying mechanisms. Hence, there was a need to conduct additional investigations to uncover its material foundation and mode of action.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xue Meng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lirong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
8
|
Cai L, Chen Y, Xue H, Yang Y, Wang Y, Xu J, Zhu C, He L, Xiao Y. Effect and pharmacological mechanism of Salvia miltiorrhiza and its characteristic extracts on diabetic nephropathy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117354. [PMID: 38380573 DOI: 10.1016/j.jep.2023.117354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/08/2023] [Accepted: 10/23/2023] [Indexed: 02/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic nephropathy (DN) is a severe diabetic microvascular complication with an increasing prevalence rate and lack of effective treatment. Traditional Chinese medicine has been proven to have favorable efficacy on DN, especially Salvia miltiorrhiza Bunge (SM), one of the most critical and conventional herbs in the treatment. Over the past decades, studies have demonstrated that SM is a potential treatment for DN, and the exploration of the underlying mechanism has also received much attention. AIM OF THIS REVIEW This review aims to systematically study the efficacy and pharmacological mechanism of SM in the treatment of DN to understand its therapeutic potential more comprehensively. MATERIALS AND METHODS Relevant information was sourced from Google Scholar, PubMed, Web of Science, and CNKI databases. RESULTS Several clinical trials and systematic reviews have indicated that SM has definite benefits on the kidneys of diabetic patients. And many laboratory studies have further revealed that SM and its characteristic extracts, mainly including salvianolic acids and tanshinones, can exhibit pharmacological activity against DN by the regulation of metabolism, renal hemodynamic, oxidative stress, inflammation, fibrosis, autophagy, et cetera, and several involved signaling pathways, thereby preventing various renal cells from abnormal changes in DN, including endothelial cells, podocytes, epithelial cells, and mesangial cells. CONCLUSION As a potential drug for the treatment of DN, SM has multi-component, multi-target, and multi-pathway pharmacological effects. This work will not only verify the satisfactory curative effect of SM in the treatment of DN but also provide helpful insights for the development of new anti-DN drugs and the application of traditional Chinese medicine.
Collapse
Affiliation(s)
- Luqi Cai
- The First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yu Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Huizhong Xue
- The First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yimeng Yang
- The First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yuqi Wang
- The First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Junhe Xu
- The First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Chunyan Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Long He
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Yonghua Xiao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
9
|
Sun Z, Liu Y, Zhao Y, Xu Y. Animal Models of Type 2 Diabetes Complications: A Review. Endocr Res 2024; 49:46-58. [PMID: 37950485 DOI: 10.1080/07435800.2023.2278049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Diabetes mellitus is a multifactorial metabolic disease, of which type 2 diabetes (T2D) is one of the most common. The complications of diabetes are far more harmful than diabetes itself. Type 2 diabetes complications include diabetic nephropathy (DN), diabetic heart disease, diabetic foot ulcers (DFU), diabetic peripheral neuropathy (DPN), and diabetic retinopathy (DR) et al. Many animal models have been developed to study the pathogenesis of T2D and discover an effective strategy to treat its consequences. In this sense, it is crucial to choose the right animal model for the corresponding diabetic complication. This paper summarizes and classifies the animal modeling approaches to T2D complications and provides a comprehensive review of their advantages and disadvantages. It is hopeful that this paper will provide theoretical support for animal trials of diabetic complications.
Collapse
Affiliation(s)
- Zhongyan Sun
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao SAR, Taipa, PR China
| | - Yadi Liu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao SAR, Taipa, PR China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, Taipa, PR China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao SAR, Taipa, PR China
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine,Macau University of Science and Technology, Zhuhai, PR China
- Macau University of Science and Technology, Zhuhai MUST Science and Technology Research Institute, Hengqin, Zhuhai, PR China
| |
Collapse
|
10
|
Mitra P, Jana S, Roy S. Insights into the Therapeutic uses of Plant Derive Phytocompounds onDiabetic Nephropathy. Curr Diabetes Rev 2024; 20:e230124225973. [PMID: 38265383 DOI: 10.2174/0115733998273395231117114600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 01/25/2024]
Abstract
Diabetic nephropathy (DN) is one of the primary consequences of diabetes mellitus, affecting many people worldwide and is the main cause of death under the age of sixty. Reactive oxygen species (ROS) production rises during hyperglycemia and is crucial to the development of diabetic complications. Advanced glycation end products (AGEs) are produced excessively in a diabetic state and are accumulated in the kidney, where they change renal architecture and impair renal function. Another important targeted pathway for the formation of DN includes nuclear factor kappa-B (NF-kB), Nuclear factor E2-related factor 2 (Nrf2), NLR family pyrin domain containing 3 (NLRP3), protein kinase B/mammalian target of rapamycin (Akt/mTOR), and autophagy. About 40% of individuals with diabetes eventually acquire diabetic kidney disease and end-stage renal disease that needs hemodialysis, peritoneal dialysis, or kidney transplantation to survive. The current state of acceptable therapy for this kidney ailment is limited. The studies revealed that some naturally occurring bioactive substances might shield the kidney by controlling oxidative stress, renal fibrosis, inflammation, and autophagy. In order to provide new potential therapeutic lead bioactive compounds for contemporary drug discovery and clinical management of DN, this review was designed to examine the various mechanistic pathways by which conventional plants derive phytocompounds that are effective for the control and treatment of DN.
Collapse
Affiliation(s)
- Palash Mitra
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore 721129, India
- Biodiversity and Environmental Studies Research Center, Midnapore City College, Kuturiya, Bhadutala, Midnapore 721129, Paschim Medinipur, West Bengal, India
| | - Sahadeb Jana
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore 721129, India
- Biodiversity and Environmental Studies Research Center, Midnapore City College, Kuturiya, Bhadutala, Midnapore 721129, Paschim Medinipur, West Bengal, India
| | - Suchismita Roy
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore 721129, India
| |
Collapse
|
11
|
Raina J, Firdous A, Singh G, Kumar R, Kaur C. Role of polyphenols in the management of diabetic complications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155155. [PMID: 37922790 DOI: 10.1016/j.phymed.2023.155155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Diabetes Mellitus is an endocrine disorder that will affect, about 693 million adults by 2045 worldwide, (>50% increase from 2017). The conventional treatment of the disease, include the oral hypoglycemic drugs which are given in combination with other drugs and are known to possess various adverse effects like gastrointestinal disturbance, nausea, water retention etc. PURPOSE: Due to the urgent need of combating this disorder without side effects, the alternative and complementary therapies should be explored due to their natural origins and comparable safety. Herbal sources serve as new leads, due to the presence of phytoconstituents with potential therapeutic properties, efficacy and safety. In this review, we tried to summarise the polyphenolic phytoconstituents effective in the treatment of diabetic complications. METHODS A systematic literature search was conducted using 4 databases (Google scholar, Pubmed, Scopus, Embase) for the identification of relevant data. Search was performed using various key words such as "diabetes", "polyphenols", "marine sources","anti-diabetic polyphenols". The in vitro studies involving the cell lines used in diabetes and animal models were also considered for inclusion. Additional research papers were identified by reviewing abstracts, scrutinizing reference lists, and reviewing previously published review articles. RESULTS Polyphenols, a group of phytoconstituents are known worldwide for their tremendous antioxidant potential. So, various research groups have explored their mechanism and therapeutic value in diabetic complications, to improve the insulin sensitivity and glucose metabolism, in controlling the glycemic conditions. CONCLUSION Polyphenols exhibit effective therapeutic potential in managing diabetic complications through their multifaceted mechanism of action. They exhibit antioxidative, anti-inflammatory, and anti-glycemic properties, which collectively contribute to their beneficial effects in mitigating diabetic complications. Thus, the inclusion of polyphenols into the diet, may be cosidered as an approach of managing diabetes on long term basis. In this review, we have tried to identify polyphenols effective in diabetes and summarize their mechanism of action along with their potential, for the treatment of diabetic complications.
Collapse
Affiliation(s)
- Jeevika Raina
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | | | - Gurvinder Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India.
| |
Collapse
|
12
|
Salim NS, Abdel-Alim M, Said HEM, Foda MF. Phenolic Profiles, Antihyperglycemic, Anti-Diabetic, and Antioxidant Properties of Egyptian Sonchus oleraceus Leaves Extract: An In Vivo Study. Molecules 2023; 28:6389. [PMID: 37687218 PMCID: PMC10489745 DOI: 10.3390/molecules28176389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
This study aimed to investigate the phenolic and antioxidant properties of Egyptian Sonchus oleraceus leaves extract (SOE) while comparing the antihyperglycemic efficacy of SOE with that of conventional medicines (glibenclamide) in vivo as a substitution for insulin-deficient patients. Total phenolic (TPC) and flavonoid contents (TFC) in SOE contributed around 127.66 ± 0.56 mg GAE/gm as gallic acid equivalent (GAE) and 74.80 ± 0.55 mg QE/gm as quercetin equivalent (QE). SOE also showed significant DPPH scavenging activity at 43.46%. The presence of five phenolic and six flavonoid compounds in SOE was discovered by HPLC analysis. For the in vivo assay, 42 rats were distributed into six groups (7 Wister albino rats each). The standard control group was fed a basal diet. While the 35 rats were induced with a single dose of 100 mg kg-1 body weight (b.w.) alloxan, then treated orally with glibenclamide (GLI) at 10 mg kg-1, 100, 200, and 300 mg kg-1 SOE (positive control group) for 56 days of routine gastric oral gavages and compared to the effects of GLI, the treatment of SOE 200 and 300 mg kg-1 in diabetic rats for two months dramatically decreased blood glucose, total lipid, total cholesterol, and low-density lipoprotein cholesterol (LDLC) while boosting high-density lipoprotein cholesterol (HDLC) levels and improving liver and kidney functions. The histological assay revealed that the SOE 300 mg kg-1 treatment significantly improved the pancreas tissues, implying the potential application of Egyptian SOE as a diabetes treatment.
Collapse
Affiliation(s)
- Nesrein S. Salim
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt; (N.S.S.); (M.A.-A.)
| | - Mohamed Abdel-Alim
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt; (N.S.S.); (M.A.-A.)
| | - Huda E. M. Said
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Mohamed F. Foda
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt; (N.S.S.); (M.A.-A.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
13
|
Liu T, Jin Q, Yang L, Mao H, Ma F, Wang Y, Li P, Zhan Y. Regulation of autophagy by natural polyphenols in the treatment of diabetic kidney disease: therapeutic potential and mechanism. Front Endocrinol (Lausanne) 2023; 14:1142276. [PMID: 37635982 PMCID: PMC10448531 DOI: 10.3389/fendo.2023.1142276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes and a leading cause of end-stage renal disease worldwide. Autophagy plays an important role in maintaining cellular homeostasis in renal physiology. In DKD, the accumulation of advanced glycation end products induces decreased renal autophagy-related protein expression and transcription factor EB (TFEB) nuclear transfer, leading to impaired autophagy and lysosomal function and blockage of autophagic flux. This accelerates renal resident cell injury and apoptosis, mediates macrophage infiltration and phenotypic changes, ultimately leading to aggravated proteinuria and fibrosis in DKD. Natural polyphenols show promise in treating DKD by regulating autophagy and promoting nuclear transfer of TFEB and lysosomal repair. This review summarizes the characteristics of autophagy in DKD, and the potential application and mechanisms of some known natural polyphenols as autophagy regulators in DKD, with the goal of contributing to a deeper understanding of natural polyphenol mechanisms in the treatment of DKD and promoting the development of their applications. Finally, we point out the limitations of polyphenols in current DKD research and provide an outlook for their future research.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Yongli Zhan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Jin Q, Liu T, Qiao Y, Liu D, Yang L, Mao H, Ma F, Wang Y, Peng L, Zhan Y. Oxidative stress and inflammation in diabetic nephropathy: role of polyphenols. Front Immunol 2023; 14:1185317. [PMID: 37545494 PMCID: PMC10401049 DOI: 10.3389/fimmu.2023.1185317] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
Diabetic nephropathy (DN) often leads to end-stage renal disease. Oxidative stress demonstrates a crucial act in the onset and progression of DN, which triggers various pathological processes while promoting the activation of inflammation and forming a vicious oxidative stress-inflammation cycle that induces podocyte injury, extracellular matrix accumulation, glomerulosclerosis, epithelial-mesenchymal transition, renal tubular atrophy, and proteinuria. Conventional treatments for DN have limited efficacy. Polyphenols, as antioxidants, are widely used in DN with multiple targets and fewer adverse effects. This review reveals the oxidative stress and oxidative stress-associated inflammation in DN that led to pathological damage to renal cells, including podocytes, endothelial cells, mesangial cells, and renal tubular epithelial cells. It demonstrates the potent antioxidant and anti-inflammatory properties by targeting Nrf2, SIRT1, HMGB1, NF-κB, and NLRP3 of polyphenols, including quercetin, resveratrol, curcumin, and phenolic acid. However, there remains a long way to a comprehensive understanding of molecular mechanisms and applications for the clinical therapy of polyphenols.
Collapse
Affiliation(s)
- Qi Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Qiao
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Donghai Liu
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Liping Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China
| | - Yongli Zhan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Wang Y, Sui Z, Wang M, Liu P. Natural products in attenuating renal inflammation via inhibiting the NLRP3 inflammasome in diabetic kidney disease. Front Immunol 2023; 14:1196016. [PMID: 37215100 PMCID: PMC10196020 DOI: 10.3389/fimmu.2023.1196016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent and severe complications of diabetes and serves as the primary cause of end-stage kidney disease (ESKD) globally. Increasing evidence indicates that renal inflammation is critical in the pathogenesis of DKD. The nucleotide - binding oligomerization domain (NOD) - like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most extensively researched inflammasome complex and is considered a crucial regulator in the pathogenesis of DKD. The activation of NLRP3 inflammasome is regulated by various signaling pathways, including NF- κB, thioredoxin-interacting protein (TXNIP), and non-coding RNAs (ncRNA), among others. Natural products are chemicals extracted from living organisms in nature, and they typically possess pharmacological and biological activities. They are invaluable sources for drug design and development. Research has demonstrated that many natural products can alleviate DKD by targeting the NLRP3 inflammasome. In this review, we highlight the role of the NLRP3 inflammasome in DKD, and the pathways by which natural products fight against DKD via inhibiting the NLRP3 inflammasome activation, so as to provide novel insights for the treatment of DKD.
Collapse
Affiliation(s)
- Yan Wang
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Zhun Sui
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Mi Wang
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Peng Liu
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| |
Collapse
|
16
|
Zhai Y, Wang T, Fu Y, Yu T, Ding Y, Nie H. Ferulic Acid: A Review of Pharmacology, Toxicology, and Therapeutic Effects on Pulmonary Diseases. Int J Mol Sci 2023; 24:ijms24098011. [PMID: 37175715 PMCID: PMC10178416 DOI: 10.3390/ijms24098011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Ferulic acid (FA), a prevalent dietary phytochemical, has many pharmacological effects, including anti-oxidation and anti-inflammation effects, and has been widely used in the pharmaceutical, food, and cosmetics industries. Many studies have shown that FA can significantly downregulate the expression of reactive oxygen species and activate nuclear factor erythroid-2-related factor-2/heme oxygenase-1 signaling, exerting anti-oxidative effects. The anti-inflammatory effect of FA is mainly related to the p38 mitogen-activated protein kinase and nuclear factor-kappaB signaling pathways. FA has demonstrated potential clinical applications in the treatment of pulmonary diseases. The transforming growth factor-β1/small mothers against decapentaplegic 3 signaling pathway can be blocked by FA, thereby alleviating pulmonary fibrosis. Moreover, in the context of asthma, the T helper cell 1/2 imbalance is restored by FA. Furthermore, FA ameliorates acute lung injury by inhibiting nuclear factor-kappaB and mitogen-activated protein kinase pathways via toll-like receptor 4, consequently decreasing the expression of downstream inflammatory mediators. Additionally, there is a moderate neuraminidase inhibitory activity showing a tendency to reduce the interleukin-8 level in response to influenza virus infections. Although the application of FA has broad prospects, more preclinical mechanism-based research should be carried out to test these applications in clinical settings. This review not only covers the literature on the pharmacological effects and mechanisms of FA, but also discusses the therapeutic role and toxicology of FA in several pulmonary diseases.
Collapse
Affiliation(s)
- Yiman Zhai
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Tingyu Wang
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Yunmei Fu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| |
Collapse
|
17
|
Rajput A, Sharma P, Singh D, Singh S, Kaur P, Attri S, Mohana P, Kaur H, Rashid F, Bhatia A, Jankowski J, Arora V, Tuli HS, Arora S. Role of polyphenolic compounds and their nanoformulations: a comprehensive review on cross-talk between chronic kidney and cardiovascular diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:901-924. [PMID: 36826494 DOI: 10.1007/s00210-023-02410-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/26/2023] [Indexed: 02/25/2023]
Abstract
Chronic kidney disease (CKD) affects a huge portion of the world's population and frequently leads to cardiovascular diseases (CVDs). It might be because of common risk factors between chronic kidney disease and cardiovascular diseases. Renal dysfunction caused by chronic kidney disease creates oxidative stress which in turn leads to cardiovascular diseases. Oxidative stress causes endothelial dysfunction and inflammation in heart which results in atherosclerosis. It ends in clogging of veins and arteries that causes cardiac stroke and myocardial infarction. To develop an innovative therapeutic approach and new drugs to treat these diseases, it is important to understand the pathophysiological mechanism behind the CKD and CVDs and their interrelationship. Natural phytoconstituents of plants such as polyphenolic compounds are well known for their medicinal value. Polyphenols are plant secondary metabolites with immense antioxidant properties, which can protect from free radical damage. Nowadays, polyphenols are generating a lot of buzz in the scientific community because of their potential health benefits especially in the case of heart and kidney diseases. This review provides a detailed account of the pathophysiological link between CKD and CVDs and the pharmacological potential of polyphenols and their nanoformulations in promoting cardiovascular and renal health.
Collapse
Affiliation(s)
- Ankita Rajput
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Palvi Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Davinder Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sharabjit Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Prabhjot Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shivani Attri
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pallvi Mohana
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Harneetpal Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Farhana Rashid
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Astha Bhatia
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Vanita Arora
- Sri Sukhmani Dental College & Hospital, Derabassi, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
18
|
Ma S, Jia R, Li X, Wang W, Jin L, Zhang X, Yu H, Yang J, Dong L, Zhang L, Dong J. Herbicidal Active Compound Ferulic Acid Ethyl Ester Affects Fatty Acid Synthesis by Targeting the 3-Ketoacyl-Acyl Carrier Protein Synthase I (KAS I). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:276-287. [PMID: 36588523 DOI: 10.1021/acs.jafc.2c07214] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Exploring new herbicide targets based on natural product derivatives is an important research aspect for the generation of innovative pesticides. Ferulic acid ethyl ester (FAEE), a natural product derivative from ferulic acid, has significant herbicidal activity mainly by inhibiting the normal growth of weed seedling roots. However, the FAEE target protein underlying its herbicidal activity has not been identified. In this study, we synthesized an FAEE probe to locate its site of action. We discovered that FAEE entry point was via the root tips. Fourteen major binding proteins were identified using Drug affinity responsive target stability (DARTS) combined with LC-MS/MS, which included 3-ketoacyl-acyl carrier protein synthase I (KAS I) and phenylalanine ammonia-lyase I (PAL I). The KAS I and PAL I proteins/genes expression was changed significantly after exposure to FAEE, as evidenced by combined transcriptomic and proteomic analysis. A molecular docking assay indicated that KAS I and FAEE had a strong binding ability. Combined with previous studies on FAEE mechanism of action, and based on our results, we conclude that FAEE targeting KAS I lead to the blockage of the fatty acid synthesis pathway and result in plant death.
Collapse
Affiliation(s)
- Shujie Ma
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Ran Jia
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Xin Li
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Wen Wang
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Liyu Jin
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Xinxin Zhang
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Hualong Yu
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Juan Yang
- College of Agronomy and Biotechnology, Hebei Normal University of Science & Technology, Qinhuangdao 066000, China
| | - Lili Dong
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Lihui Zhang
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Jingao Dong
- College of Plant Protection/ State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
19
|
Ye L, Hu P, Feng LP, Huang LL, Wang Y, Yan X, Xiong J, Xia HL. Protective Effects of Ferulic Acid on Metabolic Syndrome: A Comprehensive Review. Molecules 2022; 28:molecules28010281. [PMID: 36615475 PMCID: PMC9821889 DOI: 10.3390/molecules28010281] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/27/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
Metabolic syndrome (MetS) is a complex disease in which protein, fat, carbohydrates and other substances are metabolized in a disorderly way. Ferulic acid (FA) is a phenolic acid found in many vegetables, fruits, cereals and Chinese herbs that has a strong effect on ameliorating MetS. However, no review has summarized the mechanisms of FA in treating MetS. This review collected articles related to the effects of FA on ameliorating the common symptoms of MetS, such as diabetes, hyperlipidemia, hypertension and obesity, from different sources involving Web of Science, PubMed and Google Scholar, etc. This review summarizes the potential mechanisms of FA in improving various metabolic disorders according to the collected articles. FA ameliorates diabetes via the inhibition of the expressions of PEPCK, G6Pase and GP, the upregulation of the expressions of GK and GS, and the activation of the PI3K/Akt/GLUT4 signaling pathway. The decrease of blood pressure is related to the endothelial function of the aortas and RAAS. The improvement of the lipid spectrum is mediated via the suppression of the HMG-Co A reductase, by promoting the ACSL1 expression and by the regulation of the factors associated with lipid metabolism. Furthermore, FA inhibits obesity by upregulating the MEK/ERK pathway, the MAPK pathway and the AMPK signaling pathway and by inhibiting SREBP-1 expression. This review can be helpful for the development of FA as an appreciable agent for MetS treatment.
Collapse
Affiliation(s)
- Lei Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Pan Hu
- Chengdu Institute of Chinese Herbal Medicine, Chengdu 610016, China
- Correspondence: (P.H.); (H.-L.X.); Tel.: +86-182-2442-7340 (P.H.); +86-135-6889-9011 (H.-L.X.)
| | - Li-Ping Feng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li-Lu Huang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Yan
- Chengdu Institute of Chinese Herbal Medicine, Chengdu 610016, China
| | - Jing Xiong
- Chengdu Institute of Chinese Herbal Medicine, Chengdu 610016, China
| | - Hou-Lin Xia
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (P.H.); (H.-L.X.); Tel.: +86-182-2442-7340 (P.H.); +86-135-6889-9011 (H.-L.X.)
| |
Collapse
|
20
|
Deng L, Zhou X, Tao G, Hao W, Wang L, Lan Z, Song Y, Wu M, Huang JQ. Ferulic acid and feruloylated oligosaccharides alleviate anxiety and depression symptom via regulating gut microbiome and microbial metabolism. Food Res Int 2022; 162:111887. [DOI: 10.1016/j.foodres.2022.111887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022]
|
21
|
Kim ME, Kim DH, Lee JS. Transcription Factors as Targets of Natural Compounds in Age-Related Diseases and Cancer: Potential Therapeutic Applications. Int J Mol Sci 2022; 23:ijms232213882. [PMID: 36430361 PMCID: PMC9696520 DOI: 10.3390/ijms232213882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Inflammation exacerbates systemic pathophysiological conditions and chronic inflammation is a sustained and systemic phenomenon that aggravates aging that can lead to chronic age-related diseases. These inflammatory phenomena have recently been redefined and delineated at the molecular, cellular, and systemic levels. Many transcription factors that are activated in response to tumor metabolic state have been reported to be regulated by a class of histone deacetylase called sirtuins (SIRTs). Sirtuins play a pivotal role in the regulation of tumor cell metabolism, proliferation, and angiogenesis, including oxidative stress and inflammation. The SIRT1-mediated signaling pathway in diabetes and cancer is the SIRT1/forkhead-box class O (FoxO)/nuclear factor-kappa B (NF-κB) pathway. In this review, we describe the accumulation of SIRT1-, NF-κB-, and FoxO-mediated inflammatory processes and cellular proinflammatory signaling pathways. We also describe the proinflammatory mechanisms underlying metabolic molecular pathways in various diseases such as liver cancer and diabetes. Finally, the regulation of cancer and diabetes through the anti-inflammatory effects of natural compounds is highlighted. Evidence from inflammation studies strongly suggests that cells may be a major source of cytokines secreted during various diseases. A better understanding of the mechanisms that underpin the inflammatory response and palliative role of natural compounds will provide insights into the molecular mechanisms of inflammation and various diseases for potential intervention.
Collapse
Affiliation(s)
- Mi Eun Kim
- Department of Life Science, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju 61452, Korea
| | - Dae Hyun Kim
- Department of Life Science, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju 61452, Korea
- Correspondence: (D.H.K.); (J.S.L.); Tel.: +82-062-230-6651 (J.S.L.)
| | - Jun Sik Lee
- Department of Life Science, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju 61452, Korea
- LKBio Inc., Chosun University Business Incubator (CUBI) Building, Dong-gu, Gwangju 61452, Korea
- Correspondence: (D.H.K.); (J.S.L.); Tel.: +82-062-230-6651 (J.S.L.)
| |
Collapse
|
22
|
Dedvisitsakul P, Watla-iad K. Antioxidant activity and antidiabetic activities of Northern Thai indigenous edible plant extracts and their phytochemical constituents. Heliyon 2022; 8:e10740. [PMID: 36185148 PMCID: PMC9519484 DOI: 10.1016/j.heliyon.2022.e10740] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/25/2022] [Accepted: 09/15/2022] [Indexed: 12/31/2022] Open
Abstract
Diabetes mellitus is the most common non-infective disease characterized by hyperglycemia (high level of blood glucose). Formation of advanced glycation end products (AGEs) in long termed-hyperglycemia and oxidative stress are the key factors to accelerate diabetic complications. To screen potential candidates for treating diabetes, total phenolic content, total flavonoid content, antioxidant activity from crude extracts of some Thai edible plants were primarily assessed, and the inhibiting potential of diabetes and its complications provided from some of these plants were evaluated in terms of their inhibitory activities of α-amylase, α-glycosidase, and AGEs formation. The highest amounts of phenolic and flavonoid compounds were found in the ethanolic extract of Caesalpinia mimosoides (S20, 12.63 ± 1.70 mg GAE/g DW) and Glochidion hirsutum (S8, 3.02 ± 0.25 mg CE/g DW), respectively. The highest antioxidant activity was found in Schinus terebinthifolius Raddi (S26, 217.94 ± 32.30 μg AAE/g DW) whereas the highest inhibitory activities of α-amylase and α-glycosidase were obtained from Basella alba L. (S11, IC50 = 0.21 ± 0.01 mg/ml) and S. terebinthifolius (S26, IC50 = 0.05 ± 0.02 mg/ml) respectively. The inhibitory effects of AGEs formation were studied in vitro using two model systems: BSA-glucose and BSA-methylglycoxal (MGO). The extracts of Glochidion hirsutum (Roxb.) Voigt (S8, IC50 = 0.20 ± 0.01 mg/ml) and Polygonum odoratum Lour. (S13, IC50 = 0.03 ± 0.01 mg/ml) exhibited the inhibitory activity of AGEs formation derived from glucose (BSA-glucose system) stronger than aminoguanidine (AG) (0.26 ± 0.00 mg/ml), which is a common AGEs formation inhibitory drug. By BSA-MGO assay, the inhibition of some selected extracts in this study (G. hirsutum, G. sphaerogynum, and S. terebinthifolius with IC50 = 0.11 ± 0.01, 0.11 ± 0.01, and 0.10 ± 0.00 mg/ml, respectively) were slightly less efficient than AG (the IC50 = 0.06 ± 0.00 mg/ml). These results indicated that some selected Thai edible plants in this present study provided potential applications towards the prevention of diabetes and their complications via the inhibitory of α-amylase, α-glycosidase, AGEs formation, and oxidative stress. This fundamental information would be important for alternative drug discovery and nutritional recommendations for diabetic patients.
Collapse
Affiliation(s)
- Plaipol Dedvisitsakul
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Microbial Products and Innovation (MP&I) Research Unit, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kanchana Watla-iad
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Chemical Innovation for Sustainability, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Corresponding author.
| |
Collapse
|
23
|
Li X, Wu J, Xu F, Chu C, Li X, Shi X, Zheng W, Wang Z, Jia Y, Xiao W. Use of Ferulic Acid in the Management of Diabetes Mellitus and Its Complications. Molecules 2022; 27:molecules27186010. [PMID: 36144745 PMCID: PMC9503003 DOI: 10.3390/molecules27186010] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 12/06/2022] Open
Abstract
Diabetes mellitus, a metabolic disease mainly characterized by hyperglycemia, is becoming a serious social health problem worldwide with growing prevalence. Many natural compounds have been found to be effective in the prevention and treatment of diabetes, with negligible toxic effects. Ferulic acid (FA), a phenolic compound commonly found in medicinal herbs and the daily diet, was proved to have several pharmacological effects such as antihyperglycemic, antihyperlipidemic and antioxidant actions, which are beneficial to the management of diabetes and its complications. Data from PubMed, EM-BASE, Web of Science and CNKI were searched with the keywords ferulic acid and diabetes mellitus. Finally, 28 articles were identified after literature screening, and the research progress of FA for the management of DM and its complications was summarized in the review, in order to provide references for further research and medical applications of FA.
Collapse
Affiliation(s)
- Xu Li
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Jingxian Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fanxing Xu
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun Chu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiang Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinyi Shi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wen Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
| | - Ying Jia
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
- Correspondence: (Y.J.); (W.X.)
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China
- Correspondence: (Y.J.); (W.X.)
| |
Collapse
|
24
|
Tampio J, Markowicz-Piasecka M, Montaser A, Rysä J, Kauppinen A, Huttunen KM. L-type Amino Acid Transporter 1 Utilizing Ferulic Acid Derivatives Show Increased Drug Delivery in the Mouse Pancreas Along with Decreased Lipid Peroxidation and Prostaglandin Production. Mol Pharm 2022; 19:3806-3819. [PMID: 36027044 PMCID: PMC9644403 DOI: 10.1021/acs.molpharmaceut.2c00328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
Oxidative stress and pathological changes of Alzheimer’s
disease (AD) overlap with metabolic diseases, such as diabetes mellitus
(DM). Therefore, tackling oxidative stress with antioxidants is a
compelling drug target against multiple chronic diseases simultaneously.
Ferulic acid (FA), a natural antioxidant, has previously been studied
as a therapeutic agent against both AD and DM. However, FA suffers
from poor bioavailability and delivery. As a solution, we have previously
reported about L-type amino acid transporter 1 (LAT1)-utilizing derivatives
with increased brain delivery and efficacy. In the present study,
we evaluated the pharmacokinetics and antioxidative efficacy of the
two derivatives in peripheral mouse tissues. Furthermore, we quantified
the LAT1 expression in studied tissues with a targeted proteomics
method to verify the transporter expression in mouse tissues. Additionally,
the safety of the derivatives was assessed by exploring their effects
on hemostasis in human plasma, erythrocytes, and endothelial cells.
We found that both derivatives accumulated substantially in the pancreas,
with over a 100-times higher area under curve compared to the FA.
Supporting the pharmacokinetics, the LAT1 was highly expressed in
the mouse pancreas. Treating mice with the LAT1-utilizing derivative
of FA lowered malondialdehyde and prostaglandin E2 production
in the pancreas, highlighting its antioxidative efficacy. Additionally,
the LAT1-utilizing derivatives were found to be hemocompatible in
human plasma and endothelial cells. Since antioxidative derivative
1 was substantially delivered into the pancreas along the previously
studied brain, the derivative can be considered as a safe dual-targeting
drug candidate in both the pancreas and the brain.
Collapse
Affiliation(s)
- Janne Tampio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211Kuopio, Finland
| | - Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151Lodz, Poland
| | - Ahmed Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211Kuopio, Finland
| | - Jaana Rysä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211Kuopio, Finland
| |
Collapse
|
25
|
Gvazava IG, Karimova MV, Vasiliev AV, Vorotelyak EA. Type 2 Diabetes Mellitus: Pathogenic Features and Experimental Models in Rodents. Acta Naturae 2022; 14:57-68. [PMID: 36348712 PMCID: PMC9611859 DOI: 10.32607/actanaturae.11751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is the most common endocrine disorder (90%) in the world; it has numerous clinical, immunological, and genetic differences from type 1 diabetes mellitus. The pathogenesis of T2DM is complex and not fully clear. To date, animal models remain the main tool by which to study the pathophysiology and therapy of T2DM. Rodents are considered the best choice among animal models, because they are characterized by a small size, short induction period, easy diabetes induction, and economic efficiency. This review summarizes data on experimental models of T2DM that are currently used, evaluates their advantages and disadvantages vis-a-vis research, and describes in detail the factors that should be taken into account when using these models. Selection of a suitable model for tackling a particular issue is not always trivial; it affects study results and their interpretation.
Collapse
Affiliation(s)
- I. G. Gvazava
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - M. V. Karimova
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - A. V. Vasiliev
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
| | - E. A. Vorotelyak
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
| |
Collapse
|
26
|
Chen X, Wu X, Liu G, Wang Q, Itenberg SA, Ouyang W, Song M, Dixon WR, Cao Y, Xiao H. Structure analysis of ethyl ferulate from Rubus corchorifolius L.f. leaves and its inhibitory effects on HepG2 liver cancer cells. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Sun L, Yang Z, Zhao W, Chen Q, Bai H, Wang S, Yang L, Bi C, Shi Y, Liu Y. Integrated lipidomics, transcriptomics and network pharmacology analysis to reveal the mechanisms of Danggui Buxue Decoction in the treatment of diabetic nephropathy in type 2 diabetes mellitus. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114699. [PMID: 34610419 DOI: 10.1016/j.jep.2021.114699] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danggui Buxue Decoction (DBT) is classical prescriptions, which contains two Traditional Chinese Medicines of Angelicae sinensis radix and Astragali radix. According to the preliminary work of our laboratory and numerous studies, it has been found that DBT has a therapeutic effect on diabetic nephropathy (DN). However, the mechanisms underlying its action remain unclear. AIM OF THE STUDY The aim of this study was to evaluate the impact of DBT on kidney disease in diabetic mice and further explore its protective mechanism. METHODS DN mice model was induced by high-fat fodder and streptozotocin (STZ). Qualitative and quantitative analysis of 6 compounds in DBT was carried out by HPLC, including calycosin-7-glucoside, ferulic acid, ononin, calycosin, formononetin, and levostilide A. Hematoxylin-Eosin (HE) staining was used to determine the degree of kidney pathological damage. The UPLC-Q Exactive MS technique was used to analyze the lipids metabolism profile of kidneys samples and multiple statistical analysis methods were used to screen and identify biomarkers. Transcriptomics analyses were carried out using RNAseq. The possible molecular mechanism was unraveled by network pharmacology. RESULTS Thirty-one significantly altered lipid metabolites were identified in the model group comparing with the control group. DBT improved aberrant expression of several pathways related to lipidomics, including glycerophospholipid metabolism and sphingolipid metabolism. Comprehensive analysis indicated that DBT intervention reduced the content of Cers, phosphatidylethanolamines and phosphatidylcholines in mouse kidneys by downregulating the transcription level of Degs2 and Cers, reducing lipid accumulation and promoting Akt phosphorylation by upregulating the expression of Acers and Pdk1. Network pharmacology analysis showed that components in DBT, such as kaempferol, ferulic acid and astragaloside IV, could be responsible for the pharmacological activity of DN by regulating the AGE-RAGE, PI3K/Akt, MAPK and NF-κB signaling pathways in diabetic complications. CONCLUSIONS These results showed that DBT may improve DN by affecting insulin resistance, chronic inflammation and lipid accumulation.
Collapse
Affiliation(s)
- Lili Sun
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Zhigang Yang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Wei Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Qin Chen
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Haiying Bai
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Shanshan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Li Yang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Chunmei Bi
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yanbin Shi
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yingqian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| |
Collapse
|
28
|
Zhang Y, Zhang Y, Yang C, Duan Y, Jiang L, Jin D, Lian F, Tong X. Naoxintong capsule delay the progression of diabetic kidney disease: A real-world cohort study. Front Endocrinol (Lausanne) 2022; 13:1037564. [PMID: 36440227 PMCID: PMC9686849 DOI: 10.3389/fendo.2022.1037564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Diabetic kidney disease (DKD) is a severe and growing health problem, associated with a worse prognosis and higher overall mortality rates than non-diabetic renal disease. Chinese herbs possess promising clinical benefits in alleviating the progression of DKD due to their multi-target effect. This real-world retrospective cohort trial aimed to investigate the efficacy and safety of Naoxintong (NXT) capsules in the treatment of DKD. Our study is the first real-world study (RWS) of NXT in the treatment of DKD based on a large database, providing a basis for clinical application and promotion. METHODS The data was collected from Tianjin Healthcare and Medical Big Data Platform. Patients with DKD were enrolled from January 1, 2011, to March 31, 2021. NXT administration was defined as the exposure. The primary outcome was the change in estimated glomerular filtration rate (eGFR). We employed the propensity score matching (PSM) method to deal with confounding factors. RESULTS A total of 1,798 patients were enrolled after PSM, including 899 NXT users (exposed group) and 899 non-users (control group). The eGFR changes from baseline to the end of the study were significantly different in the exposed group compared to the control group (-1.46 ± 21.94 vs -5.82 ± 19.8 mL/(min·1.73m2), P< 0.01). Patients in the NXT group had a lower risk of composite renal outcome event (HR, 0.71; 95%CI, 0.55 to 0.92; P = 0.009) and deterioration of renal function (HR, 0.74; 95% CI, 0.56 to 0.99; P = 0.039). CONCLUSION NXT can significantly slow the decline of eGFR and reduce the risk of renal outcomes. However, large cohort studies and RCTs are needed to further confirm our results.
Collapse
Affiliation(s)
- Yuqing Zhang
- Endocrinology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Endocrinology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cunqing Yang
- Endocrinology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Endocrinology Department, Guang’anmen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Linlin Jiang
- Endocrinology Department, Guang’anmen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - De Jin
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- *Correspondence: De Jin, ; Fengmei Lian, ; Xiaolin Tong,
| | - Fengmei Lian
- Endocrinology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: De Jin, ; Fengmei Lian, ; Xiaolin Tong,
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: De Jin, ; Fengmei Lian, ; Xiaolin Tong,
| |
Collapse
|
29
|
Xu J, Shan X, Chen C, Gao Y, Zou D, Wang X, Wang T, Shi Y. Tangshenning Attenuates High Glucose-Induced Podocyte Injury via Restoring Autophagy Activity through Inhibiting mTORC1 Activation. J Diabetes Res 2022; 2022:1610416. [PMID: 35799948 PMCID: PMC9256440 DOI: 10.1155/2022/1610416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/18/2021] [Accepted: 12/30/2021] [Indexed: 11/20/2022] Open
Abstract
Diabetic nephropathy (DN) is a microvascular complication of diabetes mellitus (DM) and the most common cause of death in diabetic patients. DN progression is associated with podocyte damage due to reduced autophagy caused by mTORC1 activation. Tangshenning (TSN) has been shown to reduce proteinuria, protect renal function, and reduce podocyte damage. Still, the effect of TSN on the autophagic activity of podocytes remains unclear. Herein, in vitro experiments using a high glucose-induced podocyte injury model were performed. Results showed that TSN treatment enhanced the weakened nephrin expression and autophagic activity of podocytes and inhibited the mTORC1 pathway (p-mTOR, mTOR, p-p70S6K, p70S6K, ULK1, and 4EBP1) under high glucose conditions. Furthermore, the mTORC1 activator (siRNA-TSC2) partially inhibited the above beneficial effects of TSN, suggesting that mTORC1 was the target of TSN to regulate autophagy. In summary, TSN reduces podocyte damage induced by high glucose via inhibiting mTORC1 pathway and downstream targets and restoring podocyte autophagy.
Collapse
Affiliation(s)
- Jiayi Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Xiaomeng Shan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Chunwei Chen
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Yanbin Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Dawei Zou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Xiaolei Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Tao Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Yimin Shi
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| |
Collapse
|
30
|
Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives. Life Sci 2021; 284:119921. [PMID: 34481866 DOI: 10.1016/j.lfs.2021.119921] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022]
Abstract
Ferulic acid, a kind of phenolic substance widely existing in plants, is an important active component of many traditional Chinese medicines. So far, it has been proved that ferulic acid has a variety of biological activities, especially in oxidative stress, inflammation, vascular endothelial injury, fibrosis, apoptosis and platelet aggregation. Many studies have shown that ferulic acid can inhibit PI3K/AKT pathway, the production of ROS and the activity of aldose reductase. The anti-inflammatory effect of ferulic acid is mainly related to the levels of PPAR γ, CAM and NF-κ B and p38 MAPK signaling pathways. Ferulic acid not only protects vascular endothelium by ERK1/2 and NO/ET-1 signal, but also plays an anti-fibrosis role by TGF-β/Smad and MMPs/TIMPs system. Moreover, ferulic acid has ant-apoptotic and anti-platelet effects. In addition to the pharmacological effects of ferulic acid, its pharmacokinetics and derivatives were also discussed in this paper. This review provides the latest summary of the latest research on ferulic acid.
Collapse
|
31
|
Li Z, Shen H, Liu Y, Zhou X, Yan M, He H, Zhao T, Zhang H, Li P. Subproteomic profiling from renal cortices in OLETF rats reveals mutations of multiple novel genes in diabetic nephropathy. Genes Genomics 2021; 44:109-122. [PMID: 34643893 DOI: 10.1007/s13258-021-01174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a serious threat to human health, but its pathogenesis is not fully understood. Otsuka Long-Evans Tokushima Fatty (OLETF) rats are very similar to human DN in many aspects such as pathological changes and processes, and are deemed to be an ideal rodent model. OBJECTIVE This study was aimed to explore the pathogenesis of DN by analyzing the protein expression profile from renal cortices in OLETF rats. METHODS Thirty-six-week-old diabetic OLETF rats and normal control Long-Evans Tokushima Otsuka (LETO) rats were nephrectomized, and the renal cortices were isolated. The proteins were separated by soluble and insoluble high-resolution subproteomics methods for the analysis and identification of differential proteins. RESULTS Thirty-six differentially expressed proteins were found. Among them, 11 proteins had different isoelectric points and molecular weights between OLETF and LETO rats. Further sequencing identified point mutations in genes encoding eight of these proteins, which are involved in many biological processes closely related to DN, including oxidative stress and inflammation. Five of these eight proteins have not been reported in DN. CONCLUSION This study reveals mutations of multiple novel genes in diabetic OLETF rats, providing some new potential targets for the pathogenesis of DN and helping to better understand the pathogenesis of DN.
Collapse
Affiliation(s)
- Zhiguo Li
- Department of School of Public Health, International Science and Technology Cooperation Base of Geriatric Medicine, The Hebei Key Lab for Organ Fibrosis, The Hebei Key Lab for chronic disease, North China University of Science and Technology, Tangshan, 063000, China
| | - Hong Shen
- Department of Modern Technology and Education, North China University of Science and Technology, Tangshan, 063000, China
| | - Yeqiang Liu
- Department of Endocrinology, Kailuan General Hospital, North China University of Science and Technology, Tangshan, 063000, China
| | - Xuefeng Zhou
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, 2 Yinghua East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Meihua Yan
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, 2 Yinghua East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Hailan He
- School of Graduate Studies, North China University of Science and Technology, Tangshan, 063000, China
| | - Tingting Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, 2 Yinghua East Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Haojun Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, 2 Yinghua East Road, Chaoyang District, Beijing, 100029, People's Republic of China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, 2 Yinghua East Road, Chaoyang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
32
|
Cutaneous innervation in impaired diabetic wound healing. Transl Res 2021; 236:87-108. [PMID: 34029747 PMCID: PMC8380642 DOI: 10.1016/j.trsl.2021.05.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes is associated with several potential comorbidities, among them impaired wound healing, chronic ulcerations, and the requirement for lower extremity amputation. Disease-associated abnormal cellular responses, infection, immunological and microvascular dysfunction, and peripheral neuropathy are implicated in the pathogenesis of the wound healing impairment and the diabetic foot ulcer. The skin houses a dense network of sensory nerve afferents and nerve-derived modulators, which communicate with epidermal keratinocytes and dermal fibroblasts bidirectionally to effect normal wound healing after trauma. However, the mechanisms through which cutaneous innervation modulates wound healing are poorly understood, especially in humans. Better understanding of these mechanisms may provide the basis for targeted treatments for chronic diabetic wounds. This review provides an overview of wound healing pathophysiology with a focus on neural involvement in normal and diabetic wound healing, as well as future therapeutic perspectives to address the unmet needs of diabetic patients with chronic wounds.
Collapse
|
33
|
Afsar B, Afsar RE, Demiray A, Covic A, Kanbay M. Deciphering nutritional interventions for podocyte structure and function. Pharmacol Res 2021; 172:105852. [PMID: 34450318 DOI: 10.1016/j.phrs.2021.105852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/22/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022]
Abstract
Despite increasing awareness and therapeutic options chronic kidney disease (CKD) is still and important health problem and glomerular diseases constitute and important percentage of CKD. Proteinuria/albuminuria is not just a marker; but it also plays a direct pathogenic role in renal disease progression of CKD. Glomerular filtration barrier (GFB) which consists of fenestrated endothelial cells, fused basal membrane and interdigitating podocyte foot process and filtration slits between foot process is the major barrier for proteinuria/albuminuria. Many glomerular diseases are characterized by disruption of GFB podocytes, foot process and slit diaphragm. Many proteinuric diseases are non-specifically targeted by therapeutic agents such as steroids and calcineurin inhibitors with systemic side effects. Thus, there is unmet need for more efficient and less toxic therapeutic options to treat glomerular diseases. In recent years, modification of dietary intake, has been gained to treat pathologic processes introducing the concept of 'food as a medicine'. The effect of various nutritional products on podocyte function and structure is also trending, especially in recent years. In the current review, we summarized the effect of nutritional interventions on podocyte function and structure.
Collapse
Affiliation(s)
- Baris Afsar
- Division of Nephrology, Department of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey.
| | - Rengin Elsurer Afsar
- Division of Nephrology, Department of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Atalay Demiray
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Adrian Covic
- Department of Nephrology, Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
34
|
Movahedi A, Almasi Zadeh Yaghuti A, Wei H, Rutland P, Sun W, Mousavi M, Li D, Zhuge Q. Plant Secondary Metabolites with an Overview of Populus. Int J Mol Sci 2021; 22:ijms22136890. [PMID: 34206964 PMCID: PMC8268465 DOI: 10.3390/ijms22136890] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
Populus trees meet continuous difficulties from the environment through their life cycle. To warrant their durability and generation, Populus trees exhibit various types of defenses, including the production of secondary metabolites. Syntheses derived from the shikimate-phenylpropanoid pathway are a varied and plentiful class of secondary metabolites manufactured in Populus. Amongst other main classes of secondary metabolites in Populus are fatty acid and terpenoid-derivatives. Many of the secondary metabolites made by Populus trees have been functionally described. Any others have been associated with particular ecological or biological processes, such as resistance against pests and microbial pathogens or acclimatization to abiotic stresses. Still, the functions of many Populus secondary metabolites are incompletely understood. Furthermore, many secondary metabolites have therapeutic effects, leading to more studies of secondary metabolites and their biosynthesis. This paper reviews the biosynthetic pathways and therapeutic impacts of secondary metabolites in Populus using a genomics approach. Compared with bacteria, fewer known pathways produce secondary metabolites in Populus despite P. trichocarpa having had its genome sequenced.
Collapse
Affiliation(s)
- Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
- Correspondence: ; Fax: +86-25-8542-8701
| | - Amir Almasi Zadeh Yaghuti
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
| | - Hui Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
| | - Paul Rutland
- Clinical and Molecular Genetics Units, Institute of Child Health, London WC1N 1EH, UK;
| | - Weibo Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
| | - Mohaddeseh Mousavi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
| | - Dawei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
| |
Collapse
|
35
|
Rashedinia M, Khoshnoud MJ, Fahlyan BK, Hashemi SS, Alimohammadi M, Sabahi Z. Syringic Acid: A Potential Natural Compound for the Management of Renal Oxidative Stress and Mitochondrial Biogenesis in Diabetic Rats. Curr Drug Discov Technol 2021; 18:405-413. [PMID: 32072913 DOI: 10.2174/1570163817666200211101228] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetic nephropathy can lead to renal diseases; oxidative stress and mitochondrial dysfunction have critical roles in its development. OBJECTIVES In this study, the effect of syringic acid (SYR), a natural phenolic acid, on diabetic nephropathy and mitochondrial biogenesis was examined. METHODS Diabetes was induced in rats by injecting streptozotocin. SYR (25, 50 and 100 mg/kg/day) was orally administered for 6 weeks. SYR effects on factors, such as antioxidant activities and mRNA expression level of mitochondrial biogenesis indexes, were evaluated. RESULTS In SYR-treated rats, blood glucose and ALP level were significantly reduced. SYR increased kidney GSH content in the diabetic group. Elevated renal catalase and superoxide dismutase activities in diabetic rats were restored to normal levels after treatment. SYR significantly reduced the renal TBARS level, which had increased in diabetic rats. This compound also significantly upregulated renal mRNA expression of PGC-1α and NRF-1, and increased mtDNA/nDNA ratio in diabetic rats. These values were reduced in the non-treated diabetic group. The results show improvement of histopathological damages of kidney in the SYR treated group in comparison with the diabetic group. CONCLUSION According to the results, SYR alters renal antioxidant defense mechanisms. Also, it could be considered as a novel approach by targeting mitochondria in renal diabetic complications.
Collapse
Affiliation(s)
- Marzieh Rashedinia
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Khoshnoud
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Seyedeh-Sara Hashemi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahshid Alimohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Sabahi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
36
|
Mohammed MA, Attia HN, El-Gengaihi SE, Maklad YA, Ahmed KA, Kachlicki P. Comprehensive metabolomic, lipidomic and pathological profiles of baobab (Adansonia digitata) fruit pulp extracts in diabetic rats. J Pharm Biomed Anal 2021; 201:114139. [PMID: 34000580 DOI: 10.1016/j.jpba.2021.114139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/25/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
Baobab fruit pulp Adansonia digitata (AD) has received attention due to its numerous nutritional and medicinal values. In the current study, tentative identification was performed due to limited information available on its phytochemical composition. Phytochemicals from AD fruit pulp were obtained using successive organic solvent fractionation. The LC-MSMS analysis led to identification of 91 metabolites from methanol, butanol and ethyl acetate extracts. Moreover, 20 compounds were identified in the petroleum ether extract based on high resolution ion masses. In vitro antidiabetic and antioxidant properties of selected extracts were investigated using enzyme activity and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, respectively. Biological screening of the antidiabetic effects of target extracts was performed against streptozotocin-induced diabetes in experimental animals, following daily oral treatment for 3 successive weeks. Serum glucose, insulin, adiponectin, superoxide dismutase (SOD), lipid peroxide, cholesterol and HDL levels were measured. Finally, histopathological and immunohistochemical examinations of pancreas were carried out. Results revealed that animal groups treated daily with butanol (BuOH) and petroleum ether extracts of AD (oil) exhibited a significant improvement in carbohydrate and lipid metabolism as well as antioxidant effect. Both extracts revealed superior effects with respect to the total (TT) and ethyl acetate (EtOAc) extracts. Histopathological and immunohistochemical findings supported these results, showing marked protection of the pancreas. Thus, baobab oil and butanolic extract of the fruit pulp protected animals against STZ-induced diabetic changes, in addition to attenuation of lipid peroxidation, hypercholesterolemia and oxidation.
Collapse
Affiliation(s)
- Mona A Mohammed
- Medicinal and Aromatic Plants Research Department, Pharmaceutical Industries Research Division, National Research Centre, Giza, Egypt.
| | - Hanan Naeim Attia
- Medicinal and Pharmaceutical Chemistry Department (Pharmacology Group), Pharmaceutical Industries Research Division, National Research Centre, Giza, Egypt.
| | - Souad E El-Gengaihi
- Medicinal and Aromatic Plants Research Department, Pharmaceutical Industries Research Division, National Research Centre, Giza, Egypt
| | - Yousreya A Maklad
- Medicinal and Pharmaceutical Chemistry Department (Pharmacology Group), Pharmaceutical Industries Research Division, National Research Centre, Giza, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Piotr Kachlicki
- Institute of Plant Genetics of the Polish Academy of Sciences (Metabolomics Group), Poznan, Poland
| |
Collapse
|
37
|
Parveen A, Sultana R, Lee SM, Kim TH, Kim SY. Phytochemicals against anti-diabetic complications: targeting the advanced glycation end product signaling pathway. Arch Pharm Res 2021; 44:378-401. [PMID: 33837513 DOI: 10.1007/s12272-021-01323-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/17/2021] [Indexed: 12/11/2022]
Abstract
The role of advanced glycation end products (AGEs) is not limited to diabetes and diabetes-related complications. There are multiple modulators, including the receptor for advanced glycation end products, high mobility group box 1, glyoxalase 1, nuclear factor-kappa B, tumor necrosis factor-α, chronic unpredictable stress, reactive oxygen species, and inflammatory cytokines, which interact with AGE signaling and control diabetes, modulating these interacting modulators. The progression of diabetes, as well as related complications, can be controlled and treated. Natural products rich in bioactive constituents can interact with AGEs and their related mediators through various signaling cascades, thereby controlling and preventing the progression of diabetes. This review provides a deeper assessment of the signaling pathway, interactions between phytochemicals and AGEs, and its mediators, to develop a multifold therapeutic approach to prevent and treat diabetes and its related complications.
Collapse
Affiliation(s)
- Amna Parveen
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Yeonsu-gu, 21936, Inchon, Korea.
| | - Razia Sultana
- Molecular and Cellular Physiology Laboratory, Department of Life Science, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504, Korea
| | - Seung Min Lee
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Yeonsu-gu, 21936, Inchon, Korea
| | - Tae Hun Kim
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Yeonsu-gu, 21936, Inchon, Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Yeonsu-gu, 21936, Inchon, Korea.
| |
Collapse
|
38
|
Ali SA, Saifi MA, Pulivendala G, Godugu C, Talla V. Ferulic acid ameliorates the progression of pulmonary fibrosis via inhibition of TGF-β/smad signalling. Food Chem Toxicol 2021; 149:111980. [DOI: 10.1016/j.fct.2021.111980] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
|
39
|
Abstract
Type 2 diabetic mellitus (T2DM) is characterized by systemic inflammation and insulin resistance due to obesity, and this leads to critical complications, including retinopathy and nephropathy. This study explored the therapeutic effect of substance-p (SP), a neuropeptide, on T2DM progression and its complications. To examine whether SP affects glucose metabolism, lipid metabolism, systemic inflammation, and retinopathy, Otsuka Long-Evans Tokushima Fatty rats (OLETF, 27 weeks old) with chronic inflammation, obesity, and impaired bone marrow stem cell pool was selected. SP was intravenously injected and its effect was evaluated at 2 and 4 weeks after the SP injection. OLETF had typical symptoms of T2DM, including obesity, chronic inflammation, and poor glycemic control. However, SP treatment inhibited the body-weight gain and reduced circulating levels of free fatty acid, cholesterol, and triglyceride, ameliorating the obese environment. SP could suppress inflammation and rejuvenate bone marrow stem cell in OLETF rats. SP-mediated metabolic/immunological change could resolve hyperglycemia and insulin resistance. Histopathological analysis confirmed that SP treatment alleviated the dysfunction of target tissue with insulin resistance. OLETF rats have retinal damage from 27 weeks of age, which was reliably aggravated at 31 weeks. However, SP treatment could restore the damaged retina, sustaining its structure similarly to that of non-diabetic rats. In conclusion, systemic application of SP is capable contribute to the inhibition of the progression of T2DM and diabetic retinopathy.
Collapse
|
40
|
Beneficial effects of ferulic acid alone and in combination with insulin in streptozotocin induced diabetic neuropathy in Sprague Dawley rats. Life Sci 2020; 255:117856. [DOI: 10.1016/j.lfs.2020.117856] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022]
|
41
|
Erseçkin V, Mert H, İrak K, Yildirim S, Mert N. Nephroprotective effect of ferulic acid on gentamicin-induced nephrotoxicity in female rats. Drug Chem Toxicol 2020; 45:663-669. [PMID: 32354291 DOI: 10.1080/01480545.2020.1759620] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ferulic acid is a kind of phenolic compound that can be found in various fruits and vegetables. This study aims to investigate the effect of ferulic acid on nephrotoxicity induced by gentamicin (GM). In this study, rats were separated into 4 groups such that each containing 8 randomly selected rats: Control group, Ferulic Acid (FA) group, Gentamicin (GM) group and Gentamicin + Ferulic acid (GM + FA) group. Blood samples were collected after 24 hours following the 8-day trial period, and kidneys were taken out for histopathological evaluation. Serum urea, creatinine, uric acid and LDH analyses were performed in autoanalyzer while Malondialdehyde (MDA), Advanced Oxidized Protein Products (AOPP), Glutathione (GSH), Superoxide dismutase (SOD), Catalase (CAT), Interleukin 6 (IL-6), Tumor Necrosis Factor-alpha (TNF-α) analyses were performed in ELISA, and kidney tissues were also examined histopathologically. Urea (p < .001), creatinine (p < .001), MDA (p < .01), AOPP (p < .001), IL-6 (p < .01) and TNF-α (p < .001) levels were found to be statistically and significantly lowered in GM + FA group when compared to GM group. As a result, ferulic acid has reduced the inflammation in nephrotoxicity induced by GM, causing decreased oxidative stress. In this study, anti-inflammatory features of ferulic acid have come to the forefront rather than the antioxidant features. It can be said that ferulic acid reduces nephrotoxic damage and has protective properties for kidneys.
Collapse
Affiliation(s)
- Vasfiye Erseçkin
- Department of Biochemistry, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Handan Mert
- Department of Biochemistry, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Kıvanç İrak
- Department of Biochemistry, Faculty of Veterinary Medicine, Siirt University, Siirt, Turkey
| | - Serkan Yildirim
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Nihat Mert
- Department of Biochemistry, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
42
|
Dewanjee S, Chakraborty P, Mukherjee B, De Feo V. Plant-Based Antidiabetic Nanoformulations: The Emerging Paradigm for Effective Therapy. Int J Mol Sci 2020; 21:E2217. [PMID: 32210082 PMCID: PMC7139625 DOI: 10.3390/ijms21062217] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus is a life-threatening metabolic syndrome. Over the past few decades, the incidence of diabetes has climbed exponentially. Several therapeutic approaches have been undertaken, but the occurrence and risk still remain unabated. Several plant-derived small molecules have been proposed to be effective against diabetes and associated vascular complications via acting on several therapeutic targets. In addition, the biocompatibility of these phytochemicals increasingly enhances the interest of exploiting them as therapeutic negotiators. However, poor pharmacokinetic and biopharmaceutical attributes of these phytochemicals largely restrict their clinical usefulness as therapeutic agents. Several pharmaceutical attempts have been undertaken to enhance their compliance and therapeutic efficacy. In this regard, the application of nanotechnology has been proven to be the best approach to improve the compliance and clinical efficacy by overturning the pharmacokinetic and biopharmaceutical obstacles associated with the plant-derived antidiabetic agents. This review gives a comprehensive and up-to-date overview of the nanoformulations of phytochemicals in the management of diabetes and associated complications. The effects of nanosizing on pharmacokinetic, biopharmaceutical and therapeutic profiles of plant-derived small molecules, such as curcumin, resveratrol, naringenin, quercetin, apigenin, baicalin, luteolin, rosmarinic acid, berberine, gymnemic acid, emodin, scutellarin, catechins, thymoquinone, ferulic acid, stevioside, and others have been discussed comprehensively in this review.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Biswajit Mukherjee
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
43
|
Coman V, Vodnar DC. Hydroxycinnamic acids and human health: recent advances. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:483-499. [PMID: 31472019 DOI: 10.1002/jsfa.10010] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/25/2019] [Accepted: 08/27/2019] [Indexed: 05/15/2023]
Abstract
There is an urgent need to improve human diet globally. Compelling evidence gathered over the past several decades suggests that a suboptimal diet is associated with many chronic diseases and may be responsible for more deaths than any other risks worldwide. The main components in our diet that need higher intake are whole grains, fruit and vegetables, and nuts and seeds; all of these are important sources of dietary fiber and polyphenols. The health benefits of dietary fiber and polyphenols are also supported by several decades of valuable research. However, the conclusions drawn from interventional human trials are not straightforward and the action mechanisms in improving human health are not fully understood. Moreover, there is a great inter-individual variation caused by different individual capabilities of processing, absorbing and using these compounds effectively. Data on the bioavailability and bioefficacy of hydroxycinnamic acids (HCAs) are limited when compared to other classes of polyphenols (e.g. anthocyanins). This review aims to summarize the latest research advances related to HCA bioavailability and their biological effects revealed by epidemiological data, pre-clinical and clinical studies. Moreover, we aim to review the effects of HCAs on gut microbiota diversity and function and its respective influence on host health. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Vasile Coman
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan C Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
44
|
Pérez-Manríquez J, Escalona N, Pérez-Correa J. Bioactive Compounds of the PVPP Brewery Waste Stream and their Pharmacological Effects. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x16666190723112623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Beer, one of the most commonly consumed alcoholic beverages, is rich in polyphenols
and is the main dietary source of xanthohumol and related prenylflavonoids. However, to avoid haze
formation caused by the interaction between polyphenols and proteins, most phenolic compounds are
removed from beer and lost in the brewery waste stream via polyvinylpolypyrrolidone (PVPP)
adsorption. This waste stream contains several polyphenols with high antioxidant capacity and pharmacological
effects; that waste could be used as a rich, low-cost source of these compounds, though
little is known about its composition and potential attributes. This work aims to review the polyphenols
present in this brewery waste stream, as well as the health benefits associated with their consumption.
Collapse
Affiliation(s)
- J. Pérez-Manríquez
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, Macul, Santiago, Chile
| | - N. Escalona
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, Macul, Santiago, Chile
| | - J.R. Pérez-Correa
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, Macul, Santiago, Chile
| |
Collapse
|
45
|
Qi MY, Wang XT, Xu HL, Yang ZL, Cheng Y, Zhou B. Protective effect of ferulic acid on STZ-induced diabetic nephropathy in rats. Food Funct 2020; 11:3706-3718. [DOI: 10.1039/c9fo02398d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ferulic acid protects against diabetic nephropathy in STZ-induced rats by attenuating oxidative stress, inflammation, fibrosis and podocyte injury.
Collapse
Affiliation(s)
- Min-you Qi
- Institution of Pharmacology
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- China
| | - Xu-tao Wang
- Institution of Pharmacology
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- China
| | - Hui-lin Xu
- Institution of Pharmacology
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- China
| | - Zhang-liang Yang
- Institution of Pharmacology
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- China
| | - Yin Cheng
- Institution of Pharmacology
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- China
| | - Bin Zhou
- Institution of Pharmacology
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- China
| |
Collapse
|
46
|
Kumar N, Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. ACTA ACUST UNITED AC 2019; 24:e00370. [PMID: 31516850 PMCID: PMC6734135 DOI: 10.1016/j.btre.2019.e00370] [Citation(s) in RCA: 618] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/04/2019] [Accepted: 08/12/2019] [Indexed: 01/19/2023]
Abstract
Plant phenolics are considered to be a vital human dietary component and exhibit a tremendous antioxidant activity as well as other health benefits. Epidemiology evidence indicates that a diet rich in antioxidant fruits and vegetables significantly reduces the risk of many oxidative stress related diseases viz. cancers, diabetes and cardiovascular. The number and position of hydroxyl group in a particular phenolic compound leads to the variation in their antioxidant potential. Polyphenols are the main source of dietary antioxidants, and are effortlessly absorbed in the intestine. Phenolic acids, a sub class of plant phenolics, possess phenol moiety and resonance stabilized structure which causes the H-atom donation results in antioxidant property through radical scavenging mechanism. Other mode such as radical quenching via electron donation and singlet oxygen quenching are also known for the antioxidant activity of phenolic acids. Furthermore, phenolic acids are found ubiquitously and well documented for other health protective effects like antimicrobial, anticancer, anti-inflammatory, anti-mutagenic etc. The contribution emphasize on the phenolic acids potential in drug discovery. In addition their occurrence, biosynthesis, metabolism and health effects are discussed in detail.
Collapse
Affiliation(s)
- Naresh Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol Campus, Indore, Madhya Pradesh-453552, India
| | - Nidhi Goel
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh-221005, India
| |
Collapse
|
47
|
Saleem M, Javed F, Asif M, Baig MK, Arif M. HPLC Analysis and In Vivo Renoprotective Evaluation of Hydroalcoholic Extract of Cucumis melo Seeds in Gentamicin-Induced Renal Damage. ACTA ACUST UNITED AC 2019; 55:medicina55040107. [PMID: 30991760 PMCID: PMC6524020 DOI: 10.3390/medicina55040107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/02/2019] [Accepted: 04/10/2019] [Indexed: 02/05/2023]
Abstract
Background and objectives: Cucumis melo, of family Cucurbitaceae, has traditionally been used to treat variety of kidney disorders. However to best of our knowledge there is no scientific study available that validates its renaoprotective uses. Therefore, this study aimed to evaluate nephroprotective effects of hydroalcoholic extract of Cucumis melo seeds (CMHE) and to identify its phytoconstituents. Materials and Methods: HPLC was performed to identify key phytochemicals of CMHE. Gentamicin (100 mg/kg/day, i.p) was administered to induce nephrotoxicity in Swiss albino mice for 8 days. Gentamicin (100 mg/kg/day, i.p) and oral CMHE were co-administered to mice at doses of 250 and 500 mg/kg to evaluate protective effects of CMHE. Normal control group mice were administered normal saline. Changes in body weights, biochemical and histopathological studies were conducted to establish nephroprotective effects of CMHE. Results: HPLC analysis indicated presence of quercetin, m-coumaric acid, gallic acid, chlorogenic acid, and trans-4-hydroxy-3-methoxy cinnamic acid in CMHE. Mice treated with CMHE showed significant increase in body weight and decrease in kidney weight as compared with toxic control group. Dose-dependent significant decrease in total blood urea nitrogen, serum creatinine, serum urea, and uric acid levels were observed in CMHE-treated groups as compared with toxic control group. Histopathological analysis of CMHE-treated groups showed improvement in kidney structures as compared with toxic control group. Conclusions: Biochemical, histopathological, and phytochemical screening of hydroalcoholic extract of Cucumis melo seeds suggest that it has nephroprotective potential. Furthermore, standardization of extract against identified phytochemicals, as well as long-term toxicological studies are suggested before commencement of clinical trials.
Collapse
Affiliation(s)
- Mohammad Saleem
- Department of Pharmacology, University College of Pharmacy, University of the Punjab, Lahore, Punjab 54000, Pakistan.
| | - Fatima Javed
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Punjab, 38000, Pakistan.
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Punjab, 38000, Pakistan.
| | - Muhammad Kashif Baig
- Department of Pathology, Aziz Fatima Medical and Dental College, Faisalabad, Punjab 38000, Pakistan.
| | - Mehwish Arif
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Punjab, 38000, Pakistan.
| |
Collapse
|
48
|
Chen L, Gnanaraj C, Arulselvan P, El-Seedi H, Teng H. A review on advanced microencapsulation technology to enhance bioavailability of phenolic compounds: Based on its activity in the treatment of Type 2 Diabetes. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
49
|
Wu W, Qiu J, Wang A, Li Z. Impact of whole cereals and processing on type 2 diabetes mellitus: a review. Crit Rev Food Sci Nutr 2019; 60:1447-1474. [DOI: 10.1080/10408398.2019.1574708] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Weijing Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian, Beijing, China
- Laboratory of nutrition and food safety, Xiamen Medical College, Xiamen, Fujian, China
| | - Ju Qiu
- Ministry of Agriculture, Institute of Food and Nutrition Development, Haidian, Beijing, China
| | - Aili Wang
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia, USA
| | - Zaigui Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian, Beijing, China
| |
Collapse
|
50
|
Chowdhury S, Ghosh S, Das AK, Sil PC. Ferulic Acid Protects Hyperglycemia-Induced Kidney Damage by Regulating Oxidative Insult, Inflammation and Autophagy. Front Pharmacol 2019; 10:27. [PMID: 30804780 PMCID: PMC6371841 DOI: 10.3389/fphar.2019.00027] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/10/2019] [Indexed: 12/31/2022] Open
Abstract
Oxidative insult, inflammation, apoptosis and autophagy play a pivotal role in the etiology of diabetic nephropathy, a global health concern. Ferulic acid, a phytochemical, is reported to protect against varied diseased conditions. However, the ameliorative role and mechanisms of ferulic acid in averting STZ-mediated nephrotoxicity largely remains unknown. For in vivo study, a single intraperitoneal injection of streptozotocin (50 mg kg-1 body wt.) was administered in experimental rats to induce diabetes. The diabetic rats exhibited a rise in blood glucose level as well as kidney to body weight ratio, a decrease in serum insulin level, severe kidney tissue damage and dysfunction. Elevation of intracellular ROS level, altered mitochondrial membrane potential and cellular redox balance impairment shown the participation of oxidative stress in hyperglycemia-triggered renal injury. Treatment with ferulic acid (50 mg kg-1 body wt., orally for 8 weeks), post-diabetic induction, could markedly ameliorate kidney injury, renal cell apoptosis, inflammation and defective autophagy in the kidneys. The underlying mechanism for such protection involved the modulation of AGEs, MAPKs (p38, JNK, and ERK 1/2), NF-κB mediated inflammatory pathways, mitochondria-dependent and -independent apoptosis as well as autophagy induction. In cultured NRK-52E cells, ferulic acid (at an optimum dose of 75 μM) could counter excessive ROS generation, induce autophagy and inhibit apoptotic death of cells under high glucose environment. Blockade of autophagy could significantly eradicate the protective effect of ferulic acid in high glucose-mediated cell death. Together, the study confirmed that ferulic acid, exhibiting hypoglycemic, antioxidant, anti-inflammatory, anti-apoptotic activities and role in autophagy, could circumvent oxidative stress-mediated renal cell damage.
Collapse
Affiliation(s)
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| |
Collapse
|