1
|
Hui T, Bao L, Shi X, Zhang H, Xu K, Wei X, Liang J, Zhang R, Qian W, Zhang M, Su C, Jiao F. Grafting seedling rootstock strengthens tolerance to drought stress in polyploid mulberry (Morus alba L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108441. [PMID: 38377887 DOI: 10.1016/j.plaphy.2024.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
The economically adaptable mulberry (Morus alba L.) has a long history of grafting in China, yet the physiological mechanisms and advantages in drought tolerance remain unexplored. In our study, we investigated the responses of self-rooted 2X (diploid), 3X (triploid), and 4X (tetraploid) plants, as well as polyploid plants grafted onto diploid seedling rootstocks (2X/2X, 3X/2X, and 4X/2X) under drought stress. We found that self-rooted diploid plants exhibited the most severe phenotypic damage, lowest water retention, photosynthetic capacity, and the least effective osmotic stress adjustment compared to tetraploid and triploid plants. However, grafted diploid and triploid plants showed effective mitigation of drought-induced damage, with higher relative water content and improved soil water retention. Grafted plants also improved the photosystem response to drought stress through elevated photosynthetic potential, closed stomatal aperture, and faster recovery of chlorophyll biosynthesis in the leaves. Additionally, grafted plants altered osmotic protective compound levels, including starch, soluble sugar, and proline content, thereby enhancing drought resistance. Absolute quantification PCR indicated that the expression levels of proline synthesis-related genes in grafted plants were not influenced after drought stress, whereas they were significantly increased in self-rooted plants. Consequently, our findings support that self-rooted triploid and tetraploid mulberries exhibited superior drought resistance compared to diploid plants. Moreover, grafting onto seedling rootstocks enhanced tolerance against drought stress in diploid and triploid mulberry, but not in tetraploid. Our study provides valuable insights for a comprehensive analysis of physiological effects in response to drought stress between stem-roots and seedling rootstocks.
Collapse
Affiliation(s)
- Tian Hui
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Lijun Bao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiang Shi
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Huihui Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ke Xu
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xinlan Wei
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jiajun Liang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Rui Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Wei Qian
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Minjuan Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chao Su
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Feng Jiao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
2
|
Celık ZM, Sargin M, Tamer HG, Gunes FE. The effect of lyophilized dried cornelian cherry ( Cornus mas L.) intake on anthropometric and biochemical parameters in women with insulin resistance: A randomized controlled trial. Food Sci Nutr 2023; 11:8060-8071. [PMID: 38107130 PMCID: PMC10724626 DOI: 10.1002/fsn3.3725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023] Open
Abstract
The aim of this study was to determine the effect on the anthropometric and biochemical parameters for women with insulin resistance when lyophilized dried cornelian cherry (Cornus mas L., CM) was added to medical nutrition therapy (MNT). The study was conducted with 84 women aged 18-45, who had been diagnosed with insulin resistance. Participants were randomized into four groups: MNT + 20 g lyophilized dried CM group (DCm, n = 22), MNT group (D, n = 21), only 20 g lyophilized dried CM group (Cm, n = 21), and the control group (C, n = 20). All participants were followed for 12 weeks. While pre- and post-intervention biochemical parameters were recorded from patient files, anthropometric measurements and food consumption records were taken every 15 days. Pre-intervention groups were homogeneously distributed. Post-intervention, among the groups, all anthropometric measurements were similar between the DCm and D, while the percentage of decrease in insulin resistance-related parameters was approximately two times greater in DCm than in D (p < .05). When the Cm and C were compared, it was found that all post-intervention anthropometric measurements were similar, but the percentage of decrease in fasting blood glucose, fasting insulin, and HOMA-IR (Homeostasis Model Assessment-Insulin Resistance) values were greater in C (p < .05). In this study, it was concluded that CM consumption resulted with a decrease in insulin resistance-related biochemical parameters independent of body weight change. Nevertheless, MNT has positive effects on women with insulin resistance, and adding lyophilized dried CM to MNT improves insulin resistance-related parameters and may be beneficial for preventing the development of diabetes.
Collapse
Affiliation(s)
- Zehra Margot Celık
- Department of Nutrition and DieteticsMarmara University Faculty of Health SciencesIstanbulTurkey
| | - Mehmet Sargin
- Faculty of Medicine, Family MedicineIstanbul Medeniyet UniversityIstanbulTurkey
| | - Havva Gonca Tamer
- Faculty of Medicine, Internal MedicineIstanbul Medeniyet UniversityIstanbulTurkey
| | - Fatma Esra Gunes
- Department of Nutrition and Dietetics, Faculty of Health SciencesIstanbul Medeniyet UniversityIstanbulTurkey
| |
Collapse
|
3
|
Liu Y, Wang Q, Wu K, Sun Z, Tang Z, Li X, Zhang B. Anthocyanins' effects on diabetes mellitus and islet transplantation. Crit Rev Food Sci Nutr 2023; 63:12102-12125. [PMID: 35822311 DOI: 10.1080/10408398.2022.2098464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The incidence of diabetes mellitus is dramatically increasing every year, causing a huge global burden. Moreover, existing anti-diabetic drugs inevitably bring adverse reactions, and the application of islet transplantation is often limited by the damage caused by oxidative stress after transplantation. Thus, new approaches are needed to combat the growing burden of diabetes mellitus. Anthocyanins are of great nutritional interest and have been documented that have beneficial effects on chronic diseases, including diabetes mellitus. Here, we describe the health effects of anthocyanins on diabetes mellitus and islet transplantation. Epidemiological studies demonstrated that moderate intake of anthocyanins leading to a reduction in risk of diabetes mellitus. Numerous experiments both animal and clinical studies also showed positive effects of anthocyanins on prevention and treatment of diabetes and diabetic complications. These effects of anthocyanins may be related to mechanisms of improving glucose and lipid metabolism and insulin resistance, antioxidant, and anti-inflammatory activities. In addition, damage and function of pancreatic islets after transplantation are also improved by anthocyanins. These findings suggest that daily intake of anthocyanins may not only improve nutritional metabolism in healthy individuals to prevent from diabetes, but also as a supplementary treatment of diabetes mellitus and islet transplantation. Thus, more evidence is needed to better understand the potential health benefits of anthocyanins.
Collapse
Affiliation(s)
- Yang Liu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Qianwen Wang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Kangze Wu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhouyi Sun
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Zhe Tang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Bo Zhang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Łysiak GP, Szot I. The Possibility of Using Fruit-Bearing Plants of Temperate Climate in the Treatment and Prevention of Diabetes. Life (Basel) 2023; 13:1795. [PMID: 37763199 PMCID: PMC10532890 DOI: 10.3390/life13091795] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Diabetes mellitus is one of the most dangerous metabolic diseases. The incidence of this disease continues to increase and is often associated with severe complications. Plants and natural plant products with a healing effect have been successfully used in the treatment of many disease entities since the beginning of the history of herbalism and medicine. At present, great emphasis is placed on the biodiversity of crops and the replacement of the monoculture production system of popular temperate climate plants, such as apple, pear, plum, and vine, with alternative fruit species. Very promising fruit plants are Cornelian cherry (Cornus mas); mulberry (Morus alba); bird cherry (Prunus padus); sour cherry (Prunus cerasus); plants of the genus Amelanchier, Sorbus, and Crategus; medlar (Mespilus germanica); quince (Cydonia oblonga); plants of the genus Vaccinium; and wild roses. When promoting the cultivation of alternative fruit-bearing plants, it is worth emphasizing their beneficial effects on health. This systematic review indicates that the antidiabetic effect of various parts of fruit plants is attributed to the presence of polyphenols, especially anthocyanins, which have different mechanisms of antidiabetic action and can be used in the treatment of diabetes and various complications associated with this disease.
Collapse
Affiliation(s)
- Grzegorz P. Łysiak
- Department of Ornamental Plants, Dendrology and Pomology, Faculty of Horticulture and Landscape Architecture, University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland;
| | - Iwona Szot
- Subdepartment of Pomology, Nursery and Enology, Institute of Horticulture Production, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland
| |
Collapse
|
5
|
Ahmed M, Bose I, Goksen G, Roy S. Himalayan Sources of Anthocyanins and Its Multifunctional Applications: A Review. Foods 2023; 12:foods12112203. [PMID: 37297448 DOI: 10.3390/foods12112203] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Anthocyanins, the colored water-soluble pigments, have increasingly drawn the attention of researchers for their novel applications. The sources of anthocyanin are highly diverse, and it can be easily extracted. The unique biodiversity of the Himalayan Mountain range is an excellent source of anthocyanin, but it is not completely explored. Numerous attempts have been made to study the phytochemical aspects of different Himalayan plants. The distinct flora of the Himalayas can serve as a potential source of anthocyanins for the food industry. In this context, this review is an overview of the phytochemical studies conducted on Himalayan plants for the estimation of anthocyanins. For that, many articles have been studied to conclude that plants (such as Berberis asiatica, Morus alba, Ficus palmata, Begonia xanthina, Begonia palmata, Fragaria nubicola, etc.) contain significant amounts of anthocyanin. The application of Himalayan anthocyanin in nutraceuticals, food colorants, and intelligent packaging films have also been briefly debated. This review creates a path for further research on Himalayan plants as a potential source of anthocyanins and their sustainable utilization in the food systems.
Collapse
Affiliation(s)
- Mustafa Ahmed
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
| | - Ipsheta Bose
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Swarup Roy
- School of Bioengineering and Food Sciences, Shoolini University, Solan 173229, India
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India
| |
Collapse
|
6
|
Chen K, Kortesniemi MK, Linderborg KM, Yang B. Anthocyanins as Promising Molecules Affecting Energy Homeostasis, Inflammation, and Gut Microbiota in Type 2 Diabetes with Special Reference to Impact of Acylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1002-1017. [PMID: 36515085 PMCID: PMC9853865 DOI: 10.1021/acs.jafc.2c05879] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 05/27/2023]
Abstract
Anthocyanins, the red-orange to blue-violet colorants present in fruits, vegetables, and tubers, have antidiabetic properties expressed via modulating energy metabolism, inflammation, and gut microbiota. Acylation of the glycosyl moieties of anthocyanins alters the physicochemical properties of anthocyanins and improves their stability. Thus, acylated anthocyanins with probiotic-like property and lower bioavailability are likely to have different biological effects from nonacylated anthocyanins on diabetes. This work highlights recent findings on the antidiabetic effects of acylated anthocyanins from the perspectives of energy metabolism, inflammation, and gut microbiota compared to the nonacylated anthocyanins and particularly emphasizes the cellular and molecular mechanisms associated with the beneficial effects of these bioactive molecules, providing a new perspective to explore the different biological effects induced by structurally different anthocyanins. Acylated anthocyanins may have greater modulating effects on energy metabolism, inflammation, and gut microbiota in type 2 diabetes compared to nonacylated anthocyanins.
Collapse
|
7
|
Chen K, Wei X, Zhang J, Kortesniemi M, Zhang Y, Yang B. Effect of Acylated and Nonacylated Anthocyanins on Urine Metabolic Profile during the Development of Type 2 Diabetes in Zucker Diabetic Fatty Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15143-15156. [PMID: 36410712 PMCID: PMC9732871 DOI: 10.1021/acs.jafc.2c06802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The effect of nonacylated and acylated anthocyanins on urinary metabolites in diabetic rats was investigated. Nonacylated anthocyanins extract from bilberries (NAAB) or acylated anthocyanins extract from purple potatoes (AAPP) was given to Zucker diabetic fatty (ZDF) rats for 8 weeks at daily doses of 25 and 50 mg/kg body weight. 1H NMR metabolomics was applied to study alterations in urinary metabolites from three time points (weeks 1, 4, and 8). Both types of anthocyanins modulated the metabolites associated with the tricarboxylic acid cycle, gut microbiota metabolism, and renal function at weeks 1 and 4, such as 2-oxoglutarate, fumarate, alanine, trigonelline, and hippurate. In addition, only a high dose of AAPP decreased monosaccharides, formate, lactate, and glucose levels at week 4, suggesting improvement in energy production in mitochondria, glucose homeostasis, and oxidative stress. This study suggested different impacts of AAPP and NAAB on the metabolic profile of urine in diabetes.
Collapse
Affiliation(s)
- Kang Chen
- Food
Sciences, Department of Life Technologies, University of Turku, FI-20014 Turu, Finland
| | - Xuetao Wei
- Beijing
Key Laboratory of Toxicological Research and Risk Assessment for Food
Safety, Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Jian Zhang
- Department
of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Maaria Kortesniemi
- Food
Sciences, Department of Life Technologies, University of Turku, FI-20014 Turu, Finland
| | - Yumei Zhang
- Department
of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Baoru Yang
- Food
Sciences, Department of Life Technologies, University of Turku, FI-20014 Turu, Finland
| |
Collapse
|
8
|
Marine algae colorants: Antioxidant, anti-diabetic properties and applications in food industry. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Hao J, Gao Y, Xue J, Yang Y, Yin J, Wu T, Zhang M. Phytochemicals, Pharmacological Effects and Molecular Mechanisms of Mulberry. Foods 2022; 11:1170. [PMID: 35454757 PMCID: PMC9028580 DOI: 10.3390/foods11081170] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
There are numerous varieties of mulberry, and each has high medicinal value and is regarded as a promising source of traditional medicines and functional foods. Nevertheless, the nutrients and uses of mulberry differ from species (Morus alba L., Morus nigra L. and Morus rubra L.). Phenolic compounds are prominent among the biologically active ingredients in mulberry, especially flavonoids, anthocyanins and phenolic acids. Epidemiologic studies suggest that mulberry contains a rich, effective chemical composition and a wide range of biological activity, such as antioxidant, anti-inflammatory, anti-tumor and so on. However, compared with other berries, there has been a lack of systematic research on mulberry, and this hinders its further expansion as a functional fruit. The main purpose of this review is to provide the latest data regarding the effective chemical constituents and pharmacological effects of mulberry to support its further therapeutic potential and health functions.
Collapse
Affiliation(s)
- Junyu Hao
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
| | - Yufang Gao
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Jiabao Xue
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
| | - Yunyun Yang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China;
| | - Jinjin Yin
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
10
|
Chen K, Wei X, Kortesniemi M, Pariyani R, Zhang Y, Yang B. Effects of acylated and nonacylated anthocyanins extracts on gut metabolites and microbiota in diabetic Zucker rats: A metabolomic and metagenomic study. Food Res Int 2022; 153:110978. [DOI: 10.1016/j.foodres.2022.110978] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 12/18/2022]
|
11
|
Fernandes I, Oliveira J, Pinho A, Carvalho E. The Role of Nutraceutical Containing Polyphenols in Diabetes Prevention. Metabolites 2022; 12:metabo12020184. [PMID: 35208257 PMCID: PMC8878446 DOI: 10.3390/metabo12020184] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Research in pharmacological therapy has led to the availability of many antidiabetic agents. New recommendations for precision medicine and particularly precision nutrition may greatly contribute to the control and especially to the prevention of diabetes. This scenario greatly encourages the search for novel non-pharmaceutical molecules. In line with this, the daily and long-term consumption of diets rich in phenolic compounds, together with a healthy lifestyle, may have a protective role against the development of type 2 diabetes. In the framework of the described studies, there is clear evidence that the bio accessibility, bioavailability, and the gut microbiota are indeed affected by: the way phenolic compounds are consumed (acutely or chronically; as pure compounds, extracts, or in-side a whole meal) and the amount and the type of phenolic compounds (ex-tractable or non-extractable/macromolecular antioxidants, including non-bioavailable polyphenols and plant matrix complexed structures). In this review, we report possible effects of important, commonly consumed, phenolic-based nutraceuticals in pre-clinical and clinical diabetes studies. We highlight their mechanisms of action and their potential effects in health promotion. Translation of this nutraceutical-based approach still requires more and larger clinical trials for better elucidation of the mechanism of action toward clinical applications.
Collapse
Affiliation(s)
- Iva Fernandes
- Laboratório Associado para a Química Verde—REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal;
| | - Joana Oliveira
- Laboratório Associado para a Química Verde—REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal;
- Correspondence: (J.O.); (E.C.)
| | - Aryane Pinho
- Center for Neuroscience and Cell Biology, Faculdade de Medicina, University of Coimbra, Rua Larga, Polo I, 1º Andar, 3004-504 Coimbra, Portugal; or
- Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, Faculdade de Medicina, University of Coimbra, Rua Larga, Polo I, 1º Andar, 3004-504 Coimbra, Portugal; or
- Instituto de Investigação Interdisciplinar, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
- APDP—Portuguese Diabetes Association, 1250-189 Lisbon, Portugal
- Correspondence: (J.O.); (E.C.)
| |
Collapse
|
12
|
Chang BY, Koo BS, Kim SY. Pharmacological Activities for Morus alba L., Focusing on the Immunostimulatory Property from the Fruit Aqueous Extract. Foods 2021; 10:foods10081966. [PMID: 34441742 PMCID: PMC8393821 DOI: 10.3390/foods10081966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 12/21/2022] Open
Abstract
Depending on the extraction method, numerous compounds that have specific pharmacological effects can be obtained from M. alba L. There is a growing scientific interest in health problems related to aging. Efforts to develop safe immune-enhancing pharmaceuticals are increasing. This review aims to summarize and critically discuss the immunity enhancement effects and pharmaceutical efficacy of M. alba L. extracts. The scientific database search was conducted using Google Scholar, Web of Science, and PubMed until May 2021. Additional articles were identified and obtained from references in the retrieved articles. Ethanol or methanol extraction of various parts of M. alba L. identified a large amount of phenols and flavonoids, which are effective for immunosuppression, antioxidants, and cardiovascular diseases, and are antibacterial, and anticancer. Water extraction of M. alba L. enhanced the innate immune response based on immune cell activation. A polysaccharide and an alkaloid related to increased macrophage activity were isolated from M. alba L. fruit extracts. M. alba L. fruit water extracts primarily induced the production of pro-inflammatory substances, in model organisms, via TLR4 in immune cells. Water extracts have been shown to be effective in pathogen defense and tumor suppression by enhancing macrophage activity. Based on our literature review on the bioactivity of M. alba L. fruit extracts, particularly in relation to their immunity enhancement activity, we anticipate that M. alba-derived pharmaceuticals will have excellent potential in future medical research.
Collapse
Affiliation(s)
- Bo-Yoon Chang
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Jeonbuk, Iksan 54538, Korea;
| | - Bong-Seong Koo
- ForBioKorea Co., Ltd., Geumcheon-gu, Seoul 08592, Korea;
| | - Sung-Yeon Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Jeonbuk, Iksan 54538, Korea;
- Correspondence: ; Tel.: +82-63-850-6806
| |
Collapse
|
13
|
Chaiwong S, Chatturong U, Chanasong R, Deetud W, To-on K, Puntheeranurak S, Chulikorn E, Kajsongkram T, Raksanoh V, Chinda K, Limpeanchob N, Trisat K, Somran J, Nuengchamnong N, Prajumwong P, Chootip K. Dried mulberry fruit ameliorates cardiovascular and liver histopathological changes in high-fat diet-induced hyperlipidemic mice. J Tradit Complement Med 2021; 11:356-368. [PMID: 34195030 PMCID: PMC8240167 DOI: 10.1016/j.jtcme.2021.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIM Metabolic disease encompasses most contemporary non-communicable diseases, especially cardiovascular and fatty liver disease. Mulberry fruits of Morus alba L. are a favoured food and a traditional medicine. While they are anti-atherosclerotic and reduce hyperlipidemic risk factors, studies need wider scope that include ameliorating cardiovascular and liver pathologies if they are to become clinically effective treatments. Therefore, the present study sought to show that freshly dried mulberry fruits (dMF) might counteract the metabolic/cardiovascular pathologies in mice made hyperlipidemic by high-fat diet (HF). EXPERIMENTAL PROCEDURE C57BL/6J mice were fed for 3 months with either: i) control diet, ii) HF, iii) HF+100 mg/kg dMF, or iv) HF+300 mg/kg dMF. Body weight gain, food intake, visceral fat accumulation, fasting blood glucose, plasma lipids, and aortic, heart, and liver histopathologies were evaluated. Adipocyte lipid accumulation, autophagy, and bile acid binding were also investigated. RESULTS AND CONCLUSION HF increased food intake, body weight, visceral fat, plasma total cholesterol (TC) and low-density lipoprotein (LDL), TC/HDL ratio, blood glucose, aortic collagen, arterial and cardiac wall thickness, and liver lipid. Both dMF doses prevented hyperphagia, body weight gain, and visceral fat accumulation, lowered blood glucose, plasma TG and unfavourable TC/HDL and elevated plasma HDL beyond baseline. Arterial and cardiac wall hypertrophy, aortic collagen fibre accumulation and liver lipid deposition ameliorated in dMF-fed mice. Clinical trials on dMF are worthwhile but outcomes should be holistic commensurate with the constellation of disease risks. Here, dMF should supplement the switch to nutrient-rich from current energy-dense diets that are progressively crippling national health systems.
Collapse
Affiliation(s)
- Suriya Chaiwong
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Usana Chatturong
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Rachanee Chanasong
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Watcharakorn Deetud
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Kittiwoot To-on
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Supaporn Puntheeranurak
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Ekarin Chulikorn
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Tanwarat Kajsongkram
- Expert Center of Innovative Herbal Products, Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand
| | - Veerada Raksanoh
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Kroekkiat Chinda
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Nanteetip Limpeanchob
- Department of Pharmacy Practice and Center of Excellence for Innovation in Chemistry, Pharmacological Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Kanittaporn Trisat
- Department of Pharmacy Practice and Center of Excellence for Innovation in Chemistry, Pharmacological Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Julintorn Somran
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| | - Nitra Nuengchamnong
- Science Laboratory Centre, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Piya Prajumwong
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| | - Krongkarn Chootip
- Department of Physiology, Faculty of Medical Science and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
14
|
Koh YC, Lin YC, Lee PS, Lu TJ, Lin KY, Pan MH. A multi-targeting strategy to ameliorate high-fat-diet- and fructose-induced (western diet-induced) non-alcoholic fatty liver disease (NAFLD) with supplementation of a mixture of legume ethanol extracts. Food Funct 2021; 11:7545-7560. [PMID: 32815965 DOI: 10.1039/d0fo01405b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
NAFLD (non-alcoholic fatty liver disease) is a multifactorial liver disease related to multiple causes or unhealthy conditions, including obesity and chronic inflammation. The accumulation of excess triglycerides, called steatosis, is known as a hallmark of an imbalance between the rates of hepatic fatty acid uptake/synthesis and oxidation/export. Furthermore, occurrence of NAFLD may lead to a cocktail of disease consequences caused by the altered metabolism of glucose, lipids, and lipoproteins, for instance, insulin resistance, type II diabetes, nonalcoholic steatohepatitis (NASH), liver fibrosis, and even hepatocarcinogenesis. Due to the complexity of the occurrence of NAFLD, a multi-targeting strategy is highly recommended to effectively address the issue and combat the causal loop. Ethanol extracts of legumes are popular supplements due to their richness and diversity in phytochemicals, especially isoflavones and anthocyanins. Although many of them have been reported to have efficacy in the treatment of different metabolic syndromes and obesity, there have not been many studies on them as a supplemental mixture. In this study, the alleviative effects of selected legume ethanol extracts (CrE) on high-fat-diet- and fructose-induced obesity, liver steatosis, and hyperglycemia are discussed. As revealed by the findings, CrE not only ameliorated obesity in terms of weight gained and enlargement of adipose tissue, but also significantly reduced the incidence of steatosis via phosphorylation of AMPK, resulting in inhibition of the downstream SREBP-1c/FAS pathway and an increase in an indicator of β-oxidation (carnitine palmitoyl transferase 1a, CPT1A). Furthermore, CrE dramatically alleviated inflammatory responses, including both plasma and hepatic TNF-α, IL-6, and MCP-1 levels. CrE also had attenuating effects on hyperglycemia and insulin resistance and significantly reduced the fasting glucose level, fasting insulin level, and plasma leptin, and it exhibited positive effects in the Oral glucose tolerance test (OGTT) and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR). At the molecular level, CrE could activate the PI3K/Akt/Glut2 pathway, which indicated an increase in insulin sensitivity and glucose uptake. Taken together, these results suggest that ethanol extracts of legumes could be potential supplements for metabolic syndromes, and their efficacy and effectiveness might facilitate the multi-targeting strategy required to mitigate NAFLD.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Yen-Cheng Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Pei-Sheng Lee
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Ting-Jang Lu
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Kai-Yi Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan. and Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan and Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
15
|
Chen K, Wei X, Pariyani R, Kortesniemi M, Zhang Y, Yang B. 1H NMR Metabolomics and Full-Length RNA-Seq Reveal Effects of Acylated and Nonacylated Anthocyanins on Hepatic Metabolites and Gene Expression in Zucker Diabetic Fatty Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4423-4437. [PMID: 33835816 PMCID: PMC8154569 DOI: 10.1021/acs.jafc.1c00130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 06/01/2023]
Abstract
Anthocyanins have been reported to possess antidiabetic effects. Recent studies indicate acylated anthocyanins have better stability and antioxidative activity compared to their nonacylated counterparts. This study compared the effects of nonacylated and acylated anthocyanins on hepatic gene expression and metabolic profile in diabetic rats, using full-length transcriptomics and 1H NMR metabolomics. Zucker diabetic fatty (ZDF) rats were fed with nonacylated anthocyanin extract from bilberries (NAAB) or acylated anthocyanin extract from purple potatoes (AAPP) at daily doses of 25 and 50 mg/kg body weight for 8 weeks. Both anthocyanin extracts restored the levels of multiple metabolites (glucose, lactate, alanine, and pyruvate) and expression of genes (G6pac, Pck1, Pklr, and Gck) involved in glycolysis and gluconeogenesis. AAPP decreased the hepatic glutamine level. NAAB regulated the expression of Mgat4a, Gstm6, and Lpl, whereas AAPP modified the expression of Mgat4a, Jun, Fos, and Egr1. This study indicated different effects of AAPP and NAAB on the hepatic transcriptomic and metabolic profiles of diabetic rats.
Collapse
Affiliation(s)
- Kang Chen
- Food
Chemistry and Food Development,
Department of Life Technologies, University
of Turku, FI-20014 Turun yliopisto, Finland
| | - Xuetao Wei
- Beijing
Key Laboratory of Toxicological Research and Risk Assessment for Food
Safety, Department of Toxicology, School of Public Health, Beijing University, Beijing 100191, China
| | - Raghunath Pariyani
- Food
Chemistry and Food Development,
Department of Life Technologies, University
of Turku, FI-20014 Turun yliopisto, Finland
| | - Maaria Kortesniemi
- Food
Chemistry and Food Development,
Department of Life Technologies, University
of Turku, FI-20014 Turun yliopisto, Finland
| | - Yumei Zhang
- Department
of Nutrition and Food Hygiene, School of Public Health, Beijing University, Beijing 100191, China
| | - Baoru Yang
- Food
Chemistry and Food Development,
Department of Life Technologies, University
of Turku, FI-20014 Turun yliopisto, Finland
| |
Collapse
|
16
|
Alappat B, Alappat J. Anthocyanin Pigments: Beyond Aesthetics. Molecules 2020; 25:E5500. [PMID: 33255297 PMCID: PMC7727665 DOI: 10.3390/molecules25235500] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Anthocyanins are polyphenol compounds that render various hues of pink, red, purple, and blue in flowers, vegetables, and fruits. Anthocyanins also play significant roles in plant propagation, ecophysiology, and plant defense mechanisms. Structurally, anthocyanins are anthocyanidins modified by sugars and acyl acids. Anthocyanin colors are susceptible to pH, light, temperatures, and metal ions. The stability of anthocyanins is controlled by various factors, including inter and intramolecular complexations. Chromatographic and spectrometric methods have been extensively used for the extraction, isolation, and identification of anthocyanins. Anthocyanins play a major role in the pharmaceutical; nutraceutical; and food coloring, flavoring, and preserving industries. Research in these areas has not satisfied the urge for natural and sustainable colors and supplemental products. The lability of anthocyanins under various formulated conditions is the primary reason for this delay. New gene editing technologies to modify anthocyanin structures in vivo and the structural modification of anthocyanin via semi-synthetic methods offer new opportunities in this area. This review focusses on the biogenetics of anthocyanins; their colors, structural modifications, and stability; their various applications in human health and welfare; and advances in the field.
Collapse
|
17
|
Chen K, Wei X, Zhang J, Pariyani R, Jokioja J, Kortesniemi M, Linderborg KM, Heinonen J, Sainio T, Zhang Y, Yang B. Effects of Anthocyanin Extracts from Bilberry ( Vaccinium myrtillus L.) and Purple Potato ( Solanum tuberosum L. var. 'Synkeä Sakari') on the Plasma Metabolomic Profile of Zucker Diabetic Fatty Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9436-9450. [PMID: 32786839 PMCID: PMC7586333 DOI: 10.1021/acs.jafc.0c04125] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
This study compared the effects of the nonacylated and acylated anthocyanin-rich extracts on plasma metabolic profiles of Zucker diabetic fatty rats. The rats were fed with the nonacylated anthocyanin extract from bilberries (NAAB) or the acylated anthocyanin extract from purple potatoes (AAPP) at daily doses of 25 and 50 mg/kg body weight for 8 weeks. 1H NMR metabolomics was used to study the changes in plasma metabolites. A reduced fasting plasma glucose level was seen in all anthocyanin-fed groups, especially in the groups fed with NAAB. Both NAAB and AAPP decreased the levels of branched-chain amino acids and improved lipid profiles. AAPP increased the glutamine/glutamate ratio and decreased the levels of glycerol and metabolites involved in glycolysis, suggesting improved insulin sensitivity, gluconeogenesis, and glycolysis. AAPP decreased the hepatic TBC1D1 and G6PC messenger RNA level, suggesting regulation of gluconeogenesis and lipogenesis. This study indicated that AAPP and NAAB affected the plasma metabolic profile of diabetic rats differently.
Collapse
Affiliation(s)
- Kang Chen
- Food
Chemistry and Food Development, Department of Biochemistry, University of Turku, Turun yliopisto, Turku FI-20014, Finland
| | - Xuetao Wei
- Beijing
Key Laboratory of Toxicological Research and Risk Assessment for Food
Safety, School of Public Health, Peking
University, Beijing 100191, China
| | - Jian Zhang
- Department
of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Raghunath Pariyani
- Food
Chemistry and Food Development, Department of Biochemistry, University of Turku, Turun yliopisto, Turku FI-20014, Finland
| | - Johanna Jokioja
- Food
Chemistry and Food Development, Department of Biochemistry, University of Turku, Turun yliopisto, Turku FI-20014, Finland
| | - Maaria Kortesniemi
- Food
Chemistry and Food Development, Department of Biochemistry, University of Turku, Turun yliopisto, Turku FI-20014, Finland
| | - Kaisa M. Linderborg
- Food
Chemistry and Food Development, Department of Biochemistry, University of Turku, Turun yliopisto, Turku FI-20014, Finland
| | - Jari Heinonen
- School
of Engineering Science, Lappeenranta University
of Technology, Lappeenranta FI-53850, Finland
| | - Tuomo Sainio
- School
of Engineering Science, Lappeenranta University
of Technology, Lappeenranta FI-53850, Finland
| | - Yumei Zhang
- Department
of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
- . Phone: +8613426134251
| | - Baoru Yang
- Food
Chemistry and Food Development, Department of Biochemistry, University of Turku, Turun yliopisto, Turku FI-20014, Finland
- . Phone: +358 452737988
| |
Collapse
|
18
|
Abouzed TK, Sadek KM, Ghazy EW, Abdo W, Kassab MA, Hago S, Abdel-Wahab S, Mahrous EA, Abdel-Sattar E, Assar DH. Black mulberry fruit extract alleviates streptozotocin-induced diabetic nephropathy in rats: targeting TNF-α inflammatory pathway. J Pharm Pharmacol 2020; 72:1615-1628. [PMID: 32754951 DOI: 10.1111/jphp.13338] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES This study was designed to investigate the effect of Morus nigra fruit extract in retarding the progression of diabetic nephropathy in streptozotocin (STZ)-induced diabetic rats. METHODS Diabetic male Wistar rats were injected with black mulberry fruit extract (BMFE) at doses of 150 and 300 mg/kg body weight. After 4 weeks, microalbuminuria was estimated in addition to serum concentrations of glucose, insulin, creatinine and albumin. KEY FINDINGS The study revealed a significant amelioration of all the measured parameters in diabetic animals. In addition, MDA, lipid peroxide levels and catalase activity were also improved. The histopathological examination of kidney tissues revealed significant improvement of the pathological changes and glomerular sclerosis in diabetic rats treated with BMFE. Treated rats showed downregulation of TNF-α, vascular cell adhesion molecule-1 (VCAM-1) and fibronectin mRNA expression. CONCLUSION The ameliorative effect of BMFE on diabetic nephropathy is not only through its potent antioxidant and hypoglycaemic effects but also through its downregulation of TNF-α, VCAM-1 and fibronectin mRNA expression in renal tissues of diabetic-treated rats. Therefore, BMFE as dietary supplement could be a promising agent in improving diabetic nephropathy.
Collapse
Affiliation(s)
- Tarek Kamal Abouzed
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafr-Elsheikh University, Kafr-Elsheikh, Egypt
| | - Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Emad Waded Ghazy
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Kafr-Elsheikh University, Kafr-Elsheikh, Egypt
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafr-Elsheikh University, Kafr-Elsheikh, Egypt
| | - Mohmed Atef Kassab
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Kafr-Elsheikh University, Kafr-Elsheikh, Egypt
| | - Salma Hago
- Department of Pharmacognosy, Faculty of Pharmacy, Gezira University, Wad Medani City, Sudan
| | - Samia Abdel-Wahab
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Engy A Mahrous
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Doaa H Assar
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Kafr-Elsheikh University, Kafr-Elsheikh, Egypt
| |
Collapse
|
19
|
Abstract
Fruits come in a wide variety of colors, shapes, and flavors. This chapter will cover selected fruits that are known to be healthy and highly nutritious. These fruits were chosen due to their common usage and availability. Since it is not possible to cover all health benefits or essential nutrients and important phytochemicals of the fruit composition, this chapter will focus on the key valuable constituents and their potential health effects.
Collapse
Affiliation(s)
- Sawsan G Mohammed
- Qatar Research Leadership Program (QRLP), Qatar Foundation, Doha, Qatar.
| | - M Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
20
|
Tancharoen S, Palungwachira P, Dararat P, Nararatwanchai T. Anthocyanins isolated from Oryza Sativa L. protect dermal fibroblasts from hydrogen peroxide-induced cell death. J Nat Sci Biol Med 2020. [DOI: 10.4103/jnsbm.jnsbm_171_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
21
|
Antioxidant and Anti-Inflammatory Properties of Anthocyanins Extracted from Oryza sativa L. in Primary Dermal Fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2089817. [PMID: 31467631 PMCID: PMC6701313 DOI: 10.1155/2019/2089817] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/07/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022]
Abstract
Flavonoids are naturally active substances that form a large class of phenolic compounds abundant in certain foods. Black rice (Oryza sativa L.) contains high levels of anthocyanin polyphenols, which have beneficial effects on health owing to their antioxidant properties. The breakdown of collagenous networks with aging or skin deterioration results in the impairment of wound healing in the skin. Accordingly, reviving stagnant collagen synthesis can help maintain dermal homeostasis during wound healing. This study presents an assessment of the cellular activity of anthocyanins (ANT) extracted from Oryza sativa L., providing information necessary for the development of new products that support natural healing processes. The relative composition of ANT from Oryza sativa L. was determined by high-performance liquid chromatography/diode array detection. ANT promoted the migration of rat dermal fibroblasts (RDFs) and demonstrated antioxidant properties. ANT increased the mRNA expression of collagen type I alpha 2 (COL1A2) and upregulated type I collagen protein levels in H2O2-stimulated RDFs without cytotoxicity. Compared with the untreated group, treatment of RDFs with ANT in the presence of H2O2 led to the activation of signaling pathways, including the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and Akt, whereas it significantly (p < 0.001) inhibited the phosphorylation of IκBα and suppressed the activation of the nuclear factor-kappa B (NF-κB) subunits, p50 and p65, which are transcription factors responsible for inflammation. Taken together, our findings suggest that ANT from Oryza sativa L. have anti-inflammatory properties and antiaging potential by modulating type I collagen gene expression and suppressing H2O2-induced NF-κB activation in skin fibroblasts.
Collapse
|
22
|
Dzydzan O, Bila I, Kucharska AZ, Brodyak I, Sybirna N. Antidiabetic effects of extracts of red and yellow fruits of cornelian cherries (Cornus mas L.) on rats with streptozotocin-induced diabetes mellitus. Food Funct 2019; 10:6459-6472. [DOI: 10.1039/c9fo00515c] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The effects of extracts of red and yellow fruits of cornelian cherries have been evaluated in rats with streptozotocin-induced diabetes mellitus.
Collapse
Affiliation(s)
- Olha Dzydzan
- Department of Biochemistry
- Ivan Franko National University of Lviv
- 79000 Lviv
- Ukraine
| | - Ivanna Bila
- Department of Biochemistry
- Ivan Franko National University of Lviv
- 79000 Lviv
- Ukraine
| | - Alicja Z. Kucharska
- Department of Fruit
- Vegetable and Plant Nutraceutical Technology
- Wrocław University of Environmental and Life Sciences
- 51-630 Wrocław
- Poland
| | - Iryna Brodyak
- Department of Biochemistry
- Ivan Franko National University of Lviv
- 79000 Lviv
- Ukraine
| | - Natalia Sybirna
- Department of Biochemistry
- Ivan Franko National University of Lviv
- 79000 Lviv
- Ukraine
| |
Collapse
|
23
|
Tancharoen S, Shakya P, Narkpinit S, Dararat P, Kikuchi K. Anthocyanins Extracted from Oryza sativa L. Prevent Fluorouracil-Induced Nuclear Factor-κB Activation in Oral Mucositis: In Vitro and In Vivo Studies. Int J Mol Sci 2018; 19:ijms19102981. [PMID: 30274314 PMCID: PMC6213925 DOI: 10.3390/ijms19102981] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/23/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023] Open
Abstract
This study aims to investigate the immunomodulatory effect of anthocyanins (ANTs) from Oryza sativa L. extracts on 5-fluorouracil (5-FU)-induced oral mucositis, using a rat model and oral keratinocytes. ANTs were detected by high-performance liquid chromatography (HPLC)-electrospray ionization mass spectrometry. Animals were randomly given varying doses of ANT-rich extract treatment (500 mg/kg and 1000 mg/kg) in the absence or presence of 5-FU-induced mucositis. Buccal mucosae were photographed and scored for macroscopic analysis and incisional biopsies of cheek pouches were collected for microscopic examination of oral mucositis. 5-FU caused marked hemorrhage, extensive ulcerations and abscesses compared to non-treated animals with slight erythema. Histologically, a loss of collagen bundles and inflammatory cell infiltrates was observed. After 29 days of ANT treatment, lesions resolved, and abundant collagen fibers were evident in the lamina propria. Buccal mucosa of 5-FU-injected rats showed increased Nuclear factor-kappa B (NF-κB) p50 and p65 in oral keratinocytes. The administration of ANT reduced NF-κB-positive cells in 5-FU rats (p < 0.001) compared to the non-treatment group. In oral keratinocytes, ANT treatment significantly restored 5-FU-induced growth inhibition and impaired the nuclear accumulation of NF-κB p50 and p65. Our study demonstrated that ANT from Oryza sativa L. exhibited effective anti-inflammatory properties against 5-FU-induced oral mucositis by inhibiting NF-κB activation.
Collapse
Affiliation(s)
- Salunya Tancharoen
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand.
| | - Prana Shakya
- Maxillofacial Prosthetic Service, Department of Prosthodontics, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand.
| | - Somphong Narkpinit
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Pornpen Dararat
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand.
| | - Kiyoshi Kikuchi
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand.
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, Kurume 8300011, Japan.
| |
Collapse
|
24
|
Ge Q, Zhang S, Chen L, Tang M, Liu L, Kang M, Gao L, Ma S, Yang Y, Lv P, Kong M, Yao Q, Feng F, Chen K. Mulberry Leaf Regulates Differentially Expressed Genes in Diabetic Mice Liver Based on RNA-Seq Analysis. Front Physiol 2018. [PMID: 30131712 DOI: 10.3389/fphys.2018.01051/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis of diabetes mellitus is a complicated process involving much gene regulation. The molecular mechanism of mulberry (Morus alba L.) leaf in the treatment of diabetes is not fully understood. In this study, we used the Illumina HiSeq™ 2,500 platform to explore the liver transcriptome of normal mice, STZ-induced diabetic mice, and mulberry leaf-treated diabetic mice, and we obtained 52,542,956, 52,626,414, and 52,780,196 clean reads, respectively. We identified differentially expressed genes (DEGs) during the pathogenesis of diabetes in mice. The functional properties of DEGs were characterized by comparison with the GO and KEGG databases, and the results show that DEGs are mainly involved in the metabolic pathway. qRT-PCR was used to analyse 27 differential genes involved in liver expression in different groups of diabetic mice. Among the DEGs, the expression of Scube1, Spns3, Ly6a, Igf2, and other genes between the control (C) and diabetic control (DC) groups was significantly upregulated; the expression of Grb10, Mup2, and Fasn was significantly downregulated; the expression of the Sqle, Lss, and Irs2 genes between the C group and diabetic group treated with mulberry (DD) was significantly upregulated; the expression of Fabp2, Ly6a, and Grb10 was significantly downregulated; and the expression of Sqle and Lss was significantly upregulated in the DC and DD groups, but Tap1, Igf2, and Spns3 were significantly downregulated. The results of Western blot validation showed that dynamic changes in proteins, such as IGF2, Ly6a, Grb10, and UBD, occurred to regulate the incidence of diabetes by influencing the insulin receptor substrate (IRS) signaling pathway.
Collapse
Affiliation(s)
- Qi Ge
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Shu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Liang Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Min Tang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Lanlan Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Mengna Kang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Lu Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Shangshang Ma
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yanhua Yang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Peng Lv
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ming Kong
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qin Yao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Fan Feng
- The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
25
|
Ge Q, Zhang S, Chen L, Tang M, Liu L, Kang M, Gao L, Ma S, Yang Y, Lv P, Kong M, Yao Q, Feng F, Chen K. Mulberry Leaf Regulates Differentially Expressed Genes in Diabetic Mice Liver Based on RNA-Seq Analysis. Front Physiol 2018; 9:1051. [PMID: 30131712 PMCID: PMC6090096 DOI: 10.3389/fphys.2018.01051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/16/2018] [Indexed: 12/25/2022] Open
Abstract
The pathogenesis of diabetes mellitus is a complicated process involving much gene regulation. The molecular mechanism of mulberry (Morus alba L.) leaf in the treatment of diabetes is not fully understood. In this study, we used the Illumina HiSeq™ 2,500 platform to explore the liver transcriptome of normal mice, STZ-induced diabetic mice, and mulberry leaf-treated diabetic mice, and we obtained 52,542,956, 52,626,414, and 52,780,196 clean reads, respectively. We identified differentially expressed genes (DEGs) during the pathogenesis of diabetes in mice. The functional properties of DEGs were characterized by comparison with the GO and KEGG databases, and the results show that DEGs are mainly involved in the metabolic pathway. qRT-PCR was used to analyse 27 differential genes involved in liver expression in different groups of diabetic mice. Among the DEGs, the expression of Scube1, Spns3, Ly6a, Igf2, and other genes between the control (C) and diabetic control (DC) groups was significantly upregulated; the expression of Grb10, Mup2, and Fasn was significantly downregulated; the expression of the Sqle, Lss, and Irs2 genes between the C group and diabetic group treated with mulberry (DD) was significantly upregulated; the expression of Fabp2, Ly6a, and Grb10 was significantly downregulated; and the expression of Sqle and Lss was significantly upregulated in the DC and DD groups, but Tap1, Igf2, and Spns3 were significantly downregulated. The results of Western blot validation showed that dynamic changes in proteins, such as IGF2, Ly6a, Grb10, and UBD, occurred to regulate the incidence of diabetes by influencing the insulin receptor substrate (IRS) signaling pathway.
Collapse
Affiliation(s)
- Qi Ge
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Shu Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Liang Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Min Tang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Lanlan Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Mengna Kang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Lu Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Shangshang Ma
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yanhua Yang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Peng Lv
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ming Kong
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qin Yao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Fan Feng
- The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
26
|
Protein Tyrosine Phosphatase 1B Inhibition and Glucose Uptake Potentials of Mulberrofuran G, Albanol B, and Kuwanon G from Root Bark of Morus alba L. in Insulin-Resistant HepG2 Cells: An In Vitro and In Silico Study. Int J Mol Sci 2018; 19:ijms19051542. [PMID: 29786669 PMCID: PMC5983811 DOI: 10.3390/ijms19051542] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 12/11/2022] Open
Abstract
Type II diabetes mellitus (T2DM) is the most common form of diabetes and has become a major health problem across the world. The root bark of Morus alba L. is widely used in Traditional Chinese Medicine for treatment and management of diabetes. The aim of the present study was to evaluate the enzyme inhibitory potentials of three principle components, mulberrofuran G (1), albanol B (2), and kuwanon G (3) in M. alba root bark against diabetes, establish their enzyme kinetics, carry out a molecular docking simulation, and demonstrate the glucose uptake activity in insulin-resistant HepG2 cells. Compounds 1–3 showed potent mixed-type enzyme inhibition against protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase. In particular, molecular docking simulations of 1–3 demonstrated negative binding energies in both enzymes. Moreover, 1–3 were non-toxic up to 5 µM concentration in HepG2 cells and enhanced glucose uptake significantly and decreased PTP1B expression in a dose-dependent manner in insulin-resistant HepG2 cells. Our overall results depict 1–3 from M. alba root bark as dual inhibitors of PTP1B and α-glucosidase enzymes, as well as insulin sensitizers. These active constituents in M. alba may potentially be utilized as an effective treatment for T2DM.
Collapse
|
27
|
Characteristic Components, Biological Activities and Future Prospective of Fructus Mori: a Review. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40495-018-0135-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
Khalifa I, Zhu W, Li KK, Li CM. Polyphenols of mulberry fruits as multifaceted compounds: Compositions, metabolism, health benefits, and stability—A structural review. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.10.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
29
|
Liao S, Liu J, Xu M, Zheng J. Evaluation of the Liver Cancer Prevention of Anthocyanin Extracts from Mulberry (<i>Morus alba</i> L.) Variety PR-01. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/abb.2018.99030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Yuan Q, Zhao L. The Mulberry (Morus alba L.) Fruit-A Review of Characteristic Components and Health Benefits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10383-10394. [PMID: 29129054 DOI: 10.1021/acs.jafc.7b03614] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mulberry (Morus alba L.) fruit has a high yield in one fruiting season in many countries, especially in Asia, and a long history of use as an edible fruit and traditional medicine. A great diversity of nutritive compounds such as fatty acids, amino acids, vitamins, minerals, and bioactive compounds, including anthocyanins, rutin, quercetin, chlorogenic acid, and polysaccharides have been found in mulberry fruit depending on the cultivars and maturity stages. Furthermore, the extracts and active components of mulberry fruit have demonstrated numerous biological activities, including antioxidant, neuroprotective, antiatherosclerosis, immunomodulative, antitumor, antihyperglycemic, and hypolipidemic activities in in vitro and in vivo studies, and they have received increasing interest from researchers and pharmaceutical companies. Although some mechanistic studies further substantiate these potential health benefits of mulberry fruit, a need exists to make a better understanding of the roles of these compounds in traditional medicine and the diet. This review provides recent findings regarding the chemical constituents and biological activities of mulberry fruit, which may be useful for stimulating deep research of mulberry fruit and for predicting their uses as important and safe contributors to benefit human health.
Collapse
Affiliation(s)
- Qingxia Yuan
- School of Pharmaceutical Sciences, South-Central University for Nationalities , Wuhan 430074, P. R. China
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities , Wuhan 430074, P. R. China
| | - Longyan Zhao
- School of Pharmaceutical Sciences, South-Central University for Nationalities , Wuhan 430074, P. R. China
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities , Wuhan 430074, P. R. China
| |
Collapse
|
31
|
Yan F, Chen X, Zheng X. Protective effect of mulberry fruit anthocyanin on human hepatocyte cells (LO2) and Caenorhabditis elegans under hyperglycemic conditions. Food Res Int 2017; 102:213-224. [DOI: 10.1016/j.foodres.2017.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 11/27/2022]
|
32
|
Dietary Anthocyanins and Insulin Resistance: When Food Becomes a Medicine. Nutrients 2017; 9:nu9101111. [PMID: 29023424 PMCID: PMC5691727 DOI: 10.3390/nu9101111] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/24/2017] [Accepted: 10/10/2017] [Indexed: 12/17/2022] Open
Abstract
Insulin resistance is an abnormal physiological state that occurs when insulin from pancreatic β-cells is unable to trigger a signal transduction pathway in target organs such as the liver, muscles and adipose tissues. The loss of insulin sensitivity is generally associated with persistent hyperglycemia (diabetes), hyperinsulinemia, fatty acids and/or lipid dysregulation which are often prevalent under obesity conditions. Hence, insulin sensitizers are one class of drugs currently employed to treat diabetes and associated metabolic disorders. A number of natural products that act through multiple mechanisms have also been identified to enhance insulin sensitivity in target organs. One group of such compounds that gained interest in recent years are the dietary anthocyanins. Data from their in vitro, in vivo and clinical studies are scrutinized in this communication to show their potential health benefit through ameliorating insulin resistance. Specific mechanism of action ranging from targeting specific signal transduction receptors/enzymes to the general antioxidant and anti-inflammatory mechanisms of insulin resistance are presented.
Collapse
|
33
|
Yan F, Zheng X. Anthocyanin-rich mulberry fruit improves insulin resistance and protects hepatocytes against oxidative stress during hyperglycemia by regulating AMPK/ACC/mTOR pathway. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.01.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
34
|
Hosseinpour-Jaghdani F, Shomali T, Gholipour-Shahraki S, Rahimi-Madiseh M, Rafieian-Kopaei M. Cornus mas: a review on traditional uses and pharmacological properties. ACTA ACUST UNITED AC 2017; 14:/j/jcim.ahead-of-print/jcim-2016-0137/jcim-2016-0137.xml. [DOI: 10.1515/jcim-2016-0137] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/09/2017] [Indexed: 11/15/2022]
Abstract
AbstractMedicinal plants that are used today have been known by people of ancient cultures around the world and have largely been considered due to their medicinal properties.
Collapse
|
35
|
Yan F, Zhang J, Zhang L, Zheng X. Mulberry anthocyanin extract regulates glucose metabolism by promotion of glycogen synthesis and reduction of gluconeogenesis in human HepG2 cells. Food Funct 2016; 7:425-33. [PMID: 26467565 DOI: 10.1039/c5fo00841g] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mulberry has been demonstrated to possess important biological activities such as antioxidation and antiinflammation. However, research on the ability of mulberry for diabetes improvement mainly focuses on the leaves and less on the fruit. This study showed that a mulberry anthocyanin extract (MAE) had a significant effect on increasing the glucose consumption in HepG2 cells. The MAE enhanced the glycogen content and suppressed levels of glucose production. The enzyme activities of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) were decreased in HepG2 cells after MAE treatment due to PPARγ coactivator 1α (PGC-1α) and forkhead box protein O1 (FOXO1) inhibition. Moreover, the phosphorylation of protein kinase B (AKT) and glycogen synthase kinase-3β (GSK-3β) was increased by the MAE, leading to an expression enhancement of glycogen synthase 2 (GYS2). And this effect was blocked by the phosphoinositide 3-kinase (PI3K) inhibitor LY294002. In summary, our results suggested that the MAE regulates glucose metabolism by activating the PI3K/AKT pathway that relates to glycogen synthesis as well as through the inhibition of key molecules that promote gluconeogenesis.
Collapse
Affiliation(s)
- Fujie Yan
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China. and Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ji Zhang
- Biology Lab Center, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Lingxia Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China. and Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China. and Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
36
|
Yan F, Dai G, Zheng X. Mulberry anthocyanin extract ameliorates insulin resistance by regulating PI3K/AKT pathway in HepG2 cells and db/db mice. J Nutr Biochem 2016; 36:68-80. [PMID: 27580020 DOI: 10.1016/j.jnutbio.2016.07.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/30/2016] [Accepted: 07/05/2016] [Indexed: 12/18/2022]
Abstract
This study evaluated the capacity of mulberry anthocyanin extract (MAE) on insulin resistance amelioration in HepG2 cells induced by high glucose and palmitic acid and diabetes-related metabolic changes in type 2 diabetic mice. In vitro, MAE alleviated insulin resistance in HepG2 cells and increased glucose consumption, glucose uptake and glycogen content. Enzyme activities of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) were decreased due to PPARγ coactivator 1α (PGC-1α) and forkhead box protein O1 (FOXO1) inhibition. Furthermore, phosphorylation of protein kinase B (AKT) and glycogen synthase kinase-3β (GSK3β) in model cells was recovered after treated with MAE, leading to an up-regulation of glycogen synthase 2 (GYS2), and this effect was blocked by the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002. In vivo, MAE supplementation (50 and 125 mg/kg body weight per day) markedly decreased fasting blood glucose, serum insulin, leptin, triglyceride and cholesterol levels and increased adiponectin levels in db/db mice. The improvement of related metabolic parameters was in part associated with the impact of MAE on activating AKT and downstream targets in liver, skeletal muscle and adipose tissues. In summary, these findings suggest that MAEs have potential benefits on improving dysfunction in diabetic mice and mitigating insulin resistance in HepG2 cells via activation of PI3K/AKT pathways.
Collapse
Affiliation(s)
- Fujie Yan
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Guanhai Dai
- Institute of Basic Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China; Zhejiang Key Laboratory for Agro-food Processing, Zhejiang University, Hangzhou 310058, People's Republic of China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
37
|
Bispo K, Amusquivar E, García-Seco D, Ramos-Solano B, Gutierrez-Mañero J, Herrera E. Supplementing diet with blackberry extract causes a catabolic response with increments in insulin sensitivity in rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2015; 70:170-175. [PMID: 25724576 DOI: 10.1007/s11130-015-0474-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Blackberry (Rubus sp.) fruit has a high content of anthocyanins, but its health benefits have not been sufficiently explored in healthy individuals. Thus, the aim of the study was to determine the effects of blackberry extract on lipid and glucose variables in female and male rats. Sprague Dawley rats were given a standard pellet (SD) or cafeteria (CD) diet supplemented (SD+R and CD+R) or not with Rubus extract for 80 days. Female rats given SD+R had lower body and liver weights than SD females; both sexes given SD+R showed lower plasma glucose and insulin, higher plasma NEFA, glycerol and 3-hydroxybutyrate, and higher liver concentration of triacylglycerols than SD rats. The homeostasis model of insulin resistance (HOMA) was lower in SD+R rats than in SD rats, but higher in CD rats. No effects of Rubus extract were observed in CD rats. In conclusion, Rubus extract, in rats given SD, decreased glycemia and increased insulin sensitivity. It also increased lipid breakdown in adipose tissue. The effects were greater in females than in males. No effect was seen in rats given CD, probably as a result of their high insulin resistance.
Collapse
Affiliation(s)
- Kenia Bispo
- Faculty of Pharmacy, Universidad San Pablo CEU, Ctra. Boadilla del Monte km 5.3, 28668, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
38
|
El-Sayyed H, Badawy G, Elnabi SH, El-Elaimy I, Shehari EA. Ameliorative effect of Morus alba leaves extract against developmental retinopathy in pups of diabetic and aluminum intoxicated pregnant albino rats. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/s2221-1691(15)30349-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
39
|
Sozański T, Kucharska AZ, Szumny A, Magdalan J, Bielska K, Merwid-Ląd A, Woźniak A, Dzimira S, Piórecki N, Trocha M. The protective effect of the Cornus mas fruits (cornelian cherry) on hypertriglyceridemia and atherosclerosis through PPARα activation in hypercholesterolemic rabbits. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1774-84. [PMID: 25444446 DOI: 10.1016/j.phymed.2014.09.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 08/16/2014] [Accepted: 09/13/2014] [Indexed: 05/22/2023]
Abstract
Cornelian cherry (Cornus mas L.) fruits have been used in traditional cuisine and in folk medicine in various countries. This study was conducted to evaluate the constituents and impact of cornelian cherry (C. mas L.) fruits lyophilisate on lipid levels, PPARα protein expression, atheromatous changes in the aorta, oxido-redox state, and proinflammatory cytokines in hypercholesterolemic rabbits. The HPLC-MS method was used for determining active constituents in cornelian cherry. In a subsequent in vivo study the protective effect of the cornelian cherry on diet-induced hyperlipidemia was studied using a rabbit model fed 1% cholesterol. Cornelian cherry (100mg/kg b.w.) or simvastatin (5mg/kg b.w.) were administered orally for 60 days. Two iridoids - loganic acid and cornuside - and five anthocyanins were identified as the main constituents of the cornelian cherry. The administering of the cornelian cherry led to a 44% significant decrease in serum triglyceride levels, as well as prevented development of atheromatous changes in the thoracic aorta. Cornelian cherry significantly increased PPARα protein expression in the liver, indicating that its hypolipidemic effect may stem from enhanced fatty acid catabolism. Simvastatin treatment did not affect PPAR-α expression. Moreover, the cornelian cherry had a significant protective effect on diet-induced oxidative stress in the liver, as well as restored upregulated proinflammatory cytokines serum levels. In conclusion, we have shown loganic acid to be the main iridoid constituent in the European cultivar of the cornelian cherry, and proven that the cornelian cherry could have protective effects on diet-induced hypertriglicerydemia and atherosclerosis through enhanced PPARα protein expression and via regulating oxidative stress and inflammation.
Collapse
Affiliation(s)
- T Sozański
- Department of Pharmacology, Wroclaw Medical University, Jana Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland.
| | - A Z Kucharska
- Department of Fruit, Vegetable and Cereals Technology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37/41, 51-630 Wrocław, Poland
| | - A Szumny
- Department of Chemistry, Wroclaw University of Environmental and Life Science, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - J Magdalan
- Department of Pharmacology, Wroclaw Medical University, Jana Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland
| | - K Bielska
- Department of Biochemistry, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - A Merwid-Ląd
- Department of Pharmacology, Wroclaw Medical University, Jana Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland
| | - A Woźniak
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Wroclaw University of Environmental and Life Sciences, Grunwaldzki Sq. 45, 50-366 Wrocław, Poland
| | - S Dzimira
- Department of Pathology, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland
| | - N Piórecki
- Bolestraszyce Arboretum and Institute of Physiography, 37-700 Przemyśl, Poland; Department of Tourism & Recreation, University of Rzeszow, Towarnickiego 3, 35-959 Rzeszów, Poland
| | - M Trocha
- Department of Pharmacology, Wroclaw Medical University, Jana Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland
| |
Collapse
|
40
|
Wang S, Fang F, Jin WB, Wang X, Zheng DAW. Assessment of serum arginase I as a type 2 diabetes mellitus diagnosis biomarker in patients. Exp Ther Med 2014; 8:585-590. [PMID: 25009624 PMCID: PMC4079409 DOI: 10.3892/etm.2014.1768] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/20/2014] [Indexed: 12/02/2022] Open
Abstract
Previous studies have reported that levels of serum arginase I are increased in certain diseases. However, the exact association between arginase I and diabetes mellitus (DM) has yet to be determined. The aim of the present study was to investigate the correlation between arginase I activity and DM to determine whether arginase I activity may be used as a diagnostic biomarker for DM. DM was induced by a streptozotocin injection, while the arginase inhibitor, citrulline, was administered daily. Serum levels of glucose, reactive oxygen species (ROS) and arginase I activity were analyzed, and quantitative polymerase chain reaction and western blot analysis were performed to detect the mRNA and protein expression levels of arginase I, respectively. In addition, western blot analysis was used to determine the protein expression of the Tie 2 receptor. Pearson’s analysis was used to determine the correlation between arginase I activity and Tie 2 expression, while concordance analysis was performed using the Cohen’s test to obtain the Kappa statistic. The results demonstrated that serum arginase I activity levels in the rats with DM were significantly elevated compared with the control group, and positively correlated with the blood glucose levels. In addition, the blood glucose and ROS levels were increased significantly in the rats with DM. Arginase I mRNA and protein expression levels were significantly elevated in the diabetic rats when compared with the control group, and Tie 2 expression levels increased and were shown to correlate with arginase I activity in the diabetic rats. In addition, arginase I activity was shown to correlate with glucose intolerance and post-load glucose values. Good concordance was observed between arginase I activity and the clinical diagnosis for DM (κ=0.876; P<0.001). Therefore, the results indicated that arginase I may function as a diagnostic biomarker for DM rats model.
Collapse
Affiliation(s)
- Song Wang
- Department of Endocrinology, Henan Nanyang Central Hospital, Nanyang, Henan 473000, P.R. China
| | - Fang Fang
- Department of Computed Tomography, Henan Nanyang Central Hospital, Nanyang, Henan 473000, P.R. China
| | - Wen-Bo Jin
- Department of Endocrinology, Henan Nanyang Central Hospital, Nanyang, Henan 473000, P.R. China
| | - Xia Wang
- Department of Nursing, Henan Nanyang Central Hospital, Nanyang, Henan 473000, P.R. China
| | - DA-Wei Zheng
- Department of Respiratory Medicine, Henan Nanyang Central Hospital, Nanyang, Henan 473000, P.R. China
| |
Collapse
|
41
|
Anthocyanins in blackcurrant effectively prevent the formation of advanced glycation end products by trapping methylglyoxal. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.03.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|