1
|
Qiu J, Zhao Z, Suo H, Paraghamian SE, Hawkins GM, Sun W, Zhang X, Hao T, Deng B, Shen X, Zhou C, Bae-Jump V. Linoleic acid exhibits anti-proliferative and anti-invasive activities in endometrial cancer cells and a transgenic model of endometrial cancer. Cancer Biol Ther 2024; 25:2325130. [PMID: 38465855 PMCID: PMC10936646 DOI: 10.1080/15384047.2024.2325130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Emerging evidence has provided considerable insights into the integral function of reprogramming fatty acid metabolism in the carcinogenesis and progression of endometrial cancer. Linoleic acid, an essential fatty acid with the highest consumption in the Western diet regimen, has shown pro-tumorigenic or anti-tumorigenic effects on tumor cell growth and invasion in multiple types of cancer. However, the biological role of linoleic acid in endometrial cancer remains unclear. In the present study, we aimed to investigate the functional impact of linoleic acid on cell proliferation, invasion, and tumor growth in endometrial cancer cells and in a transgenic mouse model of endometrial cancer. The results showed that Linoleic acid significantly inhibited the proliferation of endometrial cancer cells in a dose-dependent manner. The treatment of HEC-1A and KLE cells with linoleic acid effectively increased intracellular reactive oxygen species (ROS) production, decreased mitochondrial membrane potential, caused cell cycle G1 arrest, and induced intrinsic and extrinsic apoptosis pathways. The anti-invasive ability of linoleic acid was found to be associated with the epithelial-mesenchymal transition process in both cell lines, including the decreased expression of N-cadherin, snail, and vimentin. Furthermore, treatment of Lkb1fl/flp53fl/fl transgenic mice with linoleic acid for four weeks significantly reduced the growth of endometrial tumors and decreased the expression of VEGF, vimentin, Ki67, and cyclin D1 in tumor tissues. Our findings demonstrate that linoleic acid exhibits anti-proliferative and anti-invasive activities in endometrial cancer cell lines and the Lkb1fl/flp53fl/fl mouse model of endometrial cancer, thus providing a pre-clinical basis for future dietary interventions with linoleic acid in endometrial cancer.
Collapse
Affiliation(s)
- Jianqing Qiu
- Department of Obstetrics and Gynecology, the Second Hospital of Shandong University, Jinan, PR, China
| | - Ziyi Zhao
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital MedicalUniversity, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Hongyan Suo
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital MedicalUniversity, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Sarah E. Paraghamian
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gabrielle M. Hawkins
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xin Zhang
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital MedicalUniversity, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Tianran Hao
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Beor Deng
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital MedicalUniversity, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Xiaochang Shen
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital MedicalUniversity, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Pujana-Vaquerizo M, Bozal-Basterra L, Carracedo A. Metabolic adaptations in prostate cancer. Br J Cancer 2024; 131:1250-1262. [PMID: 38969865 PMCID: PMC11473656 DOI: 10.1038/s41416-024-02762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/07/2024] Open
Abstract
Prostate cancer is one of the most commonly diagnosed cancers in men and is a major cause of cancer-related deaths worldwide. Among the molecular processes that contribute to this disease, the weight of metabolism has been placed under the limelight in recent years. Tumours exhibit metabolic adaptations to comply with their biosynthetic needs. However, metabolites also play an important role in supporting cell survival in challenging environments or remodelling the tumour microenvironment, thus being recognized as a hallmark in cancer. Prostate cancer is uniquely driven by androgen receptor signalling, and this knowledge has also influenced the paths of cancer metabolism research. This review provides a comprehensive perspective on the metabolic adaptations that support prostate cancer progression beyond androgen signalling, with a particular focus on tumour cell intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Mikel Pujana-Vaquerizo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Laura Bozal-Basterra
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain.
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain.
- Traslational Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biobizkaia Health Research Institute, Baracaldo, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
3
|
Tufail M, Jiang CH, Li N. Altered metabolism in cancer: insights into energy pathways and therapeutic targets. Mol Cancer 2024; 23:203. [PMID: 39294640 PMCID: PMC11409553 DOI: 10.1186/s12943-024-02119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer cells undergo significant metabolic reprogramming to support their rapid growth and survival. This study examines important metabolic pathways like glycolysis, oxidative phosphorylation, glutaminolysis, and lipid metabolism, focusing on how they are regulated and their contributions to the development of tumors. The interplay between oncogenes, tumor suppressors, epigenetic modifications, and the tumor microenvironment in modulating these pathways is examined. Furthermore, we discuss the therapeutic potential of targeting cancer metabolism, presenting inhibitors of glycolysis, glutaminolysis, the TCA cycle, fatty acid oxidation, LDH, and glucose transport, alongside emerging strategies targeting oxidative phosphorylation and lipid synthesis. Despite the promise, challenges such as metabolic plasticity and the need for combination therapies and robust biomarkers persist, underscoring the necessity for continued research in this dynamic field.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
4
|
Vidal-Gutiérrez M, Torres-Moreno H, Arenas-Luna VM, Loredo-Mendoza ML, Tejeda-Dominguez F, Velazquez C, Vilegas W, Hernandez-Gutiérrez S, Robles-Zepeda RE. Tumour growth inhibitory effect of Ibervillea sonorae phytopreparations in cervical cancer xenografts. Nat Prod Res 2024:1-9. [PMID: 39165143 DOI: 10.1080/14786419.2024.2394095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024]
Abstract
Cucurbitacin IIb, a triterpene obtained from the Ibervillea sonorae plant, reduces tumour development in a preclinical model of cervical cancer. Acetison and Etanison, phytopreparations made from I. sonorae, present biological activity analogous to CIIb in HeLa. This research evaluated the tumour growth inhibitory effect of these phytopreparations in a HeLa xenograft tumour model in BALB/c nude mice. Tumours in mice were treated every 3 days for 12 days with cisplatin (2 mg/kg), CIIb (5 mg/kg), Acetison (20 mg/kg), Etanison (30 mg/kg), and DMSO at 2%. For histological observations, tumours were stained with H&E. Fingerprinting of both phytopreparations was performed using HPLC-UV and UHPLC-APCI-IT-MS. Both phytopreparations and CIIb inhibit tumour development as well as Cisplatin (75.5%); Etanison (77.7%), Acetison (73.6%), and CIIb (73.0%). Furthermore, only tumours treated with cisplatin showed invasion of bone tissue. The results show the potential use of I. sonorae phytopreparations in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Max Vidal-Gutiérrez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Centro, Hermosillo Sonora, México
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Navojoa, Sonora, CP, México
| | - Heriberto Torres-Moreno
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora - Avenida Universidad e Irigoyen, Caborca Sonora, CP, México
| | - Víctor M Arenas-Luna
- Facultad de Ciencias de la Salud, Escuela de Medicina, Universidad Panamericana, Ciudad de México, CP, México
| | - María Lilia Loredo-Mendoza
- Facultad de Ciencias de la Salud, Escuela de Medicina, Universidad Panamericana, Ciudad de México, CP, México
| | - Farid Tejeda-Dominguez
- Facultad de Ciencias de la Salud, Escuela de Medicina, Universidad Panamericana, Ciudad de México, CP, México
| | - Carlos Velazquez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Centro, Hermosillo Sonora, México
| | - Wagner Vilegas
- Universidade Estadual Paulista (UNESP), Coastal Campus of São Vicente, São Paulo, CEP, Brazil
| | - Salomón Hernandez-Gutiérrez
- Facultad de Ciencias de la Salud, Escuela de Medicina, Universidad Panamericana, Ciudad de México, CP, México
| | - Ramón E Robles-Zepeda
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Centro, Hermosillo Sonora, México
| |
Collapse
|
5
|
Ruiz M, Devkota R, Bergh PO, Nik AM, Blid Sköldheden S, Mondejar-Duran J, Tufvesson-Alm M, Bohlooly-Y M, Sanchez D, Carlsson P, Henricsson M, Jerlhag E, Borén J, Pilon M. Aging AdipoR2-deficient mice are hyperactive with enlarged brains excessively rich in saturated fatty acids. FASEB J 2024; 38:e23815. [PMID: 38989587 DOI: 10.1096/fj.202400293rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/04/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
To investigate how the fatty acid composition of brain phospholipids influences brain-specific processes, we leveraged the AdipoR2 (adiponectin receptor 2) knockout mouse model in which the brain is enlarged, and cellular membranes are excessively rich in saturated fatty acids. Lipidomics analysis of brains at 2, 7, and 18 months of age showed that phosphatidylcholines, which make up about two-thirds of all cerebrum membrane lipids, contain a gross excess of saturated fatty acids in AdipoR2 knockout mice, and that this is mostly attributed to an excess palmitic acid (C16:0) at the expense of oleic acid (C18:1), consistent with a defect in fatty acid desaturation and elongation in the mutant. Specifically, there was a ~12% increase in the overall saturated fatty acid content within phosphatidylcholines and a ~30% increase in phosphatidylcholines containing two palmitic acids. Phosphatidylethanolamines, sphingomyelins, ceramides, lactosylceramides, and dihydroceramides also showed an excess of saturated fatty acids in the AdipoR2 knockout mice while nervonic acid (C24:1) was enriched at the expense of shorter saturated fatty acids in glyceroceramides. Similar defects were found in the cerebellum and myelin sheaths. Histology showed that cell density is lower in the cerebrum of AdipoR2 knockout mice, but electron microscopy did not detect reproducible defects in the ultrastructure of cerebrum neurons, though proteomics analysis showed an enrichment of electron transport chain proteins in the cerebellum. Behavioral tests showed that older (33 weeks old) AdipoR2 knockout mice are hyperactive and anxious compared to control mice of a similar age. Also, in contrast to control mice, the AdipoR2 knockout mice do not gain weight in old age but do have normal lifespans. We conclude that an excess fatty acid saturation in brain phospholipids is accompanied by hyperactivity but seems otherwise well tolerated.
Collapse
Affiliation(s)
- Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ranjan Devkota
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Per-Olof Bergh
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Ali Moussavi Nik
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Blid Sköldheden
- Department of Pharmacology, Institute of Neuroscience and physiology, University of Gothenburg, Gothenburg, Sweden
| | - Jorge Mondejar-Duran
- Instituto de Biomedicina y Genética Molecular, Excellence Unit, University of Valladolid-CSIC, Valladolid, Spain
| | - Maximilian Tufvesson-Alm
- Department of Pharmacology, Institute of Neuroscience and physiology, University of Gothenburg, Gothenburg, Sweden
| | | | - Diego Sanchez
- Instituto de Biomedicina y Genética Molecular, Excellence Unit, University of Valladolid-CSIC, Valladolid, Spain
| | - Peter Carlsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and physiology, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Jiang T, Qi J, Xue Z, Liu B, Liu J, Hu Q, Li Y, Ren J, Song H, Xu Y, Xu T, Fan R, Song J. The m 6A modification mediated-lncRNA POU6F2-AS1 reprograms fatty acid metabolism and facilitates the growth of colorectal cancer via upregulation of FASN. Mol Cancer 2024; 23:55. [PMID: 38491348 PMCID: PMC10943897 DOI: 10.1186/s12943-024-01962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/19/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have emerged as key players in tumorigenesis and tumour progression. However, the biological functions and potential mechanisms of lncRNAs in colorectal cancer (CRC) are unclear. METHODS The novel lncRNA POU6F2-AS1 was identified through bioinformatics analysis, and its expression in CRC patients was verified via qRT-PCR and FISH. In vitro and in vivo experiments, such as BODIPY staining, Oil Red O staining, triglyceride (TAG) assays, and liquid chromatography mass spectrometry (LC-MS) were subsequently performed with CRC specimens and cells to determine the clinical significance, and functional roles of POU6F2-AS1. Biotinylated RNA pull-down, RIP, Me-RIP, ChIP, and patient-derived organoid (PDO) culture assays were performed to confirm the underlying mechanism of POU6F2-AS1. RESULTS The lncRNA POU6F2-AS1 is markedly upregulated in CRC and associated with adverse clinicopathological features and poor overall survival in CRC patients. Functionally, POU6F2-AS1 promotes the growth and lipogenesis of CRC cells both in vitro and in vivo. Mechanistically, METTL3-induced m6A modification is involved in the upregulation of POU6F2-AS1. Furthermore, upregulated POU6F2-AS1 could tether YBX1 to the FASN promoter to induce transcriptional activation, thus facilitating the growth and lipogenesis of CRC cells. CONCLUSIONS Our data revealed that the upregulation of POU6F2-AS1 plays a critical role in CRC fatty acid metabolism and might provide a novel promising biomarker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Tao Jiang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Junwen Qi
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Zhenyu Xue
- Department of Radiation Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Bowen Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jianquan Liu
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Qihang Hu
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Yuqiu Li
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jing Ren
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Hu Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Yixin Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Teng Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Ruizhi Fan
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jun Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China.
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
7
|
Mei J, Qian M, Hou Y, Liang M, Chen Y, Wang C, Zhang J. Association of saturated fatty acids with cancer risk: a systematic review and meta-analysis. Lipids Health Dis 2024; 23:32. [PMID: 38291432 PMCID: PMC10826095 DOI: 10.1186/s12944-024-02025-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/20/2024] [Indexed: 02/01/2024] Open
Abstract
OBJECTIVE Extensive research has explored the link between saturated fatty acids (SFAs) and cardiovascular diseases, alongside other biological dysfunctions. Yet, their association with cancer risk remains a topic of debate among scholars. The present study aimed to elucidate this association through a robust meta-analysis. METHODS PubMed, Embase, Cochrane Library, and Web of Science databases were searched systematically to identify relevant studies published until December 2023. The Newcastle-Ottawa Scale was used as the primary metric for evaluating the quality of the included studies. Further, fixed- or random-effects models were adopted to determine the ORs and the associated confidence intervals using the Stata15.1 software. The subsequent subgroup analysis revealed the source of detection and the cancer types, accompanied by sensitivity analyses and publication bias evaluations. RESULTS The meta-analysis incorporated 55 studies, comprising 38 case-control studies and 17 cohort studies. It revealed a significant positive correlation between elevated levels of total SFAs and the cancer risk (OR of 1.294; 95% CI: 1.182-1.416; P-value less than 0.001). Moreover, elevated levels of C14:0, C16:0, and C18:0 were implicated in the augmentation of the risk of cancer. However, no statistically significant correlation of the risk of cancer was observed with the elevated levels of C4:0, C6:0, C8:0, C10:0, C12:0, C15:0, C17:0, C20:0, C22:0, and C24:0. Subgroup analysis showed a significant relationship between excessive dietary SFA intake, elevated blood SFA levels, and heightened cancer risk. Increased total SFA levels correlated with higher risks of breast, prostate, and colorectal cancers, but not with lung, pancreatic, ovarian, or stomach cancers. CONCLUSION High total SFA levels were correlated with an increased cancer risk, particularly affecting breast, prostate, and colorectal cancers. Higher levels of specific SFA subtypes (C14:0, C16:0, and C18:0) are also linked to an increased cancer risk. The findings of the present study would assist in providing dietary recommendations for cancer prevention, thereby contributing to the development of potential strategies for clinical trials in which diet-related interventions would be used in combination with immunotherapy to alter the levels of SFAs in patients and thereby improve the outcomes in cancer patients. Nonetheless, further high-quality studies are warranted to confirm these associations.
Collapse
Affiliation(s)
- Jin Mei
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Meiyu Qian
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Yanting Hou
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Maodi Liang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Yao Chen
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Cuizhe Wang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Jun Zhang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
8
|
Kim DH, Song NY, Yim H. Targeting dysregulated lipid metabolism in the tumor microenvironment. Arch Pharm Res 2023; 46:855-881. [PMID: 38060103 PMCID: PMC10725365 DOI: 10.1007/s12272-023-01473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
The reprogramming of lipid metabolism and its association with oncogenic signaling pathways within the tumor microenvironment (TME) have emerged as significant hallmarks of cancer. Lipid metabolism is defined as a complex set of molecular processes including lipid uptake, synthesis, transport, and degradation. The dysregulation of lipid metabolism is affected by enzymes and signaling molecules directly or indirectly involved in the lipid metabolic process. Regulation of lipid metabolizing enzymes has been shown to modulate cancer development and to avoid resistance to anticancer drugs in tumors and the TME. Because of this, understanding the metabolic reprogramming associated with oncogenic progression is important to develop strategies for cancer treatment. Recent advances provide insight into fundamental mechanisms and the connections between altered lipid metabolism and tumorigenesis. In this review, we explore alterations to lipid metabolism and the pivotal factors driving lipid metabolic reprogramming, which exacerbate cancer progression. We also shed light on the latest insights and current therapeutic approaches based on small molecular inhibitors and phytochemicals targeting lipid metabolism for cancer treatment. Further investigations are worthwhile to fully understand the underlying mechanisms and the correlation between altered lipid metabolism and carcinogenesis.
Collapse
Affiliation(s)
- Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, 16227, Korea
| | - Na-Young Song
- Department of Applied Life Science, The Graduate School, BK21 Four Project, Yonsei University, Seoul, 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Korea.
| |
Collapse
|
9
|
Li T, Liu X, Long X, Li Y, Xiang J, Lv Y, Zhao X, Shi S, Chen W. Brexpiprazole suppresses cell proliferation and de novo lipogenesis through AMPK/SREBP1 pathway in colorectal cancer. ENVIRONMENTAL TOXICOLOGY 2023; 38:2352-2360. [PMID: 37347510 DOI: 10.1002/tox.23871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/18/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVE In the present study, we investigated the role of brexpiprazole on cell proliferation and lipogenesis in colorectal cancer (CRC) and its molecular mechanism. METHODS The effect of brexpiprazole on CRC cell proliferation was determined by CCK-8, EdU assay, cell clone formation. The flow cytometry was evaluated cell cycle. Differential expression genes (DEGs) were identified by RNA-seq assay after treating HCT116 cells with or without 20 μM brexpiprazole for 24 h. Then, the top 120 DEGs were analyzed by GO and KEGG enrichment analysis. After that, Oil red O staining and the levels of total cholestenone and triglyceride were measured to assess lipogenesis capacity in CRC cells. The related molecules of cell proliferation, lipogenic and AMPK/SREBP1 signal pathways were measured by q-PCR, western blot and immunohistochemical staining. RESULTS Brexpiprazole remarkably suppressed cell proliferation, lipogenesis, and induced cell cycle arrest in CRC. The underlying mechanisms probably involved the suppression of SREBP1 and the stimulation of AMPK. CONCLUSION Brexpiprazole inhibited cell proliferation and de novo lipogenesis through AMPK/SREBP1 pathway in CRC.
Collapse
Affiliation(s)
- Ting Li
- Institute of Basic Medical and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Xiaojie Liu
- Institute of Basic Medical and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Xiaoyi Long
- Institute of Basic Medical and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Yangyou Li
- Animal Experimental Center, North Sichuan Medical College, Nanchong, China
| | - Jin Xiang
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Yuanxia Lv
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Xiaoyang Zhao
- Institute of Basic Medical and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Shaoqing Shi
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Chen
- Institute of Basic Medical and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
10
|
Smiles WJ, Catalano L, Stefan VE, Weber DD, Kofler B. Metabolic protein kinase signalling in neuroblastoma. Mol Metab 2023; 75:101771. [PMID: 37414143 PMCID: PMC10362370 DOI: 10.1016/j.molmet.2023.101771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Neuroblastoma is a paediatric malignancy of incredibly complex aetiology. Oncogenic protein kinase signalling in neuroblastoma has conventionally focussed on transduction through the well-characterised PI3K/Akt and MAPK pathways, in which the latter has been implicated in treatment resistance. The discovery of the receptor tyrosine kinase ALK as a target of genetic alterations in cases of familial and sporadic neuroblastoma, was a breakthrough in the understanding of the complex genetic heterogeneity of neuroblastoma. However, despite progress in the development of small-molecule inhibitors of ALK, treatment resistance frequently arises and appears to be a feature of the disease. Moreover, since the identification of ALK, several additional protein kinases, including the PIM and Aurora kinases, have emerged not only as drivers of the disease phenotype, but also as promising druggable targets. This is particularly the case for Aurora-A, given its intimate engagement with MYCN, a driver oncogene of aggressive neuroblastoma previously considered 'undruggable.' SCOPE OF REVIEW Aided by significant advances in structural biology and a broader understanding of the mechanisms of protein kinase function and regulation, we comprehensively outline the role of protein kinase signalling, emphasising ALK, PIM and Aurora in neuroblastoma, their respective metabolic outputs, and broader implications for targeted therapies. MAJOR CONCLUSIONS Despite massively divergent regulatory mechanisms, ALK, PIM and Aurora kinases all obtain significant roles in cellular glycolytic and mitochondrial metabolism and neuroblastoma progression, and in several instances are implicated in treatment resistance. While metabolism of neuroblastoma tends to display hallmarks of the glycolytic "Warburg effect," aggressive, in particular MYCN-amplified tumours, retain functional mitochondrial metabolism, allowing for survival and proliferation under nutrient stress. Future strategies employing specific kinase inhibitors as part of the treatment regimen should consider combinatorial attempts at interfering with tumour metabolism, either through metabolic pathway inhibitors, or by dietary means, with a view to abolish metabolic flexibility that endows cancerous cells with a survival advantage.
Collapse
Affiliation(s)
- William J Smiles
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria.
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Victoria E Stefan
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Daniela D Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, 5020, Salzburg, Austria
| |
Collapse
|
11
|
Miethe C, Raign K, Zamora M, Price RS. The differential role of resistin on invasive liver cancer cells. Horm Mol Biol Clin Investig 2023; 44:285-293. [PMID: 36867542 DOI: 10.1515/hmbci-2022-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/24/2023] [Indexed: 03/04/2023]
Abstract
OBJECTIVES To determine whether inhibition of kinase signaling will suppress resistin-induced liver cancer progression. Resistin is located in monocytes and macrophages of adipose tissue. This adipocytokine is an important link between obesity, inflammation, insulin resistance, and cancer risk. Pathways that resistin is known to be involved include but are not limited to mitogen-activated protein kinases (MAPKs) and extracellular signal-regulated kinases (ERK). The ERK pathway promotes cellular proliferation, migration, survival of cancer cells, and tumor progression. The Akt pathway is known to be up-regulated in many cancers including liver cancer. METHODS Using an in vitro model, HepG2 and SNU-449 liver cancer cells were exposed to resistin ± ERK, Akt, or both inhibitors. The following physiological parameters were assessed: cellular proliferation, ROS, lipogenesis, invasion, MMP, and lactate dehydrogenase activity. RESULTS The inhibition of kinase signaling suppressed resistin-induced invasion and lactate dehydrogenase in both cell lines. In addition, in SNU-449 cells, resistin increased proliferation, ROS, and MMP-9 activity. Inhibition of PI3K and ERK decreased phosphorylated Akt and ERK, and pyruvate dehydrogenase. CONCLUSIONS In this study, we describe the effect of Akt and ERK inhibitors to determine if inhibition suppresses resistin-induced liver cancer progression. Resistin promotes cellular proliferation, ROS, MMP, invasion and LDH activity in SNU-449 liver cancer cells which is differentially mediated by Akt and ERK signaling pathways.
Collapse
Affiliation(s)
- Candace Miethe
- Nutrition and Foods, Texas State University, San Marcos, TX, USA
| | - Kelsie Raign
- Nutrition and Foods, Texas State University, San Marcos, TX, USA
| | - Megan Zamora
- Nutrition and Foods, Texas State University, San Marcos, TX, USA
| | | |
Collapse
|
12
|
Abdelrazek AS, Ghoniem K, Ahmed ME, Joshi V, Mahmoud AM, Saeed N, Khater N, Elsharkawy MS, Gamal A, Kwon E, Kendi AT. Prostate Cancer: Advances in Genetic Testing and Clinical Implications. URO 2023. [DOI: 10.3390/uro3020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The demand for genetic testing (GT) for prostate cancer (PCa) is expanding, but there is limited knowledge about the genetic counseling (GC) needs of men. A strong-to-moderate inherited genetic predisposition causes approximately 5–20% of prostate cancer (PCa). In men with prostate cancer, germline testing may benefit the patient by informing treatment options, and if a mutation is noticed, it may also guide screening for other cancers and have family implications for cascade genetic testing (testing of close relatives for the same germline mutation). Relatives with the same germline mutations may be eligible for early cancer detection strategies and preventive measures. Cascade family testing can be favorable for family members, but it is currently unutilized, and strategies to overcome obstacles like knowledge deficiency, family communication, lack of access to genetic services, and testing expenses are needed. In this review, we will look at the genetic factors that have been linked to prostate cancer, as well as the role of genetic counseling and testing in the early detection of advanced prostate cancer.
Collapse
|
13
|
Vanauberg D, Schulz C, Lefebvre T. Involvement of the pro-oncogenic enzyme fatty acid synthase in the hallmarks of cancer: a promising target in anti-cancer therapies. Oncogenesis 2023; 12:16. [PMID: 36934087 PMCID: PMC10024702 DOI: 10.1038/s41389-023-00460-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/20/2023] Open
Abstract
An accelerated de novo lipogenesis (DNL) flux is a common characteristic of cancer cells required to sustain a high proliferation rate. The DNL enzyme fatty acid synthase (FASN) is overexpressed in many cancers and is pivotal for the increased production of fatty acids. There is increasing evidences of the involvement of FASN in several hallmarks of cancer linked to its ability to promote cell proliferation via membranes biosynthesis. In this review we discuss about the implication of FASN in the resistance to cell death and in the deregulation of cellular energetics by increasing nucleic acids, protein and lipid synthesis. FASN also promotes cell proliferation, cell invasion, metastasis and angiogenesis by enabling the building of lipid rafts and consequently to the localization of oncogenic receptors such as HER2 and c-Met in membrane microdomains. Finally, FASN is involved in immune escape by repressing the activation of pro-inflammatory cells and promoting the recruitment of M2 macrophages and T regulatory cells in the tumor microenvironment. Here, we provide an overview of the involvement of the pro-oncogenic enzyme in the hallmarks of cancer making FASN a promising target in anti-cancer therapy to circumvent resistance to chemotherapies.
Collapse
Affiliation(s)
- Dimitri Vanauberg
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Céline Schulz
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Tony Lefebvre
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| |
Collapse
|
14
|
Metabolism as a New Avenue for Hepatocellular Carcinoma Therapy. Int J Mol Sci 2023; 24:ijms24043710. [PMID: 36835122 PMCID: PMC9964410 DOI: 10.3390/ijms24043710] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Hepatocellular carcinoma is today the sixth leading cause of cancer-related death worldwide, despite the decreased incidence of chronic hepatitis infections. This is due to the increased diffusion of metabolic diseases such as the metabolic syndrome, diabetes, obesity, and nonalcoholic steatohepatitis (NASH). The current protein kinase inhibitor therapies in HCC are very aggressive and not curative. From this perspective, a shift in strategy toward metabolic therapies may represent a promising option. Here, we review current knowledge on metabolic dysregulation in HCC and therapeutic approaches targeting metabolic pathways. We also propose a multi-target metabolic approach as a possible new option in HCC pharmacology.
Collapse
|
15
|
Zhang Y, Zhou F, Guan J, Zhou L, Chen B. Action Mechanism of Metformin and Its Application in Hematological Malignancy Treatments: A Review. Biomolecules 2023; 13:250. [PMID: 36830619 PMCID: PMC9953052 DOI: 10.3390/biom13020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Hematologic malignancies (HMs) mainly include acute and chronic leukemia, lymphoma, myeloma and other heterogeneous tumors that seriously threaten human life and health. The common effective treatments are radiotherapy, chemotherapy and hematopoietic stem cell transplantation (HSCT), which have limited options and are prone to tumor recurrence and (or) drug resistance. Metformin is the first-line drug for the treatment of type 2 diabetes (T2DM). Recently, studies identified the potential anti-cancer ability of metformin in both T2DM patients and patients that are non-diabetic. The latest epidemiological and preclinical studies suggested a potential benefit of metformin in the prevention and treatment of patients with HM. The mechanism may involve the activation of the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway by metformin as well as other AMPK-independent pathways to exert anti-cancer properties. In addition, combining current conventional anti-cancer drugs with metformin may improve the efficacy and reduce adverse drug reactions. Therefore, metformin can also be used as an adjuvant therapeutic agent for HM. This paper highlights the anti-hyperglycemic effects and potential anti-cancer effects of metformin, and also compiles the in vitro and clinical trials of metformin as an anti-cancer and chemosensitizing agent for the treatment of HM. The need for future research on the use of metformin in the treatment of HM is indicated.
Collapse
Affiliation(s)
| | | | | | | | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
16
|
Alberto M, Yim A, Lawrentschuk N, Bolton D. Dysfunctional Lipid Metabolism-The Basis for How Genetic Abnormalities Express the Phenotype of Aggressive Prostate Cancer. Cancers (Basel) 2023; 15:cancers15020341. [PMID: 36672291 PMCID: PMC9857232 DOI: 10.3390/cancers15020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer is the second most frequent cancer in men, with increasing prevalence due to an ageing population. Advanced prostate cancer is diagnosed in up to 20% of patients, and, therefore, it is important to understand evolving mechanisms of progression. Significant morbidity and mortality can occur in advanced prostate cancer where treatment options are intrinsically related to lipid metabolism. Dysfunctional lipid metabolism has long been known to have a relationship to prostate cancer development; however, only recently have studies attempted to elucidate the exact mechanism relating genetic abnormalities and lipid metabolic pathways. Contemporary research has established the pathways leading to prostate cancer development, including dysregulated lipid metabolism-associated de novo lipogenesis through steroid hormone biogenesis and β-oxidation of fatty acids. These pathways, in relation to treatment, have formed potential novel targets for management of advanced prostate cancer via androgen deprivation. We review basic lipid metabolism pathways and their relation to hypogonadism, and further explore prostate cancer development with a cellular emphasis.
Collapse
Affiliation(s)
- Matthew Alberto
- Department of Urology, Austin Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Arthur Yim
- Department of Urology, Austin Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Nathan Lawrentschuk
- Department of Urology, Royal Melbourne Hospital, Melbourne, VIC 3010, Australia
| | - Damien Bolton
- Department of Urology, Austin Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Correspondence:
| |
Collapse
|
17
|
Hoxha M, Zappacosta B. A review on the role of fatty acids in colorectal cancer progression. Front Pharmacol 2022; 13:1032806. [PMID: 36578540 PMCID: PMC9791100 DOI: 10.3389/fphar.2022.1032806] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of mortality in cancer patients. The role of fatty acids (FA) and their metabolism in cancer, particularly in CRC raises a growing interest. In particular, dysregulation of synthesis, desaturation, elongation, and mitochondrial oxidation of fatty acids are involved. Here we review the current evidence on the link between cancer, in particular CRC, and fatty acids metabolism, not only to provide insight on its pathogenesis, but also on the development of novel biomarkers and innovative pharmacological therapies that are based on FAs dependency of cancer cells.
Collapse
|
18
|
Basavaraj P, Ruangsai P, Hsieh PF, Jiang WP, Bau DT, Huang GJ, Huang WC. Alpinumisoflavone Exhibits the Therapeutic Effect on Prostate Cancer Cells by Repressing AR and Co-Targeting FASN- and HMGCR-Mediated Lipid and Cholesterol Biosynthesis. Life (Basel) 2022; 12:1769. [PMID: 36362924 PMCID: PMC9698239 DOI: 10.3390/life12111769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 08/27/2023] Open
Abstract
Prostate cancer (PCa) is the most common cancer in men, and this has been mainly noticed in Western and Asian countries. The aggregations of PCa and castration-resistant PCa (CRPC) progression are the crucial causes in the mortality of patients without the effective treatment. To seek new remedies for the lethal PCa diseases is currently an urgent need. In this study, we endeavored to investigate the therapeutic efficacy of alpinumisoflavone (AIF), a natural product, in PCa. LNCaP (androgen- sensitive) and C4-2 (CRPC) PCa cells were used. An MTT-based method, soft agar colony forming assay, biological progression approaches were applied to determine cell viability, migration, and invasion. A fatty acid quantification kit, a cholesterol detection kit and oil red O staining were conducted to analyze the intracellular levels of lipids and cholesterols. Apoptosis assays were also performed. AIF reduced cell viability, migration, and invasion in PCa cells. The expression of androgen receptor (AR), fatty acid synthase (FASN), and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) was substantially inhibited by AIF treatment in PCa cells. Furthermore, by inhibiting FASN and HMGCR expression, AIF decreased the amounts of intracellular fatty acids, cholesterols, and lipid droplets in PCa cells. Significantly, through coordinated targeting FASN- and HMGCR-regulated biosynthesis and the AR axis, AIF activated the caspase-associated apoptosis in PCa cells. These results collectively demonstrated for the first time the potential of AIF as a novel and attractive remedy and provided an alternative opportunity to cure PCa malignancy.
Collapse
Affiliation(s)
- Praveenkumar Basavaraj
- Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Phakkhathorn Ruangsai
- International Master’s Program of Biomedical Sciences, School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Po-Fan Hsieh
- Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung 404, Taiwan
- Department of Urology, China Medical University Hospital, Taichung 404, Taiwan
| | - Wen-Ping Jiang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Da-Tian Bau
- Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung 404, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 404, Taiwan
| | - Guan-Jhong Huang
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Wen-Chin Huang
- Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung 404, Taiwan
- International Master’s Program of Biomedical Sciences, School of Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
19
|
Perumalsamy H, Shanmugam R, Kim JR, Anandapadmanaban G, Huq MA, Dua K, Chellappan DK, Yoon TH, Balusamy SR. Nanoemulsion and Encapsulation Strategy of Hydrophobic Oregano Essential Oil Increased Human Prostate Cancer Cell Death via Apoptosis by Attenuating Lipid Metabolism. Bioinorg Chem Appl 2022; 2022:9569226. [PMID: 35662912 PMCID: PMC9162876 DOI: 10.1155/2022/9569226] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/11/2022] [Indexed: 11/18/2022] Open
Abstract
Origanum vulgare essential oil (EO) is traditionally well-known for its aromatic properties and biomedical applications, including anticancer. This was the first report where oregano essential oil-based nano emulsion (OENE) was synthesized for studying its effects on prostate cancer cell lines (PC3). At first, we have synthesized OENE and characterized using various spectroscopic analyses. The toxicity and inhibitory concentration (IC50) of OENE toward prostate cancer by MTT analysis were performed. The lipid biogenesis mediated, molecular target pathway analyses were performed using fluorescence cellular staining techniques, real-time RT-PCR, or western blotting analysis. OENE showed IC50 at 13.82 µg/mL and significantly induced distinct morphological changes, including cell shrinkage, cell density, and cell shape reduction. In addition, OENE could also significantly decreased lipid droplet accumulation which was confirmed by studying mRNA transcripts of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) (0.31-fold), fatty acid synthase (FASN) (0.18-fold), and sterol regulatory element-binding protein (SREPB1) (0.11-fold), respectively. Furthermore, there is a significant upregulation BAX (BCL2 associated X) and caspase 3 expressions. Nevertheless, OENE decreased the transcript level of BCL2 (B-cell lymphoma 2), thus resulting in apoptosis. Overall, our present work demonstrated that OENE could be a therapeutic target for the treatment of prostate cancer and warrants in vivo studies.
Collapse
Affiliation(s)
- Haribalan Perumalsamy
- Institute for Next Generation Material Design, Hanyang University, Seoul 04763, Republic of Korea
- Center for Creative Convergence Education, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Rajeshkumar Shanmugam
- Department of Pharmacology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamilnadu, India
| | - Jun-Ran Kim
- Experiment & Analysis Division, Animal and Plant Quarantine Agency, Honam Regional Office, Jeollabuk-Do 540-96, Republic of Korea
| | - Gokulanathan Anandapadmanaban
- Experiment & Analysis Division, Animal and Plant Quarantine Agency, Honam Regional Office, Jeollabuk-Do 540-96, Republic of Korea
| | - Md. Amdadul Huq
- Department of Food and Nutrition, Chung Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo, NSW 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Tae Hyun Yoon
- Institute for Next Generation Material Design, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul, Republic of Korea
| | - Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-Gu, Seoul 05006, Republic of Korea
| |
Collapse
|
20
|
Tsai YT, Lo WL, Chen PY, Ko CY, Chuang JY, Kao TJ, Yang WB, Chang KY, Hung CY, Kikkawa U, Chang WC, Hsu TI. Reprogramming of arachidonate metabolism confers temozolomide resistance to glioblastoma through enhancing mitochondrial activity in fatty acid oxidation. J Biomed Sci 2022; 29:21. [PMID: 35337344 PMCID: PMC8952270 DOI: 10.1186/s12929-022-00804-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/21/2022] [Indexed: 01/10/2023] Open
Abstract
Background Sp1 is involved in the recurrence of glioblastoma (GBM) due to the acquirement of resistance to temozolomide (TMZ). Particularly, the role of Sp1 in metabolic reprogramming for drug resistance remains unknown. Methods RNA-Seq and mass spectrometry were used to analyze gene expression and metabolites amounts in paired GBM specimens (primary vs. recurrent) and in paired GBM cells (sensitive vs. resistant). ω-3/6 fatty acid and arachidonic acid (AA) metabolism in GBM patients were analyzed by targeted metabolome. Mitochondrial functions were determined by Seahorse XF Mito Stress Test, RNA-Seq, metabolome and substrate utilization for producing ATP. Therapeutic options targeting prostaglandin (PG) E2 in TMZ-resistant GBM were validated in vitro and in vivo. Results Among the metabolic pathways, Sp1 increased the prostaglandin-endoperoxide synthase 2 expression and PGE2 production in TMZ-resistant GBM. Mitochondrial genes and metabolites were obviously increased by PGE2, and these characteristics were required for developing resistance in GBM cells. For inducing TMZ resistance, PGE2 activated mitochondrial functions, including fatty acid β-oxidation (FAO) and tricarboxylic acid (TCA) cycle progression, through PGE2 receptors, E-type prostanoid (EP)1 and EP3. Additionally, EP1 antagonist ONO-8713 inhibited the survival of TMZ-resistant GBM synergistically with TMZ. Conclusion Sp1-regulated PGE2 production activates FAO and TCA cycle in mitochondria, through EP1 and EP3 receptors, resulting in TMZ resistance in GBM. These results will provide us a new strategy to attenuate drug resistance or to re-sensitize recurred GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00804-3.
Collapse
Affiliation(s)
- Yu-Ting Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan, 110
| | - Wei-Lun Lo
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.,Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei, 110, Taiwan.,TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan
| | - Pin-Yuan Chen
- School of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan.,Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Keelung, 204, Taiwan.,Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Chiung-Yuan Ko
- TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan.,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei, 110, Taiwan
| | - Jian-Ying Chuang
- TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan.,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei, 110, Taiwan
| | - Tzu-Jen Kao
- TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan.,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei, 110, Taiwan
| | - Wen-Bing Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan, 110.,TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan
| | - Kwang-Yu Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Chia-Yang Hung
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Ushio Kikkawa
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan, 110
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan, 110. .,TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan.
| | - Tsung-I Hsu
- TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan. .,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan. .,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan. .,Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei, 110, Taiwan. .,National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan.
| |
Collapse
|
21
|
Heravi G, Yazdanpanah O, Podgorski I, Matherly LH, Liu W. Lipid metabolism reprogramming in renal cell carcinoma. Cancer Metastasis Rev 2022; 41:17-31. [PMID: 34741716 PMCID: PMC10045462 DOI: 10.1007/s10555-021-09996-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022]
Abstract
Metabolic reprogramming is recognized as a hallmark of cancer. Lipids are the essential biomolecules required for membrane biosynthesis, energy storage, and cell signaling. Altered lipid metabolism allows tumor cells to survive in the nutrient-deprived environment. However, lipid metabolism remodeling in renal cell carcinoma (RCC) has not received the same attention as in other cancers. RCC, the most common type of kidney cancer, is associated with almost 15,000 death in the USA annually. Being refractory to conventional chemotherapy agents and limited available targeted therapy options has made the treatment of metastatic RCC very challenging. In this article, we review recent findings that support the importance of synthesis and metabolism of cholesterol, free fatty acids (FFAs), and polyunsaturated fatty acids (PUFAs) in the carcinogenesis and biology of RCC. Delineating the detailed mechanisms underlying lipid reprogramming can help to better understand the pathophysiology of RCC and to design novel therapeutic strategies targeting this malignancy.
Collapse
Affiliation(s)
- Gioia Heravi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Omid Yazdanpanah
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Karmanos Cancer Institute, Detroit, MI, USA
| | - Larry H Matherly
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Karmanos Cancer Institute, Detroit, MI, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA. .,Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA. .,Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
22
|
Tsamouri MM, Durbin-Johnson BP, Culp WTN, Palm CA, Parikh M, Kent MS, Ghosh PM. Untargeted Metabolomics Identify a Panel of Urinary Biomarkers for the Diagnosis of Urothelial Carcinoma of the Bladder, as Compared to Urolithiasis with or without Urinary Tract Infection in Dogs. Metabolites 2022; 12:200. [PMID: 35323643 PMCID: PMC8951005 DOI: 10.3390/metabo12030200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Urothelial carcinoma (UC), the most common urologic cancer in dogs, is often diagnosed late because the clinical signs are shared by other non-malignant lower urinary tract disorders (LUTD). The urine-based BRAFV595E test for UC is highly effective only in certain breeds; hence additional non-invasive biomarkers of UC are needed. Here, urine from dogs with UC (n = 27), urolithiasis (n = 8), or urolithiasis with urinary tract infection (UTI) (n = 8) were subjected to untargeted metabolomics analyses, using GC-TOF-MS for primary metabolites, QTOF-MS for complex lipids, and HILIC-QTOF MS for secondary and charged metabolites. After adjusting for age and sex, we identified 1123 known metabolites that were differentially expressed between UC and LUTD. Twenty-seven metabolites were significant (1.5 ≤ log2FC ≤ −1.5, adjusted p-value < 0.05); however, 10 of these could be attributed to treatment-related changes. Of the remaining 17, 6 (hippuric acid, N-Acetylphenylalanine, sarcosine, octanoylcarnitine, N-alpha-methylhistamine, glycerol-3-galactoside) discriminated between UC and LUTD (area under the ROC curve > 0.85). Of the 6 metabolites, only hippuric acid and N-alpha-methylhistamine were discriminatory in both male (n = 20) and female (n = 23) dogs, while sarcosine was an effective discriminator in several breeds, but only in females. Further investigation of these metabolites is warranted for potential use as non-invasive diagnostic biomarkers of dogs with UC that present with LUTD-related clinical signs.
Collapse
Affiliation(s)
- Maria Malvina Tsamouri
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| | | | - William T. N. Culp
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (W.T.N.C.); (M.S.K.)
| | - Carrie A. Palm
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Mamta Parikh
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, CA 95718, USA;
| | - Michael S. Kent
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; (W.T.N.C.); (M.S.K.)
| | - Paramita M. Ghosh
- Veterans Affairs-Northern California Health System, Mather, CA 95655, USA
- Department of Urologic Surgery, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95718, USA
| |
Collapse
|
23
|
AKR1B1 as a Prognostic Biomarker of High-Grade Serous Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14030809. [PMID: 35159076 PMCID: PMC8834204 DOI: 10.3390/cancers14030809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary We evaluated the levels of AKR1B1 and AKR1B10 in 99 patients with high-grade serous ovarian cancer and their association with clinicopathological characteristics, survival, and response to chemotherapy. An immunohistochemical analysis showed that higher AKR1B1 levels correlated with a better disease-free survival of patients whereas we saw no differences for AKR1B10 levels. A multivariant Cox analysis identified high AKR1B1 levels as an important prognostic factor for both overall and disease-free survival. A further analysis revealed no association between AKR1B1 and AKR1B10 levels and response to chemotherapy. Abstract Although aldo-keto reductases (AKRs) have been widely studied in cancer, no study to date has examined the roles of AKR family 1 members B1 (AKR1B1) and B10 (AKR1B10) in a large group of ovarian cancer patients. AKR1B1 and AKR1B10 play a significant role in inflammation and the metabolism of different chemotherapeutics as well as cell differentiation, proliferation, and apoptosis. Due to these functions, we examined the potential of AKR1B1 and AKR1B10 as tissue biomarkers. We assessed the immunohistochemical levels of AKR1B1 and AKR1B10 in tissue paraffin sections from 99 patients with high-grade serous ovarian cancer (HGSC) and compared these levels with clinicopathological characteristics, survival, and response to chemotherapy. A higher immunohistochemical AKR1B1 expression correlated with a better overall and disease-free survival of HGSC patients whereas AKR1B10 expression did not show any significant differences. A multivariant Cox analysis demonstrated that a high AKR1B1 expression was an important prognostic factor for both overall and disease-free survival. However, AKR1B1 and AKR1B10 were not associated with different responses to chemotherapy. Our data suggest that AKR1B1 is involved in the pathogenesis of HGSC and is a potential prognostic biomarker for this cancer.
Collapse
|
24
|
Read GH, Bailleul J, Vlashi E, Kesarwala AH. Metabolic response to radiation therapy in cancer. Mol Carcinog 2022; 61:200-224. [PMID: 34961986 PMCID: PMC10187995 DOI: 10.1002/mc.23379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/11/2022]
Abstract
Tumor metabolism has emerged as a hallmark of cancer and is involved in carcinogenesis and tumor growth. Reprogramming of tumor metabolism is necessary for cancer cells to sustain high proliferation rates and enhanced demands for nutrients. Recent studies suggest that metabolic plasticity in cancer cells can decrease the efficacy of anticancer therapies by enhancing antioxidant defenses and DNA repair mechanisms. Studying radiation-induced metabolic changes will lead to a better understanding of radiation response mechanisms as well as the identification of new therapeutic targets, but there are few robust studies characterizing the metabolic changes induced by radiation therapy in cancer. In this review, we will highlight studies that provide information on the metabolic changes induced by radiation and oxidative stress in cancer cells and the associated underlying mechanisms.
Collapse
Affiliation(s)
- Graham H. Read
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Justine Bailleul
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Erina Vlashi
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| | - Aparna H. Kesarwala
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
25
|
Abstract
Metabolic rewiring is one of the hallmarks of cancer. Altered de novo lipogenesis is one of the pivotal metabolic events deregulated in cancers. Sterol regulatory element-binding transcription factor 1 (SREBP1) controls the transcription of major enzymes involved in de novo lipogenesis, including ACLY, ACACA, FASN, and SCD. Studies have shown the increased de novo lipogenesis in human hepatocellular carcinoma (HCC) samples. Multiple mechanisms, such as activation of the AKT/mechanistic target of rapamycin (mTOR) pathway, lead to high SREBP1 induction and the coordinated enhanced expression of ACLY, ACACA, FASN, and SCD genes. Subsequent functional analyses have unraveled these enzymes' critical role(s) and the related de novo lipogenesis in hepatocarcinogenesis. Importantly, targeting these molecules might be a promising strategy for HCC treatment. This paper comprehensively summarizes de novo lipogenesis rewiring in HCC and how this pathway might be therapeutically targeted.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Junyan Tao
- Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| |
Collapse
|
26
|
Jeyakumar SM, Vajreswari A. Stearoyl-CoA desaturase 1: A potential target for non-alcoholic fatty liver disease?-perspective on emerging experimental evidence. World J Hepatol 2022; 14:168-179. [PMID: 35126846 PMCID: PMC8790397 DOI: 10.4254/wjh.v14.i1.168] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/18/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive disease and one of the leading causes of death. An unnamed disease has become a global epidemic disease of public health concern. This spectrum of diseases manifests itself with initial accumulation of excessive triglycerides (due to de novo lipogenesis) in the hepatocytes, leading to simple steatosis. Although its aetiology is multi-factorial, lifestyle changes (diet and physical activity) are considered to be the key thriving factors. In this context, high fructose consumption is associated with an increased risk for developing NAFLD in humans, while high-fructose feeding to experimental animals results in hepatic steatosis and non-alcoholic steatohepatitis, by increasing hepatic lipogenesis. Among several lipogenic genes, the endoplasmic reticulum-bound stearoyl-CoA desaturase 1 (SCD1) is the key determinant of triglycerides biosynthesis pathway, by providing monounsaturated fatty acids, through the incorporation of a double bond at the delta-9 position of saturated fatty acids, specifically, palmitic (C16:0) and stearic (C18:0) acids, yielding palmitoleic (C16:1) and oleic (C18:1) acids, respectively. Various experimental studies involving SCD1 gene knockout and diet-induced rodent models have demonstrated that SCD1 plays a key role in the development of NAFLD, by modulating hepatic lipogenesis and thus triglyceride accumulation in the liver. Several pharmacological and dietary intervention studies have shown the benefits of inhibiting hepatic SCD1 in the pathogenesis of NAFLD. In this review, we give an overview of SCD1 in NAFLD, based on the current experimental evidence and the translational applicability of SCD1 inhibition in human NAFLD conditions, besides discussing the limitations and way-forward.
Collapse
Affiliation(s)
- Shanmugam Murugaiha Jeyakumar
- Division of Lipid Biochemistry, National Institute of Nutrition, Hyderabad 500007, Telangana, India
- Department of Clinical Pharmacology, National Institute for Research in Tuberculosis, Chennai 600031, Tamil Nadu, India
| | | |
Collapse
|
27
|
Stearoyl-CoA desaturase 1 inhibitor supplemented with gemcitabine treatment reduces the viability and fatty acid content of pancreatic cancer cells in vitro. JOURNAL OF PANCREATOLOGY 2021. [DOI: 10.1097/jp9.0000000000000082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
28
|
Castelli S, De Falco P, Ciccarone F, Desideri E, Ciriolo MR. Lipid Catabolism and ROS in Cancer: A Bidirectional Liaison. Cancers (Basel) 2021; 13:cancers13215484. [PMID: 34771647 PMCID: PMC8583096 DOI: 10.3390/cancers13215484] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
Although cancer cell metabolism was mainly considered to rely on glycolysis, with the concomitant impairment of mitochondrial metabolism, it has recently been demonstrated that several tumor types are sustained by oxidative phosphorylation (OXPHOS). In this context, endogenous fatty acids (FAs) deriving from lipolysis or lipophagy are oxidised into the mitochondrion, and are used as a source of energy through OXPHOS. Because the electron transport chain is the main source of ROS, cancer cells relying on fatty acid oxidation (FAO) need to be equipped with antioxidant systems that maintain the ROS levels under the death threshold. In those conditions, ROS can act as second messengers, favouring proliferation and survival. Herein, we highlight the different responses that tumor cells adopt when lipid catabolism is augmented, taking into account the different ROS fates. Many papers have demonstrated that the pro- or anti-tumoral roles of endogenous FA usage are hugely dependent on the tumor type, and on the capacity of cancer cells to maintain redox homeostasis. In light of this, clinical studies have taken advantage of the boosting of lipid catabolism to increase the efficacy of tumor therapy, whereas, in other contexts, antioxidant compounds are useful to reduce the pro-survival effects of ROS deriving from FAO.
Collapse
Affiliation(s)
- Serena Castelli
- Department of Biology, University of Rome “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (S.C.); (P.D.F.); (E.D.)
| | - Pamela De Falco
- Department of Biology, University of Rome “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (S.C.); (P.D.F.); (E.D.)
| | - Fabio Ciccarone
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Enrico Desideri
- Department of Biology, University of Rome “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (S.C.); (P.D.F.); (E.D.)
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133 Rome, Italy; (S.C.); (P.D.F.); (E.D.)
- IRCCS San Raffaele Pisana, Via Della Pisana 235, 00163 Rome, Italy
- Correspondence:
| |
Collapse
|
29
|
Biguanides drugs: Past success stories and promising future for drug discovery. Eur J Med Chem 2021; 224:113726. [PMID: 34364161 DOI: 10.1016/j.ejmech.2021.113726] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Biguanides have attracted much attention a century ago and showed resurgent interest in recent years after a long period of dormancy. They constitute an important class of therapeutic agents suitable for the treatment of a wide spectrum of diseases. Therapeutic indications of biguanides include antidiabetic, antimalarial, antiviral, antiplaque, and bactericidal applications. This review presents an extensive overview of the biological activity of biguanides and different mechanisms of action of currently marketed biguanide-containing drugs, as well as their pharmacological properties when applicable. We highlight the recent developments in research on biguanide compounds, with a primary focus on studies on metformin in the field of oncology. We aim to provide a critical overview of all main bioactive biguanide compounds and discuss future perspectives for the design of new drugs based on the biguanide fragment.
Collapse
|
30
|
AKR1B1 and AKR1B10 as Prognostic Biomarkers of Endometrioid Endometrial Carcinomas. Cancers (Basel) 2021; 13:cancers13143398. [PMID: 34298614 PMCID: PMC8305663 DOI: 10.3390/cancers13143398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary We evaluated the potential of AKR1B1 and AKR1B10 as tissue biomarkers of endometrial cancer by assessing the immunohistochemical levels of AKR1B1 and AKR1B10 in tissue paraffin sections from 101 well-characterized patients with endometrioid endometrial cancer and 12 patients with serous endometrial cancer. Significantly higher immunohistochemical levels of AKR1B1 and AKR1B10 were found in adjacent non-neoplastic endometrial tissue compared to endometrioid endometrial cancer. The group of patients with both AKR1B1 and AKR1B10 staining above the median values showed significantly better overall and disease-free survival compared to all other patients. Multivariant Cox analysis recognized a strong AKR1B1 and AKR1B10 staining as a statistically important survival prediction factor in patients with endometrioid endometrial cancer. In contrast, we observed no significant differences in AKR1B1 and AKR1B10 staining in patients with serous endometrial cancer. Our results suggest that AKR1B1 and AKR1B10 have protective roles in endometrioid endometrial cancer and represent prognostic biomarker candidates. Abstract The roles of aldo-keto reductase family 1 member B1 (AKR1B1) and B10 (AKR1B10) in the pathogenesis of many cancers have been widely reported but only briefly studied in endometrial cancer. To clarify the potential of AKR1B1 and AKR1B10 as tissue biomarkers of endometrial cancer, we evaluated the immunohistochemical levels of AKR1B1 and AKR1B10 in tissue paraffin sections from 101 well-characterized patients with endometrioid endometrial cancer and 12 patients with serous endometrial cancer and compared them with the clinicopathological data. Significantly higher immunohistochemical levels of AKR1B1 and AKR1B10 were found in adjacent non-neoplastic endometrial tissue compared to endometrioid endometrial cancer. A trend for better survival was observed in patients with higher immunohistochemical AKR1B1 and AKR1B10 levels. However, no statistically significant differences in overall survival or disease-free survival were observed when AKR1B1 or AKR1B10 were examined individually in endometrioid endometrial cancer. However, analysis of AKR1B1 and AKR1B10 together revealed significantly better overall and disease-free survival in patients with both AKR1B1 and AKR1B10 staining above the median values compared to all other patients. Multivariant Cox analysis identified strong AKR1B1 and AKR1B10 staining as a statistically important survival prediction factor. Conversely, no significant differences were found in serous endometrial cancer. Our results suggest that AKR1B1 and AKR1B10 play protective roles in endometrioid endometrial cancer and show potential as prognostic biomarkers.
Collapse
|
31
|
Modulation of SCD1 activity in hepatocyte cell lines: evaluation of genomic stability and proliferation. Mol Cell Biochem 2021; 476:3393-3405. [PMID: 33954906 DOI: 10.1007/s11010-021-04167-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/21/2021] [Indexed: 12/14/2022]
Abstract
Stearoyl-CoA desaturase (SCD) is a central lipogenic enzyme for the synthesis of monounsaturated fatty acids (MUFA). SCD1 overexpression is associated with a genetic predisposition to hepatocarcinogenesis in mice and rats. This work hypothesized possible roles of SCD1 to genomic stability, lipogenesis, cell proliferation, and survival that contribute to the malignant transformation of non-tumorigenic liver cells. Therefore, HepG2 tumor cells were treated with the SCD1 inhibitor (CAY10566) to ensure a decrease in proliferation/survival, as confirmed by a lipidomic analysis that detected an efficient decrease in the concentration of MUFA. According to that, we switched to a model of normal hepatocytes, the HepaRG cell line, where we: (i) overexpressed SCD1 (HepaRG-SCD1 clones), (ii) inhibited the endogenous SCD1 activity with CAY10566, or (iii) treated with two monounsaturated (oleic OA and/or palmitoleic PA) fatty acids. SCD1 overexpression or MUFA stimulation increased cell proliferation, survival, and the levels of AKT, phospho-AKT(Ser473), and proliferating cell nuclear antigen (PCNA) proteins. By contrast, opposite molecular and cellular responses were observed in HepaRG cells treated with CAY10566. To assess genomic stability, HepaRG-SCD1 clones were treated with ionizing radiation (IR) and presented reduced levels of DNA damage and higher survival at doses of 5 Gy and 10 Gy compared to parental cells. In sum, this work suggests that modulation of SCD1 activity not only plays a role in cell proliferation and survival, but also in maintaining genomic stability, and therefore, contributes to a better understanding of this enzyme in molecular mechanisms of hepatocarcinogenesis projecting SCD1 as a potential translational target.
Collapse
|
32
|
Pilon M. Paradigm shift: the primary function of the "Adiponectin Receptors" is to regulate cell membrane composition. Lipids Health Dis 2021; 20:43. [PMID: 33931104 PMCID: PMC8088037 DOI: 10.1186/s12944-021-01468-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022] Open
Abstract
The ADIPOR1 and ADIPOR2 proteins (ADIPORs) are generally considered as adiponectin receptors with anti-diabetic properties. However, studies on the yeast and C. elegans homologs of the mammalian ADIPORs, and of the ADIPORs themselves in various mammalian cell models, support an updated/different view. Based on findings in these experimental models, the ADIPORs are now emerging as evolutionarily conserved regulators of membrane homeostasis that do not require adiponectin to act as membrane fluidity sensors and regulate phospholipid composition. More specifically, membrane rigidification activates ADIPOR signaling to promote fatty acid desaturation and incorporation of polyunsaturated fatty acids into membrane phospholipids until fluidity is restored. The present review summarizes the evidence supporting this new view of the ADIPORs, and briefly examines physiological consequences.
Collapse
Affiliation(s)
- Marc Pilon
- Dept. Chemistry and Molecular Biology, Univ. Gothenburg, Box 462, S-405 30, Gothenburg, Sweden.
| |
Collapse
|
33
|
Weng J, Zhou C, Zhou Q, Chen W, Yin Y, Atyah M, Dong Q, Shi Y, Ren N. Development and Validation of a Metabolic Gene-Based Prognostic Signature for Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:193-209. [PMID: 33824863 PMCID: PMC8018394 DOI: 10.2147/jhc.s300633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a malignant tumor with great variation in prognosis among individuals. Changes in metabolism influence disease progression and clinical outcomes. The objective of this study was to determine the overall survival (OS) risk of HCC patients from a metabolic perspective. Patients and Methods The model was constructed using the least absolute shrinkage and selection operator (LASSO) COX regression based on The Cancer Genome Atlas (TCGA, n=342) dataset. The International Cancer Genome Consortium (ICGC, n=232), GSE14520 (n=242) datasets, and a clinical cohort (n=64) were then used to assess the prognostic value of the signature. Results A 10 metabolic gene-based signature was constructed and verified as a robust and independent prognostic classifier in public and real-world validation cohorts. Meanwhile, the signature enabled the identification of HCC molecular subtypes, yielding an AUC value of 0.678 [95% CI: 0.592–0.763]. Besides, the signature was associated with metabolic processes like glycolysis, supported by a clear correlation between the risk score and expression of rate-limiting enzymes. Furthermore, high-risk tumor was likely to have a high tumor infiltration status of immunosuppressive cells, as well as elevated expression of some immune checkpoint molecules. For final clinical translation, a nomogram integrating the signature and tumor stage was established, and showed improved predictive accuracy of 3- and 5-year OS and brought more net benefit to patients. Conclusion We developed a prognostic signature based on 10 metabolic genes, which has proven to be an independent and reliable prognostic predictor for HCC and reflects the metabolic and immune characteristics of tumors.
Collapse
Affiliation(s)
- Jialei Weng
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People's Republic of China
| | - Chenhao Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qiang Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People's Republic of China
| | - Wanyong Chen
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,Institute of Fudan Minhang Academic Health System, Minhang Hospital, Key Laboratory of Shanghai Municipal Health Commission, Fudan University, Shanghai, People's Republic of China
| | - Yirui Yin
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People's Republic of China
| | - Manar Atyah
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People's Republic of China
| | - Qiongzhu Dong
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Institute of Fudan Minhang Academic Health System, Minhang Hospital, Key Laboratory of Shanghai Municipal Health Commission, Fudan University, Shanghai, People's Republic of China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yi Shi
- Biomedical Research Centre, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Ning Ren
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People's Republic of China.,Institute of Fudan Minhang Academic Health System, Minhang Hospital, Key Laboratory of Shanghai Municipal Health Commission, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
34
|
miR-206-G6PD axis regulates lipogenesis and cell growth in hepatocellular carcinoma cell. Anticancer Drugs 2021; 32:508-516. [PMID: 33735119 DOI: 10.1097/cad.0000000000001069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
miR-206 plays an essential role in repressing the growth of multiple cancer cells. Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme of the pentose phosphate pathway. However, it is mostly unknown whether G6PD is associated with miR-206-mediated growth repression of hepatocellular carcinoma (HCC) cells. In this study, we found that the expression of G6PD was upregulated in HCC patients and cell lines, whereas the expression of miR-206 was negatively associated with the clinical staging criterion of primary liver cancer. Overexpression of G6PD increased lipid accumulation and promoted cell proliferation. Conversely, inhibition of G6PD expression decreased lipid accumulation and suppressed cell proliferation. Moreover, miR-206 could directly bind to G6PD mRNA 3´-UTR and downregulate G6PD level. Overexpression of G6PD significantly attenuated the miR-206 mimic-mediated suppression of lipid accumulation and cell proliferation. In summary, the results demonstrated that miR-206 could inhibit lipid accumulation and growth of HCC cells by targeting G6PD, suggesting that the miR-206-G6PD axis may be a promising target for treating HCC.
Collapse
|
35
|
Pham D, Tilija Pun N, Park P. Autophagy activation and SREBP-1 induction contribute to fatty acid metabolic reprogramming by leptin in breast cancer cells. Mol Oncol 2021; 15:657-678. [PMID: 33226729 PMCID: PMC7858107 DOI: 10.1002/1878-0261.12860] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/03/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Leptin, a hormone predominantly derived from adipose tissue, is well known to induce growth of breast cancer cells. However, its underlying mechanisms remain unclear. In this study, we examined the role of reprogramming of lipid metabolism and autophagy in leptin-induced growth of breast cancer cells. Herein, leptin induced significant increase in fatty acid oxidation-dependent ATP production in estrogen receptor-positive breast cancer cells. Furthermore, leptin induced both free fatty acid release and intracellular lipid accumulation, indicating a multifaceted effect of leptin in fatty acid metabolism. These findings were further validated in an MCF-7 tumor xenograft mouse model. Importantly, all the aforementioned metabolic effects of leptin were mediated via autophagy activation. In addition, SREBP-1 induction driven by autophagy and fatty acid synthase induction, which is mediated by SREBP-1, plays crucial roles in leptin-stimulated metabolic reprogramming and are required for growth of breast cancer cell, suggesting a pivotal contribution of fatty acid metabolic reprogramming to tumor growth by leptin. Taken together, these results highlighted a crucial role of autophagy in leptin-induced cancer cell-specific metabolism, which is mediated, at least in part, via SREBP-1 induction.
Collapse
Affiliation(s)
- Duc‐Vinh Pham
- College of PharmacyYeungnam UniversityGyeongsanKorea
| | | | - Pil‐Hoon Park
- College of PharmacyYeungnam UniversityGyeongsanKorea
- Research Institute of Cell CultureYeungnam UniversityGyeongsanKorea
| |
Collapse
|
36
|
Mutlu B, Puigserver P. GCN5 acetyltransferase in cellular energetic and metabolic processes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2021; 1864:194626. [PMID: 32827753 PMCID: PMC7854474 DOI: 10.1016/j.bbagrm.2020.194626] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/29/2020] [Accepted: 08/14/2020] [Indexed: 12/23/2022]
Abstract
General Control Non-repressed 5 protein (GCN5), encoded by the mammalian gene Kat2a, is the first histone acetyltransferase discovered to link histone acetylation to transcriptional activation [1]. The enzymatic activity of GCN5 is linked to cellular metabolic and energetic states regulating gene expression programs. GCN5 has a major impact on energy metabolism by i) sensing acetyl-CoA, a central metabolite and substrate of the GCN5 catalytic reaction, and ii) acetylating proteins such as PGC-1α, a transcriptional coactivator that controls genes linked to energy metabolism and mitochondrial biogenesis. PGC-1α is biochemically associated with the GCN5 protein complex during active metabolic reprogramming. In the first part of the review, we examine how metabolism can change GCN5-dependent histone acetylation to regulate gene expression to adapt cells. In the second part, we summarize the GCN5 function as a nutrient sensor, focusing on non-histone protein acetylation, mainly the metabolic role of PGC-1α acetylation across different tissues.
Collapse
Affiliation(s)
- Beste Mutlu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Diospyros kaki and Citrus unshiu Mixture Improves Disorders of Lipid Metabolism in Nonalcoholic Fatty Liver Disease. Can J Gastroenterol Hepatol 2020; 2020:8812634. [PMID: 33425805 PMCID: PMC7775147 DOI: 10.1155/2020/8812634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has been a major cause of a chronic liver disease over recent decades and increasing worldwide in parallel with the remarkable growth of obesity. In the present study, we investigate the ameliorative effects of PCM, a combination of Diospyros kaki fruit and Citrus unshiu peel mixture, on high-fat diet- (HFD-) induced NAFLD and clarify the potential mechanisms. PCM in HFD-fed mice was orally administered at a dose of 50 or 100 mg/kg subsequently for 2 months. Thereafter, lipid metabolism parameters and fat synthesis-related genes in the mouse liver were evaluated. Subsequently, body weight changes, liver weight, serum liver function and lipid profiles, and liver pathology were examined, and the relative levels of fatty acid synthesis and β-oxidation gene expression were evaluated by western blot. Serum AST, ALT, and TG levels in the HFD control mice were significantly higher than those of normal mice. Compared with HFD control mice, PCM supplementation increased phosphorylation of AMP-activated protein kinase (AMPK). Peroxisome proliferator-activated receptor (PPAR) α was significantly increased by PCM administration. Continuously, the activation of PPARα significantly elevated carnitine palmitoyltransferase 1 (CPT-1), a key enzyme in fatty acid β-oxidation, and mitochondrial uncoupling protein 2 (UCP-2), thermogenic regulatory genes, in PCM-treated mice compared with those of HFD control mice. Moreover, PCM inhibits lipogenesis and cholesterol synthesis via suppression of sterol regulatory element binding protein-1 (SREBP-1) and SREBP-2 and its target genes such as acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD-1), and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR). Taken together, these effects were mediated through activation of AMPK. In the conclusion, PCM improved liver damage in HFD-fed mice and attenuated NAFLD by the activation of PPARα and the inhibition of SREBPs expression via AMPK-dependent pathways.
Collapse
|
38
|
Lounis MA, Péant B, Leclerc-Desaulniers K, Ganguli D, Daneault C, Ruiz M, Zoubeidi A, Mes-Masson AM, Saad F. Modulation of de Novo Lipogenesis Improves Response to Enzalutamide Treatment in Prostate Cancer. Cancers (Basel) 2020; 12:cancers12113339. [PMID: 33187317 PMCID: PMC7698241 DOI: 10.3390/cancers12113339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Prostate cancer cells produce lipids via the activation of a specific pathway called fatty acid synthesis, also known as De novo lipogenesis. This pathway is essential for the survival and growth of most types of cancer cells, including prostate cancer. In our study, we showed that prostate cancer cells activate this lipid synthesis pathway to become more aggressive and develop resistance to commonly used therapeutic agents for advanced prostate cancer such as enzalutamide, an effective and commonly used androgen receptor (AR) targeted agent. Interestingly, by combining enzalutamide with a lipid synthesis pathway inhibitor, we were able to show that growth of prostate cancer tumors was more effectively reduced than with either agent alone. We also showed that this combination led to cell stress and death by changing the lipid content in the cell. These important findings could lead to new therapeutic strategies combining effective AR targeted therapies with lipid synthesis inhibitors for the treatment of advanced prostate cancer. Abstract De novo lipogenesis (DNL) is now considered as a hallmark of cancer. The overexpression of key enzymes of DNL is characteristic of both primary and advanced disease and may play an important role in resistance to therapies. Here, we showed that DNL is highly enhanced in castrate resistant prostate cancer (CRPC) cells compared to hormone sensitive and enzalutamide resistant cells. This observation suggests that this pathway plays an important role in the initiation of aggressive prostate cancer and in the development of enzalutamide resistance. Importantly, here we show that both prostate cancer cells sensitive and resistant to enzalutamide are dependent on DNL to proliferate. We next combined enzalutamide with an inhibitor of Stearoyl CoA Desaturase 1 (SCD1), an important enzyme in DNL, and observed significantly reduced tumor growth caused by the important change in tumoral lipid desaturation. Our findings suggest that the equilibrium between monounsaturated fatty acids and saturated fatty acids is essential in the establishment of the more aggressive prostate cancer phenotype and that the combination therapy induces a disruption of this equilibrium leading to an important decrease of cell proliferation. These findings provide new insights into the role of DNL in the progression of prostate cancer cells. The study also provides the rationale for the use of an inhibitor of SCD1 in combination with enzalutamide to improve response, delay enzalutamide resistance and improve disease free progression.
Collapse
Affiliation(s)
- Mohamed Amine Lounis
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (M.A.L.); (B.P.); (K.L.-D.); (A.-M.M.-M.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Benjamin Péant
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (M.A.L.); (B.P.); (K.L.-D.); (A.-M.M.-M.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Kim Leclerc-Desaulniers
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (M.A.L.); (B.P.); (K.L.-D.); (A.-M.M.-M.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Dwaipayan Ganguli
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (D.G.); (A.Z.)
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Caroline Daneault
- Institut de Cardiologie de Montréal, Montreal, QC H1T 1C8, Canada; (C.D.); (M.R.)
| | - Matthieu Ruiz
- Institut de Cardiologie de Montréal, Montreal, QC H1T 1C8, Canada; (C.D.); (M.R.)
- Département de Nutrition, Université de Montréal (UdeM), Montreal, QC H3C 3J7, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; (D.G.); (A.Z.)
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Anne-Marie Mes-Masson
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (M.A.L.); (B.P.); (K.L.-D.); (A.-M.M.-M.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
- Département de Médecine, Université de Montréal (UdeM), Montreal, QC H3C 3J7, Canada
| | - Fred Saad
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada; (M.A.L.); (B.P.); (K.L.-D.); (A.-M.M.-M.)
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada
- Département de Chirurgie, Université de Montréal (UdeM), Montreal, QC H3C 3J7, Canada
- Correspondence:
| |
Collapse
|
39
|
Leveraging a gain-of-function allele of Caenorhabditis elegans paqr-1 to elucidate membrane homeostasis by PAQR proteins. PLoS Genet 2020; 16:e1008975. [PMID: 32750056 PMCID: PMC7428288 DOI: 10.1371/journal.pgen.1008975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/14/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
The C. elegans proteins PAQR-2 (a homolog of the human seven-transmembrane domain AdipoR1 and AdipoR2 proteins) and IGLR-2 (a homolog of the mammalian LRIG proteins characterized by a single transmembrane domain and the presence of immunoglobulin domains and leucine-rich repeats in their extracellular portion) form a complex that protects against plasma membrane rigidification by promoting the expression of fatty acid desaturases and the incorporation of polyunsaturated fatty acids into phospholipids, hence increasing membrane fluidity. In the present study, we leveraged a novel gain-of-function allele of PAQR-1, a PAQR-2 paralog, to carry out structure-function studies. We found that the transmembrane domains of PAQR-2 are responsible for its functional requirement for IGLR-2, that PAQR-1 does not require IGLR-2 but acts via the same pathway as PAQR-2, and that the divergent N-terminal cytoplasmic domains of the PAQR-1 and PAQR-2 proteins serve a regulatory function and may regulate access to the catalytic site of these proteins. We also show that overexpression of human AdipoR1 or AdipoR2 alone is sufficient to confer increased palmitic acid resistance in HEK293 cells, and thus act in a manner analogous to the PAQR-1 gain-of-function allele.
Collapse
|
40
|
Zheng Y, Jin J, Gao Y, Luo C, Wu X, Liu J. Phospholipase Cε Regulates Prostate Cancer Lipid Metabolism and Proliferation by Targeting AMP-Activated Protein Kinase (AMPK)/Sterol Regulatory Element-Binding Protein 1 (SREBP-1) Signaling Pathway. Med Sci Monit 2020; 26:e924328. [PMID: 32696762 PMCID: PMC7392057 DOI: 10.12659/msm.924328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Metabolic reprogramming is a common characteristic of numerous kinds of tumors, including prostate cancer (PCa). Tumor metabolism such as lipid metabolism provides sufficient lipids for tumor cell division and rapid growing as well as a vital source for formation of new cellular membranes. Phospholipase Cε (PLCε) is an oncogene that can drive proliferation, progression, and lipid metabolism of tumors, but its effect in lipid metabolism of PCa is not clear. MATERIAL AND METHODS Benign prostatic hyperplasia (BPH) and PCa tissue specimens were assessed for SREBP-1, FASN, and PLCε by immunohistochemistry, and PLCε was knocked-down by a lentiviral short hairpin RNA. The mRNA and protein level expression of related factors were tested by qPCR and Western blot analyses. Cell proliferation was assessed by clone formation, CCK-8, and Ki-67 assays. Nile red and oil red O staining were performed to detect endogenous lipid levels. Immunofluorescence was used to localize the protein of SREBP-1. Finally, a tumor xenograft assay of nude mice was performed to assess the role of PLCε in prostate tumor generation. RESULTS We found that overexpression of PLCε indicates low PFS in PCa and is involved in metastasis of PCa, and that the PLCε/AMPK/SREBP-1 signaling network promotes the progression of PCa through lipid metabolism in vivo and in vitro. CONCLUSIONS This study is the first to discover the lethal role of PLCε in lipid metabolism and malignant behavior of PCa, elucidation PCa occurrence and progression.
Collapse
Affiliation(s)
- Yongbo Zheng
- Department of Urology Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Jiajia Jin
- Chongqing University Cancer Hospital, Chongqing, China (mainland)
| | - Yingying Gao
- Department of Laboratory Diagnosis, Jiamusi University, Jiamusi, Heilongjiang, China (mainland)
| | - Chunli Luo
- College of Laboratory Medicine, Chongqing Medical University, Chongqing, China (mainland)
| | - Xiaohou Wu
- Department of Urology Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Jiayu Liu
- Department of Urology Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|
41
|
Diao P, Wang X, Jia F, Kimura T, Hu X, Shirotori S, Nakamura I, Sato Y, Nakayama J, Moriya K, Koike K, Gonzalez FJ, Aoyama T, Tanaka N. A saturated fatty acid-rich diet enhances hepatic lipogenesis and tumorigenesis in HCV core gene transgenic mice. J Nutr Biochem 2020; 85:108460. [PMID: 32992072 DOI: 10.1016/j.jnutbio.2020.108460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 05/25/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023]
Abstract
Previous studies suggested that high consumption of saturated fatty acid (SFA) is a risk factor for liver cancer. However, it remains unclear how dietary SFA affects liver tumorigenesis. This study aimed to investigate the impact of a SFA-rich diet on hepatic tumorigenesis using hepatitis C virus core gene transgenic (HCVcpTg) mice that spontaneously developed hepatic steatosis and tumors with aging. Male HCVcpTg mice were treated for 15 months with a purified control diet or SFA-rich diet prepared by replacing soybean oil in the control diet with hydrogenated coconut oil, and phenotypic changes were assessed. In this special diet, almost all dietary fatty acids were SFA. Long-term feeding of SFA-rich diet to HCVcpTg mice increased hepatic steatosis, liver dysfunction, and the prevalence of liver tumors, likely due to stimulation of de novo lipogenesis, activation of the pro-inflammatory and pro-oncogenic transcription factor nuclear factor-kappa B (NF-κB), enhanced c-Jun N-terminal kinase/activator protein 1 (JNK/AP-1) signaling and induction of the oncogenes cyclin D1 and p62/sequestosome 1. The SFA-rich diet did not affect liver fibrosis or autophagy. Collectively, long-term SFA-rich diet consumption promoted hepatic tumorigenesis mainly through activation of lipogenesis, NF-κB, and JNK/AP-1 signaling. We therefore propose that HCV-infected patients should avoid excessive intake of SFA-rich foods to prevent liver cancer.
Collapse
Affiliation(s)
- Pan Diao
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Xiaojing Wang
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan; Department of Gastroenterology, Lishui Hospital, Zhejiang University School of Medicine, Lishui, Zhejiang, People's Republic of China
| | - Fangping Jia
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takefumi Kimura
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Xiao Hu
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan; Department of Pathophysiology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Saki Shirotori
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ibuki Nakamura
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshiko Sato
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kyoji Moriya
- Department of Infection Control and Prevention, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Toshifumi Aoyama
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoki Tanaka
- Department of Metabolic Regulation, Shinshu University School of Medicine, Matsumoto, Japan; Research Center for Social Systems, Shinshu University, Matsumoto, Japan.
| |
Collapse
|
42
|
Yan JB, Lai CC, Jhu JW, Gongol B, Marin TL, Lin SC, Chiu HY, Yen CJ, Wang LY, Peng IC. Insulin and Metformin Control Cell Proliferation by Regulating TDG-Mediated DNA Demethylation in Liver and Breast Cancer Cells. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:282-294. [PMID: 32728616 PMCID: PMC7378318 DOI: 10.1016/j.omto.2020.06.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a frequent comorbidity of cancer. Hyperinsulinemia secondary to T2DM promotes cancer progression, whereas antidiabetic agents, such as metformin, have anticancer effects. However, the detailed mechanism for insulin and metformin-regulated cancer cell proliferation remains unclear. This study identified a mechanism by which insulin upregulated the expression of c-Myc, sterol regulatory element-binding protein 1 (SREBP1), and acetyl-coenzyme A (CoA) carboxylase 1 (ACC1), which are important regulators of lipogenesis and cell proliferation. Thymine DNA glycosylase (TDG), a DNA demethylase, was transactivated by c-Myc upon insulin treatment, thereby decreasing 5-carboxylcytosine (5caC) abundance in the SREBP1 promoter. On the other hand, metformin-activated AMP-activated protein kinase (AMPK) increased DNA methyltransferase 3A (DNMT3A) activity to increase 5-methylcytosine (5mC) abundance in the TDG promoter. This resulted in decreased TDG expression and enhanced 5caC abundance in the SREBP1 promoter. These findings demonstrate that c-Myc activates, whereas AMPK inhibits, TDG-mediated DNA demethylation of the SREBP1 promoter in insulin-promoted and metformin-suppressed cancer progression, respectively. This study indicates that TDG is an epigenetic-based therapeutic target for cancers associated with T2DM.
Collapse
Affiliation(s)
- Jia-Bao Yan
- Department of Life Sciences, National Cheng Kung University, Tainan City 701, Taiwan
| | - Chien-Cheng Lai
- Department of Life Sciences, National Cheng Kung University, Tainan City 701, Taiwan
| | - Jin-Wei Jhu
- Department of Life Sciences, National Cheng Kung University, Tainan City 701, Taiwan
| | - Brendan Gongol
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Traci L Marin
- Department of Health Sciences, Victor Valley College, Victorville, CA 92395, USA
| | - Shih-Chieh Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan
| | - Hsiang-Yi Chiu
- Department of Life Sciences, National Cheng Kung University, Tainan City 701, Taiwan
| | - Chia-Jui Yen
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan
| | - Liang-Yi Wang
- Department of Public Health, National Cheng Kung University, Tainan City 701, Taiwan
| | - I-Chen Peng
- Department of Life Sciences, National Cheng Kung University, Tainan City 701, Taiwan
| |
Collapse
|
43
|
A review on anti-cancer properties of Quercetin in breast cancer. Life Sci 2020; 248:117463. [DOI: 10.1016/j.lfs.2020.117463] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/10/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
|
44
|
Shetty A, Nagesh PK, Setua S, Hafeez BB, Jaggi M, Yallapu MM, Chauhan SC. Novel Paclitaxel Nanoformulation Impairs De Novo Lipid Synthesis in Pancreatic Cancer Cells and Enhances Gemcitabine Efficacy. ACS OMEGA 2020; 5:8982-8991. [PMID: 32337462 PMCID: PMC7178800 DOI: 10.1021/acsomega.0c00793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/01/2020] [Indexed: 05/08/2023]
Abstract
Pancreatic cancer (PanCa) is a highly lethal disease with a poor 5 year survival rate, less than 7%. It has a dismal prognosis, and more than 50% of cases are detected at an advanced and metastatic stage. Gemcitabine (GEM) is a gold standard chemotherapy used for PanCa treatment. However, GEM-acquired resistance in cancer cells is considered as a major setback for its continued clinical implementation. This phenomenon is evidently linked to de novo lipid synthesis. PanCa cells rely on de novo lipid synthesis, which is a prime event in survival and one of the key drivers for tumorigenesis, cancer progression, and drug resistance. Thus, the depletion of lipogenesis or lipid metabolism can not only improve treatment outcomes but also overcome chemoresistance, which is an unmet clinical need. Toward this effort, our study reports a unique paclitaxel-poly(lactic-co-glycolic acid) (PLGA) nanoparticles (PPNPs) formulation which can target lipid metabolism and improve anticancer efficacy of GEM in PanCa cells. PPNPs inhibit excessive lipid formation and alter membrane stability with compromised membrane integrity, which was confirmed by Fourier transform infrared and zeta potential measurements. The effective interference of PPNPs in lipid metabolic signaling was determined by reduction in the expression of FASN, ACC, lipin, and Cox-2 proteins. This molecular action profoundly enhances efficacy of GEM as evident through enhanced inhibitory effects on the tumorigenic and metastasis assays in PanCa cells. These data clearly suggest that the ablation of lipid metabolism might offer an innovative approach for the improved therapeutic outcome in PanCa patients.
Collapse
Affiliation(s)
- Advait Shetty
- Department
of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, 38163 Tennessee, United States
| | - Prashanth K.B. Nagesh
- Department
of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, 38163 Tennessee, United States
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, 78539 Texas, United States
| | - Saini Setua
- Department
of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, 38163 Tennessee, United States
| | - Bilal B. Hafeez
- Department
of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, 38163 Tennessee, United States
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, 78539 Texas, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, 78539 Texas, United States
| | - Meena Jaggi
- Department
of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, 38163 Tennessee, United States
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, 78539 Texas, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, 78539 Texas, United States
| | - Murali M. Yallapu
- Department
of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, 38163 Tennessee, United States
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, 78539 Texas, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, 78539 Texas, United States
| | - Subhash C. Chauhan
- Department
of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, 38163 Tennessee, United States
- Department
of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, 78539 Texas, United States
- South
Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, 78539 Texas, United States
| |
Collapse
|
45
|
Vettraino C, Peracchi A, Donini S, Parisini E. Structural characterization of human O-phosphoethanolamine phospho-lyase. Acta Crystallogr F Struct Biol Commun 2020; 76:160-167. [PMID: 32254049 PMCID: PMC7137380 DOI: 10.1107/s2053230x20002988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/03/2020] [Indexed: 11/10/2022] Open
Abstract
Human O-phosphoethanolamine phospho-lyase (hEtnppl; EC 4.2.3.2) is a pyridoxal 5'-phosphate-dependent enzyme that catalyzes the degradation of O-phosphoethanolamine (PEA) into acetaldehyde, phosphate and ammonia. Physiologically, the enzyme is involved in phospholipid metabolism, as PEA is the precursor of phosphatidylethanolamine in the CDP-ethanolamine (Kennedy) pathway. Here, the crystal structure of hEtnppl in complex with pyridoxamine 5'-phosphate was determined at 2.05 Å resolution by molecular replacement using the structure of A1RDF1 from Arthrobacter aurescens TC1 (PDB entry 5g4i) as the search model. Structural analysis reveals that the two proteins share the same general fold and a similar arrangement of active-site residues. These results provide novel and useful information for the complete characterization of the human enzyme.
Collapse
Affiliation(s)
- Chiara Vettraino
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Alessio Peracchi
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Stefano Donini
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Emilio Parisini
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, LV-1006, Latvia
| |
Collapse
|
46
|
Tutino V, Gigante I, Scavo MP, Refolo MG, De Nunzio V, Milella RA, Caruso MG, Notarnicola M. Stearoyl-CoA Desaturase-1 Enzyme Inhibition by Grape Skin Extracts Affects Membrane Fluidity in Human Colon Cancer Cell Lines. Nutrients 2020; 12:nu12030693. [PMID: 32143529 PMCID: PMC7146266 DOI: 10.3390/nu12030693] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
The polyphenolic compounds present in grape extracts have chemopreventive and anticancer properties. Here, we studied the ability of two grape skin extracts (GSEs), Autumn Royal and Egnatia, to influence the cell motility and membrane fluidity regulated by the enzyme Stearoyl-CoA desaturase-1 (SCD1) which increases with the cancer aggressiveness. Caco2 and SW480 human colon cancer cell lines were treated with increasing concentrations of GSEs to evaluate cell proliferation and motility. SCD1 levels were evaluated in both treated cell lines, by membrane lipidomic analysis conducted by gas chromatography. The expression levels of SCD1 and other factors involved in the reorganization of the cytoskeleton and focal adhesions were assessed by Real-time PCR, Western Blotting, and Immunofluorescence staining. High-performance liquid chromatography (HPLC) analyses were performed to determine the phenolic composition in the GSEs, finding them more expressed in Autumn Royal than in Egnatia. Both treatments reduced the levels of SCD1, phospho-Rac1/Cdc42/Rac1/Cdc42 ratio, Cofilin, Vimentin, and phospho-Paxillin especially in Caco2 compared to SW480, showing a different behavior of the two cell lines to these natural compounds. Our findings show that GSEs block the cell migration and membrane fluidity through a new mechanism of action involving structural cellular components.
Collapse
Affiliation(s)
- Valeria Tutino
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (V.T.); (I.G.); (V.D.N.)
| | - Isabella Gigante
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (V.T.); (I.G.); (V.D.N.)
| | - Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy;
| | - Maria Grazia Refolo
- Laboratory of Cellular and Molecular Biology, National Institute of Gastroenterology, “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy;
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (V.T.); (I.G.); (V.D.N.)
| | - Rosa Anna Milella
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, 70010 Turi, Bari, Italy;
| | - Maria Gabriella Caruso
- Ambulatory of Clinical Nutrition, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy;
| | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (V.T.); (I.G.); (V.D.N.)
- Correspondence: ; Tel.: +39-080-4994342
| |
Collapse
|
47
|
Liu Y, Hua W, Li Y, Xian X, Zhao Z, Liu C, Zou J, Li J, Fang X, Zhu Y. Berberine suppresses colon cancer cell proliferation by inhibiting the SCAP/SREBP-1 signaling pathway-mediated lipogenesis. Biochem Pharmacol 2019; 174:113776. [PMID: 31874145 DOI: 10.1016/j.bcp.2019.113776] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
Lipid metabolism is a significant section of energy homeostasis, and it affects the development of various cancers. Previous studies have revealed that berberine has strong anticancer and blood lipid-lowering effects. Here, we further investigated the effects of berberine on cell proliferation and lipogenesis in colon cancer cells and the relationship between the two effects. We found that berberine inhibited cell proliferation by inducing G0/G1 phase cell cycle arrest in colon cancer cells. Moreover, the expressions of key lipogenic enzymes were down-regulated by berberine and led to the suppressed lipid synthesis, which was linked to cell proliferation via Wnt/β-catenin pathway. Importantly, berberine inhibited sterol regulatory element-binding protein-1 (SREBP-1) activation and SREBP cleavage-activating protein (SCAP) expression, resulting in the downregulation of these lipogenic enzymes. Knockdown of SCAP by shRNA could abolish the effect of berberine on SREBP-1 activation. Besides the inhibitory effects in vitro, berberine suppressed the growth and lipogenesis of colon cancer xenograft in a SCAP-dependent manner as well. Together, our results suggest that berberine may serve as a candidate against tumor growth of colon cancer partially through targeting SCAP/SREBP-1 pathway driving lipogenesis.
Collapse
Affiliation(s)
- Yunxin Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, PR China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Weiwei Hua
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; Department of Pharmacy, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, PR China
| | - Yao Li
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xirui Xian
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Zheng Zhao
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, PR China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Chao Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, PR China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jianjun Zou
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, PR China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jun Li
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, PR China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xianjun Fang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China.
| | - Yubing Zhu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, PR China; School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
48
|
Yu Y, Dong JT, He B, Zou YF, Li XS, Xi CH, Yu Y. LncRNA SNHG16 induces the SREBP2 to promote lipogenesis and enhance the progression of pancreatic cancer. Future Oncol 2019; 15:3831-3844. [PMID: 31664866 DOI: 10.2217/fon-2019-0321] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: Blocking lipogenesis could significantly inhibit the progression of pancreatic cancer. Exploring the regulatory mechanisms of lipogenesis by lncRNA SNHG16 might be of great significance to control the development of pancreatic cancer. Methods: The proliferation, migration, invasion and lipogenesis were determined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, wound healing, transwell and Oil Red O staining assays, respectively. The interactions among lncRNA SNHG16, miR-195 and SREBP2 were analyzed by dual luciferase reporter assays. Results: Both the knock down of lncRNA SNHG16 and SREBP2 and overexpression of miR-195 suppressed the proliferation, migration, invasion and lipogenesis in pancreatic cancer cells. LncRNA SNHG16 directly sponged miR-195 to modulate the lipogenesis via regulating the expression of SREBP2. Conclusion: LncRNA SNHG16 accelerated the development of pancreatic cancer and promoted lipogenesis via directly regulating miR-195/SREBP2 axis.
Collapse
Affiliation(s)
- Yi Yu
- Department of Pediatrics, Ruijin Hospital North, Shanghai Jiaotong University, School of Medicine, Shanghai 201801, PR China
| | - Jia-Tian Dong
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, PR China
| | - Bing He
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, PR China
| | - Yu-Feng Zou
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, PR China
| | - Xue-Song Li
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, PR China
| | - Chen-Hui Xi
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, PR China
| | - Yuan Yu
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, PR China
| |
Collapse
|
49
|
Caspase-10 inhibits ATP-citrate lyase-mediated metabolic and epigenetic reprogramming to suppress tumorigenesis. Nat Commun 2019; 10:4255. [PMID: 31534141 PMCID: PMC6751159 DOI: 10.1038/s41467-019-12194-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/27/2019] [Indexed: 01/18/2023] Open
Abstract
Caspase-10 belongs to the class of initiator caspases and is a close homolog of caspase-8. However, the lack of caspase-10 in mice and limited substrate repertoire restricts the understanding of its physiological functions. Here, we report that ATP-citrate lyase (ACLY) is a caspase-10 substrate. Caspase-10 cleaves ACLY at the conserved Asp1026 site under conditions of altered metabolic homeostasis. Cleavage of ACLY abrogates its enzymatic activity and suppresses the generation of acetyl-CoA, which is critical for lipogenesis and histone acetylation. Thus, caspase-10-mediated ACLY cleavage results in reduced intracellular lipid levels and represses GCN5-mediated histone H3 and H4 acetylation. Furthermore, decline in GCN5 activity alters the epigenetic profile, resulting in downregulation of proliferative and metastatic genes. Thus caspase-10 suppresses ACLY-promoted malignant phenotype. These findings expand the substrate repertoire of caspase-10 and highlight its pivotal role in inhibiting tumorigenesis through metabolic and epigenetic mechanisms. Caspases are most closely associated with cell death, but many have other cellular functions. Here, Das et al. find that upon metabolic stress, caspase-10 cleaves ACLY to regulate metabolic homeostasis and epigenetic reprogramming by altering Acetyl-CoA levels.
Collapse
|
50
|
Elia J, Carbonnelle D, Logé C, Ory L, Huvelin JM, Tannoury M, Diab-Assaf M, Petit K, Nazih H. 4-cholesten-3-one decreases breast cancer cell viability and alters membrane raft-localized EGFR expression by reducing lipogenesis and enhancing LXR-dependent cholesterol transporters. Lipids Health Dis 2019; 18:168. [PMID: 31477154 PMCID: PMC6721338 DOI: 10.1186/s12944-019-1103-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/01/2019] [Indexed: 03/09/2023] Open
Abstract
Background The alteration of lipid metabolism in cancer cells is recognized as one of the most important metabolic hallmarks of cancer. Membrane rafts defined as plasma membrane microdomains enriched in cholesterol and sphingolipids serve as platforms for signaling regulation in cancer. The main purpose of this study was to evaluate the effect of the cholesterol metabolite, 4-cholesten-3-one, on lipid metabolism and membrane raft integrity in two breast cancer cell lines, MCF-7 and MDA-MB-231. Its ability to reduce cell viability and migration has also been investigated. Methods RT-qPCR was performed to evaluate the expression of enzymes involved in lipogenesis and cholesterol synthesis, and ABCG1 and ABCA1 transporters involved in cholesterol efflux. Its effect on cell viability and migration was studied using the MTT assay, the wound healing assay and the Transwell migration assay, respectively. The effect of 4-cholesten-3-one on membrane rafts integrity was investigated by studying the protein expression of flotillin-2, a membrane raft marker, and raft-enriched EGFR by western blot. Results Interestingly, we found that 4-cholesten-3-one treatment decreased mRNA expression of different enzymes including ACC1, FASN, SCD1 and HMGCR. We further demonstrated that 4-cholesten-3-one increased the expression of ABCG1 and ABCA1. We also found that 4-cholesten-3-one decreased the viability of MCF-7 and MDA-MB-231 cells. This effect was neutralized after treatment with LXR inverse agonist or after LXRβ knockdown by siRNA. As a result, we also demonstrated that 4-cholesten-3-one disrupts membrane rafts and cell migration capacity. Conclusion Our results show that 4-cholesten-3-one exerts promising antitumor activity by altering LXR-dependent lipid metabolism in breast cancer cells without increasing lipogenesis.
Collapse
Affiliation(s)
- Josiane Elia
- Faculté des Sciences Pharmaceutiques et Biologiques, Université de Nantes, 9 Rue Bias, BP 53508, F-44035, Nantes Cedex 1, France
| | - Delphine Carbonnelle
- Faculté des Sciences Pharmaceutiques et Biologiques, Université de Nantes, 9 Rue Bias, BP 53508, F-44035, Nantes Cedex 1, France
| | - Cédric Logé
- Département de Chimie Thérapeutique, Université de Nantes, Nantes Atlantique Universités, EA1155 - IICiMed, Faculté de Pharmacie, Nantes, France
| | - Lucie Ory
- Faculté des Sciences Pharmaceutiques et Biologiques, Université de Nantes, 9 Rue Bias, BP 53508, F-44035, Nantes Cedex 1, France
| | - Jean-Michel Huvelin
- Faculté des Sciences Pharmaceutiques et Biologiques, Université de Nantes, 9 Rue Bias, BP 53508, F-44035, Nantes Cedex 1, France
| | - Mona Tannoury
- Faculté des Sciences II, Ecole Doctorale des Sciences et de Technologie, Université Libanaise, Fanar, Lebanon
| | - Mona Diab-Assaf
- Faculté des Sciences II, Ecole Doctorale des Sciences et de Technologie, Université Libanaise, Fanar, Lebanon
| | - Karina Petit
- Faculté des Sciences Pharmaceutiques et Biologiques, Université de Nantes, 9 Rue Bias, BP 53508, F-44035, Nantes Cedex 1, France
| | - Hassan Nazih
- Faculté des Sciences Pharmaceutiques et Biologiques, Université de Nantes, 9 Rue Bias, BP 53508, F-44035, Nantes Cedex 1, France.
| |
Collapse
|