1
|
Sigalov AB. TREM-1 and TREM-2 as therapeutic targets: clinical challenges and perspectives. Front Immunol 2024; 15:1498993. [PMID: 39737196 PMCID: PMC11682994 DOI: 10.3389/fimmu.2024.1498993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/30/2024] [Indexed: 01/01/2025] Open
Abstract
TREM-1 and TREM-2 as Therapeutic Targets: Clinical Challenges and Perspectives.
Collapse
|
2
|
Ming S, Li X, Xiao Q, Qu S, Wang Q, Fang Q, Liang P, Xu Y, Yang J, Yang Y, Huang X, Wu Y. TREM2 aggravates sepsis by inhibiting fatty acid oxidation via the SHP1/BTK axis. J Clin Invest 2024; 135:e159400. [PMID: 39405126 DOI: 10.1172/jci159400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/08/2024] [Indexed: 01/03/2025] Open
Abstract
Impaired fatty acid oxidation (FAO) and the therapeutic benefits of FAO restoration have been revealed in sepsis. However, the regulatory factors contributing to FAO dysfunction during sepsis remain inadequately clarified. In this study, we identified a subset of lipid-associated macrophages characterized by high expression of trigger receptor expressed on myeloid cells 2 (TREM2) and demonstrated that TREM2 acted as a suppressor of FAO to increase the susceptibility to sepsis. TREM2 expression was markedly upregulated in sepsis patients and correlated with the severity of sepsis. Knockout of TREM2 in macrophages improved the survival rate and reduced inflammation and organ injuries of sepsis mice. Notably, TREM2-deficient mice exhibited decreased triglyceride accumulation and an enhanced FAO rate. Further observations showed that the blockade of FAO substantially abolished the alleviated symptoms observed in TREM2-knockout mice. Mechanically, we demonstrated that TREM2 interacted with the phosphatase SHP1 to inhibit bruton tyrosine kinase-mediated (BTK-mediated) FAO in sepsis. Our findings expand the understanding of FAO dysfunction in sepsis and reveal TREM2 as a critical regulator of FAO that may provide a promising target for the clinical treatment of sepsis.
Collapse
Affiliation(s)
- Siqi Ming
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai Hospital, Zhuhai, China
| | - Xingyu Li
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Key Research Laboratory of Traditional Chinese Medicine in the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, the Fifth Affiliated Hospital, SunYat-Sen University, Zhuhai, China
| | - Qiang Xiao
- Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Siying Qu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qiaohua Wang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qiongyan Fang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Pingping Liang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yating Xu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People' s Hospital, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Jingwen Yang
- Affiliated Qingyuan Hospital, The Sixth Clinical Medical School, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Yongqiang Yang
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai Hospital, Zhuhai, China
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Key Research Laboratory of Traditional Chinese Medicine in the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, the Fifth Affiliated Hospital, SunYat-Sen University, Zhuhai, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People' s Hospital, the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- Key Research Laboratory of Traditional Chinese Medicine in the Prevention and Treatment of Infectious Diseases, Traditional Chinese Medicine Bureau of Guangdong Province, the Fifth Affiliated Hospital, SunYat-Sen University, Zhuhai, China
| |
Collapse
|
3
|
Bharadwaj S, Groza Y, Mierzwicka JM, Malý P. Current understanding on TREM-2 molecular biology and physiopathological functions. Int Immunopharmacol 2024; 134:112042. [PMID: 38703564 DOI: 10.1016/j.intimp.2024.112042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 05/06/2024]
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM-2), a glycosylated receptor belonging to the immunoglobin superfamily and especially expressed in the myeloid cell lineage, is frequently explained as a reminiscent receptor for both adaptive and innate immunity regulation. TREM-2 is also acknowledged to influence NK cell differentiation via the PI3K and PLCγ signaling pathways, as well as the partial activation or direct inhibition of T cells. Additionally, TREM-2 overexpression is substantially linked to cell-specific functions, such as enhanced phagocytosis, reduced toll-like receptor (TLR)-mediated inflammatory cytokine production, increased transcription of anti-inflammatory cytokines, and reshaped T cell function. Whereas TREM-2-deficient cells exhibit diminished phagocytic function and enhanced proinflammatory cytokines production, proceeding to inflammatory injuries and an immunosuppressive environment for disease progression. Despite the growing literature supporting TREM-2+ cells in various diseases, such as neurodegenerative disorders and cancer, substantial facets of TREM-2-mediated signaling remain inadequately understood relevant to pathophysiology conditions. In this direction, herein, we have summarized the current knowledge on TREM-2 biology and cell-specific TREM-2 expression, particularly in the modulation of pivotal TREM-2-dependent functions under physiopathological conditions. Furthermore, molecular regulation and generic biological relevance of TREM-2 are also discussed, which might provide an alternative approach for preventing or reducing TREM-2-associated deformities. At last, we discussed the TREM-2 function in supporting an immunosuppressive cancer environment and as a potential drug target for cancer immunotherapy. Hence, summarized knowledge of TREM-2 might provide a window to overcome challenges in clinically effective therapies for TREM-2-induced diseases in humans.
Collapse
Affiliation(s)
- Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic.
| | - Yaroslava Groza
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Joanna M Mierzwicka
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Průmyslová 595, 252 50 Vestec, Czech Republic.
| |
Collapse
|
4
|
Brown GC, Heneka MT. The endotoxin hypothesis of Alzheimer's disease. Mol Neurodegener 2024; 19:30. [PMID: 38561809 PMCID: PMC10983749 DOI: 10.1186/s13024-024-00722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Lipopolysaccharide (LPS) constitutes much of the surface of Gram-negative bacteria, and if LPS enters the human body or brain can induce inflammation and act as an endotoxin. We outline the hypothesis here that LPS may contribute to the pathophysiology of Alzheimer's disease (AD) via peripheral infections or gut dysfunction elevating LPS levels in blood and brain, which promotes: amyloid pathology, tau pathology and microglial activation, contributing to the neurodegeneration of AD. The evidence supporting this hypothesis includes: i) blood and brain levels of LPS are elevated in AD patients, ii) AD risk factors increase LPS levels or response, iii) LPS induces Aβ expression, aggregation, inflammation and neurotoxicity, iv) LPS induces TAU phosphorylation, aggregation and spreading, v) LPS induces microglial priming, activation and neurotoxicity, and vi) blood LPS induces loss of synapses, neurons and memory in AD mouse models, and cognitive dysfunction in humans. However, to test the hypothesis, it is necessary to test whether reducing blood LPS reduces AD risk or progression. If the LPS endotoxin hypothesis is correct, then treatments might include: reducing infections, changing gut microbiome, reducing leaky gut, decreasing blood LPS, or blocking LPS response.
Collapse
Affiliation(s)
- Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
5
|
Menezes dos Reis L, Berçot MR, Castelucci BG, Martins AJE, Castro G, Moraes-Vieira PM. Immunometabolic Signature during Respiratory Viral Infection: A Potential Target for Host-Directed Therapies. Viruses 2023; 15:v15020525. [PMID: 36851739 PMCID: PMC9965666 DOI: 10.3390/v15020525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
RNA viruses are known to induce a wide variety of respiratory tract illnesses, from simple colds to the latest coronavirus pandemic, causing effects on public health and the economy worldwide. Influenza virus (IV), parainfluenza virus (PIV), metapneumovirus (MPV), respiratory syncytial virus (RSV), rhinovirus (RhV), and coronavirus (CoV) are some of the most notable RNA viruses. Despite efforts, due to the high mutation rate, there are still no effective and scalable treatments that accompany the rapid emergence of new diseases associated with respiratory RNA viruses. Host-directed therapies have been applied to combat RNA virus infections by interfering with host cell factors that enhance the ability of immune cells to respond against those pathogens. The reprogramming of immune cell metabolism has recently emerged as a central mechanism in orchestrated immunity against respiratory viruses. Therefore, understanding the metabolic signature of immune cells during virus infection may be a promising tool for developing host-directed therapies. In this review, we revisit recent findings on the immunometabolic modulation in response to infection and discuss how these metabolic pathways may be used as targets for new therapies to combat illnesses caused by respiratory RNA viruses.
Collapse
Affiliation(s)
- Larissa Menezes dos Reis
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Marcelo Rodrigues Berçot
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil
| | - Bianca Gazieri Castelucci
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Ana Julia Estumano Martins
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas 13083-970, SP, Brazil
| | - Gisele Castro
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Pedro M. Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas 13083-872, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas 13083-872, SP, Brazil
- Correspondence:
| |
Collapse
|
6
|
Zhang C, Chen S. Role of TREM2 in the Development of Neurodegenerative Diseases After Traumatic Brain Injury. Mol Neurobiol 2022; 60:342-354. [PMID: 36264434 DOI: 10.1007/s12035-022-03094-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022]
Abstract
Traumatic brain injury (TBI) has been found as the primary cause of morbidity and disability worldwide, which has posed a significant social and economic burden. The first stage of TBI produces brain edema, axonal damage, and hypoxia, thus having an effect on the blood-brain barrier function, promoting inflammatory responses, and increasing oxidative stress. Patients with TBI are more likely to develop post-traumatic epilepsy, behavioral issues, as well as mental illnesses. The long-term effects arising from TBI have aroused rising attention over the past few years. Microglia in the brain can express the triggering receptor expressed on myeloid cells 2 (TREM2), which is a single transmembrane receptor pertaining to the immunoglobulin superfamily. The receptor has been correlated with a number of neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and other relevant diseases. In this review, it is demonstrated that TREM2 is promising to serve as a neuroprotective factor for neurodegenerative disorders following TBI by modulating the function of microglial cells. Accordingly, it has potential avenues for TREM2-related therapies to improve long-term recovery after TBI.
Collapse
Affiliation(s)
- Chunhao Zhang
- Department of Neurosurgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Shiwen Chen
- Department of Neurosurgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
7
|
Kim K, Park SE, Park JS, Choi JH. Characteristics of plaque lipid-associated macrophages and their possible roles in the pathogenesis of atherosclerosis. Curr Opin Lipidol 2022; 33:283-288. [PMID: 35942822 PMCID: PMC9594140 DOI: 10.1097/mol.0000000000000842] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW Recent findings from single-cell transcriptomic studies prompted us to revisit the role of plaque foamy macrophages in the pathogenesis of atherosclerosis. In this review, we compared the gene expression profile of plaque foamy macrophages with those of other disease-associated macrophages and discussed their functions in the pathogenesis of atherosclerosis. RECENT FINDINGS To understand the phenotypes of macrophages in atherosclerotic aorta, many research groups performed single-cell RNA sequencing analysis and found that there are distinct phenotypic differences among intimal foamy, nonfoamy and adventitial macrophages. Especially, the plaque foamy macrophages express triggering receptor expressed on myeloid cells 2 (TREM2), a key common feature of disease-associated macrophages in Alzheimer's disease, obesity, cirrhosis and nonalcoholic steatohepatitis. These TREM2 + macrophages seem to be protective against chronic inflammation. SUMMARY As the gene expression profile of plaque foamy macrophages is highly comparable to that of lipid-associated macrophages from obesity, we named the plaque foamy macrophages as plaque lipid-associated macrophages (PLAMs). PLAMs have a high level of gene expression related to phago/endocytosis, lysosome, lipid metabolism and oxidative phosphorylation. Considering the protective function of lipid-associated macrophages against adipose tissue inflammation, PLAMs may suppress atherosclerotic inflammation by removing modified lipids and cell debris in the plaque.
Collapse
Affiliation(s)
- Kyeongdae Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang Institute of Bioscience and Biotechnology, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
8
|
Sigalov AB. Inhibition of TREM-2 Markedly Suppresses Joint Inflammation and Damage in Experimental Arthritis. Int J Mol Sci 2022; 23:ijms23168857. [PMID: 36012120 PMCID: PMC9408405 DOI: 10.3390/ijms23168857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
The triggering receptors expressed on myeloid cells (TREMs) are a family of activating immune receptors that regulate the inflammatory response. TREM-1, which is expressed on monocytes and/or macrophages and neutrophils, functions as an inflammation amplifier and plays a role in the pathogenesis of rheumatoid arthritis (RA). Unlike TREM-1, the role in RA of TREM-2, which is expressed on macrophages, immature monocyte-derived dendritic cells, osteoclasts, and microglia, remains unclear and controversial. TREM-2 ligands are still unknown, adding further uncertainty to our understanding of TREM-2 function. Previously, we demonstrated that TREM-1 blockade, using a ligand-independent TREM-1 inhibitory peptide sequence GF9 rationally designed by our signaling chain homooligomerization (SCHOOL) model of cell signaling, ameliorates collagen-induced arthritis (CIA) severity in mice. Here, we designed a TREM-2 inhibitory peptide sequence IA9 and tested it in the therapeutic CIA model, either as a free 9-mer peptide IA9, or as a part of a 31-mer peptide IA31 incorporated into lipopeptide complexes (IA31-LPC), for targeted delivery. We demonstrated that administration of IA9, but not a control peptide, after induction of arthritis diminished release of proinflammatory cytokines and dramatically suppressed joint inflammation and damage, suggesting that targeting TREM-2 may be a promising approach for the treatment of RA.
Collapse
|
9
|
Abstract
Macrophage surface receptors are critical for pathogen defense, as they are the gatekeepers for pathogen entry and sensing, which trigger robust immune responses. TREM2 (triggering receptor expressed on myeloid cells 2) is a transmembrane surface receptor that mediates anti-inflammatory immune signaling. A recent study showed that TREM2 is a receptor for mycolic acids in the mycobacterial cell wall and inhibits macrophage activation. However, the underlying functional mechanism of how TREM2 regulates the macrophage antimycobacterial response remains unclear. Here, we show that Mycobacterium tuberculosis, the causative agent for tuberculosis, specifically binds to human TREM2 to disable the macrophage antibacterial response. Live but not killed mycobacteria specifically trigger the upregulation of TREM2 during macrophage infection through a mechanism dependent on STING (the stimulator of interferon genes). TREM2 facilitated uptake of M. tuberculosis into macrophages and is responsible for blocking the production of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and reactive oxygen species (ROS), while enhancing the production of interferon-β (IFN-β) and IL-10. TREM2-mediated blockade of ROS production promoted the survival of M. tuberculosis within infected macrophages. Consistent with this, genetic deletion or antibody-mediated neutralization of TREM2 reduced the intracellular survival of M. tuberculosis through enhanced production of ROS. Importantly, inhibition of type I IFN signaling in TREM2-overexpressing macrophages restored the ability of these cells to produce inflammatory cytokines and ROS, resulting in normal levels of intracellular bacteria killing. Collectively, our study identifies TREM2 as an attractive host receptor for host-directed antimycobacterial therapeutics. IMPORTANCE Mycobacterium tuberculosis is one of the most ancient bacterial pathogens and remains the leading cause of death from a single bacterial agent. The success of M. tuberculosis relies greatly on its ability to parasitize and disable its host macrophages. Previous studies have found that M. tuberculosis uses its unique cell wall lipids to manipulate the immune response by binding to specific surface receptors on macrophages. Our study reveals that M. tuberculosis binds to TREM2, an immunomodulatory receptor expressed on macrophages, to facilitate a "silent" mode of entry. Increased levels of TREM2 triggered by intracellular sensing of M. tuberculosis promoted the intracellular survival of M. tuberculosis through type I IFN-driven inhibition of reactive oxygen species (ROS) and proinflammatory cytokine production. Importantly, deletion of TREM2 reversed the effects of "silent" entry and resulted in increased production of inflammatory cytokines, generation of ROS, and cell death. As such, antibody-mediated or pharmacological targeting of TREM2 could be a promising strategy for novel treatments against M. tuberculosis infection.
Collapse
|
10
|
Endo-Umeda K, Kim E, Thomas DG, Liu W, Dou H, Yalcinkaya M, Abramowicz S, Xiao T, Antonson P, Gustafsson JÅ, Makishima M, Reilly MP, Wang N, Tall AR. Myeloid LXR (Liver X Receptor) Deficiency Induces Inflammatory Gene Expression in Foamy Macrophages and Accelerates Atherosclerosis. Arterioscler Thromb Vasc Biol 2022; 42:719-731. [PMID: 35477277 PMCID: PMC9162499 DOI: 10.1161/atvbaha.122.317583] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/21/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cholesterol loaded macrophage foam cells are a prominent feature of atherosclerotic plaques. Single-cell RNA sequencing has identified foam cells as TREM2 (triggering receptor expressed on myeloid cells 2) positive populations with low expression of inflammatory genes, resembling the TREM2 positive microglia of neurodegenerative diseases. Cholesterol loading of macrophages in vitro results in activation of LXR (liver X receptor) transcription factors and suppression of inflammatory genes. METHODS To test the hypothesis that LXRs mediate anti-inflammatory effects in Trem2 expressing atherosclerotic plaque foam cells, we performed RNA profiling on plaque cells from hypercholesterolemic mice with myeloid LXR deficiency. RESULTS Myeloid LXR deficiency led to a dramatic increase in atherosclerosis with increased monocyte entry, foam cell formation, and plaque inflammation. Bulk cell-RNA profiling of plaque myeloid cells showed prominent upregulation of inflammatory mediators including oxidative, chemokine, and chemotactic genes. Single-cell RNA sequencing revealed increased numbers of foamy TREM2-expressing macrophages; however, these cells had reduced expression of the Trem2 gene expression module, including phagocytic and cholesterol efflux genes, and had switched to a proinflammatory and proliferative phenotype. Expression of Trem2 was suppressed by inflammatory signals but not directly affected by LXR activation in bone marrow-derived macrophages. CONCLUSIONS Our current studies reveal the key role of macrophage LXRs in promoting the Trem2 gene expression program and in suppressing inflammation in foam cells of atherosclerotic plaques.
Collapse
Affiliation(s)
- Kaori Endo-Umeda
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
- Division of Biochemistry, Department of Biomedical
Sciences, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Eunyoung Kim
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
- Division of Cardiology, Department of Medicine, Columbia
University, New York, NY 10032, USA
| | - David G. Thomas
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
- Present Address: Department of Medicine, New York
Presbyterian Hospital/Weill Cornell Medicine, New York, NY, USA
| | - Wenli Liu
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
| | - Huijuan Dou
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
| | - Mustafa Yalcinkaya
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
| | - Sandra Abramowicz
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
| | - Tong Xiao
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
| | - Per Antonson
- Department of Biosciences and Nutrition, Karolinska
Institute, Huddinge, SE-14157, Sweden
| | - Jan-Åke Gustafsson
- Department of Biosciences and Nutrition, Karolinska
Institute, Huddinge, SE-14157, Sweden
- Center for Nuclear Receptors and Cell Signaling, University
of Houston, Houston, TX 77204, USA
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical
Sciences, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Muredach P. Reilly
- Division of Cardiology, Department of Medicine, Columbia
University, New York, NY 10032, USA
| | - Nan Wang
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
| | - Alan R. Tall
- Division of Molecular Medicine, Department of Medicine,
Columbia University, New York, NY 10032, USA
| |
Collapse
|
11
|
Ruganzu JB, Peng X, He Y, Wu X, Zheng Q, Ding B, Lin C, Guo H, Yang Z, Zhang X, Yang W. Downregulation of TREM2 expression exacerbates neuroinflammatory responses through TLR4-mediated MAPK signaling pathway in a transgenic mouse model of Alzheimer's disease. Mol Immunol 2021; 142:22-36. [PMID: 34959070 DOI: 10.1016/j.molimm.2021.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022]
Abstract
Activation of glial cells and neuroinflammation play an important role in the onset and development of Alzheimer's disease (AD). Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglia-specific receptor in the brain that is involved in regulating neuroinflammation. However, the precise effects of TREM2 on neuroinflammatory responses and its underlying molecular mechanisms in AD have not been studied in detail. Here, we employed a lentiviral-mediated strategy to downregulation of TREM2 expression on microglia in the brain of APPswe/PS1dE9 (APP/PS1) transgenic mice and BV2 cells. Our results showed that downregulation of TREM2 significantly aggravated AD-related neuropathology including Aβ accumulation, peri-plaque microgliosis and astrocytosis, as well as neuronal and synapse-associated proteins loss, which was accompanied by a decline in cognitive ability. The further mechanistic study revealed that downregulation of TREM2 expression initiated neuroinflammatory responses through toll-like receptor 4 (TLR4)-mediated mitogen-activated protein kinase (MAPK) signaling pathway and subsequent stimulating the production of pro-inflammatory cytokines in vivo and in vitro. Moreover, blockade of p38, JNK, and ERK1/2 inhibited the release of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) induced by Aβ1-42 in TREM2-knocked down BV2 cells. Taken together, these findings indicated that TREM2 might be a potential therapeutic target for AD and other neuroinflammation-related diseases.
Collapse
Affiliation(s)
- John Bosco Ruganzu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xiaoqian Peng
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Yingying He
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xiangyuan Wu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Quzhao Zheng
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Bo Ding
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Chengheng Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Hongsong Guo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Zikang Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xiao Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Weina Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
12
|
Kerget F, Kerget B, İba Yılmaz S, Kızıltunç A. Evaluation of the relationship between TREM-1/TREM-2 ratio and clinical course in COVID-19 pneumonia. Int J Clin Pract 2021; 75:e14697. [PMID: 34365706 PMCID: PMC8420347 DOI: 10.1111/ijcp.14697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/02/2021] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE The inflammatory/anti-inflammatory balance has an important role in the clinical course of SARS-CoV-2 infection (COVID-19), which has affected over 100 million people since it first appeared in China in December 2019. The aim of this study was to investigate the relationship between triggering receptor expressed on myeloid cells (TREM)-1/TREM-2 ratio and COVID-19 severity. METHODS A total of 171 individuals were included in the study: 121 patients who were admitted to the chest diseases department and intensive care unit of our hospital and diagnosed with COVID-19 by real-time PCR of nasopharyngeal swab samples from December 2020 to March 2021 and a control group consisting of 50 asymptomatic health workers in our hospital who had negative real-time PCR results during routine COVID-19 screening. RESULTS TREM-1 level was significantly higher in patients with severe disease compared with the moderate and control groups (P = .003, P = .001). TREM-2 levels did not differ significantly in moderate and severe patients (P = .36) but were significantly higher in both patient groups compared with the control group (P = .001 for both). TREM-1/TREM-2 ratio was significantly higher in the severe patient group than in the moderate and control groups (P = .001 for both). In receiver operating characteristic curve analysis of TREM-1/TREM-2 ratio in patients with moderate and severe COVID-19, the area under the curve was 0.723. Using a cut-off value of 0.125 for TREM-1/TREM-2 ratio in the Youden index calculation, the sensitivity was 60% and specificity was 71%. CONCLUSION Experience with the positive effects of medical treatments to restore inflammatory balance in the course of COVID-19 is steadily increasing. TREM-1 and TREM-2 have an important role in inflammation and may serve as biomarkers and therapeutic targets in the early treatment and follow-up of COVID-19.
Collapse
Affiliation(s)
- Ferhan Kerget
- Depertmant of Infection Diseases and Clinical MicrobiologyHealth Sciences University Erzurum Regional Education and Research HospitalErzurumTurkey
| | - Buğra Kerget
- Depertment of Pulmonary DiseasesAtaturk University School of MedicineErzurumTurkey
| | - Sibel İba Yılmaz
- Depertmant of Infection Diseases and Clinical MicrobiologyHealth Sciences University Erzurum Regional Education and Research HospitalErzurumTurkey
| | - Ahmet Kızıltunç
- Depertment of BiochemistryAtaturk University School of MedicineErzurumTurkey
| |
Collapse
|
13
|
Cheng J, Dong Y, Ma J, Pan R, Liao Y, Kong X, Li X, Li S, Chen P, Wang L, Yu Y, Yuan Z. Microglial Calhm2 regulates neuroinflammation and contributes to Alzheimer's disease pathology. SCIENCE ADVANCES 2021; 7:7/35/eabe3600. [PMID: 34433553 PMCID: PMC8386937 DOI: 10.1126/sciadv.abe3600] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the world. Neuronal calcium dysfunction and microglial-mediated neuroinflammation are closely associated with the development of AD. However, it remains unknown whether calcium dysfunction contributes to microglial activation and, in turn, AD pathology in vivo. In this study, we demonstrated that the expression of calcium homeostasis modulator family protein 2 (Calhm2) is increased in an AD mouse model. In 5×FAD mice carrying five familial AD gene mutations, both conventional knockout of Calhm2 and conditional microglial knockout of Calhm2 significantly reduced amyloid β deposition, neuroinflammation, and cognitive impairments. Mechanistically, knockout of Calhm2 inhibited microglial proinflammatory activity but increased phagocytic activity, leading to restoration of the balance between inflammation and phagocytosis. In addition, knockout of Calhm2 reduced acute LPS-induced neuroinflammation. These results highlight an important role for Calhm2 in microglial activation and provide a potential therapeutic target for diseases related to microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Jinbo Cheng
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing 100081, China.
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yuan Dong
- Department of Biochemistry, Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Jun Ma
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Ruiyuan Pan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yajin Liao
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiangxi Kong
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiaoheng Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Shuoshuo Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Pingfang Chen
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Liang Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
| | - Ye Yu
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Zengqiang Yuan
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing 100081, China.
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing 100069, China
| |
Collapse
|
14
|
Knoll R, Schultze JL, Schulte-Schrepping J. Monocytes and Macrophages in COVID-19. Front Immunol 2021; 12:720109. [PMID: 34367190 PMCID: PMC8335157 DOI: 10.3389/fimmu.2021.720109] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is a contagious viral disease caused by SARS-CoV-2 that led to an ongoing pandemic with massive global health and socioeconomic consequences. The disease is characterized primarily, but not exclusively, by respiratory clinical manifestations ranging from mild common cold symptoms, including cough and fever, to severe respiratory distress and multi-organ failure. Macrophages, a heterogeneous group of yolk-sac derived, tissue-resident mononuclear phagocytes of complex ontogeny present in all mammalian organs, play critical roles in developmental, homeostatic and host defense processes with tissue-dependent plasticity. In case of infection, they are responsible for early pathogen recognition, initiation and resolution of inflammation, as well as repair of tissue damage. Monocytes, bone-marrow derived blood-resident phagocytes, are recruited under pathological conditions such as viral infections to the affected tissue to defend the organism against invading pathogens and to aid in efficient resolution of inflammation. Given their pivotal function in host defense and the potential danger posed by their dysregulated hyperinflammation, understanding monocyte and macrophage phenotypes in COVID-19 is key for tackling the disease's pathological mechanisms. Here, we outline current knowledge on monocytes and macrophages in homeostasis and viral infections and summarize concepts and key findings on their role in COVID-19. While monocytes in the blood of patients with moderate COVID-19 present with an inflammatory, interferon-stimulated gene (ISG)-driven phenotype, cellular dysfunction epitomized by loss of HLA-DR expression and induction of S100 alarmin expression is their dominant feature in severe disease. Pulmonary macrophages in COVID-19 derived from infiltrating inflammatory monocytes are in a hyperactivated state resulting in a detrimental loop of pro-inflammatory cytokine release and recruitment of cytotoxic effector cells thereby exacerbating tissue damage at the site of infection.
Collapse
Affiliation(s)
- Rainer Knoll
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Joachim L. Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and the University of Bonn, Bonn, Germany
| | - Jonas Schulte-Schrepping
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
15
|
Regulation of TREM1-Mediated Inflammation in Hepatocellular Carcinoma Cells. REPORTS 2021. [DOI: 10.3390/reports4020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC), accounting for more than 90% of cases of primary liver cancer, is the third most common cause of cancer-related death worldwide. Chronic inflammation precedes the development of cirrhosis and HCC. TREM (triggering receptor expressed on myeloid cell)-1 is an inflammatory marker and amplifier of inflammation that signals through PI3K and ERK1/2 to activate transcription factors, resulting in increased secretion of pro-inflammatory cytokines, causing chronic inflammation and predisposing the liver to carcinogenesis. Thus, targeting TREM-1 in HCC might be a potential therapeutic target. A low level of vitamin D has been associated with chronic inflammation and poor prognosis in HCC. Thus, we evaluated the effect of vitamin D on TREM-1 expression in the HCC cell line. Additionally, the effects of high mobility group box-1, lipopolysaccharide, and transcription factor PU.1 on the expression of TREM-1 in normal liver cells and HCC cells have been investigated in the presence and absence of vitamin D. The results showed increased expression of TREM-1 in HCC cells and with IL-6, TNF-α, LPS, and rHMGB-1 and decreased expression with calcitriol. Calcitriol also attenuated the effect of IL-6, TNF-α, LPS, and rHMGB-1 on TREM-1. Calcitriol treatment attenuated the proliferation, migration, and invasion of HCC cells. These results (in vitro) provide molecular and biochemical evidence that calcitriol significantly attenuates the expression of mediators of inflammation, and thus might be used therapeutically together with conventional treatment to delay the progression of HCC. Additionally, the negative regulation of TREM-1 by PU.1 suggests PU.1 as a potential therapeutic target.
Collapse
|
16
|
Woo YD, Jeong D, Chung DH. Development and Functions of Alveolar Macrophages. Mol Cells 2021; 44:292-300. [PMID: 33972474 PMCID: PMC8175155 DOI: 10.14348/molcells.2021.0058] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/18/2021] [Accepted: 04/18/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages residing in various tissue types are unique in terms of their anatomical locations, ontogenies, developmental pathways, gene expression patterns, and immunological functions. Alveolar macrophages (AMs) reside in the alveolar lumen of the lungs and serve as the first line of defense for the respiratory tract. The immunological functions of AMs are implicated in the pathogenesis of various pulmonary diseases such as allergic asthma, chronic obstructive pulmonary disorder (COPD), pulmonary alveolar proteinosis (PAP), viral infection, and bacterial infection. Thus, the molecular mechanisms driving the development and function of AMs have been extensively investigated. In this review article, we discuss the roles of granulocyte-macrophage colony-stimulating factor (GM-CSF) and transforming growth factor (TGF)-β in AM development, and provide an overview of the anti-inflammatory and proinflammatory functions of AMs in various contexts. Notably, we examine the relationships between the metabolic status of AMs and their development processes and functions. We hope that this review will provide new information and insight into AM development and function.
Collapse
Affiliation(s)
- Yeon Duk Woo
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Dongjin Jeong
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
17
|
Folick A, Koliwad SK, Valdearcos M. Microglial Lipid Biology in the Hypothalamic Regulation of Metabolic Homeostasis. Front Endocrinol (Lausanne) 2021; 12:668396. [PMID: 34122343 PMCID: PMC8191416 DOI: 10.3389/fendo.2021.668396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/05/2021] [Indexed: 12/18/2022] Open
Abstract
In mammals, myeloid cells help maintain the homeostasis of peripheral metabolic tissues, and their immunologic dysregulation contributes to the progression of obesity and associated metabolic disease. There is accumulating evidence that innate immune cells also serve as functional regulators within the mediobasal hypothalamus (MBH), a critical brain region controlling both energy and glucose homeostasis. Specifically, microglia, the resident parenchymal myeloid cells of the CNS, play important roles in brain physiology and pathology. Recent studies have revealed an expanding array of microglial functions beyond their established roles as immune sentinels, including roles in brain development, circuit refinement, and synaptic organization. We showed that microglia modulate MBH function by transmitting information resulting from excess nutrient consumption. For instance, microglia can sense the excessive consumption of saturated fats and instruct neurons within the MBH accordingly, leading to responsive alterations in energy balance. Interestingly, the recent emergence of high-resolution single-cell techniques has enabled specific microglial populations and phenotypes to be profiled in unprecedented detail. Such techniques have highlighted specific subsets of microglia notable for their capacity to regulate the expression of lipid metabolic genes, including lipoprotein lipase (LPL), apolipoprotein E (APOE) and Triggering Receptor Expressed on Myeloid Cells 2 (TREM2). The discovery of this transcriptional signature highlights microglial lipid metabolism as a determinant of brain health and disease pathogenesis, with intriguing implications for the treatment of brain disorders and potentially metabolic disease. Here we review our current understanding of how changes in microglial lipid metabolism could influence the hypothalamic control of systemic metabolism.
Collapse
Affiliation(s)
- Andrew Folick
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Suneil K. Koliwad
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Martin Valdearcos
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
18
|
TREM2, microglia, and Alzheimer's disease. Mech Ageing Dev 2021; 195:111438. [PMID: 33516818 DOI: 10.1016/j.mad.2021.111438] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/02/2021] [Accepted: 01/17/2021] [Indexed: 12/19/2022]
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) has been suggested to play a crucial role in Alzheimer's disease (AD) pathogenesis, as revealed by genome-wide association studies (GWAS). Since then, rapidly increasing literature related to TREM2 has focused on elucidating its role in AD pathology. In this review, we summarize our understanding of TREM2 biology, explore TREM2 functions in microglia, address the multiple mechanisms of TREM2 in AD, and raise key questions for further investigations to elucidate the detailed roles and molecular mechanisms of TREM2 in microglial responses. A major breakthrough in our understanding of TREM2 is based on our hypothesis suggesting that TREM2 may act as a multifaceted player in microglial functions in AD brain homeostasis. We conclude that TREM2 can not only influence microglial functions in amyloid and tau pathologies but also participate in inflammatory responses and metabolism, acting alone or with other molecules, such as apolipoprotein E (APOE). This review provides novel insight into the broad role of TREM2 in microglial function in AD and enables us to develop new strategies aimed at the immune system to treat AD pathogenesis.
Collapse
|
19
|
Akhter R, Shao Y, Formica S, Khrestian M, Bekris LM. TREM2 alters the phagocytic, apoptotic and inflammatory response to Aβ 42 in HMC3 cells. Mol Immunol 2021; 131:171-179. [PMID: 33461764 DOI: 10.1016/j.molimm.2020.12.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/20/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation in the brain of extracellular amyloid β (Aβ) plaques as well as intraneuronal inclusions (neurofibrillary tangles) consisting of total tau and phosphorylated tau. Also present are dystrophic neurites, loss of synapses, neuronal death, and gliosis. AD genetic studies have highlighted the importance of inflammation in this disease by identifying several risk associated immune response genes, including TREM2. TREM2 has been strongly implicated in basic microglia function including, phagocytosis, apoptosis, and the inflammatory response to Aβ in mouse brain and primary cells. These studies show that microglia are key players in the response to Aβ and in the accumulation of AD pathology. However, details are still missing about which apoptotic or inflammatory factors rely on TREM2 in their response to Aβ, especially in human cell lines. Given these previous findings our hypothesis is that TREM2 influences the response to Aβ toxicity by enhancing phagocytosis and inhibiting both the BCL-2 family of apoptotic proteins and pro-inflammatory cytokines. Aβ42 treatment of the human microglial cell line, HMC3 cells, was performed and TREM2 was overexpressed or silenced and the phagocytosis, apoptosis and inflammatory response were evaluated. Results indicate that a robust phagocytic response to Aβ after 24 h requires TREM2 in HMC3 cells. Also, TREM2 inhibits Aβ induced apoptosis by activating the Mcl-1/Bim complex. TREM2 is involved in activation of IP-10, MIP-1a, and IL-8, while it inhibits FGF-2, VEGF and GRO. Taken together, TREM2 plays a role in enhancing the microglial functional response to Aβ toxicity in HMC3 cells. This novel information suggests that therapeutic strategies that seek to activate TREM2 may not only enhance phagocytosis and inhibit apoptosis, but may also inhibit beneficial inflammatory factors, emphasizing the need to define TREM2-related inflammatory activity in not only mouse models of AD, but also in human AD.
Collapse
Affiliation(s)
- Rumana Akhter
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Yvonne Shao
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Shane Formica
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Maria Khrestian
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Lynn M Bekris
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
20
|
Liu W, Taso O, Wang R, Bayram S, Graham AC, Garcia-Reitboeck P, Mallach A, Andrews WD, Piers TM, Botia JA, Pocock JM, Cummings DM, Hardy J, Edwards FA, Salih DA. Trem2 promotes anti-inflammatory responses in microglia and is suppressed under pro-inflammatory conditions. Hum Mol Genet 2020; 29:3224-3248. [PMID: 32959884 PMCID: PMC7689298 DOI: 10.1093/hmg/ddaa209] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022] Open
Abstract
Genome-wide association studies have reported that, amongst other microglial genes, variants in TREM2 can profoundly increase the incidence of developing Alzheimer's disease (AD). We have investigated the role of TREM2 in primary microglial cultures from wild type mice by using siRNA to decrease Trem2 expression, and in parallel from knock-in mice heterozygous or homozygous for the Trem2 R47H AD risk variant. The prevailing phenotype of Trem2 R47H knock-in mice was decreased expression levels of Trem2 in microglia, which resulted in decreased density of microglia in the hippocampus. Overall, primary microglia with reduced Trem2 expression, either by siRNA or from the R47H knock-in mice, displayed a similar phenotype. Comparison of the effects of decreased Trem2 expression under conditions of lipopolysaccharide (LPS) pro-inflammatory or IL-4 anti-inflammatory stimulation revealed the importance of Trem2 in driving a number of the genes up-regulated in the anti-inflammatory phenotype. RNA-seq analysis showed that IL-4 induced the expression of a program of genes including Arg1 and Ap1b1 in microglia, which showed an attenuated response to IL-4 when Trem2 expression was decreased. Genes showing a similar expression profile to Arg1 were enriched for STAT6 transcription factor recognition elements in their promoter, and Trem2 knockdown decreased levels of STAT6. LPS-induced pro-inflammatory stimulation suppressed Trem2 expression, thus preventing TREM2's anti-inflammatory drive. Given that anti-inflammatory signaling is associated with tissue repair, understanding the signaling mechanisms downstream of Trem2 in coordinating the pro- and anti-inflammatory balance of microglia, particularly mediating effects of the IL-4-regulated anti-inflammatory pathway, has important implications for fighting neurodegenerative disease.
Collapse
Affiliation(s)
- Wenfei Liu
- Department of Neuroscience, Physiology and Pharmacology, UCL, London WC1E 6BT, UK
| | - Orjona Taso
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Rui Wang
- Department of Neuroscience, Physiology and Pharmacology, UCL, London WC1E 6BT, UK
| | | | | | | | - Anna Mallach
- Department of Neuroinflammation, Institute of Neurology, UCL, London WC1N 1PJ, UK
| | - William D Andrews
- Department of Cell and Developmental Biology, UCL, London WC1E 6BT, UK
| | - Thomas M Piers
- Department of Neuroinflammation, Institute of Neurology, UCL, London WC1N 1PJ, UK
| | - Juan A Botia
- Department of Information and Communications Engineering, Universidad de Murcia, Murcia E-30100, Spain
- Department of Neurodegenerative Diseases, Institute of Neurology, UCL, London WC1N 1PJ, UK
| | - Jennifer M Pocock
- Department of Neuroinflammation, Institute of Neurology, UCL, London WC1N 1PJ, UK
| | - Damian M Cummings
- Department of Neuroscience, Physiology and Pharmacology, UCL, London WC1E 6BT, UK
| | - John Hardy
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Department of Neurodegenerative Diseases, Institute of Neurology, UCL, London WC1N 1PJ, UK
| | - Frances A Edwards
- Department of Neuroscience, Physiology and Pharmacology, UCL, London WC1E 6BT, UK
| | - Dervis A Salih
- Department of Neuroscience, Physiology and Pharmacology, UCL, London WC1E 6BT, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| |
Collapse
|
21
|
Vagima Y, Gur D, Erez N, Achdout H, Aftalion M, Levy Y, Zauberman A, Tidhar A, Gutman H, Lazar S, Israely T, Paran N, Melamed S, Brosh-Nissimov T, Chitlaru T, Sagi I, Mamroud E. Influenza virus infection augments susceptibility to respiratory Yersinia pestis exposure and impacts the efficacy of antiplague antibiotic treatments. Sci Rep 2020; 10:19116. [PMID: 33154422 PMCID: PMC7645720 DOI: 10.1038/s41598-020-75840-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/21/2020] [Indexed: 12/29/2022] Open
Abstract
Various respiratory viral infections in general and seasonal influenza in particular may increase the susceptibility to bacterial infections. Plague caused by Yersinia pestis endangers large populations during outbreaks or bioterrorism attacks. Recommended antibiotic countermeasures include well-established protocols based on animal studies and corroborated by effective treatment of human cases. Until now, prior exposure to viral respiratory infections was not taken into consideration when selecting the appropriate treatment for plague. Here, we show that as late as 25 days after exposure to influenza virus, convalescent mice still exhibited an increased susceptibility to sublethal doses of Y. pestis, presented with aberrant cytokine expression, and impaired neutrophil infiltration in the lungs. Increased levels of M2 alveolar macrophages and type II epithelial cells, as well as induction in metalloproteases expression and collagen and laminin degradation, suggested that the previous viral infection was under resolution, correlating with enhanced susceptibility to plague. Surprisingly, postexposure prophylaxis treatment with the recommended drugs revealed that ciprofloxacin was superior to doxycycline in mice recovering from influenza infection. These results suggest that after an influenza infection, the consequences, such as impaired immunity and lung tissue remodeling and damage, should be considered when treating subsequent Y. pestis exposure.
Collapse
Affiliation(s)
- Yaron Vagima
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel.
| | - David Gur
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Noam Erez
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Hagit Achdout
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yinon Levy
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ayelet Zauberman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Avital Tidhar
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Hila Gutman
- Department of Pharmacology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Shlomi Lazar
- Department of Pharmacology, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Sharon Melamed
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Tal Brosh-Nissimov
- Infectious Diseases Unit, Assuta Ashdod University Hospital, Ashdod, Israel
| | - Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Irit Sagi
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Emanuelle Mamroud
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel.
| |
Collapse
|
22
|
Price BR, Sudduth TL, Weekman EM, Johnson S, Hawthorne D, Woolums A, Wilcock DM. Therapeutic Trem2 activation ameliorates amyloid-beta deposition and improves cognition in the 5XFAD model of amyloid deposition. J Neuroinflammation 2020; 17:238. [PMID: 32795308 PMCID: PMC7427742 DOI: 10.1186/s12974-020-01915-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Triggering receptor expressed on myeloid cell-2 (TREM2) is a lipid and lipoprotein binding receptor expressed by cells of myeloid origin. Homozygous TREM2 mutations cause early onset progressive presenile dementia while heterozygous, point mutations triple the risk of Alzheimer's disease (AD). Although human genetic findings support the notion that loss of TREM2 function exacerbates neurodegeneration, it is not clear whether activation of TREM2 in a disease state would result in therapeutic benefits. To determine the viability of TREM2 activation as a therapeutic strategy, we sought to characterize an agonistic Trem2 antibody (AL002a) and test its efficacy and mechanism of action in an aggressive mouse model of amyloid deposition. METHODS To determine whether agonism of Trem2 results in therapeutic benefits, we designed both intracranial and systemic administration studies. 5XFAD mice in the intracranial administration study were assigned to one of two injection groups: AL002a, a Trem2-agonizing antibody, or MOPC, an isotype-matched control antibody. Mice were then subject to a single bilateral intracranial injection into the frontal cortex and hippocampus and euthanized 72 h later. The tissue from the left hemisphere was histologically examined for amyloid-beta and microglia activation, whereas the tissue from the right hemisphere was used for biochemical analyses. Similarly, mice in the systemic administration study were randomized to one of the aforementioned injection groups and the assigned antibody was administered intraperitoneally once a week for 14 weeks. Mice underwent behavioral assessment between the 12- and 14-week timepoints and were euthanized 24 h after their final injection. The tissue from the left hemisphere was used for histological analyses whereas the tissue from the right hemisphere was used for biochemical analyses. RESULTS Here, we show that chronic activation of Trem2, in the 5XFAD mouse model of amyloid deposition, leads to reversal of the amyloid-associated gene expression signature, recruitment of microglia to plaques, decreased amyloid deposition, and improvement in spatial learning and novel object recognition memory. CONCLUSIONS These findings indicate that Trem2 activators may be effective for the treatment of AD and possibly other neurodegenerative disorders.
Collapse
Affiliation(s)
- Brittani R Price
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 800 S Limestone St, Lexington, KY, 40536, USA
- Department of Physiology, University of Kentucky, Lexington, KY, 40536, USA
| | - Tiffany L Sudduth
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 800 S Limestone St, Lexington, KY, 40536, USA
| | - Erica M Weekman
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 800 S Limestone St, Lexington, KY, 40536, USA
- Department of Physiology, University of Kentucky, Lexington, KY, 40536, USA
| | - Sherika Johnson
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 800 S Limestone St, Lexington, KY, 40536, USA
| | - Danielle Hawthorne
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 800 S Limestone St, Lexington, KY, 40536, USA
| | - Abigail Woolums
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 800 S Limestone St, Lexington, KY, 40536, USA
- Department of Physiology, University of Kentucky, Lexington, KY, 40536, USA
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 800 S Limestone St, Lexington, KY, 40536, USA.
- Department of Physiology, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
23
|
Guan YF, Huang GB, Xu MD, Gao F, Lin S, Huang J, Wang J, Li YQ, Wu CH, Yao S, Wang Y, Zhang YL, Teoh JP, Xuan A, Sun XD. Anti-depression effects of ketogenic diet are mediated via the restoration of microglial activation and neuronal excitability in the lateral habenula. Brain Behav Immun 2020; 88:748-762. [PMID: 32413556 DOI: 10.1016/j.bbi.2020.05.032] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/03/2020] [Accepted: 05/09/2020] [Indexed: 12/14/2022] Open
Abstract
Depression is a severe neuropsychiatric disorder, of which the underlying pathological mechanisms remain unclear. The ketogenic diet (KD) has been reported to exhibit preventative effects on depressive-like behaviors in rodents. However, the therapeutic effects of KD on depressive-like behaviors have not been illustrated thus far. Here, we found that KD treatment dramatically ameliorated depressive-like behaviors in both repeated social defeat stress (R-SDS) and lipopolysaccharide (LPS) models, indicating the potential therapeutic effects of KD on depression. Our electrophysiological studies further showed that neuronal excitability was increased in the lateral habenula (LHb) of mice exposed to R-SDS or LPS, which can be reversed in the presence of KD treatment. Moreover, R-SDS and LPS were also found to induce robust microglial inflammatory activation in the LHb. Importantly, these phenotypes were rescued in mice fed with KD. In addition, we found that the protein level of innate immune receptor Trem2 in the LHb was significantly decreased in depression models. Specific knockdown of Trem2 in LHb microglia induced depressive-like behaviors, increased neuronal excitability as well as robust microglial inflammatory activation. Altogether, we demonstrated the therapeutic effects of KD on depressive-like behaviors, which are probably mediated via the restoration of microglial inflammatory activation and neuronal excitability. Besides, we also proposed an unrecognized function of Trem2 in the LHb for depression. Our study sheds light on the pathogenesis of depression and thereby offers a potential therapeutic intervention.
Collapse
Affiliation(s)
- Yan-Fei Guan
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Guo-Bin Huang
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Min-Dong Xu
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Feng Gao
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Song Lin
- Department of Physiology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jie Huang
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Jin Wang
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Yuan-Quan Li
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Cui-Hong Wu
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Shan Yao
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Ying Wang
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Yun-Long Zhang
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
| | - Jian-Peng Teoh
- Department of Gynecology and Obstetrics, the Sixth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Aiguo Xuan
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China.
| | - Xiang-Dong Sun
- School of Basic Medical Sciences, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
24
|
Deczkowska A, Weiner A, Amit I. The Physiology, Pathology, and Potential Therapeutic Applications of the TREM2 Signaling Pathway. Cell 2020; 181:1207-1217. [DOI: 10.1016/j.cell.2020.05.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/15/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022]
|
25
|
Zhu Z, Zhang X, Dong W, Wang X, He S, Zhang H, Wang X, Wei R, Chen Y, Liu X, Guo C. TREM2 suppresses the proinflammatory response to facilitate PRRSV infection via PI3K/NF-κB signaling. PLoS Pathog 2020; 16:e1008543. [PMID: 32401783 PMCID: PMC7250469 DOI: 10.1371/journal.ppat.1008543] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 05/26/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) serves as an anti-inflammatory receptor, negatively regulating the innate immune response. TREM2 is mainly expressed on dendritic cells and macrophages, the target cells of porcine reproductive and respiratory syndrome virus (PRRSV). Thus, we investigated the potential role of TREM2 in PRRSV infection in porcine alveolar macrophages (PAMs). We found that there was an increased expression of TREM2 upon PRRSV infection in vitro. TREM2 silencing restrained the replication of PRRSV, whereas TREM2 overexpression facilitated viral replication. The cytoplasmic tail domain of TREM2 interacted with PRRSV Nsp2 to promote infection. TREM2 downregulation led to early activation of PI3K/NF-κB signaling, thus reinforcing the expression of proinflammatory cytokines and type I interferons. Due to the enhanced cytokine expression, a disintegrin and metalloproteinase 17 was activated to promote the cleavage of membrane CD163, which resulted in suppression of infection. Furthermore, exogenous soluble TREM2 (sTREM2)-mediated inhibition of PRRSV attachment might be attributed to its competitive binding to viral envelope proteins. In pigs, following PRRSV challenge in vivo, the expression of TREM2 in lungs and lymph nodes as well as the production of sTREM2 were significantly increased. These novel findings indicate that TREM2 plays a role in regulating PRRSV replication via the inflammatory response. Therefore, our work describes a novel antiviral mechanism against PRRSV infection and suggests that targeting TREM2 could be a new approach in the control of the PRRSV infection.
Collapse
Affiliation(s)
- Zhenbang Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Xiaoxiao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Wenjuan Dong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Xiaoying Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Sheng He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Hui Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Xun Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Ruiping Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
| | - Chunhe Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, PR China
- * E-mail:
| |
Collapse
|
26
|
Singh AK, Mishra G, Maurya A, Awasthi R, Kumari K, Thakur A, Rai A, Rai GK, Sharma B, Kulkarni GT, Singh SK. Role of TREM2 in Alzheimer's Disease and its Consequences on β- Amyloid, Tau and Neurofibrillary Tangles. Curr Alzheimer Res 2020; 16:1216-1229. [DOI: 10.2174/1567205016666190903102822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/21/2019] [Accepted: 08/21/2019] [Indexed: 11/22/2022]
Abstract
:
Alzheimer's Disease (AD) is age-related neurodegenerative disorder recognized by a steadily
gradual cognitive decline that has devastating personal and socioeconomic implications. Recently, some
genetic factors for AD have been identified which attracted wide attention of researchers in different
areas of AD biology and possible new therapeutic targets. Alternative forms of triggering receptor expressed
on myeloid cells 2 (TREM2) genes are examples of such risk factors, which contribute higher
risk for developing AD. Comprehending TREM2 function pledge to provide salient insight into how
neuroinflammation contributes to AD pathology. The dearth of microglial TREM2 shepherd to augmented
tau pathology is couple with frequent enhancement of activated neuronal stress kinases. The involvement
of TREM2 in the regulation of tau-associated innate immune response of the CNS has clearly
demonstrated through these findings. However, whether decrease level of TREM2 assists pathology of
tau through changed clearance and pathological escalation of tau or through direct contact between microglia
and neuron and any alternative possible mechanisms need to examine. This review briefly summarizes
distinct functional roles of TREM2 in AD pathology and highlights the TREM2 gene regulation.
We have also addressed the impact of TREM2 on β-amyloid plaques and tau pathology in Alzheimer’s
disease.
Collapse
Affiliation(s)
- Anurag K. Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Gaurav Mishra
- Department of Pharmacy, School of Chemical Sciences & Pharmacy, Central University of Rajasthan, Bandar Sindri, Kishangarh, Ajmer-305817, Rajasthan, India
| | - Anand Maurya
- Department of Pharmacy, School of Chemical Sciences & Pharmacy, Central University of Rajasthan, Bandar Sindri, Kishangarh, Ajmer-305817, Rajasthan, India
| | - Rajendra Awasthi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector 125, Noida - 201303, India
| | - Komal Kumari
- Department of Pharmacy, School of Chemical Sciences & Pharmacy, Central University of Rajasthan, Bandar Sindri, Kishangarh, Ajmer-305817, Rajasthan, India
| | - Abhimanyu Thakur
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Arati Rai
- Hygia Institute of Pharmaceutical Education & Research, Lucknow-226020, Uttar Pradesh, India
| | - Gopal Kumar Rai
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi- 221005, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector 125, Noida - 201303, India
| | - Giriraj T Kulkarni
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector 125, Noida - 201303, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| |
Collapse
|
27
|
Chung EJ, Reedy JL, Kwon S, Patil S, Valle L, White AO, Citrin DE. 12-Lipoxygenase is a Critical Mediator of Type II Pneumocyte Senescence, Macrophage Polarization and Pulmonary Fibrosis after Irradiation. Radiat Res 2019; 192:367-379. [PMID: 31373871 PMCID: PMC6816027 DOI: 10.1667/rr15356.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Radiation-induced pulmonary fibrosis (RIPF) is a chronic, progressive complication of therapeutic irradiation of the thorax. It has been suggested that senescence of type II pneumocytes (AECIIs), an alveolar stem cell, plays a role in the development of RIPF through loss of replicative reserve and via senescent AECII-driven release of proinflammatory and profibrotic cytokines. Within this context, we hypothesized that arachidonate 12-lipoxygenase (12-LOX) is a critical mediator of AECII senescence and RIPF. Treatment of wild-type AECIIs with 12S-hydroxyeicosateraenoic acid (12S-HETE), a downstream product of 12-LOX, was sufficient to induce senescence in a NADPH oxidase 4 (NOX4)-dependent manner. Mice deficient in 12-LOX exhibited reduced AECII senescence, pulmonary collagen accumulation and accumulation of alternatively activated (M2) macrophages after thoracic irradiation (5 × 6 Gy) compared to wild-type mice. Conditioned media from irradiated or 12S-HETE-treated primary pneumocytes contained elevated levels of IL-4 and IL-13 compared to untreated pneumocytes. Primary macrophages treated with conditioned media from irradiated AECII demonstrated preferential M2 type polarization when AECIIs were derived from wild-type mice compared to 12-LOX-deficient mice. Together, these data identified 12-LOX as a critical component of RIPF and a therapeutic target for radiation-induced lung injury.
Collapse
Affiliation(s)
- Eun Joo Chung
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Jessica L. Reedy
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Seokjoo Kwon
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Shilpa Patil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Luca Valle
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Ayla O. White
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Deborah E. Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
28
|
TREM2 acts as a tumor suppressor in hepatocellular carcinoma by targeting the PI3K/Akt/β-catenin pathway. Oncogenesis 2019; 8:9. [PMID: 30683932 PMCID: PMC6350080 DOI: 10.1038/s41389-018-0115-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 12/03/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is involved in nonmalignant pathological processes. However, TREM2’s function in malignant diseases, especially in hepatocellular carcinoma (HCC) remains unknown. In the present study, we report that TREM2 is a novel tumor suppressor in HCC. TREM2 expression was obviously decreased in hepatoma cells (especially metastatic HCC cells), and in most human HCC tissues (especially extrahepatic metastatic tumors). Reduced tumor TREM2 expression was correlated with poor prognosis of HCC patients, and with aggressive pathological features (BCLC stage, tumor size, tumor encapsulation, vascular invasion, and tumor differentiation). TREM2 knockdown substantially promoted cell growth, migration, and invasion in vitro and in vivo, while TREM2 overexpression produced the opposite effect. TREM2 suppressed HCC metastasis by inhibiting epithelial-mesenchymal transition, accompanied by abnormal expression of epithelial and mesenchymal markers. Further study revealed that downregulation of TREM2 in HCC was regulated by miR-31-5p. Moreover, by directly interacting with β-catenin, TREM2 attenuated oncogenic and metastatic behaviors by inhibiting Akt and GSK3β phosphorylation, and activating β-catenin. TREM2 suppressed carcinogenesis and metastasis in HCC by targeting the PI3K/Akt/β-catenin pathway. Thus, we propose that TREM2 may be a candidate prognostic biomarker in malignant diseases and TREM2 restoration might be a prospective strategy for HCC therapy.
Collapse
|
29
|
Dominy SS, Lynch C, Ermini F, Benedyk M, Marczyk A, Konradi A, Nguyen M, Haditsch U, Raha D, Griffin C, Holsinger LJ, Arastu-Kapur S, Kaba S, Lee A, Ryder MI, Potempa B, Mydel P, Hellvard A, Adamowicz K, Hasturk H, Walker GD, Reynolds EC, Faull RLM, Curtis MA, Dragunow M, Potempa J. Porphyromonas gingivalis in Alzheimer's disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. SCIENCE ADVANCES 2019; 5:eaau3333. [PMID: 30746447 PMCID: PMC6357742 DOI: 10.1126/sciadv.aau3333] [Citation(s) in RCA: 1102] [Impact Index Per Article: 183.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/11/2018] [Indexed: 05/19/2023]
Abstract
Porphyromonas gingivalis, the keystone pathogen in chronic periodontitis, was identified in the brain of Alzheimer's disease patients. Toxic proteases from the bacterium called gingipains were also identified in the brain of Alzheimer's patients, and levels correlated with tau and ubiquitin pathology. Oral P. gingivalis infection in mice resulted in brain colonization and increased production of Aβ1-42, a component of amyloid plaques. Further, gingipains were neurotoxic in vivo and in vitro, exerting detrimental effects on tau, a protein needed for normal neuronal function. To block this neurotoxicity, we designed and synthesized small-molecule inhibitors targeting gingipains. Gingipain inhibition reduced the bacterial load of an established P. gingivalis brain infection, blocked Aβ1-42 production, reduced neuroinflammation, and rescued neurons in the hippocampus. These data suggest that gingipain inhibitors could be valuable for treating P. gingivalis brain colonization and neurodegeneration in Alzheimer's disease.
Collapse
Affiliation(s)
- Stephen S. Dominy
- Cortexyme, Inc., 269 East Grand Ave., South San Francisco, CA, USA
- Corresponding author.
| | - Casey Lynch
- Cortexyme, Inc., 269 East Grand Ave., South San Francisco, CA, USA
| | - Florian Ermini
- Cortexyme, Inc., 269 East Grand Ave., South San Francisco, CA, USA
| | - Malgorzata Benedyk
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agata Marczyk
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Andrei Konradi
- Cortexyme, Inc., 269 East Grand Ave., South San Francisco, CA, USA
| | - Mai Nguyen
- Cortexyme, Inc., 269 East Grand Ave., South San Francisco, CA, USA
| | - Ursula Haditsch
- Cortexyme, Inc., 269 East Grand Ave., South San Francisco, CA, USA
| | - Debasish Raha
- Cortexyme, Inc., 269 East Grand Ave., South San Francisco, CA, USA
| | | | | | | | - Samer Kaba
- Cortexyme, Inc., 269 East Grand Ave., South San Francisco, CA, USA
| | - Alexander Lee
- Cortexyme, Inc., 269 East Grand Ave., South San Francisco, CA, USA
| | - Mark I. Ryder
- Division of Periodontology, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Barbara Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Piotr Mydel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Broegelman Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Annelie Hellvard
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Broegelman Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Karina Adamowicz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Hatice Hasturk
- The Forsyth Institute, Cambridge, MA, USA
- Harvard University School of Dental Medicine, Boston, MA, USA
| | - Glenn D. Walker
- Cooperative Research Centre for Oral Health Science, Melbourne Dental School and the Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Victoria, Australia
| | - Eric C. Reynolds
- Cooperative Research Centre for Oral Health Science, Melbourne Dental School and the Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Victoria, Australia
| | - Richard L. M. Faull
- Department of Anatomy with Radiology, Centre for Brain Research and NeuroValida, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Maurice A. Curtis
- Centre for Brain Research and NeuroValida, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Mike Dragunow
- Centre for Brain Research and NeuroValida, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| |
Collapse
|
30
|
Gratuze M, Leyns CEG, Holtzman DM. New insights into the role of TREM2 in Alzheimer's disease. Mol Neurodegener 2018; 13:66. [PMID: 30572908 PMCID: PMC6302500 DOI: 10.1186/s13024-018-0298-9] [Citation(s) in RCA: 297] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/28/2018] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia. The two histopathological markers of AD are amyloid plaques composed of the amyloid-β (Aβ) peptide, and neurofibrillary tangles of aggregated, abnormally hyperphosphorylated tau protein. The majority of AD cases are late-onset, after the age of 65, where a clear cause is still unknown. However, there are likely different multifactorial contributors including age, enviornment, biology and genetics which can increase risk for the disease. Genetic predisposition is considerable, with heritability estimates of 60-80%. Genetic factors such as rare variants of TREM2 (triggering receptor expressed on myeloid cells-2) strongly increase the risk of developing AD, confirming the role of microglia in AD pathogenesis. In the last 5 years, several studies have dissected the mechanisms by which TREM2, as well as its rare variants affect amyloid and tau pathologies and their consequences in both animal models and in human studies. In this review, we summarize increases in our understanding of the involvement of TREM2 and microglia in AD development that may open new therapeutic strategies targeting the immune system to influence AD pathogenesis.
Collapse
Affiliation(s)
- Maud Gratuze
- Department of Neurology, St. Louis, USA
- Hope Center for Neurological Disorders, St. Louis, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Cheryl E. G. Leyns
- Department of Neurology, St. Louis, USA
- Hope Center for Neurological Disorders, St. Louis, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - David M. Holtzman
- Department of Neurology, St. Louis, USA
- Hope Center for Neurological Disorders, St. Louis, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
31
|
Puntambekar SS, Saber M, Lamb BT, Kokiko-Cochran ON. Cellular players that shape evolving pathology and neurodegeneration following traumatic brain injury. Brain Behav Immun 2018; 71:9-17. [PMID: 29601944 DOI: 10.1016/j.bbi.2018.03.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/16/2018] [Accepted: 03/26/2018] [Indexed: 11/28/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide, and has emerged as a critical risk factor for multiple neurodegenerative diseases, particularly Alzheimer's disease (AD). How the inflammatory cascade resulting from mechanical stress, axonal shearing and the loss of neurons and glia following initial impact in TBI, contributes to the development of AD-like disease is unclear. Neuroinflammation, characterized by blood-brain barrier (BBB) dysfunction and activation of brain-resident microglia and astrocytes, resulting in secretion of inflammatory mediators and subsequent recruitment of peripheral immune cells has been the focus of extensive research in attempts to identify drug-targets towards improving functional outcomes post TBI. While knowledge of intricate cellular interactions that shape lesion pathophysiology is incomplete, a major limitation in the field is the lack of understanding of how distinct cell types differentially alter TBI pathology. The aim of this review is to highlight functional differences between populations of bone marrow derived, infiltrating monocytes/macrophages and brain-resident microglia based on differential expression of the chemokine receptors CCR2 and CX3CR1. This review will focus on how unique subsets of mononuclear phagocytes shape TBI pathophysiology, neurotoxicity and BBB function, in a disease-stage dependent manner. Additionally, this review summarizes the role of multiple microglia and macrophage receptors, namely CCR2, CX3CR1 and Triggering Receptor Expressed on Myeloid Cells-2 (TREM2) in pathological neuroinflammation and neurodegeneration vs. recovery following TBI. TREM2 has been implicated in mediating AD-related pathology, and variants in TREM2 are particularly important due to their correlation with exacerbated neurodegeneration. Finally, this review highlights behavioral outcomes associated with microglial vs. macrophage variances, the need for novel treatment strategies that target unique subpopulations of peripheral macrophages, and the importance of development of therapeutics to modulate inflammatory functions of brain-resident microglia at specific stages of TBI.
Collapse
Affiliation(s)
- Shweta S Puntambekar
- Stark Neuroscience Research Institute, Indiana University-Purdue University, Indianapolis, IN 46202, USA.
| | - Maha Saber
- Barrows Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ 85016, USA.
| | - Bruce T Lamb
- Stark Neuroscience Research Institute, Indiana University-Purdue University, Indianapolis, IN 46202, USA.
| | - Olga N Kokiko-Cochran
- Department of Neuroscience, The Ohio State University, Institute for Behavioral Medicine Research, Columbus, OH, 43210, USA.
| |
Collapse
|
32
|
Gorenjak V, Aldasoro Arguinano AA, Dadé S, Stathopoulou MG, Vance DR, Masson C, Visvikis-Siest S. The polymorphism rs6918289 located in the downstream region of the TREM2 gene is associated with TNF-α levels and IMT-F. Sci Rep 2018; 8:7160. [PMID: 29740051 PMCID: PMC5940861 DOI: 10.1038/s41598-018-25553-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/24/2018] [Indexed: 01/05/2023] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is known for its anti-inflammatory properties during the immune response, and influences negatively on TNF-α expression levels. Genetic epidemiology studies have identified polymorphisms located in the TREM2 gene associated with neurodegenerative and chronic inflammatory diseases. TREM2 levels have been observed to affect plasma levels of TNF-α and plaque stability in symptomatic and asymptomatic patients with carotid stenosis. In this study, we investigated polymorphisms located in the TREM2 gene region and association with TNF-α levels and the intima media thickness of the femoral artery. The discovery population from the STANISLAS Family Study comprised of 809 individuals, whereas the replication population utilized an independent cohort of French origin (n = 916). Our results suggest that the minor allele (T) of SNP rs6918289 is positively associated with elevated plasma levels of TNF-α in discovery and replication populations (P = 0.0026, SE = 0.04 and P = 0.023, SE = 0.09, respectively), including femoral artery thickness in the discovery cohort (P = 0.026, SE = 0.009). Results indicate that rs6918289 may be considered as a risk factor for inflammatory diseases and could be used in stratified medicine with patients diagnosed with chronic inflammatory-related conditions, such as atherosclerosis.
Collapse
Affiliation(s)
- Vesna Gorenjak
- Université de Lorraine, Inserm, IGE-PCV, F-54000, Nancy, France
| | | | - Sébastien Dadé
- Université de Lorraine, Inserm, IGE-PCV, F-54000, Nancy, France
| | | | - Dwaine R Vance
- Randox Laboratories Limited, Crumlin, Co. Antrim, Northern Ireland, United Kingdom
| | | | - Sophie Visvikis-Siest
- Université de Lorraine, Inserm, IGE-PCV, F-54000, Nancy, France. .,Department of Internal Medicine and Geriatrics, CHU Technopôle Nancy-Brabois, Rue du Morvan, F-54511, Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
33
|
Chen ACH, Pena OM, Nel HJ, Yerkovich ST, Chang AB, Baines KJ, Gibson PG, Petsky HL, Pizzutto SJ, Hodge S, Masters IB, Buntain HL, Upham JW. Airway cells from protracted bacterial bronchitis and bronchiectasis share similar gene expression profiles. Pediatr Pulmonol 2018; 53:575-582. [PMID: 29575797 DOI: 10.1002/ppul.23984] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 02/14/2018] [Indexed: 11/06/2022]
Abstract
AIM Protracted bacterial bronchitis (PBB) is a common cause of prolonged cough in young children, and may be a precursor of bronchiectasis. Bacteria are often present in the lower airways in both PBB and bronchiectasis and may cause persistent infections. However, there is a paucity of information available on the pathogenesis of PBB and the factors associated with persistent bacterial infection and progression to bronchiectasis. This study hypothesised that lung immune cells in recurrent PBB and bronchiectasis differentially express genes related to immune cell dysfunction compared to lung immune cells from control subjects. METHOD Cells isolated from bronchoalveolar lavage (adult-control and PBB BAL cells) were stimulated with nontypeable Haemophilus influenzae (NTHi), and expression of genes involved in various inflammatory pathways was assessed. RESULT NTHi induced production of large amounts of IL-1β, IL-6, and IL-8 in adult-control BAL cells, however BAL cells from PBB airways appeared refractory to NTHi stimulation. BAL cells from PBB and bronchiectasis showed differential expression of several genes relative to control cells, including CCL20, MARCO, CCL24, IL-10, PPAR-γ, CD200R, TREM2, RelB. Expression of genes involved in resolution of inflammation and anti-inflammation response, such as CD200R and IL-10, was associated with the number of pathogenic bacteria found in the airways. CONCLUSION In summary, we have shown that the expression of genes related to macrophage function and resolution of inflammation are similar in PBB and bronchiectasis. Lung immune cell dysfunction in PBB and bronchiectasis may contribute to poor bacterial clearance and prolonged resolution of inflammation.
Collapse
Affiliation(s)
- Alice C-H Chen
- Translational Research Institute, Princess Alexandra Hospital, Brisbane, Australia.,Diamantina Institute, The University of Queensland, Brisbane, Australia
| | - Olga M Pena
- Translational Research Institute, Princess Alexandra Hospital, Brisbane, Australia
| | - Hendrik J Nel
- Diamantina Institute, The University of Queensland, Brisbane, Australia
| | | | - Anne B Chang
- Queensland University of Technology, CCHR, Brisbane, Australia.,Child Health Division, Menzies School of Health Research, Charles Darwin Hospital, Darwin, Australia
| | | | | | - Helen L Petsky
- Queensland University of Technology, CCHR, Brisbane, Australia
| | - Susan J Pizzutto
- Child Health Division, Menzies School of Health Research, Charles Darwin Hospital, Darwin, Australia
| | | | - Ian B Masters
- Respiratory and Sleep Medicine, Lady Cilento Children's Hospital, Brisbane, Australia
| | | | - John W Upham
- Translational Research Institute, Princess Alexandra Hospital, Brisbane, Australia.,Diamantina Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
34
|
Lou J, Wang Y, Zhang Z, Qiu W. MiR-20b inhibits mycobacterium tuberculosis induced inflammation in the lung of mice through targeting NLRP3. Exp Cell Res 2017; 358:120-128. [DOI: 10.1016/j.yexcr.2017.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/02/2017] [Accepted: 06/08/2017] [Indexed: 10/19/2022]
|
35
|
Jay TR, von Saucken VE, Landreth GE. TREM2 in Neurodegenerative Diseases. Mol Neurodegener 2017; 12:56. [PMID: 28768545 PMCID: PMC5541421 DOI: 10.1186/s13024-017-0197-5] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022] Open
Abstract
TREM2 variants have been identified as risk factors for Alzheimer's disease (AD) and other neurodegenerative diseases (NDDs). Because TREM2 encodes a receptor exclusively expressed on immune cells, identification of these variants conclusively demonstrates that the immune response can play an active role in the pathogenesis of NDDs. These TREM2 variants also confer the highest risk for developing Alzheimer's disease of any risk factor identified in nearly two decades, suggesting that understanding more about TREM2 function could provide key insights into NDD pathology and provide avenues for novel immune-related NDD biomarkers and therapeutics. The expression, signaling and function of TREM2 in NDDs have been extensively investigated in an effort to understand the role of immune function in disease pathogenesis and progression. We provide a comprehensive review of our current understanding of TREM2 biology, including new insights into the regulation of TREM2 expression, and TREM2 signaling and function across NDDs. While many open questions remain, the current body of literature provides clarity on several issues. While it is still often cited that TREM2 expression is decreased by pro-inflammatory stimuli, it is now clear that this is true in vitro, but inflammatory stimuli in vivo almost universally increase TREM2 expression. Likewise, while TREM2 function is classically described as promoting an anti-inflammatory phenotype, more than half of published studies demonstrate a pro-inflammatory role for TREM2, suggesting that its role in inflammation is much more complex. Finally, these components of TREM2 biology are applied to a discussion of how TREM2 impacts NDD pathologies and the latest assessment of how these findings might be applied to immune-directed clinical biomarkers and therapeutics.
Collapse
Affiliation(s)
- Taylor R. Jay
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106 USA
| | - Victoria E. von Saucken
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106 USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W 15th Street, Indianapolis, IN 46202 USA
| | - Gary E. Landreth
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106 USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W 15th Street, Indianapolis, IN 46202 USA
| |
Collapse
|
36
|
Wu R, Li X, Xu P, Huang L, Cheng J, Huang X, Jiang J, Wu LJ, Tang Y. TREM2 protects against cerebral ischemia/reperfusion injury. Mol Brain 2017; 10:20. [PMID: 28592261 PMCID: PMC5461720 DOI: 10.1186/s13041-017-0296-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 04/20/2017] [Indexed: 01/01/2023] Open
Abstract
Although post-ischemic inflammation induced by the innate immune response is considered an essential step in the progression of cerebral ischemia injury, the role of triggering receptor expressed on myeloid cells 2 (TREM2) in the pathogenesis of ischemic stroke remains to be elucidated. Here, we found that the transcriptional and post-transcriptional levels of TREM2 were increased in cultured primary microglia after oxygen-glucose deprivation and reoxygenation and in the ischemic penumbra of the cerebral cortex after middle cerebral artery occlusion (MCAO) and reperfusion in mice. TREM2 was mainly expressed in microglia, but not in astrocytes, neurons, or oligodendrocytes in mice subjected to MCAO. Manipulating TREM2 expression levels in vitro and in vivo significantly regulated the production of pro- and anti-inflammatory mediators after ischemic stroke. TREM2 overexpression markedly suppressed the inflammatory response and neuronal apoptosis. By contrast, TREM2 gene silencing intensified the inflammatory response, increased neuronal apoptosis and infarct volume, and further exacerbated neurological dysfunction. Our study demonstrated that TREM2 protects against cerebral ischemia/reperfusion injury through the aspect of post-ischemic inflammatory response and neuronal apoptosis. Pharmacological targeting of TREM2 to suppress the inflammatory response may provide a new approach for developing therapeutic strategies in the treatment of ischemic stroke and other cerebrovascular diseases.
Collapse
Affiliation(s)
- Rong Wu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiangpen Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Pengfei Xu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Likui Huang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jinping Cheng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaolong Huang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jingru Jiang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Long-Jun Wu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA.,Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China. .,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-Sen University, Guangzhou, 510120, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
37
|
Yeh FL, Hansen DV, Sheng M. TREM2, Microglia, and Neurodegenerative Diseases. Trends Mol Med 2017; 23:512-533. [DOI: 10.1016/j.molmed.2017.03.008] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/15/2017] [Accepted: 03/26/2017] [Indexed: 01/17/2023]
|
38
|
Jiang H, Si Y, Li Z, Huang X, Chen S, Zheng Y, Xu G, Chen X, Chen Y, Liu Y, Xiong H, Huang Q, Liang M, Zhang Z. TREM-2 promotes acquired cholesteatoma-induced bone destruction by modulating TLR4 signaling pathway and osteoclasts activation. Sci Rep 2016; 6:38761. [PMID: 27934908 PMCID: PMC5146948 DOI: 10.1038/srep38761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/07/2016] [Indexed: 02/08/2023] Open
Abstract
Triggering receptor expressed on myeloid cells (TREM) has been broadly studied in inflammatory disease. However, the expression and function of TREM-2 remain undiscovered in acquired cholesteatoma. The expression of TREM-2 was significantly higher in human acquired cholesteatoma than in normal skin from the external auditory canal, and its expression level was positively correlated with the severity of bone destruction. Furthermore, TREM-2 was mainly expressed on dendritic cells (DCs). In human acquired cholesteatoma, the expression of proinflammatory cytokines (IL-1β, TNF-α and IL-6) and matrix metalloproteinases (MMP-2, MMP-8 and MMP-9) were up-regulated, and their expression levels were positively correlated with TREM-2 expression. Osteoclasts were activated in human acquired cholesteatoma. In an animal model, TREM-2 was up-regulated in mice with experimentally acquired cholesteatoma. TREM-2 deficiency impaired the maturation of experimentally acquired cholesteatoma and protected against bone destruction induced by experimentally acquired cholesteatoma. Additional data showed that TREM-2 up-regulated IL-1β and IL-6 expression via TLR4 instead of the TLR2 signaling pathway and promoted MMP-2 and MMP-8 secretion and osteoclast activation in experimentally acquired cholesteatoma. Therefore, TREM-2 might enhance acquired cholesteatoma-induced bone destruction by amplifying the inflammatory response via TLR4 signaling pathways and promoting MMP secretion and osteoclast activation.
Collapse
Affiliation(s)
- Huaili Jiang
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China
| | - Yu Si
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China
| | - Zhuohao Li
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China
| | - Xi Huang
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine and Key Laboratory of Tropical Diseases Control, Ministry of Education Sun Yat-sen University, Guangzhou, China
| | - Suijun Chen
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China
| | - Yiqing Zheng
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China
| | - Guo Xu
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China
| | - Ximing Chen
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China
| | - Yubin Chen
- Department of Otolaryngology Head and Neck Surgery, The third affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yi Liu
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China
| | - Hao Xiong
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China
| | - Qiuhong Huang
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China
| | - Maojin Liang
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China
| | - Zhigang Zhang
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, China
| |
Collapse
|
39
|
Saber M, Kokiko-Cochran O, Puntambekar SS, Lathia JD, Lamb BT. Triggering Receptor Expressed on Myeloid Cells 2 Deficiency Alters Acute Macrophage Distribution and Improves Recovery after Traumatic Brain Injury. J Neurotrauma 2016; 34:423-435. [PMID: 26976047 DOI: 10.1089/neu.2016.4401] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Traumatic brain injury (TBI) affects 1.7 million persons annually in the United States (Centers for Disease Control and Prevention). There is increasing evidence that persons exposed to TBI have increased risk of the development of multiple neurodegenerative conditions, including Alzheimer disease (AD). TBI triggers a strong neuroinflammatory response characterized by astrogliosis, activation of microglia, and infiltration of peripheral monocytes. Recent evidence suggests that alterations in innate immunity promote neurodegeneration. This includes genetic studies demonstrating that mutations in triggering receptor expressed on myeloid cells 2 (TREM2) is associated with a higher risk for not only AD but also multiple neurodegenerative diseases. To examine whether TREM2 deficiency affects pathological outcomes of TBI, Trem2 knockout (Trem2-/-) and C57BL/6J (B6) mice were given a lateral fluid percussion injury (FPI) and sacrificed at 3 and 120 days post-injury (DPI) to look at both acute and chronic consequences of TREM2 deficiency. Notably, at 3 DPI, B6 mice exposed to TBI exhibited increased expression of TREM2 in the brain. Further, Trem2-/- mice exposed to TBI exhibited enhanced macrophage activation near the lesion, but significantly less macrophage activation away from the lesion when compared with B6 mice exposed to TBI. In addition, at 120 DPI, Trem2-/- mice exposed to TBI demonstrated reduced hippocampal atrophy and rescue of TBI-induced behavioral changes when compared with B6 mice exposed to TBI. Taken together, this study suggests that TREM2 deficiency influences both acute and chronic responses to TBI, leading to an altered macrophage response at early time points, and improved pathological and functional outcomes at later time points.
Collapse
Affiliation(s)
- Maha Saber
- 1 Department of Neurosciences, Cleveland Clinic , Cleveland, Ohio.,2 Department of Molecular Medicine, Case Western Reserve University , Cleveland, Ohio
| | | | | | - Justin D Lathia
- 3 Department of Cellular Molecular Medicine, Cleveland Clinic , Cleveland, Ohio
| | - Bruce T Lamb
- 1 Department of Neurosciences, Cleveland Clinic , Cleveland, Ohio.,4 Stark Neurosciences Research Institute , Indianapolis, Indiana
| |
Collapse
|
40
|
Zheng H, Liu CC, Atagi Y, Chen XF, Jia L, Yang L, He W, Zhang X, Kang SS, Rosenberry TL, Fryer JD, Zhang YW, Xu H, Bu G. Opposing roles of the triggering receptor expressed on myeloid cells 2 and triggering receptor expressed on myeloid cells-like transcript 2 in microglia activation. Neurobiol Aging 2016; 42:132-41. [PMID: 27143430 DOI: 10.1016/j.neurobiolaging.2016.03.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/14/2016] [Accepted: 03/06/2016] [Indexed: 01/12/2023]
Abstract
Mutations in triggering receptor expressed on myeloid cells 2 (TREM2), which has been proposed to regulate the inflammatory responses and the clearance of apoptotic neurons and/or amyloid-β, are genetically linked to increased risk for late-onset Alzheimer's disease (AD). Interestingly, a missense variant in TREM-like transcript 2 (TREML2), a structurally similar protein encoded by the same gene cluster with TREM2 on chromosome 6, has been shown to protect against AD. However, the molecular mechanisms by which TREM2 and TREML2 regulate the pathogenesis of AD, and their functional relationship, if any, remain unclear. Here, we show that lipopolysaccharide (LPS) stimulation significantly suppressed TREM2 but increased TREML2 expression in mouse brain. Consistent with this in vivo result, LPS or oligomeric amyloid-β treatment down regulated TREM2 but up-regulated TREML2 expression in primary microglia. Most important, modulation of TREM2 or TREML2 levels had opposing effects on inflammatory responses with enhancement or suppression of LPS-induced proinflammatory cytokine gene expression observed on TREM2 or TREML2 down regulation, respectively. In addition, the proliferation of primary microglia was significantly decreased when TREM2 was down regulated, whereas it was increased on TREML2 knockdown. Together, our results suggest that several microglial functions are strictly regulated by TREM2 and TREML2, whose dysfunctions likely contribute to AD pathogenesis by impairing brain innate immunity. Our findings provide novel mechanistic insights into the functions of TREM2 and TREML2 in microglia and have implications on designing new therapeutic strategies to treat AD.
Collapse
Affiliation(s)
- Honghua Zheng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, PR China
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yuka Atagi
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Xiao-Fen Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, PR China
| | - Lin Jia
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, PR China
| | - Longyu Yang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, PR China
| | - Wencan He
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, PR China
| | - Xilin Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, PR China
| | - Silvia S Kang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neurobiology of Disease Graduate Program, Mayo Clinic, Jacksonville, FL, USA
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, PR China; Degenerative Disease Research Program, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Huaxi Xu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, PR China; Degenerative Disease Research Program, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Guojun Bu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, PR China; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neurobiology of Disease Graduate Program, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
41
|
Hommes TJ, Dessing MC, Veer CV', Florquin S, Colonna M, de Vos AF, van der Poll T. Role of triggering receptor expressed on myeloid cells-1/3 in Klebsiella-derived pneumosepsis. Am J Respir Cell Mol Biol 2016; 53:647-55. [PMID: 25860078 DOI: 10.1165/rcmb.2014-0485oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Triggering receptor expressed on myeloid cells (TREM)-1 and -2 can affect Toll-like receptor-mediated activation of immune cells. Klebsiella pneumoniae is a common cause of pneumonia-derived sepsis. Here we studied the role of TREM-1/3 and TREM-2 in the host response during Klebsiella pneumonia. Macrophages lacking either TREM-1/3 or TREM-2 were tested for their responsiveness toward K. pneumoniae and for their capacity to internalize this pathogen in vitro. TREM-1/3- and TREM-2-deficient mice were infected with K. pneumoniae via the airways, and their responses were compared with those in wild-type mice. TREM-1/3-deficient macrophages produced lower cytokine levels upon exposure to K. pneumoniae, whereas TREM-2-deficient macrophages released higher cytokine concentrations. TREM-2-deficient, but not TREM-1/3-deficient, macrophages showed a reduced capacity to phagocytose K. pneumoniae. TREM-1/3-deficient mice showed an impaired host defense during Klebsiella pneumonia, as reflected by worsened survival and increased bacterial growth and dissemination. In contrast, TREM-2 deficiency did not affect disease outcome. Although TREM-1/3 and TREM-2 influence macrophage responsiveness to K. pneumoniae in vitro, only TREM-1/3 contribute to the host response during Klebsiella pneumonia in vivo, serving a protective role.
Collapse
Affiliation(s)
- Tijmen J Hommes
- 1 Center for Experimental and Molecular Medicine.,2 Center for Infection and Immunity
| | | | - Cornelis van 't Veer
- 1 Center for Experimental and Molecular Medicine.,2 Center for Infection and Immunity
| | | | - Marco Colonna
- 4 Department of Pathology, Washington University in St. Louis, St. Louis, Missouri
| | - Alex F de Vos
- 1 Center for Experimental and Molecular Medicine.,2 Center for Infection and Immunity
| | - Tom van der Poll
- 1 Center for Experimental and Molecular Medicine.,2 Center for Infection and Immunity.,5 Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; and
| |
Collapse
|
42
|
Hall SC, Agrawal DK. Toll-like receptors, triggering receptor expressed on myeloid cells family members and receptor for advanced glycation end-products in allergic airway inflammation. Expert Rev Respir Med 2016; 10:171-84. [PMID: 26678062 PMCID: PMC4955846 DOI: 10.1586/17476348.2016.1133303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Asthma is a chronic disorder of the airways characterized by cellular infiltration, airway hyper-responsive and airway inflammation. Innate immune cells are the first line of defense against endogenous and exogenous signals in the airways and as such possess a diverse array of pattern recognition receptors. Toll-like receptors are crucial sentinels which when activated, can either promote or ameliorate the inflammatory response in predisposed individuals. The recently discovered triggering receptor expressed on myeloid cells family members are emerging mediators of inflammation. These receptors are believed to modulate inflammatory responses by collaborating with classic PRRs. Endogenous signals like HMGB-1, signaling through the receptor for advanced glycation end products, also promotes inflammation, however, its contribution to inflammation in the airways is not well known. Here, we discuss the role of each receptor in airway inflammation and highlight potential synergistic mechanisms, which contribute to disease pathogenesis in allergic asthma.
Collapse
Affiliation(s)
- Sannette C. Hall
- Department of Biomedical Science, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K. Agrawal
- Department of Biomedical Science, Creighton University School of Medicine, Omaha, NE, USA
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA
- Center for Clinical and Translational Science Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
43
|
Zhang WQ, Huang SH, Huang X, Li JH, Ye P, Xu J, Zheng PZ, Shen HY, Huang JR. Regulation of human mesenchymal stem cell differentiation by TREM-2. Hum Immunol 2015; 77:476-82. [PMID: 26079507 DOI: 10.1016/j.humimm.2015.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 01/31/2015] [Accepted: 06/02/2015] [Indexed: 10/23/2022]
Abstract
Activation of the triggering receptor expressed on myeloid cells 2 (TREM-2) regulates myeloid cell function in vitro. However, the failure to detect TREM-2 protein expression in vivo has hampered studies on immunological and other physiological TREM-2 functions. This study demonstrates that TREM-2 is expressed by human mesenchymal stem cells (h-MSCs) and responds to the toll-like receptor (TLR) ligand lipopolysaccharide (LPS). Knockdown of TREM-2 in h-MSCs using a small interfering RNA (siRNA) reduced the expression levels of TLR2, TLR4, and TLR6, inhibited osteogenic, chondrogenic, and adipogenic differentiation under specific induction conditions, and enhanced LPS-evoked inflammatory cytokine production. Thus, activation of TREM-2 may restrain h-MSC immune activation and promote differentiation for tissue repair.
Collapse
Affiliation(s)
- Wei-Qiong Zhang
- Department of Orthopedics, The Sun Yat Sen Memory Hospital, Sun Yat Sen University, Guangzhou 510120, China; Department of Orthopedics, Zeng Cheng People's Hospital, Guangzhou 511300, China
| | - Sheng-Hui Huang
- Department of Orthopedics, The Sun Yat Sen Memory Hospital, Sun Yat Sen University, Guangzhou 510120, China; Department of Orthopedics, Zeng Cheng People's Hospital, Guangzhou 511300, China
| | - Xi Huang
- Department of Immunology, Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jian-Hua Li
- Physiological Department of Guangzhou Medical University, Guangzhou 510080, China
| | - Pei Ye
- Department of Orthopedics, The Sun Yat Sen Memory Hospital, Sun Yat Sen University, Guangzhou 510120, China; Department of Orthopedics, Zeng Cheng People's Hospital, Guangzhou 511300, China
| | - Jinhuang Xu
- Department of Orthopedics, Zeng Cheng People's Hospital, Guangzhou 511300, China
| | - Pei-Zhong Zheng
- Department of Orthopedics, Zeng Cheng People's Hospital, Guangzhou 511300, China
| | - Hui-Yong Shen
- Department of Orthopedics, The Sun Yat Sen Memory Hospital, Sun Yat Sen University, Guangzhou 510120, China
| | - Jian-Rong Huang
- Department of Orthopedics, The Sun Yat Sen Memory Hospital, Sun Yat Sen University, Guangzhou 510120, China; Department of Orthopedics, Zeng Cheng People's Hospital, Guangzhou 511300, China.
| |
Collapse
|
44
|
Kanayama M, He YW, Shinohara ML. The lung is protected from spontaneous inflammation by autophagy in myeloid cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:5465-71. [PMID: 25911758 DOI: 10.4049/jimmunol.1403249] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/24/2015] [Indexed: 11/19/2022]
Abstract
The lung is constantly exposed to the outer environment; thus, it must maintain a state of immune ignorance or tolerance not to overrespond to harmless environmental stimuli. How cells in the lung control immune responses under nonpathogenic condition is not fully understood. In this study, we found that autophagy plays a critical role in the lung-specific immune regulation that prevents spontaneous inflammation. Autophagy in pulmonary myeloid cells plays a role in maintaining low burdens of environmental microbes in the lung, as well as in lowering mitochondrial reactive oxygen species production and preventing overresponse to TLR4 ligands in alveolar macrophages. Based on these mechanisms, we also found that intranasal instillation of antibiotics or an inhibitor of reactive oxygen species was efficient in preventing spontaneous pulmonary inflammation. Thus, autophagy in myeloid cells, particularly alveolar macrophages, is critical for inhibiting spontaneous pulmonary inflammation, and pulmonary inflammation caused by dysfunctional autophagy is pharmacologically prevented.
Collapse
Affiliation(s)
- Masashi Kanayama
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - You-Wen He
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - Mari L Shinohara
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
45
|
Rajaram MVS, Ni B, Dodd CE, Schlesinger LS. Macrophage immunoregulatory pathways in tuberculosis. Semin Immunol 2014; 26:471-85. [PMID: 25453226 DOI: 10.1016/j.smim.2014.09.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 12/17/2022]
Abstract
Macrophages, the major host cells harboring Mycobacterium tuberculosis (M.tb), are a heterogeneous cell type depending on their tissue of origin and host they are derived from. Significant discord in macrophage responses to M.tb exists due to differences in M.tb strains and the various types of macrophages used to study tuberculosis (TB). This review will summarize current concepts regarding macrophage responses to M.tb infection, while pointing out relevant differences in experimental outcomes due to the use of divergent model systems. A brief description of the lung environment is included since there is increasing evidence that the alveolar macrophage (AM) has immunoregulatory properties that can delay optimal protective host immune responses. In this context, this review focuses on selected macrophage immunoregulatory pattern recognition receptors (PRRs), cytokines, negative regulators of inflammation, lipid mediators and microRNAs (miRNAs).
Collapse
Affiliation(s)
- Murugesan V S Rajaram
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Bin Ni
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Claire E Dodd
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Larry S Schlesinger
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
46
|
|
47
|
Chen Q, Zhang K, Jin Y, Zhu T, Cheng B, Shu Q, Fang X. Triggering receptor expressed on myeloid cells-2 protects against polymicrobial sepsis by enhancing bacterial clearance. Am J Respir Crit Care Med 2013; 188:201-12. [PMID: 23721075 DOI: 10.1164/rccm.201211-1967oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RATIONALE Triggering receptor expressed on myeloid cells-2 (TREM-2) is a cell surface receptor primarily expressed on macrophages and monocyte-derived cells. TREM-2 not only functions as a regulator of inflammatory response, but also serves as a phagocytic receptor for bacteria. However, the role of TREM-2 in sepsis remains unknown. OBJECTIVES To investigate whether TREM-2 plays a role in sepsis. METHODS The manner of expression of TREM-2 was evaluated in patients with sepsis and in polymicrobial septic mouse model induced by the cecum ligation and puncture approach. Recombinant mouse TREM-2 was used to block the effect of TREM-2. Bone marrow-derived myeloid cells (BMMCs) that overexpress TREM-2 were administrated into septic mice at various times after cecum ligation and puncture. MEASUREMENTS AND MAIN RESULTS The expression levels of TREM-2 were up-regulated in patients with sepsis and septic mice. The kinetics of TREM-2 expression in polymicrobial sepsis was comparable with that of bacteria burden in peritoneal lavage fluid. Blocking the effect of TREM-2 resulted in markedly increased mortality and bacterial burden in polymicrobial sepsis. Administration of TREM-2-overexpressing BMMCs significantly reduced the mortality, even when it was administered 4 hours after the initiation of sepsis. However, injection of TREM-2-overexpressing BMMCs into LPS-challenged endotoxemia mice did not improve the survival rate. The protective effect of TREM-2 in polymicrobial sepsis was not associated with its antiinflammatory properties, but it enhanced bacterial clearance in vivo. Furthermore, administration of TREM-2-overexpressing BMMCs improved the organ injury. CONCLUSIONS TREM-2 plays an important role in the host defense response to sepsis by enhancing bacterial clearance.
Collapse
Affiliation(s)
- QiXing Chen
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|