1
|
Ma M, Du Q, Shi S, Lv J, Zhang W, Ge D, Xing L, Yu N. Integrating UPLC-Q-TOF-MS and Network Pharmacology to Explore the Potential Mechanisms of Paeonia lactiflora Pall. in the Treatment of Blood Stasis Syndrome. Molecules 2024; 29:3019. [PMID: 38998977 PMCID: PMC11243510 DOI: 10.3390/molecules29133019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Paeonia lactiflora Pall. (PLP) is thought to promote blood circulation and remove blood stasis. This study used blood component analysis, network pharmacology, and molecular docking to predict the mechanism of PLP in the treatment of blood stasis syndrome (BSS). PLP was processed into Paeoniae Radix Alba (PRA) and Paeoniae Radix Rubra (PRR). PRA and PRR could significantly reduce whole blood viscosity (WBV) at 1/s shear rates and could increase the erythrocyte aggregation index (EAI), plasma viscosity (PV), and erythrocyte sedimentation rate (ESR) of rats with acute blood stasis. They prolonged the prothrombin time (PT), and PRR prolonged the activated partial thromboplastin time (APTT). PRA and PRR increased the thrombin time (TT) and decreased the fibrinogen (FBG) content. All the results were significant (p < 0.05). Ten components of Paeoniflorin, Albiflorin, Paeonin C, and others were identified in the plasma of rats using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). A protein-protein interaction network (PPI) analysis showed that AKT1, EGFR, SRC, MAPK14, NOS3, and KDR were key targets of PLP in the treatment of BSS, and the molecular docking results further verified this. This study indicated that PLP improves BSS in multiple ways and that the potential pharmacological mechanisms may be related to angiogenesis, vasoconstriction and relaxation, coagulation, and the migration and proliferation of vascular cells.
Collapse
Affiliation(s)
- Mengzhen Ma
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.M.); (Q.D.); (S.S.); (J.L.); (W.Z.)
| | - Qianqian Du
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.M.); (Q.D.); (S.S.); (J.L.); (W.Z.)
| | - Suying Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.M.); (Q.D.); (S.S.); (J.L.); (W.Z.)
| | - Jiahui Lv
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.M.); (Q.D.); (S.S.); (J.L.); (W.Z.)
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
| | - Wei Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.M.); (Q.D.); (S.S.); (J.L.); (W.Z.)
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Dezhu Ge
- Anhui Jiren Pharmaceutical Co., Ltd., Bozhou 236800, China;
| | - Lihua Xing
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.M.); (Q.D.); (S.S.); (J.L.); (W.Z.)
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (M.M.); (Q.D.); (S.S.); (J.L.); (W.Z.)
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
2
|
Yang C, Yang S, Fang S, Li L, Jing J, Liu W, Wang C, Li R, Lu Y. PLGA nanoparticles enhanced cardio-protection of scutellarin and paeoniflorin against isoproterenol-induced myocardial ischemia in rats. Int J Pharm 2023; 648:123567. [PMID: 37918495 DOI: 10.1016/j.ijpharm.2023.123567] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
This study aims to examine the impact of the microfluidic preparation process on the quality of poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) co-delivered with scutellarin (SCU) and paeoniflorin (PAE) in comparison to a conventional emulsification method and to evaluatethe potential cardio-protective effect of SCU-PAE PLGA NPs produced through emulsification method. As compared with microfluidics, the nanoparticles prepared by emulsification method exhibited a smaller size, higher encapsulation efficiency, higher drug loading and lower viscosity for injection. Subsequently, a rat myocardial ischemia (MI) was established using male Sprague-Dawley (SD) rats (250 ± 20 g) subcutaneously injected with 85 mg/kg isoproterenol (ISO) for two consecutive days. The pharmacokinetic findings demonstrated that our SCU-PAE PLGA NPs exhibited prolonged blood circulation time in MI rats, leading to increased levels of SCU and PAE in the heart. This resulted in significant improvements in electrocardiogram and cardiac index, as well as reduced serum levels of CK, LDH, AST. Histopathological analysis using H&E and TUNEL staining provided further evidence of improved cardiac function and decreased apoptosis. Additionally, experiments measuring SOD, MDA, GSH, NO, TNF-α and IL-6 levels indicated that SCU-PAE PLGA NPs may effectively treat MI through oxidative stress and inflammatory pathways, thereby establishing it as a promising therapeutic intervention.
Collapse
Affiliation(s)
- Chang Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China.
| | - Shanshan Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Shumei Fang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Lisu Li
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Jincheng Jing
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Wenting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Cong Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Ruixi Li
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yuan Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| |
Collapse
|
3
|
Li X, Sun C, Zhang J, Hu L, Yu Z, Zhang X, Wang Z, Chen J, Wu M, Liu L. Protective effects of paeoniflorin on cardiovascular diseases: A pharmacological and mechanistic overview. Front Pharmacol 2023; 14:1122969. [PMID: 37324475 PMCID: PMC10267833 DOI: 10.3389/fphar.2023.1122969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/10/2023] [Indexed: 06/17/2023] Open
Abstract
Background and ethnopharmacological relevance: The morbidity and mortality of cardiovascular diseases (CVDs) are among the highest of all diseases, necessitating the search for effective drugs and the improvement of prognosis for CVD patients. Paeoniflorin (5beta-[(Benzoyloxy)methyl] tetrahydro-5-hydroxy-2-methyl-2,5-methano-1H-3,4-dioxacyclobuta [cd] pentalen-1alpha (2H)-yl-beta-D-glucopyranoside, C23H28O11) is mostly derived from the plants of the family Paeoniaceae (a single genus family) and is known to possess multiple pharmacological properties in the treatment of CVDs, making it a promising agent for the protection of the cardiovascular system. Aim of the study: This review evaluates the pharmacological effects and potential mechanisms of paeoniflorin in the treatment of CVDs, with the aim of advancing its further development and application. Methods: Various relevant literatures were searched in PubMed, ScienceDirect, Google Scholar and Web of Science. All eligible studies were analyzed and summarized in this review. Results: Paeoniflorin is a natural drug with great potential for development, which can protect the cardiovascular system by regulating glucose and lipid metabolism, exerting anti-inflammatory, anti-oxidative stress, and anti-arteriosclerotic activities, improving cardiac function, and inhibiting cardiac remodeling. However, paeoniflorin was found to have low bioavailability, and its toxicology and safety must be further studied and analyzed, and clinical studies related to it must be carried out. Conclusion: Before paeoniflorin can be used as an effective therapeutic drug for CVDs, further in-depth experimental research, clinical trials, and structural modifications or development of new preparations are required.
Collapse
Affiliation(s)
- Xiaoya Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Changxin Sun
- Beijing University of Chinese Medicine, Beijing, China
| | - Jingyi Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | - Lanqing Hu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongliang Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaonan Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zeping Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiye Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Liu J, Li X, Bai H, Yang X, Mu J, Yan R, Wang S. Traditional uses, phytochemistry, pharmacology, and pharmacokinetics of the root bark of Paeonia x suffruticosa andrews: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116279. [PMID: 36822345 DOI: 10.1016/j.jep.2023.116279] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moutan Cortex (MC), commonly known as "Mu dan pi", refers to the dried root bark of Paeonia x suffruticosa Andrews and is broadly used as a traditional herbal medication in China, Japan, and Korea. For thousands of years, it has been utilized to treat female genital, extravasated blood, cardiovascular, and stagnant blood disorders. AIM OF THE REVIEW The purpose of this review article was to summarize information on the traditional uses, phytochemistry, pharmacology and pharmacokinetics of MC, as well as to outline the further research directions for the development of new drugs and the associations between traditional uses and pharmacological effects. MATERIALS AND METHODS The information involved in the study was gathered from a variety of electronic resources, including PubMed, Web of Science, ScienceDirect, SciFinder, China Knowledge Resource Integrated Database, and Google Scholar. The date was from 1992 to 2022. RESULTS Approximately 163 chemical compounds have been extracted and identified from MC, including monoterpenes, monoterpene glycosides, triterpenes, phenolics, flavonoids, volatile oils, alkaloids, and others. In these categories, the monoterpene glycosides and phenols being the most common. A wide variety of pharmacological effects have been described for MC crude extracts and active molecules, such as antioxidant, anti-inflammatory, antibacterial and antiviral, antitumor, antidiabetic, organ protection, and neuroprotective activities, as well as treating cardiovascular diseases. Pharmacokinetics has been also used in the study of MC, including its crude extracts or chemical constituents, in order to explore the therapeutic mechanism, direct clinically appropriate application and provide new ideas for the exploitation of innovative medicines. CONCLUSION Modern pharmacological research has demonstrated that MC, as a significant therapeutic resource, has the ability to heal a wide range of diseases, particularly female genital and cardiovascular problems. These researches propose therapeutic ideas for the development of novel MC medicines. Furthermore, preclinical and clinical study have verified several observed pharmacological properties related with the traditional usages of MC.
Collapse
Affiliation(s)
- Jincai Liu
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Xiang Li
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Huixin Bai
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Xu Yang
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Jun Mu
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Ruonan Yan
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Siwang Wang
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
5
|
The Study of a Novel Paeoniflorin-Converting Enzyme from Cunninghamella blakesleeana. Molecules 2023; 28:molecules28031289. [PMID: 36770956 PMCID: PMC9921665 DOI: 10.3390/molecules28031289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Paeoniflorin is a glycoside compound found in Paeonia lactiflora Pall that is used in traditional herbal medicine and shows various protective effects on the cardio-cerebral vascular system. It has been reported that the pharmacological effects of paeoniflorin might be generated by its metabolites. However, the bioavailability of paeoniflorin by oral administration is low, which greatly limits its clinical application. In this paper, a paeoniflorin-converting enzyme gene (G6046, GenBank accession numbers: OP856858) from Cunninghamella blakesleeana (AS 3.970) was identified by comparative analysis between MS analysis and transcriptomics. The expression, purification, enzyme activity, and structure of the conversion products produced by this paeoniflorin-converting enzyme were studied. The optimal conditions for the enzymatic activity were found to be pH 9, 45 °C, resulting in a specific enzyme activity of 14.56 U/mg. The products were separated and purified by high-performance counter-current chromatography (HPCCC). Two main components were isolated and identified, 2-amino-2-p-hydroxymethyl-methyl alcohol-benzoate (tirs-benzoate) and 1-benzoyloxy-2,3-propanediol (1-benzoyloxypropane-2,3-diol), via UPLC-Q-TOF-MS and NMR. Additionally, paeoniflorin demonstrated the ability to metabolize into benzoic acid via G6046 enzyme, which might exert antidepressant effects through the blood-brain barrier into the brain.
Collapse
|
6
|
Ekiert H, Klimek-Szczykutowicz M, Szopa A. Paeonia × suffruticosa (Moutan Peony)-A Review of the Chemical Composition, Traditional and Professional Use in Medicine, Position in Cosmetics Industries, and Biotechnological Studies. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233379. [PMID: 36501418 PMCID: PMC9739549 DOI: 10.3390/plants11233379] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 05/14/2023]
Abstract
The aim of this review is to perform a systematic review of scientific papers and an in-depth analysis of the latest research related to Paeonia × suffruticosa Andrews as a valuable plant species, important in pharmacy and cosmetology. P. × suffruticosa bark root-Moutan cortex is a medicinal raw material formerly known from traditional Chinese medicine (TCM) but less common in official European medicine. It was introduced for the first time in the European Pharmacopoeia Supplement 9.4 in 2018. In this work, the numerous possible applications of this raw material were depicted based on modern professional pharmacological studies documenting its very valuable medicinal values, including antioxidant, cytoprotective, anti-cancer, anti-inflammatory, cardioprotective, anti-atherosclerotic, anti-diabetic and hepatoprotective activities. The scientific studies indicated that the profile of raw material activity is mainly due to paeonol, paeoniflorin and 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose. Moreover, the significance of this plant (its different organs) in the production of cosmetics was underlined. P. × suffruticosa finds increasing application in cosmetology due to research on its chronic dermatitis, anti-aging and brightening effects. Furthermore, some biotechnological research has been described aimed at developing effective in vitro micropropagation protocols for P. × suffruticosa.
Collapse
Affiliation(s)
- Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Marta Klimek-Szczykutowicz
- Department of Dermatology, Cosmetology and Aesthetic Surgery, The Institute of Medical Sciences, Medical College, Jan Kochanowski University, al. IX Wieków Kielc 19a, 25-516 Kielce, Poland
- Correspondence: (M.K.-S.); (A.S.); Tel.: +48-12-620-54-36 (A.S.); Fax: +48-620-54-40 (A.S.)
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
- Correspondence: (M.K.-S.); (A.S.); Tel.: +48-12-620-54-36 (A.S.); Fax: +48-620-54-40 (A.S.)
| |
Collapse
|
7
|
Bachheti RK, Worku LA, Gonfa YH, Zebeaman M, Deepti, Pandey DP, Bachheti A. Prevention and Treatment of Cardiovascular Diseases with Plant Phytochemicals: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5741198. [PMID: 35832515 PMCID: PMC9273387 DOI: 10.1155/2022/5741198] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases (CVDs) are the world's leading killers, accounting for 30% deaths. According to the WHO report, CVDs kill 17.9 million people per year, and there will be 22.2 million deaths from CVD in 2030. The death rates rise as people get older. Regarding gender, the death rate of women by CVD (51%) is higher than that of men (42%). To decrease and prevent CVD, most people rely on traditional medicine originating from the plant (phytochemicals) in addition to or in preference to commercially available drugs to recover from their illness. The CVD therapy efficacy of 92 plants, including 15 terrestrial plants, is examined. Some medicinal plants well known to treat CVD are, Daucus carota, Nerium oleander, Amaranthus Viridis, Ginkgo biloba, Terminalia arjuna, Picrorhiza kurroa, Salvia miltiorrhiza, Tinospora cordifolia, Mucuna pruriens, Hydrocotyle asiatica, Bombax ceiba, and Andrographis paniculate. The active phytochemicals found in these plants are flavonoids, polyphenols, plant sterol, plant sulphur compounds, and terpenoids. A general flavonoid mechanism of action is to prevent low-density lipoprotein oxidation, which promotes vasodilatation. Plant sterols prevent CVD by decreasing cholesterol absorption in the blood. Plant sulphur compound also prevent CVD by activation of nuclear factor-erythroid factor 2-related factor 2 (Nrf2) and inhibition of cholesterol synthesis. Quinone decreases the risk of CVD by increasing ATP production in mitochondria while terpenoids by decreasing atherosclerotic lesion in the aortic valve. Although several physiologically active compounds with recognized biological effects have been found in various plants because of the increased prevalence of CVD, appropriate CVD prevention and treatment measures are required. More research is needed to understand the mechanism and specific plants' phytochemicals responsible for treating CVD.
Collapse
Affiliation(s)
- Rakesh Kumar Bachheti
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Industrial Chemistry, College of Applied Sciences, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Limenew Abate Worku
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Industrial Chemistry, College of Applied Sciences, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Yilma Hunde Gonfa
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Chemistry, Faculty of Natural and Computational Science, Ambo University, Ambo, Ethiopia
| | - Meseret Zebeaman
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Industrial Chemistry, College of Applied Sciences, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Deepti
- Department of Environment Science, Graphic Era University, Dehradun-248002, Uttarakhand, India
| | - D. P. Pandey
- Department of Chemistry, Government P. G. College, Uttarkashi, India
| | - Archana Bachheti
- Department of Environment Science, Graphic Era University, Dehradun-248002, Uttarakhand, India
| |
Collapse
|
8
|
Tai H, Tong YJ, Yu R, Yu Y, Yao SC, Li LB, Liu Y, Cui XZ, Kuang JS, Meng XS, Jiang XL. A possible new activator of PI3K-Huayu Qutan Recipe alleviates mitochondrial apoptosis in obesity rats with acute myocardial infarction. J Cell Mol Med 2022; 26:3423-3445. [PMID: 35567290 PMCID: PMC9189350 DOI: 10.1111/jcmm.17353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 01/20/2023] Open
Abstract
Obesity, which has unknown pathogenesis, can increase the frequency and seriousness of acute myocardial infarction (AMI). This study evaluated effect of Huayu Qutan Recipe (HQR) pretreatment on myocardial apoptosis induced by AMI by regulating mitochondrial function via PI3K/Akt/Bad pathway in rats with obesity. For in vivo experiments, 60 male rats were randomly divided into 6 groups: sham group, AMI group, AMI (obese) group, 4.5, 9.0 and 18.0 g/kg/d HQR groups. The models fed on HQR with different concentrations for 2 weeks before AMI. For in vitro experiments, the cardiomyocytes line (H9c2) was used. Cells were pretreated with palmitic acid (PA) for 24 h, then to build hypoxia model followed by HQR‐containing serum for 24 h. Related indicators were also detected. In vivo, HQR can lessen pathohistological damage and apoptosis after AMI. In addition, HQR improves blood fat levels, cardiac function, inflammatory factor, the balance of oxidation and antioxidation, as well as lessen infarction in rats with obesity after AMI. Meanwhile, HQR can diminish myocardial cell death by improving mitochondrial function via PI3K/Akt/Bad pathway activation. In vitro, HQR inhibited H9c2 cells apoptosis, improved mitochondrial function and activated the PI3K/Akt/Bad pathway, but effects can be peripeteiad by LY294002. Myocardial mitochondrial dysfunction occurs following AMI and can lead to myocardial apoptosis, which can be aggravated by obesity. HQR can relieve myocardial apoptosis by improving mitochondrial function via the PI3K/Akt/Bad pathway in rats with obesity.
Collapse
Affiliation(s)
- He Tai
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China.,Department of Internal Medicine, Liaoning Provincial Corps Hospital of Chinese People's Armed Police Forces, Shenyang, China
| | - Yu-Jing Tong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Yu
- Science and Technology Branch, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - You Yu
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Si-Cheng Yao
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Ling-Bing Li
- Department of Graduate School, China PLA General Hospital, Beijing, China
| | - Ye Liu
- Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Zheng Cui
- Cardiovascular Surgery, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Jin-Song Kuang
- Department of Endocrinology and Metabolism, The Fourth People's Hospital of Shenyang, Shenyang, China
| | - Xian-Sheng Meng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xiao-Lin Jiang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China.,Nephrology Laboratory, The fourth of Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Guangzhou University of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
9
|
Up-regulation of periostin via CREB participates in MI-induced myocardial fibrosis. J Cardiovasc Pharmacol 2022; 79:687-697. [DOI: 10.1097/fjc.0000000000001244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/01/2022] [Indexed: 11/25/2022]
|
10
|
Shao CL, Cui GH, Guo HD. Effects and Mechanisms of Taohong Siwu Decoction on the Prevention and Treatment of Myocardial Injury. Front Pharmacol 2022; 13:816347. [PMID: 35153789 PMCID: PMC8826566 DOI: 10.3389/fphar.2022.816347] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
Taohong Siwu decoction (THSWD) is one of the classic prescriptions for promoting blood circulation and removing blood stasis. With the continuous in-depth excavation in basic and clinical research, it has been found that THSWD has made greater progress in the prevention and treatment of cardiovascular diseases. Mechanisms of the current studies have shown that it could prevent and treat the myocardial injury by inhibiting inflammatory reaction, antioxidant stress, inhibiting platelet aggregation, prolonging clotting time, anti-fibrosis, reducing blood lipids, anti-atherosclerosis, improving hemorheology and vascular pathological changes, regulating related signal pathways and other mechanisms to prevent and treat the myocardial injury, so as to protect cardiomyocytes and improve cardiac function. Many clinical studies have shown that THSWD is effective in the prevention and treatment of cardiovascular diseases related to myocardial injuries, such as coronary heart disease angina pectoris (CHD-AP), and myocardial infarction. In clinical practice, it is often used by adding and subtracting prescriptions, the combination of compound prescriptions and combinations of chemicals and so on. However, there are some limitations and uncertainties in both basic and clinical research of prescriptions. According to the current research, although the molecular biological mechanism of various active ingredients needs to be further clarified, and the composition and dose of the drug have not been standardized and quantified, this study still has exploration for scientific research and clinical practice. Therefore, this review mainly discusses the basic mechanisms and clinical applications of THSWD in the prevention and treatment of the myocardial injury caused by CHD-AP and myocardial infarction. The authors hope to provide valuable ideas and references for researchers and clinicians.
Collapse
Affiliation(s)
- Chang-Le Shao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guo-Hong Cui
- Department of Neurology, Shanghai No. 9 People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hai-Dong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Silva EAP, Santos DM, de Carvalho FO, Menezes IAC, Barreto AS, Souza DS, Quintans-Júnior LJ, Santos MRV. Monoterpenes and their derivatives as agents for cardiovascular disease management: A systematic review and meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 88:153451. [PMID: 33483251 DOI: 10.1016/j.phymed.2020.153451] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/16/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Monoterpenes are one of the most studied plant's secondary metabolites, they are found abundantly in essential oils of aromatic plants. They also have a great range of pharmacological properties, such as antihypertensive, bradycardic, antiarrhythmic and hypotensive. In the face of the burden caused by cardiovascular disease (CVDs) worldwide, studies using monoterpenes to assess their cardiovascular effects have increased over the years. PURPOSE This systematic review aimed to summarize the use of monoterpenes in animal models of any CVDs. METHODS PubMed, SCOPUS, LILACS and Web of Science databases were used to search for articles that used monoterpenes, in any type of administration, to treat or prevent CVDs in animal models. The PRISMA guidelines were followed. Two independent researchers extracted main characteristics of studies, methods and outcomes. Data obtained were analyzed qualitatively and quantitatively. RESULTS At the ending of the search process, 33 articles were selected for the systematic review. Of these, 17 articles were included in the meta-analysis. A total of 16 different monoterpenes were found for the treatment of hypertension, myocardial infarction, pulmonary hypertension, cardiac hypertrophy and arrhythmia. The main actions include hypotension, bradycardia, vasodilatation, antiarrhythmic, and antioxidant and antiapoptotic properties. From our data, it can be suggested that monoterpenes may be a significant source for new drug development. However, there is still a need to apply these knowledge into clinical research and a long path to pursue before putting them in the market. CONCLUSION The variability of cardiovascular effects demonstrated by the monoterpenes highlighted them as a promising candidates for treatment or prevention of CVDs. Nevertheless, studies that investigate their biological sites of action needs to be further encouraged.
Collapse
Affiliation(s)
- Eric Aian P Silva
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Biotechnology Graduate Program - Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil
| | - Danillo M Santos
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Health Sciences Graduate Program, Universidade Federal de Sergipe, Rua Claudio Batista S/N, Sanatorio, Aracaju-SE, 49.060-100, Brazil
| | - Fernanda Oliveira de Carvalho
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Health Sciences Graduate Program, Universidade Federal de Sergipe, Rua Claudio Batista S/N, Sanatorio, Aracaju-SE, 49.060-100, Brazil
| | - Igor A Cortes Menezes
- Hospital de Clínicas, Universidade Federal do Paraná, Rua General Carneiro, 181, Curitiba-PR, 80060-900, Brazil
| | - André S Barreto
- Department of Health Education, Universidade Federal de Sergipe, Av. Governador Marcelo Deda, 13, Centro, Lagarto-SE, CEP 49400-000, Brazil
| | - Diego S Souza
- Department of Anesthesiology, University of Arizona, Tucson, AZ, USA
| | - Lucindo J Quintans-Júnior
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Health Sciences Graduate Program, Universidade Federal de Sergipe, Rua Claudio Batista S/N, Sanatorio, Aracaju-SE, 49.060-100, Brazil
| | - Márcio R V Santos
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Health Sciences Graduate Program, Universidade Federal de Sergipe, Rua Claudio Batista S/N, Sanatorio, Aracaju-SE, 49.060-100, Brazil; Biotechnology Graduate Program - Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil.
| |
Collapse
|
12
|
Yang Y, Li X, Chen S, Xiao M, Liu Z, Li J, Cheng Y. Mechanism and therapeutic strategies of depression after myocardial infarction. Psychopharmacology (Berl) 2021; 238:1401-1415. [PMID: 33594503 DOI: 10.1007/s00213-021-05784-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 02/04/2021] [Indexed: 01/08/2023]
Abstract
Depression resulted as an important factor associated with the myocardial infarction (MI) prognosis. Patients with MI also have a higher risk for developing depression. Although the issue of depression after MI has become a matter of clinical concern, the molecular mechanism underlying depression after MI remains unclear, whereby several strategies suggested have not got ideal effects, such as selective serotonin reuptake inhibitors. In this review, we summarized and discussed the occurrence mechanism of depression after MI, such as 5-hydroxytryptamine (5-HT) dysfunction, altered hypothalamus-pituitary-adrenal (HPA) axis function, gut microbiota imbalance, exosomal signal transduction, and inflammation. In addition, we offered a succinct overview of treatment, as well as some promising molecules especially from natural products for the treatment of depression after MI.
Collapse
Affiliation(s)
- Ying Yang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Xuping Li
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Sixuan Chen
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Mingzhu Xiao
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Zhongqiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Jingyan Li
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| | - Yuanyuan Cheng
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
13
|
Jiao F, Varghese K, Wang S, Liu Y, Yu H, Booz GW, Roman RJ, Liu R, Fan F. Recent Insights Into the Protective Mechanisms of Paeoniflorin in Neurological, Cardiovascular, and Renal Diseases. J Cardiovasc Pharmacol 2021; 77:728-734. [PMID: 34001724 PMCID: PMC8169546 DOI: 10.1097/fjc.0000000000001021] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
ABSTRACT The monoterpene glycoside paeoniflorin (PF) is the principal active constituent of the traditional Chinese herbal medicines, Radix Paeoniae Alba and Radix Paeoniae Rubra, which have been used for millennia to treat cardiovascular diseases (eg, hypertension, bleeding, and atherosclerosis) and neurological ailments (eg, headaches, vertigo, dementia, and pain). Recent evidence has revealed that PF exerts inhibitory effects on inflammation, fibrosis, and apoptosis by targeting several intracellular signaling cascades. In this review, we address the current knowledge about the pharmacokinetic properties of PF and its molecular mechanisms of action. We also present results from recent preclinical studies supporting the utility of PF for the treatment of pain, cerebral ischemic injury, and neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Moreover, new evidence suggests a general protective role of PF in heart attack, diabetic kidney, and atherosclerosis. Mechanistically, PF exerts multiple anti-inflammatory actions by targeting toll-like receptor-mediated signaling in both parenchymal and immune cells (in particular, macrophages and dendritic cells). A better understanding of the molecular actions of PF may lead to the expansion of its therapeutic uses.
Collapse
Affiliation(s)
- Feng Jiao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, 100044, China
| | - Kevin Varghese
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - George W. Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Ruen Liu
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, 100044, China
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
14
|
Effect of low-dose sodium nitrite treatment on the endogenous antioxidant capacity of yak meat during wet curing: Pros and cons. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Zhang D, Yang B, Chang SQ, Ma SS, Sun JX, Yi L, Li X, Shi HM, Jing B, Zheng YC, Zhang CL, Chen FG, Zhao GP. Protective effect of paeoniflorin on H 2O 2 induced Schwann cells injury based on network pharmacology and experimental validation. Chin J Nat Med 2021; 19:90-99. [PMID: 33641788 DOI: 10.1016/s1875-5364(21)60010-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Indexed: 02/07/2023]
Abstract
This study was to investigate the protective effect of paeoniflorin (PF) on hydrogen peroxide-induced injury. Firstly, "SMILES" of PF was searched in Pubchem and further was used for reverse molecular docking in Swiss Target Prediction database to obtain potential targets. Injury-related molecules were obtained from GeenCards database, and the predicted targets of PF for injury treatment were selected by Wayne diagram. For mechanism analysis, the protein-protein interactions were constructed by String, and the KEGG analysis was conducted in Webgestalt. Then, cell viability and cytotoxicity assay were established by CCK8 assay. Also, the experimental cells were allocated to control, model (200 μmol·L-1 H2O2), SB203580 10 μmol·L-1 (200 μmol·L-1 H2O2+ SB203580 10 μmol·L-1), PF 50 μmol·L-1 (200 μmol·L-1 H2O2+ PF 50 μmol·L-1), and PF 100 μmol·L-1 (200 μmol·L-1 H2O2+ PF 100 μmol·L-1) groups. We measured the intracellular ROS, Hoechst 33258 staining, cell apoptosis, the levels of Bcl-xl, Bcl-2, Caspase-3, Cleaved-caspase3, Cleaved-caspase7, TRPA1, TRPV1, and the phosphorylation expression of p38MAPK. There are 96 potential targets that may be associated with PF for injury treatment. Then, we chose the "Inflammatory mediator regulation of TRP channels" pathway for the experimental verification from the first 10 KEGG pathway. In experimental verification, H2O2 decreased the cell viability moderately (P < 0.05), and 100 μmol·L -1 PF increased the cell viability significantly (P < 0.05). Depending on the difference of intracellular ROS fluorescence intensity, PF inhibited H 2O2-induced reactive oxygen species production in Schwann cells. In Hoechst 33258 staining, PF reversed the condensed chromatin and apoptotic nuclei following H2O2 treatment. Moreover, Flow cytometry results showed that PF could substantially inhibit H2O2 induced apoptosis (P < 0.05). Pretreatment with PF obviously reduced the levels of Caspase3, Cleaved-caspase3, Cleaved-caspase7, TRPA1, TRPV1, and the phosphorylation expression of p38MAPK after H 2O2 treatment (P < 0.05), increased the levels of Bcl-2, and Bcl-xl ( P < 0.05). PF inhibited Schwann cell injury and apoptosis induced by hydrogen peroxide, which mechanism was linked to the inhibition of phosphorylation of p38MAPK.
Collapse
Affiliation(s)
- Di Zhang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China
| | - Bing Yang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China
| | - Shi-Quan Chang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China
| | - Sheng-Suo Ma
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China
| | - Jian-Xin Sun
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China
| | - Lin Yi
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China
| | - Xing Li
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China
| | - Hui-Mei Shi
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China
| | - Bei Jing
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China
| | - Ya-Chun Zheng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China
| | - Chun-Lan Zhang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China
| | - Feng-Guo Chen
- LiWan Hospital of Traditional Chinese Medicine, Guangzhou 510665, China
| | - Guo-Ping Zhao
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
16
|
Tan YQ, Chen HW, Li J, Wu QJ. Efficacy, Chemical Constituents, and Pharmacological Actions of Radix Paeoniae Rubra and Radix Paeoniae Alba. Front Pharmacol 2020; 11:1054. [PMID: 32754038 PMCID: PMC7365904 DOI: 10.3389/fphar.2020.01054] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023] Open
Abstract
Radix Paeoniae Rubra and Radix Paeoniae Alba are the different characteristic forms of Paeonia lactiflora Pall. They are widely used as traditional Chinese medicines in clinical practices. This study analyzes the development history, efficacy, chemical compositions, and pharmacological effects of Radix Paeoniae Rubra and Radix Paeoniae Alba, and explores the causes of the similarities and differences of these two amalgams. It provides a basis for the clinical application of these two Chinese medicinal materials, and lays a foundation for further study of the pharmacological effects and the quality identification of Paeonia lactiflora Pall as it applies to traditional Chinese medicine.
Collapse
Affiliation(s)
- Yu-Qing Tan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Heng-Wen Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing-Juan Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Zhang B, Wang H, Yang Z, Cao M, Wang K, Wang G, Zhao Y. Protective effect of alpha-pinene against isoproterenol-induced myocardial infarction through NF-κB signaling pathway. Hum Exp Toxicol 2020; 39:1596-1606. [PMID: 32602371 DOI: 10.1177/0960327120934537] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Monoterpenes present in the essential oils exhibit anti-inflammatory properties. In this study, we investigated the preventive effect of alpha-pinene (AP), a monoterpene, against isoproterenol (ISO)-induced myocardial infarction and inflammation in Wistar rats. Male Wistar rats were pretreated with AP (50 mg/kg body weight (bw)) administration for 21 days and ISO (85 mg/kg bw) was administered subcutaneously for last two consecutive days (20th day and 21st day). We noticed that there was an increased activity of cardiac marker enzymes in ISO-treated rats. We also observed that elevated levels of lipid peroxidative indices decreased activities of antioxidant status in plasma, erythrocyte, and heart tissue in ISO-induced rats. Furthermore, ISO-treated rats showed an increase in the levels of inflammatory mediators like tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the serum. Besides, we confirmed the upregulated expression of TNF-α, IL-6, and nuclear factor kappa-light-chain-enhancer of activated B cells in ISO-induced rat heart tissue. Conversely, we found that AP pretreatment significantly decreased levels of cardiac markers like serum cardiac troponin T and cardiac troponin I, lipid peroxidative markers, and restored antioxidants status in ISO-treated rats. Besides, AP administration attenuated ISO-induced inflammatory marker expression. The present findings demonstrated that AP significantly protects the myocardium and exerts cardioprotective and anti-inflammatory effects in experimental rats.
Collapse
Affiliation(s)
- B Zhang
- Department of Health Care Center, Beijing Friendship Hospital Medical, 12517Capital Medical University, Beijing, China
| | - H Wang
- Department of Pharmacy, 34706The First Affiliated Hospital of Nanhua University, Hengyang City, Hunan Province, China
| | - Z Yang
- Department of ICU, 381901The First People's Hospital of Huaihua, Huaihua City, Hunan Province, China
| | - M Cao
- Department of Cardiovascular, 232831The People's Hospital of Tianjin, Tianjin City, China
| | - K Wang
- Department of Endocrinology, 12476Tianyou Hospital Affiliated to Tongji University, Shanghai, China
| | - G Wang
- Department of Endocrinology, 12476The Putuo People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Y Zhao
- Department of Cardiovascular Biology, 12418Changsha Central Hospital, Changsha City, Hunan Province, China
| |
Collapse
|
18
|
Wang S, Chen H, Zheng Y, Li Z, Cui B, Zhao P, Zheng J, Lu R, Sun N. Transcriptomics- and metabolomics-based integration analyses revealed the potential pharmacological effects and functional pattern of in vivo Radix Paeoniae Alba administration. Chin Med 2020; 15:52. [PMID: 32489401 PMCID: PMC7245909 DOI: 10.1186/s13020-020-00330-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/12/2020] [Indexed: 01/10/2023] Open
Abstract
Background Radix Paeoniae Alba (RPA) and other natural medicines have remarkable curative effects and are widely used in traditional Chinese Medicine (TCM). However, due to their multi-component and multi-target characteristics, it is difficult to study the detailed pharmacological mechanisms for those natural medicines in vivo. Therefore, their real effects on organisms is still uncertain. Methods RPA was selected as research object, the present study was designed to study the complex mechanisms of RPA in vivo by integrating and interpreting the transcriptomic based RNA-seq and metabolomic based NMR spectrum after RPA administration in mice. A variety of dimension-reduction algorithms and classifier models were applied to the processing of high-throughput data. Results Among serum metabolites, the contents of PC and glucose were significantly increased, while the contents of various amino acids, lipids and their metabolites were significantly decreased in mice after RPA administration. Based on the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, differential analysis showed that the liver was the site where RPA exerted a significant effect, which confirmed the rationality of “meridian tropism” in the theory in TCM. In addition, RPA played a role in lipid metabolism by regulating genes encoding enzymes of the glycerolipid metabolism pathway, such as 1-acyl-sn-glycerol-3-phosphate acyltransferase (Agpat), phosphatidate phosphatase (Lpin), phospholipid phosphatase (Plpp) and endothelial lipase (Lipg). We also found that RPA regulates several substance addiction pathways in the brain, such as the cocaine addiction pathway, and the related targets were predicted based on the sequencing data from pathological model in the GEO database. The overall effective pattern of RPA was intuitively presented with a multidimensional radar map through a self-designed model which found that liver and brain were mainly regulated by RPA compared with the traditional meridian tropism theory. Conclusions Overall this study expanded the potential application of RPA and provided possible targets and directions for further mechanism study, meanwhile, it also established a multi-dimensional evaluation model to represent the overall effective pattern of TCM for the first time. In the future, such study based on the high-throughput data sets can be used to interpret the theory of TCM and to provide a valuable research model and clinical medication reference for the TCM researchers and doctors.
Collapse
Affiliation(s)
- Sining Wang
- Department of Pathology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Ave, Pudong, 201203 Shanghai China
| | - Huihua Chen
- Department of Pathology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Ave, Pudong, 201203 Shanghai China
| | - Yufan Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 130 DongAn Ave, Xuhui, 200032 Shanghai China
| | - Zhenyu Li
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Baiping Cui
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 130 DongAn Ave, Xuhui, 200032 Shanghai China
| | - Pei Zhao
- Public Laboratory Platform, School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiali Zheng
- Department of Pathology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Ave, Pudong, 201203 Shanghai China
| | - Rong Lu
- Department of Pathology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Ave, Pudong, 201203 Shanghai China
| | - Ning Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, 130 DongAn Ave, Xuhui, 200032 Shanghai China
| |
Collapse
|
19
|
González Arbeláez LF, Ciocci Pardo A, Fantinelli JC, Rojano B, Schinella GR, Mosca SM. Isoespintanol, a monoterpene isolated from oxandra cf xylopioides, ameliorates the myocardial ischemia-reperfusion injury by AKT/PKCε/eNOS-dependent pathways. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:629-638. [PMID: 31776590 DOI: 10.1007/s00210-019-01761-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/01/2019] [Indexed: 01/21/2023]
Abstract
PURPOSE To determine the actions of isoespintanol (Isoesp) on post-ischemic myocardial and mitochondrial alterations. METHODS Hearts removed from Wistar rats were perfused by 20 min. After this period, the coronary flow was interrupted by half an hour and re-established during 1 h. In the treated group, Isoesp was administered at the beginning of reperfusion. To assess the participation of ε isoform of protein kinase C (PKCε), protein kinase B (PKB/Akt), and nitric oxide synthase (NOS), hearts were treated with Isoesp plus the respective inhibitors (chelerythrine, wortmannin, and N-nitro-L-arginine methyl ester). Cell death was determined by triphenyl tetrazolium chloride staining technique. Post-ischemic recovery of contractility, oxidative stress, and content of phosphorylated forms of PKCε, Akt, and eNOS were also examined. Mitochondrial state was assessed through the measurement of calcium-mediated response, calcium retention capacity, and mitochondrial potential. RESULTS Isoesp limited cell death, decreased post-ischemic dysfunction and oxidative stress, improved mitochondrial state, and increased the expression of PKCε, Akt, and eNOS phosphorylated. All these beneficial effects achieved by Isoesp were annulled by the inhibitors. CONCLUSION These findings suggest that activation of Akt/eNOS and PKCε signaling pathways are involved in the development of Isoesp-induced cardiac and mitochondria tolerance to ischemia-reperfusion.
Collapse
Affiliation(s)
- Luisa F González Arbeláez
- Centro de Investigaciones Cardiovasculares ¨Dr Horacio E. Cingolani¨, CCT-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina
| | - Alejandro Ciocci Pardo
- Centro de Investigaciones Cardiovasculares ¨Dr Horacio E. Cingolani¨, CCT-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina
| | - Juliana C Fantinelli
- Centro de Investigaciones Cardiovasculares ¨Dr Horacio E. Cingolani¨, CCT-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina
| | - Benjamín Rojano
- Laboratorio de Ciencias de los Alimentos, Facultad de Ciencias, Universidad Nacional de Colombia (sede Medellín), Bogotá, Colombia
| | - Guillermo R Schinella
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata CIC-PBA, La Plata, Argentina
| | - Susana M Mosca
- Centro de Investigaciones Cardiovasculares ¨Dr Horacio E. Cingolani¨, CCT-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900, La Plata, Argentina.
| |
Collapse
|
20
|
She Y, Shao L, Zhang Y, Hao Y, Cai Y, Cheng Z, Deng C, Liu X. Neuroprotective effect of glycosides in Buyang Huanwu Decoction on pyroptosis following cerebral ischemia-reperfusion injury in rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 242:112051. [PMID: 31279072 DOI: 10.1016/j.jep.2019.112051] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/29/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buyang Huanwu Decoction (BYHWD) is used in classical traditional Chinese medicine to prevent and treat cerebral ischemia. Glycosides, which are effective components extracted from BYHWD, mainly include astragaloside IV, paeoniflorin, and amygdalin. These glycosides are the primary pharmacologically effective constituents of BYHWD that act against cerebral ischemic nerve injury; however, the mechanism of action of BYHWD is still unclear. AIM OF THE STUDY The present study aimed to determine the effect of BYHWD glycosides on pyroptosis after cerebral ischemia reperfusion injury and explore whether its mechanism involves the classical pyroptosis pathway mediated by NLRP3. MATERIAL AND METHODS Adult male Sprague-Dawley rats (n = 140) were randomly divided into seven groups: sham, cerebral ischemia and reperfusion (I/R), glycosides (0.064 g/kg, 0.128 g/kg, and 0.256 g/kg), BYHWD, and AC-YVAD-CMK (caspase-1 inhibitor). A rat model of cerebral I/R was established via classic middle cerebral artery occlusion (MCAO) for 2 h, followed by 24-h reperfusion. Neurological function was estimated using neurological defect scores. Brain infarct volumes were determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining, and nerve cell damage was evaluated by Nissl staining. Pyroptosis was detected using TUNEL and caspase-1 immunofluorescence double staining. Protein expression of NLRP3, ASC, caspase-1, pro-caspase-1, and IL-1β was analyzed using Western blot analysis. RESULTS Glycosides improved neurological dysfunction, alleviated neuronal damage, and inhibited neuronal pyroptosis. The 0.128 g/kg glycosides group showed the most significant effects. Furthermore, we observed that this group showed significant inhibition of the expression of NLRP3, ASC, pro-caspase-1, caspase-1, and IL-1β proteins of the NLRP3-mediated classical pathway of pyroptosis. CONCLUSIONS Glycosides exert neuroprotective effects by inhibiting pyroptosis of neurons after cerebral I/R injury. The underlying mechanism of action is closely related to the regulation of the classical pyroptosis pathway by NLRP3.
Collapse
Affiliation(s)
- Yan She
- Laboratory of Vascular Biology, Medical College, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Le Shao
- The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, China.
| | - Yiren Zhang
- Pharmacy College,Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Yuxing Hao
- Laboratory of Vascular Biology, Medical College, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Yuan Cai
- Laboratory of Vascular Biology, Medical College, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Zhiwen Cheng
- Laboratory of Vascular Biology, Medical College, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Changqing Deng
- Laboratory of Vascular Biology, Medical College, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Xinchun Liu
- The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, China.
| |
Collapse
|
21
|
Phytochemicals as potential IKK-β inhibitor for the treatment of cardiovascular diseases in plant preservation: terpenoids, alkaloids, and quinones. Inflammopharmacology 2019; 28:83-93. [DOI: 10.1007/s10787-019-00640-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
|
22
|
Chang CM, Shih PH, Chen TJ, Ho WC, Yang CP. Integrated therapy decreases the mortality of patients with polymyositis and dermatomyositis: A Taiwan-wide population-based retrospective study. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:70-81. [PMID: 30818007 DOI: 10.1016/j.jep.2019.02.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The issue of whether integrated treatment with conventional medicine (CM) and herbal medicine (HM) can reduce mortality in patients with polymyositis/dermatomyositis (PM/DM) had not been addressed. AIM OF THE STUDY In this study, we investigated the effect of integrated therapy on mortality in a retrospective PM/DM cohort in the Taiwan National Health Insurance Research Database (NHIRD). MATERIALS AND METHODS Patients with PM/DM were retrospectively enrolled from the PM/DM Registry of Catastrophic Illnesses cohort in the Taiwan NHIRD between 1997 and 2011. The patients were divided into an integrated medicine (IM) group that received CM and HM and a non-IM group that received CM alone. The Cox proportional hazards regression model and Kaplan-Meier method were used to evaluate the hazard ratio (HR) for mortality. RESULTS Three hundred and eighty-five of 2595 patients with newly diagnosed PM/DM had received IM and 99 had received non-IM. The adjusted HR for mortality was lower in the IM group than in the non-IM group (0.42, 95% confidence interval 0.26-0.68, p < 0.001). The adjusted HR for mortality was also lower in the IM group that had received CM plus HM than in the group that received CM alone (0.48, 95% confidence interval 0.28-0.84, p < 0.05). The core pattern of HM prescriptions integrated with methylprednisolone, methotrexate, azathioprine, or cyclophosphamide to decrease mortality included "San-Qi" (Panax notoginseng), "Bai-Ji" (Bletilla striata), "Chen-Pi" (Citrus reticulata), "Hou-Po" (Magnolia officinalis), and "Dan-Shan" (Salvia miltiorrhiza). CONCLUSION Integrated therapy has reduced mortality in patients with PM/DM in Taiwan. Further investigation of the clinical effects and pharmaceutical mechanism involved is needed.
Collapse
Affiliation(s)
- Ching-Mao Chang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Po-Hsuan Shih
- Department of Chinese Medicine, Cheng Hsin General Hospital, Taipei, Taiwan; Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Tzeng-Ji Chen
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Wen-Chao Ho
- Department of Public Health, China Medical University, Taichung, Taiwan.
| | - Chun-Pai Yang
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan; Department of Nutrition, Huang-Kuang University, Taichung, Taiwan.
| |
Collapse
|
23
|
A Protective Role of Paeoniflorin in Fluctuant Hyperglycemia-Induced Vascular Endothelial Injuries through Antioxidative and Anti-Inflammatory Effects and Reduction of PKC β1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5647219. [PMID: 31093316 PMCID: PMC6481012 DOI: 10.1155/2019/5647219] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/11/2019] [Accepted: 02/18/2019] [Indexed: 12/18/2022]
Abstract
Hyperglycemia fluctuation is associated with diabetes mellitus (DM) complications when compared to persistent hyperglycemia. Previous studies have shown that paeoniflorin (PF), through its antiapoptosis, anti-inflammation, and antithrombotic properties, effectively protects against cardiovascular and cerebrovascular disease. However, the mechanism underlying the protection from PF against vascular injuries induced by hyperglycemia fluctuations remains poorly understood. Herein, we investigated the potential protective role of PF on human umbilical vein endothelial cells (HUVECs) subjected to intermittent glucose levels in vitro and in DM rats with fluctuating hyperglycemia in vivo. A remarkable increased apoptosis associated with elevated inflammation, increased oxidative stress, and high protein level of PKCβ1 was induced in HUVECs by intermittently changing glucose for 8 days, and PF recovered those detrimental changes. LY333531, a potent PKCβ1 inhibitor, and metformin manifested similar effects. Additionally, in DM rats with fluctuating hyperglycemia, PF protected against vascular damage as what has been observed in vitro. Taken together, PF attenuates the vascular injury induced by fluctuant hyperglycemia through oxidative stress inhibition, inflammatory reaction reduction, and PKCβ1 protein level repression, suggesting its perspective clinical usage.
Collapse
|
24
|
Koga Y, Tsurumaki H, Aoki-Saito H, Sato M, Yatomi M, Takehara K, Hisada T. Roles of Cyclic AMP Response Element Binding Activation in the ERK1/2 and p38 MAPK Signalling Pathway in Central Nervous System, Cardiovascular System, Osteoclast Differentiation and Mucin and Cytokine Production. Int J Mol Sci 2019; 20:ijms20061346. [PMID: 30884895 PMCID: PMC6470985 DOI: 10.3390/ijms20061346] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 11/26/2022] Open
Abstract
There are many downstream targets of mitogen-activated protein kinase (MAPK) signalling that are involved in neuronal development, cellular differentiation, cell migration, cancer, cardiovascular dysfunction and inflammation via their functions in promoting apoptosis and cell motility and regulating various cytokines. It has been reported that cyclic AMP response element-binding protein (CREB) is phosphorylated and activated by cyclic AMP signalling and calcium/calmodulin kinase. Recent evidence also points to CREB phosphorylation by the MAPK signalling pathway. However, the specific roles of CREB phosphorylation in MAPK signalling have not yet been reviewed in detail. Here, we describe the recent advances in the study of this MAPK-CREB signalling axis in human diseases. Overall, the crosstalk between extracellular signal-related kinase (ERK) 1/2 and p38 MAPK signalling has been shown to regulate various physiological functions, including central nervous system, cardiac fibrosis, alcoholic cardiac fibrosis, osteoclast differentiation, mucin production in the airway, vascular smooth muscle cell migration, steroidogenesis and asthmatic inflammation. In this review, we focus on ERK1/2 and/or p38 MAPK-dependent CREB activation associated with various diseases to provide insights for basic and clinical researchers.
Collapse
Affiliation(s)
- Yasuhiko Koga
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Hiroaki Tsurumaki
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Haruka Aoki-Saito
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Makiko Sato
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Masakiyo Yatomi
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Kazutaka Takehara
- Department of Allergy and Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 sho-wa machi Maebashi, Gunma 371-8511, Japan.
| | - Takeshi Hisada
- Gunma University Graduate School of Health Sciences, 3-39-22 sho-wa machi Maebashi, Gunma 371-8514, Japan.
| |
Collapse
|
25
|
Quintans JSS, Shanmugam S, Heimfarth L, Araújo AAS, Almeida JRGDS, Picot L, Quintans-Júnior LJ. Monoterpenes modulating cytokines - A review. Food Chem Toxicol 2018; 123:233-257. [PMID: 30389585 DOI: 10.1016/j.fct.2018.10.058] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/11/2018] [Accepted: 10/24/2018] [Indexed: 12/15/2022]
Abstract
Inflammatory response can be driven by cytokine production and is a pivotal target in the management of inflammatory diseases. Monoterpenes have shown that promising profile as agents which reduce the inflammatory process and also modulate the key chemical mediators of inflammation, such as pro and anti-inflammatory cytokines. The main interest focused on monoterpenes were to develop the analgesic and anti-inflammatory drugs. In this review, we summarized current knowledge on monoterpenes that produce anti-inflammatory effects by modulating the release of cytokines, as well as suggesting that which monoterpenoid molecules may be most effective in the treatment of inflammatory disease. Several different inflammatory markers were evaluated as a target of monoterpenes. The proinflammatory and anti-inflammatory cytokines were found TNF-α, IL-1β, IL-2, IL-5, IL-4, IL-6, IL-8, IL-10, IL-12 IL-13, IL-17A, IFNγ, TGF-β1 and IFN-γ. Our review found evidence that NF-κB and MAPK signaling are important pathways for the anti-inflammatory action of monoterpenes. We found 24 monoterpenes that modulate the production of cytokines, which appears to be the major pharmacological mechanism these compounds possess in relation to the attenuation of inflammatory response. Despite the compelling evidence supporting the anti-inflammatory effect of monoterpenes, further studies are necessary to fully explore their potential as anti-inflammatory compounds.
Collapse
Affiliation(s)
- Jullyana S S Quintans
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Saravanan Shanmugam
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Luana Heimfarth
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Jackson R G da S Almeida
- Center for Studies and Research of Medicinal Plants (NEPLAME), Federal University of San Francisco Valley (UNIVASF), Petrolina, Pernambuco, Brazil
| | - Laurent Picot
- UMRi CNRS 7266 LIENSs, University of La Rochelle, 17042, La Rochelle, France
| | - Lucindo J Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
26
|
Xiao HB, Liang L, Luo ZF, Sun ZL. Paeoniflorin regulates GALNT2-ANGPTL3-LPL pathway to attenuate dyslipidemia in mice. Eur J Pharmacol 2018; 836:122-128. [PMID: 30096295 DOI: 10.1016/j.ejphar.2018.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/06/2023]
Abstract
N-acetylgalactosaminyltransferase 2-Angiopoietin-like protein 3-lipoprotein lipase (GALNT2-ANGPTL3-LPL) pathway may be a useful pharmacologic objective for dyslipidemia. The present study was conducted to test the effect of paeoniflorin, a monoterpene Glycoside, on dyslipidemia in mice. Fifty mice were randomly divided into five groups (n = 10): three groups of apolipoprotein E-null (ApoE-/-) mice treated with paeoniflorin (10 or 20 or 30 mg/kg/day), untreated ApoE-/- mice group, and C57BL/6J control group. Six weeks after treatment, expression of hepatic ANGPTL3, hepatic GALNT2 and adipose tissue LPL, lipid levels in the liver and blood were quantified. Treatment with paeoniflorin (10 or 20 or 30 mg/kg) obviously down-regulated expression of ANGPTL3 and up-regulated expressions of GALNT2 and LPL concomitantly with elevated plasma high-density lipoprotein cholesterol level, reduced plasma concentrations of low-density lipoprotein cholesterol, total cholesterol, triglyceride, malonaldehyde, and 8-isoprostane. The present results suggest that paeoniflorin regulates GALNT2-ANGPTL3-LPL pathway to attenuate dyslipidemia in mice.
Collapse
Affiliation(s)
- Hong-Bo Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| | - Lin Liang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zhi-Feng Luo
- Department of Basic Medicine, Xiangnan University, Chenzhou 423000, China
| | - Zhi-Liang Sun
- Hunan Engineering Research Center of Veterinary Drug, Changsha 410128, China
| |
Collapse
|
27
|
Wu PW, Shih PH, Kung YY, Chen FP, Chang CM. Integrated therapy improve urinary total protein in patients with lupus nephritis: A case report. Complement Ther Med 2018; 39:87-91. [DOI: 10.1016/j.ctim.2018.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/20/2018] [Accepted: 05/30/2018] [Indexed: 12/24/2022] Open
|
28
|
Hu PF, Sun FF, Jiang LF, Bao JP, Wu LD. Paeoniflorin inhibits IL-1β-induced MMP secretion via the NF-κB pathway in chondrocytes. Exp Ther Med 2018; 16:1513-1519. [PMID: 30116400 PMCID: PMC6090372 DOI: 10.3892/etm.2018.6325] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 01/26/2018] [Indexed: 01/25/2023] Open
Abstract
Paeoniflorin serves important cellular roles, exerting anti-cancer, anti-inflammatory and anti-pulmonary fibrosis effects and possesses immune-modulatory properties. However, the exact role of paeoniflorin in the pathogenesis of osteoarthritis (OA) remains unclear. The aim of the present study was to investigate the effects of paeoniflorin on articular surfaces in vitro. Rat chondrocytes were cultured in vitro and an MTT assay was performed to assess chondrocyte survival. Following treatment with interleukin (IL)-1β and paeoniflorin, the production of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases-1 (TIMP-1) was examined using reverse transcription-quantitative polymerase chain reaction and western blotting. The interleukin (IL)-1β-induced nuclear factor (NF)-κB pathway activation was also investigated. The results demonstrated that paeoniflorin was able to downregulate the expression of MMP and increase the expression of TIMP-1ntmRNA and protein in IL-1β-induced rat chondrocytes. Furthermore, treating chondrocytes with paeoniflorin blocked the activation of NF-κB. These results suggest that paeoniflorin may serve am anti-catabolic role in the progression of OA and may be an effective preventative treatment for OA.
Collapse
Affiliation(s)
- Peng-Fei Hu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Fang-Fang Sun
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Cancer Institute, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Li-Feng Jiang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jia-Peng Bao
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Li-Dong Wu
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
29
|
Chen H, Dong Y, He X, Li J, Wang J. Paeoniflorin improves cardiac function and decreases adverse postinfarction left ventricular remodeling in a rat model of acute myocardial infarction. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:823-836. [PMID: 29695894 PMCID: PMC5905848 DOI: 10.2147/dddt.s163405] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Paeoniflorin (PF) is the active component of Paeonia lactiflora Pall. or Paeonia veitchii Lynch. This study was, therefore, aimed to evaluate the improvement and mechanism of the PF on ventricular remodeling in rats with acute myocardial infarction (AMI). Materials and methods In this study, AMI model was established by ligating the anterior descending coronary artery in Wistar rats. After 4 weeks gavage of PF, the apparent signs and the left ventricle weight index of Wistar rats were observed. The left ventricular ejection fraction (LVEF) was evaluated by Doppler ultrasonography. Changes in cardiac morphology were observed by pathologic examination, and apoptosis was observed by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. In addition, enzyme-linked immunosorbent assay was used to detect the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) interleukin-10 (IL-10) and brain natriuretic peptide (BNP). Immunohistochemistry and Western blot method were applied to detect Caspase-3 and Caspase-9. Results Compared with the model control, the survival conditions of rats in all treatment groups were generally improved after PF treatment. LVEF was significantly increased, and both left ventricular end-diastolic inner diameter and left ventricular end-systolic inner diameter were significantly reduced. Moreover, pathologic examination showed that the myocardium degeneration of the rats treated with PF was decreased, including neater arrangement, more complete myofilament, more uniform gap and less interstitial collagen fibers. Furthermore, the mitochondrial structure of cardiomyocytes was significantly improved. The ultrastructure was clear, and the arrangement of myofilament was more regular. Also, the expression of Caspase-3 and Caspase-9 was inhibited, and apoptosis was obviously reduced in the PF treatment groups. BNP, TNF-α and IL-6 were also decreased and IL-10 was increased in the treated rats. Conclusion PF could significantly improve the LVEF of rats. It decreased adverse left ventricular remodeling after myocardial infarction in rat models. The potential mechanism could be that PF decreased and inhibited BNP, TNF-α and IL-6, increased IL-10 and further inhibited the expression of Caspase-3 and Caspase-9, thus promoting ventricular remodeling.
Collapse
Affiliation(s)
- Hengwen Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Dong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuanhui He
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
30
|
Paeoniflorin blocks the proliferation of vascular smooth muscle cells induced by platelet‑derived growth factor‑BB through ROS mediated ERK1/2 and p38 signaling pathways. Mol Med Rep 2017; 17:1676-1682. [PMID: 29257209 PMCID: PMC5780110 DOI: 10.3892/mmr.2017.8093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/14/2017] [Indexed: 12/24/2022] Open
Abstract
The proliferation of vascular smooth muscle cells (VSMCs) contributes to the development of vascular remodeling. In the present study, the effect of paeoniflorin (PAE) on the platelet derived growth factor-BB (PDGF-BB)-induced proliferation of primary cultured rat VSMCs and its molecular mechanism was investigated. The toxicity was determined by the try pan blue exclusion test. Cell proliferation was determined using a CCK-8 assay, DNA synthesis was assessed by measuring the incorporation of BrdU. Cell cycle progression was determined using PI staining and fluorescence-activated cell sorting. The level of intracellular reactive oxygen species (ROS) generation was assessed using dichlorodihydro fluorescein diacetate. mRNA expression was determined by reverse transcription quantitative polymerase chain reaction. Changes of p38, JNK, ERK1/2 signaling pathways were determined by western blot analysis. Cell migration was detected by scratch assay. PAE was demonstrated to significantly inhibit VSMC proliferation induced by PDGF-BB in a dose-and time-dependent manner without cell cytotoxicity. Thus, PAE blocked progression through the G0/G1 to Sphase of the cell cycle. Furthermore, inhibition of the cell cycle was associated with the inhibition of them RNA expression of cyclin D1, cyclin E, cyclin dependent kinase (CDK) 4 and CDK2 as well as with increased cyclin dependent kinase inhibitor 1A mRNA expression in PDGF-BB-stimulated VSMCs. Further studies showed that the beneficial effect of PAE on blocking VSMCs proliferation was related to the suppression of the ROS-mediated extra cellular signal-regulated kinase (ERK)1/2 and p38 signaling pathways, although PAE had no significant effect on the c-Jun N-terminal kinase signalling pathway. These results demonstrated that PAE suppressed PDGF-BB-induced VSMC proliferation through the ROS-mediated ERK1/2 and p38 signaling pathways, suggesting that it may be a feasible therapy for vascular remodelling diseases.
Collapse
|
31
|
Abstract
A significant number of patients with major depression do not respond optimally to current antidepressant drugs. As depression is likely to be a heterogeneous disorder, it is possible that existing neurotransmitter-based antidepressant drugs do not fully address other pathologies that may exist in certain cases. Biological pathologies related to depression that have been proposed and studied extensively include inflammation and immunology, hypercortisolemia, oxidative stress, and impaired angiogenesis. Such pathologies may induce neurodegeneration, which in turn causes cognitive impairment, a symptom increasingly being recognized in depression. A neurotoxic brain hypothesis unifying all these factors may explain the heterogeneity of depression as well as cognitive decline and antidepressant drug resistance in some patients. Compared with neurotransmitter-based antidepressant drugs, many botanical compounds in traditional medicine used for the treatment of depression and its related symptoms have been discovered to be anti-inflammatory, immunoregulatory, anti-infection, antioxidative, and proangiogenic. Some botanical compounds also exert actions on neurotransmission. This multitarget nature of botanical medicine may act through the amelioration of the neurotoxic brain environment in some patients resistant to neurotransmitter-based antidepressant drugs. A multitarget multidimensional approach may be a reasonable solution for patients resistant to neurotransmitter-based antidepressant drugs.
Collapse
|
32
|
Tsai FJ, Ho TJ, Cheng CF, Shiao YT, Chien WK, Chen JH, Liu X, Tsang H, Lin TH, Liao CC, Huang SM, Li JP, Lin CW, Lin JG, Lan YC, Liu YH, Hung CH, Lin JC, Lin CC, Lai CH, Liang WM, Lin YJ. Characteristics of Chinese herbal medicine usage in ischemic heart disease patients among type 2 diabetes and their protection against hydrogen peroxide-mediated apoptosis in H9C2 cardiomyoblasts. Oncotarget 2017; 8:15470-15489. [PMID: 28099940 PMCID: PMC5362500 DOI: 10.18632/oncotarget.14657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/27/2016] [Indexed: 02/07/2023] Open
Abstract
Evidence for long-term use of Chinese herbal medicine (CHM) as an adjuvant treatment in patients with type 2 diabetes (T2D) remains limited. This study aimed to assess the frequency of use, utilization patterns, and therapeutic effects of adjuvant CHM for ischemic heart disease (IHD) in patients with T2D in Taiwan. We identified 4620 IHD patients with T2D. After matching for age, gender, and insulin use, 988 subjects each were allocated to a CHM group and a non-CHM group. There were no differences in baseline characteristics except for comorbidities. The CHM group contained more cases with chronic obstructive pulmonary disease, hepatitis, ulcer disease, and hyperlipidemia. The cumulative survival probability was higher in CHM users than in matched non-CHM users aged 60 years or older (P < .0001, log rank test) regardless of gender (P = .0046 for men, P = .0010 for women, log rank test). Among the top 12 CHM combinations, Shu-Jing-Huo-Xue-Tang and Shao-Yao-Gan-Cao-Tang (13.6%) were the most common. This dual combination improved antiapoptotic activity in H2O2-exposed H9C2 cells by enhancing phosphorylation of glycogen synthase kinase-3β and p38 mitogen-activated protein kinase and could increase the survival of myocardial cells. Our study suggests that adjuvant CHM therapy may increase the survival probability and provides a comprehensive list for future investigations of the safety and efficacy of CHM for IHD patients with T2D.
Collapse
Affiliation(s)
- Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Tsung-Jung Ho
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Division of Chinese Medicine, China Medical University Beigang Hospital, Yunlin County, Taiwan.,Division of Chinese Medicine, Tainan Municipal An-Nan Hospital-China Medical University, Tainan, Taiwan
| | - Chi-Fung Cheng
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Yi-Tzone Shiao
- Heart Center, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Kuei Chien
- Biostatistics Center, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Jin-Hua Chen
- Biostatistics Center, College of Management, Taipei Medical University, Taipei, Taiwan.,School of Health Care Administration, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Xiang Liu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Hsinyi Tsang
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ting-Hsu Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Ju-Pi Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Rheumatism Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Jaung-Geng Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Ching Lan
- Department of Health Risk Management, China Medical University, Taichung, Taiwan
| | - Yu-Huei Liu
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Chien-Hui Hung
- Graduate Institute of Clinical Medical Science, Chang-Gung University, Taipei, Taiwan
| | - Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chih-Chien Lin
- Department of Cosmetic Science, Providence University, Taichung, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Miin Liang
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
33
|
Wang Z, He C, Peng Y, Chen F, Xiao P. Origins, Phytochemistry, Pharmacology, Analytical Methods and Safety of Cortex Moutan (Paeonia suffruticosa Andrew): A Systematic Review. Molecules 2017; 22:E946. [PMID: 28590441 PMCID: PMC6152737 DOI: 10.3390/molecules22060946] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 11/17/2022] Open
Abstract
Cortex Moutan (CM), a well-known traditional Chinese medicine, is commonly used for treating various diseases in China and other eastern Asian countries. Recorded in Pharmacopeias of several countries, CM is now drawing increasing attention and under extensive studies in various fields. Phytochemical studies indicate that CM contains many valuable secondary metabolites, such as monoterpene glycosides and phenols. Ample evidence from pharmacological researches suggest that CM has a wide spectrum of activities, such as anti-inflammatory, anti-oxidant, anti-tumor, anti-diabetic, cardiovascular protective, neuroprotective, hepatoprotective effects. Moreover, various analytical methods were established for the quality evaluation and safety control of CM. This review synopsizes updated information concerning the origins, phytochemistry, pharmacology, analytical method and safety of CM, aiming to provide favorable references for modern CM research and application. In conclusion, continuing pharmacological investigations concerning CM should be conducted to unravel its pharmacological mechanisms. Further researches are necessary to obtain comprehensive and applicable analytical approach for quality evaluation and establish harmonized criteria of CM.
Collapse
Affiliation(s)
- Zhiqiang Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China.
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
| | - Chunnian He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
| | - Yong Peng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
| | - Feihu Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
| |
Collapse
|
34
|
Zhao Y, He X, Ma X, Wen J, Li P, Wang J, Li R, Zhu Y, Wei S, Li H, Zhou X, Li K, Liu H, Xiao X. Paeoniflorin ameliorates cholestasis via regulating hepatic transporters and suppressing inflammation in ANIT-fed rats. Biomed Pharmacother 2017; 89:61-68. [PMID: 28214689 DOI: 10.1016/j.biopha.2017.02.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/25/2017] [Accepted: 02/08/2017] [Indexed: 12/31/2022] Open
Abstract
Paeoniflorin has shown the obvious effect on cholestasis according to our previous research. However, its mechanism has not been absolutely explored yet. This study aims at evaluating the potential effect of paeoniflorin on alpha-naphthylisothiocyanate (ANIT) -induced cholestasis by inhibiting nuclear factor kappa-B (NF-κB) and simultaneously regulating hepatocyte transporters. Cholestasis was induced by administration of ANIT. The effect of paeoniflorin on serum indices such as total bilirubin (TBIL), direct bilirubin (DBIL), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), γ-glutamyltranspeptidase (γ-GT), total bile acid (TBA) and histopathology of liver were determined. Liver protein levels of NF-κB, interleukin 1β (IL-1β) and the hepatocyte transporters such as Na+/taurocholate cotransporting polypeptide (NTCP), bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2) and cholesterol 7α-hydroxylase (Cyp7a1) were investigated by western blotting. The results demonstrated that paeoniflorin could decrease serum ALT, AST, ALP, γ-GT, TBIL, DBIL and TBA in ANIT-treated rats. Histological examination revealed that rats treated with paeoniflorin represented fewer neutrophils infiltration, edema and necrosis in liver tissue compared with ANIT rats. Moreover, paeoniflorin significantly reduced the over expressions of NF-κB and IL-1β induced by ANIT in liver tissue. In addition, the relative protein expressions of NTCP, BSEP, MRP2 but not Cyp7a1 were also restored by paeoniflorin. The potential mechanism of paeoniflorin in alleviating ANIT-induced cholestasis seems to be related to reduce the over expressions of NF-κB and hepatocyte transporters such as NTCP, BSEP as well as MRP2.
Collapse
Affiliation(s)
- Yanling Zhao
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China.
| | - Xuan He
- Department of Pharmacy, Xindu District Shibantan Public Hospital, Chengdu, People's Republic of China
| | - Xiao Ma
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu,People's Republic of China
| | - Jianxia Wen
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu,People's Republic of China
| | - Pengyan Li
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Jiabo Wang
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Ruisheng Li
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Yun Zhu
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Shizhang Wei
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Haotian Li
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Xuelin Zhou
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Kun Li
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Honghong Liu
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Xiaohe Xiao
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, People's Republic of China.
| |
Collapse
|
35
|
Chang CM, Wu PC, Chiang JH, Wei YH, Chen FP, Chen TJ, Pan TL, Yen HR, Chang HH. Integrative therapy decreases the risk of lupus nephritis in patients with systemic lupus erythematosus: A population-based retrospective cohort study. JOURNAL OF ETHNOPHARMACOLOGY 2017; 196:201-212. [PMID: 27974236 DOI: 10.1016/j.jep.2016.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 11/04/2016] [Accepted: 12/10/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Evidence on alleviating the risk of lupus nephritis by integrative therapy with conventional medicine (CM) and herbal medicine (HM) had not been addressed. AIM OF THE STUDY We investigated the integrative effect associated the risk by a retrospective Systemic Lupus Erythematosus (SLE) cohort from Taiwan National Health Insurance Research Database (NHIRD). MATERIALS AND METHODS SLE patients with a catastrophic illness certificate (CIC) were retrospectively enrolled from the SLE cohort of the Taiwan NHIRD between 1997 and 2011. The patients were divided into an integrative medicine (IM: integrated CM plus HM) and a non-IM (CM only) group with 1:1 propensity score matching. Cox proportional regression model and the Kaplan-Meier method were conducted to estimate the hazard ratio (HR) for lupus nephritis in the cohort. RESULTS Among 16,645 newly diagnosed SLE patients holding a CIC (SLE/CIC), 1933 had received HM and 1571 had received no HM treatment. After propensity score matching, there were 273 patients with lupus nephritis-120 in the IM group and 153 in the non-IM group. The adjusted HR (0.68, 95% confidence interval [CI]: 0.54-0.87, p<0.01) for lupus nephritis was lower in the IM group than in the non-IM group. The adjusted HR (0.69, 95% CI: 0.54-0.88, p<0.001) for lupus nephritis was also lower in the group of patients who had received CM plus HM than in the group that received CM only. The core pattern of HM prescriptions, which were integrated with CM for preventing lupus nephritis, was "Sheng-Di-Huang" (raw Rehmannia glutinosa Libosch.), "Mu-Dan-Pi" (Paeonia suffruticosa Andr.), "Dan-Shan" (Salvia miltiorrhiza Bge.), "Zhi-Bo-Di-Huang-Wan.", and "Chi-Shao" (Paeoniae lactiflorae Rubra). CONCLUSION Integrative therapy decreased the risk of lupus nephritis among SLE patients in Taiwan. Further investigation of the pharmacological mechanism and clinical efficacy are warranted.
Collapse
Affiliation(s)
- Ching-Mao Chang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC; Graduate Institute of Clinical Medicine, and Graduate Institute of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Po-Chang Wu
- Division of Rheumatology and Immunology and Department of Education, China Medical University Hospital, Taichung, Taiwan, ROC
| | - Jen-Huai Chiang
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan, ROC; College of Medicine, China Medical University, Taichung, Taiwan, ROC; Graduate Institute of Integrated Medicine, College of Chinese Medicine, Taichung, Taiwan, ROC
| | - Yau-Huei Wei
- Department of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan, ROC; Department of Medicine, Mackay Medical College, New Taipei, Taiwan, ROC
| | - Fang-Pey Chen
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC; Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Tzeng-Ji Chen
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC; Institute of Hospital and Health Care Administration, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Tai-Long Pan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan, ROC; Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan, ROC; Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Hung-Rong Yen
- Research Center for Chinese Herbal Medicine, and School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan, ROC; Departments of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan, ROC; Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC.
| | - Hen-Hong Chang
- Research Center for Chinese Herbal Medicine, and School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan, ROC; Research Center for Chinese Medicine & Acupuncture, and School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan, ROC; Departments of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan, ROC.
| |
Collapse
|
36
|
Zhao DD, Jiang LL, Li HY, Yan PF, Zhang YL. Chemical Components and Pharmacological Activities of Terpene Natural Products from the Genus Paeonia. Molecules 2016; 21:molecules21101362. [PMID: 27754383 PMCID: PMC6273841 DOI: 10.3390/molecules21101362] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/03/2016] [Accepted: 10/08/2016] [Indexed: 12/20/2022] Open
Abstract
Paeonia is the single genus of ca. 33 known species in the family Paeoniaceae, found in Asia, Europe and Western North America. Up to now, more than 180 compounds have been isolated from nine species of the genus Paeonia, including terpenes, phenols, flavonoids, essential oil and tannins. Terpenes, the most abundant naturally occurring compounds, which accounted for about 57% and occurred in almost every species, are responsible for the observed in vivo and in vitro biological activities. This paper aims to give a comprehensive overview of the recent phytochemical and pharmacological knowledge of the terpenes from Paeonia plants, and enlighten further drug discovery research.
Collapse
Affiliation(s)
- Dan-Dan Zhao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xue-Fu Road, Nan-Gang District, Harbin 150080, China.
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China.
- Heilongjiang University Hospital, Harbin 150080, China.
| | - Li-Li Jiang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Hong-Yi Li
- Heilongjiang University Hospital, Harbin 150080, China.
| | - Peng-Fei Yan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xue-Fu Road, Nan-Gang District, Harbin 150080, China.
| | - Yan-Long Zhang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
37
|
Hao J, Yang X, Ding XL, Guo LM, Zhu CH, Ji W, Zhou T, Wu XZ. Paeoniflorin Potentiates the Inhibitory Effects of Erlotinib in Pancreatic Cancer Cell Lines by Reducing ErbB3 Phosphorylation. Sci Rep 2016; 6:32809. [PMID: 27609096 PMCID: PMC5016851 DOI: 10.1038/srep32809] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/16/2016] [Indexed: 12/30/2022] Open
Abstract
Blockade of the epidermal growth factor receptor (EGFR) by EGFR tyrosine kinase inhibitors is insufficient for effective anti-tumor activity because the reactivation of the ErbB3 signaling pathway significantly contributes to activating the consequent phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. Combinatorial therapies including ErbB3 targeting may ameliorate tumor responses to anti-EGFR therapies. In the present study, we found that in BxPC-3 and L3.6pl cells, which highly expressed the ErbB3 receptor, significant reduction in cell viability, induction of apoptosis were observed when treated with a combination of erlotinib and PF compared to either agent alone. Moreover, in ErbB3-expressing BxPC-3, L3.6pl and S2VP10 cell lines, the inhibition of ErbB3/PI3K/Akt phosphorylation were observed when treated with PF. Most strikingly, both EGFR/MAPK/Erk and ErbB3/PI3K/Akt activitions were substantially suppressed when treated with the combination of PF and erlotinib. However, in the ErbB3-deficient cell line MIAPaCa-2, no such effects were observed with similar treatments. Most importantly, these in vitro results were replicated in nude mouse transplanted tumor models. Taken together, our findings show that PF enhances the effect of erlotinib in ErbB3-expressing pancreatic cancer cells by directly suppressing ErbB3 activation, and PF in combination with erlotinib is much more effective as an antitumor agent compared with either agent alone.
Collapse
Affiliation(s)
- Jian Hao
- Zhong-Shan-Men Inpatient Department; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital Tianjin, 300060, China
| | - Xue Yang
- Zhong-Shan-Men Inpatient Department; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital Tianjin, 300060, China
| | - Xiu-li Ding
- Zhong-Shan-Men Inpatient Department; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital Tianjin, 300060, China
| | - Lei-ming Guo
- Clinical Immunology and Rheumatology, Medicine Department of University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Cui-hong Zhu
- Zhong-Shan-Men Inpatient Department; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital Tianjin, 300060, China
| | - Wei Ji
- Opening Cancer Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Tong Zhou
- Clinical Immunology and Rheumatology, Medicine Department of University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xiong-zhi Wu
- Zhong-Shan-Men Inpatient Department; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy; Tianjin Medical University Cancer Institute and Hospital Tianjin, 300060, China
| |
Collapse
|
38
|
Enhancement of Exposure and Reduction of Elimination for Paeoniflorin or Albiflorin via Co-Administration with Total Peony Glucosides and Hypoxic Pharmacokinetics Comparison. Molecules 2016; 21:molecules21070874. [PMID: 27376264 PMCID: PMC6273400 DOI: 10.3390/molecules21070874] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 11/16/2022] Open
Abstract
There is evidence suggesting that herbal extracts demonstrate greater bioactivities than their isolated constituents at an equivalent dose. This phenomenon could be attributed to the absence of interacting substances present in the extracts. By measuring the pharmacokinetic parameters of paeoniflorin (PF) and albiflorin (AF) after being orally administered to rats in isolated form, in combination with each other and within total peony glucosides (TPG), respectively, the current study aimed to identify positive pharmacokinetic interactions between components of peony radix extracts. Moreover, the pharmacokinetic profiles of PF and AF under normoxia and hypoxia were also investigated and compared. In order to achieve these goals, a highly sensitive and reproducible ultra-peformance liquid chromatography-mass spectrometry (UPLC-MS) method was developed and validated for simultaneously quantitation of PF and AF in rat plasma. This study found that compared with that of single component (PF/AF), the exposure of PF in rat plasma after combination administration or TPG administration was significantly increased, meanwhile the elimination of PF/AF was remarkably reduced. It was also noticed that AUC and Cmax of PF in hypoxia rats were significantly decreased compared with that of normaxia rats, suggesting that there was a decreased exposure of PF in rats under hypoxia. The current study, for the first time, revealed the pharmacokinetic interactions between PF/AF and other constitutes in TGP and the pharmacokinetic profiles of PF and AF under hypoxia. In view of the current findings, it could be supposed that the clinical performance of total peony glucosides would be better than that of single constitute (PF/AF). The outcomes of this animal study are expected to serve as a basis for development of clinical guidelines on total peony glucosides usage.
Collapse
|
39
|
Han F, Zhou D, Yin X, Sun Z, Han J, Ye L, Zhao W, Zhang Y, Wang Z, Zheng L. Paeoniflorin protects diabetic mice against myocardial ischemic injury via the transient receptor potential vanilloid 1/calcitonin gene-related peptide pathway. Cell Biosci 2016; 6:37. [PMID: 27252827 PMCID: PMC4888521 DOI: 10.1186/s13578-016-0085-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/21/2016] [Indexed: 12/13/2022] Open
Abstract
Background Diabetes mellitus has multiple complications including neuropathy and increases cardiovascular events. Paeoniflorin (PF), a monoterpene glycoside, plays an essential role in neuroprotection and ischemic heart disease. In this study, we aimed to investigate the hypothesis that PF protects mice with diabetes mellitus against myocardial ischemic injury, and determine its associated mechanisms. Results Myocardial infarction (MI) was generated in the streptozotocin-mediated diabetic mice, which were pretreated with either vehicle or PF, respectively. Myocardial infarct size, myocardial enzyme, cardiac function, circulating calcitonin gene-related peptide (CGRP) concentration, histological analysis and the expression of associated molecules were determined and compared among different experimental groups. Compared to diabetic hearts pretreated with vehicle, hearts pretreated with PF exhibited less tissue damage and better CGRP concentration in serum when subjected to myocardial ischemia. Transient receptor potential vanilloid 1(TRPV1) gene knockout attenuated PF-mediated cardioprotection. Moreover, a specific Ca2+/calmodulin-dependent protein kinase (CaMK) inhibitor, KN-93, increased tissue damage and decreased CGRP activity in serum. Meanwhile, pretreated with PF increased the phosphorylation of cAMP response element binding protein (CREB). Conclusions Taken together, these findings demonstrate that PF protects diabetic mice against MI at least partially via the TRPV1/CaMK/CREB/CGRP signaling pathway.
Collapse
Affiliation(s)
- Fei Han
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 China
| | - Dongchen Zhou
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 China
| | - Xiang Yin
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 China
| | - Zewei Sun
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 China
| | - Jie Han
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 China
| | - Lifang Ye
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 China
| | - Wengting Zhao
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 China
| | - Yuanyuan Zhang
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 China
| | - Zhen Wang
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 China
| | - Liangrong Zheng
- Department of Cardiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003 China
| |
Collapse
|
40
|
Ma X, Guo J, Ma Y, Jin B, Zhan Z, Yuan Y, Huang L. Characterization of a monoterpene synthase from Paeonia lactiflora producing α-pinene as its single product. Biotechnol Lett 2016; 38:1213-9. [PMID: 27053081 DOI: 10.1007/s10529-016-2098-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/31/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To identify a terpene synthase that catalyzes the conversion of geranyl pyrophosphate (GPP) to α-pinene and is involved in the biosynthesis of paeoniflorin. RESULTS Two new terpene synthase genes were isolated from the transcriptome data of Peaonia lactiflora. Phylogenetic analysis and sequence characterization revealed that one gene, named PlPIN, encoded a monoterpene synthase that might be involved in the biosynthesis of paeoniflorin. In vitro enzyme assay showed that, in contrast to most monoterpene synthases, PlPIN encoded an α-pinene synthase which converted GPP into α-pinene as a single product. CONCLUSIONS This newly identified α-pinene synthase could be used for improving paeoniflorin accumulation by metabolic engineering or for producing α-pinene via synthetic biology.
Collapse
Affiliation(s)
- Xiaohui Ma
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.,State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Juan Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Ying Ma
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.,Beijing Key Laboratory of Protection and Application of Chinese Medicinal Resources, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Baolong Jin
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Zhilai Zhan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Yuan Yuan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
| |
Collapse
|
41
|
Yang X, Yang J, Hu J, Li X, Zhang X, Li Z. Apigenin attenuates myocardial ischemia/reperfusion injury via the inactivation of p38 mitogen‑activated protein kinase. Mol Med Rep 2015; 12:6873-8. [PMID: 26398147 DOI: 10.3892/mmr.2015.4293] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 08/07/2015] [Indexed: 11/06/2022] Open
Abstract
Apigenin (Api) is a plant monomer associated with reducing the risk of heart disease. However, the mechanism of action remains to be fully elucidated. In the present study, it was hypothesized that API has cardioprotective effects by attenuating myocardial ischemia/reperfusion (I/R) injury. Rats were randomly subjected to sham operation, myocardial I/R alone or I/R + Api. Cardiac function was measured, and infarct size was evaluated by triphenyltetrazolium chloride staining following reperfusion. The myocardial enzyme leakage was analyzed for lactate dehydrogenase (LDH) and creatine kinase (CK). The myocardium was also assessed for total superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. The phosphorylation of p38 mitogen‑activated protein kinase (MAPK) was analyzed by western blotting. The present study reported for the first time, to the best of our knowledge, that I/R significantly increased infarct size, induced CK and LDH release, inhibited the activity of SOD and increased the levels of MDA, all of which were prevented by treatment with Api. In addition, I/R increased the phosphorylation of p38 MAPK, which was significantly decreased in the Api‑treated heart tissue samples following I/R, compared with the untreated heart tissue samples. In conclusion, the results of the present study demonstrated that Api inhibited the p38 MAPK signaling pathway to protect cardiomyocytes from I/R‑induced injury.
Collapse
Affiliation(s)
- Xia Yang
- Department of Medical Affairs, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Junlan Yang
- Clinical Laboratory, Shaanxi Maternal and Child Care Service Centre, Xi'an, Shaanxi 710003, P.R. China
| | - Jing Hu
- Department of Pharmacy, General Hospital of Lanzhou Command, PLA, Lanzhou, Gansu 730050, P.R. China
| | - Xiaoqing Li
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xianjiao Zhang
- Department of Medical Affairs, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Zilin Li
- Department of Cardiovascular Surgery, General Hospital of Lanzhou Command, PLA, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
42
|
LIN XUEFENG, WU MIN, LIU BO, WANG JUNKUI, GUAN GONGCHANG, MA AIQUN, ZHANG YONG. Candesartan ameliorates acute myocardial infarction in rats through inducible nitric oxide synthase, nuclear factor-κB, monocyte chemoattractant protein-1, activator protein-1 and restoration of heat shock protein 72. Mol Med Rep 2012; 12:8193-200. [DOI: 10.3892/mmr.2015.4432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 09/01/2015] [Indexed: 11/06/2022] Open
|