1
|
Galvão-Silva FL, Araújo AS, Dias VS, do Nascimento AS, Joachim-Bravo IS. Responses of two Anastrepha species' immature stages infesting preferential hosts to different temperature exposures. NEOTROPICAL ENTOMOLOGY 2024; 53:342-350. [PMID: 38194155 DOI: 10.1007/s13744-023-01124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Anastrepha fraterculus (Wiedemann) and A. obliqua (Macquart) are important pests of fruit crops. In Brazil, these species cause damage to fruit growing in the South (annual average temperature of 20.9 °C) and Northeast (average yearly temperature of 24 °C). We evaluated the effect of temperature on the viability and development time of A. fraterculus and A. obliqua immature stages in their respective preferred hosts, guava (Psidium guajava L., Myrtaceae) and mango (Mangifera indica L., Anacardiaceae). The duration of egg and pupal stages, egg to pre-pupa, and viability of egg and pupal stages under different temperatures (15, 20, 25, 30, and 35 °C) were assessed. For both species, development time decreased with increasing temperature. Viability in the evaluated stages was only observed between 15 and 30 °C. However, the species responded differently to the exposure temperatures (15 and 30 °C), especially in the pupal stage and from egg to pre-pupa. Anastrepha fraterculus showed a lower tolerance to high temperatures, especially in the pupal stage and from egg to pre-pupa, which may explain its lower importance and economic impact in warmer Brazilian regions. Anastrepha obliqua had a lower tolerance at 15 °C, indicating greater adequacy for temperatures above 20 °C, characteristic of Northeast Brazil, suggesting the capacity to spread to cooler areas with rising temperatures.
Collapse
Affiliation(s)
| | - Alexandre Santos Araújo
- Departamento de Entomologia e Acarologia, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, São Paulo, Brazil
| | - Vanessa Simões Dias
- Insect Pest Control Laboratory, Joint FAO, IAEA Centre of Nuclear Techniques in Food and Agriculture, IAEA, Vienna, Austria
| | | | | |
Collapse
|
2
|
Soares NS, Ribeiro JGG, Mesquita Filho W, Araujo MR, Zucchi RA, Savaris M. Flight Height and Diversity of Anastrepha (Diptera: Tephritidae) in an Anthropic Environment. NEOTROPICAL ENTOMOLOGY 2023; 52:826-836. [PMID: 37495765 DOI: 10.1007/s13744-023-01062-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023]
Abstract
Several fruit fly species are pest of fruit production in subtropical and tropical countries such as Brazil. Data about the fruit fly communities are relevant for understanding ecological aspects such as population dynamics, abundance, richness, and diversity. In these surveys, Multilure traps were hung about 2 m height accessible to collectors. Practically there are no data on the dynamics of fruit fly species in higher positions. Thus, a comparative analysis was performed to assess the influence of the Multilure traps height, 2 m and 10 m, to collect Anastrepha species in the agricultural and forest environments. The abundance of Anastrepha species was compared using GLM multivariate analysis and species diversity using Hill numbers for each tested height. The heat map graph, based on the Euclidean distance, was used to assess the interaction of species at each height. A total of 1080 females of Anastrepha were captured, with 722 and 358 specimens collected in traps hung at 10 and 2 m height, respectively. Fourteen species were collected, with most identified as A. fraterculus (Wiedemann) (lato sensu) (n = 435) and A. obliqua (Macquart) (n = 388). Species diversity of Anastrepha was greater at 2 m than at 10 m, as were the values of diversity indices corresponding to richness (q = 0), Shannon (q = 1), and Simpson (q = 2). We conclude that evaluations of aspects related to the distribution of Anastrepha species at different heights should be adopted in fruit fly population monitoring programs as a management strategy for pest species.
Collapse
Affiliation(s)
- Nyeppson S Soares
- Dept of Entomology and Acarology, Luiz de Queiroz College of Agriculture, Univ of São Paulo, Piracicaba, SP, Brazil.
| | - José G G Ribeiro
- Dept of Entomology and Acarology, Luiz de Queiroz College of Agriculture, Univ of São Paulo, Piracicaba, SP, Brazil
| | - Walter Mesquita Filho
- Dept of Entomology and Acarology, Luiz de Queiroz College of Agriculture, Univ of São Paulo, Piracicaba, SP, Brazil
| | - Mayara R Araujo
- Dept of Entomology and Acarology, Luiz de Queiroz College of Agriculture, Univ of São Paulo, Piracicaba, SP, Brazil
| | - Roberto A Zucchi
- Dept of Entomology and Acarology, Luiz de Queiroz College of Agriculture, Univ of São Paulo, Piracicaba, SP, Brazil
| | - Marcoandre Savaris
- Dept of Entomology and Acarology, Luiz de Queiroz College of Agriculture, Univ of São Paulo, Piracicaba, SP, Brazil.
| |
Collapse
|
3
|
Congrains C, Dupuis JR, Rodriguez EJ, Norrbom AL, Steck G, Sutton B, Nolazco N, de Brito RA, Geib SM. Phylogenomic analysis provides diagnostic tools for the identification of Anastrepha fraterculus (Diptera: Tephritidae) species complex. Evol Appl 2023; 16:1598-1618. [PMID: 37752958 PMCID: PMC10519418 DOI: 10.1111/eva.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/24/2023] [Accepted: 08/10/2023] [Indexed: 09/28/2023] Open
Abstract
Insect pests cause tremendous impact to agriculture worldwide. Species identification is crucial for implementing appropriate measures of pest control but can be challenging in closely related species. True fruit flies of the genus Anastrepha Schiner (Diptera: Tephritidae) include some of the most serious agricultural pests in the Americas, with the Anastrepha fraterculus (Wiedemann) complex being one of the most important due to its extreme polyphagy and wide distribution across most of the New World tropics and subtropics. The eight morphotypes described for this complex as well as other closely related species are classified in the fraterculus species group, whose evolutionary relationships are unresolved due to incomplete lineage sorting and introgression. We performed multifaceted phylogenomic approaches using thousands of genes to unravel the evolutionary relationships within the A. fraterculus complex to provide a baseline for molecular diagnosis of these pests. We used a methodology that accommodates variable sources of data (transcriptome, genome, and whole-genome shotgun sequencing) and developed a tool to align and filter orthologs, generating reliable datasets for phylogenetic studies. We inferred 3031 gene trees that displayed high levels of discordance. Nevertheless, the topologies of the inferred coalescent species trees were consistent across methods and datasets, except for one lineage in the A. fraterculus complex. Furthermore, network analysis indicated introgression across lineages in the fraterculus group. We present a robust phylogeny of the group that provides insights into the intricate patterns of evolution of the A. fraterculus complex supporting the hypothesis that this complex is an assemblage of closely related cryptic lineages that have evolved under interspecific gene flow. Despite this complex evolutionary scenario, our subsampling analysis revealed that a set of as few as 80 loci has a similar phylogenetic resolution as the genome-scale dataset, offering a foundation to develop more efficient diagnostic tools in this species group.
Collapse
Affiliation(s)
- Carlos Congrains
- U.S. Department of Agriculture‐Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research UnitHiloHawaiiUSA
- Department of Plant and Environmental Protection ServicesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Julian R. Dupuis
- Department of EntomologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Erick J. Rodriguez
- Division of Plant Industry, Florida Department of Agriculture and Consumer ServicesGainesvilleFloridaUSA
| | - Allen L. Norrbom
- Systematic Entomology LabUSDA, ARS c/o Smithsonian InstitutionWashington DCUSA
| | - Gary Steck
- Division of Plant Industry, Florida Department of Agriculture and Consumer ServicesGainesvilleFloridaUSA
| | - Bruce Sutton
- Department of Entomology (Research Associate), National Museum of Natural HistorySmithsonian InstitutionGainesvilleFloridaUSA
| | - Norma Nolazco
- Centro de Diagnóstico de Sanidad Vegetal, Servicio Nacional de Sanidad AgrariaPeru
| | - Reinaldo A. de Brito
- Departamento de Genética e EvoluçãoUniversidade Federal de São CarlosSão CarlosSão PauloBrazil
| | - Scott M. Geib
- U.S. Department of Agriculture‐Agricultural Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Tropical Pest Genetics and Molecular Biology Research UnitHiloHawaiiUSA
| |
Collapse
|
4
|
Goane L, Carrizo BN, Ruiz MJ, Bachmann GE, Milla FH, Segura DF, Kuzmich D, Walse S, Vera MT. Behavioural and Electrophysiological Response of Anastrepha fraterculus (Diptera: Tephritidae) to a γ-Lactone Synthetic Semiochemical. INSECTS 2023; 14:206. [PMID: 36835775 PMCID: PMC9958615 DOI: 10.3390/insects14020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Attractants are a powerful tool for pest management. The lack of specific attractants for the South American fruit fly, Anastrepha fraterculus, a complex of cryptic species of great economic importance in South America, makes it difficult to monitor the pest in the field. The γ-lactone male sex and aggregation pheromones of several Anastrepha species, naturally released in a 7:3 epianastrephin to anastrephin ratio, and a structurally related naturally occurring γ-lactone ((±)-trans-tetrahydroactinidiolide) with gem-dimethyl groups (dimethyl) at C(4), were evaluated as potential attractants of this species. Different age and mating conditions of A. fraterculus males and females were evaluated during electroantennography (EAG) and field cage experiments in which polymeric lures were deployed to contain 100 mg of attractant. Epianastrephin and dimethyl were EAG+ for all fly conditions, with epianastrephin eliciting the highest response for both sexes and immature flies showing greater responsiveness than mature flies. In the field cage experiments, immature flies were only attracted to leks; virgin females were attracted to leks, dimethyl, and both epianastrephin-anastrephin formulations (95 and 70 wt.% epianastrephin); mature-mated males were attracted to leks, dimethyl and 70 wt.% epianastrephin; and mature-mated females were only attracted to leks. Our bioassays showed a promising performance of the analog dimethyl since it elicited the same response as epianastrephin, requires fewer steps to synthesize, and contains one less chiral center than the natural pheromones. The attraction to leks was recorded for all mating conditions and ages of flies and suggests that air-borne volatiles of calling males contain cues that could act as sensory traps. The addition of any of these compounds in the synthetic attractants may result in a greater attraction and thus deserves further evaluation. Dose-response experiments will provide additional information to move a step forward and validate the results obtained in open-field conditions.
Collapse
Affiliation(s)
- Lucía Goane
- Facultad de Agronomía, Zootecnia y Veterinaria, Universidad Nacional de Tucumán, San Miguel de Tucumán T4000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | | | - María Josefina Ruiz
- Facultad de Agronomía, Zootecnia y Veterinaria, Universidad Nacional de Tucumán, San Miguel de Tucumán T4000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Guillermo E. Bachmann
- Instituto de Genética “EA Favret”, INTA, GV-IABIMO, CONICET, Partido de Hurlingham B1686, Argentina
| | - Fabian H. Milla
- Instituto de Genética “EA Favret”, INTA, GV-IABIMO, CONICET, Partido de Hurlingham B1686, Argentina
| | - Diego F. Segura
- Instituto de Genética “EA Favret”, INTA, GV-IABIMO, CONICET, Partido de Hurlingham B1686, Argentina
| | - Dan Kuzmich
- San Joaquin Valley Agricultural Sciences Center, Agricultural Research Service, United States Department of Agriculture, Parlier, CA 93648, USA
| | - Spencer Walse
- San Joaquin Valley Agricultural Sciences Center, Agricultural Research Service, United States Department of Agriculture, Parlier, CA 93648, USA
| | - María Teresa Vera
- Facultad de Agronomía, Zootecnia y Veterinaria, Universidad Nacional de Tucumán, San Miguel de Tucumán T4000, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| |
Collapse
|
5
|
Grover A, Sharma P, Sharma R, Sinha R. Ultrastructural and molecular approach as a tool for taxonomic identification of aquatic macroinvertebrates: A review. Heliyon 2022; 8:e12236. [DOI: 10.1016/j.heliyon.2022.e12236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/16/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
|
6
|
Amat E, Altamiranda-Saavedra M, Canal NA, Gómez-P LM. Changes in the potential distribution of the guava fruit fly Anastrepha striata (Diptera, Tephritidae) under current and possible future climate scenarios in Colombia. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:469-480. [PMID: 34823612 DOI: 10.1017/s0007485321000985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Climate change has affected the geographical distributions of most species worldwide; in particular, insects of economic importance inhabiting tropical regions have been impacted. Current and future predictions of change in geographic distribution are frequently included in species distribution models (SDMs). The potential spatial distributions of the fruit fly Anastrepha striata Schiner, the main species of agricultural importance in guava crops, under current and possible future scenarios in Colombia were modeled, and the establishment risk was assessed for each guava-producing municipality in the country. SDMs were developed using 221 geographical records in conjunction with nine scenopoetic variables. The model for current climate conditions indicated an extensive suitable area for the establishment of A. striata in the Andean region, smaller areas in the Caribbean and Pacific, and almost no areas in the Orinoquia and Amazonian regions. A brief discussion regarding the area's suitability for the fly is offered. According to the results, altitude is one of the main factors that direct the distribution of A. striata in the tropics. The Colombian guava-producing municipalities were classified according to the degree of vulnerability to fly establishment as follows: 42 were high risk, 16 were intermediate risk, and 17 were low risk. The implementation of future integrated management plans must include optimal spatial data and must consider environmental aspects, such as those suggested by the models presented here. Control decisions should aim to mitigate the positive relationship between global warming and the increase in the dispersal area of the fruit fly.
Collapse
Affiliation(s)
- E Amat
- Grupo de Investigación Bioforense, Facultad de Derecho y Ciencias Forenses, Tecnológico de Antioquia Institución Universitaria, Antioquia, Colombia
- Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Manaus, Amazonas, Brazil
| | - M Altamiranda-Saavedra
- Grupo de Investigación Bioforense, Facultad de Derecho y Ciencias Forenses, Tecnológico de Antioquia Institución Universitaria, Antioquia, Colombia
- Grupo de investigación en Comunidad de aprendizaje currículo y didáctica (COMAEFI), Grupo de investigación en Actividad Física y Salud (SIAFYS), Politécnico Colombiano Jaime Isaza Cadavid, Medellín, Colombia
| | - N A Canal
- Universidad del Tolima, Facultad de Ingeniería Agronómica, Ibagué, Tolima, Colombia
| | - L M Gómez-P
- Grupo de Investigación Bioforense, Facultad de Derecho y Ciencias Forenses, Tecnológico de Antioquia Institución Universitaria, Antioquia, Colombia
| |
Collapse
|
7
|
Freilij D, Ferreyra LI, Vilardi JC, Rodriguez AI, Gómez-Cendra P. Fine Scale Microevolutionary and Demographic Processes Shaping a Wild Metapopulation Dynamics of the South American Fruit Fly Anastrepha fraterculus. NEOTROPICAL ENTOMOLOGY 2022; 51:339-355. [PMID: 35103980 DOI: 10.1007/s13744-022-00944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Anastrepha fraterculus (Wiedmann) is an important American pest species. Knowledge of its population dynamics is of particular interest for ecology, evolutionary biology, and management programs. In the present study, phenotypic, genotypic, and spatial data were combined, within the frame of landscape genetics, to uncover the spatial population genetic structure (SGS) and demographic processes of an Argentinian local population from the Yungas ecoregion. Eight simple sequence repeats (SSR) loci and six morphometric traits were analysed considering the hierarchical levels: tree/fruit/individual. Genetic variability estimates were high (HE = 0.72, RA = 4.39). Multivariate analyses of phenotypic data showed that in average 52.81% of variance is explained by the tree level, followed by between individuals 28.37%. Spatial analysis of morphological traits revealed a negative autocorrelation in all cases. SGS analysis and isolation by distance based on SSR showed no significant autocorrelation for molecular coancestry. The comparison between phenotypic (PST) and molecular (FST) differentiation identified positive selection in different fruits for all traits. Bayesian analysis revealed a cryptic structure within the population, with three clusters spatially separated. The results of this study showed a metapopulation dynamics. The genetic background of the components of this metapopulation is expected to change through time due to seasonality, repopulation activities, and high gene flow, with an estimated dispersal ability of at least 10 km. Effective population size (Ne) of the metapopulation was estimated in around 800 flies, and within subpopulations (clusters) Ne was associated with the levels of genetic drift experienced by the founding lineages.
Collapse
Affiliation(s)
- Damián Freilij
- Genética de Poblaciones Aplicada (GPA), Depto de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Laura I Ferreyra
- Genética de Poblaciones Aplicada (GPA), Depto de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan C Vilardi
- Genética de Poblaciones Aplicada (GPA), Depto de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Angeles I Rodriguez
- Genética de Poblaciones Aplicada (GPA), Depto de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Gómez-Cendra
- Genética de Poblaciones Aplicada (GPA), Depto de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Selivon D, Perondini ALP, Hernández-Ortiz V, doVal FC, Camacho A, Gomes FR, Prezotto LF. Genetical, Morphological, Behavioral, and Ecological Traits Support the Existence of Three Brazilian Species of the Anastrepha fraterculus Complex of Cryptic Species. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.836608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Within the Neotropical genus Anastrepha, the nominal species Anastrepha fraterculus is widely distributed from Mexico through northern Argentina. Currently it is believed to comprises a complex of at least eight cryptic species—known as the Anastrepha fraterculus complex (AF complex)—three of which occur in Brazil: A. sp.1 aff. fraterculus, A. sp.2 aff. fraterculus, and A. sp.3 aff. fraterculus. In this study, we present the results of a broad integrated analysis of multiple biological attributes in samples of the three species collected in sympatric areas. Analyses of the mitotic chromosomes confirm that all of them differ in sex chromosomes, and that the relative frequency of the distinct karyotypes is associated with variation in altitude. In these sympatric areas, a single female hybrid karyotype was detected within a significant sample of individuals. Population samples were analyzed for the ribosomal transcribed spacer ITS1, confirming that the three species have specific sequence types. Observations of reproductive behavior under laboratory conditions revealed that A. sp.1 and A. sp.2 mate early in the morning, while A. sp.3 mates in the middle of the day. A bimodal distribution of mating time was observed in the laboratory for hybrids, obtained between A. sp.1 and A. sp.3. In a mating choice experiment, most of the mating pairs were homospecific. In addition, through a list of the most frequent hosts associated with geographical occurrence, a bioclimatic model of their potential distribution was generated. The set of data allowed for the construction of explanatory hypothesis about the observed geographical pattern and the differential use of host fruits. Morphometric analyses of wings clearly demonstrated differences among the three species, for both males and females. Based on a wing image of the A. fraterculus (Wiedemann, 1830) type specimen, the morphometric analysis indicated that the type specimen would correspond to a male of A. sp.2 aff. fraterculus. The information provided by this report is not only useful for taxonomic purposes, but also reveals aspects to be considered in any reconstruction of an evolutionary scenario of the Anastrepha fraterculus complex.
Collapse
|
9
|
Mastrangelo T, Kovaleski A, Maset B, Costa MDLZ, Barros C, Lopes LA, Caceres C. Improvement of the Mass-Rearing Protocols for the South American Fruit Fly for Application of the Sterile Insect Technique. INSECTS 2021; 12:insects12070622. [PMID: 34357284 PMCID: PMC8304162 DOI: 10.3390/insects12070622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022]
Abstract
Simple Summary Significant advances in the domestication and artificial rearing techniques for the South American fruit fly, Anastrepha fraterculus (Diptera, Tephritidae), have been achieved since the FAO/IAEA Workshop held in 1996 in Chile. Despite the availability of rearing protocols that allow the production of a high number of flies, they must be optimized to increase insect yields and decrease production costs. In addition, evidence of sexual incompatibility between a long-term mass-reared Brazilian strain and wild populations has been found. To address these issues, this study refined rearing protocols and assessed the suitability of a bisexual A. fraterculus strain established from a target population in southern Brazil for the mass production of sterile flies. Abstract The existing rearing protocols for Anastrepha fraterculus must be reviewed to make economically viable the production of sterile flies for their area-wide application. Additionally, evidence of sexual incompatibility between a long-term mass-reared Brazilian strain and wild populations has been found. To address these issues, this study aimed to refine rearing protocols and to assess the suitability of an A. fraterculus strain for the mass production of sterile flies. A series of bioassays were carried out to evaluate incubation times for eggs in a bubbling bath and to assess the temporal variation of egg production from ovipositing cages at different adult densities. A novel larval diet containing carrageenan was also evaluated. Egg incubation times higher than 48 h in water at 25 °C showed reduced larval and pupal yields. Based on egg production and hatchability, the density of 0.3 flies/cm2 can be recommended for adult cages. The diet with carrageenan was suitable for mass production at egg-seeding densities between 1.0 and 1.5 mL of eggs/kg of diet, providing higher insect yields than a corn-based diet from Embrapa. Even after two years of being reared under the new rearing protocols, no sexual isolation was found between the bisexual strain and wild flies.
Collapse
Affiliation(s)
- Thiago Mastrangelo
- Center for Nuclear Energy in Agriculture (CENA/USP), Piracicaba 13416-000, São Paulo, Brazil; (T.M.); (B.M.); (M.d.L.Z.C.); (L.A.L.)
| | - Adalecio Kovaleski
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Vacaria 95200-000, Rio Grande do Sul, Brazil; (A.K.); (C.B.)
| | - Bruno Maset
- Center for Nuclear Energy in Agriculture (CENA/USP), Piracicaba 13416-000, São Paulo, Brazil; (T.M.); (B.M.); (M.d.L.Z.C.); (L.A.L.)
| | - Maria de Lourdes Zamboni Costa
- Center for Nuclear Energy in Agriculture (CENA/USP), Piracicaba 13416-000, São Paulo, Brazil; (T.M.); (B.M.); (M.d.L.Z.C.); (L.A.L.)
| | - Claudio Barros
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Vacaria 95200-000, Rio Grande do Sul, Brazil; (A.K.); (C.B.)
| | - Luis Anselmo Lopes
- Center for Nuclear Energy in Agriculture (CENA/USP), Piracicaba 13416-000, São Paulo, Brazil; (T.M.); (B.M.); (M.d.L.Z.C.); (L.A.L.)
| | - Carlos Caceres
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, A-2444 Seibersdorf, Austria
- Correspondence:
| |
Collapse
|
10
|
Congrains C, Zucchi RA, de Brito RA. Phylogenomic approach reveals strong signatures of introgression in the rapid diversification of neotropical true fruit flies (Anastrepha: Tephritidae). Mol Phylogenet Evol 2021; 162:107200. [PMID: 33984467 DOI: 10.1016/j.ympev.2021.107200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 01/30/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023]
Abstract
New sequencing techniques have allowed us to explore the variation on thousands of genes and elucidate evolutionary relationships of lineages even in complex scenarios, such as when there is rapid diversification. That seems to be the case of species in the genus Anastrepha, which shows great species diversity that has been divided into 21 species groups, several of which show wide geographical distribution. The fraterculus group has several economically important species and it is also an outstanding model for speciation studies, since it includes several lineages that have diverged recently possibly in the presence of interspecific gene flow. Our main goal is to test whether we can infer phylogenetic relationships of recently diverged taxa with gene flow, such as what is expected for the fraterculus group and determine whether certain genes remain informative even in this complex scenario. An analysis of thousands of orthologous genes derived from transcriptome datasets of 10 different lineages across the genus, including some of the economically most important pests, revealed signals of incomplete lineage sorting, vestiges of ancestral introgression between more distant lineages and ongoing gene flow between closely related lineages. Though these patterns affect the phylogenetic signal, the phylogenomic inferences consistently show that the morphologically identified species here investigated are in different evolutionary lineages, with the sole exception involving Brazilian lineages of A. fraterculus, which has been suggested to be a complex assembly of cryptic species. A tree space analysis suggested that genes with greater phylogenetic resolution have evolved under similar selection pressures and are more resilient to intraspecific gene flow, which would make it more likely that these genomic regions may be useful for identifying fraterculus group lineages. Our findings help establish relationships among the most important Anastrepha species groups, as well as bring further data to indicate that the diversification of fraterculus group lineages, and even other lineages in the genus Anastrepha, has been strongly influenced by interspecific gene flow.
Collapse
Affiliation(s)
- Carlos Congrains
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil.
| | - Roberto A Zucchi
- Escola Superior de Agricultura "Luiz de Queiroz" - ESALQ, Universidade de São Paulo - USP, Piracicaba, SP, Brazil
| | - Reinaldo A de Brito
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
11
|
Vilardi JC, Freilij D, Ferreyra LI, Gómez-Cendra P. Ecological phylogeography and coalescent models suggest a linear population expansion of Anastrepha fraterculus (Diptera: Tephritidae) in southern South America. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
This work is a first approach to an integrated view of the genetics, ecology and dispersion patterns of Anastrepha fraterculus in southern South America. We studied the association of genetic variation with geographical patterns and environmental variables to provide insight into the crucial factors that drive the structure and dynamics of fly populations. Data from a 417 bp mitochondrial COII gene fragment from seven Argentinian populations and one South Brazilian population (from five ecoregions grouped in three biomes) were used to identify population clusters using a model-based Bayesian phylogeographical and ecological clustering approach. The sequences were also analysed under a coalescent model to evaluate historical demographic changes. We identified 19 different haplotypes and two clusters differing in all the environmental covariables. The assumption of neutral evolution and constant population size was rejected, and the population growth parameters suggested a linear population expansion starting 2500 years before present. The most likely ancestral location is Posadas, from where A. fraterculus would have expanded southwards and westwards in Argentina. This result is consistent with Holocene changes and anthropic factors related to the expansion of the Tupí–Guaraní culture, 3000–1500 years before present.
Collapse
Affiliation(s)
- Juan César Vilardi
- Genética de Poblaciones Aplicada (GPA), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Damián Freilij
- Genética de Poblaciones Aplicada (GPA), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Laura Inés Ferreyra
- Genética de Poblaciones Aplicada (GPA), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Gómez-Cendra
- Genética de Poblaciones Aplicada (GPA), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
12
|
Giardini MC, Nieves M, Scannapieco AC, Conte CA, Milla FH, Schapovaloff ME, Frissolo MS, Remis MI, Cladera JL, Lanzavecchia SB. Geographic distribution of sex chromosome polymorphism in Anastrepha fraterculus sp. 1 from Argentina. BMC Genet 2020; 21:149. [PMID: 33339514 PMCID: PMC7747450 DOI: 10.1186/s12863-020-00944-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Anastrepha fraterculus is recognized as a quarantine pest in several American countries. This fruit fly species is native to the American continent and distributed throughout tropical and subtropical regions. It has been reported as a complex of cryptic species, and at least eight morphotypes have been described. Only one entity of this complex, formerly named Anastrepha fraterculus sp. 1, is present in Argentina. Previous cytogenetic studies on this morphotype described the presence of sex chromosome variation identified by chromosomal size and staining patterns. In this work, we expanded the cytological study of this morphotype by analyzing laboratory strains and wild populations to provide information about the frequency and geographic distribution of these sex chromosome variants. We analyzed the mitotic metaphases of individuals from four laboratory strains and five wild populations from the main fruit-producing areas of Argentina, including the northwest (Tucumán and La Rioja), northeast (Entre Ríos and Misiones), and center (Buenos Aires) of the country. RESULTS In wild samples, we observed a high frequency of X1X1 (0.94) and X1Y5 (0.93) karyomorphs, whereas X1X2 and X1Y6 were exclusively found at a low frequency in Buenos Aires (0.07 and 0.13, respectively), Entre Ríos (0.16 and 0.14, respectively) and Tucumán (0.03 and 0.04, respectively). X2X2 and X2Y5 karyomorphs were not found in wild populations but were detected at a low frequency in laboratory strains. In fact, karyomorph frequencies differed between wild populations and laboratory strains. No significant differences among A. fraterculus wild populations were evidenced in either karyotypic or chromosomal frequencies. However, a significant correlation was observed between Y5 chromosomal frequency and latitude. CONCLUSIONS We discuss the importance of cytogenetics to understand the possible route of invasion and dispersion of this pest in Argentina and the evolutionary forces acting under laboratory conditions, possibly driving changes in the chromosomal frequencies. Our findings provide deep and integral genetic knowledge of this species, which has become of relevance to the characterization and selection of valuable A. fraterculus sp. 1 strains for mass rearing production and SIT implementation.
Collapse
Affiliation(s)
- María Cecilia Giardini
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética (IGEAF), Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA- CONICET, Hurlingham, Buenos Aires, Argentina
| | - Mariela Nieves
- Grupo de Investigación en Biología Evolutiva, Departamento de Ecología, Genética y Evolución, IEGEBA (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandra Carla Scannapieco
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética (IGEAF), Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA- CONICET, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Claudia Alejandra Conte
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética (IGEAF), Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA- CONICET, Hurlingham, Buenos Aires, Argentina
| | - Fabián Horacio Milla
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética (IGEAF), Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA- CONICET, Hurlingham, Buenos Aires, Argentina
| | - María Elena Schapovaloff
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Estación Experimental Agropecuaria Montecarlo, Instituto Nacional de Tecnología Agropecuaria (INTA), Misiones, Argentina
| | - Maria Soledad Frissolo
- Subprograma La Rioja, Programa Nacional de Control y Erradicación de Moscas de los Frutos (PROCEM), La Rioja, Argentina
| | - María Isabel Remis
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Genética de la Estructura Poblacional, Departamento de Ecología, Genética y Evolución,IEGEBA (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge Luis Cladera
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética (IGEAF), Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA- CONICET, Hurlingham, Buenos Aires, Argentina
| | - Silvia Beatriz Lanzavecchia
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética (IGEAF), Instituto de Agrobiotecnología y Biología Molecular (IABIMO), INTA- CONICET, Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
13
|
Scannapieco AC, Conte CA, Rivarola M, Wulff JP, Muntaabski I, Ribone A, Milla F, Cladera JL, Lanzavecchia SB. Transcriptome analysis of Anastrepha fraterculus sp. 1 males, females, and embryos: insights into development, courtship, and reproduction. BMC Genet 2020; 21:136. [PMID: 33339505 PMCID: PMC7747455 DOI: 10.1186/s12863-020-00943-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Anastrepha fraterculus sp. 1 is considered a quarantine pest in several American countries. Since chemical control applied in an integrated pest management program is the only strategy utilized against this pest, the development of pesticide-free methods, such as the Sterile Insect Technique, is being considered. The search for genes involved in sex-determination and differentiation, and in metabolic pathways associated with communication and mating behaviour, contributes with key information to the development of genetic control strategies. The aims of this work were to perform a comprehensive analysis of A. fraterculus sp. 1 transcriptome and to obtain an initial evaluation of genes associated with main metabolic pathways by the expression analysis of specific transcripts identified in embryos and adults. RESULTS Sexually mature adults of both sexes and 72 h embryos were considered for transcriptome analysis. The de novo transcriptome assembly was fairly complete (62.9% complete BUSCO orthologs detected) with a total of 86,925 transcripts assembled and 28,756 GO annotated sequences. Paired-comparisons between libraries showed 319 transcripts differently expressed between embryos and females, 1242 between embryos and males, and 464 between sexes. Using this information and genes searches based on published studies from other tephritid species, we evaluated a set of transcripts involved in development, courtship and metabolic pathways. The qPCR analysis evidenced that the early genes serendipity alpha and transformer-2 displayed similar expression levels in the analyzed stages, while heat shock protein 27 is over-expressed in embryos and females in comparison to males. The expression of genes associated with courtship (takeout-like, odorant-binding protein 50a1) differed between males and females, independently of their reproductive status (virgin vs mated individuals). Genes associated with metabolic pathways (maltase 2-like, androgen-induced gene 1) showed differential expression between embryos and adults. Furthermore, 14,262 microsatellite motifs were identified, with 11,208 transcripts containing at least one simple sequence repeat, including 48% of di/trinucleotide motifs. CONCLUSION Our results significantly expand the available gene space of A. fraterculus sp. 1, contributing with a fairly complete transcript database of embryos and adults. The expression analysis of the selected candidate genes, along with a set of microsatellite markers, provides a valuable resource for further genetic characterization of A. fraterculus sp. 1 and supports the development of specific genetic control strategies.
Collapse
Affiliation(s)
- Alejandra Carla Scannapieco
- Instituto de Genética "E. A. Favret" (IGEAF) gv Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituo Nacional de Tecnología Agropecuaria (INTA) - Consejo de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Claudia Alejandra Conte
- Instituto de Genética "E. A. Favret" (IGEAF) gv Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituo Nacional de Tecnología Agropecuaria (INTA) - Consejo de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Máximo Rivarola
- Instituto de Biotecnología, IABIMO, INTA - CONICET, Hurlingham, Buenos Aires, Argentina
| | - Juan Pedro Wulff
- Instituto de Genética "E. A. Favret" (IGEAF) gv Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituo Nacional de Tecnología Agropecuaria (INTA) - Consejo de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Irina Muntaabski
- Instituto de Genética "E. A. Favret" (IGEAF) gv Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituo Nacional de Tecnología Agropecuaria (INTA) - Consejo de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Andrés Ribone
- Instituto de Biotecnología, IABIMO, INTA - CONICET, Hurlingham, Buenos Aires, Argentina
| | - Fabián Milla
- Instituto de Genética "E. A. Favret" (IGEAF) gv Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituo Nacional de Tecnología Agropecuaria (INTA) - Consejo de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Jorge Luis Cladera
- Instituto de Genética "E. A. Favret" (IGEAF) gv Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituo Nacional de Tecnología Agropecuaria (INTA) - Consejo de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Silvia Beatriz Lanzavecchia
- Instituto de Genética "E. A. Favret" (IGEAF) gv Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituo Nacional de Tecnología Agropecuaria (INTA) - Consejo de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
14
|
Salgueiro J, Pimper LE, Segura DF, Milla FH, Russo RM, Asimakis E, Stathopoulou P, Bourtzis K, Cladera JL, Tsiamis G, Lanzavecchia SB. Gut Bacteriome Analysis of Anastrepha fraterculus sp. 1 During the Early Steps of Laboratory Colonization. Front Microbiol 2020; 11:570960. [PMID: 33193166 PMCID: PMC7606190 DOI: 10.3389/fmicb.2020.570960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Microbial communities associated to insect species are involved in essential biological functions such as host nutrition, reproduction and survivability. Main factors have been described as modulators of gut bacterial community, such as diet, habit, developmental stage and taxonomy of the host. The present work focuses on the complex changes that gut microbial communities go through when wild insects are introduced to artificial rearing conditions. Specifically, we analyzed the effect of the laboratory colonization on the richness and diversity of the gut bacteriome hosted by the fruit fly pest Anastrepha fraterculus sp. 1. Bacterial profiles were studied by amplicon sequencing of the 16S rRNA V3-V4 hypervariable region in gut samples of males and females, in teneral (1-day-old, unfed) and post-teneral (15-day-old, fed) flies. A total of 3,147,665 sequence reads were obtained and 32 bacterial operational taxonomic units (OTUs) were identified. Proteobacteria was the most abundant phylum (93.3% of the total reads) and, Wolbachia and Enterobacter were the most represented taxa at the genus level (29.9% and 27.7%, respectively, of the total read counts). Wild and laboratory flies showed highly significant differences in the relative abundances of bacteria. The analysis of the core bacteriome showed the presence of five OTUs in all samples grouped by origin, while nine and five OTUs were exclusively detected in laboratory and wild flies, respectively. Irrespective of fly origin or sex, a dominant presence of Wolbachia was observed in teneral flies, whereas Enterobacter was highly abundant in post-teneral individuals. We evidenced significant differences in bacterial richness and diversity among generations under laboratory colonization (F0, F1, F3 and F6) and compared to laboratory and wild flies, displaying also differential patterns between teneral and post-teneral flies. Laboratory and wild A. fraterculus sp. 1 harbor different gut bacterial communities. Laboratory colonization has an important effect on the microbiota, most likely associated to the combined effects of insect physiology and environmental conditions (e.g., diet and colony management).
Collapse
Affiliation(s)
- Julieta Salgueiro
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Lida E Pimper
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Diego F Segura
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Fabián H Milla
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Romina M Russo
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Elias Asimakis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | | | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Jorge L Cladera
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Silvia B Lanzavecchia
- Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret", Centro de Investigación en Ciencias Veterinarias y Agronómicas - Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| |
Collapse
|
15
|
López-Ortega M, Díaz-Fleischer F, Piñero JC, Valdez-Lazalde JR, Hernández-Ortiz M, Hernández-Ortiz V. The Mayan Tropical Rainforest: An Uncharted Reservoir of Tritrophic Host-Fruit Fly-Parasitoid Interactions. INSECTS 2020; 11:insects11080495. [PMID: 32756345 PMCID: PMC7469189 DOI: 10.3390/insects11080495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/02/2022]
Abstract
Simple Summary Tropical rainforest can provide various ecological services to adjacent agricultural environments, including maintaining and amplifying the numbers of beneficial insects. However, forest fragmentation and the selective cutting of indigenous trees used by native species of fruit flies and their parasitoids, degrades the potential of forests to provide ecological services to agriculture. Over a two–year period, we surveyed natural areas of the Mayan rainforest in Quintana Roo, Mexico. We found 11 species of native fruit flies belonging to the genus Anastrepha associated with 25 species of fruits belonging to ten plant families. We report the first records of 10 host plant species of the genus Anastrepha. We also report a new undescribed species of Anastrepha. The interaction between fruit flies and their parasitoids with host plants depends on fruit availability, which is crucial for the survival of each of these species. Our findings indicate that the areas of the Mayan rainforest surveyed represent a highly important reservoir for the diversity of native parasitoids spatially and temporally that are practically absent in fruits of cultivated plants. Conserving the landscape of the Mayan rainforest is important not only for species conservation, but also for the maintenance of fruit fly host plants of biological control agents in orchard agroecosystems in southeastern Mexico. Abstract Over a two–year period, we surveyed natural areas of the Mayan rainforest in Quintana Roo, Mexico. We found 11 species of Anastrepha Schiner (Diptera: Tephritidae) infesting 25 species of fruits belonging to ten plant families. We report the first records of 10 host plant species of the genus Anastrepha, which include the first report of a plant family (Putranjivaceae) serving as host of Anastrepha fraterculus (Wiedemann) infesting Drypetes lateriflora (Sw.) Krug and Urb. (Putranjivaceae). Pouteria reticulata (Engl.) Eyma (Sapotaceae) was found, for the first time, to be infested by Anastrepha serpentina (Wiedemann) and by a new undescribed species of Anastrepha. We also report Casimiroa microcarpa Lundell (Rutaceae) as a possible ancestral host for the Mexican fruit fly, Anastrepha ludens (Loew), in Central America. The family Sapotaceae was the best-represented host group with three fruit fly species recovered: A. serpentina, an economically-important species, found in eight host plants, and A. hamata and A. sp. (new species). We recorded six species of koinobiont parasitoids: Doryctobracon areolatus Szepligeti, Utetes (Bracanastrepha) anastrephae Viereck, Opius hirtus Fisher, and Doryctobracon zeteki Musebeck, (all Braconidae), and Aganaspis pelleranoi (Brethés) and Odontosema anastrephae Borgmeier, (both Figitidae). All these parasitoid species represent at least a new report for their host plants. Of the whole parasitoid community, D. areolatus was the most important parasitoid species with 52.7% of presence in 12 host plant species, parasitizing six fruit fly species. The interaction between fruit flies and their parasitoids with host plants depends on fruit availability, which is crucial for the survival of each of these species. Conserving the landscape of the Mayan rainforest is important not only for species conservation, but also for the maintenance of fruit fly host plants in orchard agroecosystems in southeastern Mexico.
Collapse
Affiliation(s)
- Maurilio López-Ortega
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, 91090 Veracruz, Mexico; (F.D.-F.); (M.H.-O.)
- Correspondence:
| | - Francisco Díaz-Fleischer
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, 91090 Veracruz, Mexico; (F.D.-F.); (M.H.-O.)
| | - Jaime C. Piñero
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA;
| | | | - Manuel Hernández-Ortiz
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, 91090 Veracruz, Mexico; (F.D.-F.); (M.H.-O.)
| | - Vicente Hernández-Ortiz
- Red de Interacciones Multitróficas, Instituto de Ecología A.C. Xalapa, 91073 Veracruz, Mexico;
| |
Collapse
|
16
|
Dias VS, Hallman GJ, Cardoso AAS, Hurtado NV, Rivera C, Maxwell F, Cáceres-Barrios CE, Vreysen MJB, Myers SW. Relative Tolerance of Three Morphotypes of the Anastrepha fraterculus Complex (Diptera: Tephritidae) to Cold Phytosanitary Treatment. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1176-1182. [PMID: 32161970 PMCID: PMC7275689 DOI: 10.1093/jee/toaa027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Indexed: 06/10/2023]
Abstract
The Anastrepha fraterculus (Wiedemann) complex is currently comprised of at least eight morphotypes, including several that are likely to be described as new species. It is critical to evaluate whether the morphotypes differ in tolerance to phytosanitary treatments. Temperatures from 0 to 3°C are used as a phytosanitary treatment for some commodities exported from the region and at risk of infestation by the A. fraterculus complex. Description of A. fraterculus morphotypes as new species could result in the annulation of phytosanitary treatment schedules for the new species. This study compared the relative cold tolerance of five populations from three morphotypes of the A. fraterculus complex: Andean, Peruvian, and Brazilian-1. Both a laboratory and wild strain of the Brazilian-1 morphotype were studied. Differences in mortality of third instars of the five A. fraterculus populations reared on nectarines were observed only with short treatment durations at temperatures ranging from 1.38 ± 0.04°C to 1.51 ± 0.08°C (mean ± SEM). Estimated times to achieve the LT99.99682 (probit 9) showed that Brazilian-1 wild, Brazilian-1 laboratory, and Cusco population were the most cold tolerant, followed by Andean and Peruvian, the least cold tolerant morphotype (i.e., Brazilian-1 wild = Brazilian-1 laboratory = Cusco population > Andean > Peruvian). These findings suggest that the current cold treatment schedules of 15 d at ≤ 1.11°C and 17 d at ≤ 1.67°C can be applied as cold treatments to any potential new species that may arise from the A. fraterculus complex.
Collapse
Affiliation(s)
- Vanessa S Dias
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Wagramerstrasse 5, A-1400 Vienna, Austria
| | | | - Amanda A S Cardoso
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Wagramerstrasse 5, A-1400 Vienna, Austria
| | - Nick V Hurtado
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Wagramerstrasse 5, A-1400 Vienna, Austria
| | - Camilo Rivera
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Wagramerstrasse 5, A-1400 Vienna, Austria
| | - Florence Maxwell
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Wagramerstrasse 5, A-1400 Vienna, Austria
| | - Carlos E Cáceres-Barrios
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Wagramerstrasse 5, A-1400 Vienna, Austria
| | - Marc J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Wagramerstrasse 5, A-1400 Vienna, Austria
| | - Scott W Myers
- USDA, APHIS, PPQ, Center for Plant Health Science and Technology, Otis Laboratory 1398 W. Truck Road., Buzzards Bay, MA
| |
Collapse
|
17
|
Mateos M, Martinez Montoya H, Lanzavecchia SB, Conte C, Guillén K, Morán-Aceves BM, Toledo J, Liedo P, Asimakis ED, Doudoumis V, Kyritsis GA, Papadopoulos NT, Augustinos AA, Segura DF, Tsiamis G. Wolbachia pipientis Associated With Tephritid Fruit Fly Pests: From Basic Research to Applications. Front Microbiol 2020; 11:1080. [PMID: 32582067 PMCID: PMC7283806 DOI: 10.3389/fmicb.2020.01080] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Members of the true fruit flies (family Tephritidae) are among the most serious agricultural pests worldwide, whose control and management demands large and costly international efforts. The need for cost-effective and environmentally friendly integrated pest management (IPM) has led to the development and implementation of autocidal control strategies. These approaches include the widely used sterile insect technique and the incompatible insect technique (IIT). IIT relies on maternally transmitted bacteria (namely Wolbachia) to cause a conditional sterility in crosses between released mass-reared Wolbachia-infected males and wild females, which are either uninfected or infected with a different Wolbachia strain (i.e., cytoplasmic incompatibility; CI). Herein, we review the current state of knowledge on Wolbachia-tephritid interactions including infection prevalence in wild populations, phenotypic consequences, and their impact on life history traits. Numerous pest tephritid species are reported to harbor Wolbachia infections, with a subset exhibiting high prevalence. The phenotypic effects of Wolbachia have been assessed in very few tephritid species, due in part to the difficulty of manipulating Wolbachia infection (removal or transinfection). Based on recent methodological advances (high-throughput DNA sequencing) and breakthroughs concerning the mechanistic basis of CI, we suggest research avenues that could accelerate generation of necessary knowledge for the potential use of Wolbachia-based IIT in area-wide integrated pest management (AW-IPM) strategies for the population control of tephritid pests.
Collapse
Affiliation(s)
- Mariana Mateos
- Departments of Ecology and Conservation Biology, and Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, United States
| | - Humberto Martinez Montoya
- Laboratorio de Genética y Genómica Comparativa, Unidad Académica Multidisciplinaria Reynosa Aztlan, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Mexico
| | - Silvia B Lanzavecchia
- Instituto de Genética 'Ewald A. Favret' - GV IABIMO (INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | - Claudia Conte
- Instituto de Genética 'Ewald A. Favret' - GV IABIMO (INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | | | | | - Jorge Toledo
- El Colegio de la Frontera Sur, Tapachula, Mexico
| | - Pablo Liedo
- El Colegio de la Frontera Sur, Tapachula, Mexico
| | - Elias D Asimakis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Vangelis Doudoumis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Georgios A Kyritsis
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Larissa, Greece
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Larissa, Greece
| | - Antonios A Augustinos
- Department of Plant Protection, Institute of Industrial and Forage Crops, Hellenic Agricultural Organization - DEMETER, Patras, Greece
| | - Diego F Segura
- Instituto de Genética 'Ewald A. Favret' - GV IABIMO (INTA-CONICET) Hurlingham, Buenos Aires, Argentina
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| |
Collapse
|
18
|
Bartolini I, Rivera J, Nolazco N, Olórtegui A. Towards the implementation of a DNA barcode library for the identification of Peruvian species of Anastrepha (Diptera: Tephritidae). PLoS One 2020; 15:e0228136. [PMID: 32004351 PMCID: PMC6994132 DOI: 10.1371/journal.pone.0228136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 01/08/2020] [Indexed: 11/18/2022] Open
Abstract
The genus Anastrepha is a diverse lineage of fruit-damaging tephritid flies widespread across the Neotropical Region. Accurate taxonomic identification of these flies is therefore of paramount importance in agricultural contexts. DNA barcoding libraries are molecular-based tools based on a short sequence of the mitochondrial COI gene enabling rapid taxonomic identification of biological species. In this study, we evaluate the utility of this method for species identification of Peruvian species of Anastrepha and assemble a preliminary barcode profile for the group. We obtained 73 individual sequences representing the 15 most common species, 13 of which were either assigned to previously recognized or newly established BINs. Intraspecific genetic divergence between sampled species averaged 1.01% (range 0-3.3%), whereas maximum interspecific values averaged 8.67 (range 8.26-17.12%). DNA barcoding was found to be an effective method to discriminate between many Peruvian species of Anastrepha that were tested, except for most species of the fraterculus species group, which were all assigned to the same BIN as they shared similar and, in some cases, identical barcodes. We complemented this newly produced dataset with 86 published sequences to build a DNA barcoding library of 159 sequences representing 56 Peruvian species of Anastrepha (approx. 58% of species reported from that country). We conclude that DNA barcoding is an effective method to distinguish among Peruvian species of Anastrepha outside the fraterculus group, and that complementary methods (e.g., morphometrics, additional genetic markers) would be desirable to assist sensu stricto species identification for phytosanitary surveillance and management practices of this important group of pestiferous flies.
Collapse
Affiliation(s)
- Ida Bartolini
- Laboratorio de Biología Molecular, Servicio Nacional de Sanidad Agrícola, La Molina, Lima, Perú
| | - Julio Rivera
- Unidad de Investigación en Entomología y Medio Ambiente, Universidad San Ignacio de Loyola, La Molina, Lima, Perú
| | - Norma Nolazco
- Laboratorio de Entomología del Centro de Diagnóstico de Sanidad Vegetal, Servicio Nacional de Sanidad Agrícola, La Molina, Lima, Perú
| | - Arturo Olórtegui
- Laboratorio de Biología Molecular, Servicio Nacional de Sanidad Agrícola, La Molina, Lima, Perú
| |
Collapse
|
19
|
Conte CA, Segura DF, Milla FH, Augustinos A, Cladera JL, Bourtzis K, Lanzavecchia SB. Wolbachia infection in Argentinean populations of Anastrepha fraterculus sp1: preliminary evidence of sex ratio distortion by one of two strains. BMC Microbiol 2019; 19:289. [PMID: 31870290 PMCID: PMC6929328 DOI: 10.1186/s12866-019-1652-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Wolbachia, one of the most abundant taxa of intracellular Alphaproteobacteria, is widespread among arthropods and filarial nematodes. The presence of these maternally inherited bacteria is associated with modifications of host fitness, including a variety of reproductive abnormalities, such as cytoplasmic incompatibility, thelytokous parthenogenesis, host feminization and male-killing. Wolbachia has attracted much interest for its role in biological, ecological and evolutionary processes as well as for its potential use in novel and environmentally-friendly strategies for the control of insect pests and disease vectors including a major agricultural pest, the South American fruit fly, Anastrepha fraterculus Wiedemann (Diptera: Tephritidae). Results We used wsp, 16S rRNA and a multilocus sequence typing (MLST) scheme including gatB, coxA, hcpA, fbpA, and ftsZ genes to detect and characterize the Wolbachia infection in laboratory strains and wild populations of A. fraterculus from Argentina. Wolbachia was found in all A. fraterculus individuals studied. Nucleotide sequences analysis of wsp gene allowed the identification of two Wolbachia nucleotide variants (named wAfraCast1_A and wAfraCast2_A). After the analysis of 76 individuals, a high prevalence of the wAfraCast2_A variant was found both, in laboratory (82%) and wild populations (95%). MLST analysis identified both Wolbachia genetic variants as sequence type 13. Phylogenetic analysis of concatenated MLST datasets clustered wAfraCast1/2_A in the supergroup A. Paired-crossing experiments among single infected laboratory strains showed a phenotype specifically associated to wAfraCast1_A that includes slight detrimental effects on larval survival, a female-biased sex ratio; suggesting the induction of male-killing phenomena, and a decreased proportion of females producing descendants that appears attributable to the lack of sperm in their spermathecae. Conclusions We detected and characterized at the molecular level two wsp gene sequence variants of Wolbachia both in laboratory and wild populations of A. fraterculus sp.1 from Argentina. Crossing experiments on singly-infected A. fraterculus strains showed evidence of a male killing-like mechanism potentially associated to the wAfraCast1_A - A. fraterculus interactions. Further mating experiments including antibiotic treatments and the analysis of early and late immature stages of descendants will contribute to our understanding of the phenotypes elicited by the Wolbachia variant wAfraCast1_A in A. fraterculus sp.1.
Collapse
Affiliation(s)
- Claudia Alejandra Conte
- Laboratorio de Insectos de Importancia Agronómica, IGEAF, Instituto nacional de Tecnología Agropecuaria (INTA) gv IABIMO-CONICET, Hurlingham, Buenos Aires, Argentina
| | - Diego Fernando Segura
- Laboratorio de Insectos de Importancia Agronómica, IGEAF, Instituto nacional de Tecnología Agropecuaria (INTA) gv IABIMO-CONICET, Hurlingham, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET), Ministerio de Ciencia, Tecnología e Innovación Productiva (MINCyT), Buenos Aires, Argentina
| | - Fabian Horacio Milla
- Laboratorio de Insectos de Importancia Agronómica, IGEAF, Instituto nacional de Tecnología Agropecuaria (INTA) gv IABIMO-CONICET, Hurlingham, Buenos Aires, Argentina
| | - Antonios Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Jorge Luis Cladera
- Laboratorio de Insectos de Importancia Agronómica, IGEAF, Instituto nacional de Tecnología Agropecuaria (INTA) gv IABIMO-CONICET, Hurlingham, Buenos Aires, Argentina
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Silvia Beatriz Lanzavecchia
- Laboratorio de Insectos de Importancia Agronómica, IGEAF, Instituto nacional de Tecnología Agropecuaria (INTA) gv IABIMO-CONICET, Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
20
|
Devescovi F, Conte CA, Augustinos A, Martinez EIC, Segura DF, Caceres C, Lanzavecchia SB, Bourtzis K. Symbionts do not affect the mating incompatibility between the Brazilian-1 and Peruvian morphotypes of the Anastrepha fraterculus cryptic species complex. Sci Rep 2019; 9:18319. [PMID: 31797888 PMCID: PMC6893037 DOI: 10.1038/s41598-019-54704-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/14/2019] [Indexed: 11/11/2022] Open
Abstract
The South American fruit fly, Anastrepha fraterculus, is clearly undergoing a speciation process. Among others, two of their morphotypes, the Brazilian-1 and Peruvian, have accumulated differences in pre- and post-zygotic mechanisms resulting in a degree of reproductive isolation. Both harbor a different strain of Wolbachia, which is a widespread endosymbiotic bacterium among many invertebrates producing a range of reproductive effects. In this paper, we studied the role of this bacterium as one of the factors involved in such isolation process. Infected and cured laboratory colonies were used to test pre- and post-zygotic effects, with special emphasis in uni- and bi-directional cytoplasmic incompatibility (CI). We showed that Wolbachia is the only known reproductive symbiont present in these morphotypes. Wolbachia reduced the ability for embryonic development in crosses involving cured females and infected males within each morphotype (uni-directional CI). This inhibition showed to be more effective in the Peruvian morphotype. Bi-directional CI was not evidenced, suggesting the presence of compatible Wolbachia strains. We conclude that Wolbachia is not directly involved in the speciation process of these morphotypes. Other mechanisms rather than CI should be explored in order to explain the reduced mating compatibility between the Brazilian-1 and Peruvian morphotypes.
Collapse
Affiliation(s)
- Francisco Devescovi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO-CONICET), Hurlingham, B1686, Buenos Aires, Argentina
- Instituto de Genética "E.A. Favret", Instituto Nacional de Tecnología Agropecuaria, Hurlingham, B1686, Buenos Aires, Argentina
| | - Claudia A Conte
- Instituto de Genética "E.A. Favret", Instituto Nacional de Tecnología Agropecuaria, Hurlingham, B1686, Buenos Aires, Argentina
| | - Antonios Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
- Department of Plant Protection, Institute of Industrial and Forage Crops, Hellenic Agricultural Organization - DEMETER, Patras, Greece
| | - Elena I Cancio Martinez
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Diego F Segura
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO-CONICET), Hurlingham, B1686, Buenos Aires, Argentina
- Instituto de Genética "E.A. Favret", Instituto Nacional de Tecnología Agropecuaria, Hurlingham, B1686, Buenos Aires, Argentina
| | - Carlos Caceres
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Silvia B Lanzavecchia
- Instituto de Genética "E.A. Favret", Instituto Nacional de Tecnología Agropecuaria, Hurlingham, B1686, Buenos Aires, Argentina
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.
| |
Collapse
|
21
|
Prezotto LF, Perondini AL, Hernández-Ortiz V, Frías D, Selivon D. What Can Integrated Analysis of Morphological and Genetic Data Still Reveal about the Anastrepha fraterculus (Diptera: Tephritidae) Cryptic Species Complex? INSECTS 2019; 10:insects10110408. [PMID: 31731690 PMCID: PMC6921064 DOI: 10.3390/insects10110408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/21/2019] [Accepted: 11/14/2019] [Indexed: 11/16/2022]
Abstract
The South American fruit fly Anastrepha fraterculus (Wiedemann) is a complex of cryptic species, the so-called “Anastrepha fraterculus complex”, for which eight morphotypes are currently recognized. A previous analysis of ITS1 in samples of the Anastrepha fraterculus complex, while revealing high distinctiveness among samples from different localities of South America, Central America, and Mexico, no direct association was made between sequence type and morphotype. In the present report, a correlated analysis of morphometry and ITS1 data involved individuals belonging to the same population samples. Although showing a low level of intra-populational nucleotide variability, the ITS1 analysis indicated numerous inter-population sequence type variants. Morphotypes identified by morphometric analysis based on female wing shape were highly concordant with ITS1 genetic data. The correlation of genetic divergence and morphological differences among the tested samples gives strong evidence of a robust dataset, thereby indicating the existence of various taxonomic species within the A. fraterculus complex. However, the data revealed genetic and morphological variations in some regions, suggesting that further analysis is still required for some geographic regions.
Collapse
Affiliation(s)
- Leandro F. Prezotto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil; (L.F.P.)
| | - André L.P. Perondini
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil; (L.F.P.)
| | - Vicente Hernández-Ortiz
- Red de Interacciones Multitróficas, Instituto de Ecología A.C., Xalapa, Veracruz 91073, Mexico;
| | - Daniel Frías
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago 3311, Chile;
| | - Denise Selivon
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil; (L.F.P.)
- Correspondence: ; Tel.: +55-11-30917551
| |
Collapse
|
22
|
Augustinos AA, Tsiamis G, Cáceres C, Abd-Alla AMM, Bourtzis K. Taxonomy, Diet, and Developmental Stage Contribute to the Structuring of Gut-Associated Bacterial Communities in Tephritid Pest Species. Front Microbiol 2019; 10:2004. [PMID: 31555239 PMCID: PMC6727639 DOI: 10.3389/fmicb.2019.02004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/15/2019] [Indexed: 11/30/2022] Open
Abstract
Insect-symbiont interactions are receiving much attention in the last years. Symbiotic communities have been found to influence a variety of parameters regarding their host physiology and fitness. Gut symbiotic communities can be dynamic, changing through time and developmental stage. Whether these changes represent real differential needs and preferential relationships has not been addressed yet. In this study, we characterized the structure of symbiotic communities of five laboratory populations that represent five Tephritidae species that are targets for pest control management through the sterile insect technique (SIT), namely Bactrocera oleae, Anastrepha grandis, Anastrepha ludens, and two morphotypes of Anastrepha fraterculus (sp.1 and the Andean lineage). These populations are under artificial or semi artificial rearing conditions and their characterization was performed for different developmental stages and age. Our results demonstrate the presence of a symbiotic community comprising mainly from different Enterobacteriaceae genera. These communities are dynamic across developmental stages, although not highly variable, and appear to have a species-specific profile. Additional factors may contribute to the observed structuring, including diet, rearing practices, and the degree of domestication. Comparison of these results with those derived from natural populations could shed light to changes occurring in the symbiotic level during domestication of Tephritidae populations. Further studies will elucidate whether the changes are associated with modification of the behavior in laboratory strains and assess their effects in the quality of the mass rearing insects. This could be beneficial for improving environmentally friendly, species-specific, pest control methods, such as the SIT.
Collapse
Affiliation(s)
- Antonios A Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Carlos Cáceres
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| |
Collapse
|
23
|
Roriz AKP, Japyassú HF, Cáceres C, Vera MT, Joachim-Bravo IS. Pheromone emission patterns and courtship sequences across distinct populations within Anastrepha fraterculus (Diptera-Tephritidae) cryptic species complex. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:408-417. [PMID: 30488810 DOI: 10.1017/s0007485318000846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sexual behavioural isolation can result from sexual selection and represents a relevant factor associated with the speciation process. We analysed the pheromone emission pattern and the courtship of males of five different populations of the Anastrepha fraterculus cryptic complex: Brazil (Vacaria, Tucumán and Piracicaba), Colombia and Peru. The time of pheromone emission was recorded in each population every 30 min during the day. The behavioural sequences of courting were video recorded and analysed using EthoSeq software. Males from different populations have showed different period of pheromone emission - Vacaria, Piracicaba and Tucumán executed calling only during the morning, Colombia only in the afternoon and Peru during both periods. The general frequencies of the courtship units of the males were distinct among the populations. Three groups were formed in the classification from the function of 14 behavioural routines: Vacaria, Piracicaba and Tucumán formed a single group (Brazil-1), while Colombia and Peru formed two distinct groups. In the probabilistic trees generated, the behavioural units that most contributed to the occurrence of copulation were distinct among the three groups formed: Brazil-1 (Contact, Alignment and Arrowhead-1); Colombia (Flying, Mobile, Contact and Alignment); Peru (Flying, Arrowhead-1 and Calling). Our results indicated differences in sexual behaviour that may explain the behavioural isolation found between the distinct groups in addition with the temporal isolation found between the Brazil-1 and Colombia populations. The evolutionary implications for the A. fraterculus cryptic species complex are discussed.
Collapse
Affiliation(s)
- A K P Roriz
- Universidade Federal da Bahia, Instituto de Biologia, Barão do Jeremoabo s/n, Campus Universitário de Ondina,40170-290, Salvador, BA,Brazil
| | - H F Japyassú
- Universidade Federal da Bahia, Instituto de Biologia, Barão do Jeremoabo s/n, Campus Universitário de Ondina,40170-290, Salvador, BA,Brazil
| | - C Cáceres
- Insect Pest Control Laboratory,Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture,POBox 100, Seibersdorf,Austria
| | - M Teresa Vera
- Cátedra Terapéutica Vegetal, Departamento de Sanidad Vegetal, Facultad de Agronomía y Zootecnia, UNT,Avenida Kirchner 1900 - (4000) San Miguel de Tucumán, Tucumán,Argentina
| | - I S Joachim-Bravo
- Universidade Federal da Bahia, Instituto de Biologia, Barão do Jeremoabo s/n, Campus Universitário de Ondina,40170-290, Salvador, BA,Brazil
| |
Collapse
|
24
|
Goane L, Pereyra PM, Castro F, Ruiz MJ, Juárez ML, Segura DF, Vera MT. Yeast derivatives and wheat germ in the adult diet modulates fecundity in a tephritid pest. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:178-190. [PMID: 29784067 DOI: 10.1017/s0007485318000305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Anastrepha fraterculus (Wiedemann), a pest of great economic importance in South America, needs urgently to be controlled by environmentally friendly methods such as the sterile insect technique for which mass rearing of insects is required. Because oogenesis takes place during the adult stage, mass-rearing facilities should provide the females a diet that maximizes egg production at the lowest cost. Accordingly, we investigated the effect of artificial protein sources in the adult diet (yeast derivatives of different cost but with similar amino acids profiles, and the addition of wheat germ) on fecundity. Additionally, we evaluated different ratios of yeast derivatives or wheat germ on ovary maturation, fecundity, and fertility as well as their association with the nutrient content of females. Females fed hydrolyzed yeast and yeast extract attained the highest fecundity level, and those fed brewer's yeast the lowest. Reducing the amount of hydrolyzed yeast, an expensive protein source, in the diet negatively affected fecundity and ovary maturation. Increasing the amount of brewer's yeast, a low-cost protein source, did not favor fecundity. The addition of wheat germ in the adult diet improved fecundity regardless of the yeast derivate considered. Percentage of egg hatch was not affected by the diet. Nutrient content of A. fraterculus females varied according to the adult diet provided and mating status. Our findings provide novel baseline information to understand the role of nutrition on reproductive performance of A. fraterculus females and are discussed in the context of resource allocation. They also provide valuable advances in the search for cost-effective adult diets at fruit fly mass rearing facilities.
Collapse
Affiliation(s)
- L Goane
- Facultad de Agronomía y Zootecnia,Cátedra de Terapéutica Vegetal (CTV),Universidad Nacional de Tucumán,Tucumán,Argentina
| | - P M Pereyra
- Instituto de Fisiología Animal, Fundación Miguel Lillo,Tucumán,Argentina
| | - F Castro
- Instituto de Fisiología Animal, Fundación Miguel Lillo,Tucumán,Argentina
| | - M J Ruiz
- Facultad de Agronomía y Zootecnia,Cátedra de Terapéutica Vegetal (CTV),Universidad Nacional de Tucumán,Tucumán,Argentina
| | - M L Juárez
- Facultad de Agronomía y Zootecnia,Cátedra de Terapéutica Vegetal (CTV),Universidad Nacional de Tucumán,Tucumán,Argentina
| | - D F Segura
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires,Argentina
| | - M T Vera
- Facultad de Agronomía y Zootecnia,Cátedra de Terapéutica Vegetal (CTV),Universidad Nacional de Tucumán,Tucumán,Argentina
| |
Collapse
|
25
|
Díaz F, Luís A. Lima A, Nakamura AM, Fernandes F, Sobrinho I, de Brito RA. Evidence for Introgression Among Three Species of the Anastrepha fraterculus Group, a Radiating Species Complex of Fruit Flies. Front Genet 2018; 9:359. [PMID: 30250479 PMCID: PMC6139333 DOI: 10.3389/fgene.2018.00359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
Introgression should no longer be considered as rare a phenomenon as once thought, since several studies have recently documented gene flow between closely related and radiating species. Here, we investigated evolutionary relationships among three closely related species of fruit flies of the Anastrepha fraterculus group (Anastrepha fraterculus, A. obliqua and A. sororcula). We sequenced a set of 20 genes and implemented a combined populational and phylogenetic inference with a model selection approach by an ABC framework in order to elucidate the demographic history of these species. The phylogenetic histories inferred from most genes showed a great deal of discordance and substantial shared polymorphic variation. The analysis of several population and speciation models reveal that this shared variation is better explained by introgression rather than convergence by parallel mutation or incomplete lineage sorting. Our results consistently showed these species evolving under an isolation with migration model experiencing a continuous and asymmetrical pattern of gene flow involving all species pairs, even though still showed a more closely related relationship between A. fraterculus and A. sororcula when compared with A. obliqua. This suggests that these species have been exchanging genes since they split from their common ancestor ∼2.6 MYA ago. We also found strong evidence for recent population expansion that appears to be consequence of anthropic activities affecting host crops of fruit flies. These findings point that the introgression here found may have been driven by genetic drift and not necessary by selection, which has implications for tracking and managing fruit flies.
Collapse
Affiliation(s)
- Fernando Díaz
- Department of Entomology, University of Arizona, Tucson, AZ, United States
| | - André Luís A. Lima
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Aline M. Nakamura
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Fernanda Fernandes
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Iderval Sobrinho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Reinaldo A. de Brito
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
26
|
Mastrangelo T, Kovaleski A, Botteon V, Scopel W, Costa MDLZ. Optimization of the sterilizing doses and overflooding ratios for the South American fruit fly. PLoS One 2018; 13:e0201026. [PMID: 30028883 PMCID: PMC6054417 DOI: 10.1371/journal.pone.0201026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/07/2018] [Indexed: 11/18/2022] Open
Abstract
The Sterile Insect Technique (SIT) is an autocidal control method that relies on inundative releases of sterilized mass-reared insects. This technology has been used in several area-wide programmes for the suppression/eradication of fruit fly populations. Choosing the optimum sterilizing dose and the sterile release density is an essential step of the SIT. Considering unsolved issues related to the application of this technique against Anastrepha fraterculus (Wiedemann), this study aimed to define accurately the central target dose for both sexes of this species and to verify the induction of sterility in fertile flies at different sterile:fertile ratios. The results from the regression analyses proved that the sterilization process for the A. fraterculus Brazilian-1 morphotype (the most common in southern Brazil and Argentina) could consist of irradiating pupae 72 h before adult emergence at 40 Gy, with no detrimental effects to standard quality control parameters. The ovarian development in irradiated females was characterized, demonstrating that doses equal to or higher than 25 Gy cause complete and irreversible ovarian atrophy. The laboratory and field cage tests showed that the sterility induction increased with the proportion of sterile flies, and a sterile:fertile ratio of 50:1 should be appropriate in SIT field trials. The sterile females apparently did not distract the sterile males, despite of the slightly higher reductions in pupal yield for all ratios in their absence. The data generated in this study have a great practical value and will help decision-makers in planning field trials to evaluate the efficacy of the SIT against A. fraterculus populations.
Collapse
Affiliation(s)
- Thiago Mastrangelo
- Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Adalecio Kovaleski
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Estação Experimental de Fruticultura de Clima Temperado, Vacaria, Rio Grande do Sul, Brazil
| | - Victor Botteon
- Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Wanessa Scopel
- Escola Superior de Agricultura ‘Luiz de Queiroz’ (ESALQ), Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | | |
Collapse
|
27
|
Isaza JP, Alzate JF, Canal NA. Complete mitochondrial genome of the Andean morphotype of Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae). MITOCHONDRIAL DNA PART B-RESOURCES 2017; 2:210-211. [PMID: 33473771 PMCID: PMC7800796 DOI: 10.1080/23802359.2017.1307706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The South America fruit fly Anastrepha fraterculus s.l. is an important pest of fruits in Latin America and it is really a complex with at least eight cryptic species. In this work, we report the complete mitochondrial genome for the Andean morphotype of A. fraterculus. The mitochondrial genome is 16,739 nucleotides in size; includes 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes. Phylogenetic analysis was performed using all the protein-coding genes with other 19 species from Tephritidae.
Collapse
Affiliation(s)
- Juan P Isaza
- Grupo de parasitología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia, Centro Nacional de Secuenciación Genómica - CNSG, Sede de Investigación Universitaria SIU, Universidad de Antioquia, Medellín, Colombia
| | - Juan F Alzate
- Grupo de parasitología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia, Centro Nacional de Secuenciación Genómica - CNSG, Sede de Investigación Universitaria SIU, Universidad de Antioquia, Medellín, Colombia
| | - Nelson A Canal
- Universidad del Tolima, Facultad de Ingenieria Agronómica, Barrio Santa Helena Parte Alta, Ibagué, Tolima, Colombia
| |
Collapse
|
28
|
Schutze MK, Virgilio M, Norrbom A, Clarke AR. Tephritid Integrative Taxonomy: Where We Are Now, with a Focus on the Resolution of Three Tropical Fruit Fly Species Complexes. ANNUAL REVIEW OF ENTOMOLOGY 2017; 62:147-164. [PMID: 27813666 DOI: 10.1146/annurev-ento-031616-035518] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Accurate species delimitation underpins good taxonomy. Formalization of integrative taxonomy in the past decade has provided a framework for using multidisciplinary data to make species delimitation hypotheses more rigorous. We address the current state of integrative taxonomy by using as a case study an international project targeted at resolving three important tephritid species complexes: Bactrocera dorsalis complex, Anastrepha fraterculus complex, and Ceratitis FAR (C. fasciventris, C. anonae, C. rosa) complex. The integrative taxonomic approach has helped deliver significant advances in resolving these complexes: It has been used to identify some taxa as belonging to the same biological species as well as to confirm hidden cryptic diversity under a single taxonomic name. Nevertheless, the general application of integrative taxonomy has not been without issue, revealing challenges that must be considered when undertaking an integrative taxonomy project. Scrutiny of this international case study provides a unique opportunity to document lessons learned for the benefit of not only tephritid taxonomists, but also the wider taxonomic community.
Collapse
Affiliation(s)
- Mark K Schutze
- School of Earth, Environmental, and Biological Sciences, Queensland University of Technology, Brisbane, 4001 Queensland, Australia;
| | - Massimiliano Virgilio
- Department of Biology, Royal Museum for Central Africa, B3080 Tervuren, Belgium
- Joint Experimental Molecular Unit, Royal Museum for Central Africa, B3080 Tervuren, Belgium ;
| | - Allen Norrbom
- Systematic Entomology Laboratory, United States Department of Agriculture, c/o National Museum of Natural History, Washington, DC 20560;
| | - Anthony R Clarke
- School of Earth, Environmental, and Biological Sciences, Queensland University of Technology, Brisbane, 4001 Queensland, Australia;
- Plant Biosecurity Cooperative Research Centre, University of Canberra, Bruce, Australian Capital Territory 2617, Australia;
| |
Collapse
|
29
|
Gariou-Papalexiou A, Giardini MC, Augustinos AA, Drosopoulou E, Lanzavecchia SB, Cladera JL, Caceres C, Bourtzis K, Mavragani-Tsipidou P, Zacharopoulou A. Cytogenetic Analysis of the South American Fruit Fly Anastrepha fraterculus (Diptera:Tephritidae) Species Complex: Construction of Detailed Photographic Polytene Chromosome Maps of the Argentinian Af. sp.1 Member. PLoS One 2016; 11:e0157192. [PMID: 27362546 PMCID: PMC4928812 DOI: 10.1371/journal.pone.0157192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/25/2016] [Indexed: 01/28/2023] Open
Abstract
Genetic and cytogenetic studies constitute a significant basis for understanding the biology of insect pests and the design and the construction of genetic tools for biological control strategies. Anastrepha fraterculus is an important pest of the Tephritidae family. It is distributed from southern Texas through eastern Mexico, Central America and South America causing significant crop damage and economic losses. Currently it is considered as a species complex; until now seven members have been described based on multidisciplinary approaches. Here we report the cytogenetic analysis of an Argentinian population characterized as Af. sp.1 member of the Anastrepha fraterculus species complex. The mitotic karyotype and the first detailed photographic maps of the salivary gland polytene chromosomes are presented. The mitotic metaphase complement consists of six (6) pairs of chromosomes, including one pair of heteromorphic sex chromosomes, with the male being the heterogametic sex. The analysis of the salivary gland polytene complement shows a total number of five long chromosomes that correspond to the five autosomes of the mitotic karyotype and a heterochromatic network corresponding to the sex chromosomes. Comparison of the polytene chromosome maps between this species and Anastrepha ludens shows significant similarity. The polytene maps presented here are suitable for cytogenetic studies that could shed light on the species limits within this species complex and support the development of genetic tools for sterile insect technique (SIT) applications.
Collapse
Affiliation(s)
| | - María Cecilia Giardini
- Instituto de Genética EA Favret, Instituto Nacional Tecnología Agropecuaria, Hurlingham, Provincia de Buenos Aires, Argentina
| | - Antonios A. Augustinos
- Biology Department, University of Patras, Patras, Greece
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Silvia B. Lanzavecchia
- Instituto de Genética EA Favret, Instituto Nacional Tecnología Agropecuaria, Hurlingham, Provincia de Buenos Aires, Argentina
| | - Jorge L. Cladera
- Instituto de Genética EA Favret, Instituto Nacional Tecnología Agropecuaria, Hurlingham, Provincia de Buenos Aires, Argentina
| | - Carlos Caceres
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria
| | - Penelope Mavragani-Tsipidou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
30
|
Hendrichs J, Vera MT, De Meyer M, Clarke AR. Resolving cryptic species complexes of major tephritid pests. Zookeys 2015; 540:5-39. [PMID: 26798252 PMCID: PMC4714062 DOI: 10.3897/zookeys.540.9656] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 11/06/2015] [Indexed: 11/12/2022] Open
Abstract
An FAO/IAEA Co-ordinated Research Project (CRP) on "Resolution of Cryptic Species Complexes of Tephritid Pests to Overcome Constraints to SIT Application and International Trade" was conducted from 2010 to 2015. As captured in the CRP title, the objective was to undertake targeted research into the systematics and diagnostics of taxonomically challenging fruit fly groups of economic importance. The scientific output was the accurate alignment of biological species with taxonomic names; which led to the applied outcome of assisting FAO and IAEA Member States in overcoming technical constraints to the application of the Sterile Insect Technique (SIT) against pest fruit flies and the facilitation of international agricultural trade. Close to 50 researchers from over 20 countries participated in the CRP, using coordinated, multidisciplinary research to address, within an integrative taxonomic framework, cryptic species complexes of major tephritid pests. The following progress was made for the four complexes selected and studied: Anastrepha fraterculus complex - Eight morphotypes and their geographic and ecological distributions in Latin America were defined. The morphotypes can be considered as distinct biological species on the basis of differences in karyotype, sexual incompatibility, post-mating isolation, cuticular hydrocarbon, pheromone, and molecular analyses. Discriminative taxonomic tools using linear and geometric morphometrics of both adult and larval morphology were developed for this complex. Bactrocera dorsalis complex - Based on genetic, cytogenetic, pheromonal, morphometric, and behavioural data, which showed no or only minor variation between the Asian/African pest fruit flies Bactrocera dorsalis, Bactrocera papayae, Bactrocera philippinensis and Bactrocera invadens, the latter three species were synonymized with Bactrocera dorsalis. Of the five target pest taxa studied, only Bactrocera dorsalis and Bactrocera carambolae remain as scientifically valid names. Molecular and pheromone markers are now available to distinguish Bactrocera dorsalis from Bactrocera carambolae. Ceratitis FAR Complex (Ceratitis fasciventris, Ceratitis anonae, Ceratitis rosa) - Morphology, morphometry, genetic, genomic, pheromone, cuticular hydrocarbon, ecology, behaviour, and developmental physiology data provide evidence for the existence of five different entities within this fruit fly complex from the African region. These are currently recognised as Ceratitis anonae, Ceratitis fasciventris (F1 and F2), Ceratitis rosa and a new species related to Ceratitis rosa (R2). The biological limits within Ceratitis fasciventris (i.e. F1 and F2) are not fully resolved. Microsatellites markers and morphological identification tools for the adult males of the five different FAR entities were developed based on male leg structures. Zeugodacus cucurbitae (formerly Bactrocera (Zeugodacus) cucurbitae) - Genetic variability was studied among melon fly populations throughout its geographic range in Africa and the Asia/Pacific region and found to be limited. Cross-mating studies indicated no incompatibility or sexual isolation. Host preference and genetic studies showed no evidence for the existence of host races. It was concluded that the melon fly does not represent a cryptic species complex, neither with regard to geographic distribution nor to host range. Nevertheless, the higher taxonomic classification under which this species had been placed, by the time the CRP was started, was found to be paraphyletic; as a result the subgenus Zeugodacus was elevated to genus level.
Collapse
Affiliation(s)
- Jorge Hendrichs
- Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - M. Teresa Vera
- Cátedra Terapéutica Vegetal, Facultad de Agronomía y Zootecnia (FAZ), Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán; Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Marc De Meyer
- Royal Museum for Central Africa, Invertebrates Unit, Leuvensesteenweg 13, B3080 Tervuren, Belgium
| | - Anthony R. Clarke
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, QLD 4001, Australia
| |
Collapse
|
31
|
Vaníčková L, Hernández-Ortiz V, Bravo ISJ, Dias V, Roriz AKP, Laumann RA, Mendonça ADL, Paranhos BAJ, do Nascimento RR. Current knowledge of the species complex Anastrepha fraterculus (Diptera, Tephritidae) in Brazil. Zookeys 2015:211-37. [PMID: 26798261 PMCID: PMC4714071 DOI: 10.3897/zookeys.540.9791] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/20/2015] [Indexed: 11/12/2022] Open
Abstract
The study of the species complex Anastrephafraterculus (Af complex) in Brazil is especially important in a taxonomical, evolutionary and pest management context, because there are evidences that some of them may occur in sympatry. In this review, we analyzed the main results supporting evidences that three cryptic species occur in Brazil. The taxonomical and phylogenetic relationships based on eggshell morphology, adult morphometrics, as well as cytotaxonomy and genetic differentiations are discussed. We also review available information on sexual behavior including acoustic communication of males during courtship and sexual incompatibility; and chemical signals involved in the communication between sexes, with a special focus on sex pheromones. We examined the role of long- and short-range pheromones (male-produced volatiles and cuticular hydrocarbons, respectively), their implications in sexual isolation, and their possible use for chemotaxonomic differentiation of the putative species of the Af complex.
Collapse
Affiliation(s)
- Lucie Vaníčková
- Laboratório de Ecologia Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival de Melo Mota, s/n, Tabuleiro, 57072-970, Maceió, AL, Brazil
| | - Vicente Hernández-Ortiz
- Instituto de Ecología A.C., Red de Interacciones Multitróficas. Carretera Antigua a Coatepec 351, El Haya, 91070, Xalapa, Veracruz, Mexico
| | - Iara Sordi Joachim Bravo
- Universidade Federal da Bahia, Instituto de Biologia, Departamento da Biologia Geral. R. Barão do Geremoabo s/n, Campus Universitário de Ondina, 40170-290, Salvador, BA, Brazil
| | - Vanessa Dias
- University of Florida, Gainesville, FL 32611, United States
| | - Alzira Kelly Passos Roriz
- Universidade Federal da Bahia, Instituto de Biologia, Departamento da Biologia Geral. R. Barão do Geremoabo s/n, Campus Universitário de Ondina, 40170-290, Salvador, BA, Brazil
| | - Raul Alberto Laumann
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Centro Nacional de Pesquisa de Recursos Genéticos e Biotecnologia, Parque Estação Biológica W5 Norte / Final Asa Norte, 70770917, Brasília, DF, Brazil
| | - Adriana de Lima Mendonça
- Laboratório de Ecologia Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival de Melo Mota, s/n, Tabuleiro, 57072-970, Maceió, AL, Brazil
| | | | - Ruth Rufino do Nascimento
- Laboratório de Ecologia Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival de Melo Mota, s/n, Tabuleiro, 57072-970, Maceió, AL, Brazil
| |
Collapse
|
32
|
Sutton BD, Steck GJ, Norrbom AL, Rodriguez EJ, Srivastava P, Alvarado NN, Colque F, Landa EY, Sánchez JJL, Quisberth E, Peñaranda EA, Clavijo PAR, Alvarez-Baca JK, Zapata TG, Ponce P. Nuclear ribosomal internal transcribed spacer 1 (ITS1) variation in the Anastrepha fraterculus cryptic species complex (Diptera, Tephritidae) of the Andean region. Zookeys 2015:175-91. [PMID: 26798259 PMCID: PMC4714069 DOI: 10.3897/zookeys.540.6147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/02/2015] [Indexed: 11/12/2022] Open
Abstract
The nuclear ribosomal internal transcribed spacer 1 (ITS1) was sequenced for Anastrepha fraterculus (Wiedemann, 1830) originating from 85 collections from the northern and central Andean countries of South America including Argentina (Tucumán), Bolivia, Perú, Ecuador, Colombia, and Venezuela. The ITS1 regions of additional specimens (17 collections) from Central America (México, Guatemala, Costa Rica, and Panamá), Brazil, Caribbean Colombia, and coastal Venezuela were sequenced and together with published sequences (Paraguay) provided context for interpretation. A total of six ITS1 sequence variants were recognized in the Andean region comprising four groups. Type I predominates in the southernmost range of Anastrepha fraterculus. Type II predominates in its northernmost range. In the central and northern Andes, the geographic distributions overlap and interdigitate with a strong elevational effect. A discussion of relationships between observed ITS1 types and morphometric types is included.
Collapse
Affiliation(s)
- Bruce D Sutton
- Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, FL, USA
| | - Gary J Steck
- Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, FL, USA
| | - Allen L Norrbom
- Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, FL, USA
| | - Erick J Rodriguez
- Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, FL, USA
| | - Pratibha Srivastava
- Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, FL, USA
| | | | - Fredy Colque
- Servicio Nacional de Sanidad Agropecuaria e Inocuidad Alimentaria, Bolivia
| | | | - Juan José Lagrava Sánchez
- Direccion de Sanidad Agroalimentaria, Gobierno Autónomo Departamental Santa Cruz, Santa Cruz, Bolivia
| | - Elizabeth Quisberth
- Direccion de Sanidad Agroalimentaria, Gobierno Autónomo Departamental Santa Cruz, Santa Cruz, Bolivia
| | | | | | - Jeniffer K Alvarez-Baca
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú; Millennium Nucleus Centre in Molecular Ecology and Evolutionary Applications in the Agroecosystems, 2 Norte 685, Talca, Chile
| | | | - Patricio Ponce
- Centro de Investigacion Translaciónal, La Universidad de las Americas, Quito, Ecuador
| |
Collapse
|
33
|
Canal NA, Hernández-Ortiz V, Salas JOT, Selivon D. Morphometric study of third-instar larvae from five morphotypes of the Anastrepha fraterculus cryptic species complex (Diptera, Tephritidae). Zookeys 2015:41-59. [PMID: 26798253 PMCID: PMC4714063 DOI: 10.3897/zookeys.540.6012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 09/22/2015] [Indexed: 11/22/2022] Open
Abstract
The occurrence of cryptic species among economically important fruit flies strongly affects the development of management tactics for these pests. Tools for studying cryptic species not only facilitate evolutionary and systematic studies, but they also provide support for fruit fly management and quarantine activities. Previous studies have shown that the South American fruit fly, Anastrephafraterculus, is a complex of cryptic species, but few studies have been performed on the morphology of its immature stages. An analysis of mandible shape and linear morphometric variability was applied to third-instar larvae of five morphotypes of the Anastrephafraterculus complex: Mexican, Andean, Ecuadorian, Peruvian and Brazilian-1. Outline geometric morphometry was used to study the mouth hook shape and linear morphometry analysis was performed using 24 linear measurements of the body, cephalopharyngeal skeleton, mouth hook and hypopharyngeal sclerite. Different morphotypes were grouped accurately using canonical discriminant analyses of both the geometric and linear morphometry. The shape of the mandible differed among the morphotypes, and the anterior spiracle length, number of tubules of the anterior spiracle, length and height of the mouth hook and length of the cephalopharyngeal skeleton were the most significant variables in the linear morphometric analysis. Third-instar larvae provide useful characters for studies of cryptic species in the Anastrephafraterculus complex.
Collapse
Affiliation(s)
- Nelson A Canal
- Universidad del Tolima, Barrio Altos de Santa Helena, Ibagué, Tolima, Colombia, CP 73000629
| | - Vicente Hernández-Ortiz
- Instituto de Ecología A.C., Red de Interacciones Multitróficas. Carretera antigua a Coatepec # 351, El Haya. Xalapa, Veracruz 91070, México
| | - Juan O Tigrero Salas
- Universidad de las Fuerzas Armadas, Departamento Ciencias de la Vida, Carrera de Ciencias Agropecuarias (IASA I), Laboratorio de Entomología, PO Box 171-5-231-B, Sangolquí, Ecuador
| | - Denise Selivon
- Departamento de Biologia, Instituto de Biociências, Universidade de São Paulo, 05508-900 São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
Juárez ML, Devescovi F, Břízová R, Bachmann G, Segura DF, Kalinová B, Fernández P, Ruiz MJ, Yang J, Teal PEA, Cáceres C, Vreysen MJB, Hendrichs J, Vera MT. Evaluating mating compatibility within fruit fly cryptic species complexes and the potential role of sex pheromones in pre-mating isolation. Zookeys 2015:125-55. [PMID: 26798257 PMCID: PMC4714067 DOI: 10.3897/zookeys.540.6133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/13/2015] [Indexed: 11/23/2022] Open
Abstract
The study of sexual behavior and the identification of the signals involved in mate recognition between con-specifics are key components that can shed some light, as part of an integrative taxonomic approach, in delimitating species within species complexes. In the Tephritidae family several species complexes have received particular attention as they include important agricultural pests such as the Ceratitisfasciventris (Bezzi), Ceratitisanonae (Graham) and Ceratitisrosa Karsch (FAR) complex, the Bactroceradorsalis (Hendel) complex and the Anastrephafraterculus (Wiedemann) complex. Here the value and usefulness of a methodology that uses walk-in field cages with host trees to assess, under semi-natural conditions, mating compatibility within these complexes is reviewed, and the same methodology to study the role of chemical communication in pre-mating isolation among Anastrephafraterculus populations is used. Results showed that under the same experimental conditions it was possible to distinguish an entire range of different outcomes: from full mating compatibility among some populations to complete assortative mating among others. The effectiveness of the methodology in contributing to defining species limits was shown in two species complexes: Anastrephafraterculus and Bactroceradorsalis, and in the case of the latter the synonymization of several established species was published. We conclude that walk-in field cages constitute a powerful tool to measure mating compatibility, which is also useful to determine the role of chemical signals in species recognition. Overall, this experimental approach provides a good source of information about reproductive boundaries to delimit species. However, it needs to be applied as part of an integrative taxonomic approach that simultaneously assesses cytogenetic, molecular, physiological and morphological traits in order to reach more robust species delimitations.
Collapse
Affiliation(s)
- M Laura Juárez
- Cátedra Terapéutica Vegetal, Facultad de Agronomía y Zootecnia (FAZ), Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Francisco Devescovi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Radka Břízová
- Institute of Organic Chemistry and Biochemistry, Prague, Czech Republic
| | - Guillermo Bachmann
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Diego F Segura
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Blanka Kalinová
- Institute of Organic Chemistry and Biochemistry, Prague, Czech Republic
| | - Patricia Fernández
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - M Josefina Ruiz
- Cátedra Terapéutica Vegetal, Facultad de Agronomía y Zootecnia (FAZ), Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | | | | | - Carlos Cáceres
- Insect Pest Control Laboratory (IPCL), Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Marc J B Vreysen
- Insect Pest Control Laboratory (IPCL), Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Jorge Hendrichs
- Insect Pest Control Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - M Teresa Vera
- Cátedra Terapéutica Vegetal, Facultad de Agronomía y Zootecnia (FAZ), Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán; Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
35
|
Castañeda MR, Selivon D, Hernández-Ortiz V, Soto A, Canal NA. Morphometric divergence in populations of Anastrepha obliqua (Diptera, Tephritidae) from Colombia and some Neotropical locations. Zookeys 2015:61-81. [PMID: 26798254 PMCID: PMC4714064 DOI: 10.3897/zookeys.540.6013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 09/03/2015] [Indexed: 11/12/2022] Open
Abstract
The West Indian fruit fly, Anastrepha obliqua, is one of seven species of quarantine importance of its genus and is one of the most economically important fruit fly pests in Colombia. The taxonomic status of this species is a key issue for further implementation of any pest management program. Several molecular studies have shown enough variability within Anastrepha obliqua to suggest its taxonomic status could be revised; however, there are no morphological studies supporting this hypothesis. The aim of this work was to describe the morphological variability of Colombian populations of Anastrepha obliqua, comparing this variability with that of other samples from the Neotropics. Measurements were performed on individuals from 11 populations collected from different geographic Colombian localities and were compared with populations from Mexico (2), Dominica Island (1), Peru (1) and Brazil (2). Linear morphometric analyses were performed using 23 female morphological traits, including seven variables of the aculeus, three of the thorax, and six of the wing; seven ratios among them were also considered. Discriminant function analyses showed significant morphological differentiation among the Colombian populations, separating them into two groups. Furthermore, in the comparisons between Colombian samples with those from other countries, three clusters were observed. The possibility of finding more than one species within the nominal Anastrepha obliqua population is discussed.
Collapse
Affiliation(s)
- Maria R Castañeda
- Universidad del Tolima, Barrio Altos de Santa Helena, Ibagué, Tolima, Colombia, CP 73000629; Doctorado en Ciencias Agrarias, Universidad de Caldas, Manizales, Carrera 35 62-160, sede Sancancio, Manizales, Caldas, Colombia
| | - Denise Selivon
- Departamento de Biologia, Instituto de Biociências, Universidade de São Paulo, 05508-900 São Paulo, São Paulo, Brazil
| | - Vicente Hernández-Ortiz
- Instituto de Ecología A.C., Red de Interacciones Multitróficas. Carretera antigua a Coatepec # 351, El Haya. Xalapa, Veracruz 91070, México
| | - Alberto Soto
- Doctorado en Ciencias Agrarias, Universidad de Caldas, Manizales, Carrera 35 62-160, sede Sancancio, Manizales, Caldas, Colombia
| | - Nelson A Canal
- Universidad del Tolima, Barrio Altos de Santa Helena, Ibagué, Tolima, Colombia, CP 73000629
| |
Collapse
|
36
|
Vaníčková L, Břízová R, Pompeiano A, Ferreira LL, de Aquino NC, Tavares RDF, Rodriguez LD, Mendonça ADL, Canal NA, do Nascimento RR. Characterisation of the chemical profiles of Brazilian and Andean morphotypes belonging to the Anastrepha fraterculus complex (Diptera, Tephritidae). Zookeys 2015:193-209. [PMID: 26798260 PMCID: PMC4714070 DOI: 10.3897/zookeys.540.9649] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/03/2015] [Indexed: 11/12/2022] Open
Abstract
Fruit fly sexual behaviour is directly influenced by chemical and non-chemical cues that play important roles in reproductive isolation. The chemical profiles of pheromones and cuticular hydrocarbons (CHs) of eight fruit fly populations of the Andean, Brazilian-1 and Brazilian-3 morphotypes of the Anastrephafraterculus cryptic species complex originating from Colombia (four populations) and Brazil (four populations) were analysed using two-dimensional gas chromatography with mass spectrometric detection. The resulting chemical diversity data were studied using principal component analyses. Andean morphotypes could be discriminated from the Brazilian-1 and Brazilian-3 morphotypes by means of male-borne pheromones and/or male and female CH profiles. The Brazilian-1 and Brazilian-3 morphotypes were found to be monophyletic. The use of chemical profiles as species- and sex-specific signatures for cryptic species separations is discussed.
Collapse
Affiliation(s)
- Lucie Vaníčková
- Laboratório de Ecologia Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival de Melo Mota, s/n, Tabuleiro, CEP 57072-970, Maceió, AL, Brazil; Institute of Organic Chemistry and Biochemistry ASCR, v.v.i., Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic
| | - Radka Břízová
- Institute of Organic Chemistry and Biochemistry ASCR, v.v.i., Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic; Institute of Chemical Technology in Prague, Technická 5, CZ-166 28 Prague 6, Czech Republic
| | - Antonio Pompeiano
- Laboratory of Plant Physiology, Centre of Agricultural Sciences, Federal University of Alagoas, Maceió, AL, Brazil
| | - Luana Lima Ferreira
- Laboratório de Ecologia Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival de Melo Mota, s/n, Tabuleiro, CEP 57072-970, Maceió, AL, Brazil
| | - Nathaly Costa de Aquino
- Laboratório de Ecologia Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival de Melo Mota, s/n, Tabuleiro, CEP 57072-970, Maceió, AL, Brazil
| | - Raphael de Farias Tavares
- Laboratório de Ecologia Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival de Melo Mota, s/n, Tabuleiro, CEP 57072-970, Maceió, AL, Brazil
| | - Laura D Rodriguez
- Universidad del Tolima, Barrio Santa Helena Parte Alta, A.A. 546, CP 730006299, Ibague, Colombia
| | - Adriana de Lima Mendonça
- Laboratório de Ecologia Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival de Melo Mota, s/n, Tabuleiro, CEP 57072-970, Maceió, AL, Brazil
| | - Nelson Augusto Canal
- Universidad del Tolima, Barrio Santa Helena Parte Alta, A.A. 546, CP 730006299, Ibague, Colombia
| | - Ruth Rufino do Nascimento
- Laboratório de Ecologia Química, Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Av. Lourival de Melo Mota, s/n, Tabuleiro, CEP 57072-970, Maceió, AL, Brazil
| |
Collapse
|