1
|
Wang Q, Wang F, Zhou Y, Li X, Xu S, Tang L, Jin Q, Fu A, Yang R, Li W. Bacillus amyloliquefaciens SC06 Attenuated Lipopolysaccharide-Induced acute liver injury by suppressing bile acid-associated NLRP3 inflammasome activation. Int Immunopharmacol 2024; 142:113129. [PMID: 39293317 DOI: 10.1016/j.intimp.2024.113129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024]
Abstract
The involvement of the inflammatory response has been linked to the development of liver illnesses. As medications with the potential to prevent and cure liver illness, probiotics have garnered an increasing amount of interest in recent years. The present study used a piglet model with acute liver injury (ALI) induced by lipopolysaccharides (LPS) to investigate the regulatory mechanisms of Bacillus amyloliquefaciens SC06. Our findings indicated that SC06 mitigated the liver structural damage caused by LPS, as shown by the decreased infiltration of inflammatory cells and the enhanced structural integrity. In addition, After the administration of SC06, there was a reduction in the increased levels of the liver damage markers. In the LPS group, there was an increase in the mRNA expression of inflammatory cytokines, apoptosis cell rate, and genes associated with apoptosis, while these alterations were mitigated by SC06 administration. Furthermore, SC06 prevented pigs from suffering liver damage by preventing the activation of the NLRP3 inflammasome, which was normally triggered by LPS. The examination of serum metabolic pathways found that ALI was related to several metabolic processes, including primary bile acid biosynthesis, pentose and glucuronate interconversions and the metabolism of phenylalanine. Significantly, our research revealed that the administration of SC06 effectively controlled the concentrations of bile acids in the serum. The correlation results also revealed clear relationships between bile acids and liver characteristics and NLRP3 inflammasome-related genes. However, in vitro experiments revealed that SC06 could not directly inhibit NLRP3 activation under ATP, monosodium urate, and nigericin stimulation, while taurochenodeoxycholic acid (TCDCA) activated NLRP3 inflammasome related genes. In conclusion, our study proved that the hepaprotective effect of SC06 on liver injury, which was closely associated with the restoration of bile acids homeostasis and NLRP3 inflammasome inhibition.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fei Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuanhao Zhou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiang Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shujie Xu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Tang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Jin
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Aikun Fu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rongchang Yang
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia; Zhejiang Youheyhey Biotechnology Co., LTD, Huzhou 313000, Zhejiang Province, China.
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Jiang Z, Yang M, Su W, Mei L, Li Y, Guo Y, Li Y, Liang W, Yang B, Huang Z, Wang Y. Probiotics in piglet: from gut health to pathogen defense mechanisms. Front Immunol 2024; 15:1468873. [PMID: 39559358 PMCID: PMC11570287 DOI: 10.3389/fimmu.2024.1468873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Various problems and obstacles are encountered during pig farming, especially the weaning phase when switching from liquid to solid feed. Infection by pathogenic bacteria causes damage to the intestinal barrier function of piglets, disrupts the balance of the intestinal microbiota, and destroys the chemical, mechanical, and immune barriers of the intestinal tract, which is one of the main causes of gut inflammation or gut diseases in piglets. The traditional method is to add antibiotics to piglet diets to prevent bacterial infections. However, long-term overuse of antibiotics leads to bacterial resistance and residues in animal products, threatening human health and causing gut microbiota dysbiosis. In this context, finding alternatives to antibiotics to maintain pre- and post-weaning gut health in piglets and prevent pathogenic bacterial infections becomes a real emergency. The utilization of probiotics in piglet nutrition has emerged as a pivotal strategy to promote gut health and defend against pathogenic infections, offering a sustainable alternative to traditional antibiotic usage. This review introduces recent findings that underscore the multifaceted roles of probiotics in enhancing piglet welfare, from fortifying the gut barrier to mitigating the impacts of common bacterial pathogens. Meanwhile, this study introduces the functions of probiotics from different perspectives: positive effects of probiotics on piglet gut health, protecting piglets against pathogen infection, and the mechanisms of probiotics in preventing pathogenic bacteria.
Collapse
Affiliation(s)
- Zipeng Jiang
- Guangdong VTR Bio-tech Co., Ltd, R&D Center, Zhuhai, China
- South China University of Technology, School of Biology and Biological Engineering, Guangzhou, China
| | - Mingzhi Yang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weifa Su
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liang Mei
- Guangdong VTR Bio-tech Co., Ltd, R&D Center, Zhuhai, China
| | - Yuqi Li
- Guangdong VTR Bio-tech Co., Ltd, R&D Center, Zhuhai, China
| | - Yuguang Guo
- Guangdong VTR Bio-tech Co., Ltd, R&D Center, Zhuhai, China
| | - Yangyuan Li
- Guangdong VTR Bio-tech Co., Ltd, R&D Center, Zhuhai, China
| | - Weifan Liang
- Guangdong VTR Bio-tech Co., Ltd, R&D Center, Zhuhai, China
| | - Bo Yang
- South China University of Technology, School of Biology and Biological Engineering, Guangzhou, China
| | - Zhiyi Huang
- Guangdong VTR Bio-tech Co., Ltd, R&D Center, Zhuhai, China
| | - Yizhen Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Sun Y, Li Z, Yan M, Zhao H, He Z, Zhu M. Responses of Intestinal Antioxidant Capacity, Morphology, Barrier Function, Immunity, and Microbial Diversity to Chlorogenic Acid in Late-Peak Laying Hens. Animals (Basel) 2024; 14:2957. [PMID: 39457887 PMCID: PMC11503754 DOI: 10.3390/ani14202957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
This study examined the influence of chlorogenic acid (CGA) on gut antioxidant status, morphology, barrier function, immunity, and cecal microbiota in late-peak laying hens. A total of 240 Hy-Line Brown hens, aged 43 weeks, were randomly assigned to four groups, the basal diet +0, 400, 600, and 800 mg/kg CGA, for 12 weeks. The results revealed that CGA significantly reduced ileal H2O2 and malondialdehyde levels; increased duodenal height, ileal villus height, and villus height-to-crypt depth ratio; while decreasing jejunal crypt depth. The 600 and 800 mg/kg CGA significantly upregulated the duodenal, jejunal, and ileal ZO-1 and occludin gene expression; increased IgG levels in serum and ileum; and upregulated ileal IgA gene expression. The 600 mg/kg CGA significantly upregulated CD3D and CD4 gene expression, while downregulating IL-1β gene expression in duodenum, jejunum, and ileum. Moreover, CGA changed the gut microbiota structure. The SCFA-producing bacteria unclassified_f__Peptostreptococcaceae, unclassified_f_Oscillospiraceae, Pseudoflavonifractor, Lachnospiraceae_FCS020_group, Oscillospira, Elusimicrobium, Eubacterium_ventriosum_group, Intestinimonas, and norank_f_Coriobacteriales_Incertae_Sedis were significantly enriched in the 400, 600, and/or 800 mg/kg CGA groups. The bacteria Lactobacillus, Bacillus, and Akkermansia were significantly enriched in the 600 mg/kg CGA group. Conclusively, dietary CGA (600-800 mg/kg) improved intestinal antioxidant status, morphology, barrier and immune function, and beneficial microbiota growth in late-peak laying hens.
Collapse
Affiliation(s)
- Yue Sun
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (Z.L.); (M.Y.); (H.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhuang Li
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (Z.L.); (M.Y.); (H.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Ming Yan
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (Z.L.); (M.Y.); (H.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Haitong Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (Z.L.); (M.Y.); (H.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhengxing He
- Dantu Borough Animal Disease Prevention and Control Center, Zhenjiang 212100, China;
| | - Mingkun Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.S.); (Z.L.); (M.Y.); (H.Z.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
4
|
Castillo Zuniga J, Fresno Rueda AM, Samuel RS, St-Pierre B, Levesque CL. Impact of Lactobacillus- and Bifidobacterium-Based Direct-Fed Microbials on the Performance, Intestinal Morphology, and Fecal Bacterial Populations of Nursery Pigs. Microorganisms 2024; 12:1786. [PMID: 39338461 PMCID: PMC11433873 DOI: 10.3390/microorganisms12091786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Weaning is a critical stage in the swine production cycle, as young pigs need to adjust to sudden and dramatic changes in their diet and environment. Among the various organ systems affected, the gastrointestinal tract is one of the more severely impacted during this transition. Traditionally, challenges at weaning have been managed by prophylactic use of antibiotics, which not only provides protection against diarrhea and other gut dysfunction but also has growth-promoting effects. With banning or major restrictions on the use of antibiotics for this purpose, various alternative products have been developed as potential replacements, including direct-fed microbials (DFMs) such as probiotics and postbiotics. As their efficiency needs to be improved, a continued effort to gain a deeper understanding of their mechanism of action is necessary. In this context, this report presents a study on the impact of a Lactobacillus-based probiotic (LPr) and a Bifidobacterium-based postbiotic (BPo) when added to the diet during the nursery phase. For animal performance, an effect was observed in the early stages (Day 0 to Day 10), as pigs fed diets supplemented with either DFMs were found to have higher average daily feed intake (ADFI) compared to pigs fed the control diet (p < 0.05). Histological analysis of intestinal morphology on D10 revealed that the ileum of supplemented pigs had a higher villus height/crypt depth ratio (p < 0.05) compared to controls, indicating a benefit of the DFMs for gut health. In an effort to further explore potential mechanisms of action, the effects of the DFMs on gut microbial composition were investigated using fecal microbial communities as a non-invasive representative approach. At the bacterial family level, Lactobacillaceae were found in higher abundance in pigs fed either LPr (D10; p < 0.05) or BPo (D47; p < 0.05). At the Operational Taxonomic Unit (OTU) level, which can be used as a proxy to assess species composition, Ssd-00950 and Ssd-01187 were found in higher abundance in DFM-supplemented pigs on D47 (p < 0.05). Using nucleotide sequence identity, these OTUs were predicted to be putative strains of Congobacterium massiliense and Absicoccus porci, respectively. In contrast, OTU Ssd-00039, which was predicted to be a strain of Streptococcus alactolyticus, was in lower abundance in BPo-supplemented pigs on D47 (p < 0.05). Together, these results indicate that the DFMs tested in this study can impact various aspects of gut function.
Collapse
Affiliation(s)
- Juan Castillo Zuniga
- Animal Science Complex, Department of Animal Science, South Dakota State University, P.O. Box 2170, Brookings, SD 57007, USA
| | - Anlly M Fresno Rueda
- Animal Science Complex, Department of Animal Science, South Dakota State University, P.O. Box 2170, Brookings, SD 57007, USA
| | - Ryan S Samuel
- Animal Science Complex, Department of Animal Science, South Dakota State University, P.O. Box 2170, Brookings, SD 57007, USA
| | - Benoit St-Pierre
- Animal Science Complex, Department of Animal Science, South Dakota State University, P.O. Box 2170, Brookings, SD 57007, USA
| | - Crystal L Levesque
- Animal Science Complex, Department of Animal Science, South Dakota State University, P.O. Box 2170, Brookings, SD 57007, USA
| |
Collapse
|
5
|
Lu S, Liao X, Lu W, Zhang L, Na K, Li X, Guo X. L-Alanine promotes anti-infectious properties of Bacillus subtilis S-2 spores via the germination receptor gerAA. Probiotics Antimicrob Proteins 2024; 16:1399-1410. [PMID: 37439954 DOI: 10.1007/s12602-023-10121-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Bacillus species, which have two cell-type forms (vegetative cells and spores), demonstrate a variety of probiotic functions in animal feed additives and human nutrition. We previously found that the probiotic effect of Bacillus subtilis S-2 spores with high germination response to L-alanine was specifically enhanced by the L-alanine pretreatment. The germination response of Bacillus is highly associated with the germination receptors of spores. However, how L-alanine-induced germination of spores exerts anti-infectious effect in epithelial cells remains unclear. In this study, we constructed the mutant strain of B. subtilis S-2 with germination receptor gerAA knockout to further explore the role of spore germination in resisting pathogen infection to cells. The differential probiotic effects of B. subtilis S-2 and S-2ΔgerAA spores pretreated with L-alanine were evaluated in intestinal porcine epithelial cells (IPEC-J2) or Caco2 cells infected with enterotoxigenic Escherichia coli (ETEC) or following IL-1β stimulation. The results showed that the germination response of the S-2ΔgerAA spores to L-alanine was significantly reduced. Compared with the S-2ΔgerAA spores, the L-alanine-induced germination of B. subtilis S-2 spores significantly increased the activity of anti-adhesion of ETEC to IPEC-J2 cells and reduced the expression of inflammatory factors and cell receptors. L-alanine induction also significantly promoted the expression of autophagy-related proteins in the B. subtilis S-2 spores. These findings demonstrate that the gerAA germination receptor is essential for the probiotic function of Bacillus spores and that L-alanine treatment promotes the anti-infectious properties of the germinated spores in porcine intestinal epithelial IPEC-J2 cells. The result suggests the importance of germination receptor gerAA in helping spore germination and enhancing anti-infectious activity. The findings in the study benefit to screening of potential Bacillus probiotics and increasing probiotic efficacy induced by L-alanine as an adjuvant.
Collapse
Affiliation(s)
- Shuang Lu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Wuhan City, 430074, China
| | - Xianying Liao
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Wuhan City, 430074, China
| | - Wei Lu
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Wuhan City, 430074, China
| | - Li Zhang
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Wuhan City, 430074, China
| | - Kai Na
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Wuhan City, 430074, China
| | - Xiangyu Li
- CABIO Bioengineering (Wuhan) Co., Ltd, Wuhan City, 430074, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Wuhan City, 430074, China.
| |
Collapse
|
6
|
Xue L, Long S, Cheng B, Song Q, Zhang C, Hansen LHB, Sheng Y, Zang J, Piao X. Dietary Triple-Strain Bacillus-Based Probiotic Supplementation Improves Performance, Immune Function, Intestinal Morphology, and Microbial Community in Weaned Pigs. Microorganisms 2024; 12:1536. [PMID: 39203378 PMCID: PMC11356216 DOI: 10.3390/microorganisms12081536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Probiotics provide health benefits and are used as feed supplements as an alternative prophylactic strategy to antibiotics. However, the effects of Bacillus-based probiotics containing more than two strains when supplemented to pigs are rarely elucidated. SOLVENS (SLV) is a triple-strain Bacillus-based probiotic. In this study, we investigate the effects of SLV on performance, immunity, intestinal morphology, and microbial community in piglets. A total of 480 weaned pigs [initial body weight (BW) of 8.13 ± 0.08 kg and 28 days of age] were assigned to three treatments in a randomized complete block design: P0: basal diet (CON); P200: CON + 200 mg SLV per kg feed (6.5 × 108 CFU/kg feed); and P400: CON + 400 mg SLV per kg feed (1.3 × 109 CFU/kg feed). Each treatment had 20 replicated pens with eight pigs (four male/four female) per pen. During the 31 d feeding period (Phase 1 = wean to d 14, Phase 2 = d 15 to 31 after weaning), all pigs were housed in a temperature-controlled nursery room (23 to 25 °C). Feed and water were available ad libitum. The results showed that the pigs in the P400 group increased (p < 0.05) average daily gain (ADG) in phase 2 and tended (p = 0.10) to increase ADG overall. The pigs in the P200 and P400 groups tended (p = 0.10) to show improved feed conversion ratios overall in comparison with control pigs. The pigs in the P200 and P400 groups increased (p < 0.05) serum immunoglobulin A, immunoglobulin G, and haptoglobin on d 14, and serum C-reactive protein on d 31. The pigs in the P200 group showed an increased (p < 0.01) villus height at the jejunum, decreased (p < 0.05) crypt depth at the ileum compared with other treatments, and tended (p = 0.09) to have an increased villus-crypt ratio at the jejunum compared with control pigs. The pigs in the P200 and P400 groups showed increased (p < 0.05) goblet cells in the small intestine. Moreover, the pigs in the P400 group showed down-regulated (p < 0.05) interleukin-4 and tumor necrosis factor-α gene expressions, whereas the pigs in the P400 group showed up-regulated occludin gene expression in the ileum. These findings suggest that SLV alleviates immunological reactions, improves intestinal microbiota balance, and reduces weaning stress in piglets. Therefore, SOLVENS has the potential to improve health and performance for piglets.
Collapse
Affiliation(s)
- Lei Xue
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.X.); (S.L.); (B.C.); (Q.S.); (C.Z.)
| | - Shenfei Long
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.X.); (S.L.); (B.C.); (Q.S.); (C.Z.)
| | - Bo Cheng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.X.); (S.L.); (B.C.); (Q.S.); (C.Z.)
| | - Qian Song
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.X.); (S.L.); (B.C.); (Q.S.); (C.Z.)
| | - Can Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.X.); (S.L.); (B.C.); (Q.S.); (C.Z.)
| | | | - Yongshuai Sheng
- Chr. Hansen A/S, Animal and Plant Health & Nutrition, 2970 Hoersholm, Denmark (Y.S.)
| | - Jianjun Zang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.X.); (S.L.); (B.C.); (Q.S.); (C.Z.)
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.X.); (S.L.); (B.C.); (Q.S.); (C.Z.)
- Beijing Jingwa Agricultural Science and Technology Innovation Center, Beijing 101206, China
| |
Collapse
|
7
|
Tang X, Zeng Y, Xiong K, Zhong J. Bacillus spp. as potential probiotics: promoting piglet growth by improving intestinal health. Front Vet Sci 2024; 11:1429233. [PMID: 39132437 PMCID: PMC11310147 DOI: 10.3389/fvets.2024.1429233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
The application of Bacillus spp. as probiotics in the swine industry, particularly for piglet production, has garnered significant attention in recent years. This review aimed to summarized the role and mechanisms of Bacillus spp. in promoting growth and maintaining gut health in piglets. Bacillus spp. can enhance intestinal barrier function by promoting the proliferation and repair of intestinal epithelial cells and increasing mucosal barrier integrity, thereby reducing the risk of pathogenic microbial invasion. Additionally, Bacillus spp. can activate the intestinal immune system of piglets, thereby enhancing the body's resistance to diseases. Moreover, Bacillus spp. can optimize the gut microbial community structure, enhance the activity of beneficial bacteria such as Lactobacillus, and inhibit the growth of harmful bacteria such as Escherichia coli, ultimately promoting piglet growth performance and improving feed efficiency. Bacillus spp. has advantages as well as challenges as an animal probiotic, and safety evaluation should be conducted when using the newly isolated Bacillus spp. This review provides a scientific basis for the application of Bacillus spp. in modern piglet production, highlighting their potential in improving the efficiency of livestock production and animal welfare.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Yan Zeng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Jinfeng Zhong
- Hunan Polytechnic of Environment and Biology, College of Biotechnology, Hengyang, China
| |
Collapse
|
8
|
Xu B, Wang Z, Wang Y, Zhang K, Li J, Zhou L, Li B. Milk-derived Lactobacillus with high production of short-chain fatty acids relieves antibiotic-induced diarrhea in mice. Food Funct 2024; 15:5329-5342. [PMID: 38625681 DOI: 10.1039/d3fo04706g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Antibiotic-associated diarrhea (AAD) is a common side effect during antibiotic treatment, and this has warranted research into alternative protocols. In this study, we investigated the potential therapeutic effects of three cohorts, Lactobacillus plantarum KLDS 1.0386, Lactobacillus acidophilus KLDS 1.0901 and a mixed strain of both, on intestinal inflammation, the intestinal mucosal barrier, and microbial community in mice with ampicillin-induced diarrhea. The results showed that Lactobacillus inhibited the activation of the TLR4/NF-κB signaling pathway, decreased the expression of pro-inflammatory cytokines, increased the expression of anti-inflammatory cytokines in the murine intestine, and alleviated the intestinal barrier damage and inflammation induced by ampicillin. In addition, Lactobacillus ameliorates intestinal epithelial barrier damage by increasing the expression of tight junction proteins and aquaporins. After Lactobacillus treatment, the diversity of gut microbiota increased significantly, and the composition and function of gut microbiota gradually recovered. In the gut microbiota, Bacteroidetes and Escherichia Shigella related to the synthesis of short-chain fatty acids (SCFAs) were significantly affected by ampicillin, while Lactobacillus regulates the cascade of the microbial-SCFA signaling pathway, which greatly promoted the generation of SCFAs. Collectively, Lactobacillus showed better results in treating AAD, especially in mixed strains.
Collapse
Affiliation(s)
- Baofeng Xu
- China School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Zengbo Wang
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Yuqi Wang
- Food College, Northeast Agricultural University, Harbin 150030, China.
- Heilongjiang Jinxiang Biochemical Co., LTD, Harbin 150030, China
| | - Kangyong Zhang
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Jian Li
- China School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Linyi Zhou
- China School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan, 430000, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, 430000, China
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
9
|
Yao X, Nie W, Chen X, Zhang J, Wei J, Qiu Y, Liu K, Shao D, Liu H, Ma Z, Li Z, Li B. Two Enterococcus faecium Isolates Demonstrated Modulating Effects on the Dysbiosis of Mice Gut Microbiota Induced by Antibiotic Treatment. Int J Mol Sci 2024; 25:5405. [PMID: 38791443 PMCID: PMC11121104 DOI: 10.3390/ijms25105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Broad-spectrum antibiotics are frequently used to treat bacteria-induced infections, but the overuse of antibiotics may induce the gut microbiota dysbiosis and disrupt gastrointestinal tract function. Probiotics can be applied to restore disturbed gut microbiota and repair abnormal intestinal metabolism. In the present study, two strains of Enterococcus faecium (named DC-K7 and DC-K9) were isolated and characterized from the fecal samples of infant dogs. The genomic features of E. faecium DC-K7 and DC-K9 were analyzed, the carbohydrate-active enzyme (CAZyme)-encoding genes were predicted, and their abilities to produce short-chain fatty acids (SCFAs) were investigated. The bacteriocin-encoding genes in the genome sequences of E. faecium DC-K7 and DC-K9 were analyzed, and the gene cluster of Enterolysin-A, which encoded a 401-amino-acid peptide, was predicted. Moreover, the modulating effects of E. faecium DC-K7 and DC-K9 on the gut microbiota dysbiosis induced by antibiotics were analyzed. The current results demonstrated that oral administrations of E. faecium DC-K7 and DC-K9 could enhance the relative abundances of beneficial microbes and decrease the relative abundances of harmful microbes. Therefore, the isolated E. faecium DC-K7 and DC-K9 were proven to be able to alter the gut microbiota dysbiosis induced by antibiotic treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (X.Y.); (W.N.); (X.C.); (J.Z.); (J.W.); (Y.Q.); (K.L.); (D.S.); (H.L.); (Z.M.)
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (X.Y.); (W.N.); (X.C.); (J.Z.); (J.W.); (Y.Q.); (K.L.); (D.S.); (H.L.); (Z.M.)
| |
Collapse
|
10
|
Yuan J, Meng H, Liu Y, Wang L, Zhu Q, Wang Z, Liu H, Zhang K, Zhao J, Li W, Wang Y. Bacillus amyloliquefaciens attenuates the intestinal permeability, oxidative stress and endoplasmic reticulum stress: transcriptome and microbiome analyses in weaned piglets. Front Microbiol 2024; 15:1362487. [PMID: 38808274 PMCID: PMC11131103 DOI: 10.3389/fmicb.2024.1362487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Endoplasmic reticulum (ER) stress is related to oxidative stress (OS) and leads to intestinal injury. Bacillus amyloliquefaciens SC06 (SC06) can regulate OS, but its roles in intestinal ER stress remains unclear. Using a 2 × 2 factorial design, 32 weaned piglets were treated by two SC06 levels (0 or 1 × 108 CFU/g), either with or without diquat (DQ) injection. We found that SC06 increased growth performance, decreased ileal permeability, OS and ER stress in DQ-treated piglets. Transcriptome showed that differentially expressed genes (DEGs) induced by DQ were enriched in NF-κB signaling pathway. DEGs between DQ- and SC06 + DQ-treated piglets were enriched in glutathione metabolism pathway. Ileal microbiome revealed that the SC06 + DQ treatment decreased Clostridium and increased Actinobacillus. Correlations were found between microbiota and ER stress genes. In conclusion, dietary SC06 supplementation increased the performance, decreased the permeability, OS and ER stress in weaned piglets by regulating ileal genes and microbiota.
Collapse
Affiliation(s)
- Junmeng Yuan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Hongling Meng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yu Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Li Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Qizhen Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Zhengyu Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Weifen Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
11
|
Lin Y, Zhai JL, Wang YT, Guo PT, Zhang J, Wang CK, Jin L, Gao YY. Potassium diformate alleviated inflammation of IPEC-J2 cells infected with EHEC. Vet Microbiol 2024; 291:110013. [PMID: 38364468 DOI: 10.1016/j.vetmic.2024.110013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/18/2024]
Abstract
Potassium diformate (KDF) is a kind of formate, which possesses the advantages of antimicrobial activity, growth promotion and preventing diarrhea in weaned piglets. However, the researches of KDF in animal production mostly focused on apparent indexes such as growth performance and the mechanisms of KDF on intestinal health have not been reported. Thus, porcine small intestinal epithelial cells (IPEC-J2) infected with Enterohemorrhagic Escherichia coli (EHEC) was used to investigate the role of KDF on alleviating intestinal inflammation in this study. The 0.125 mg/mL KDF treated IPEC-J2 cells for 6 h and IPEC-J2 cells challenged with 5 × 107 CFU/mL EHEC for 4 h were confirmed as the optimum concentration and time for the following experiment. The subsequent experiment was divided into four groups: control group (CON), EHEC group, KDF group, KDF+EHEC group. The results showed that KDF increased the cell viability and the gene expression levels of SGLT3 and TGF-β, while decreased the content of IL-1β compared with the CON group. The cell viability and the gene expressions of SGLT1, SGLT3, GLUT2, Claudin-1, Occludin and TGF-β, and the protein expression of ZO-1 in EHEC group were lower than those in CON group, whereas the gene expressions of IL-1β, TNF, IL-8 and TLR4, and the level of phosphorylation NF-кB protein were increased. Pretreatment with KDF reduced the content of IgM and IL-1β, the gene expressions of IL-1β, TNF, IL-8 and TLR4 and the level of phosphorylation NF-кB protein, and increased the gene expression of TGF-β and the protein expression of Occludin in IPEC-J2 cells infected EHEC. In conclusion, 0.125 mg/mL KDF on IPEC-J2 cells for 6 h had the beneficial effects on ameliorating the intestinal inflammation because of reduced pro-inflammatory cytokines and enhanced anti-inflammatory cytokines through regulating NF-кB signaling pathway under the EHEC challenge.
Collapse
Affiliation(s)
- Ying Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jun-Lei Zhai
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ya-Ting Wang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ping-Ting Guo
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Zhang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chang-Kang Wang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ling Jin
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yu-Yun Gao
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
12
|
Luo M, Li S, Yang Y, Sun J, Su Y, Huang D, Feng X, Zhang H, Qi Q. Effects of Salmonella Outer Membrane Vesicles on Intestinal Microbiota and Intestinal Barrier Function. Foodborne Pathog Dis 2024; 21:257-267. [PMID: 38215267 DOI: 10.1089/fpd.2023.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024] Open
Abstract
Salmonella enterica is one of the most important zoonotic pathogens causing foodborne gastroenteritis worldwide. Outer membrane vesicles (OMVs) are lipid-bilayer vesicles produced by Gram-negative bacteria, which contain biologically active components. We hypothesized that OMVs are an important weapon of S. enterica to initiate enteric diseases pathologies. In this study, the effects of S. enterica OMVs (SeOMVs) on intestinal microbiota and intestinal barrier function were investigated. In vitro fecal culture experiments showed that alpha diversity indexes and microbiota composition were altered by SeOMV supplementation. SeOMV supplementation showed an increase of pH, a decrease of OD630 and total short chain fatty acid (SCFA) concentrations. In vitro IPEC-J2 cells culture experiments showed that SeOMV supplementation did not affect the IPEC-J2 cell viability and the indicated genes expression. In vivo experiments in mice showed that SeOMVs had adverse effects on average daily gain (p < 0.05) and feed:gain ratio (p < 0.05), and had a tendency to decrease the final body weight (p = 0.073) in mice. SeOMV administration decreased serum interleukin-10 level (p < 0.05), decreased the relative abundance of bacteria belonging to the genera BacC-u-018 and Akkermansia (p < 0.05). Furthermore, SeOMV administration damaged the ileum mucosa (p < 0.05). These findings suggest that SeOMVs play an important role in the activation of intestinal inflammatory response induced by S. enterica, and downregulation of SCFA-producing bacteria is a possible mechanism.
Collapse
Affiliation(s)
- Meiying Luo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Suqian Li
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yang Yang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Junhang Sun
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yuman Su
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Dechun Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xin Feng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Huihua Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qien Qi
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
13
|
Wang Q, Wang F, Tang L, Wang Y, Zhou Y, Li X, Jin M, Fu A, Li W. Bacillus amyloliquefaciens SC06 alleviated intestinal damage induced by inflammatory via modulating intestinal microbiota and intestinal stem cell proliferation and differentiation. Int Immunopharmacol 2024; 130:111675. [PMID: 38377852 DOI: 10.1016/j.intimp.2024.111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
The aim of our research was to investigate the effects of Bacillus amyloliquefaciens SC06 on growth performance, immune status, intestinal stem cells (ISC) proliferation and differentiation, and gut microbiota in weaned piglets. Twelve piglets (male, 21 days old, 6.11 ± 0.12 kg) were randomly allocated to CON and SC06 (1 × 108 cfu/kg to diet) groups. This experiment lasted three weeks. Our results showed that SC06 increased (P < 0.05) growth performance and reduced the diarrhea rate in weaned piglets. In addition, SC06 increased intestinal morphology and interleukin (IL)-10 levels, and decreased (P < 0.01) necrosis factor (TNF-α) levels in jejunum and serum. Moreover, weaning piglets fed SC06 had a better balance of colonic microbiota, with an increase in the abundance of Lactobacillus. Furthermore, SC06 enhanced ISCs proliferation and induced its differentiation to goblet cells via activating wnt/β-catenin pathway in weaned piglets and intestinal organoid. Taken together, SC06 supplementation improved the growth performance and decreased inflammatory response of piglets by modulating intestinal microbiota, thereby accelerating ISC proliferation and differentiation and promoting epithelial barrier healing.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fei Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Tang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuanhao Zhou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiang Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingliang Jin
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Huzhou Kangyou Co., Ltd, Huzhou, Zhejiang Province 313000, China
| | - Aikun Fu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Huzhou Kangyou Co., Ltd, Huzhou, Zhejiang Province 313000, China.
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Huzhou Kangyou Co., Ltd, Huzhou, Zhejiang Province 313000, China.
| |
Collapse
|
14
|
Wang Q, Wang F, Zhou Y, Li X, Xu S, Jin Q, Li W. Bacillus amyloliquefaciens SC06 Relieving Intestinal Inflammation by Modulating Intestinal Stem Cells Proliferation and Differentiation via AhR/STAT3 Pathway in LPS-Challenged Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6096-6109. [PMID: 38484112 DOI: 10.1021/acs.jafc.3c05956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Bacillus amyloliquefaciens is a well-accepted probiotic, with many benefits for both humans and animals. The ability of intestinal stem cells (ISCs) to develop into several intestinal epithelial cell types helps accelerate intestinal epithelial regeneration. Limited knowledge exists on how bacteria regulated ISCs proliferation and regeneration. Our study investigated the effects of Bacillus amyloliquefaciens supplementation on ISC proliferation and regeneration and intestinal mucosal barrier functions in piglets exposed to lipopolysaccharide (LPS). Eighteen piglets (male, 21 days old) were randomly split into 3 clusters: CON cluster, LPS cluster, and SC06+LPS cluster. On day 21, 100 μg/kg body weight of LPS was intraperitoneally administered to the SC06+LPS and LPS groups. We found SC06 supplementation maintained the intestinal barrier integrity, enhanced intestinal antioxidant capacity, reduced generation of inflammatory response, and suppressed enterocyte apoptosis against the deleterious effects triggered by LPS. In addition, our research indicated that the SC06 supplementation not only improved the ISC regeneration, but also resulted in upregulation of aryl hydrocarbon receptor (AhR) in LPS-challenge piglets. Further studies showed that SC06 also induced ISC differentiation toward goblet cells and inhibited their differentiation to intestinal absorptive cells and enterocytes. The coculture system of SC06 and ileum organoids revealed that SC06 increased the growth of ISCs and repaired LPS-induced organoid damage through activating the AhR/STAT3 signaling pathway. These findings showed that SC06, possibly through the AhR/STAT3 pathway, accelerated ISC proliferation and promoted epithelial barrier healing, providing a potential clinical treatment for IBD. Our research demonstrated that SC06 is effective in preventing intestinal epithelial damage after pathological injury, restoring intestinal homeostasis, and maintaining intestinal epithelial regeneration.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fei Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuanhao Zhou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiang Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shujie Xu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qian Jin
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
15
|
Cao Y, Wang Z, Dai X, Zhang D, Zeng Y, Ni X, Pan K. Evaluation of probiotic properties of a Brevibacillus laterosporus strain. FASEB J 2024; 38:e23530. [PMID: 38466314 DOI: 10.1096/fj.202302408r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
Brevibacillus laterosporus is a strain of probiotic bacteria that has been widely used in pest control, cash crop, and other production areas. However, few studies have been conducted on its use as a feed additive in animals. Therefore, the probiotic potential of B. laterosporus PBC01 was evaluated by characterizing hydrophobicity, auto-aggregation activity, bile salt and simulated gastrointestinal fluid tolerance, bienzymatic, and antibacterial activity. Antibiotic susceptibility, hemolysis assays, and supplemental feeding of mice were also performed to evaluate safety features. Our results showed that B. laterosporus PBC01 had moderate hydrophobicity, high auto-agglutination ability. Meanwhile, B. laterosporus PBC01 had good tolerance to bile salt and simulated gastrointestinal fluid. It had the ability to secrete protease, cellulase, and to inhibit various pathogens. In addition, B. laterosporus PBC01 was sensitive to many antibiotics, and did not produce hemolysin. In the safety assessment of mice, it did not cause any deaths, nor did it affect the cell components of blood, antioxidant capacity, and reproductive health. The study indicated the great probiotic characteristics and safety of B. laterosporus PBC01. This may provide a theoretical basis for the clinical application and development of probiotic-based feed additives.
Collapse
Affiliation(s)
- Yuheng Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | | | - Xixi Dai
- Chongqing Three Gorges Vocational College, Chongqing, China
| | - Dongmei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
16
|
Shi P, Yan Z, Chen M, Li P, Wang D, Zhou J, Wang Z, Yang S, Zhang Z, Li C, Yin Y, Huang P. Effects of dietary supplementation with Radix Isatidis polysaccharide on egg quality, immune function, and intestinal health in hens. Res Vet Sci 2024; 166:105080. [PMID: 37952298 DOI: 10.1016/j.rvsc.2023.105080] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
This study aimed to investigate the effects of supplementing laying hen diets with Radix Isatidis Polysaccharide (RIPS) on egg quality, immune function, and intestinal health. The research was conducted using 288 Hyland Brown hens, which were randomly assigned to four dietary treatments: control (without RIPS), low dose (200 g/t), medium dose (500 g/t), and high dose (1000 g/t) of RIPS. Each dietary treatment was administered to eight replicates of nine hens for nine weeks. The results revealed that RIPS inclusion in diets significantly improved egg quality parameters such as egg shape index, yolk color, haugh unit, and protein height (P < 0.05). Additionally, RIPS supplementation enhanced immune function as evidenced by an alteration in serum biochemical parameters, an increase in the spleen index, and a decrease in the liver index. Further, an evaluation of intestinal health showed that RIPS fortified the intestinal barrier, thus increasing the population of beneficial intestinal bacteria and reducing the abundance of harmful ones. Such mechanisms promoted intestinal health, digestion, and nutrient absorption, ultimately leading to enhanced egg quality. In conclusion, supplementing laying hen diets with RIPS has been demonstrated to improve egg quality by boosting immunity and optimizing intestinal digestion and absorption.
Collapse
Affiliation(s)
- Panpan Shi
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zenghao Yan
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd, Guangzhou 510515, China
| | - Miaofen Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Pingping Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Deqin Wang
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd, Guangzhou 510515, China
| | - Junjuan Zhou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhaojie Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shihao Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhikun Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chuyuan Li
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd, Guangzhou 510515, China.
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Peng Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
17
|
Chen B, Zhou Y, Duan L, Gong X, Liu X, Pan K, Zeng D, Ni X, Zeng Y. Complete genome analysis of Bacillus velezensis TS5 and its potential as a probiotic strain in mice. Front Microbiol 2023; 14:1322910. [PMID: 38125573 PMCID: PMC10731255 DOI: 10.3389/fmicb.2023.1322910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction In recent years, a large number of studies have shown that Bacillus velezensis has the potential as an animal feed additive, and its potential probiotic properties have been gradually explored. Methods In this study, Illumina NovaSeq PE150 and Oxford Nanopore ONT sequencing platforms were used to sequence the genome of Bacillus velezensis TS5, a fiber-degrading strain isolated from Tibetan sheep. To further investigate the potential of B. velezensis TS5 as a probiotic strain, in vivo experiments were conducted using 40 five-week-old male specific pathogen-free C57BL/6J mice. The mice were randomly divided into four groups: high fiber diet control group (H group), high fiber diet probiotics group (HT group), low fiber diet control group (L group), and low fiber diet probiotics group (LT group). The H and HT groups were fed high-fiber diet (30%), while the L and LT groups were fed low-fiber diet (5%). The total bacteria amount in the vegetative forms of B. velezensis TS5 per mouse in the HT and LT groups was 1 × 109 CFU per day, mice in the H and L groups were given the same volume of sterile physiological saline daily by gavage, and the experiment period lasted for 8 weeks. Results The complete genome sequencing results of B. velezensis TS5 showed that it contained 3,929,788 nucleotides with a GC content of 46.50%. The strain encoded 3,873 genes that partially related to stress resistance, adhesion, and antioxidants, as well as the production of secondary metabolites, digestive enzymes, and other beneficial nutrients. The genes of this bacterium were mainly involved in carbohydrate metabolism, amino acid metabolism, vitamin and cofactor metabolism, biological process, and molecular function, as revealed by KEGG and GO databases. The results of mouse tests showed that B. velezensis TS5 could improve intestinal digestive enzyme activity, liver antioxidant capacity, small intestine morphology, and cecum microbiota structure in mice. Conclusion These findings confirmed the probiotic effects of B. velezensis TS5 isolated from Tibetan sheep feces and provided the theoretical basis for the clinical application and development of new feed additives.
Collapse
Affiliation(s)
- Benhao Chen
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yi Zhou
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Lixiao Duan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xuemei Gong
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xingmei Liu
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
| |
Collapse
|
18
|
Wu S, Wang L, Cui B, Wen X, Jiang Z, Hu S. Effects of Vitamin A on Growth Performance, Antioxidants, Gut Inflammation, and Microbes in Weaned Piglets. Antioxidants (Basel) 2023; 12:2049. [PMID: 38136169 PMCID: PMC10740560 DOI: 10.3390/antiox12122049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Piglet weaning is an important stage in production where changes in the environment and diet can cause problems such as intestinal inflammation and diarrhea. Vitamin A is an essential nutrient for human and animal growth and has immunomodulatory and inflammatory effects. A large body of literature has previously reported on the use of vitamin A in piglet production, so our experiment added different concentrations of vitamin A (0, 1100, 2200, 4400, 8800, and 17,600 IU/kg) to weaned piglet diets to study the effects of different doses on growth performance, intestinal barrier, inflammation, and flora in weaned piglets. We selected 4400 IU/kg as the optimum concentration of vitamin A in relation to average daily weight gain, feed intake, feed-to-weight ratio, and diarrhea rate, and subsequently tested the inflammatory factors, immunoglobulin content, antioxidant levels, and intestinal flora of weaned piglets. Results: We observed that the diarrhea rate of weaned piglets was significantly lower after the addition of 4400 IU/kg of vitamin A to the diet (p < 0.05). A control group and a 4400 IU/kg VA group were selected for subsequent experiments. We found that after the addition of vitamin A, the serum CAT level of weaned piglets increased significantly, the expression of Claudin-1 in the jejunum and ileum increased significantly, the expression of Occludin gene in the jejunum increased significantly, the expression of IL-5 and IL-10 in the ileum increased significantly (p < 0.05), and the expression of IL-4, IL-5, and IL-10 in the ileum increased significantly (p < 0.05). Meanwhile, in the colonic flora of vitamin A-added weaned piglets, the relative abundance of Actinobacteria and Erysipelotrichales decreased significantly, while the relative abundance of Bacteroidales increased significantly (p < 0.05). The results of this study indicated that vitamin A at 4400 IU/kg reduces diarrhea in weaned piglets by increasing antioxidant levels, increasing intestinal tight junction protein gene expression, and regulating colonic gut microbiota.
Collapse
Affiliation(s)
- Shengnan Wu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (L.W.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Lingnan Modern Agricultural Science and Technology Guangdong Provincial Laboratory Maoming Branch, Guangzhou 510640, China
| | - Li Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (L.W.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Lingnan Modern Agricultural Science and Technology Guangdong Provincial Laboratory Maoming Branch, Guangzhou 510640, China
| | - Bailei Cui
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (L.W.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Lingnan Modern Agricultural Science and Technology Guangdong Provincial Laboratory Maoming Branch, Guangzhou 510640, China
| | - Xiaolu Wen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (L.W.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Lingnan Modern Agricultural Science and Technology Guangdong Provincial Laboratory Maoming Branch, Guangzhou 510640, China
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (L.W.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Lingnan Modern Agricultural Science and Technology Guangdong Provincial Laboratory Maoming Branch, Guangzhou 510640, China
| | - Shenglan Hu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China (L.W.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
- Lingnan Modern Agricultural Science and Technology Guangdong Provincial Laboratory Maoming Branch, Guangzhou 510640, China
| |
Collapse
|
19
|
Basnet TB, GC S, Basnet R, Fatima S, Safdar M, Sehar B, Alsubaie ASR, Zeb F. Interaction between gut microbiota metabolites and dietary components in lipid metabolism and metabolic diseases. Access Microbiol 2023; 5:acmi000403. [PMID: 37424550 PMCID: PMC10323789 DOI: 10.1099/acmi.0.000403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/04/2023] [Indexed: 07/11/2023] Open
Abstract
Gut microbiota composition has caused perplexity in developing precision therapy to cure metabolic disorders. However, recent research has focused on using daily diet and natural bioactive compounds to correct gut microbiota dysbiosis and regulate host metabolism. Complex interactions between the gut microbiota and dietary compounds disrupt or integrate the gut barrier and lipid metabolism. In this review, we investigate the role of diet and bioactive natural compounds in gut microbiota dysbiosis and also the modulation of lipid metabolism by their metabolites. Recent studies have revealed that diet, natural compounds and phytochemicals impact significantly on lipid metabolism in animals and humans. These findings suggest that dietary components or natural bioactive compounds have a significant impact on microbial dysbiosis linked to metabolic diseases. The interaction between dietary components or natural bioactive compounds and gut microbiota metabolites can regulate lipid metabolism. Additionally, natural products can shape the gut microbiota and improve barrier integrity by interacting with gut metabolites and their precursors, even in unfavourable conditions, potentially contributing to the alignment of host physiology.
Collapse
Affiliation(s)
- Til Bahadur Basnet
- Department of Epidemiology and Biostatistics, School of Public Health, Fujian Medical University, Fuzhou, PR China
| | - Srijana GC
- Kanti Children’s Hospital, Kathmandu, Nepal
| | - Rajesh Basnet
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, PR China
| | - Sadia Fatima
- Department of Biochemistry, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Mahpara Safdar
- Department of Environmental Design, Health and Nutritional Sciences, Allama Iqbal Open University, Islamabad, Pakistan
| | - Bismillah Sehar
- Department of Health and Social Sciences, University of Bedfordshire, Bedford, UK
| | - Ali Saad R. Alsubaie
- Department of Public Health, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Falak Zeb
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| |
Collapse
|
20
|
Kathiriya MR, Vekariya YV, Hati S. Understanding the Probiotic Bacterial Responses Against Various Stresses in Food Matrix and Gastrointestinal Tract: A Review. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10104-3. [PMID: 37347421 DOI: 10.1007/s12602-023-10104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
Probiotic bacteria are known to have ability to tolerate inhospitable conditions experienced during food preparation, food storage, and gastrointestinal tract of consumer. As probiotics are living cells, they are adversely affected by the harsh environment of the carrier matrix as well as low pH, bile salts, oxidative stress, osmotic pressure, and commensal microflora of the host. To overcome the unfavorable environments, many probiotics switch on the cell-mediated protection mechanisms, which helps them to survive, acclimatize and remain operational in the harsh circumstances. In this review, we provide comprehensive understanding on the different stresses experienced by the probiotic when added in carrier food as well as during human gastrointestinal tract transit. Under such situation how these health beneficial bacteria protect themselves by activation of several defense systems and get adapted to the lethal environments.
Collapse
Affiliation(s)
- Mital R Kathiriya
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand-388110, Gujarat, India
| | - Yogesh V Vekariya
- Department. of Dairy Engineering, SMC College of Dairy Science, Kamdhenu University, Anand-388110, Gujarat, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand-388110, Gujarat, India.
| |
Collapse
|
21
|
Cao XY, Aimaier R, Yang J, Yang J, Chen ZY, Zhao JJ, Yin L, Zhang Q, You J, Zhang H, Li HR, Chen JY, Mao QC, Yang LP, Yu F, Zhao HP, Zhao HX. Effect of bacillus subtilis strain Z15 secondary metabolites on immune function in mice. BMC Genomics 2023; 24:273. [PMID: 37208602 PMCID: PMC10198031 DOI: 10.1186/s12864-023-09313-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Previous studies have shown that secondary metabolites of Bacillus subtilis strain Z15 (BS-Z15) are effective in treating fungal infections in mice. To evaluate whether it also modulates immune function in mice to exert antifungal effects, we investigated the effect of BS-Z15 secondary metabolites on both the innate and adaptive immune functions of mice, and explored its molecular mechanism through blood transcriptome analysis. RESULTS The study showed that BS-Z15 secondary metabolites increased the number of monocytes and platelets in the blood, improved natural killer (NK) cell activity and phagocytosis of monocytes-macrophages, increased the conversion rate of lymphocytes in the spleen, the number of T lymphocytes and the antibody production capacity of mice, and increased the levels of Interferon gamma (IFN-γ), Interleukin-6 (IL-6), Immunoglobulin G (IgG) and Immunoglobulin M (IgM) in plasma. The blood transcriptome analysis revealed 608 differentially expressed genes following treatment with BS-Z15 secondary metabolites, all of which were significantly enriched in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms for immune-related entries and pathways such as Tumor Necrosis Factor (TNF) and Toll-like receptor (TLR) signaling pathways, and upregulated expression levels of immune-related genes such as Complement 1q B chain (C1qb), Complement 4B (C4b), Tetracyclin Resistant (TCR) and Regulatory Factor X, 5 (RFX5). CONCLUSIONS BS-Z15 secondary metabolites were shown to enhance innate and adaptive immune function in mice, laying a theoretical foundation for its development and application in the field of immunity.
Collapse
Affiliation(s)
- Xi-Yuan Cao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Reyihanguli Aimaier
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Jun Yang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Jing Yang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Zhong-Yi Chen
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Jing-Jing Zhao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Li Yin
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qi Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jia You
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Hui Zhang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Hao-Ran Li
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Jia-Yi Chen
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Qing-Chen Mao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Li-Ping Yang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Fei Yu
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China.
| | - He-Ping Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China.
| | - Hui-Xin Zhao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China.
| |
Collapse
|
22
|
He Y, Xu M, Lu S, Zou W, Wang Y, Fakhar-E-Alam Kulyar M, Iqbal M, Li K. Seaweed polysaccharides treatment alleviates injury of inflammatory responses and gut barrier in LPS-induced mice. Microb Pathog 2023; 180:106159. [PMID: 37201636 DOI: 10.1016/j.micpath.2023.106159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Gastrointestinal (GI) disease is a common digestive tract disease effects health of millions of human globally each year, thus the role of intestinal microflora had been emphasized. Seaweed polysaccharides featured a wide range of pharmacological activities, such as antioxidant activity and pharmacological action, but whether they can alleviate the dysbiosis of gut microbial ecology caused by lipopolysaccharide (LPS) exposure has not been well conducted. In this study, we investigated the effects of different concentration of seaweed polysaccharides on LPS-induced intestinal disorder by using microscope and 16S rRNA high-throughput sequencing. Histopathological results indicated that the intestinal structure in the LPS-induced group was damaged. Furthermore, LPS exposure not only reduced the intestinal microbial diversity in mice but also induced momentous transformation in its composition, including a significantly increased in some pathogenic bacteria (Helicobacter, Citrobacter and Mucispirillum) and decreased in several beneficial bacteria (Firmicutes, Lactobacillus, Akkermansia and Parabacteroides). Nonetheless, seaweed polysaccharide administration could recover the gut microbial dysbiosis and the loss of gut microbial diversity induced by LPS exposure. In summary, seaweed polysaccharides were effective against LPS-induced intestinal damage in mice via the modulation of intestinal microecology.
Collapse
Affiliation(s)
- Yuanyuan He
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Mengen Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Sijia Lu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Wen Zou
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yaping Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | | | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur, 61100, Pakistan
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
23
|
Zhang Y, Zhang Y, Liu F, Mao Y, Zhang Y, Zeng H, Ren S, Guo L, Chen Z, Hrabchenko N, Wu J, Yu J. Mechanisms and applications of probiotics in prevention and treatment of swine diseases. Porcine Health Manag 2023; 9:5. [PMID: 36740713 PMCID: PMC9901120 DOI: 10.1186/s40813-022-00295-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/09/2022] [Indexed: 02/07/2023] Open
Abstract
Probiotics can improve animal health by regulating intestinal flora balance, improving the structure of the intestinal mucosa, and enhancing intestinal barrier function. At present, the use of probiotics has been a research hotspot in prevention and treatment of different diseases at home and abroad. This review has summarized the researchers and applications of probiotics in prevention and treatment of swine diseases, and elaborated the relevant mechanisms of probiotics, which aims to provide a reference for probiotics better applications to the prevention and treatment of swine diseases.
Collapse
Affiliation(s)
- Yue Zhang
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China ,grid.440622.60000 0000 9482 4676College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Yuyu Zhang
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Fei Liu
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Yanwei Mao
- grid.440622.60000 0000 9482 4676College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Yimin Zhang
- grid.440622.60000 0000 9482 4676College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China
| | - Hao Zeng
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Sufang Ren
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Lihui Guo
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Zhi Chen
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Nataliia Hrabchenko
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Jiaqiang Wu
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China ,grid.440622.60000 0000 9482 4676College of Food Science and Engineering, Shandong Agricultural University, Taian, 271018 Shandong China ,grid.410585.d0000 0001 0495 1805School of Life Sciences, Shandong Normal University, Jinan, 250014 China
| | - Jiang Yu
- grid.452757.60000 0004 0644 6150Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| |
Collapse
|
24
|
Xu S, Wang F, Zou P, Li X, Jin Q, Wang Q, Wang B, Zhou Y, Tang L, Yu D, Li W. Bacillus amyloliquefaciens SC06 in the diet improves egg quality of hens by altering intestinal microbiota and the effect is diminished by antimicrobial peptide. Front Nutr 2022; 9:999998. [PMID: 36386928 PMCID: PMC9664065 DOI: 10.3389/fnut.2022.999998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023] Open
Abstract
This experiment investigated the effects of Bacillus amyloliquefaciens SC06 (BaSC06) and its combination with antimicrobial peptide (AMP) on the laying performance, egg quality, intestinal physical barrier, antioxidative status and immunity of commercial Jingbai strain laying hens. The results showed that BaSC06 significantly improved laying performance and egg quality of laying hens. However, there was a tendency to increase laying performance and decrease egg quality for the addition of AMP compared to the BaSC06 group. Also, both BaSC06 and its combination with AMP treatment increased length of microvilli and the content of tight junction protein in jejunum, and BaSC06 combination with AMP treatment is better than BaSC06 treatment alone. Compared to control, most of the serum antioxidant enzyme activities were significantly increased in the BaSC06+AMP group, the BaSC06 group only increased the activity of GSH-Px. Short-chain fatty acid analysis showed that BSC06 significantly increased the content of butyric, isobutyric and isovaleric acid in the cecum. However, the content of most of the short-chain fatty acids was even lower than that of the control group after the addition of AMP. Microbiota analysis showed that BaSC06 increased the absolute abundance of the butyrate-producing gut bacteria Ruminococaaoeae UCG-005, while the addition of AMP reduced the number of microorganisms detected and weakened the effect of BaSC06. BaSC06 acts as an anti-inflammatory agent by regulating the gut microbiota, and AMP further attenuates the immune response by reducing the number of gut microbes based on improved intestinal microbiota composition.
Collapse
Affiliation(s)
- Shujie Xu
- Hainan Institute, Zhejiang University, Sanya, China,Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Institute of Animal Nutrition and Feed Sciences, Zhejiang University, Hangzhou, China
| | - Fei Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Institute of Animal Nutrition and Feed Sciences, Zhejiang University, Hangzhou, China
| | - Peng Zou
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Institute of Animal Nutrition and Feed Sciences, Zhejiang University, Hangzhou, China
| | - Xiang Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Institute of Animal Nutrition and Feed Sciences, Zhejiang University, Hangzhou, China
| | - Qian Jin
- Hainan Institute, Zhejiang University, Sanya, China,Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Institute of Animal Nutrition and Feed Sciences, Zhejiang University, Hangzhou, China
| | - Qi Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Institute of Animal Nutrition and Feed Sciences, Zhejiang University, Hangzhou, China
| | - Baikui Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Institute of Animal Nutrition and Feed Sciences, Zhejiang University, Hangzhou, China
| | - Yuanhao Zhou
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Institute of Animal Nutrition and Feed Sciences, Zhejiang University, Hangzhou, China
| | - Li Tang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Institute of Animal Nutrition and Feed Sciences, Zhejiang University, Hangzhou, China
| | - Dongyou Yu
- Hainan Institute, Zhejiang University, Sanya, China,Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Institute of Animal Nutrition and Feed Sciences, Zhejiang University, Hangzhou, China,*Correspondence: Dongyou Yu
| | - Weifen Li
- Hainan Institute, Zhejiang University, Sanya, China,Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Institute of Animal Nutrition and Feed Sciences, Zhejiang University, Hangzhou, China,Weifen Li
| |
Collapse
|
25
|
Wang F, Zou P, Xu S, Wang Q, Zhou Y, Li X, Tang L, Wang B, Jin Q, Yu D, Li W. Dietary supplementation of Macleaya cordata extract and Bacillus in combination improve laying performance by regulating reproductive hormones, intestinal microbiota and barrier function of laying hens. J Anim Sci Biotechnol 2022; 13:118. [PMID: 36224643 PMCID: PMC9559840 DOI: 10.1186/s40104-022-00766-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to investigate whether the combination of Macleaya cordata extract (MCE) and Bacillus could improve the laying performance and health of laying hens better. METHODS A total of 360 29-week-old Jingbai laying hens were randomly divided into 4 treatments: control group (basal diet), MCE group (basal diet + MCE), Probiotics Bacillus Compound (PBC) group (basal diet + compound Bacillus), MCE + PBC group (basal diet + MCE + compound Bacillus). The feeding experiment lasted for 42 d. RESULTS The results showed that the laying rate and the average daily egg mass in the MCE + PBC group were significantly higher than those in the control group (P < 0.05) and better than the MCE and PBC group. Combination of MCE and Bacillus significantly increased the content of follicle-stimulating hormone (FSH) in the serum and up-regulated the expression of related hormone receptor gene (estrogen receptor-β, FSHR and luteinizing hormone/choriogonadotropin receptor) in the ovary of laying hens (P < 0.05). In the MCE + PBC group, the mRNA expressions of zonula occluden-1, Occludin and mucin-2 in jejunum was increased and the intestinal epithelial barrier detected by transmission electron microscopy was enhanced compared with the control group (P < 0.05). In addition, compared with the control group, combination of MCE and Bacillus significantly increased the total antioxidant capacity and catalase activity (P < 0.05), and down-regulated the mRNA expressions of inflammation-related genes (interleukin-1β and tumor necrosis factor-α) as well as apoptosis-related genes (Caspase 3, Caspase 8 and P53) (P < 0.05). The concentration of acetic acid and butyric acid in the cecum content of laying hens in the MCE + PBC group was significantly increased compared with the control group (P < 0.05). CONCLUSIONS Collectively, dietary supplementation of 600 μg/kg MCE and 5 × 108 CFU/kg compound Bacillus can improve laying performance by improving microbiota to enhance antioxidant capacity and intestinal barrier, regulate reproductive hormones and the concentration of cecal short-chain fatty acids of laying hens, and the combined effect of MCE and Bacillus is better than that of single supplementation.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Peng Zou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Shujie Xu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Yongyou Industry Park, Sanya, 572000 China
| | - Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Yuanhao Zhou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Xiang Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Li Tang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Baikui Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Qian Jin
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Yongyou Industry Park, Sanya, 572000 China
| | - Dongyou Yu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Yongyou Industry Park, Sanya, 572000 China
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Yongyou Industry Park, Sanya, 572000 China
| |
Collapse
|
26
|
Bacillus amyloliquefaciens 40 regulates piglet performance, antioxidant capacity, immune status and gut microbiota. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:116-127. [PMID: 36632621 PMCID: PMC9826887 DOI: 10.1016/j.aninu.2022.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/17/2022] [Accepted: 09/16/2022] [Indexed: 01/06/2023]
Abstract
Probiotics can improve animal growth performance and intestinal health. Bacillus species, Lactobacillus species, Bifidobacterium species, yeast etc. are the common types of probiotics. However, understanding the effects of probiotics on the immune status and gut microbiota of weaning piglets and how the probiotics exert their impact are still limited. This study aimed to investigate the effects of Bacillus amyloliquefaciens 40 (BA40) on the performance, immune status and gut microbiota of piglets. A total of 12 litters of newborn piglets were randomly divided into 3 groups. Piglets in control group were orally dosed with phosphate buffered saline; BA40 group and probiotics group were orally gavaged with resuspension BA40 and a probiotics product, respectively. The results showed that BA40 treatment significantly decreased (P < 0.05) the diarrhea incidence (from d 5 to 40), diamine oxidase, D-lactate, interleukin (IL)-1β and interferon-γ concentrations compared with control group and probiotics group. Meanwhile BA40 dramatically increased the total antioxidant capacity, IL-10 and secretory immunoglobulin-A concentrations in contrast to control group. For the microbial composition, BA40 modulated the microbiota by improving the abundance of Bacteroides, Phascolarctobacterium (producing short-chain fatty acids) and Desulfovibrio and reducing the proliferation of pathogens (Streptococcus, Tyzzerella, Vellionella and paraeggerthella). Meanwhile, a metabolic function prediction explained that carbohydrate metabolism and amino acid metabolism enriched in BA40 group in contrast to control group and probiotics group. For correlation analysis, the results demonstrated that BA40-enriched Phascolarctobacterium and Desulfovibrio provide insights into strategies for elevating the health status and performance of weaned piglets. Altogether, BA40 exerted stronger ability in decreasing diarrhea incidence and improved antioxidant activity, gut barrier function and immune status of piglets than the other treatments. Our study provided the experimental and theoretical basis for the application of BA40 in pig production.
Collapse
|
27
|
Lu S, Na K, Li Y, Zhang L, Fang Y, Guo X. Bacillus-derived probiotics: metabolites and mechanisms involved in bacteria-host interactions. Crit Rev Food Sci Nutr 2022; 64:1701-1714. [PMID: 36066454 DOI: 10.1080/10408398.2022.2118659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bacillus probiotics have a sporulation capacity that makes them more suitable for processing and storage and for surviving passage through the gastrointestinal tract. The probiotic functions and regulatory mechanisms of different Bacillus have been exploited in many reports, but little is known about how various Bacillus probiotics perform different functions. This knowledge gap results in a lack of specificity in the selection and application of Bacillus. The probiotic properties are strain-specific and cell-type-specific, and are related to the germination potential and to the diversity of metabolites produced following intestinal germination, as this causes the variation in probiotic function and mechanisms. In this review, we discuss the Bacillus metabolites produced during germination and sporulation in the GI tract, as well as possible processes affecting intestinal homeostasis. We conclude that the oxygen-capturing capability and the production of antimicrobials, exoenzymes, competence and sporulation factors (CSF), exopolysaccharides, lactic acid, and cell components are specifically associated with the functional mechanisms of probiotic Bacillus. The aim of this review is to guide the screening of potential Bacillus strains for probiotics and their application in nutrition research. The information provided will also promote further research on Bacillus-derived functional metabolites in human nutrition.
Collapse
Affiliation(s)
- Shuang Lu
- College of Life Science, South-Central Minzu University, Hubei Province, China
| | - Kai Na
- College of Life Science, South-Central Minzu University, Hubei Province, China
| | - Yuanrong Li
- College of Life Science, South-Central Minzu University, Hubei Province, China
| | - Li Zhang
- College of Life Science, South-Central Minzu University, Hubei Province, China
| | - Ying Fang
- College of Life Science, South-Central Minzu University, Hubei Province, China
| | - Xiaohua Guo
- College of Life Science, South-Central Minzu University, Hubei Province, China
| |
Collapse
|
28
|
Gou HZ, Zhang YL, Ren LF, Li ZJ, Zhang L. How do intestinal probiotics restore the intestinal barrier? Front Microbiol 2022; 13:929346. [PMID: 35910620 PMCID: PMC9330398 DOI: 10.3389/fmicb.2022.929346] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/27/2022] [Indexed: 12/14/2022] Open
Abstract
The intestinal barrier is a structure that prevents harmful substances, such as bacteria and endotoxins, from penetrating the intestinal wall and entering human tissues, organs, and microcirculation. It can separate colonizing microbes from systemic tissues and prevent the invasion of pathogenic bacteria. Pathological conditions such as shock, trauma, stress, and inflammation damage the intestinal barrier to varying degrees, aggravating the primary disease. Intestinal probiotics are a type of active microorganisms beneficial to the health of the host and an essential element of human health. Reportedly, intestinal probiotics can affect the renewal of intestinal epithelial cells, and also make cell connections closer, increase the production of tight junction proteins and mucins, promote the development of the immune system, regulate the release of intestinal antimicrobial peptides, compete with pathogenic bacteria for nutrients and living space, and interact with the host and intestinal commensal flora to restore the intestinal barrier. In this review, we provide a comprehensive overview of how intestinal probiotics restore the intestinal barrier to provide new ideas for treating intestinal injury-related diseases.
Collapse
Affiliation(s)
- Hong-Zhong Gou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yu-Lin Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Long-Fei Ren
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhen-Jiao Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Lei Zhang,
| |
Collapse
|
29
|
Wang Q, Wang J, Qi R, Qiu X, Sun Q, Huang J, Wang R. Effect of oral administration of Limosilactobacillus reuteri on intestinal barrier function and mucosal immunity of suckling piglets. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2048977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Qi Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Jing Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Renli Qi
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Xiaoyu Qiu
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Qian Sun
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Ruisheng Wang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| |
Collapse
|
30
|
Bacillus coagulans TL3 Inhibits LPS-Induced Caecum Damage in Rat by Regulating the TLR4/MyD88/NF-κB and Nrf2 Signal Pathways and Modulating Intestinal Microflora. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5463290. [PMID: 35178157 PMCID: PMC8843965 DOI: 10.1155/2022/5463290] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022]
Abstract
Background Bacillus coagulans has been widely used in food and feed additives, which can effectively inhibit the growth of harmful bacteria, improve intestinal microecological environment, promote intestinal development, and enhance intestinal function, but its probiotic mechanism is not completely clear. Aim The aim of this study is to discuss the effect and mechanism of Bacillus coagulans TL3 on oxidative stress and inflammatory injury of cecum induced by LPS. Method The Wistar rats were randomly divided into four groups, each containing 7 animals. Two groups were fed with basic diet (the LPS and control, or CON, groups). The remaining groups were fed with basic diet and either a intragastric administration high or low dose of B. coagulans, forming the HBC and LBC groups, respectively. The rats were fed normally for two weeks. On the 15th day, those in the LPS, HBC, and LBC groups were injected intraperitoneally with LPS—the rats in the CON group were injected intraperitoneally with physiological saline. After 4 hours, all the rats were anesthetized and sacrificed by cervical dislocation, allowing samples to be collected and labeled. The inflammatory and antioxidant cytokine changes of the cecum were measured, and the pathological changes of the cecum were observed, determining the cecal antioxidant, inflammation, and changes in tight junction proteins and analysis of intestinal flora. Result The results show that LPS induces oxidative damage in the cecal tissues of rats and the occurrence of inflammation could also be detected in the serum. The Western blot results detected changes in the NF-κB- and Nrf2-related signaling pathways and TJ-related protein levels. Compared with the LPS group, the HBC group showed significantly downregulated levels of expression of Nrf2, NQO1, HO-1, GPX, and GCLC. The expression of TLR4, MYD88, NF-κB, IL-6, TNFα, and IL-1β was also significantly downregulated, while the expression of other proteins (ZO-1, occludin, and claudin-1) increased significantly. Bacillus coagulans TL3 was also found to increase the relative abundance of the beneficial bacterium Akkermansia muciniphila in the intestines. There is also a significant reduction in the number of harmful bacteria Escherichia coli and Shigella (Enterobacteriaceae). Conclusion Bacillus coagulans TL3 regulates the TLR4/MyD88/NF-κB and Nrf2 signaling pathways in the cecal tissue of rats, protects the intestine from inflammation and oxidative damage caused by LPS, and inhibits the reproduction of harmful bacteria and promotes beneficial effects by regulating the intestinal flora bacteria grow, thereby enhancing intestinal immunity.
Collapse
|
31
|
Sun Y, Zhang Y, Liu M, Li J, Lai W, Geng S, Yuan T, Liu Y, Di Y, Zhang W, Zhang L. Effects of dietary Bacillus amyloliquefaciens CECT 5940 supplementation on growth performance, antioxidant status, immunity, and digestive enzyme activity of broilers fed corn-wheat-soybean meal diets. Poult Sci 2022; 101:101585. [PMID: 34920383 PMCID: PMC8686056 DOI: 10.1016/j.psj.2021.101585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/18/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
This experiment was conducted to investigate the effects of dietary supplementation with Bacillus amyloliquefaciens CECT 5940 (BA-5940) on growth performance, antioxidant capacity, immunity, and digestive enzyme activity of broiler chickens. A total of 720 one-day-old Arbor Acres male broiler chicks (average body weight, 45.87 ± 0.86 g) were randomly allocated to 5 treatments of 8 replicates with 18 chicks in each replicate. Broilers in the control group were fed a corn-wheat-soybean basal diet, the other 4 groups were fed the same basal diet supplemented with 500, 1,000, 1,500, or 2,000 mg/kg Ecobiol (1.27 × 109 CFU/g BA-5940) for 42 d, respectively. Broilers fed diets supplemented with BA-5940 showed a quadratic response (P < 0.05) of average daily gain (ADG) and feed to gain ratio (F:G) during d 22 to 42 and d 0 to 42. The glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities in serum and liver, and total antioxidant capacity (T-AOC) in liver of broilers on d 42 increased linearly (P < 0.05) with increasing levels of BA-5940, while malondialdehyde (MDA) level in serum decreased linearly (P < 0.05). Concentrations of serum immunoglobulin (Ig) A and IgM on d 21, and IgM on d 42 increased linearly (P < 0.05) as BA-5940 levels increased. Supplementation with increasing levels of BA-5940 linearly decreased serum tumor necrosis factor-α (TNF-α) levels on d 21 and 42, while increased interleukin (IL)-10 concentration (linear, P < 0.05) on d 21. Meanwhile, the levels of IL-1β, IL-6, and TNF-α in the mucosa of jejunum and ileum were decreased (linear, P < 0.05) on d 42 as dietary supplementation of BA-5940 increased. Additionally, supplementation with BA-5940 also increased the activities of amylase (linear, P < 0.01), lipase (linear, P < 0.05) and chymotrypsin (linear, P < 0.01) in jejunal digesta, and lipase (linear, P < 0.05) in ileal digesta of broilers on d 42. To summarize, inclusion of BA-5940 in corn-wheat-soybean meal-based diet improved growth performance of broilers through improving antioxidant capacity, immunity, and digestive enzyme activity. Based on the results of this study, 1.1-1.6 × 109 CFU/kg BA-5940 is recommended for supplementation in broiler diets.
Collapse
Affiliation(s)
- Yongbo Sun
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Yuxin Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Miaoyi Liu
- Evonik (China) Co., Ltd., Beijing 100600, China
| | - Juntao Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Wenqing Lai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Shixia Geng
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Tianyao Yuan
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Ying Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Yuting Di
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | | | - Liying Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
32
|
Pi G, Wang J, Song W, Li Y, Yang H. Effects of isomalto-oligosaccharides and herbal extracts on growth performance, serum biochemical profiles and intestinal bacterial populations in early-weaned piglets. J Anim Physiol Anim Nutr (Berl) 2022; 106:671-681. [PMID: 35088457 DOI: 10.1111/jpn.13687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 11/30/2022]
Abstract
The objective of the current study was to investigate the effects of isomalto-oligosaccharide (IMO), Chinese herbal medicine extract (CHE) or their combination on the growth performance, diarrhoea incidence, serum biochemical profiles, inflammatory cytokine expression, intestinal morphology and microflora of weaned piglets. Thirty-two ([Landrace × Yorkshire] × Duroc) piglets, weaned at 25 days of age, were randomly assigned into four groups. Group I was fed the basal diet. Group II were fed a basal diet supplemented with 2 g/kg IMO for 14 consecutive days and then 4 g/kg IMO for another 14 days. Group III were fed diet with 0.5 g/kg CHE for 14 days and 1 g/kg CHE for another 14 days. Group IV were fed diet with (2 g/kg IMO + 0.5 g/kg CHE) for 14 days and (4 g/kg IMO +1 g/kg CHE) for another 14 days. Results showed that diets supplemented with IMO, CHE or their combination did not influence the diarrhoea rate and intestinal morphology, while co-administration of IMO with CHE tended to have higher average daily gain. Serum biochemical analysis showed that dietary CHE decreased aspartate aminotransferase levels, while inclusion of IMO led to a decrease in high-density lipoprotein. Moreover, co-administration of IMO with CHE significantly upregulated the expression of TGF-β, a potent anti-inflammatory cytokine, in jejunal mucosa of piglets. Further, CHE significantly increased the abundance of Bifidobacterium in ileal digesta. Meanwhile, the combination of IMO and CHE significantly increased Bifidobacterium in the caecum of piglets. Additionally, dietary IMO, CHE or their combination significantly reduced the number of potential entero-pathogen Escherichia coli in ileal contents and Clostridium species in caecal digesta. These results indicated that application of IMO or CHE could favourably modulate the intestinal microbial composition of piglets, while their beneficial impact and molecular mechanism on intestinal health warrants further investigation.
Collapse
Affiliation(s)
- Guolin Pi
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Junmin Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wenxin Song
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yali Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
33
|
Lu S, Liao X, Zhang L, Fang Y, Xiang M, Guo X. Nutrient L-Alanine-Induced Germination of Bacillus Improves Proliferation of Spores and Exerts Probiotic Effects in vitro and in vivo. Front Microbiol 2021; 12:796158. [PMID: 34925306 PMCID: PMC8675871 DOI: 10.3389/fmicb.2021.796158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
As alternatives to antibiotics in feed, probiotic Bacillus carries multiple advantages in animal production. Spores undergo strain-related germination in the gastrointestinal tract, but it is still unknown whether the probiotic function of the Bacillus depends on the germination of spores in vivo. In this study, based on 14 potential probiotic Bacillus strains from fermented food and feed, we detected the germination response of these Bacillus spores in relation to different germinating agents. The results showed the germination response was strain-specific and germinant-related, and nutrient germinant L-alanine significantly promoted the growth of strains with germination potential. Two strains of Bacillus subtilis, S-2 and 312, with or without a high spore germination response to L-alanine, were selected to study their morphological and genic differences induced by L-alanine through transmission electron microscopy and comparative transcriptomics analysis. Consequently, after L-alanine treatment, the gray phase was largely increased under microscopy, and the expression of the germination response genes was significantly up-regulated in the B. subtilis S-2 spores compared to the B. subtilis 312 spores (p < 0.05). The protective effect of L-alanine-induced spore germination of the two strains was comparatively investigated both in the IPEC-J2 cell model and a Sprague–Dawley (SD) rat model challenged by enterotoxigenic Escherichia coli K99. The result indicated that L-alanine helped B. subtilis S-2 spores, but not 312 spores, to decrease inflammatory factors (IL-6, IL-8, IL-1 β, TNF-α; p < 0.05) and promote the expression of occludin in IPEC-J2 cells. Besides, supplement with L-alanine-treated B. subtilis S-2 spores significantly improved the growth of the SD rats, alleviated histopathological GIT lesions, and improved the ratio of jejunal villus length to crypt depth in comparison to the B. subtilis S-2 spores alone (p < 0.05). Improved species diversity and abundance of fecal microbiota were only observed in the group with L-alanine-treated S-2 spores (p < 0.05). The study demonstrates L-alanine works well as a probiotic Bacillus adjuvant in improving intestinal health, and it also provides a solution for the practical and accurate regulation of their use as antibiotic alternatives in animal production.
Collapse
Affiliation(s)
- Shuang Lu
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Xianyin Liao
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Li Zhang
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Ying Fang
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Meixian Xiang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xiaohua Guo
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
34
|
Sheng K, Xu Y, Kong X, Wang J, Zha X, Wang Y. Probiotic Bacillus cereus Alleviates Dextran Sulfate Sodium-Induced Colitis in Mice through Improvement of the Intestinal Barrier Function, Anti-Inflammation, and Gut Microbiota Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14810-14823. [PMID: 34677958 DOI: 10.1021/acs.jafc.1c03375] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dysbiosis leads to continuous progress of inflammatory bowel disease (IBD). However, current therapeutic approaches for IBD have limited efficacy and are associated with various side effects. This study focused on exploring the positive effect of a new Bacillus cereus (B. cereus) strain (HMPM18123) in a colitis mouse model and elucidate the underlying molecular mechanisms. The colitis symptoms were alleviated by the B. cereus administration as evidenced by decreased body weight loss, colon length shortening, disease activity index score, and histopathological score. The B. cereus mitigated intestinal epithelial barrier damage by upregulating tight junction protein expression. Moreover, B. cereus exerted anti-inflammatory effects by regulating macrophage polarization and suppressing the TLR4-NF-κB-NLRP3 inflammasome signaling pathways. B. cereus also rebalanced the damaged gut microbiota. Thus, the molecular mechanism of alleviating colitis by B. cereus treatment involved the regulation of the TLR4-NF-κB-NLRP3 inflammasome signaling pathways in intestinal mucosal barriers by modulating gut microbiota composition.
Collapse
Affiliation(s)
- Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui 230601, China
| | - Yifan Xu
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui 230601, China
| | - Xiaowei Kong
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui 230601, China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui 230601, China
| | - Xiangdong Zha
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui 230601, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui 230601, China
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui 230601, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
35
|
Javanshir N, Hosseini GNG, Sadeghi M, Esmaeili R, Satarikia F, Ahmadian G, Allahyari N. Evaluation of the Function of Probiotics, Emphasizing the Role of their Binding to the Intestinal Epithelium in the Stability and their Effects on the Immune System. Biol Proced Online 2021; 23:23. [PMID: 34847891 PMCID: PMC8903605 DOI: 10.1186/s12575-021-00160-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
Due to the importance of using cost-effective methods for therapeutic purposes, the function of probiotics as safe microorganisms and the study of their relevant functional mechanisms have recently been in the spotlight. Finding the mechanisms of attachment and stability and their beneficial effects on the immune system can be useful in identifying and increasing the therapeutic effects of probiotics. In this review, the functional mechanisms of probiotics were comprehensively investigated. Relevant articles were searched in scientific sources, documents, and databases, including PubMed, NCBI, Bactibace, OptiBac, and Bagel4. The most important functional mechanisms of probiotics and their effects on strengthening the epithelial barrier, competitive inhibition of pathogenic microorganisms, production of antimicrobials, binding and interaction with the host, and regulatory effects on the immune system were discussed. In this regard, the attachment of probiotics to the epithelium is very important because the prerequisite for their proper functioning is to establish a proper connection to the epithelium. Therefore, more attention should be paid to the binding effect of probiotics, including sortase A, a significant factor involved in the expression of sortase-dependent proteins (SDP), on their surface as mediators of intestinal epithelial cell binding. In general, by investigating the functional mechanisms of probiotics, it was concluded that the mechanism by which probiotics regulate the immune system and adhesion capacity can directly and indirectly have preventive and therapeutic effects on a wide range of diseases. However, further study of these mechanisms requires extensive research on various aspects.
Collapse
Affiliation(s)
- Nahid Javanshir
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology. (NIGEB), P.O. Box: 14155-6343, Tehran, Iran
| | | | - Mahdieh Sadeghi
- Department of Science, Islamic Azad University - Parand Branch, Parand, Iran
| | | | - Fateme Satarikia
- Department of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology. (NIGEB), P.O. Box: 14155-6343, Tehran, Iran.
| | - Najaf Allahyari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology. (NIGEB), P.O. Box: 14155-6343, Tehran, Iran.
| |
Collapse
|
36
|
Song X, Lin Z, Yu C, Qiu M, Peng H, Jiang X, Du H, Li Q, Liu Y, Zhang Z, Ren P, Yang C. Effects of Lactobacillus plantarum on growth traits, slaughter performance, serum markers and intestinal bacterial community of Daheng broilers. J Anim Physiol Anim Nutr (Berl) 2021; 106:575-585. [PMID: 34338348 DOI: 10.1111/jpn.13621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022]
Abstract
Probiotics are expected to be an ideal alternative for antibiotics in the poultry industry. This study aimed to investigate the effect of Lactobacillus plantarum on growth traits, slaughter performance, serum markers and intestinal bacterial community of Daheng broilers. A total of 2400 healthy one-day-old Daheng broilers were randomly divided into 5 groups with 6 replicates per group and 40 individuals per replicate. Birds in control group were fed a basal diet, and others were fed basal diets supplemented with 105 , 106 , 107 and 108 CFU/kg Lactobacillus plantarum, respectively. It turned out that adding Lactobacillus plantarum to diet could significantly improve the serum immune performance of broilers (p < 0.05), enhance the antioxidant capacity to a certain extent (p > 0.05), but had no significant effect on growth traits and slaughter performance. Moreover, Lactobacillus plantarum could improve the diversity of intestinal bacterial community, but with the increase of addition concentration, the diversity would gradually decrease. In conclusion, Lactobacillus plantarum can be used as feed additive in broiler production, but whether it is more effective than antibiotics needs further investigation.
Collapse
Affiliation(s)
- Xiaoyan Song
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy and Sichuan Dahen Poultry Breeding Company, Chengdu, Sichuan, China
| | - Zhongzhen Lin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Chunlin Yu
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy and Sichuan Dahen Poultry Breeding Company, Chengdu, Sichuan, China
| | - Mohan Qiu
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy and Sichuan Dahen Poultry Breeding Company, Chengdu, Sichuan, China
| | - Han Peng
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy and Sichuan Dahen Poultry Breeding Company, Chengdu, Sichuan, China
| | - Xiaosong Jiang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy and Sichuan Dahen Poultry Breeding Company, Chengdu, Sichuan, China
| | - Huarui Du
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy and Sichuan Dahen Poultry Breeding Company, Chengdu, Sichuan, China
| | - Qingyun Li
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy and Sichuan Dahen Poultry Breeding Company, Chengdu, Sichuan, China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zengrong Zhang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy and Sichuan Dahen Poultry Breeding Company, Chengdu, Sichuan, China
| | - Peng Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Chaowu Yang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy and Sichuan Dahen Poultry Breeding Company, Chengdu, Sichuan, China
| |
Collapse
|
37
|
Bacillus amyloliquefaciens B10 inhibits aflatoxin B1-induced cecal inflammation in mice by regulating their intestinal flora. Food Chem Toxicol 2021; 156:112438. [PMID: 34303774 DOI: 10.1016/j.fct.2021.112438] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 01/24/2023]
Abstract
Aflatoxin B1 is a mycotoxin that widely exists in feed and has a great impact on human and animal health. This study aimed to examine whether Bacillus amyloliquefaciens B10 protected against aflatoxin B1-induced cecal inflammation in mice. It was found that Bacillus amyloliquefaciens B10 could significantly improve the effects of AFB1 on body weight and intestinal inflammation of mice and enhance the expression of tight-junction protein. Compared with the CON group, the combination of AFB1 and B10 significantly increased the abundance of Actinobacteria and Bacilli in a collaborative manner, and significantly reduced the abundance of Ruminococcae, Lactobacillaceae and Clostridia. Meanwhile, the results showed that the abundance of Bacterides and Bacterdia in AFB1 + B10 group was significantly lower than that of AFB1 group, and the Firmicutes increased significantly. Bacillus amyloliquefaciens B10 can be used as a feed additive and alleviate cecal inflammation induced by AFB1 in mice by regulating intestinal flora.
Collapse
|
38
|
Ding S, Yan W, Ma Y, Fang J. The impact of probiotics on gut health via alternation of immune status of monogastric animals. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:24-30. [PMID: 33997328 PMCID: PMC8110871 DOI: 10.1016/j.aninu.2020.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/25/2020] [Accepted: 11/04/2020] [Indexed: 12/29/2022]
Abstract
The intestinal immune system is affected by various factors during its development, such as maternal antibodies, host genes, intestinal microbial composition and activity, and various stresses (such as weaning stress). Intestinal microbes may have an important impact on the development of the host immune system. Appropriate interventions such as probiotics may have a positive effect on intestinal immunity by regulating the composition and activity of intestinal microbes. Moreover, probiotics participate in the regulation of host health in many ways; for instance, by improving digestion and the absorption of nutrients, immune response, increasing the content of intestinal-beneficial microorganisms, and inhibiting intestinal-pathogenic bacteria, and they participate in regulating intestinal diseases in various ways. Probiotics are widely used as additives in livestock and the poultry industry and bring health benefits to hosts by improving intestinal microbes and growth performance, which provides more choices for promoting strong and efficient productivity.
Collapse
Affiliation(s)
- Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Wenxin Yan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Yong Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, 410128, China
| |
Collapse
|
39
|
Bao CL, Liu SZ, Shang ZD, Liu YJ, Wang J, Zhang WX, Dong B, Cao YH. Bacillus amyloliquefaciens TL106 protects mice against enterohaemorrhagic Escherichia coli O157:H7-induced intestinal disease through improving immune response, intestinal barrier function and gut microbiota. J Appl Microbiol 2020; 131:470-484. [PMID: 33289241 DOI: 10.1111/jam.14952] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 01/20/2023]
Abstract
AIMS This study evaluated the effects of Bacillus amyloliquefaciens TL106, isolated from Tibetan pigs' faeces, on the growth performance, immune response, intestinal barrier function, morphology of jejunum, caecum and colon, and gut microbiota in the mice with enterohaemorrhagic Escherichia coli (EHEC)-induced intestinal diseases. METHODS AND RESULTS In all, 40 female C57BL/6J mice were randomly divided into four groups: mice fed a normal diet (Control), mice oral administration of TL106 daily (Ba), mice challenged with EHEC O157:H7 on day 15 (O157) and mice oral administration of TL106 daily and challenged with EHEC O157:H7 on day 15 (Ba+O157). The TL106 was administrated to mice for 14 days, and mice were infected with O157:H7 at day 15. We found that TL106 could prevent the weight loss caused by O157:H7 infection and alleviated the associated increase in pro-inflammatory factors (TNF-α, IL-1β, IL-6 and IL-8) and decrease in anti-inflammatory factor (IL-10) in serum and intestinal tissues of mice caused by O157:H7 infection (P < 0·05). Additionally, TL106 could prevent disruption of gut morphology caused by O157:H7 infection, and alleviate the associated decrease in expression of tight junction proteins (ZO-1, occludin and claudin-1) in jejunum and colon (P < 0·05). In caecum and colon, the alpha diversity for bacterial community analysis of Chao and ACE index in Ba+O157 group were higher than O157 group. The TL106 stabilized gut microbiota disturbed by O157:H7, including increasing Lachnospiraceae, Prevotellaceae, Muribaculaceae and Akkermansiaceae, and reducing Lactobacillaceae. CONCLUSIONS We indicated the B. amyloliquefaciens TL106 can effectively protect mice against EHEC O157:H7 infection by relieving inflammation, improving intestinal barrier function, mitigating permeability disruption and stabilizing the gut microbiota. SIGNIFICANCE AND IMPACT OF THE STUDY Bacillus amyloliquefaciens TL106 can prevent and treat intestinal disease induced by EHEC O157:H7 in mice, which may be a promising probiotic for disease prevention in animals.
Collapse
Affiliation(s)
- C L Bao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - S Z Liu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, People's Republic of China
| | - Z D Shang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, People's Republic of China
| | - Y J Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - J Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - W X Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - B Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Y H Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
40
|
Cao X, Tang L, Zeng Z, Wang B, Zhou Y, Wang Q, Zou P, Li W. Effects of Probiotics BaSC06 on Intestinal Digestion and Absorption, Antioxidant Capacity, Microbiota Composition, and Macrophage Polarization in Pigs for Fattening. Front Vet Sci 2020; 7:570593. [PMID: 33240950 PMCID: PMC7677304 DOI: 10.3389/fvets.2020.570593] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/29/2020] [Indexed: 01/24/2023] Open
Abstract
This study aimed to compare the effects of BaSC06 and antibiotics on growth, digestive functions, antioxidant capacity, macrophage polarization, and intestinal microbiota of pigs for fattening. A total of 117 pigs for fattening with similar weight and genetic basis were divided into 3 groups: Anti group (containing 40 g/t Kitasamycin in the diet), Anti+Ba group (containing 20 g/t Kitasamycin and 0.5 × 108 CFU/kg BaSC06 in the diet) and Ba group (containing 1 × 108 cfu/Kg BaSC06 in the diet without any antibiotics). Each treatment was performed in three replicates with 13 pigs per replicate. Results showed that BaSC06 replacement significantly improved the ADG (P < 0.05), intestinal digestion and absorption function by increasing the activity of intestinal digestive enzymes and the expression of glucose transporters SGLT1 (P < 0.05) and small peptide transporters PEPT1 (P < 0.05). Besides, BaSC06 supplementation enhanced intestinal and body antioxidant capacity by activating the Nrf2/Keap1 antioxidant signaling pathway due to the increased expression of p-Nrf2 (P < 0.05). Notably, BaSC06 alleviated intestinal inflammation by inhibiting the production of pro-inflammatory cytokines, IL-8, IL-6, and MCP1 (P < 0.05), and simultaneously increasing the expression of M1 macrophage marker protein iNOS (P < 0.05) and M2 macrophage marker protein Arg (P < 0.05) in the intestinal mucosa. Moreover, BaSC06 promoted the polarization of macrophages to M2 phenotype by stimulating the STAT3 signaling pathway. It was also noted that BaSC06 improved microbiota composition by enhancing the proportion of Firmicutes, and reducing that of Bacteroidetes and Proteobacteria. Taken together, our results indicate that dietary supplementation of BaSC06 in pigs for fattening improves the growth, mucosal structure, antioxidative capacity, immune functions (including increasing M1 and M2 polarization of macrophage) and composition of intestinal microbiota, which is much better than antibiotics, suggesting that it is an effective alternative to antibiotics in the preparation of pig feed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, and Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
41
|
Dietary Supplementation with Compound Probiotics and Berberine Alters Piglet Production Performance and Fecal Microbiota. Animals (Basel) 2020; 10:ani10030511. [PMID: 32204369 PMCID: PMC7142521 DOI: 10.3390/ani10030511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In order to find antibiotic substitutes for weaned piglet health and growth, compound probiotics and berberine (CPB) were selected in this study. The results indicated that CPB could replace antibiotics to improve piglet health and decrease mortality, diarrhea and rejection rates. CPB was also able to regulate fecal microbiota as well as improve protein digestibility and serum biochemical parameters. Therefore, CPB might be a good antibiotic alternative in piglet production performance. Abstract This study was conducted to investigate the effects of dietary supplementation with compound probiotics and berberine (CPB) on growth performance, nutrient digestibility and fecal microflora in weaned piglets. A total of 200 piglets 35 days old were randomly allocated to 5 groups, 4 replications in each group, and 10 piglets in each replication. Group A was the basal diet; group B was supplemented with antibiotics and zinc oxide; groups C, D and E were supplemented with 0.06%, 0.12% and 0.18% CPB, respectively. The experimental period was 42 d. The results indicated that there were no significant differences in average daily feed intake (ADFI), average daily gain (ADG) and feed conversion rate (FCR) among five groups (p > 0.05). However, mortality, diarrhea and rejection rates in the control group were higher than that in other groups. CPB could increase protein digestibility and serum IgG content (p < 0.05), while it could decrease serum urea nitrogen content and alkaline phosphatase activity (p < 0.05). Analysis of fecal microbiota showed that the relative abundances of Bacteroides and Firmicutes were increased, while the relative abundances of opportunistic pathogens such as Spirochaetae and Protebactreria were dramatically decreased in piglets fed with CPB or antibiotics, compared with the control group. Furthermore, CPB intervention increased the relative abundances of Prevotella_9, Megasphaera and Prevotella_2, while decreased the relative abundance of Prevotellaceae_NK3B31_group. Correlation analysis revealed that there was good correlation between serum indexes and fecal microbiota. It was suggested that CPB might be a promising antibiotic alternative for improving piglet health and immunity, decreasing mortality by positively altering gut microbiota.
Collapse
|
42
|
Mekonnen SA, Merenstein D, Fraser CM, Marco ML. Molecular mechanisms of probiotic prevention of antibiotic-associated diarrhea. Curr Opin Biotechnol 2020; 61:226-234. [PMID: 32087535 DOI: 10.1016/j.copbio.2020.01.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 02/08/2023]
Abstract
Antibiotic-associated diarrhea (AAD) is a common and unintended adverse effect of antibiotic treatment. It is characterized by the disruption of the gut microbiota, decreased intestinal short chain fatty acid (SCFA) concentrations, accumulation of luminal carbohydrates and colonic bile acids, altered water absorption, and ultimately diarrhea. Probiotics were shown to prevent AAD in numerous clinical trials. This review examines what is currently known about how probiotics reduce the risk for AAD via modulating the gut microbiota, altering nutrient and bile acid metabolism, inducing epithelial solute transporter activity, supporting intestinal barrier function, and influencing the immune system. Although probiotics are frequently prescribed with antibiotic use, mechanistic evidence verifying how they confer protection against AAD is extremely limited. This information is urgently needed for improving recommendations for sustaining probiotic development and for implementing probiotics in clinical settings.
Collapse
Affiliation(s)
- Solomon A Mekonnen
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Daniel Merenstein
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Claire M Fraser
- Department of Medicine, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, CA, USA.
| |
Collapse
|
43
|
Cameron A, McAllister TA. Could probiotics be the panacea alternative to the use of antimicrobials in livestock diets? Benef Microbes 2019; 10:773-799. [PMID: 31965849 DOI: 10.3920/bm2019.0059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Probiotics are most frequently derived from the natural microbiota of healthy animals. These bacteria and their metabolic products are viewed as nutritional tools for promoting animal health and productivity, disease prevention and therapy, and food safety in an era defined by increasingly widespread antimicrobial resistance in bacterial pathogens. In contemporary livestock production, antimicrobial usage is indispensable for animal welfare, and employed to enhance growth and feed efficiency. Given the importance of antimicrobials in both human and veterinary medicine, their effective replacement with direct-fed microbials or probiotics could help reduce antimicrobial use, perhaps restoring or extending the usefulness of these precious drugs against serious infections. Thus, probiotic research in livestock is rapidly evolving, aspiring to produce local and systemic health benefits on par with antimicrobials. Although many studies have clearly demonstrated the potential of probiotics to positively affect animal health and inhibit pathogens, experimental evidence suggests that probiotics' successes are modest, conditional, strain-dependent, and transient. Here, we explore current understanding, trends, and emerging applications of probiotic research and usage in major livestock species, and highlight successes in animal health and performance.
Collapse
Affiliation(s)
- A Cameron
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Agriculture and Agri-Food Canada, 5403 1st Ave South, Lethbridge, AB T1J 4P4, Canada
| | - T A McAllister
- Agriculture and Agri-Food Canada, 5403 1st Ave South, Lethbridge, AB T1J 4P4, Canada
| |
Collapse
|
44
|
Li YT, Ye JZ, Lv LX, Xu H, Yang LY, Jiang XW, Wu WR, Shi D, Fang DQ, Bian XY, Wang KC, Wang QQ, Xie JJ, Lu YM, Li LJ. Pretreatment With Bacillus cereus Preserves Against D-Galactosamine-Induced Liver Injury in a Rat Model. Front Microbiol 2019; 10:1751. [PMID: 31417535 PMCID: PMC6685349 DOI: 10.3389/fmicb.2019.01751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022] Open
Abstract
Bacillus cereus (B. cereus) functions as a probiotic in animals, but the underlying mechanisms remain unclear. We aim to evaluate the protective effects and definite mechanism by which orally administered B. cereus prevents D-galactosamine (D-GalN)-induced liver injury in rats. Twenty-one Sprague–Dawley rats were equally assigned into three groups (N = 7 animals per group). B. cereus ATCC11778 (2 × 109 colony-forming units/ml) was administered to the B. cereus group via gavage, and phosphate-buffered saline was administered to the positive control (PC) and negative control (NC) groups for 2 weeks. The PC and B. cereus groups received 1.1 g/kg D-GalN via an intraperitoneal injection to induce liver injury. The blood, terminal ileum, liver, kidney and mesenteric lymph nodes (MLNs) were collected for histological examinations and to evaluate bacterial translocation. Liver function was also determined. Fecal samples were collected for deep sequencing of the 16S rRNA on an Illumina MiSeq platform. B. cereus significantly attenuated D-GalN-induced liver injury and improved serum alanine aminotransferase (ALT) and serum cholinesterase levels (P < 0.05 and P < 0.01, respectively). B. cereus modulated cytokine secretion, as indicated by the elevated levels of the anti-inflammatory cytokine interleukin-10 (IL-10) in both the liver and plasma (P < 0.05 and P < 0.01, respectively) and the substantially decreased levels of the cytokine IL-13 in the liver (P < 0.05). Pretreatment with B. cereus attenuated anoxygenic bacterial translocation in the veins (P < 0.05) and liver (P < 0.05) and upregulated the expression of the tight junction protein 1. The gut microbiota from the B. cereus group clustered separately from that of the PC group, with an increase in species of the Ruminococcaceae and Peptococcaceae families and a decrease in those of the Parabacteroides, Paraprevotella, and Desulfovibrio families. The potential probiotic B. cereus attenuated liver injury by restoring the gut flora balance and enhancing the intestinal barrier function.
Collapse
Affiliation(s)
- Ya-Ting Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jian-Zhong Ye
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Long-Xian Lv
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hong Xu
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou, China
| | - Li-Ya Yang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xian-Wan Jiang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Wen-Rui Wu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ding Shi
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Dai-Qiong Fang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiao-Yuan Bian
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Kai-Cen Wang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Qiang-Qiang Wang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jiao-Jiao Xie
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yan-Meng Lu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Lan-Juan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
45
|
Wu Y, Xu H, Cao X, Liu R, Tang L, Zeng Z, Li W. Bacillus amyloliquefaciens Ameliorates H 2O 2-Induced Oxidative Damage by Regulating Transporters, Tight Junctions, and Apoptosis Gene Expression in Cell Line IPEC-1. Probiotics Antimicrob Proteins 2019; 12:649-656. [PMID: 30891680 PMCID: PMC7306035 DOI: 10.1007/s12602-019-09538-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Probiotics have always been considered as a supplementary therapy for many diseases especially gut disorders. The absorption and barrier function of the gut play a vital role in the maintenance of body homeostasis. This study was to investigate the protective effects of Bacillus amyloliquefaciens SC06 (Ba) on H2O2-induced oxidative stress on intestinal porcine epithelial cells (IPEC-1) based on the level of gene expression. We demonstrated that Ba was a safe probiotic strain in the first place. Results showed that treatment with H2O2 significantly increased the mRNA expression of absorptive transporters glucose transporter 2 (GLUT2), Ala/Ser/Cys/Thr transporter 1 (ASCT1), and ASCT2 compared with the control group. Meanwhile, oxidative stress induced a significant improvement in the mRNA expression of occludin (OCLN) and caspase-3, and remarkably inhibited the expression of L-type amino acid transporter 1 (LAT1) or B cell lymphoma-2 (Bcl-2), respectively. Pretreatment with Ba dramatically reversed the disturbance induced by oxidative stress on the mRNA expression of ASCT1, ASCT2, and OCLN, which also significantly prevented H2O2-inhibited LAT1 and Bcl-2 mRNA expression. However, Ba failed to exert any significant protective effect on GLUT2 and caspase-3 mRNA expression. We concluded that pretreatment with Ba could alleviate the damage caused by oxidative stress to a certain extent and conferred a protective effect to the intestine.
Collapse
Affiliation(s)
- Yanping Wu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Han Xu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Xuefang Cao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Rongrong Liu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Li Tang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhonghua Zeng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
46
|
Fiocco D, Longo A, Arena MP, Russo P, Spano G, Capozzi V. How probiotics face food stress: They get by with a little help. Crit Rev Food Sci Nutr 2019; 60:1552-1580. [DOI: 10.1080/10408398.2019.1580673] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Angela Longo
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Mattia Pia Arena
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Pasquale Russo
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Vittorio Capozzi
- Department of Agriculture Food and Environment Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
47
|
Lu H, Zhang L, Xiao J, Wu C, Zhang H, Chen Y, Hu Z, Lin W, Xie Q, Li H. Effect of feeding Chinese herb medicine ageratum-liquid on intestinal bacterial translocations induced by H9N2 AIV in mice. Virol J 2019; 16:24. [PMID: 30791956 PMCID: PMC6385471 DOI: 10.1186/s12985-019-1131-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
Background As a low pathogenic influenza virus, avian influenza virus subtype H9N2 (H9N2 AIV) often induces high morbidity in association with secondary bacterial infections in chickens or mammals. To explore this phenomenon, the relationship between intestinal microflora changes and bacterial translocations was studied post H9N2 AIV challenge and post AIV infection plus Ageratum-liquid treatment. Methods Illumina sequencing, histological examination and Neongreen-tagged bacteria were used in this study to research the microbiota composition, intestinal barrier, and bacterial translocation in six weeks of BALB/c mice. Results H9N2 AIV infection caused intestinal dysbacteriosis and mucosal barrier damages. Notably, the villus length was significantly reduced (p < 0.01) at 12 dpi and the crypt depth was significantly increased (p < 0.01) at 5 dpi and 12 dpi with infection, resulting in the mucosal regular villus-length/crypt-depth (V/C) was significantly reduced (p < 0.01) at 5 dpi and 12 dpi. Moreover, degeneration and dissolution of the mucosal epithelial cells, loose of the connective tissue and partial glandular atrophy were found in infection group, indicating that intestinal barrier function was weakened. Eventually, intestinal microbiota (Staphylococcus, E. coli, etc.) overrun the intestinal barrier and migrated to liver and lung tissues of the mice at 5 and 12 dpi. Furthermore, the bacteria transferred in mesentery tissue sites from intestine at 36 h through tracking the Neongreen-tagged bacteria. Then the Neongreen-tagged bacteria were isolated from liver at 48 h post intragastrical administration. Simultaneously, Ageratum-liquid could inhibit the intestinal microbiota disorder post H9N2 AIV challenge via the respiratory tract. In addition, this study also illustrated that Ageratum-liquid could effectively prevent intestinal bacterial translocation post H9N2 AIV infection in mice. Conclusion In this study, we report the discovery that H9N2 AIV infection could damage the ileal mucosal barrier and induce the disturbance of the intestinal flora in BALB/c mice resulting in translocation of intestinal bacteria. In addition, this study indicated that Ageratum-liquid can effectively prevent bacterial translocation following H9N2 infection. These findings are of important theoretical and practical significance in prevention and control of H9N2 AIV infection. Electronic supplementary material The online version of this article (10.1186/s12985-019-1131-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haoran Lu
- Guangdong experimental high school, Guangzhou, 510145, Gaungdong, China
| | - Luxuan Zhang
- Guangdong experimental high school, Guangzhou, 510145, Gaungdong, China
| | - Junfang Xiao
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, People's Republic of China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, People's Republic of China
| | - Che Wu
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, People's Republic of China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, People's Republic of China
| | - Huanmin Zhang
- USDA, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, 48823, USA
| | - Yihu Chen
- Guangdong experimental high school, Guangzhou, 510145, Gaungdong, China
| | - Zhengyong Hu
- Guangdong experimental high school, Guangzhou, 510145, Gaungdong, China
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, People's Republic of China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, People's Republic of China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, People's Republic of China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, People's Republic of China
| | - Hongxin Li
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, People's Republic of China. .,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|