1
|
Tyagi A, Choi YY, Shan L, Vinothkanna A, Lee ES, Chelliah R, Barathikannan K, Raman ST, Park SJ, Jia AQ, Choi GP, Oh DH. Limosilactobacillus reuteri fermented brown rice alleviates anxiety improves cognition and modulates gut microbiota in stressed mice. NPJ Sci Food 2025; 9:5. [PMID: 39799113 PMCID: PMC11724862 DOI: 10.1038/s41538-025-00369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/01/2025] [Indexed: 01/15/2025] Open
Abstract
Chronic stress disrupts gut microbiota homeostasis, contributing to anxiety and depression. This study explored the effects of Limosilactobacillus reuteri fermented brown rice (FBR) on anxiety using an ICR mouse chronic mild stress (CMS) model. Anxiety was assessed through body weight, corticosterone levels, neurotransmitter profiles, and behavioral tests. A four-week FBR regimen reduced corticosterone, restored neurotransmitters like gamma-aminobutyric acid (GABA) and serotonin, and improved anxiety-related behaviors. Metagenomic (16S rRNA) and metabolomic analyses revealed enhanced amino acid metabolism, energy metabolism, and short-chain fatty acid (SCFA) production in FBR-treated mice. FBR-enriched beneficial gut bacteria, aligning the microbiota profile with that of non-stressed mice. FBR also modulated GABA receptor-related gene expression, promoting relaxation. Network pharmacology identified quercetin, GABA, glutamic acid, phenylalanine, and ferulic acid as bioactive compounds with neuroprotective potential. These findings highlight FBR's potential as a gut-brain axis-targeted therapeutic for anxiety and stress-related disorders.
Collapse
Affiliation(s)
- Akanksha Tyagi
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, Purdue, IN, USA
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Yu-Yeong Choi
- Department of Natural Resources and Environmental Science, Kangwon National University, Chuncheon, South Korea
| | - Lingyue Shan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
| | - Annadurai Vinothkanna
- School of Chemistry and Chemical Engineering and Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, Haikou, China
| | - Eun-Seok Lee
- Department of Natural Resources and Environmental Science, Kangwon National University, Chuncheon, South Korea
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea
- Saveetha School of Engineering, Saveetha University, Chennai, Tamil Nadu, India
| | | | - Sivakumar Thasma Raman
- School of Food and Biological Engineering, Jiangsu University, Jiangsu, Zhenjiang, PR China
| | - Se Jin Park
- Department of Natural Resources and Environmental Science, Kangwon National University, Chuncheon, South Korea
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Geun Pyo Choi
- Department of Barista and Bakery, Gangwon State University, Gangneung, South Korea
| | - Deog Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, South Korea.
| |
Collapse
|
2
|
Gholian MM, Babaei A, Zendeboodi F, Mortazavian AM, Koushki V. Ameliorating effect of psychobiotics and para-psychobiotics on stress: A review on in vivo and clinical studies and mechanism of action. Heliyon 2024; 10:e40338. [PMID: 39687128 PMCID: PMC11648110 DOI: 10.1016/j.heliyon.2024.e40338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Chronic stress can negatively affect cognitive ability, behavioral functions, and gut microbiota balance. The gut microbiota communicates with the brain through the gut-brain axis to influence brain responses and behavior. The positive effects of psychobiotics and para-psychobiotics (viable and non-viable probiotics, respectively) on decreasing stress and stress-related disorders have been approved, previously. It has been suggested that the benefits of such probiotics are provided through different probable routes including the hypothalamic-pituitary-adrenal (HPA) axis, the immune system modulation, and the production of neurotransmitters. The recent review aims to explore the different potentials of psychobiotics and para-psychobiotics based on recent literature. The recent literature revealed that psychobiotics and para-psychobiotics could be considered as an alternative to psychotropic drugs which present dependence and side effects compared to chemical drugs.
Collapse
Affiliation(s)
- Mohammad Mahdi Gholian
- Department of Grape Processing and Preservation, Research Institute for Grapes and Raisin, Malayer University, Malayer, Iran
| | - Arash Babaei
- Department of Biology, Faculty of Sciences, Malayer University, Malayer, Iran
| | - Fatemeh Zendeboodi
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, P.O. Box 19395-4741, Tehran, Iran
| | - Amir M. Mortazavian
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Koushki
- Department of Grape Processing and Preservation, Research Institute for Grapes and Raisin, Malayer University, Malayer, Iran
| |
Collapse
|
3
|
Rizzi F, Juan B, Espadaler-Mazo J, Capellas M, Huedo P. Lactiplantibacillus plantarum KABP051: Stability in Fruit Juices and Production of Bioactive Compounds During Their Fermentation. Foods 2024; 13:3851. [PMID: 39682922 DOI: 10.3390/foods13233851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The lactic fermentation of fruit and vegetable juices by well-characterised probiotics remains relatively underexplored. We have investigated the stability and impact of Lactiplantibacillus plantarum KABP051 fermentation on orange, apple, and peach juices by microbiological, physicochemical, and sensory evaluation means. For each fruit juice, three different samples were analysed: original fruit juice without probiotic as blank (B), fruit juice inoculated with 107 CFU/mL of probiotic without fermentation (P), and fruit juice inoculated with 107 CFU/mL of probiotic and fermented at 37 °C for 24 h (PF). P samples displayed good stability throughout the study, and PF samples showed an initial increase in CFUs accompanied by a change in pH, confirming the ability of the probiotic to ferment these juices. After 60 days of refrigeration, PF samples contained >107 CFU/mL. Total phenolic content and antioxidant capacity were equivalent in F, P, and PF. Remarkably, deep metabolomic analyses confirmed malolactic fermentation and revealed the production of several bioactive compounds including the antimicrobial substance phenyllactic acid, the immunomodulatory and anti-fatigue amino acid N-acetyl glutamine, the vitamin B3 form nicotinic acid, the monoterpene (-)-β-pinene, and the neurotransmitter acetylcholine, among others, during probiotic fermentation. Finally, a hedonic analysis involving 51 participants showed that probiotic fermented orange juice is well accepted by panellists, with scores comparable to those of the control juice. Overall, we here show that fruit juices are excellent carriers for the delivery of the probiotic L. plantarum KABP051 and its non-alcoholic fermentation can result in tasty functional fruit juices enriched with health-promoting compounds.
Collapse
Affiliation(s)
- Francesca Rizzi
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), XIA, TECNIO, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (Cerdanyola del Vallès), 08193 Barcelona, Spain
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), 08174 Barcelona, Spain
| | - Bibiana Juan
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), XIA, TECNIO, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Jordi Espadaler-Mazo
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), 08174 Barcelona, Spain
| | - Marta Capellas
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), XIA, TECNIO, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Pol Huedo
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), 08174 Barcelona, Spain
- Basic Sciences Department, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| |
Collapse
|
4
|
Mekhora C, Lamport DJ, Spencer JPE. An overview of the relationship between inflammation and cognitive function in humans, molecular pathways and the impact of nutraceuticals. Neurochem Int 2024; 181:105900. [PMID: 39522696 DOI: 10.1016/j.neuint.2024.105900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Inflammation has been associated with cognitive decline, whether in the peripheral or central nervous systems. The primary mechanism involves the response of microglia, an immune cell in the brain, which generates pro-inflammatory mediators such as cytokines, chemokines, and adhesion molecules. The excessive production of pro-inflammatory mediators may accelerate the damage to neurons, contributing to the development of neurodegenerative diseases such as Alzheimer's disease, mild cognitive impairment, and vascular dementia, as well as a general decline in cognitive function. Various studies have supported the correlation between elevated pro-inflammatory mediators and a decline in cognitive function, particularly in aging and age-related neurodegenerative diseases. Moreover, this association has also been observed in other inflammatory-related conditions, including post-operative cognitive impairment, diabetes, stroke, obesity, and cancer. However, the interaction between inflammatory processes and cognitive function in humans remains unclear and varies according to different health conditions. Therefore, this review aims to consolidate and evaluate the available evidence from original studies as well as meta-analyses in order to provide a greater understanding of the inflammatory process in connection with cognitive function in humans. Furthermore, relevant biological cellular processes, putative inflammatory biomarkers, and the role of nutraceuticals on the interaction between cognitive performance and inflammatory status are outlined.
Collapse
Affiliation(s)
- Chusana Mekhora
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, RG2 6AP, UK.
| | - Daniel J Lamport
- School of Psychology and Clinical Language Sciences, University of Reading, Earley Gate, Reading, Berkshire, RG6 6AL, UK
| | - Jeremy P E Spencer
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, RG2 6AP, UK.
| |
Collapse
|
5
|
Casertano M, Dekker M, Valentino V, De Filippis F, Fogliano V, Ercolini D. Gaba-producing lactobacilli boost cognitive reactivity to negative mood without improving cognitive performance: A human Double-Blind Placebo-Controlled Cross-Over study. Brain Behav Immun 2024; 122:256-265. [PMID: 39163908 DOI: 10.1016/j.bbi.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/01/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Psychobiotic bacteria are probiotics able to influence stress-related behavior, sleep, and cognitive outcomes. Several in vitro and human studies were performed to assess their physiological potential, to find strains having psychotropic activity in humans, and to elucidate the metabolic pathways involved. In our previous in vitro study, we identified two strains Levilactobacillus brevis P30021 and Lactiplantibacillus plantarum P30025, able to produce GABA and acetylcholine, being promising candidates to provide an effect on mood and cognitive performance. AIM To investigate the effects of probiotics in the alleviation on the cognitive performance of moderately stressed healthy adults. Secondary outcomes were related to mood improvement, production of GABA, glutamate, acetylcholine, and choline and modification of the microbiota composition. METHODS A 12-week randomized, double-blind, placebo-controlled, cross-over study investigated the effects of a probiotic formulation (Levilactobacillus brevis P30021 and Lactiplantibacillus plantarum P30025) on psychological, memory, and cognition parameters in 44 (Probiotic = 44, Placebo = 43) adults with a mean age of 29 ± 5.7 years old by CogState Battery test. Subjects-inclusion criteria was a mild-moderate (18.7 ± 4.06) stress upon diagnosis using the DASS-42 questionnaire. RESULTS Probiotic treatment had no effect on subjective stress measures. The probiotic formulation showed a significant beneficial effect on depressive symptoms by reducing cognitive reactivity to sad mood (p = 0.034). Rumination significantly improved after intake of the probiotic (p = 0.006), suggesting a potential benefit in reducing the negative cognitive effects associated with depression and improving overall mental health. When stratifying the treated subjects according to the response, we found an increase in the abundance of the probiotic genera in the gut microbiota of positive responders (p = 0.009 for Lactiplantibacillus and p = 0.004 for L.brevis). No relevant correlations were observed between the neurotransmitter concentration in the faecal sample, scores of LEIDS, DASS-42, and cognitive tests. CONCLUSION We highlight the potential of this probiotic preparation to act as psycobiotics for the relief of negative mood feelings. The assessment of the psychotropic effects of dietary interventions in human participants has many challenges. Further interventional studies investigating the effect of these psychobiotic bacteria in populations with stressed-related disorders are required including longer period of intervention and larger sample size in order to verify the effects of the treatment on further stress-related indicators.
Collapse
Affiliation(s)
- Melania Casertano
- Food Quality & Design Group, Wageningen University & Research, NL-6708 WG, the Netherlands; Department of Agricultural Sciences of the University of Naples "Federico II", Università 100, 80055 Portici (NA), Italy
| | - Matthijs Dekker
- Food Quality & Design Group, Wageningen University & Research, NL-6708 WG, the Netherlands
| | - Vincenzo Valentino
- Department of Agricultural Sciences of the University of Naples "Federico II", Università 100, 80055 Portici (NA), Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences of the University of Naples "Federico II", Università 100, 80055 Portici (NA), Italy
| | - Vincenzo Fogliano
- Food Quality & Design Group, Wageningen University & Research, NL-6708 WG, the Netherlands.
| | - Danilo Ercolini
- Department of Agricultural Sciences of the University of Naples "Federico II", Università 100, 80055 Portici (NA), Italy
| |
Collapse
|
6
|
Jain M, Anand A, Sharma N, Shamim MA, Enioutina EY. Effect of Probiotics Supplementation on Cortisol Levels: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:3564. [PMID: 39458560 PMCID: PMC11510182 DOI: 10.3390/nu16203564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/25/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Several randomized controlled trials (RCTs) have shown conflicting results on cortisol levels following probiotic administration in healthy and diseased populations. Previous analyses were inconclusive due to limited studies, and evidence is lacking on how these effects vary by health status; region; therapy duration; medications, and use of single or multiple strains. Methods: In this systematic review and meta-analysis (PROSPERO [CRD42024538539]), we searched PubMed, Cochrane Library, Embase, Scopus, Web of Science, CINAHL, ProQuest, and Web of Science Preprints until 13 August 2024, for RCTs on probiotic administration, either alone or combined, across all age groups and without specific medical condition requirements. We applied random-effects meta-analysis, assessed bias using the Cochrane RoB 2 tool, and evaluated evidence certainty with GRADE. Findings: We screened 1739 records and retrieved 46 RCTs (3516 participants). Probiotics supplementation decreased cortisol levels compared to the control arm [46 RCTs; SMD: -0.45; 95% CI: -0.83; -0.07; I2: 92.5%, low certainty]. Among various subgroups; probiotics supplementation decreased the cortisol levels in the subgroups without concomitant medications [37 RCTs; SMD: -0.30; 95% CI [-0.58; -0.03], I2: 88.7%] with a single probiotic strain [30 RCTs; SMD: -0.33; 95% CI: -0.63; -0.028; I2: 88.8%], in a healthy population [35 RCTs; SMD:-0.3; 95% CI: -0.58; -0.03; I2: 88.7] and in the Asia region [21 RCTs; SMD: -0.83; 95% CI: -1.58; -0.07; I2: 95%]. Interpretation: A low level of evidence suggests probiotics might reduce cortisol levels, but more targeted studies are needed to identify variables affecting the response in specific subgroups.
Collapse
Affiliation(s)
- Manav Jain
- Division of Clinical Pharmacology, Department of Pediatrics, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84108, USA;
| | - Aishwarya Anand
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Nisha Sharma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India;
| | - Muhammad Aaqib Shamim
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur 342005, India;
| | - Elena Y. Enioutina
- Division of Clinical Pharmacology, Department of Pediatrics, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT 84108, USA;
| |
Collapse
|
7
|
Verhoeven JE, Wolkowitz OM, Barr Satz I, Conklin Q, Lamers F, Lavebratt C, Lin J, Lindqvist D, Mayer SE, Melas PA, Milaneschi Y, Picard M, Rampersaud R, Rasgon N, Ridout K, Söderberg Veibäck G, Trumpff C, Tyrka AR, Watson K, Wu GWY, Yang R, Zannas AS, Han LKM, Månsson KNT. The researcher's guide to selecting biomarkers in mental health studies. Bioessays 2024; 46:e2300246. [PMID: 39258367 DOI: 10.1002/bies.202300246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 09/12/2024]
Abstract
Clinical mental health researchers may understandably struggle with how to incorporate biological assessments in clinical research. The options are numerous and are described in a vast and complex body of literature. Here we provide guidelines to assist mental health researchers seeking to include biological measures in their studies. Apart from a focus on behavioral outcomes as measured via interviews or questionnaires, we advocate for a focus on biological pathways in clinical trials and epidemiological studies that may help clarify pathophysiology and mechanisms of action, delineate biological subgroups of participants, mediate treatment effects, and inform personalized treatment strategies. With this paper we aim to bridge the gap between clinical and biological mental health research by (1) discussing the clinical relevance, measurement reliability, and feasibility of relevant peripheral biomarkers; (2) addressing five types of biological tissues, namely blood, saliva, urine, stool and hair; and (3) providing information on how to control sources of measurement variability.
Collapse
Affiliation(s)
- Josine E Verhoeven
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
| | - Owen M Wolkowitz
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Isaac Barr Satz
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Quinn Conklin
- Center for Mind and Brain, University of California, Davis, California, USA
- Center for Health and Community, University of California, San Francisco, California, USA
| | - Femke Lamers
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, L8:00, Karolinska University Hospital, Stockholm, Sweden
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Daniel Lindqvist
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Office for Psychiatry and Habilitation, Psychiatry Research Skåne, Region Skåne, Lund, Sweden
| | - Stefanie E Mayer
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Philippe A Melas
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Complex Trait Genetics, Amsterdam, The Netherlands
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
- New York State Psychiatric Institute, New York, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Ryan Rampersaud
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Natalie Rasgon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Kathryn Ridout
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
- Department of Psychiatry, Kaiser Permanente, Santa Rosa Medical Center, Santa Rosa, California, USA
| | - Gustav Söderberg Veibäck
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Office for Psychiatry and Habilitation, Psychiatry Research Skåne, Region Skåne, Lund, Sweden
| | - Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, USA
| | - Audrey R Tyrka
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Kathleen Watson
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Gwyneth Winnie Y Wu
- Department of Psychiatry and Behavioral Sciences, and Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Ruoting Yang
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Anthony S Zannas
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Laura K M Han
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Orygen, Parkville, Victoria, Australia
| | - Kristoffer N T Månsson
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Qu S, Yu Z, Zhou Y, Wang S, Jia M, Chen T, Zhang X. Gut microbiota modulates neurotransmitter and gut-brain signaling. Microbiol Res 2024; 287:127858. [PMID: 39106786 DOI: 10.1016/j.micres.2024.127858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/16/2024] [Accepted: 07/22/2024] [Indexed: 08/09/2024]
Abstract
Neurotransmitters, including 5-hydroxytryptamine (5-HT), dopamine (DA), gamma-aminobutyric acid (GABA), and glutamate, are essential transductors in the Gut-Brain Axis (GBA), playing critical roles both peripherally and centrally. Accumulating evidence suggests that the gut microbiota modulates intestinal neurotransmitter metabolism and gut-to-brain signaling, shedding light on the crucial role of the gut microbiota in brain function and the pathogenesis of various neuropsychiatric diseases, such as major depression disorder (MDD), anxiety, addiction and Parkinson's disease (PD). Despite the exciting findings, the mechanisms underlying the modulation of neurotransmitter metabolism and function by the gut microbiota are still being elucidated. In this review, we aim to provide a comprehensive overview of the existing knowledge about the role of the gut microbiota in neurotransmitter metabolism and function in animal and clinical experiments. Moreover, we will discuss the potential mechanisms through which gut microbiota-derived neurotransmitters contribute to the pathogenesis of neuropsychiatric diseases, thus highlighting a novel therapeutic target for these conditions.
Collapse
Affiliation(s)
- Shiyan Qu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Zijin Yu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Yaxuan Zhou
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Shiyi Wang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Minqi Jia
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China
| | - Ti Chen
- Clinical Laboratory, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410000, China
| | - Xiaojie Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China; National Clinic Research Center for Mental Disorders, Changsha, Hunan 410000, China; National Technology Institute on Mental Disorders, Changsha, Hunan 410000, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410000, China; Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha 410000, China.
| |
Collapse
|
9
|
Al Kassaa I, Fuad M. Effects of Lacticaseibacillus rhamnosus HN001 on Happiness and Mental Well-Being: Findings from a Randomized Controlled Trial. Nutrients 2024; 16:2936. [PMID: 39275252 PMCID: PMC11397133 DOI: 10.3390/nu16172936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Lacticaseibacillus rhamnosus HN001 (HN001) is a probiotic strain widely studied for its potential to improve human health. Previous studies have demonstrated promising results for HN001 in the improvement of mental well-being, particularly in terms of increased happiness and support for stress management in healthy adults. METHODS To further explore these findings, a double-blind, placebo-controlled trial was conducted with 120 participants aged ≥ 18 years with mild to high stress measured by the Perceived Stress Scale (PSS). The participants were randomly assigned to receive either HN001 or placebo for 28 days. Psychological assessments, including the Oxford Happiness Questionnaire (OHQ), were completed at baseline, day 14, and day 28. Secondary outcomes included changes in PSS scores, as well as depression, anxiety, stress, and total score levels measured by the DASS-21 questionnaire. RESULTS While not statistically significant, participants who received HN001 showed an improvement in OHQ (mean change, 13.3) and PSS total scores (mean change, -8.1) over time compared with the placebo group (mean change, 10.2 and -6.6, respectively). Furthermore, 39% of the participants moved from not happy to happy, compared with only 29% in the placebo group. Post-hoc analysis showed a statistically significant interaction between intervention and study day for OHQ and PSS total scores, with p-values of 0.014 and 0.043, respectively. No adverse effects were observed. CONCLUSIONS HN001 showed improvements in both happiness and PSS scores. Furthermore, sex subgroup analysis revealed statistically significant differences in both outcomes, emphasizing the need for larger and longer intervention studies.
Collapse
Affiliation(s)
- Imad Al Kassaa
- Fonterra Research and Development Centre, Dairy Farm Road, Palmerston North 4442, New Zealand
| | - Maher Fuad
- Fonterra Research and Development Centre, Dairy Farm Road, Palmerston North 4442, New Zealand
| |
Collapse
|
10
|
Di Chiano M, Sallustio F, Fiocco D, Rocchetti MT, Spano G, Pontrelli P, Moschetta A, Gesualdo L, Gadaleta RM, Gallone A. Psychobiotic Properties of Lactiplantibacillus plantarum in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9489. [PMID: 39273435 PMCID: PMC11394828 DOI: 10.3390/ijms25179489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Neurodegenerative disorders are the main cause of cognitive and physical disabilities, affect millions of people worldwide, and their incidence is on the rise. Emerging evidence pinpoints a disturbance of the communication of the gut-brain axis, and in particular to gut microbial dysbiosis, as one of the contributors to the pathogenesis of these diseases. In fact, dysbiosis has been associated with neuro-inflammatory processes, hyperactivation of the neuronal immune system, impaired cognitive functions, aging, depression, sleeping disorders, and anxiety. With the rapid advance in metagenomics, metabolomics, and big data analysis, together with a multidisciplinary approach, a new horizon has just emerged in the fields of translational neurodegenerative disease. In fact, recent studies focusing on taxonomic profiling and leaky gut in the pathogenesis of neurodegenerative disorders are not only shedding light on an overlooked field but are also creating opportunities for biomarker discovery and development of new therapeutic and adjuvant strategies to treat these disorders. Lactiplantibacillus plantarum (LBP) strains are emerging as promising psychobiotics for the treatment of these diseases. In fact, LBP strains are able to promote eubiosis, increase the enrichment of bacteria producing beneficial metabolites such as short-chain fatty acids, boost the production of neurotransmitters, and support the homeostasis of the gut-brain axis. In this review, we summarize the current knowledge on the role of the gut microbiota in the pathogenesis of neurodegenerative disorders with a particular focus on the benefits of LBP strains in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, autism, anxiety, and depression.
Collapse
Affiliation(s)
- Mariagiovanna Di Chiano
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy
| | - Paola Pontrelli
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
- National Institute for Biostructure and Biosystems (INBB), Viale delle Medaglie d'Oro n. 305, 00136 Roma, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
- National Institute for Biostructure and Biosystems (INBB), Viale delle Medaglie d'Oro n. 305, 00136 Roma, Italy
| | - Anna Gallone
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| |
Collapse
|
11
|
Cocean AM, Vodnar DC. Exploring the gut-brain Axis: Potential therapeutic impact of Psychobiotics on mental health. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111073. [PMID: 38914414 DOI: 10.1016/j.pnpbp.2024.111073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
One of the most challenging and controversial issues in microbiome research is related to gut microbial metabolism and neuropsychological disorders. Psychobiotics affect human behavior and central nervous system processes via the gut-brain axis, involving neuronal, immune, and metabolic pathways. They have therapeutic potential in the treatment of several neurodegenerative and neurodevelopmental disorders such as depression, anxiety, autism, attention deficit hyperactivity disorder, Alzheimer's disease, Parkinson's disease, schizophrenia, Huntington's disease, anorexia nervosa, and multiple sclerosis. However, the mechanisms underlying the interaction between psychobiotics and the abovementioned diseases need further exploration. This review focuses on the relationship between gut microbiota and its impact on neurological and neurodegenerative disorders, examining the potential of psychobiotics as a preventive and therapeutic approach, summarising recent research on the gut-brain axis and the potential beneficial effects of psychobiotics, highlighting the need for further research and investigation in this area.
Collapse
Affiliation(s)
- Ana-Maria Cocean
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Department of Food Science and Technology, Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, Cluj-Napoca, Romania.
| |
Collapse
|
12
|
Białoń MN, Górka DHNOZD, Górka MM. The brain-gut axis: communication mechanisms and the role of the microbiome as a neuroprotective factor in the development of neurodegenerative diseases: A literature overview. AIMS Neurosci 2024; 11:289-311. [PMID: 39431278 PMCID: PMC11486619 DOI: 10.3934/neuroscience.2024019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 10/22/2024] Open
Abstract
The study of the brain-gut axis and its impact on cognitive function and in the development of neurodegenerative diseases is a very timely topic of interest to researchers. This review summarizes information on the basic mechanisms of gut-brain communication. We then discuss the roles of the gut microbiome as a neuroprotective factor in neurodegeneration. The gut microbiota is extremely important in maintaining the body's homeostasis, shaping the human immune system and the proper functioning of the brain. The intestinal microflora affects the processes of neuroplasticity, synaptogenesis, and neuronal regeneration. This review aims to explain changes in the composition of the bacterial population of the intestinal microflora among patients with Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Abnormalities in gut microflora composition are also noted in stress, depression, or autism spectrum development. New observations on psychobiotic supplementation in alleviating the symptoms of neurodegenerative diseases are also presented.
Collapse
Affiliation(s)
- Mgr Natalia Białoń
- Faculty of Health Sciences in Katowice, Department of Sports Medicine and Physiology of Physical Exercise, Medical University of Silesia in Katowice, 12 Medyków St., 40-752 Katowice, Poland
| | - Dr Hab N O Zdr Dariusz Górka
- Faculty of Health Sciences in Katowice, Department of Sports Medicine and Physiology of Physical Exercise, Medical University of Silesia in Katowice, 12 Medyków St., 40-752 Katowice, Poland
| | - Mgr Mikołaj Górka
- Center for Experimental Medicine of the Silesian Medical University in Katowice, 4 Medyków St., 40-752 Katowice, Poland
| |
Collapse
|
13
|
Flasbeck V, Hirsch J, Petrak F, Meier JJ, Herpertz S, Gatermann S, Juckel G. Microbiome composition and central serotonergic activity in patients with depression and type 1 diabetes. Eur Arch Psychiatry Clin Neurosci 2024; 274:1177-1186. [PMID: 37847374 PMCID: PMC11226557 DOI: 10.1007/s00406-023-01694-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/20/2023] [Indexed: 10/18/2023]
Abstract
The role of gut-brain axis functioning gains growing attention in research on the pathophysiology of major depressive disorders. Here, especially consequences of altered microbiota composition on tryptophan metabolism resulting in altered serotonergic neurotransmission in the central nervous system (CNS) have reached a central position. Previous research, however, mainly focused on either microbiota and peripheral serotonin levels or central serotonergic neurotransmission. The present study aimed to combine the analysis of microbiota composition and central serotonergic activity using a valid neurophysiological indicator. We recruited 19 adult patients with type 1 diabetes and depression (D + D; 7 males), 19 patients with type 1 diabetes (D-; 7 male), and 20 healthy participants (HC; 7 males). Next to the analysis of fecal microbiota regarding α- and β-diversity, the loudness dependence of auditory evoked potential (LDAEP) was investigated, a non-invasive measurement of central serotonergic activity. High α-diversity was associated with high LDAEP, i.e., low serotonergic activity, in patients with diabetes and additional depression. Furthermore, relative abundances of bacterial families belonging to Bacteroidetes, Proteobacteria and Firmicutes were shown to have an impact on central serotonergic activity. This finding was supported by a tendency indicating an association of central serotonergic activity with the Bacteroidetes-Firmicutes ratio in both patients' groups. Together, this data suggests that the guts' microbiota composition might play an important role in regulating the central serotonergic activity in the brain.
Collapse
Affiliation(s)
- Vera Flasbeck
- Department of Psychiatry, LWL-University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Julia Hirsch
- Department of Psychosomatic Medicine and Psychotherapy, LWL-University Hospital, Ruhr-University Bochum, Alexandrinenstr.1, 44791, Bochum, Germany
| | - Frank Petrak
- Department of Psychosomatic Medicine and Psychotherapy, LWL-University Hospital, Ruhr-University Bochum, Alexandrinenstr.1, 44791, Bochum, Germany
| | - Juris J Meier
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephan Herpertz
- Department of Psychosomatic Medicine and Psychotherapy, LWL-University Hospital, Ruhr-University Bochum, Alexandrinenstr.1, 44791, Bochum, Germany
| | - Sören Gatermann
- German National Reference Centre for Multidrug-Resistant Gram-Negative Bacteria, Department of Medical Microbiology, Ruhr-University Bochum, Bochum, Germany
| | - Georg Juckel
- Department of Psychiatry, LWL-University Hospital, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
14
|
Arteaga-Henríquez G, Ramos-Sayalero C, Ibañez-Jimenez P, Karina Rosales-Ortiz S, Kilencz T, Schiweck C, Schnorr I, Siegl A, Arias-Vasquez A, Bitter I, Fadeuilhe C, Ferrer M, Lavebratt C, Matura S, Reif A, Réthelyi JM, Richarte V, Rommelse N, Antoni Ramos-Quiroga J. Efficacy of a synbiotic in the management of adults with Attention-Deficit and Hyperactivity Disorder and/or Borderline Personality Disorder and high levels of irritability: Results from a multicenter, randomized, placebo-controlled, "basket" trial. Brain Behav Immun 2024; 120:360-371. [PMID: 38885746 DOI: 10.1016/j.bbi.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Irritability worsens prognosis and increases mortality in individuals with Attention-Deficit and Hyperactivity Disorder (ADHD) and/or Borderline Personality Disorder (BPD). However, treatment options are still insufficient. The aim of this randomized, double blind, placebo-controlled study was to investigate the superiority of a synbiotic over placebo in the management of adults with ADHD and/or BPD and high levels of irritability. The study was conducted between February 2019 and October 2020 at three European clinical centers located in Hungary, Spain and Germany. Included were patients aged 18-65 years old diagnosed with ADHD and/or BPD and high levels of irritability (i.e., an Affectivity Reactivity Index (ARI-S) ≥ 5, plus a Clinical Global Impression-Severity Scale (CGI-S) score ≥ 4). Subjects were randomized 1(synbiotic):1(placebo); the agent was administered each day, for 10 consecutive weeks. The primary outcome measure was end-of-treatment response (i.e., a reduction ≥ 30 % in the ARI-S total score compared to baseline, plus a Clinical Global Impression-Improvement (CGI-I) total score of < 3 (very much, or much improved) at week 10). Between-treatment differences in secondary outcomes, as well as safety were also investigated. Of the 231 included participants, 180 (90:90) were randomized and included in the intention-to-treat-analyses. Of these, 117 (65 %) were females, the mean age was 38 years, ADHD was diagnosed in 113 (63 %), BPD in 44 (24 %), both in 23 (13 %). The synbiotic was well tolerated. At week 10, patients allocated to the synbiotic experienced a significantly higher response rate compared to those allocated to placebo (OR: 0.2, 95 % CI:0.1 to 0.7; P = 0.01). These findings suggest that that (add-on) treatment with a synbiotic may be associated with a clinically meaningful improvement in irritability in, at least, a subgroup of adults with ADHD and/or BPD. A superiority of the synbiotic over placebo in the management of emotional dysregulation (-3.6, 95 % CI:-6.8 to -0.3; P = 0.03), emotional symptoms (-0.6, 95 % CI:-1.2 to -0.05; P = 0.03), inattention (-1.8, 95 % CI: -3.2 to -0.4; P = 0.01), functioning (-2.7, 95 % CI: -5.2 to -0.2; P = 0.03) and perceived stress levels (-0.6, 95 % CI: -1.2 to -0.05; P = 0.03) was also suggested. Higher baseline RANK-L protein levels were associated with a significantly lower response rate, but only in the synbiotic group (OR: 0.1, 95 % CI: -4.3 to - 0.3, P = 0.02). In the placebo group, higher IL-17A levels at baseline were significantly associated with a higher improvement in in particular, emotional dysregulation (P = 0.04), opening a door for new (targeted) drug intervention. However, larger prospective studies are warranted to confirm the findings. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03495375.
Collapse
Affiliation(s)
- Gara Arteaga-Henríquez
- Department of Mental Health, Hospital Universitari Vall d́Hebron, Barcelona, Catalonia, Spain; Group of Psychiatry, Mental Health, and Addictions, Vall d́Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain; Biomedical Network Research Center on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain; NCRR-The National Center for Register-Based Research, Aahrus University. Aahrus, Denmark.
| | - Carolina Ramos-Sayalero
- Group of Psychiatry, Mental Health, and Addictions, Vall d́Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
| | - Pol Ibañez-Jimenez
- Group of Psychiatry, Mental Health, and Addictions, Vall d́Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
| | - Silvia Karina Rosales-Ortiz
- Group of Psychiatry, Mental Health, and Addictions, Vall d́Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
| | - Tünde Kilencz
- Semmelweis University, Department of Psychiatry and Psychotherapy, Budapest, Hungary
| | - Carmen Schiweck
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
| | - Isabel Schnorr
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
| | - Anne Siegl
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
| | - Alejandro Arias-Vasquez
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands; Department of Psychiatry, Radboudd University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - István Bitter
- Semmelweis University, Department of Psychiatry and Psychotherapy, Budapest, Hungary
| | - Christian Fadeuilhe
- Department of Mental Health, Hospital Universitari Vall d́Hebron, Barcelona, Catalonia, Spain; Group of Psychiatry, Mental Health, and Addictions, Vall d́Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain; Biomedical Network Research Center on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain
| | - Marc Ferrer
- Department of Mental Health, Hospital Universitari Vall d́Hebron, Barcelona, Catalonia, Spain; Group of Psychiatry, Mental Health, and Addictions, Vall d́Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain; Biomedical Network Research Center on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autónoma de Barcelona, Barcelona, Catalonia, Spain
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Instituet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Silke Matura
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
| | - Andreas Reif
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
| | - János M Réthelyi
- Semmelweis University, Department of Psychiatry and Psychotherapy, Budapest, Hungary
| | - Vanesa Richarte
- Department of Mental Health, Hospital Universitari Vall d́Hebron, Barcelona, Catalonia, Spain; Biomedical Network Research Center on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autónoma de Barcelona, Barcelona, Catalonia, Spain
| | - Nanda Rommelse
- Karakter Child and Adolescent Psychiatry University Center, Stockholm, the Netherlands
| | - Josep Antoni Ramos-Quiroga
- Department of Mental Health, Hospital Universitari Vall d́Hebron, Barcelona, Catalonia, Spain; Group of Psychiatry, Mental Health, and Addictions, Vall d́Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain; Biomedical Network Research Center on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autónoma de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
15
|
Aljohani A, Rashwan N, Vasani S, Alkhawashki A, Wu TT, Lu X, Castillo DA, Xiao J. The Health Benefits of Probiotic Lactiplantibacillus plantarum: A Systematic Review and Meta-Analysis. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10287-3. [PMID: 38816672 DOI: 10.1007/s12602-024-10287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 06/01/2024]
Abstract
To ensure effective administration of probiotics in clinical practice, it is crucial to comprehend the specific strains and their association with human health. Therefore, we conducted a systematic review and meta-analysis to evaluate the scientific evidence on the impact of Lactiplantibacillus plantarum probiotic consumption on human health. Out of 11,831 records, 135 studies were assessed qualitatively, and 18 studies were included in the meta-analysis. This systematic review demonstrated that probiotic supplementation with L. plantarum, either alone or in combination, can significantly improve outcomes for patients with specific medical conditions. Meta-analysis revealed notable benefits in periodontal health, evidenced by reduced pocket depth and bleeding on probing (p < 0.001); in gastroenterological health, marked by significant reductions in abdominal pain (p < 0.001); and in infectious disease, through a reduction in C-reactive protein levels (p < 0.001). Cardiovascular benefits included lowered total cholesterol and low-density lipoprotein cholesterol in the L. plantarum intervention group (p < 0.05). Our study's clinical significance highlights the importance of considering probiotic strain and their application to specific diseases when planning future studies and clinical interventions, emphasizing the need for further research in this area.
Collapse
Affiliation(s)
- Amal Aljohani
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Noha Rashwan
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Shruti Vasani
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Ahmed Alkhawashki
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
- Pediatrics, King Fahd Medical City, Riyadh, Saudi Arabia
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, USA
| | - Xingyi Lu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, USA
| | - Daniel A Castillo
- Miner Library, University of Rochester Medical Center, Rochester, NY, USA
| | - Jin Xiao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
16
|
Tae H, Kim TS. The effect of prebiotic and probiotic food consumption on anxiety severity: a nationwide study in Korea. Front Nutr 2024; 11:1385518. [PMID: 38863592 PMCID: PMC11165345 DOI: 10.3389/fnut.2024.1385518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024] Open
Abstract
Objectives Over the past decade, research has reported that diet and gut health affect anxiety symptoms through changes in the gut microbiota. Therefore, the introduction of prebiotic and probiotic food favorable for the intestinal microbiota is necessary to improve the mental health of the host. The purpose of this study was to examine the contribution of prebiotic and probiotic foods to lowering anxiety symptoms using a large, nationwide population-based database. Materials and methods The study population included 4,317 individuals 19 to 64 years of age who participated in the Korean National Health and Nutrition Examination Survey (KNHANES VII-3, 2019-2021). A food frequency questionnaire was used to evaluate prebiotic and probiotic food consumption. The Generalized Anxiety Disorder Assessment 7-item scale (GAD-7) assessed the severity of anxiety symptoms. The effect of prebiotic and probiotic food consumption on anxiety severity was analyzed using multiple logistic regression. Results Anxiety symptom severity was significantly lower in the highest prebiotic and/or probiotic food consumption tertiles compared to the lowest food consumption tertile. We also found a sex difference in the odds ratio for anxiety symptoms. The consumption of prebiotic food was significantly associated with the highest odds of anxiety among both men and women. However, probiotic food had a significant beneficial effect on lowering anxiety symptoms in men but not in women. Conclusion Our finding suggests that prebiotic and probiotic food consumption might confer a beneficial influence on anxiety symptoms. Further research is required for a deeper understanding into the mechanisms of the positive effects of prebiotics and probiotics on anxiety.
Collapse
Affiliation(s)
- Hyejin Tae
- Stress Clinic, Health Promotion Center, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae-Suk Kim
- Department of Psychiatry, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
17
|
Averina OV, Poluektova EU, Zorkina YA, Kovtun AS, Danilenko VN. Human Gut Microbiota for Diagnosis and Treatment of Depression. Int J Mol Sci 2024; 25:5782. [PMID: 38891970 PMCID: PMC11171505 DOI: 10.3390/ijms25115782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Nowadays, depressive disorder is spreading rapidly all over the world. Therefore, attention to the studies of the pathogenesis of the disease in order to find novel ways of early diagnosis and treatment is increasing among the scientific and medical communities. Special attention is drawn to a biomarker and therapeutic strategy through the microbiota-gut-brain axis. It is known that the symbiotic interactions between the gut microbes and the host can affect mental health. The review analyzes the mechanisms and ways of action of the gut microbiota on the pathophysiology of depression. The possibility of using knowledge about the taxonomic composition and metabolic profile of the microbiota of patients with depression to select gene compositions (metagenomic signature) as biomarkers of the disease is evaluated. The use of in silico technologies (machine learning) for the diagnosis of depression based on the biomarkers of the gut microbiota is given. Alternative approaches to the treatment of depression are being considered by balancing the microbial composition through dietary modifications and the use of additives, namely probiotics, postbiotics (including vesicles) and prebiotics as psychobiotics, and fecal transplantation. The bacterium Faecalibacterium prausnitzii is under consideration as a promising new-generation probiotic and auxiliary diagnostic biomarker of depression. The analysis conducted in this review may be useful for clinical practice and pharmacology.
Collapse
Affiliation(s)
- Olga V. Averina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Elena U. Poluektova
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Yana A. Zorkina
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
- V. Serbsky National Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia
| | - Alexey S. Kovtun
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| | - Valery N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), 119333 Moscow, Russia; (E.U.P.); (Y.A.Z.); (A.S.K.); (V.N.D.)
| |
Collapse
|
18
|
Odriozola A, González A, Odriozola I, Álvarez-Herms J, Corbi F. Microbiome-based precision nutrition: Prebiotics, probiotics and postbiotics. ADVANCES IN GENETICS 2024; 111:237-310. [PMID: 38908901 DOI: 10.1016/bs.adgen.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Microorganisms have been used in nutrition and medicine for thousands of years worldwide, long before humanity knew of their existence. It is now known that the gut microbiota plays a key role in regulating inflammatory, metabolic, immune and neurobiological processes. This text discusses the importance of microbiota-based precision nutrition in gut permeability, as well as the main advances and current limitations of traditional probiotics, new-generation probiotics, psychobiotic probiotics with an effect on emotional health, probiotic foods, prebiotics, and postbiotics such as short-chain fatty acids, neurotransmitters and vitamins. The aim is to provide a theoretical context built on current scientific evidence for the practical application of microbiota-based precision nutrition in specific health fields and in improving health, quality of life and physiological performance.
Collapse
Affiliation(s)
- Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Jesús Álvarez-Herms
- Phymo® Lab, Physiology, and Molecular Laboratory, Collado Hermoso, Segovia, Spain
| | - Francesc Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), Centre de Lleida, Universitat de Lleida (UdL), Lleida, Spain
| |
Collapse
|
19
|
Deady C, McCarthy FP, Barron A, McCarthy CM, O’Keeffe GW, O’Mahony SM. An altered gut microbiome in pre-eclampsia: cause or consequence. Front Cell Infect Microbiol 2024; 14:1352267. [PMID: 38774629 PMCID: PMC11106424 DOI: 10.3389/fcimb.2024.1352267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Hypertensive disorders of pregnancy, including pre-eclampsia, are a leading cause of serious and debilitating complications that affect both the mother and the fetus. Despite the occurrence and the health implications of these disorders there is still relatively limited evidence on the molecular underpinnings of the pathophysiology. An area that has come to the fore with regard to its influence on health and disease is the microbiome. While there are several microbiome niches on and within the body, the distal end of the gut harbors the largest of these impacting on many different systems of the body including the central nervous system, the immune system, and the reproductive system. While the role of the microbiome in hypertensive disorders, including pre-eclampsia, has not been fully elucidated some studies have indicated that several of the symptoms of these disorders are linked to an altered gut microbiome. In this review, we examine both pre-eclampsia and microbiome literature to summarize the current knowledge on whether the microbiome drives the symptoms of pre-eclampsia or if the aberrant microbiome is a consequence of this condition. Despite the paucity of studies, obvious gut microbiome changes have been noted in women with pre-eclampsia and the individual symptoms associated with the condition. Yet further research is required to fully elucidate the role of the microbiome and the significance it plays in the development of the symptoms. Regardless of this, the literature highlights the potential for a microbiome targeted intervention such as dietary changes or prebiotic and probiotics to reduce the impact of some aspects of these disorders.
Collapse
Affiliation(s)
- Clara Deady
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynecology, University College Cork, Cork, Ireland
- The Infant Research Centre, University College Cork, Cork, Ireland
| | - Aaron Barron
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Gerard W. O’Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Siobhain M. O’Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
20
|
Mosquera FEC, Lizcano Martinez S, Liscano Y. Effectiveness of Psychobiotics in the Treatment of Psychiatric and Cognitive Disorders: A Systematic Review of Randomized Clinical Trials. Nutrients 2024; 16:1352. [PMID: 38732599 PMCID: PMC11085935 DOI: 10.3390/nu16091352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
In this study, a systematic review of randomized clinical trials conducted from January 2000 to December 2023 was performed to examine the efficacy of psychobiotics-probiotics beneficial to mental health via the gut-brain axis-in adults with psychiatric and cognitive disorders. Out of the 51 studies involving 3353 patients where half received psychobiotics, there was a notably high measurement of effectiveness specifically in the treatment of depression symptoms. Most participants were older and female, with treatments commonly utilizing strains of Lactobacillus and Bifidobacteria over periods ranging from 4 to 24 weeks. Although there was a general agreement on the effectiveness of psychobiotics, the variability in treatment approaches and clinical presentations limits the comparability and generalization of the findings. This underscores the need for more personalized treatment optimization and a deeper investigation into the mechanisms through which psychobiotics act. The research corroborates the therapeutic potential of psychobiotics and represents progress in the management of psychiatric and cognitive disorders.
Collapse
Affiliation(s)
- Freiser Eceomo Cruz Mosquera
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia
| | - Santiago Lizcano Martinez
- Área Servicio de Alimentación, Área Nutrición Clínica Hospitalización UCI Urgencias Y Equipo de Soporte nutricional, Clínica Nuestra, Cali 760041, Colombia;
| | - Yamil Liscano
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 760035, Colombia
| |
Collapse
|
21
|
Holcomb M, Marshall A, Flinn H, Lozano M, Soriano S, Gomez-Pinilla F, Treangen TJ, Villapol S. Probiotic treatment causes sex-specific neuroprotection after traumatic brain injury in mice. RESEARCH SQUARE 2024:rs.3.rs-4196801. [PMID: 38645104 PMCID: PMC11030542 DOI: 10.21203/rs.3.rs-4196801/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Recent studies have shed light on the potential role of gut dysbiosis in shaping traumatic brain injury (TBI) outcomes. Changes in the levels and types of Lactobacillus bacteria present might impact the immune system disturbances, neuroinflammatory responses, anxiety and depressive-like behaviors, and compromised neuroprotection mechanisms triggered by TBI. Objective This study aimed to investigate the effects of a daily pan-probiotic (PP) mixture in drinking water containing strains of Lactobacillus plantarum, L. reuteri, L. helveticus, L. fermentum, L. rhamnosus, L. gasseri, and L. casei, administered for either two or seven weeks before inducing TBI on both male and female mice. Methods Mice were subjected to controlled cortical impact (CCI) injury. Short-chain fatty acids (SCFAs) analysis was performed for metabolite measurements. The taxonomic profiles of murine fecal samples were evaluated using 16S rRNA V1-V3 sequencing analysis. Histological analyses were used to assess neuroinflammation and gut changes post-TBI, while behavioral tests were conducted to evaluate sensorimotor and cognitive functions. Results Our findings suggest that PP administration modulates the diversity and composition of the microbiome and increases the levels of SCFAs in a sex-dependent manner. We also observed a reduction of lesion volume, cell death, and microglial and macrophage activation after PP treatment following TBI in male mice. Furthermore, PP-treated mice show motor function improvements and decreases in anxiety and depressive-like behaviors. Conclusion Our findings suggest that PP administration can mitigate neuroinflammation and ameliorate motor and anxiety and depressive-like behavior deficits following TBI. These results underscore the potential of probiotic interventions as a viable therapeutic strategy to address TBI-induced impairments, emphasizing the need for gender-specific treatment approaches.
Collapse
|
22
|
Koutromanos I, Legaki E, Gazouli M, Vasilopoulos E, Kouzoupis A, Tzavellas E. Gut microbiome in alcohol use disorder: Implications for health outcomes and therapeutic strategies-a literature review. World J Methodol 2024; 14:88519. [PMID: 38577203 PMCID: PMC10989405 DOI: 10.5662/wjm.v14.i1.88519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
Alcohol use disorder (AUD) represents a major public health issue which affects millions of people globally and consist a chronic relapsing condition associated with substantial morbidity and mortality. The gut microbiome plays a crucial role in maintaining overall health and has emerged as a significant contributor to the pathophysiology of various psychiatric disorders. Recent evidence suggests that the gut microbiome is intimately linked to the development and progression of AUD, with alcohol consumption directly impacting its composition and function. This review article aims to explore the intricate relationship between the gut microbiome and AUD, focusing on the implications for mental health outcomes and potential therapeutic strategies. We discuss the bidirectional communication between the gut microbiome and the brain, highlighting the role of microbiota-derived metabolites in neuroinflammation, neurotransmission, and mood regulation. Furthermore, we examine the influence of AUD-related factors, such as alcohol-induced gut dysbiosis and increased intestinal permeability, on mental health outcomes. Finally, we explore emerging therapeutic avenues targeting the gut microbiome in the management of AUD, including prebiotics, probiotics, and fecal microbiota transplantation. Understanding the complex interplay between the gut microbiome and AUD holds promise for developing novel interventions that could improve mental health outcomes in individuals with AUD.
Collapse
Affiliation(s)
- Ilias Koutromanos
- First Department of Psychiatry, "Aiginition" Hospital, School of Medicine, National and Kapodistrian University of Athens, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
| | - Evangelia Legaki
- Department of Basic Biological Science, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Efthimios Vasilopoulos
- First Department of Psychiatry, "Aiginition" Hospital, School of Medicine, National and Kapodistrian University of Athens, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
| | - Anastasios Kouzoupis
- First Department of Psychiatry, "Aiginition" Hospital, School of Medicine, National and Kapodistrian University of Athens, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
| | - Elias Tzavellas
- First Department of Psychiatry, "Aiginition" Hospital, School of Medicine, National and Kapodistrian University of Athens, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
| |
Collapse
|
23
|
Luz CSDS, Fonseca AETPD, Santos JS, Araujo JF, Duarte LL, Moreno CRDC. Association of Meal Timing with Sleep Quality and Anxiety According to Chronotype: A Study of University Students. Clocks Sleep 2024; 6:156-169. [PMID: 38534799 DOI: 10.3390/clockssleep6010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
There are several determinants of mental health symptoms, ranging from individual characteristics to social factors. Consistent with patterns in the general population, students with evening characteristics tend to exhibit more anxiety symptoms and poorer sleep quality compared to morning students. Meal timing also appears to affect sleep and may be associated with mental health symptoms. In this context, the aim of the present study was to investigate the association of the timing of the main and last meals of the day with sleep quality and anxiety levels, according to the chronotype of university students. This study was conducted in colleges in São Paulo, Brazil, and involved application of a questionnaire to 162 university students. The questionnaire collected sociodemographic information meal and study times, and included scales assessing eveningness and morningness, sleep quality, and anxiety. Students demonstrating a phase delay in both chronotype and dinner timing exhibited higher levels of anxiety compared to morning-type students. Although no associations were observed between meal timing and sleep quality, sleeping later was associated with poorer sleep quality. The study suggests that evening students and those who eat late at night are more prone to presenting mental health symptoms. More studies are needed to further investigate this association.
Collapse
Affiliation(s)
- Cristina Souza da Silva Luz
- Department of Health, Life Cycles, and Society, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | | | - Jefferson Souza Santos
- Department of Health, Life Cycles, and Society, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
- Department of Theory and Foundations of Education, Education Sector, Federal University of Paraná, Curitiba 80230-130, Brazil
| | - John Fontenele Araujo
- Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| | - Leandro Lourenção Duarte
- Department for Health Sciences, Federal University of Recôncavo da Bahia, Cruz das Almas 44380-000, Brazil
| | | |
Collapse
|
24
|
Patterson E, Tan HTT, Groeger D, Andrews M, Buckley M, Murphy EF, Groeger JA. Bifidobacterium longum 1714 improves sleep quality and aspects of well-being in healthy adults: a randomized, double-blind, placebo-controlled clinical trial. Sci Rep 2024; 14:3725. [PMID: 38355674 PMCID: PMC10866977 DOI: 10.1038/s41598-024-53810-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
Stress and sleep are linked with overall well-being. Bifidobacterium longum 1714 has been shown to influence stress responses and modulate neural responses during social stress, and influence sleep quality during examination stress in healthy adults. Here, we explored the ability of this strain to alter sleep quality in adults using subjective and objective measures. Eighty-nine adults (18-45y) with impaired sleep quality assessed with the Pittsburgh Sleep Quality Index (PSQI) and with a global score ≥ 5 were randomized to receive B. longum 1714 or placebo daily for eight weeks. Assessing the effect of the strain on PSQI global score was the primary objective. Secondary objectives assessed sleep quality and well-being subjectively and sleep parameters using actigraphy objectively. While PSQI global score improved in both groups, B. longum 1714 significantly improved the PSQI component of sleep quality (p < 0.05) and daytime dysfunction due to sleepiness (p < 0.05) after 4 weeks and social functioning (p < 0.05) and energy/vitality (p < 0.05) after 8 weeks, compared to placebo. No significant effect on actigraphy measures were observed. The 1714 strain had a mild effect on sleep, demonstrated by a faster improvement in sleep quality at week 4 compared to placebo, although overall improvements after 8 weeks were similar in both groups. B. longum 1714 improved social functioning and increased energy/vitality in line with previous work that showed the strain modulated neural activity which correlated with enhanced vitality/reduced mental fatigue (ClinicalTrials.gov: NCT04167475).
Collapse
Affiliation(s)
| | | | | | - Mark Andrews
- Nottingham Trent University, Nottingham, NG1 4FQ, UK
| | - Martin Buckley
- Mercy University Hospital, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
25
|
Luqman A, He M, Hassan A, Ullah M, Zhang L, Rashid Khan M, Din AU, Ullah K, Wang W, Wang G. Mood and microbes: a comprehensive review of intestinal microbiota's impact on depression. Front Psychiatry 2024; 15:1295766. [PMID: 38404464 PMCID: PMC10884216 DOI: 10.3389/fpsyt.2024.1295766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
Depression is considered a multifaceted and intricate mental disorder of growing concern due to its significant impact on global health issues. The human gut microbiota, also known as the "second brain," has an important role in the CNS by regulating it through chemical, immunological, hormonal, and neurological processes. Various studies have found a significant bidirectional link between the brain and the gut, emphasizing the onset of depression therapies. The biological and molecular processes underlying depression and microbiota are required, as the bidirectional association may represent a novel study. However, profound insights into the stratification and diversity of the gut microbiota are still uncommon. This article investigates the emerging evidence of a bacterial relationship between the gut and the brain's neurological system and its potential pathogenicity and relevance. The interplay of microbiota, immune system, nervous system neurotransmitter synthesis, and neuroplasticity transitions is also widely studied. The consequences of stress, dietary fibers, probiotics, prebiotics, and antibiotics on the GB axis are being studied. Multiple studies revealed the processes underlying this axis and led to the development of effective microbiota-based drugs for both prevention and treatment. Therefore, the results support the hypothesis that gut microbiota influences depression and provide a promising area of research for an improved knowledge of the etiology of the disease and future therapies.
Collapse
Affiliation(s)
- Ameer Luqman
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Mei He
- Chongqing University Cancer Hospital, Chongqing, China
| | - Adil Hassan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing University of Science and Technology, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| | - Mehtab Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | | | - Muhammad Rashid Khan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
| | - Ahmad Ud Din
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, United States
| | - Kamran Ullah
- Department of Biology, The University of Haripur, Haripur, Pakistan
| | - Wei Wang
- Chongqing University Cancer Hospital, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implant, Bioengineering College of Chongqing University, Chongqing, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
26
|
Ritz NL, Draper LA, Bastiaanssen TFS, Turkington CJR, Peterson VL, van de Wouw M, Vlckova K, Fülling C, Guzzetta KE, Burokas A, Harris H, Dalmasso M, Crispie F, Cotter PD, Shkoporov AN, Moloney GM, Dinan TG, Hill C, Cryan JF. The gut virome is associated with stress-induced changes in behaviour and immune responses in mice. Nat Microbiol 2024; 9:359-376. [PMID: 38316929 PMCID: PMC10847049 DOI: 10.1038/s41564-023-01564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/17/2023] [Indexed: 02/07/2024]
Abstract
The microbiota-gut-brain axis has been shown to play an important role in the stress response, but previous work has focused primarily on the role of the bacteriome. The gut virome constitutes a major portion of the microbiome, with bacteriophages having the potential to remodel bacteriome structure and activity. Here we use a mouse model of chronic social stress, and employ 16S rRNA and whole metagenomic sequencing on faecal pellets to determine how the virome is modulated by and contributes to the effects of stress. We found that chronic stress led to behavioural, immune and bacteriome alterations in mice that were associated with changes in the bacteriophage class Caudoviricetes and unassigned viral taxa. To determine whether these changes were causally related to stress-associated behavioural or physiological outcomes, we conducted a faecal virome transplant from mice before stress and autochthonously transferred it to mice undergoing chronic social stress. The transfer of the faecal virome protected against stress-associated behaviour sequelae and restored stress-induced changes in select circulating immune cell populations, cytokine release, bacteriome alterations and gene expression in the amygdala. These data provide evidence that the virome plays a role in the modulation of the microbiota-gut-brain axis during stress, indicating that these viral populations should be considered when designing future microbiome-directed therapies.
Collapse
Affiliation(s)
- Nathaniel L Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Lorraine A Draper
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Christopher J R Turkington
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Veronica L Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Pediatrics, University of Calgary, Calgary, Canada
| | - Klara Vlckova
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Katherine E Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Aurelijus Burokas
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Hugh Harris
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Marion Dalmasso
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000, Caen, France
| | - Fiona Crispie
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Andrey N Shkoporov
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Gerard M Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Corke, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
27
|
Chan HHY, Siu PLK, Choy CT, Chan UK, Zhou J, Wong CH, Lee YW, Chan HW, Tsui JCC, Loo SKF, Tsui SKW. Novel Multi-Strain E3 Probiotic Formulation Improved Mental Health Symptoms and Sleep Quality in Hong Kong Chinese. Nutrients 2023; 15:5037. [PMID: 38140296 PMCID: PMC10745623 DOI: 10.3390/nu15245037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Mental health issues have emerged as a significant concern in public health, given their association with physical and psychological comorbidities and the resultant socioeconomic burdens. Recent studies have highlighted the interplay between gut microbes and brain functions through the gut-brain axis. To investigate this further, we conducted a targeted 16S rRNA sequencing and comprehensive bioinformatic analysis among Southern Chinese individuals to explore the role of the gut microbiome in depression, anxiety, and sleep disturbance. We analyzed the differences in the gut microbiome profile of 68 participants with sleep disturbance and mood symptoms before and after an 8-week course of a novel oral E3 multi-strain probiotics formula. The results revealed a significant improvement in subjective sleep quality (PSQI: mean 8.79 at baseline vs. 7.10 at week 8, p < 0.001), depressive symptoms (PHQ9: mean 6.17 at baseline vs. 4.76 at week 8, p < 0.001), and anxious symptoms (GAD7: mean 4.90 at baseline vs. 3.76 at week 8, p < 0.001). Additionally, there were notable differences in beta diversity (weighted UniFrac; p = 0.045) and increased Firmicutes/Bacteroidetes (F/B) ratio (p = 4 × 10-4) were observed in the gut microbiome analysis. Furthermore, the relative abundance of Bifidobacterium bifidum (p < 0.001), Lactobacillus acidophilus (p < 0.001), Lactobacillus helveticus (p < 0.001) and Lactobacillus plantarum (p < 0.001) were significantly increased after the 8-week probiotic supplementation. Our study suggests that the gut microbial landscape varies between responders and non-responders at multiple levels, including genera, species, functional, and network interaction. Notably, the use of probiotics in populations with depressive or anxious symptoms and poor sleeping quality remodeled the gut microbiome and demonstrated improved mood and sleep quality.
Collapse
Affiliation(s)
- Helen Hoi Yin Chan
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China (P.L.K.S.); (U.K.C.); (J.Z.); (C.H.W.); (Y.W.L.); (H.W.C.); (J.C.C.T.)
| | - Pui Ling Kella Siu
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China (P.L.K.S.); (U.K.C.); (J.Z.); (C.H.W.); (Y.W.L.); (H.W.C.); (J.C.C.T.)
| | - Chi Tung Choy
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China (P.L.K.S.); (U.K.C.); (J.Z.); (C.H.W.); (Y.W.L.); (H.W.C.); (J.C.C.T.)
| | - Un Kei Chan
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China (P.L.K.S.); (U.K.C.); (J.Z.); (C.H.W.); (Y.W.L.); (H.W.C.); (J.C.C.T.)
| | - Junwei Zhou
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China (P.L.K.S.); (U.K.C.); (J.Z.); (C.H.W.); (Y.W.L.); (H.W.C.); (J.C.C.T.)
| | - Chi Ho Wong
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China (P.L.K.S.); (U.K.C.); (J.Z.); (C.H.W.); (Y.W.L.); (H.W.C.); (J.C.C.T.)
| | - Yuk Wai Lee
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China (P.L.K.S.); (U.K.C.); (J.Z.); (C.H.W.); (Y.W.L.); (H.W.C.); (J.C.C.T.)
| | - Ho Wang Chan
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China (P.L.K.S.); (U.K.C.); (J.Z.); (C.H.W.); (Y.W.L.); (H.W.C.); (J.C.C.T.)
| | - Joseph Chi Ching Tsui
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China (P.L.K.S.); (U.K.C.); (J.Z.); (C.H.W.); (Y.W.L.); (H.W.C.); (J.C.C.T.)
| | - Steven King Fan Loo
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China (P.L.K.S.); (U.K.C.); (J.Z.); (C.H.W.); (Y.W.L.); (H.W.C.); (J.C.C.T.)
- Hong Kong Institute of Integrative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Dermatology Centre, CUHK Medical Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen Kwok Wing Tsui
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China (P.L.K.S.); (U.K.C.); (J.Z.); (C.H.W.); (Y.W.L.); (H.W.C.); (J.C.C.T.)
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
28
|
Gil-Hernández E, Ruiz-González C, Rodriguez-Arrastia M, Ropero-Padilla C, Rueda-Ruzafa L, Sánchez-Labraca N, Roman P. Effect of gut microbiota modulation on sleep: a systematic review and meta-analysis of clinical trials. Nutr Rev 2023; 81:1556-1570. [PMID: 37023468 DOI: 10.1093/nutrit/nuad027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
CONTEXT A bidirectional relationship between gut microbiota (GM) and circadian rhythms has been proposed. OBJECTIVE The aim of this study was to analyze the efficacy of probiotic or prebiotic intervention on sleep quality and quantity. DATA SOURCES A systematic review and meta-analysis were conducted using the databases PubMed (MEDLINE), Embase, CINAHL, and Web of Science. Only randomized clinical trials written in English or Spanish were considered. DATA EXTRACTION The initial search resulted in 219 articles. Following the removal of duplicates and consideration of the selection criteria, 25 articles were selected for the systematic review and 18 articles for the meta-analysis. DATA ANALYSIS Microbiota modulation was not demonstrated to be associated with significant improvement in sleep quality in the present meta-analysis (P = 0.31). In terms of sleep duration, the meta-analysis found no improvement due to GM modulation (P = 0.43). CONCLUSION The results of this meta-analysis indicate that there is still insufficient evidence to support the relationship between GM modulation and improved sleep quality. While several studies assume that including probiotics in the diet will undoubtedly improve sleep quality, more research is needed to fully understand this phenomenon. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42021245118.
Collapse
Affiliation(s)
| | | | - Miguel Rodriguez-Arrastia
- Faculty of Health Sciences, Department of Nursing Science, Physiotherapy and Medicine, University of Almeria, Almeria, Spain
| | - Carmen Ropero-Padilla
- Faculty of Health Sciences, Department of Nursing Science, Physiotherapy and Medicine, University of Almeria, Almeria, Spain
| | - Lola Rueda-Ruzafa
- Faculty of Health Sciences, Department of Nursing Science, Physiotherapy and Medicine, University of Almeria, Almeria, Spain
| | - Nuria Sánchez-Labraca
- Faculty of Health Sciences, Department of Nursing Science, Physiotherapy and Medicine, University of Almeria, Almeria, Spain
| | - Pablo Roman
- Faculty of Health Sciences, Department of Nursing Science, Physiotherapy and Medicine, University of Almeria, Almeria, Spain
- Health Research Center CEINSA, University of Almeria, Almeria, Spain
- Research Group CTS-1114 Health Sciences, University of Almeria, Almeria, Spain
| |
Collapse
|
29
|
Fu C, Huang Z, van Harmelen F, He T, Jiang X. Food4healthKG: Knowledge graphs for food recommendations based on gut microbiota and mental health. Artif Intell Med 2023; 145:102677. [PMID: 37925207 DOI: 10.1016/j.artmed.2023.102677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/05/2023] [Accepted: 10/03/2023] [Indexed: 11/06/2023]
Abstract
Food is increasingly acknowledged as a powerful means to promote and maintain mental health. The introduction of the gut-brain axis has been instrumental in understanding the impact of food on mental health. It is widely reported that food can significantly influence gut microbiota metabolism, thereby playing a pivotal role in maintaining mental health. However, the vast amount of heterogeneous data published in recent research lacks systematic integration and application development. To remedy this, we construct a comprehensive knowledge graph, named Food4healthKG, focusing on food, gut microbiota, and mental diseases. The constructed workflow includes the integration of numerous heterogeneous data, entity linking to a normalized format, and the well-designed representation of the acquired knowledge. To illustrate the availability of Food4healthKG, we design two case studies: the knowledge query and the food recommendation based on Food4healthKG. Furthermore, we propose two evaluation methods to validate the quality of the results obtained from Food4healthKG. The results demonstrate the system's effectiveness in practical applications, particularly in providing convincing food recommendations based on gut microbiota and mental health. Food4healthKG is accessible at https://github.com/ccszbd/Food4healthKG.
Collapse
Affiliation(s)
- Chengcheng Fu
- National Engineering Research Center for E-Learning, Central China Normal University, Wuhan, China; School of Computer Science, Central China Normal University, Wuhan, China; Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; National Language Resources Monitor Research Center for Network Media, Central China Normal University, Wuhan, China
| | - Zhisheng Huang
- Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China; Deep Blue Technology Group, Shanghai, China
| | - Frank van Harmelen
- Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Tingting He
- School of Computer Science, Central China Normal University, Wuhan, China; National Language Resources Monitor Research Center for Network Media, Central China Normal University, Wuhan, China
| | - Xingpeng Jiang
- School of Computer Science, Central China Normal University, Wuhan, China; National Language Resources Monitor Research Center for Network Media, Central China Normal University, Wuhan, China.
| |
Collapse
|
30
|
Letenneur V, Monnoye M, Philippe C, Holowacz S, Rabot S, Lepage P, Jacouton E, Naudon L. Effects of a Lacticaseibacillus Mix on Behavioural, Biochemical, and Gut Microbial Outcomes of Male Mice following Chronic Restraint Stress. Nutrients 2023; 15:4635. [PMID: 37960288 PMCID: PMC10648220 DOI: 10.3390/nu15214635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
The effect of supplementation with Lactobacillus strains to prevent the consequences of chronic stress on anxiety in mouse strains sensitive to stress and the consequences on gut microbiota have been relatively unexplored. Thus, we administered a Lacticaseibacillus casei LA205 and Lacticaseibacillus paracasei LA903 mix to male BALB/cByJrj mice two weeks before and during 21-day chronic restraint stress (CRS) (non-stressed/solvent (NS-PBS), non-stressed/probiotics (NS-Probio), CRS/solvent (S-PBS), CRS/probiotics (S-Probio)). CRS resulted in lower body weight and coat state alteration, which were attenuated by the probiotic mix. S-Probio mice showed less stress-associated anxiety-like behaviours than their NS counterpart, while no difference was seen in PBS mice. Serum corticosterone levels were significantly higher in the S-Probio group than in other groups. In the hippocampus, mRNA expression of dopamine and serotonin transporters was lower in S-Probio than in S-PBS mice. Few differences in bacterial genera proportions were detected, with a lower relative abundance of Alistipes in S-Probio vs. S-PBS. CRS was accompanied by a decrease in the proportion of caecal acetate in S-PBS mice vs. NS-PBS, but not in the intervention groups. These data show that the probiotic mix could contribute to better coping with chronic stress, although the precise bacterial mechanism is still under investigation.
Collapse
Affiliation(s)
- Vivien Letenneur
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (V.L.); (M.M.); (C.P.); (S.R.); (P.L.)
| | - Magali Monnoye
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (V.L.); (M.M.); (C.P.); (S.R.); (P.L.)
| | - Catherine Philippe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (V.L.); (M.M.); (C.P.); (S.R.); (P.L.)
| | - Sophie Holowacz
- PiLeJe Laboratoire, Carré Suffren, 31–35 Rue de la Fédération, CEDEX 15, 75015 Paris, France; (S.H.); (E.J.)
| | - Sylvie Rabot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (V.L.); (M.M.); (C.P.); (S.R.); (P.L.)
| | - Patricia Lepage
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (V.L.); (M.M.); (C.P.); (S.R.); (P.L.)
| | - Elsa Jacouton
- PiLeJe Laboratoire, Carré Suffren, 31–35 Rue de la Fédération, CEDEX 15, 75015 Paris, France; (S.H.); (E.J.)
| | - Laurent Naudon
- Université Paris-Saclay, INRAE, AgroParisTech, CNRS, Micalis Institute, 78350 Jouy-en-Josas, France
| |
Collapse
|
31
|
Liu Z, Ling Y, Peng Y, Han S, Ren Y, Jing Y, Fan W, Su Y, Mu C, Zhu W. Regulation of serotonin production by specific microbes from piglet gut. J Anim Sci Biotechnol 2023; 14:111. [PMID: 37542282 PMCID: PMC10403853 DOI: 10.1186/s40104-023-00903-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/04/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Serotonin is an important signaling molecule that regulates secretory and sensory functions in the gut. Gut microbiota has been demonstrated to affect serotonin synthesis in rodent models. However, how gut microbes regulate intestinal serotonin production in piglets remains vague. To investigate the relationship between microbiota and serotonin specifically in the colon, microbial composition and serotonin concentration were analyzed in ileum-cannulated piglets subjected to antibiotic infusion from the ileum when comparing with saline infusion. Microbes that correlated positively with serotonin production were isolated from piglet colon and were further used to investigate the regulation mechanisms on serotonin production in IPEC-J2 and a putative enterochromaffin cell line RIN-14B cells. RESULTS Antibiotic infusion increased quantities of Lactobacillus amylovorus (LA) that positively correlated with increased serotonin concentrations in the colon, while no effects observed for Limosilactobacillus reuteri (LR). To understand how microbes regulate serotonin, representative strains of LA, LR, and Streptococcus alactolyticus (SA, enriched in feces from prior observation) were selected for cell culture studies. Compared to the control group, LA, LR and SA supernatants significantly up-regulated tryptophan hydroxylase 1 (TPH1) expression and promoted serotonin production in IPEC-J2 cells, while in RIN-14B cells only LA exerted similar action. To investigate potential mechanisms mediated by microbe-derived molecules, microbial metabolites including lactate, acetate, glutamine, and γ-aminobutyric acid were selected for cell treatment based on computational and metabolite profiling in bacterial supernatant. Among these metabolites, acetate upregulated the expression of free fatty acid receptor 3 and TPH1 while downregulated indoleamine 2,3-dioxygenase 1. Similar effects were also recapitulated when treating the cells with AR420626, an agonist targeting free fatty acid receptor 3. CONCLUSIONS Overall, these results suggest that Lactobacillus amylovorus showed a positive correlation with serotonin production in the pig gut and exhibited a remarkable ability to regulate serotonin production in cell cultures. These findings provide evidence that microbial metabolites mediate the dialogue between microbes and host, which reveals a potential approach using microbial manipulation to regulate intestinal serotonin biosynthesis.
Collapse
Affiliation(s)
- Ziyu Liu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yidan Ling
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yu Peng
- Hubei CAT Biological Technology Co., Ltd., Wuhan, China
| | - Shuibing Han
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yuting Ren
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yujia Jing
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Wenlu Fan
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Chunlong Mu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China.
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
32
|
Önning G, Montelius C, Hillman M, Larsson N. Intake of Lactiplantibacillus plantarum HEAL9 Improves Cognition in Moderately Stressed Subjects: A Randomized Controlled Study. Nutrients 2023; 15:3466. [PMID: 37571403 PMCID: PMC10421450 DOI: 10.3390/nu15153466] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND The usage of probiotics has expanded beyond the areas of gut and immune health improvement. Several studies have shown the positive impact associated between probiotics and stress, cognition, and mood; a relationship referred to as the gut-brain axis. METHOD The aim of this exploratory study was to evaluate the effect of the probiotic strain Lactiplantibacillus plantarum HEAL9 (LPHEAL9) on the gut-brain axis in subjects with moderate stress. One hundred and twenty-nine subjects aged 21-52 years completed the study, randomized to consume either LPHEAL9 (n = 65) or placebo (n = 64) for 12 weeks. RESULTS Perceived stress and awakening cortisol were significantly reduced over time in both groups. A significant improvement in four cognition tests after consumption of LPHEAL9 compared to placebo was observed (rapid information processing test, numeric working memory test, paired associated learning, and word recall, p < 0.05). There was a tendency for a significantly better improvement in the LPHEAL9 group for three mood subscales (Confusion-Bewilderment, Anger-Hostility, and Depression-Dejection) and for fewer subjects with poor sleep in the LPHEAL9 group compared to placebo (p < 0.10). CONCLUSIONS Intake of LPHEAL9 significantly improved cognitive functions compared to the placebo, potentially by ameliorating aspects of mood and sleep.
Collapse
Affiliation(s)
- Gunilla Önning
- Biomedical Nutrition, Pure and Applied Biochemistry, Lund University, 222 00 Lund, Sweden
- Probi AB, 223 70 Lund, Sweden; (C.M.)
| | | | - Magnus Hillman
- Diabetes Research Laboratory, Department of Clinical Sciences Lund, Lund University, 221 84 Lund, Sweden;
| | | |
Collapse
|
33
|
Aprea G, Del Matto I, Tucci P, Marino L, Scattolini S, Rossi F. In Vivo Functional Properties of Dairy Bacteria. Microorganisms 2023; 11:1787. [PMID: 37512959 PMCID: PMC10385490 DOI: 10.3390/microorganisms11071787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
This literature review aimed to collect investigations on the in vivo evidence for bacteria associated with fermented dairy foods to behave as probiotics with beneficial effects in the prevention and treatment of various diseases. All main bacterial groups commonly present in high numbers in fermented milks or cheeses were taken into account, namely starter lactic acid bacteria (SLAB) Lactobacillus delbrueckii subsp. bulgaricus and lactis, L. helveticus, Lactococcus lactis, Streptococcus thermophilus, non-starter LAB (NSLAB) Lacticaseibacillus spp., Lactiplantibacillus plantarum, dairy propionibacteria, and other less frequently encountered species. Only studies regarding strains of proven dairy origin were considered. Studies in animal models and clinical studies showed that dairy bacteria ameliorate symptoms of inflammatory bowel disease (IBD), mucositis, metabolic syndrome, aging and oxidative stress, cancer, bone diseases, atopic dermatitis, allergies, infections and damage caused by pollutants, mild stress, and depression. Immunomodulation and changes in the intestinal microbiota were the mechanisms most often involved in the observed effects. The results of the studies considered indicated that milk and dairy products are a rich source of beneficial bacteria that should be further exploited to the advantage of human and animal health.
Collapse
Affiliation(s)
- Giuseppe Aprea
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Ilaria Del Matto
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Patrizia Tucci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Lucio Marino
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Silvia Scattolini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| | - Franca Rossi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Campo Boario, 64100 Teramo, Italy
| |
Collapse
|
34
|
Albuquerque Pereira MDF, Morais de Ávila LG, Ávila Alpino GDC, Dos Santos Cruz BC, Almeida LF, Macedo Simões J, Ladeira Bernardes A, Xisto Campos I, de Oliveira Barros Ribon A, de Oliveira Mendes TA, Gouveia Peluzio MDC. Milk kefir alters fecal microbiota impacting gut and brain health in mice. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12630-0. [PMID: 37389589 DOI: 10.1007/s00253-023-12630-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
Kefir is a fermented beverage made of a symbiotic microbial community that stands out for health benefits. Although its microbial profile is still little explored, its effects on modulation of gut microbiota and production of short-chain fatty acids (SCFAs) seems to act by improving brain health. This work aimed to analyze the microbiota profile of milk kefir and its effect on metabolism, oxidative stress, and in the microbiota-gut-brain axis in a murine model. The experimental design was carried out using C57BL-6 mice (n = 20) subdivided into groups that received 0.1 mL water or 0.1 mL (10% w/v) kefir. The kefir proceeded to maturation for 48 h, and then it was orally administered, via gavage, to the animals for 4 weeks. Physicochemical, microbiological, antioxidant analyzes, and microbial profiling of milk kefir beverage were performed as well as growth parameters, food intake, serum markers, oxidative stress, antioxidant enzymes, SCFAs, and metabarcoding were analyzed in the mice. Milk kefir had 76.64 ± 0.42% of free radical scavenging and the microbiota composed primarily by the genus Comamonas. Moreover, kefir increased catalase and superoxide dismutase (colon), and SCFAs in feces (butyrate), and in the brain (butyrate and propionate). Kefir reduced triglycerides, uric acid, and affected the microbiome of animals increasing fecal butyrate-producing bacteria (Lachnospiraceae and Lachnoclostridium). Our results on the brain and fecal SCFAs and the antioxidant effect found were associated with the change in the gut microbiota caused by kefir, which indicates that kefir positively influences the gut-microbiota-brain axis and contributes to the preservation of gut and brain health. KEY POINTS: • Milk kefir modulates fecal microbiota and SCFA production in brain and colon. • Kefir treatment increases the abundance of SCFA-producing bacteria. • Milk kefir increases antioxidant enzymes and influences the metabolism of mice.
Collapse
Affiliation(s)
| | - Larissa Gabriela Morais de Ávila
- Interunit Postgraduate Program in Bioinformatics, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Gabriela de Cássia Ávila Alpino
- Department of Nutrition and Health, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Bruna Cristina Dos Santos Cruz
- Biological Sciences and Health Institute, Universidade Federal de Viçosa Campus Rio Paranaíba, Rodovia BR230 KM 7, Rio Paranaíba, Minas Gerais, Brazil
| | - Lucas Filipe Almeida
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N., Viçosa, Minas Gerais, 36570-900, Brazil
| | - Jordana Macedo Simões
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N., Viçosa, Minas Gerais, 36570-900, Brazil
| | - Andressa Ladeira Bernardes
- Department of Nutrition and Health, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Iasmim Xisto Campos
- Department of Nutrition and Health, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Andréa de Oliveira Barros Ribon
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N., Viçosa, Minas Gerais, 36570-900, Brazil
| | - Tiago Antônio de Oliveira Mendes
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N., Viçosa, Minas Gerais, 36570-900, Brazil
| | - Maria do Carmo Gouveia Peluzio
- Department of Nutrition and Health, Universidade Federal de Viçosa, Av. P.H. Rolfs, S/N, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
35
|
Baião R, Capitão LP, Higgins C, Browning M, Harmer CJ, Burnet PWJ. Multispecies probiotic administration reduces emotional salience and improves mood in subjects with moderate depression: a randomised, double-blind, placebo-controlled study. Psychol Med 2023; 53:3437-3447. [PMID: 35129111 PMCID: PMC10277723 DOI: 10.1017/s003329172100550x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND The potential antidepressant properties of probiotics have been suggested, but their influence on the emotional processes that may underlie this effect is unclear. METHODS Depressed volunteers (n = 71) were recruited into a randomised double-blind, placebo-controlled study to explore the effects of a daily, 4-week intake of a multispecies probiotic or placebo on emotional processing and cognition. Mood, anxiety, positive and negative affect, sleep, salivary cortisol and serum C-reactive peptide (CRP) were assessed before and after supplementation. RESULTS Compared with placebo, probiotic intake increased accuracy at identifying faces expressing all emotions (+12%, p < 0.05, total n = 51) and vigilance to neutral faces (mean difference between groups = 12.28 ms ± 6.1, p < 0.05, total n = 51). Probiotic supplementation also reduced reward learning (-9%, p < 0.05, total n = 51), and interference word recall on the auditory verbal learning task (-18%, p < 0.05, total n = 50), but did not affect other aspects of cognitive performance. Although actigraphy revealed a significant group × night-time activity interaction, follow up analysis was not significant (p = 0.094). Supplementation did not alter salivary cortisol or circulating CRP concentrations. Probiotic intake significantly reduced (-50% from baseline, p < 0.05, n = 35) depression scores on the Patient Health Questionnaire-9, but these did not correlate with the changes in emotional processing. CONCLUSIONS The impartiality to positive and negative emotional stimuli or reward after probiotic supplementation have not been observed with conventional antidepressant therapies. Further studies are required to elucidate the significance of these changes with regard to the mood-improving action of the current probiotic.
Collapse
Affiliation(s)
- Rita Baião
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Liliana P. Capitão
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Cameron Higgins
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Michael Browning
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Catherine J. Harmer
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Philip W. J. Burnet
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| |
Collapse
|
36
|
Drljača J, Milošević N, Milanović M, Abenavoli L, Milić N. When the microbiome helps the brain-current evidence. CNS Neurosci Ther 2023; 29 Suppl 1:43-58. [PMID: 36601680 PMCID: PMC10314113 DOI: 10.1111/cns.14076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/05/2022] [Accepted: 12/17/2022] [Indexed: 01/06/2023] Open
Abstract
The gut microbiota-brain axis has been recognized as a network of connections that provides communication between the gut microflora and both central and autonomic nervous system. The gut microbiota alteration has been targeted for therapy in various neurodegenerative and psychiatric disbalances. Psychobiotics are probiotics that contribute beneficially to the brain function and the host mental health as a result of an interaction with the commensal gut bacteria, although their mechanism of action has not been completely revealed. In this state-of-art review, the findings about the potential therapeutic effects of the psychobiotics alone or in combination with conventional medicine in the treatment of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, as well as in some psychiatric diseases like depression, schizophrenia, and bipolar disorder, have been summarized. The evidence of the psychobiotics therapeutic outcomes obtained in preclinical and clinical trials have been given respectively for the observed neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Jovana Drljača
- Faculty of Medicine, Department of PharmacyUniversity of Novi SadNovi SadSerbia
| | - Nataša Milošević
- Faculty of Medicine, Department of PharmacyUniversity of Novi SadNovi SadSerbia
| | - Maja Milanović
- Faculty of Medicine, Department of PharmacyUniversity of Novi SadNovi SadSerbia
| | - Ludovico Abenavoli
- Department of Health SciencesUniversity Magna Graecia Campus “Salvatore Venuta”CatanzaroItaly
| | - Nataša Milić
- Faculty of Medicine, Department of PharmacyUniversity of Novi SadNovi SadSerbia
| |
Collapse
|
37
|
Lin S, Wang H, Qiu J, Li M, Gao E, Wu X, Xu Y, Chen G. Altered gut microbiota profile in patients with perimenopausal panic disorder. Front Psychiatry 2023; 14:1139992. [PMID: 37304433 PMCID: PMC10249373 DOI: 10.3389/fpsyt.2023.1139992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Females in the perimenopausal period are susceptible to mood disorders. Perimenopausal panic disorder (PPD) is characterized by repeated and unpredictable panic attacks during perimenopause, and it impacts the patient's physical and mental health and social function. Pharmacotherapy is limited in the clinic, and its pathological mechanism is unclear. Recent studies have demonstrated that gut microbiota is strongly linked to emotion; however, the relation between PPD and microbiota is limitedly known. Methods This study aimed to discover specific microbiota in PPD patients and the intrinsic connection between them. Gut microbiota was analyzed in PPD patients (n = 40) and healthy controls (n = 40) by 16S rRNA sequencing. Results The results showed reduced α-diversity (richness) in the gut microbiota of PPD patients. β-diversity indicated that PPD and healthy controls had different intestinal microbiota compositions. At the genus level, 30 species of microbiota abundance had significantly different between the PPD and healthy controls. In addition, HAMA, PDSS, and PASS scales were collected in two groups. It was found that Bacteroides and Alistipes were positively correlated with PASS, PDSS, and HAMA. Discussion Bacteroides and Alistipes dysbiosis dominate imbalanced microbiota in PPD patients. This microbial alteration may be a potential pathogenesis and physio-pathological feature of PPD. The distinct gut microbiota can be a potential diagnostic marker and a new therapeutic target for PPD.
Collapse
Affiliation(s)
- Shen Lin
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hongjin Wang
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jingjing Qiu
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- The Bao'an District TCM Hospital, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Minghong Li
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ebin Gao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaofeng Wu
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- The Bao'an District TCM Hospital, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yunxiang Xu
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Guizhen Chen
- The Bao'an District TCM Hospital, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
38
|
Cichońska P, Kowalska E, Ziarno M. The Survival of Psychobiotics in Fermented Food and the Gastrointestinal Tract: A Review. Microorganisms 2023; 11:microorganisms11040996. [PMID: 37110420 PMCID: PMC10142889 DOI: 10.3390/microorganisms11040996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, scientists have been particularly interested in the gut-brain axis, as well as the impact of probiotics on the nervous system. This has led to the creation of the concept of psychobiotics. The present review describes the mechanisms of action of psychobiotics, their use in food products, and their viability and survival during gastrointestinal passage. Fermented foods have a high potential of delivering probiotic strains, including psychobiotic ones. However, it is important that the micro-organisms remain viable in concentrations ranging from about 106 to 109 CFU/mL during processing, storage, and digestion. Reports indicate that a wide variety of dairy and plant-based products can be effective carriers for psychobiotics. Nonetheless, bacterial viability is closely related to the type of food matrix and the micro-organism strain. Studies conducted in laboratory conditions have shown promising results in terms of the therapeutic properties and viability of probiotics. Because human research in this field is still limited, it is necessary to broaden our understanding of the survival of probiotic strains in the human digestive tract, their resistance to gastric and pancreatic enzymes, and their ability to colonize the microbiota.
Collapse
Affiliation(s)
- Patrycja Cichońska
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159c St., 02-776 Warsaw, Poland
| | - Ewa Kowalska
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159c St., 02-776 Warsaw, Poland
| | - Małgorzata Ziarno
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159c St., 02-776 Warsaw, Poland
| |
Collapse
|
39
|
Kumar A, Pramanik J, Goyal N, Chauhan D, Sivamaruthi BS, Prajapati BG, Chaiyasut C. Gut Microbiota in Anxiety and Depression: Unveiling the Relationships and Management Options. Pharmaceuticals (Basel) 2023; 16:ph16040565. [PMID: 37111321 PMCID: PMC10146621 DOI: 10.3390/ph16040565] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The gut microbiota is critical for maintaining human health and the immunological system. Several neuroscientific studies have shown the significance of microbiota in developing brain systems. The gut microbiota and the brain are interconnected in a bidirectional relationship, as research on the microbiome-gut-brain axis shows. Significant evidence links anxiety and depression disorders to the community of microbes that live in the gastrointestinal system. Modified diet, fish and omega-3 fatty acid intake, macro- and micro-nutrient intake, prebiotics, probiotics, synbiotics, postbiotics, fecal microbiota transplantation, and 5-HTP regulation may all be utilized to alter the gut microbiota as a treatment approach. There are few preclinical and clinical research studies on the effectiveness and reliability of various therapeutic approaches for depression and anxiety. This article highlights relevant research on the association of gut microbiota with depression and anxiety and the different therapeutic possibilities of gut microbiota modification.
Collapse
Affiliation(s)
- Akash Kumar
- Department of Food Technology, SRM University, Sonipat 131029, India
| | - Jhilam Pramanik
- Department of Food Technology, ITM University, Gwalior 474001, India
| | - Nandani Goyal
- Department of Skill Agriculture, Shri Vishwakarma Skill University, Gurugram 122003, India
| | - Dimple Chauhan
- School of Bio-Engineering and Food Technology, Shoolini University, Solan 173229, India
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, India
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
40
|
Zhu R, Fang Y, Li H, Liu Y, Wei J, Zhang S, Wang L, Fan R, Wang L, Li S, Chen T. Psychobiotic Lactobacillus plantarum JYLP-326 relieves anxiety, depression, and insomnia symptoms in test anxious college via modulating the gut microbiota and its metabolism. Front Immunol 2023; 14:1158137. [PMID: 37033942 PMCID: PMC10077425 DOI: 10.3389/fimmu.2023.1158137] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Test anxiety is a common issue among college students, which can affect their physical and psychological health. However, effective interventions or therapeutic strategies are still lacking. This study aims to evaluate the potential effects of Lactobacillus plantarum JYLP-326 on test anxious college students. Methods Sixty anxious students were enrolled and randomly allocated to the placebo group and the probiotic group. Both groups were instructed to take placebo and JYLP-326 products twice per day for three weeks, respectively. Thirty unanxious students with no treatments were assigned to a regular control group. The anxiety, depression, and insomnia questionnaires were used to measure students' mental states at the baseline and the end of this study. 16S rRNA sequencing and untargeted metabolomics were performed to analyze the changes in the gut microbiota and fecal metabolism. Results The questionnaire results suggested that JYLP-326 administration could relieve the symptoms of anxiety, depression, and insomnia in test anxious students. The gut microbiomes of the placebo group showed a significantly greater diversity index than the control group (p < 0.05). An increased abundance of Bacteroides and Roseburia at the genus level was observed in the placebo group, and the relative abundance of Prevotella and Bifidobacterium decreased. Whereas, JYLP-326 administration could partly restore the disturbed gut microbiota. Additionally, test anxiety was correlated with disordered fecal metabolomics such as a higher Ethyl sulfate and a lower Cyclohexylamine, which could be reversed after taking JYLP-326. Furthermore, the changed microbiota and fecal metabolites were significantly associated with anxiety-related symptoms. Conclusion The results indicate that the intervention of L. plantarum JYLP-326 could be an effective strategy to alleviate anxiety, depression, and insomnia in test anxious college students. The potential mechanism underlying this effect could be related to the regulation of gut microbiota and fecal metabolites.
Collapse
Affiliation(s)
- Ruizhe Zhu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Yilin Fang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Hongyu Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Ying Liu
- Institute of Life Science, Nanchang University, Nanchang, China
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Shuwei Zhang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Liwei Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Rui Fan
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Lingfang Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Shengjie Li
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
41
|
Carbia C, Bastiaanssen TFS, Iannone LF, García-Cabrerizo R, Boscaini S, Berding K, Strain CR, Clarke G, Stanton C, Dinan TG, Cryan JF. The Microbiome-Gut-Brain axis regulates social cognition & craving in young binge drinkers. EBioMedicine 2023; 89:104442. [PMID: 36739238 PMCID: PMC10025767 DOI: 10.1016/j.ebiom.2023.104442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Binge drinking is the consumption of an excessive amount of alcohol in a short period of time. This pattern of consumption is highly prevalent during the crucial developmental period of adolescence. Recently, the severity of alcohol use disorders (AUDs) has been linked with microbiome alterations suggesting a role for the gut microbiome in its development. Furthermore, a strong link has emerged too between microbiome composition and socio-emotional functioning across different disorders including AUD. The aim of this study was to investigate the potential link (and its predictive value) between alcohol-related altered microbial profile, social cognition, impulsivity and craving. METHODS Young people (N = 71) aged 18-25 reported their alcohol use and underwent a neuropsychological evaluation. Craving was measured at baseline and three months later. Diet was controlled for. Blood, saliva and hair samples were taken for inflammatory, kynurenine and cortisol analysis. Stool samples were provided for shotgun metagenomic sequencing and short-chain fatty acids (SCFAs) were measured. FINDINGS Binge drinking was associated with distinct microbiome alterations and emotional recognition difficulties. Associations were found for several microbiome species with emotional processing and impulsivity. Craving showed a strong link with alterations in microbiome composition and neuroactive potential over time. INTERPRETATION In conclusion, this research demonstrates alterations in the gut microbiome of young binge drinkers (BDs) and identifies early biomarkers of craving. Associations between emotional processing and microbiome composition further support the growing literature on the gut microbiome as a regulator of social cognition. These findings are of relevance for new gut-derived interventions directed at improving early alcohol-related alterations during the vulnerability period of adolescence. FUNDING C.C. and R.G-C. received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 754535. APC Microbiome Ireland is a research centre funded by Science Foundation Ireland (SFI), through the Irish Government's National Development Plan [grant no. SFI/12/RC/2273_P2]. J.F.C has research support from Cremo, Pharmavite, DuPont and Nutricia. He has spoken at meetings sponsored by food and pharmaceutical companies. G.C. has received honoraria from Janssen, Probi, and Apsen as an invited speaker; is in receipt of research funding from Pharmavite, Fonterra, Nestle and Reckitt; and is a paid consultant for Yakult, Zentiva and Heel pharmaceuticals. All the authors declare no competing interests.
Collapse
Affiliation(s)
- Carina Carbia
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | | | | | | | - Serena Boscaini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Kirsten Berding
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | | | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
42
|
Breast milk from healthy women has higher anti- Candida properties than women with vaginal infections during pregnancy. Food Sci Biotechnol 2023; 32:471-480. [PMID: 36911325 PMCID: PMC9992674 DOI: 10.1007/s10068-022-01088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 11/04/2022] Open
Abstract
The aim of this study was to investigate the different immunological and antimicrobial properties of breast milk from women with (W) or without (WO) vaginal yeast infections during pregnancy in 85 lactating women (W, n = 43; WO, n = 42). Concentrations of IL-10, IgA, IgM, IgG, EGF, and TGF-α were similar in both groups. However, breast milk of women aged below 31 years old from the W-group showed higher concentration of EGF than the WO-group (p = 0.031). Breast milk from WO-group exhibited higher anti-Candida properties than W-group, both via growth inhibition and aggregation of yeast cells (p < 0.001). Correlation analysis showed that breast milk concentration of TGF-α positively correlated with concentrations of IL-10 (p = 0.001) and IgA (p = 0.021) in the W-group. Data from our present study shows that although breast milk from women with vaginal infections during pregnancy may not sufficiently hinder Candida growth, other immuno-modulatory bioactives may substitute for such a protective effect.
Collapse
|
43
|
Griffin SM, Lehtinen MJ, Meunier J, Ceolin L, Roman FJ, Patterson E. Restorative effects of probiotics on memory impairment in sleep-deprived mice. Nutr Neurosci 2023; 26:254-264. [PMID: 35236257 DOI: 10.1080/1028415x.2022.2042915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Insufficient sleep is a serious public health epidemic in modern society, impairing memory and other cognitive functions. In this study, partial sleep deprivation (SD) was used to induce cognitive impairment in mice to determine the effects of probiotics on subsequent cognitive deficits. METHODS Lactiplantibacillus plantarum Lp-115 (Lp-115), Lacticaseibacillus paracasei Lpc-37 (Lpc-37), Bifidobacterium animalis subsp. lactis 420 (B420) and their combination were administered to mice subjected to partial SD and compared with non-SD and SD vehicle groups. Mice were administered a daily oral gavage containing either 1 × 109 colony forming units (CFU) of single-strain, 1.5 × 109 CFU of multi-strain (5 × 108 CFU/strain), or vehicle for thirty days prior to and for nine days during a behavioural test paradigm. The novel object recognition (NOR) test, spontaneous alternation Y-maze (Y-maze), and the step-through passive avoidance (STPA) task were applied to evaluate learning and memory performance following partial SD. RESULTS Partial SD had a significant impact on cognitive function in vehicle mice. Intervention with Lpc-37 significantly improved recognition memory deficits in the NOR test, spatial working memory deficits in the Y-maze, and contextual long-term memory impairments in the STPA task, in mice subjected to partial SD compared to the SD vehicle group. The multi-strain significantly improved recognition memory deficits in the NOR test and spatial working memory deficits in the Y-maze in mice subjected to partial SD compared to the SD vehicle group. CONCLUSIONS These findings demonstrate that Lpc-37 and the multi-strain may play a role in alleviating memory impairments and improve cognitive function in partially sleep-deprived mice.
Collapse
Affiliation(s)
- Síle M Griffin
- IFF Health & Biosciences, Danisco Sweeteners Oy, Kantvik, Finland
| | | | | | | | | | - Elaine Patterson
- IFF Health & Biosciences, Danisco Sweeteners Oy, Kantvik, Finland
| |
Collapse
|
44
|
Vasiliu O. The current state of research for psychobiotics use in the management of psychiatric disorders-A systematic literature review. Front Psychiatry 2023; 14:1074736. [PMID: 36911130 PMCID: PMC9996157 DOI: 10.3389/fpsyt.2023.1074736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
The need to find new therapeutic interventions in patients diagnosed with psychiatric disorders is supported by the data suggesting high rates of relapse, chronic evolution, therapeutic resistance, or lack of adherence and disability. The use of pre-, pro-, or synbiotics as add-ons in the therapeutic management of psychiatric disorders has been explored as a new way to augment the efficacy of psychotropics and to improve the chances for these patients to reach response or remission. This systematic literature review focused on the efficacy and tolerability of psychobiotics in the main categories of psychiatric disorders and it has been conducted through the most important electronic databases and clinical trial registers, using the PRISMA 2020 guidelines. The quality of primary and secondary reports was assessed using the criteria identified by the Academy of Nutrition and Diabetics. Forty-three sources, mostly of moderate and high quality, were reviewed in detail, and data regarding the efficacy and tolerability of psychobiotics was assessed. Studies exploring the effects of psychobiotics in mood disorders, anxiety disorders, schizophrenia spectrum disorders, substance use disorders, eating disorders, attention deficit hyperactivity disorder (ADHD), neurocognitive disorders, and autism spectrum disorders (ASD) were included. The overall tolerability of the interventions assessed was good, but the evidence to support their efficacy in specific psychiatric disorders was mixed. There have been identified data in favor of probiotics for patients with mood disorders, ADHD, and ASD, and also for the association of probiotics and selenium or synbiotics in patients with neurocognitive disorders. In several domains, the research is still in an early phase of development, e.g., in substance use disorders (only three preclinical studies being found) or eating disorders (one review was identified). Although no well-defined clinical recommendation could yet be formulated for a specific product in patients with psychiatric disorders, there is encouraging evidence to support further research, especially if focused on the identification of specific sub-populations that may benefit from this intervention. Several limitations regarding the research in this field should be addressed, i.e., the majority of the finalized trials are of short duration, there is an inherent heterogeneity of the psychiatric disorders, and the diversity of the explored Philae prevents the generalizability of the results from clinical studies.
Collapse
Affiliation(s)
- Octavian Vasiliu
- Department of Psychiatry, Dr. Carol Davila University Emergency Central Military Hospital, Bucharest, Romania
| |
Collapse
|
45
|
Lynch CMK, O’Riordan KJ, Clarke G, Cryan JF. Gut Microbes: The Gut Brain Connection. CLINICAL UNDERSTANDING OF THE HUMAN GUT MICROBIOME 2023:33-59. [DOI: 10.1007/978-3-031-46712-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
46
|
Updates on the Role of Probiotics against Different Health Issues: Focus on Lactobacillus. Int J Mol Sci 2022; 24:ijms24010142. [PMID: 36613586 PMCID: PMC9820606 DOI: 10.3390/ijms24010142] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
This review article is built on the beneficial effects of Lactobacillus against different diseases, and a special focus has been made on its effects against neurological disorders, such as depression, multiple sclerosis, Alzheimer's, and Parkinson's disease. Probiotics are live microbes, which are found in fermented foods, beverages, and cultured milk and, when administered in an adequate dose, confer health benefits to the host. They are known as "health-friendly bacteria", normally residing in the human gut and involved in maintaining homeostatic conditions. Imbalance in gut microbiota results in the pathophysiology of several diseases entailing the GIT tract, skin, immune system, inflammation, and gut-brain axis. Recently, the use of probiotics has gained tremendous interest, because of their profound effects on the management of these disease conditions. Recent findings suggest that probiotics enrichment in different human and mouse disease models showed promising beneficial effects and results in the amelioration of disease symptoms. Thus, this review focuses on the current probiotics-based products, different disease models, variable markers measured during trials, and evidence obtained from past studies on the use of probiotics in the prevention and treatment of different diseases, covering the skin to the central nervous system diseases.
Collapse
|
47
|
Diamanti T, Prete R, Battista N, Corsetti A, De Jaco A. Exposure to Antibiotics and Neurodevelopmental Disorders: Could Probiotics Modulate the Gut-Brain Axis? Antibiotics (Basel) 2022; 11:1767. [PMID: 36551423 PMCID: PMC9774196 DOI: 10.3390/antibiotics11121767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
In order to develop properly, the brain requires the intricate interconnection of genetic factors and pre-and postnatal environmental events. The gut-brain axis has recently raised considerable interest for its involvement in regulating the development and functioning of the brain. Consequently, alterations in the gut microbiota composition, due to antibiotic administration, could favor the onset of neurodevelopmental disorders. Literature data suggest that the modulation of gut microbiota is often altered in individuals affected by neurodevelopmental disorders. It has been shown in animal studies that metabolites released by an imbalanced gut-brain axis, leads to alterations in brain function and deficits in social behavior. Here, we report the potential effects of antibiotic administration, before and after birth, in relation to the risk of developing neurodevelopmental disorders. We also review the potential role of probiotics in treating gastrointestinal disorders associated with gut dysbiosis after antibiotic administration, and their possible effect in ameliorating neurodevelopmental disorder symptoms.
Collapse
Affiliation(s)
- Tamara Diamanti
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, 00185 Rome, Italy
| | - Roberta Prete
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Natalia Battista
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Aldo Corsetti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Antonella De Jaco
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
48
|
Li Y, Chen S, Chen L, Chen C, Ren X, Zheng Z, Weng L, Ge H, Wang J, Liu G, Ye X. Immunomodulatory effects of L. helveticus WHH2580 fermented milk on an immunosuppressed murine model. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|
49
|
Long J, Wang J, Li Y, Chen S. Gut microbiota in ischemic stroke: Where we stand and challenges ahead. Front Nutr 2022; 9:1008514. [PMID: 36532541 PMCID: PMC9756810 DOI: 10.3389/fnut.2022.1008514] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/07/2022] [Indexed: 01/05/2025] Open
Abstract
Gut microbiota is increasingly recognized to affect host health and disease, including ischemic stroke (IS). Here, we systematically review the current understanding linking gut microbiota as well as the associated metabolites to the pathogenesis of IS (e.g., oxidative stress, apoptosis, and neuroinflammation). Of relevance, we highlight that the implications of gut microbiota-dependent intervention could be harnessed in orchestrating IS.
Collapse
Affiliation(s)
- Jiaxin Long
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Jinlong Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Yang Li
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Shuai Chen
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
50
|
Examining the Influence of the Human Gut Microbiota on Cognition and Stress: A Systematic Review of the Literature. Nutrients 2022; 14:nu14214623. [PMID: 36364881 PMCID: PMC9656545 DOI: 10.3390/nu14214623] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
The gut microbiota is seen as an emerging biotechnology that can be manipulated to enhance or preserve cognition and physiological outputs of anxiety and depression in clinical conditions. However, the existence of such interactions in healthy young individuals in both non-stressful and stressful environments is unclear. The aim of this systematic review was to examine the relationship between the human gut microbiota, including modulators of the microbiota on cognition, brain function and/or stress, anxiety and depression. A total of n = 25 eligible research articles from a possible 3853 published between October 2018 and August 2021 were identified and included. Two study design methods for synthesis were identified: cross-sectional or pre/post intervention. Few cross-sectional design studies that linked microbiota to cognition, brain activity/structure or mental wellbeing endpoints existed (n = 6); however, correlations between microbiota diversity and composition and areas of the brain related to cognitive functions (memory and visual processing) were observed. Intervention studies targeting the gut microbiota to improve cognition, brain structure/function or emotional well-being (n = 19) generally resulted in improved brain activity and/or cognition (6/8), and improvements in depression and anxiety scores (5/8). Despite inherit limitations in studies reviewed, available evidence suggests that gut microbiota is linked to brain connectivity and cognitive performance and that modulation of gut microbiota could be a promising strategy for enhancing cognition and emotional well-being in stressed and non-stressed situations.
Collapse
|