1
|
Beigoli S, Boskabady MH. The molecular basis of the immunomodulatory effects of natural products: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156028. [PMID: 39276685 DOI: 10.1016/j.phymed.2024.156028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/21/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Natural products (NPs) have long been recognized for their potential to modulate the immune system, offering a natural and holistic approach to enhancing immune function. In recent years, the immunomodulation effects of various natural products have attained significant attention. PURPOSE This article provides an overview of the role of natural products in immunomodulation, exploring their mechanisms of action, common types of NPs with immunomodulation properties, clinical applications, as well as considerations for their safety and efficacy. METHODS Extensive research has been conducted to compile important discoveries on the immunomodulatory properties of NPs through thorough searches of multiple databases such as PubMed, Science Direct, and Scopus up until January 2024. RESULTS By decreasing the levels of Th2 cytokines and pro-inflammatory cytokines, the results suggested that NPs have the ability to modulate the immune system. Therefore, NPs alleviate inflammation in various disorders such as asthma and cancer. Furthermore, the observed increase in CD4 cells and IFN-ɣ/IL4 levels, along with an increased IFN-c/IL4 ratio, indicates a stimulatory effect of NPs on Th1 activity in various inflammatory conditions. Therefore, NPs regulate the immune system by inhibiting T-cells and decreasing the growth of young B-cell lymphoma cells. CONCLUSION Reviewing studies indicated that NPs have the potential to serve as immunomodulatory candidates for treating disorders characterized by immune dysregulation. However, additional experimental and clinical studies are necessary before these agents can be implemented in clinical settings.
Collapse
Affiliation(s)
- Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Akkewar AS, Mishra KA, Sethi KK. Mangiferin: A natural bioactive immunomodulating glucosylxanthone with potential against cancer and rheumatoid arthritis. J Biochem Mol Toxicol 2024; 38:e23765. [PMID: 38967724 DOI: 10.1002/jbt.23765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/15/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Mangiferin is a naturally occurring glucosylxanthone that has shown promising immunomodulatory effects. It is generally isolated from the leaves, peels, bark, and kernels of Mangifera indica Linn. Mangiferin is like a miraculous natural bioactive molecule that has an immunomodulatory function that makes it a potential therapeutic candidate for the treatment of rheumatoid arthritis (RA) and cancer. The anticancer activity of mangiferin acts by blocking NF-κB, as well as regulating the β-catenin, EMT, MMP9, MMP2, LDH, ROS, and NO, and also by the activation of macrophages. It has no cytotoxic effect on grown chondrocytes and lowers matrix metalloproteinase levels. Additionally, it has a potent proapoptotic impact on synoviocytes. The precise molecular mechanism of action of mangiferin on RA and malignancies is still unknown. This comprehensive review elaborates on the immunomodulatory effect of mangiferin and its anticancer and anti-RA activity. This also explained the total synthesis of mangiferin and its in vitro and in vivo screening models.
Collapse
Affiliation(s)
- Ashish Sunil Akkewar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Km Abha Mishra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Kalyan K Sethi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| |
Collapse
|
3
|
Yadav I, Kumar R, Fatima Z, Rema V. Ocimum sanctum [Tulsi] as a Potential Immunomodulator for the Treatment of Ischemic Injury in the Brain. Curr Mol Med 2024; 24:60-73. [PMID: 36515030 DOI: 10.2174/1566524023666221212155340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 12/15/2022]
Abstract
Stroke causes brain damage and is one of the main reasons for death. Most survivors of stroke face long-term physical disabilities and cognitive dysfunctions. In addition, they also have persistent emotional and behavioral changes. The two main treatments that are effective are reperfusion with recombinant tissue plasminogen activator and recanalization of penumbra using mechanical thrombectomy. However, these treatments are suitable only for a few patients due to limitations such as susceptibility to hemorrhage and the requirement for administering tissue plasminogen activators within the short therapeutic window during the early hours following a stroke. The paucity of interventions and treatments could be because of the multiple pathological mechanisms induced in the brain by stroke. The ongoing immune response following stroke has been attributed to the worsening brain injury. Hence, novel compounds with immunomodulatory properties that could improve the outcome of stroke patients are required. Natural compounds and medicinal herbs with anti-inflammatory activities and having minimal or no adverse systemic effect could be beneficial in treating stroke. Ocimum sanctum is a medicinal herb that can be considered an effective therapeutic option for ischemic brain injury. Ocimum sanctum, commonly known as holy basil or "Tulsi," is mentioned as the "Elixir of Life" for its healing powers. Since antiquity, Tulsi has been used in the Ayurvedic and Siddha medical systems to treat several diseases. It possesses immuno-modulatory activity, which can alter cellular and humoral immune responses. Tulsi can be considered a potential option as an immuno-modulator for treating various diseases, including brain stroke. In this review, we will focus on the immunomodulatory properties of Tulsi, specifically its effect on both innate and adaptive immunity, as well as its antioxidant and antiinflammatory properties, which could potentially be effective in treating ongoing immune reactions following ischemic brain injury.
Collapse
Affiliation(s)
- Inderjeet Yadav
- National Brain Research Centre [NBRC], Manesar, Haryana, 122052, India
| | - Ravi Kumar
- National Brain Research Centre [NBRC], Manesar, Haryana, 122052, India
| | - Zeeshan Fatima
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
- Amity Institute of Biotechno logy, Amity University Haryana, Gurugram (Manesar)-122413, India
| | - Velayudhan Rema
- National Brain Research Centre [NBRC], Manesar, Haryana, 122052, India
| |
Collapse
|
4
|
Abdulkareem ZA, Mohammed NI, Abdollahi A, Ahmed OR, Ghaffar OR, Khdir HA, Salam DA, Aziz SA, Mustafa MM, Mustafa WM, Abas ZA, Abid OI. Effects of garlic, onion, and apple cider vinegar as a herbal mixture on performance and blood traits of broilers inoculated with chicken infectious anemia virus. Heliyon 2023; 9:e17768. [PMID: 37449102 PMCID: PMC10336684 DOI: 10.1016/j.heliyon.2023.e17768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
This study assessed the effects of a herbal mixture (HM) to protect poultry against chicken infectious anemia (CIA) and to modulate the adverse effects of this virus on performance, mortality, blood profile, white blood cells (WBCs) count, liver enzymes, liver histopathology, and intestinal morphology. Therefore, 240 one-day-old male broiler chicks (Ross 308) were divided into four experimental groups, with six replicates and ten chicks per group. The experimental groups consisted of a control group and groups with 2.5%, 5%, and 7.5% HM, all based on corn-soybean meal. All chicks were inoculated with the CIA virus (CIAV) on day 7. The results showed that supplementation of 2.5% of HM to broiler diet increased feed intake (FI) (P < 0.05) and also increased body weight (BW) and weight gain (WG) slightly (P > 0.05). Adding 7.5% HM caused a reversible decrease in FI, BW, and WG and increased FCR. Compared with the control group, mortality rates declined with an additional dose of HM in CIAV-infected chickens. HM supplementation in the diet of CIAV-infected chickens increased hematocrit (HCT), hemoglobin (Hb), and mean corpuscular volume (MCV) and decreased mean corpuscular hemoglobin concentration (MCHC) compared to the control (P < 0.05). Lymphocyte percentage and lymphocyte/heterophile ratio increased in HM-supplemented groups, especially at 2.5% (P < 0.05), and heterophile and granulocyte percentages were reduced (P < 0.05). Liver enzyme alkaline phosphatase (ALP) and liver steatosis declined in the 2.5% HM-treated group compared to the control (P < 0.05). It was concluded that adding 2.5% of the HM to the CIAV-infected broiler's diet did not negatively affect chicken performance. In addition to its hypolipidemic effects, it could prevent HCT and Hb from decreasing in chicks infected with CIAV and positively affect leukocyte types and liver enzymes. Interestingly, an additional dose of HM in the diet of the CIAV-infected broilers reduced mortality. Therefore, adding 2.5% of HM could prevent the adverse effects of CIA on hematological traits in broiler chicken flocks without adverse effects on performance.
Collapse
Affiliation(s)
- Zana Azeez Abdulkareem
- Department of Animal Resources, Collage of Agricultural Engineering Sciences, University of Raparin, Ranya, Sulaymaniyah, 46012, Iraq
| | - Nihayat Ibrahim Mohammed
- Department of Animal Resources, Collage of Agricultural Engineering Sciences, University of Raparin, Ranya, Sulaymaniyah, 46012, Iraq
| | - Asrin Abdollahi
- Department of Animal Science, University of Kurdistan, Sanandaj, 66177-15175, Iran
| | - Omer Rasool Ahmed
- Department of Animal Resources, Collage of Agricultural Engineering Sciences, University of Raparin, Ranya, Sulaymaniyah, 46012, Iraq
| | - Osama Rahman Ghaffar
- Department of Animal Resources, Collage of Agricultural Engineering Sciences, University of Raparin, Ranya, Sulaymaniyah, 46012, Iraq
| | - Hawkar Azad Khdir
- Department of Animal Resources, Collage of Agricultural Engineering Sciences, University of Raparin, Ranya, Sulaymaniyah, 46012, Iraq
| | - Dashty Akram Salam
- Department of Animal Resources, Collage of Agricultural Engineering Sciences, University of Raparin, Ranya, Sulaymaniyah, 46012, Iraq
| | - Sarhang Ahmad Aziz
- Department of Animal Resources, Collage of Agricultural Engineering Sciences, University of Raparin, Ranya, Sulaymaniyah, 46012, Iraq
| | - Mustafa Mama Mustafa
- Department of Animal Resources, Collage of Agricultural Engineering Sciences, University of Raparin, Ranya, Sulaymaniyah, 46012, Iraq
| | - Warzer Mohammed Mustafa
- Department of Animal Resources, Collage of Agricultural Engineering Sciences, University of Raparin, Ranya, Sulaymaniyah, 46012, Iraq
| | | | | |
Collapse
|
5
|
Chandran D, J AI, K S, S M, M S, V R A, Ahamed K, Ram G, Mohan D, P A, Chakraborty S, Chopra H, Akash S, Amin R, Ahmed SK, Dey A, Sharma AK, Dhama K. Potential benefits and therapeutic applications of "Panchgavya" therapy (Cowpathy) for human and animal health: Current scientific knowledge. JOURNAL OF EXPERIMENTAL BIOLOGY AND AGRICULTURAL SCIENCES 2023; 11:520-533. [DOI: 10.18006/2023.11(3).520.533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Cow's milk, urine, dung, ghee, and curd (together known as "Panchgavya") have incomparable medicinal value in Ayurveda and ancient Indian clinical methods. Panchgavya is also known as Cowpathy in Ayurveda. In India, the cow is revered as a goddess known as "Gaumata" because of its nurturing qualities similar to those of a mother. Almost no adverse effects are associated with using Panchgavya, which is why it is recommended in Ayurveda for treating disorders affecting numerous body systems. Its possible antimicrobial effects have piqued the curiosity of medical researchers and practitioners. Cow milk is widely regarded as a nutritious diet and has been shown to effectively treat various medical conditions, including high body temperature, pain, cancer, diabetes, kidney diseases, and weakness. Milk can prevent the growth of microorganisms, has erotic qualities when combined with the leaves of medicinal herbs, and the fat in milk has anticancer characteristics. Toned and skim milk, lassi, yoghurt, cottage cheese, and khoa all come from milk and have important medicinal characteristics. Curd (dahi) is recommended as a blood purifier for conditions such as hemorrhoids, piles, and gastrointestinal issues. Ghee made from cows has been shown to boost immunity. It is important to highlight the use of cow dung as an antifungal and for treating malaria and tuberculosis. It has the potential to aid in the development of a populace free from disease, the creation of sustainable energy systems, the fulfilment of all nutritional needs, the elimination of poverty, the promotion of organic farming culture, and the like. Cow urine is a powerful remedy for numerous medical conditions, including but not limited to epileptic convulsions, diabetes, hepatitis, inflammation, fever, and anaemia. The current review article explores how the Panchgavya ingredients can be employed to safeguard human and animal health.
Collapse
|
6
|
Amin PJ, Shankar BS. Arabinogalactan G1-4A isolated from Tinospora cordifolia induces PKC/mTOR mediated direct activation of natural killer cells and through dendritic cell cross-talk. Biochim Biophys Acta Gen Subj 2023; 1867:130312. [PMID: 36690186 DOI: 10.1016/j.bbagen.2023.130312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/08/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND Tinospora cordifolia polysaccharide G1-4A activates antigen-presenting cells, but its effect on natural killer (NK) cells is not known. The objective of this study is to assess the effect of G1-4A on NK cells; direct effects as well as through dendritic cell (DC) cross-talk. METHODS NK cell phenotype and function were assessed in spleen cells treated in vitro with G1-4A or isolated from mice administered with G1-4A. Following treatment with G1-4A in vitro or in cells isolated from G1-4A treated mice (in vivo), activated NK cell phenotype was characterized as CD3-NKp46+CD69+ cells by flow cytometry; NK cell function was evaluated by IFN-γ secretion (ELISA) and cytotoxicity assay (calcein release by target cells in effector: target cells co-culture assay). RESULTS Both in vitro as well as in vivoG1-4A treatment increased phenotypic and functional activation of NK cells. So, we wanted to determine if this was through NK-DC crosstalk or direct activation of NK cells. There was increased NK cell activation following co-culture with bone marrow derived DC matured withG1-4A in vitro or splenic DC isolated from G1-4A administered mice indicating crosstalk. G1-4A also increased activation of NK cells in (a) CD11c depleted splenic cells that was contact dependent and (b) purified NKp46+ cells that was abrogated by PKC/mTOR inhibitors indicating direct effects on NK cells. CONCLUSION In summary, treatment with G1-4A results in phenotypic and functional activation of NK cells directly as well as through NK-DC cross talk and has the potential to be used as an immunotherapeutic agent.
Collapse
Affiliation(s)
- Prayag J Amin
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Bhavani S Shankar
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
7
|
Effect of individual substances isolated from Silene jeniseensis Willd on the state of the main links of immunity at experimental immune deficiency. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.5-2.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction. The search, development and introduction of new drugs with an immunotropic effect are one of the priority tasks of modern immunopharmacology. Numerous studies have proven the immunotropic activity of individual substances isolated from medicinal plants (flavonoids, polysaccharides, ecdysteroids, terpenoids, etc.). In the present study, it is of interest to determine the immunomodulatory effect of individual substances isolated from Silene jeniseensis Willd.The aim of the study. Determination of the immunomodulatory activity of individual substances isolated from Silene jeniseensis: flavonoid isoorientin-2”-O-rhamnoside, polysaccharide arabino-3.6-galactan and ecdysteroid 20-hydroxyecdysone under conditions of cyclophosphamide induced experimental immunosuppression.Methods. Experiments were carried out on F1 (CBAxC57Bl/6) mice. Immunodeficiency was modeled by intraperitoneal administration of cyclophosphamide to control group animals in the dose 250 mg/kg once. Experimental groups of mice received the test substances intragastrically once a day for 14 days against the background of immunosuppression in the following doses: isoorientin-2”-O-rhamnoside – 10 mg/ kg, arabino-3.6-galactan – 3 mg/kg, 20-hydroxyecdysone – 3 mg/kg. The effect of substances on cellular immunity was determined in a delayed hypersensitivity reaction, humoral immunity was determined in an antibody formation reaction by local hemolysis according to A.J. Cunningham. The phagocytic activity of peritoneal macrophages was studied in relation to colloidal ink particles.Results. With the introduction of isoorientin-2”-O-rhamnoside, arabino-3.6-galactan and 20-hydroxyecdysone in experimental animals, there was an increase in the index of delayed-type hypersensitivity reaction by 1.3–1.4 times, the absolute and relative number of antibody-forming cells by 1.4–1.7 times, phagocytic index by 1.2–1.5 times compared with the data in the control group, which indicates the leveling of the suppressive effect of cyclophosphamide on cell-mediated immune response, antibody genesis and phagocytosis of macrophages.Conclusion. Isoorientin-2”-O-rhamnoside and arabino-3.6-galactan have the most pronounced immunomodulatory effect. The obtained data allow us to consider the studied substances as promising plant immunomodulators.
Collapse
|
8
|
Herawati H, Anisa AK, Widiatmoko KD, Alam SSP, Diari IA, Naprila ZH, Kisya RLA, Puspabela A, Permata FS. Effect of red ginger powder (Zingiber officinale var. rubrum) as a feed additive for starter and finisher broiler chicken to increase immunoglobulin A and immunoglobulin Y expression and to prevent intestinal injury due to Salmonella enteritidis infection. Vet World 2022; 15:1506-1514. [PMID: 35993070 PMCID: PMC9375218 DOI: 10.14202/vetworld.2022.1506-1514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/28/2022] [Indexed: 12/03/2022] Open
Abstract
Background and Aim: Salmonellosis is an infectious disease that often occurs in chickens and is caused by Salmonella enteritidis. The use of antibiotics to prevent this disease can result in the development of resistance in pathogenic bacteria, in addition to the presence of antibiotic residues in consumed carcasses. Red ginger (Zingiber officinale var. rubrum) has active compounds that potentially act as immunomodulators which increase specific and non-specific immune responses through the induction of cytokine production. This study was conducted to determine the effects of red ginger powder mixed in feed for starter and finisher broiler chickens, based on the evaluation of the expression of immunoglobulin A (IgA), histopathologic description of the ileum and cecum, IgA, and immunoglobulin Y (IgY) expression in the spleen, and the isolation count of S. enteritidis in fresh fecal samples. Materials and Methods: A total of 100 starter and 100 finisher Cobb broiler chickens were divided into four groups, designated as T0, T1, T2, and T3, respectively: Group T0 was fed commercial feed with no added 2% red ginger powder or S. enteritidis induction, and served as a negative control; Group T1 was inoculated with a 0.25 mL S. enteritidis oral induction (1 × 107 colony-forming unit [CFU] [0.5 McFarland standard]), and served as a positive control; Group T2 was fed with feed containing 2% red ginger powder; while Group T3 was fed with feed containing 2% red ginger powder and was orally inoculated with S. enteritidis with a dose similar to T1. The normal feed was given on the 1st–7th days. The mixture of 2% red ginger powder was given on the 7th–15th days. The S. enteritidis was induced on the 15th day (1 × 107 CFU). Necropsy was performed on the 16th day and tissues were fixed in 10% formalin and routinely processed for histopathologic and immunohistochemical analyses. The data were analyzed using a one-way analysis of variance test, Tukey’s analysis, and the Mann–Whitney U non-parametric statistical analysis test. Results: The 2% red ginger powder was found to significantly (p < 0.05) increase IgA expression and additionally decrease tissue damage in the cecum and ileum. It also increased IgA and IgY expression in the spleen. In addition, a decrease was observed in the S. enteritidis number isolated from finisher fresh feces, but none was found in the isolated starter fresh feces. Conclusion: These findings indicate that the addition of red ginger powder to chicken feed is a potential natural immunomodulator against S. enteritidis infection.
Collapse
Affiliation(s)
- Herawati Herawati
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, 65151, Indonesia
| | - Agri Kaltaria Anisa
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, 65151, Indonesia
| | - Kurnianto Dwi Widiatmoko
- Veterinary Science Undergraduate Program, Faculty of Veterinary Medicine Universitas Brawijaya, Malang, 65151, Indonesia
| | - Setiawan Surya Paku Alam
- Veterinary Science Undergraduate Program, Faculty of Veterinary Medicine Universitas Brawijaya, Malang, 65151, Indonesia
| | - Islah Asyraf Diari
- Veterinary Science Undergraduate Program, Faculty of Veterinary Medicine Universitas Brawijaya, Malang, 65151, Indonesia
| | - Zhella Happy Naprila
- Veterinary Science Undergraduate Program, Faculty of Veterinary Medicine Universitas Brawijaya, Malang, 65151, Indonesia
| | - Rr. Lintan Ayu Kisya
- Veterinary Science Undergraduate Program, Faculty of Veterinary Medicine Universitas Brawijaya, Malang, 65151, Indonesia
| | - Analita Puspabela
- Veterinary Science Undergraduate Program, Faculty of Veterinary Medicine Universitas Brawijaya, Malang, 65151, Indonesia
| | - Fajar Shodiq Permata
- Department of Histology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, 65151, Indonesia
| |
Collapse
|
9
|
Rizk MA, El-Sayed SAES, Igarashi I. Ascorbic acid co-administration with a low dose of diminazene aceturate inhibits the in vitro growth of Theileria equi, and the in vivo growth of Babesia microti. Parasitol Int 2022; 90:102596. [DOI: 10.1016/j.parint.2022.102596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
|
10
|
Immunomodulatory potential of Nyctanthes abrortristis stem bark. J Ayurveda Integr Med 2022; 13:100556. [PMID: 35653920 PMCID: PMC9163693 DOI: 10.1016/j.jaim.2022.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/30/2021] [Accepted: 01/31/2022] [Indexed: 11/22/2022] Open
Abstract
Background Phytotherapeutic modulation of the immune system to mitigate infectious ailments has been in vogue all over the world. Objective The present work has been designed to scientifically explore the immunomodulatory potential of Nyctanthes arbortristis stem bark using mice models. Materials & method Methanolic (MNA) and aqueous (ANA) extracts of N. arbortristis stem bark were evaluated for possible modulation in humoral immunity through serum immunoglobulin estimation. The variation in cellular immunity was assessed using neutrophil adhesion test, carbon clearance assay, and cyclophosphamide-induced neutropenia. Results and discussion Administration of MNA and ANA (both at 200 mg/kg, p.o.) significantly augmented the levels of serum immunoglobulins (humoral antibody), neutrophil adhesion, and phagocytic index (a measure of carbon clearance). Extracts also guarded the animals against cyclophosphamide-induced leukopenia, especially neutropenia. Conclusion Results indicate that cellular and humoral immune responses were aroused by pretreatment of the animal with methanol and aqueous extract of N. arbortristis. Thus, the methanol and aqueous extract of N. arbortristis stem bark possesses a significant immunostimulant activity and can be used to uplift the immune system in the infectious condition.
Collapse
|
11
|
Chicken Immune Cell Assay to Model Adaptive Immune Responses In Vitro. Animals (Basel) 2021; 11:ani11123600. [PMID: 34944374 PMCID: PMC8697874 DOI: 10.3390/ani11123600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Knowledge about the modes of action of immunomodulating compounds such as pathogens, drugs, or feed additives, e.g., probiotics, will allow the development of targeted nutrition strategies, prevent infectious diseases and the usage of antimicrobials, and promote the health of animals. To investigate the mechanisms of action of immunomodulating compounds, controlled in vitro systems using freshly isolated immune cells from blood represent a promising alternative to animal experiments. Immune cell isolation from the blood of chickens is a complex and difficult process since the immune cell fractions are significantly contaminated with red blood cells and platelets. To our knowledge, a robust protocol for immune cell isolation from chicken blood and the subsequent cultivation of immune cells is not available. Here, we established a protocol for blood sampling and immune cell isolation and cultivation from chicken blood, which could be applied for the investigation of direct effects of immunomodulating compounds. This protocol, combining different techniques of immune cell isolation, cultivation, and differentiation of distinct immune cell populations, will serve as a potential alternative to animal testing in vivo. By gaining knowledge about the mechanisms of action of immunomodulating compounds, this in vitro model will contribute to promote health and welfare in chicken farming. Abstract Knowledge about the modes of action of immunomodulating compounds such as pathogens, drugs, or feed additives, e.g., probiotics, gained through controlled but animal-related in vitro systems using primary cultured peripheral blood mononuclear cells (PBMCs) will allow the development of targeted nutrition strategies. Moreover, it could contribute to the prevention of infectious diseases and the usage of antimicrobials, and further promote the health of the animals. However, to our knowledge, a protocol for the isolation of PBMCs with reduced thrombocyte count from chicken blood and subsequent cell culture over several days to assess the effects of immunomodulating compounds is not available. Therefore, we established an optimized protocol for blood sampling and immune cell isolation, culture, and phenotyping for chicken PBMCs. For blood sampling commercial Na–citrate tubes revealed the highest count of vital cells compared to commercial Li–heparin (p < 0.01) and K3EDTA (p < 0.05) tubes. Using combined dextran and ficoll density gradient separation, the thrombocyte count was significantly reduced (p < 0.01) compared to slow-speed centrifugation with subsequent ficoll. For cell culture, the supplementation of RPMI-1640 medium with 10% chicken serum resulted in the lowest relative cell count of thrombocytes compared to fetal calf serum (FCS) (p < 0.05). To validate the ability of the cell culture system to respond to stimuli, concanavalin A (conA) was used as a positive control. The optimized protocol allows the isolation and cultivation of vital PBMCs with reduced thrombocyte count from chicken blood for subsequent investigation of the modes of action of immunomodulating compounds.
Collapse
|
12
|
Effects of immunostimulators of microbial origin on T cells of pigs vaccinated with attenuated vaccine against Aujeszky's disease. Vet Immunol Immunopathol 2021; 243:110365. [PMID: 34920287 DOI: 10.1016/j.vetimm.2021.110365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/07/2021] [Accepted: 12/05/2021] [Indexed: 11/21/2022]
Abstract
Aujeszky's disease (AD) is a viral infectious disease caused by Suid herpesvirus 1 (SuHV-1). Vaccination and eradication of AD in domestic pigs is possible using marker vaccines with attenuated or inactivated SuHV-1, or subunit vaccines. However, vaccines with attenuated SuHV-1 have shown to be more potent in inducing strong cell-mediated immune response. The studies have shown that Parapoxvirus ovis, as well as Propionibacterium granulosum with lipopolysacharides (LPS) of Escherichia coli have pronounced immunomodulatory effects and that in combination with the vaccines can induce stronger humoral and cellular immune responses than use of vaccines alone. In our study distribution of peripheral blood T cell subpopulations was analysed after administration of vaccine alone (attenuated SuHV-1), immunostimulators (inactivated Parapoxvirus ovis or combination of an inactivated P. granulosum and detoxified LPS of E. coli) and combinations of vaccine with each immunostimulator to the 12-week old piglets. Throughout the study no significant changes were found in the proportions of γδ and most αβ T cell subpopulations analysed. However, on the seventh day of the study combination of an inactivated P. granulosum and LPS of E. coli with vaccine induced transient but significant increase of the proportions of CD4+CD8α+ and CD4-CD8α+ αβ T cells, that have been strongly associated with early protection of SuHV-1 infected pigs. Our findings indicate that combination of inactivated P. granulosum and detoxified E. coli LPS could be used for enhancement of a cellular immune response induced by vaccines against AD.
Collapse
|
13
|
Chung KS, Choi JW, Shin JS, Kim SY, Han HS, Kim SY, Lee KY, Kang JY, Cho CW, Hong HD, Rhee YK, Lee KT. Strain-Specific Identification and In Vivo Immunomodulatory Activity of Heat-Killed Latilactobacillus sakei K040706. Foods 2021; 10:foods10123034. [PMID: 34945585 PMCID: PMC8701173 DOI: 10.3390/foods10123034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
We previously reported that the immunostimulatory activity of heat-killed Latilactobacillus sakei K040706 in macrophages and cyclophosphamide (CTX)-treated mice. However, identification of heat-killed L. sakei K040706 (heat-killed LS06) using a validated method is not yet reported. Further, the underlying molecular mechanisms for its immunostimulatory effects in CTX-induced immunosuppressed mice remain unknown. In this study, we developed strain-specific genetic markers to detect heat-killed L. sakei LS06. The lower detection limit of the validated primer set was 2.1 × 105 colony forming units (CFU)/mL for the heat-killed LS06 assay. Moreover, oral administration of heat-killed LS06 (108 or 109 CFU/day, p.o.) effectively improved the body loss, thymus index, natural killer cell activity, granzyme B production, and T and B cell proliferation in CTX-treated mice. In addition, heat-killed LS06 enhanced CTX-reduced immune-related cytokine (interferon-γ, interleukin (IL)-2, and IL-12) production and mRNA expression. Heat-killed LS06 also recovered CTX-altered microbiota composition, including the phylum levels of Bacteroidetes, Firmicutes, and Proteobacteria and the family levels of Muribaculaceae, Prevotellaceae, Tannerellaceae, Christensenellaceae, Gracilibacteraceae, and Hungateiclostridiaceae. In conclusion, since heat-killed L. sakei K040706 ameliorated CTX-induced immunosuppression and modulated gut microbiota composition, they have the potential to be used in functional foods for immune regulation.
Collapse
Affiliation(s)
- Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (K.-S.C.); (J.-S.S.); (S.-Y.K.); (H.-S.H.); (S.-Y.K.); (K.-Y.L.)
| | - Jae Woong Choi
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Korea; (J.W.C.); (C.-W.C.); (H.-D.H.)
| | - Ji-Sun Shin
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (K.-S.C.); (J.-S.S.); (S.-Y.K.); (H.-S.H.); (S.-Y.K.); (K.-Y.L.)
| | - Seo-Yeon Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (K.-S.C.); (J.-S.S.); (S.-Y.K.); (H.-S.H.); (S.-Y.K.); (K.-Y.L.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hee-Soo Han
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (K.-S.C.); (J.-S.S.); (S.-Y.K.); (H.-S.H.); (S.-Y.K.); (K.-Y.L.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Su-Yeon Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (K.-S.C.); (J.-S.S.); (S.-Y.K.); (H.-S.H.); (S.-Y.K.); (K.-Y.L.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Kwang-Young Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (K.-S.C.); (J.-S.S.); (S.-Y.K.); (H.-S.H.); (S.-Y.K.); (K.-Y.L.)
| | - Joo-Yeon Kang
- NOVAREX Co., Ltd., 94, Gangni 1-gil, Ochang-eup, Cheongwon-gu, Cheongju-si 363-885, Chungcheongbuk-do, Korea;
| | - Chang-Won Cho
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Korea; (J.W.C.); (C.-W.C.); (H.-D.H.)
| | - Hee-Do Hong
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Korea; (J.W.C.); (C.-W.C.); (H.-D.H.)
| | - Young Kyoung Rhee
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Korea; (J.W.C.); (C.-W.C.); (H.-D.H.)
- Correspondence: (Y.K.R.); (K.-T.L.); Tel.: +82-63-219-9319 (Y.K.R.); +82-2-961-0860 (K.-T.L.)
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (K.-S.C.); (J.-S.S.); (S.-Y.K.); (H.-S.H.); (S.-Y.K.); (K.-Y.L.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (Y.K.R.); (K.-T.L.); Tel.: +82-63-219-9319 (Y.K.R.); +82-2-961-0860 (K.-T.L.)
| |
Collapse
|
14
|
Rizk MA, El-Sayed SAES, Salman D, Marghani BH, Gadalla HE, Sayed-Ahmed MZ. Immunomodulatory Effect of Vitamin C on Proinflammatory Cytokines Production in Ossimi Lambs (Ovis aries) with Pneumonic Pasteurellosis. Animals (Basel) 2021; 11:ani11123374. [PMID: 34944151 PMCID: PMC8697947 DOI: 10.3390/ani11123374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we have investigated the impact of vitamin C on the production of pro-inflammatory cytokines (interleukin 1 β (IL-1 β), interleukin 6 (IL-6), interleukin 12p40 (IL-12p40), interferon gamma (IFNγ), and tumor necrosis factor alpha (TNF-α)) in lambs naturally infected by pneumonic pasteurellosis. Of 37 lambs, 18 lambs were identified to have pneumonic pasteurellosis and randomly allocated into two equal groups. Single subcutaneous dose of tulathromycine alone (2.5 mg kg−1) or tulathromycine combined with vitamin C (3 gm kg−1) were administrated to the diseased lambs. The serum levels of IL-1β, IL-6, IFN-γ, and TNF-α were returned to the normal levels in pneumonic lambs treated with the combination therapy. The obtained results indicate the selective influences of vitamin C on pro-inflammatory cytokines production in sera of lambs with pneumonic pasteurellosis and highlights the value of vitamin C as a potential anti-inflammatory drug and ideal immunomodulatory agent.
Collapse
Affiliation(s)
- Mohamed Abdo Rizk
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
- Correspondence:
| | - Shimaa Abd El-Salam El-Sayed
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Doaa Salman
- Department of Animal Medicine, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt;
| | - Basma H. Marghani
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Hossam Elshahat Gadalla
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Mohamed Z. Sayed-Ahmed
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jizan 82722, Saudi Arabia
| |
Collapse
|
15
|
Jayaraman S, Variyar EJ. Role of taraxerone isolated from Leucas lavandulifolia, as an immunomodulator. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114307. [PMID: 34107329 DOI: 10.1016/j.jep.2021.114307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 04/21/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Indian tradition system of medicine enlists a large number of plants for basic health care. Leucas lavandulifolia is mentioned in the ayurvedic medicinal system and also used among the folklores. The plant is used for the treatment of fever, asthma, psoriasis, dermatitis and healing snake bites. The scientific validation of the plant for their traditional use in different immune related disorders are yet to be explored. AIM OF THE STUDY The study aims to isolate immunomodulatory active compound from Leucas lavandulifolia and evaluating its efficiency in immune related disorders. MATERIALS AND METHODS The immunomodulatory activity of the phytocompound is evaluated through in vitro and in vivo studies. The compound purification and identification were done by chromatography and LC/Q-TOF respectively. Its immunomodulatory activity was evaluated in cells like PBMC, neutrophils and macrophages by MTT assay and cell cycle analysis. Animal studies were performed on Swiss albino mice. The levels of IL-4 and IL-6 cytokines were also evaluated in both in vitro and in vivo models. RESULTS Leucas lavandulifolia stem portion was found to have good modulatory property. An active immunomodulator was isolated from the methanol extract of the plant. LC/Q-TOF data revealed the isolated compound to be taraxerone. In PBMC, the compound was capable of suppressing the proliferation rate of the compound indicated by a decrease in cell numbers. The activated IL-4 and IL-6 production was also suppressed actively at 25 μg/ml of taraxerone. Similar inhibitory effects were seen in RAW 264.7 and THP-1 macrophage cell lines. An IC50 value of 17.5 μg/ml was obtained for taraxerone in LPS stimulated RAW 264.7 macrophage cell lines. The NO level, IL-4, IL-6 and phagocytosis in the LPS stimulated macrophage was effectively lowered by 25 μg/ml of taraxerone. In PMA stimulated THP-1 Macrophage Cell Lines, taraxerone was capable of suppressing the cell number and IL-6. The compound didn't show any effect on IL-4 levels. The compound exhibited an immunosuppressive activity in PHA induced PMN cells by suppressing the respiratory burst and interleukins IL-4 and IL-6. TX could also suppress the proliferation of DNCB induced monocyte cells and IL-4. The haematological parameters exhibited a significant suppression for the high dose group of taraxerone. The antibody titre and phagocytic index was suppressed by the high dose group, whereas the low dose group did not have any effect. So taraxerone at 50 mg/kg body weight is capable of modulating the B-lymphocytes and macrophages. But the compound has exhibited insignificant effect on the DTH hypersensitivity response and organ index. CONCLUSION Taraxerone at high concentration was capable of suppressing stimulated PBMC, macrophage and PMN. The activated nitric oxide, IL-4, IL-6 production and phagocytosis was also suppressed. The haematological parameters, antibody titre and phagocytic index was also lowered in antigenically challenged mice. The terpenoid taraxerone exhibits a good modulatory effect on the immune system and proves to be a potent drug for the treatment of many allergic disorders.
Collapse
Affiliation(s)
- Sony Jayaraman
- Department of Biotechnology and Microbiology, Dr. E. K Janaki Ammal Campus, Thalassery, Kannur, 670661, Kerala, India.
| | - E Jayadevi Variyar
- Department of Biotechnology and Microbiology, Dr. E. K Janaki Ammal Campus, Thalassery, Kannur, 670661, Kerala, India.
| |
Collapse
|
16
|
El Seedy GM, El-Shafey ES, Elsherbiny ES. Fortification of biscuit with sidr leaf and flaxseed mitigates immunosuppression and nephrotoxicity induced by cyclosporine A. J Food Biochem 2021; 45:e13655. [PMID: 33616983 DOI: 10.1111/jfbc.13655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 12/26/2022]
Abstract
The focus of consumers in healthy food turned to the possible health benefits of particular foods and food ingredients. This study aimed to evaluate the newly fortified biscuits supplemented with sidr leaves and flaxseed and to highlight their nutritional quality and health benefits against cyclosporine A-induced dexterous effects. Sidr leaves (SL), and flaxseed (FS) were used in the preparation of fortified biscuits. Proximate analysis and sensory evaluation were carried out on the biscuits. In in vivo study, 15 male albino mice were used for each group. Groups were divided into control, CsA, SL, FS, and SL+FS-treated groups. Hematological analysis, kidney function tests, oxidative stress, and anti-oxidant status were estimated. Flow cytometry was utilized to detect apoptosis and autophagy levels. The enzyme-linked immunosorbent assay (ELISA) was used for detection of interleukin-2 (IL-2), interferon-γ (IFN-γ), and transforming growth factor β1 (TGF-β1) levels. The composition of biscuits complemented by SL and FS demonstrated significant improvement in the nutritional value represented by the increase in overall protein, crude fat, crude fiber, ash, and carbohydrate contents. Treatment with SL and FS restored the disturbance in hematological, kidney function, oxidative, and antioxidant biomarkers. CsA-induced apoptotic and autophagic renal cell death was suppressed. Cytokines and pro-inflammatory markers were ameliorated. The use of SL and FS in dietary products can be recommended as a functional food. Moreover, they showed renal-protective, antioxidant, anti-inflammatory, and immune-enhancing activities. PRACTICAL APPLICATIONS: Sidr leaves (SL) and flaxseed (FS) were used in the preparation of fortified biscuits. The composition of biscuits complemented by SL and FS demonstrated a significant improvement in the nutritional values represented by the increase in overall protein, crude fat, crude fiber, ash, and carbohydrate contents. SL and FS showed a potential therapeutic activity in reversing CsA-induced dexterous side effects by acting as an antioxidant, antiapoptotic, antiautophagic, anti-inflammatory, renal-protective, and immune-enhancing agents. The use of sidr leaves and flaxseed in dietary products can be recommended as a functional food. Supplementation of SL and/or FS to the diet is recommended to ensure a good health. Moreover, introducing awareness for the patients utilizing CsA to use SL and FS in their diets.
Collapse
Affiliation(s)
- Ghada Mosad El Seedy
- Home Economics Department, Faculty of Specific Education, Damietta University, Damietta, Egypt
| | - Eman Salah El-Shafey
- Biochemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | | |
Collapse
|
17
|
Mandić MR, Oalđe MM, Lunić TM, Sabovljević AD, Sabovljević MS, Gašić UM, Duletić-Laušević SN, Božić BD, Božić Nedeljković BD. Chemical characterization and in vitro immunomodulatory effects of different extracts of moss Hedwigia ciliata (Hedw.) P. Beauv. from the Vršačke Planine Mts., Serbia. PLoS One 2021; 16:e0246810. [PMID: 33571277 PMCID: PMC7877662 DOI: 10.1371/journal.pone.0246810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/26/2021] [Indexed: 01/11/2023] Open
Abstract
Bioactive compounds from natural sources are of great importance because of their potential pharmacological activity and tremendous structural diversity. In this study, the chemical composition of different moss extracts of Hedwigia ciliata P. Beauv. have been examined, as well as their antioxidant, antineurodegenerative/anti-neuroinflammatory, antidiabetic, and antiproliferative potential. The extracts were prepared by Soxhlet extractor using solvents of different polarity. Chemical characterization of the extracts revealed the presence of phenolics and flavonoid compounds, together with triterpenoids as secondary metabolites of high biological activity. Significant antioxidant properties of all the extracts were exhibited using the β-carotene assay. The highest activities were found for water:ethanol extract (with the highest inhibition rate of 96%), but also significant inhibition was measured for ethanol and ethyl acetate extracts (80% and 70%, respectively). Confirmation of biocompatibility of investigated moss extracts has been performed using normal human fibroblast cell line, MRC-5. The H. ciliata extracts exhibited significant antiproliferative activity (~ 50%) against the MDA-MB-231 (human breast adenocarcinoma cell line), which has not previously been reported elsewhere. The Griess assay confirmed the potential anti-neuroinflammatory activity of the extracts, as significant effects in reducing NO production by LPS-stimulated BV2 (normal murine microglia cell line) was observed. This data is in line with noted antineurodegenerative potential measured by the inhibition of acetylcholinesterase (with the highest inhibition rate of 60% for ethyl acetate extract) and tyrosinase (with the highest inhibition rate of 70% for ethanol extract). Additionally, the H. ciliata extracts exhibited significant antidiabetic effect mediated by α-glucosidase inhibition (with the highest inhibition rate of 80% for ethyl acetate extract). The obtained data suggest the presence of immunomodulatory effects of the moss extracts in vitro, which allows the design of new experiments aimed at detecting and characterizing bioactive compounds of the extracts and additionally elucidate detailed mechanisms of their effects.
Collapse
Affiliation(s)
- Marija R. Mandić
- Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Belgrade, Serbia
| | - Mariana M. Oalđe
- Faculty of Biology, Institute of Botany and Botanical Garden "Jevremovac", University of Belgrade, Belgrade, Serbia
| | - Tanja M. Lunić
- Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Belgrade, Serbia
| | - Aneta D. Sabovljević
- Faculty of Biology, Institute of Botany and Botanical Garden "Jevremovac", University of Belgrade, Belgrade, Serbia
| | - Marko S. Sabovljević
- Faculty of Biology, Institute of Botany and Botanical Garden "Jevremovac", University of Belgrade, Belgrade, Serbia
| | - Uroš M. Gašić
- Department of Plant Physiology, Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sonja N. Duletić-Laušević
- Faculty of Biology, Institute of Botany and Botanical Garden "Jevremovac", University of Belgrade, Belgrade, Serbia
| | - Bojan Dj. Božić
- Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Belgrade, Serbia
- * E-mail: (BB); (BBN)
| | - Biljana Dj. Božić Nedeljković
- Faculty of Biology, Institute of Physiology and Biochemistry “Ivan Djaja”, University of Belgrade, Belgrade, Serbia
- * E-mail: (BB); (BBN)
| |
Collapse
|
18
|
Alagawany M, Elnesr SS, Farag MR, Tiwari R, Yatoo MI, Karthik K, Michalak I, Dhama K. Nutritional significance of amino acids, vitamins and minerals as nutraceuticals in poultry production and health - a comprehensive review. Vet Q 2020; 41:1-29. [PMID: 33250002 PMCID: PMC7755404 DOI: 10.1080/01652176.2020.1857887] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/08/2023] Open
Abstract
Nutraceuticals have gained immense importance in poultry science recently considering the nutritional and beneficial health effects of their constituents. Besides providing nutritional requirements to birds, nutraceuticals have beneficial pharmacological effects, for example, they help in establishing normal physiological health status, prevent diseases and thereby improve production performance. Nutraceuticals include amino acids, vitamins, minerals, enzymes, etc. which are important for preventing oxidative stress, regulating the immune response and maintaining normal physiological, biochemical and homeostatic mechanisms. Nutraceuticals help in supplying nutrients in balanced amounts for supporting the optimal growth performance in modern poultry flocks, and as a dietary supplement can reduce the use of antibiotics. The application of antibiotic growth enhancers in poultry leads to the propagation of antibiotic-resistant microbes and drug residues; therefore, they have been restricted in many countries. Thus, there is a demand for natural feed additives that lead to the same growth enhancement without affecting the health. Nutraceuticals substances have an essential role in the development of the animals' normal physiological functions and in protecting them against infectious diseases. In this review, the uses of amino acids, vitamins and minerals as well as their mode of action in growth promotion and elevation of immune system are discussed.
Collapse
Affiliation(s)
- Mahmoud Alagawany
- Faculty of Agriculture, Department of Poultry, Zagazig University, Zagazig, Egypt
| | - Shaaban S. Elnesr
- Faculty of Agriculture, Department of Poultry Production, Fayoum University, Fayoum, Egypt
| | - Mayada R. Farag
- Faculty of Veterinary Medicine, Forensic Medicine and Toxicology Department, Zagazig University, Zagazig, Egypt
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Mohd. Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, Poland
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
19
|
Kim SY, Shin JS, Chung KS, Han HS, Lee HH, Lee JH, Kim SY, Ji YW, Ha Y, Kang J, Rhee YK, Lee KT. Immunostimulatory Effects of Live Lactobacillus sakei K040706 on the CYP-Induced Immunosuppression Mouse Model. Nutrients 2020; 12:nu12113573. [PMID: 33266362 PMCID: PMC7700367 DOI: 10.3390/nu12113573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Our previous studies have shown that heat-killed Lactobacillus sakei K040706 exerts immunostimulatory and anti-inflammatory activities in macrophages, cyclophosphamide (CYP)-treated mice, and dextran sulfate sodium–induced colitis mice. However, the immunostimulatory effects of live Lactobacillus sakei K040706 (live K040706) against CYP-induced immunosuppression and its underlying molecular mechanisms remain unknown. Therefore, we investigated the immunostimulatory effects of live K040706 (108 or 109 colony forming unit (CFU)/day, p.o.) in CYP-induced immunosuppressed mice. Oral administration of live K040706 prevented the CYP-induced decreases in body weight, thymus index, natural killer (NK) cell activity, T and B cell proliferation, and cytokine (interferon (IFN)-γ, interleukin (IL)-2, and IL-12) production. The administration of live K040706 also exerted positive effects on the gut microbiota of CYP-induced mice, resulting in a microbiota composition similar to that of normal mice. Moreover, live K040706 significantly enhanced IL-6 and granulocyte-macrophage colony-stimulating factor (GM-CSF) production in the splenocytes and Peyer’s patch (PP) cells of mice and increased bone marrow (BM) cell proliferation. Taken together, our data indicate that live K040706 may effectively accelerate recovery from CYP-induced immunosuppression, leading to activation of the immune system. Therefore, live K040706 may serve as a potential immunomodulatory agent against immunosuppression.
Collapse
Affiliation(s)
- Seo-Yeon Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy Kyung Hee University, Seoul 02447, Korea; (S.-Y.K.); (J.-S.S.); (K.-S.C.); (H.-S.H.); (H.-H.L.); (J.-H.L.); (S.-Y.K.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Ji-Sun Shin
- Department of Pharmaceutical Biochemistry, College of Pharmacy Kyung Hee University, Seoul 02447, Korea; (S.-Y.K.); (J.-S.S.); (K.-S.C.); (H.-S.H.); (H.-H.L.); (J.-H.L.); (S.-Y.K.)
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy Kyung Hee University, Seoul 02447, Korea; (S.-Y.K.); (J.-S.S.); (K.-S.C.); (H.-S.H.); (H.-H.L.); (J.-H.L.); (S.-Y.K.)
| | - Hee-Soo Han
- Department of Pharmaceutical Biochemistry, College of Pharmacy Kyung Hee University, Seoul 02447, Korea; (S.-Y.K.); (J.-S.S.); (K.-S.C.); (H.-S.H.); (H.-H.L.); (J.-H.L.); (S.-Y.K.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hwi-Ho Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy Kyung Hee University, Seoul 02447, Korea; (S.-Y.K.); (J.-S.S.); (K.-S.C.); (H.-S.H.); (H.-H.L.); (J.-H.L.); (S.-Y.K.)
| | - Jeong-Hun Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy Kyung Hee University, Seoul 02447, Korea; (S.-Y.K.); (J.-S.S.); (K.-S.C.); (H.-S.H.); (H.-H.L.); (J.-H.L.); (S.-Y.K.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Su-Yeon Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy Kyung Hee University, Seoul 02447, Korea; (S.-Y.K.); (J.-S.S.); (K.-S.C.); (H.-S.H.); (H.-H.L.); (J.-H.L.); (S.-Y.K.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Yong Woo Ji
- Department of Ophthalmology, National Health Insurance Service Ilsan Hospital, Goyang 10444, Korea;
- Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Yejin Ha
- NOVAREX Co. Ltd., 94, Gangni 1-gil, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 363-885, Korea; (Y.H.); (J.K.)
| | - Jooyeon Kang
- NOVAREX Co. Ltd., 94, Gangni 1-gil, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 363-885, Korea; (Y.H.); (J.K.)
| | - Young Kyoung Rhee
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea;
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy Kyung Hee University, Seoul 02447, Korea; (S.-Y.K.); (J.-S.S.); (K.-S.C.); (H.-S.H.); (H.-H.L.); (J.-H.L.); (S.-Y.K.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-0860; Fax: +82-2-961-0356
| |
Collapse
|
20
|
Roy N, Ghosh S, Juin SK, Ghosh R, Majumdar SB, Majumdar S. Immunomodulator mediated changes in plasma membrane calcium ATPase in controlling visceral leishmaniasis. Exp Parasitol 2020; 217:107948. [DOI: 10.1016/j.exppara.2020.107948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/15/2020] [Accepted: 07/02/2020] [Indexed: 11/25/2022]
|
21
|
SARS-CoV-2 / COVID-19: Salient Facts and Strategies to Combat Ongoing Pandemic. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.3.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus – 2 (SARS-CoV-2), an emerging novel coronavirus causing coronavirus disease 2019 (COVID-19) pandemic, has now rapidly spread to more than 215 countries and has killed nearly 0.75 million people out of more than 20 million confirmed cases as of 10th August, 2020. Apart from affecting respiratory system, the virus has shown multiple manifestations with neurological affections and damaging kidneys. SARS-CoV-2 transmission mainly occurs through close contact of COVID-19 affected person, however air-borne route is also now considered as dominant route of virus spread. The virus has been implicated to have originated from animals. Apart from bats, pangolins and others being investigates to play role in transmitting SARS-CoV-2 as intermediate hosts, the recent reports of this virus infection in other animals (cats, dogs, tigers, lions, mink) suggest one health approach implementation along with adopting appropriate mitigation strategies. Researchers are pacing to develop effective vaccines and drugs, few reached to clinical trials also, however these may take time to reach the mass population, and so till then adopting appropriate prevention and control is the best option to avoid SARS-CoV-2 infection. This article presents an overview on this pandemic virus and the disease it causes, with few recent concepts and advances.
Collapse
|
22
|
Treatment of Multi-Drug Resistant Gram-Negative Bacterial Pathogenic Infections. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.3.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The multidrug-resistant Gram-negative bacteria (MDR-GNB) infections in severely infected patients present numerous difficulties in terms of treatment failure where antibiotics cannot arrest such drug resistant bacteria. Based on the patient’s medical history and updated microbiological epidemiology data, an effective empirical treatment remains critical for optimal results to safeguard human health. The aim of this manuscript is to review management of MDR-Gram negative pathogenic bacterial infections. Quick diagnosis and narrow antimicrobial spectrum require rapid and timely diagnosis and effective laboratories in accordance with antimicrobial stewardship (AS) principles. Worldwide, there is an increased emergence of Carbapenem-resistant Enterobacteriaceae (CRE), Pseudomonas aeruginosa, and Acinetobacter baumannii. Recently, novel therapeutic options, such as meropenem/vaborbactam, ceftazidime/avibactam, ceftolozane/tazobactam, eravacycline and plazomicin became accessible to effectively counteract severe infections. Optimally using these delays the emergence of resistance to novel therapeutic agents. Further study is required, however, due to uncertainties in pharmacokinetic/pharmacodynamics optimization of dosages and therapeutic duration in severely ill patients. The novel agents should be verified for (i) action on carbapenem resistant Acinetobacter baumannii; (ii) action on CRE of β-lactam/β-lactamase inhibitors dependence on type of carbapenemase; (iii) emergence of resistance to novel antibacterials and dismiss selective pressure promoting development of resistance. Alternative treatments should be approached alike phage therapy or antibacterial peptides. The choice of empirical therapy is complicated by antibiotic resistance and can be combated by accurate antibiotic and their combinations usage, which is critical to patient survival. Noteworthy are local epidemiology, effective teamwork and antibiotic stewardship to guarantee that medications are utilized properly to counter the resistance.
Collapse
|
23
|
COVID-19 and the World with Co-Morbidities of Heart Disease, Hypertension and Diabetes. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.3.01] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Newly emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) pandemic has now spread across the globe in past few months while affecting 26 million people and leading to more than 0.85 million deaths as on 2nd September, 2020. Severity of SARS-CoV-2 infection increases in COVID-19 patients due to pre-existing health co-morbidities. This mini-review has focused on the three significant co-morbidities viz., heart disease, hypertension, and diabetes, which are posing high health concerns and increased mortality during this ongoing pandemic. The observed co-morbidities have been found to be associated with the increasing risk factors for SARS-CoV-2 infection and COVID-19 critical illness as well as to be associated positively with the worsening of the health condition of COVID-19 suffering individuals resulting in the high risk for mortality. SARS-CoV-2 enters host cell via angiotensin-converting enzyme 2 receptors. Regulation of crucial cardiovascular functions and metabolisms like blood pressure and sugar levels are being carried out by ACE2. This might be one of the reasons that contribute to the higher mortality in COVID-19 patients having co-morbidities. Clinical investigations have identified higher levels of creatinine, cardiac troponin I, alanine aminotransferase, NT-proBNP, creatine kinase, D-dimer, aspartate aminotransferase and lactate dehydrogenase in patients who have succumbed to death from COVID-19 as compared to recovered individuals. More investigations are required to identify the modes behind increased mortality in COVID-19 patients having co-morbidities of heart disease, hypertension, and diabetes. This will enable us to design and develop suitable therapeutic strategies for reducing the mortality. More attention and critical care need to be paid to such high risk patients suffering from co-morbidities during COVID-19 pandemic.
Collapse
|
24
|
Herrera MF, Otermin M, Herrera JM, Simoy MV, Bianchi CP, Aguilar JJ, Fumuso EA. Effect of Mycobacterium cell wall fraction on endometrial histomorphometry of mares resistant and susceptible to persistent breeding-induced endometritis. Theriogenology 2020; 156:2-10. [PMID: 32652325 DOI: 10.1016/j.theriogenology.2020.06.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/21/2020] [Accepted: 06/27/2020] [Indexed: 11/19/2022]
Abstract
Mycobacterium cell wall fraction (MCWF) is a biological component made up of molecules with immunostimulant properties, which is therapeutically used to modulate persistent breeding-induced endometritis (PBIE). The aim of this study was to analyze the effect of this immunomodulator on the endometrial histological structure during the diestrus of PBIE-resistant and -susceptible mares that either received treatment with MCWF or not. The experiment was conducted with 10 resistant mares (RM) and 9 susceptible mares (SM). In the first estrous cycle of the trial, all mares were inseminated with dead semen as an inflammatory stimulus (Group A); at the next cycle, all mares were inseminated with dead semen and treated with a MCWF commercial immunomodulator (Group B). In both groups, endometrial biopsies were taken on day 7 post-ovulation (diestrus). Endometrial biopsies of untreated-RM (UTRM, n = 6), untreated-SM (UTSM, n = 7) MCWF-treated-RM (TRM, n = 6) and MCWF-treated-SM (TSM, n = 6) were evaluated. They were randomly chosen as representative mares of Group A and B, respectively. The height of lining and glandular epithelia, glandular diameter, glandular density and glandular area were evaluated. The histological structure revealed lymphocytic infiltration and dilated, tortuous glands with some glandular nests, particularly in UTSM. The histomorphometrical results showed no differences (ρ > 0.05) between the analyzed groups. This would indicate that post-service treatment with the MCWF immunomodulator does not modify the endometrial histoarchitecture but, apparently, its action would be mainly based on the stimulation of the cellular and humoral immune responses.
Collapse
Affiliation(s)
- Marcela F Herrera
- Laboratorio de Histología y Embriología, Área de Ciencias Morfológicas, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pje. Arroyo Seco S/N, CP B7000, Tandil, Buenos Aires, Argentina.
| | - Martina Otermin
- Instituto Superior de Formación Docente Nº10, Belgrano 1610, CP B7000, Tandil, Buenos Aires, Argentina.
| | - Juan Manuel Herrera
- Laboratorio de Histología y Embriología, Área de Ciencias Morfológicas, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pje. Arroyo Seco S/N, CP B7000, Tandil, Buenos Aires, Argentina.
| | - M Verónica Simoy
- Instituto Multidisciplinario sobre Ecosistemas y Desarrollo Sustentable, Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pje. Arroyo Seco S/N, CP B7000, Tandil, Buenos Aires, Argentina.
| | - Carolina P Bianchi
- Laboratorio de Endocrinología, Centro de Investigación Veterinaria Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pje. Arroyo Seco S/N, CP B7000, Tandil, Buenos Aires, Argentina.
| | - J Javier Aguilar
- Producción Equina, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Ruta 36 Km 601, CP 5800, Río Cuarto, Córdoba, Argentina.
| | - Elida A Fumuso
- Laboratorio de Clínica y Reproducción Equina, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Pje. Arroyo Seco S/N, CP B7000, Tandil, Buenos Aires, Argentina.
| |
Collapse
|
25
|
Wheat W, Chow L, Rozo V, Herman J, Still Brooks K, Colbath A, Hunter R, Dow S. Non-specific protection from respiratory tract infections in cattle generated by intranasal administration of an innate immune stimulant. PLoS One 2020; 15:e0235422. [PMID: 32584899 PMCID: PMC7316291 DOI: 10.1371/journal.pone.0235422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
Alternatives to antibiotics for prevention of respiratory tract infections in cattle are urgently needed given the increasing public and regulatory pressure to reduce overall antibiotic usage. Activation of local innate immune defenses in the upper respiratory tract is one strategy to induce non-specific protection against infection with the diverse array of viral and bacterial pathogens associated with bovine respiratory disease complex (BRDC), while avoiding the use of antibiotics. Our prior studies in rodent models demonstrated that intranasal administration of liposome-TLR complexes (LTC) as a non-specific immune stimulant generated high levels of protection against lethal bacterial and viral pathogens. Therefore, we conducted studies to assess LTC induction of local immune responses and protective immunity to BRDC in cattle. In vitro, LTC were shown to activate peripheral blood mononuclear cells in cattle, which was associated with secretion of INFγ and IL-6. Macrophage activation with LTC triggered intracellular killing of Mannheimia hemolytica and several other bacterial pathogens. In studies in cattle, intranasal administration of LTC demonstrated dose-dependent activation of local innate immune responses in the nasopharynx, including recruitment of monocytes and prolonged upregulation (at least 2 weeks) of innate immune cytokine gene expression by nasopharyngeal mucosal cells. In a BRDC challenge study, intranasal administration of LTC prior to pathogen exposure resulted in significant reduction in both clinical signs of infection and disease-associated euthanasia rates. These findings indicate that intranasal administration of a non-specific innate immune stimulant can be an effective method of rapidly generating generalized protection from mixed viral and bacterial respiratory tract infections in cattle.
Collapse
Affiliation(s)
- William Wheat
- Department of Clinical Sciences, From the Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Lyndah Chow
- Department of Clinical Sciences, From the Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Vanessa Rozo
- Department of Clinical Sciences, From the Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Julia Herman
- Department of Clinical Sciences, From the Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Kelly Still Brooks
- Department of Clinical Sciences, From the Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Aimee Colbath
- Department of Clinical Sciences, From the Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Randy Hunter
- Hunter Cattle Company, Wheatland, Wyoming, United States of America
| | - Steven Dow
- Department of Clinical Sciences, From the Center for Immune and Regenerative Medicine, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
26
|
Sy JBA, Hsu TC, Limaye A, Liu JR. Oral administration with a traditional fermented multi-fruit beverage modulates non-specific and antigen-specific immune responses in BALB/c mice. PLoS One 2020; 15:e0233047. [PMID: 32392269 PMCID: PMC7213741 DOI: 10.1371/journal.pone.0233047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
Fruits have been widely considered as the default “health foods” because they contain numerous vitamins and minerals needed to sustain human health. Fermentation strategies have been utilized to enhance the nutritive and flavor features of healthy and readily consumable fruit products while extending their shelf lives. A traditional fermented multi-fruit beverage was made from five fruits including kiwi, guava, papaya, pineapple, and grape fermented by Saccharomyces cerevisiae along with lactic acid bacteria and acetic acid bacteria. The immunomodulatory properties of the fermented multi-fruit beverage, in vivo nonspecific and ovalbumin (OVA)-specific immune response experiments using female BALB/c mice were performed. Administration of the fermented multi-fruit beverage reduced the calorie intake, thus resulting in a less weight gain in mice compared to the water (placebo)-fed mice. In the nonspecific immune study model, the fermented multi-fruit beverage enhanced phagocytosis and T cell proliferation but did not affect B cell proliferation and immunoglobulin G (IgG) production. Analysis of cytokine secretion profile also revealed that the fermented multi-fruit beverage enhanced proinflammatory cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α, and T helper (Th)1-related cytokine interferon (IFN)-γ production, thus creating an immunostimulatory effect. Nonetheless, in the specific immune study model, the results showed that the fermented multi-fruit beverage decreased the production of proinflammatory cytokines IL-6 and TNF-α production in OVA-immunized mice. Moreover, it also caused a decrease in the production of anti-OVA IgG1, which was accompanied by a decrease in Th2-related cytokines IL-4 and IL-5 production and an increase in Th1-related cytokine IFN-γ production, indicating that it may have the potential to shift the immune system from the allergen‐specific Th2 responses toward Th1-type responses. The results indicate that fermented multi-fruit beverage has the potential to modulate immune responses both in a nonspecific and specific manners.
Collapse
Affiliation(s)
- Jamie Bernadette A. Sy
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila, Philippines
| | - Tsui-Chun Hsu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Aniket Limaye
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Je-Ruei Liu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
27
|
Chen Z, Yu L, Cai X, Ye F, Jin P. Toll-like receptor 4/nuclear factor-kappa B pathway is involved in activating microphages by polysaccharides isolated from Fagopyrum esculentum. Bioengineered 2020; 10:538-547. [PMID: 31661653 PMCID: PMC6844372 DOI: 10.1080/21655979.2019.1682214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Buckwheat polysaccharide fractions (BPFs) isolated from seeds of Fagopyrum esculentum have shown extensive immunomodulatory activities including activation of immune system. In this study, the immuno-modulation effects of BPFs on microphages were investigated. The obtained results show that BPFs can activate microphages as indicated by significant increases in the activity of inducible nitric oxide synthase (12.6 ± 1.30 U/mg prot), nuclear factor-kappa B (NF-κB) protein levels, and secretion of nitric oxide (NO) (21.5 ± 1.20 μmol/ml) and tumor necrosis factor-alpha (TNF-α) (71.2 ± 18.20 pg/ml). Moreover, blocking toll-like receptor 4 (TLR4)/NF-κB pathway using a specific antibody to TLR4 or inhibitor of NF-κB led to the significant inhibitory immuno-modulation effect on microphages as indicated by the decrease in the secretion level of NO and TNF-α. It is demonstrated that BPFs can activate microphages and TLR4/NF-κB pathway is involved in the induction of NO and TNF-α in macrophages by BPFs.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Gastroenterology, Third Affiliated Hospital of Wenzhou Medical University, Rui'an People's Hospital, Rui'an, China
| | - Leilei Yu
- Department of Gastroenterology, Third Affiliated Hospital of Wenzhou Medical University, Rui'an People's Hospital, Rui'an, China
| | - Xiaoniao Cai
- Department of Gastroenterology, Third Affiliated Hospital of Wenzhou Medical University, Rui'an People's Hospital, Rui'an, China
| | - Fangpeng Ye
- Department of Gastroenterology, Third Affiliated Hospital of Wenzhou Medical University, Rui'an People's Hospital, Rui'an, China
| | - Peisheng Jin
- Department of Gastroenterology, Third Affiliated Hospital of Wenzhou Medical University, Rui'an People's Hospital, Rui'an, China
| |
Collapse
|
28
|
Fellah F, Djenidi R, Chebout I. Protective Effect of Sphaerococcus coronopifolius Crude Extract in Combination with Bacillus Calmette-Guerin on Ligature-Induced Depression in Female Wistar Rats. Psychiatry Investig 2020; 17:130-139. [PMID: 32023676 PMCID: PMC7046999 DOI: 10.30773/pi.2019.0234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Immunomodulation is a therapeutic technique that modulates the balance of cytokines in the body. In this regard, our experiment was conducted to investigate the potential effect of S. coronopifolius crude extract in combination with low dose of Bacillus Calmette-Guerin (BCG) on depression-like behaviors in female Wistar rats. METHODS Sciatic nerve injury was employed to induce depression and intradermal injection of 0.02 mL of BCG per rat was administered to lead an activation of innate immune system. Daily intra-peritoneal injections of 25 mg algae extract kg-1 body weight were performed for 14 continuous days. Forced Swimming (FS) and Open Field (OF) tests were conducted to assess despairing and spontaneous behaviors. At the end of the experiment, brain was removed to determine the activities of catalase (CAT) and glutathione-S-transferase (GST), whereas spleen and adrenals were used for the histopathological study. RESULTS The combined treatment exhibited antidepressant-like activity in FST by reducing immobility time, without inducing any significant change in ambulatory behavior in OFT. The histological analyses of spleen and adrenal structure showed a conserved architecture. CONCLUSION The results suggested that algae extract produce an antidepressant-like effect in combination with low dose of BCG, which is possibly trigged by its anti-oxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Fahima Fellah
- Département des Sciences Biologiques, Faculté SNV-STU, Université de Bordj Bou Arreridj, Bordj Bou Arreridj, Algérie.,Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algérie
| | - Rédha Djenidi
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algérie.,Département des Sciences Agronomiques, Faculté SNV-STU, Université de Bordj Bou Arreridj, Bordj Bou Arreridj, Algérie
| | - Imen Chebout
- Laboratoire de l'anatomie et de Cytopathologie, Faculté de Médecine, Université de Bejaia, Bejaia, Algérie
| |
Collapse
|
29
|
Heracleum persicum: chemical composition, biological activities and potential uses in poultry nutrition. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933919000205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Khandia R, Dadar M, Munjal A, Dhama K, Karthik K, Tiwari R, Yatoo MI, Iqbal HMN, Singh KP, Joshi SK, Chaicumpa W. A Comprehensive Review of Autophagy and Its Various Roles in Infectious, Non-Infectious, and Lifestyle Diseases: Current Knowledge and Prospects for Disease Prevention, Novel Drug Design, and Therapy. Cells 2019; 8:cells8070674. [PMID: 31277291 PMCID: PMC6678135 DOI: 10.3390/cells8070674] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 02/05/2023] Open
Abstract
Autophagy (self-eating) is a conserved cellular degradation process that plays important roles in maintaining homeostasis and preventing nutritional, metabolic, and infection-mediated stresses. Autophagy dysfunction can have various pathological consequences, including tumor progression, pathogen hyper-virulence, and neurodegeneration. This review describes the mechanisms of autophagy and its associations with other cell death mechanisms, including apoptosis, necrosis, necroptosis, and autosis. Autophagy has both positive and negative roles in infection, cancer, neural development, metabolism, cardiovascular health, immunity, and iron homeostasis. Genetic defects in autophagy can have pathological consequences, such as static childhood encephalopathy with neurodegeneration in adulthood, Crohn's disease, hereditary spastic paraparesis, Danon disease, X-linked myopathy with excessive autophagy, and sporadic inclusion body myositis. Further studies on the process of autophagy in different microbial infections could help to design and develop novel therapeutic strategies against important pathogenic microbes. This review on the progress and prospects of autophagy research describes various activators and suppressors, which could be used to design novel intervention strategies against numerous diseases and develop therapeutic drugs to protect human and animal health.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Genetics, Barkatullah University, Bhopal 462 026, Madhya Pradesh, India
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj 31975/148, Iran
| | - Ashok Munjal
- Department of Genetics, Barkatullah University, Bhopal 462 026, Madhya Pradesh, India.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India.
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai, Tamil Nadu 600051, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh 281 001, India
| | - Mohd Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar 190025, Jammu and Kashmir, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L., CP 64849, Mexico
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Sunil K Joshi
- Department of Pediatrics, Division of Hematology, Oncology and Bone Marrow Transplantation, University of Miami School of Medicine, Miami, FL 33136, USA.
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
31
|
Fernandes T, Carvalho BF, Mantovani HC, Schwan RF, Ávila CLS. Identification and characterization of yeasts from bovine rumen for potential use as probiotics. J Appl Microbiol 2019; 127:845-855. [PMID: 31211890 DOI: 10.1111/jam.14350] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/11/2019] [Accepted: 03/10/2019] [Indexed: 01/08/2023]
Abstract
AIMS The aim was to isolate, identify and characterize yeasts present in rumen fluid and to select strains showing potential as probiotics. METHODS AND RESULTS Rumen fluid was sampled from 4 herds of dairy and beef cattle and 77 yeast isolates were identified. Initial screening was based on the capacity to maintain viability in a medium with different ruminal conditions. A second screening in fresh rumen fluid to assess the growth of inoculated yeasts and evaluate in vitro neutral detergent fibre digestibility (NDF-D), pH and acid accumulation was conducted. The yeast population ranged from 3·84 to 6·76 log10 CFU per ml. The main species of yeast found were Pichia kudriavzevii, Candida rugosa, C. pararugosa, C. ethanolica and Magnusiomyces capitatus. Strains CCMA 933 (C. rugosa) and CCMA 970 (C. pararugosa) showed greater ability to survive in ruminal fluid and stimulated the production of acids. Isolate CCMA 967 (C. ethanolica) survived and improved the NDF-D. CONCLUSION Pichia kudriavzevii was the dominant yeast found in the cattle herds. Strains CCMA 933, CCMA 970 and CCMA 967 showed properties that could be useful as potential probiotics for cattle. SIGNIFICANCE AND IMPACT OF THE STUDY This study was the first to select yeasts from the rumen fluid, with the potential to be used as probiotic, based on the ruminal conditions.
Collapse
Affiliation(s)
- T Fernandes
- Department of Animal Science, Federal University of Lavras, Lavras, MG, Brazil
| | - B F Carvalho
- Department of Biology, Federal University of Lavras, Lavras, MG, Brazil
| | - H C Mantovani
- Department of Microbiology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - R F Schwan
- Department of Biology, Federal University of Lavras, Lavras, MG, Brazil
| | - C L S Ávila
- Department of Animal Science, Federal University of Lavras, Lavras, MG, Brazil
| |
Collapse
|
32
|
Devi G, Harikrishnan R, Paray BA, Al-Sadoon MK, Hoseinifar SH, Balasundaram C. Effect of symbiotic supplemented diet on innate-adaptive immune response, cytokine gene regulation and antioxidant property in Labeo rohita against Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2019; 89:687-700. [PMID: 31002929 DOI: 10.1016/j.fsi.2019.04.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/06/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Administration of probiotic, prebiotic or symbiotic supplemented diets boosts the antioxidant property, pro and/or anti-inflammatory cytokine gene transcription, innate-adaptive immunity, growth rate and feed digestibility with very low or no mortality in healthy and infected (both groups) in Labeo rohita against Aeromonas hydrophila is reported. The probiotic diet increased the white blood cell (WBC) count and globulin (GB) level significantly on or after 6th week whereas with the symbiotic diet the increase was noted two weeks earlier in both groups; the total protein (TP) level also increased significantly when fed with probiotic diet on weeks 6 and 8, whereas with symbiotic diet the significant increase manifested earlier at 4th week itself. The serum phagocytic activity (PA), respiratory burst activity (RBA), complement C3 (CC3) level, alternative complement pathway (ACP), lysozyme activity (LA), and immunoglobulin M (IgM) levels in head kidney (HK) leucocytes increased significantly (P < 0.05) in both groups fed with probiotic diet on weeks 6 and 8; with symbiotic diet from weeks 2-8; but with prebiotic diet only on 8th week. With probiotic diet the superoxide dismutase (SOD) and catalase (CAT) activities increased significantly (P < 0.05) on weeks 6 and 8; with symbiotic diet from weeks 4-8 but the prebiotics diet only on 8th week. However, glutathione peroxidase (GPx) activity increased significantly (P < 0.05) with probiotic diet on weeks 6 and 8 and with symbiotic diet from weeks 4-8. When healthy fish fed with any supplementation diet for a period of 30 days there was no mortality while 5%, 10%, and 10% mortality was observed in infected group fed with symbiotic, probiotic, and prebiotic supplementation diets. In head kidney (HK) leucocytes, the IL-1β, IL-8, TNF-α, and NF-κB gene transcriptions were significantly up-regulation in both groups when fed with probiotic diet on weeks 6 and 8, symbiotic diet from weeks 4-8 while the prebiotic diet only on 8th week. The iNOS expression was up-regulation significantly in both groups fed with probiotic and symbiotic diets on weeks 6 and 8; however, with any diet, the relative IL-10 and TGF-β gene expressions were down-regulated. The present study suggested that dietary administration of symbiotic diet elicited earlier antioxidant activity, innate-adaptive immune response, immune related cytokine gene modulation, and disease protection earlier i.e. on 4th week than with probiotic or prebiotic diets in L. rohita against A. hydrophila.
Collapse
Affiliation(s)
- Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti, 621 007, Tamil Nadu, India
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram, 631 501, Tamil Nadu, India
| | - Bilal Ahmad Paray
- Zoology Department, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Mohammad K Al-Sadoon
- Zoology Department, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Chellam Balasundaram
- Department of Herbal and Environmental Science, Tamil University, Thanjavur, 613 005, Tamil Nadu, India
| |
Collapse
|
33
|
Bayat M, Kalantar K, Amirghofran Z. Inhibition of interferon-γ production and T-bet expression by menthol treatment of human peripheral blood mononuclear cells. Immunopharmacol Immunotoxicol 2019; 41:267-276. [DOI: 10.1080/08923973.2019.1588294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Maryam Bayat
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kurosh Kalantar
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Amirghofran
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
- Autoimmune Disease Research Center and Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
34
|
Emerging Antibiotic Resistance in Mycoplasma Microorganisms, Designing Effective and Novel Drugs / Therapeutic Targets: Current Knowledge and Futuristic Prospects. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
Armenise A, Trerotoli P, Cirone F, De Nitto A, De Sario C, Bertazzolo W, Pratelli A, Decaro N. Use of recombinant canine granulocyte-colony stimulating factor to increase leukocyte count in dogs naturally infected by canine parvovirus. Vet Microbiol 2019; 231:177-182. [PMID: 30955806 DOI: 10.1016/j.vetmic.2019.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 11/18/2022]
Abstract
Canine parvovirus (CPV) is one of the most important cause of mortality in young dogs and no specific treatment exists. Since prolonged leukopenia greatly increases the risk of death in infected pups, strategies to counteract this decline were investigated. The outcomes of CPV naturally infected pups treated with the recombinant canine granulocyte-colony stimulating factor (rcG-CSF), in combination with the routine therapy, were compared with similarly-managed infected pups not treated with rcG-CSF. A non-randomized prospective clinical trial was performed on 62 CPV infected pups with WBC counts <3000 cells/μL and two different groups were selected based on a non-randomized approach. Group A dogs (31/62) received 5 μg/Kg of rcG-CSF daily from the hospitalization day until WBC reached the reference range (3-5 days) and group B (31/62) received 1 ml of placebo injection. All dogs in group A recovered, while five dogs in group B died. The rcG-CSF treatment demonstrated a statistically significant effect on WBC counts (p < 0.0001) and, surprisingly, also on lymphocytes and monocytes counts (p < 0.0001). There was no significant effect of treatment on neutrophil count (p = 0.5502). Although lymphocytes and monocytes are not a specific target for rcG-CSF, our study highlights that rcG-CSF is able to improve haematological parameters compared to untreated dogs and a clear increase in their number was detected, as previously described for humans treated with the homologous molecule.
Collapse
Affiliation(s)
- Andrea Armenise
- "Santa Fara" Veterinary Hospital, Via G.N. Bellomo 91 bis, 70124, Bari, Italy
| | - Paolo Trerotoli
- Department of Biomedical Science and Human Oncology, University of Bari "Aldo Moro", P.zza G. Cesare 11, 70124, Bari, Italy
| | - Francesco Cirone
- Department of Veterinary Medicine, University of Bari, Strada per Casamassima km 3, 70010, Valenzano, Bari, Italy
| | - Anna De Nitto
- "Santa Fara" Veterinary Hospital, Via G.N. Bellomo 91 bis, 70124, Bari, Italy
| | - Costantina De Sario
- Department of Veterinary Medicine, University of Bari, Strada per Casamassima km 3, 70010, Valenzano, Bari, Italy
| | - Walter Bertazzolo
- "Città di Pavia" Veterinary Hospital, Viale Cremona 179, 27100, Pavia, Italy
| | - Annamaria Pratelli
- Department of Veterinary Medicine, University of Bari, Strada per Casamassima km 3, 70010, Valenzano, Bari, Italy.
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Strada per Casamassima km 3, 70010, Valenzano, Bari, Italy
| |
Collapse
|
36
|
Calliandra surinamensis lectin (CasuL) does not impair the functionality of mice splenocytes, promoting cell signaling and cytokine production. Biomed Pharmacother 2018; 107:650-655. [DOI: 10.1016/j.biopha.2018.08.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/06/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022] Open
|
37
|
Kazemi H, Najafi M, Ghasemian E, Rahimi-Mianji G, Pirsaraei ZA. Polymorphism detection of promoter region of IFN-
$$\gamma $$
γ
and IL-2 genes and their association with productive traits in Mazandaran native breeder fowls. J Genet 2018. [DOI: 10.1007/s12041-018-0981-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
38
|
Sapkal GN, Sawant PM, Mourya DT. Chandipura Viral Encephalitis: A Brief Review. Open Virol J 2018; 12:44-51. [PMID: 30288194 PMCID: PMC6142667 DOI: 10.2174/1874357901812010044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 03/15/2018] [Accepted: 03/14/2018] [Indexed: 12/15/2022] Open
Abstract
Introduction: In recent years, the Chandipura virus (CHPV) has emerged as an encephalitic pathogen and found associated with a number of outbreaks in different parts of India. Children under 15 years of age are most susceptible to natural infection. CHPV is emerging as a significant encephalitis, causing virus in the Indian subcontinent. Severe outbreaks caused by the virus have been reported from several parts of India. Expalanation: In the recent past, the noticeable association of CHPV with pediatric sporadic encephalitis cases as well as a number of outbreaks in Andhra Pradesh (2004, 2005, 2007 and 2008), Gujarat in (2005, 2009-12) and Vidarbha region of Maharashtra (2007, 2009-12) have been documented. Prevalence and seasonal activity of the virus in these regions are established by NIV through outbreak investigations, sero-survey and diagnosis of the referred clinical specimens. Recently CHPV has been isolated from pools of sand flies collected during outbreak investigations in Vidarbha region of Maharashtra. Since its discovery from India and above-mentioned activity of CHPV, it was suspected to be restricted only to India. Conclusion: However, CHPV has also been isolated from human cases during 1971-72 in Nigeria, and hedgehogs (Atelerix spiculus) during entomological surveillance in Senegal, Africa (1990-96) and recently referred samples from Bhutan and Nepal and from wild toque macaques (Macaca sinica) at Polonnaruwa, Sri Lanka during 1993 suggest its circulation in many tropical countries. Based on the limited study on vector related report, it appears that sandflies may be the principle vector.
Collapse
Affiliation(s)
- Gajanan N Sapkal
- National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India
| | - Pradeep M Sawant
- National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India
| | - Devendra T Mourya
- National Institute of Virology, 20-A, Dr. Ambedkar Road, Pune 411001, India
| |
Collapse
|
39
|
Determination of dehydroepiandrosterone and its biologically active oxygenated metabolites in human plasma evinces a hormonal imbalance during HIV-TB coinfection. Sci Rep 2018; 8:6692. [PMID: 29703963 PMCID: PMC5923237 DOI: 10.1038/s41598-018-24771-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022] Open
Abstract
An estimated one third of the world's population is affected by latent tuberculosis (TB), which once active represents a leading cause of death among infectious diseases. Human immunodeficiency virus (HIV) infection is a main predisposing factor to TB reactivation. Individuals HIV-TB co-infected develop a chronic state of inflammation associated with hypothalamic-pituitary-adrenal (HPA) axis dysregulation. This results in a hormonal imbalance, disturbing the physiological levels of cortisol and dehydroepiandrosterone (DHEA). DHEA and its oxygenated metabolites androstenediol (AED), androstenetriol (AET) and 7-oxo-DHEA are immunomodulatory compounds that may regulate physiopathology in HIV-TB co-infection. In order to study possible changes in plasma levels of these hormones, we developed an approach based on high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). To our knowledge, this represents the first report of their simultaneous measurement in HIV-TB individuals and the comparison with healthy donors, obtaining statistically higher plasma levels of DHEA, AET and 7-oxo-DHEA in patients. Moreover, we found that concentrations of 7-oxo-DHEA positively correlated with absolute CD4+ T cell counts, nadir CD4+ T cell values and with individuals who presented TB restricted to the lungs. This research contributes to understanding the role of these hormones in HIV-TB and emphasizes the importance of deepening their study in this context.
Collapse
|
40
|
Díaz AM, Almozni B, Molina MA, Sparo MD, Manghi MA, Canellada AM, Castro MS. Potentiation of the humoral immune response elicited by a commercial vaccine against bovine respiratory disease by Enterococcus faecalis CECT7121. Benef Microbes 2018; 9:553-562. [PMID: 29633631 DOI: 10.3920/bm2017.0081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vaccination against pathogens involved in bovine respiratory disease (BRD) is a useful tool to reduce the risk of this disease however, it has been observed that the commercially available vaccines only partially prevent the infections caused by Pasteurella multocida and Mannheimia haemolytica. Therefore, it is recommended to search for new adjuvant strategies to minimise the economic impact of this respiratory syndrome. A possibility to improve the conventional vaccine response is to modulate the immune system with probiotics, since there is accumulating evidence that certain immunomodulatory strains administered around the time of vaccination can potentiate the immune response. Considering veterinary vaccines are frequently tested in murine models, we have developed an immunisation schedule in BALB/c mice that allows us to study the immune response elicited by BRD vaccine. In order to evaluate a potential strategy to enhance vaccine efficacy, the adjuvant effect of Enterococcus faecalis CECT7121 on the murine specific humoral immune response elicited by a commercial vaccine against BRD was studied. Results indicate that the intragastric administration of E. faecalis CECT7121 was able to induce an increase in the specific antibody titres against the bacterial components of the BRD vaccines (P. multocida and M. haemolytica). The quality of the humoral immune response, in terms of antibody avidity, was also improved. Regarding the cellular immune response, although the BRD vaccination induced a low specific secretion of cytokines in the spleen cell culture supernatants, E. faecalis CECT7121-treated mice showed higher interferon-γ production than immunised control mice. Our results allowed us to conclude that the administration of E. faecalis CECT7121 could be employed as an adjuvant strategy to potentiate humoral immune responses.
Collapse
Affiliation(s)
- A M Díaz
- 1 Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Inmunología, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina.,2 CONICET - Universidad de Buenos Aires. Instituto de Estudios de la Inmunidad Humoral 'Prof. Dr. Ricardo A. Margni' (IDEHU), Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina
| | - B Almozni
- 1 Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Inmunología, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina.,2 CONICET - Universidad de Buenos Aires. Instituto de Estudios de la Inmunidad Humoral 'Prof. Dr. Ricardo A. Margni' (IDEHU), Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina
| | - M A Molina
- 1 Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Inmunología, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina.,2 CONICET - Universidad de Buenos Aires. Instituto de Estudios de la Inmunidad Humoral 'Prof. Dr. Ricardo A. Margni' (IDEHU), Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina.,4 ABM Laboratorios Tandil, Batalla de Maipú 937, 7000 Tandil, Argentina
| | - M D Sparo
- 3 Universidad Nacional de La Plata, Facultad de Ciencias Médicas, Cátedra de Microbiología y Parasitología (CUDEMyP-CIC), Calle 60 y 120, 1900 La Plata, Argentina
| | - M A Manghi
- 1 Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Inmunología, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina.,2 CONICET - Universidad de Buenos Aires. Instituto de Estudios de la Inmunidad Humoral 'Prof. Dr. Ricardo A. Margni' (IDEHU), Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina
| | - A M Canellada
- 1 Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Inmunología, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina.,2 CONICET - Universidad de Buenos Aires. Instituto de Estudios de la Inmunidad Humoral 'Prof. Dr. Ricardo A. Margni' (IDEHU), Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina
| | - M S Castro
- 1 Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Inmunología, Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina.,2 CONICET - Universidad de Buenos Aires. Instituto de Estudios de la Inmunidad Humoral 'Prof. Dr. Ricardo A. Margni' (IDEHU), Junín 956, 1113 Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
41
|
Fayyad-Kazan M, Fayyad-Kazan H, Lagneaux L, Najar M. The potential of mesenchymal stromal cells in immunotherapy. Immunotherapy 2018; 8:839-42. [PMID: 27381681 DOI: 10.2217/imt-2016-0037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Mohammad Fayyad-Kazan
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology & Molecular Immunology, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Université Libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| | - Mehdi Najar
- Laboratory of Clinical Cell Therapy, Université Libre de Bruxelles (ULB), Institut Jules Bordet, Brussels, Belgium
| |
Collapse
|
42
|
Khazdair MR, Ghorani V, Alavinezhad A, Boskabady MH. Pharmacological effects of Zataria multiflora
Boiss L. and its constituents focus on their anti-inflammatory, antioxidant, and immunomodulatory effects. Fundam Clin Pharmacol 2018; 32:26-50. [DOI: 10.1111/fcp.12331] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 09/26/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Mohammad Reza Khazdair
- Department of Physiology; School of Medicine; Pharmaceutical Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- Student Research Committee; Mashhad University of Medical Sciences; Mashhad Iran
| | - Vahideh Ghorani
- Department of Physiology; School of Medicine; Pharmaceutical Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - Azam Alavinezhad
- Department of Physiology; School of Medicine; Neurogenic Inflammation Research Centre; Mashhad University of Medical Sciences; Mashhad Iran
| | - Mohammad Hossein Boskabady
- Department of Physiology; School of Medicine; Neurogenic Inflammation Research Centre; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
43
|
Yatoo MI, Dimri U, Gopalakrishnan A, Saxena A, Wani SA, Dhama K. In vitro and in vivo immunomodulatory potential of Pedicularis longiflora and Allium carolinianum in alloxan-induced diabetes in rats. Biomed Pharmacother 2018; 97:375-384. [DOI: 10.1016/j.biopha.2017.10.133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/12/2017] [Accepted: 10/23/2017] [Indexed: 10/18/2022] Open
|
44
|
Singh RK, Dhama K, Malik YS, Ramakrishnan MA, Karthik K, Khandia R, Tiwari R, Munjal A, Saminathan M, Sachan S, Desingu PA, Kattoor JJ, Iqbal HMN, Joshi SK. Ebola virus - epidemiology, diagnosis, and control: threat to humans, lessons learnt, and preparedness plans - an update on its 40 year's journey. Vet Q 2017; 37:98-135. [PMID: 28317453 DOI: 10.1080/01652176.2017.1309474] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Ebola virus (EBOV) is an extremely contagious pathogen and causes lethal hemorrhagic fever disease in man and animals. The recently occurred Ebola virus disease (EVD) outbreaks in the West African countries have categorized it as an international health concern. For the virus maintenance and transmission, the non-human primates and reservoir hosts like fruit bats have played a vital role. For curbing the disease timely, we need effective therapeutics/prophylactics, however, in the absence of any approved vaccine, timely diagnosis and monitoring of EBOV remains of utmost importance. The technologically advanced vaccines like a viral-vectored vaccine, DNA vaccine and virus-like particles are underway for testing against EBOV. In the absence of any effective control measure, the adaptation of high standards of biosecurity measures, strict sanitary and hygienic practices, strengthening of surveillance and monitoring systems, imposing appropriate quarantine checks and vigilance on trade, transport, and movement of visitors from EVD endemic countries remains the answer of choice for tackling the EBOV spread. Herein, we converse with the current scenario of EBOV giving due emphasis on animal and veterinary perspectives along with advances in diagnosis and control strategies to be adopted, lessons learned from the recent outbreaks and the global preparedness plans. To retrieve the evolutionary information, we have analyzed a total of 56 genome sequences of various EBOV species submitted between 1976 and 2016 in public databases.
Collapse
Affiliation(s)
- Raj Kumar Singh
- a ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Kuldeep Dhama
- b Division of Pathology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Yashpal Singh Malik
- c Division of Biological Standardization, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | | | - Kumaragurubaran Karthik
- e Divison of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Rekha Khandia
- f Department of Biochemistry and Genetics , Barkatullah University , Bhopal , India
| | - Ruchi Tiwari
- g Department of Veterinary Microbiology and Immunology , College of Veterinary Sciences, Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura , India
| | - Ashok Munjal
- f Department of Biochemistry and Genetics , Barkatullah University , Bhopal , India
| | - Mani Saminathan
- b Division of Pathology, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Swati Sachan
- h Immunology Section, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | | | - Jobin Jose Kattoor
- c Division of Biological Standardization, ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Hafiz M N Iqbal
- i School of Engineering and Science, Tecnologico de Monterrey , Monterrey , Mexico
| | - Sunil Kumar Joshi
- j Cellular Immunology Lab , Frank Reidy Research Center for Bioelectrics , School of Medical Diagnostics & Translational Sciences, Old Dominion University , Norfolk , VA , USA
| |
Collapse
|
45
|
de Siqueira Patriota LL, Procópio TF, de Santana Brito J, Sebag V, de Oliveira APS, de Araújo Soares AK, Moreira LR, de Albuquerque Lima T, Soares T, da Silva TD, Paiva PMG, de Lorena VMB, de Melo CML, de Albuquerque LP, Napoleão TH. Microgramma vacciniifolia (Polypodiaceae) fronds contain a multifunctional lectin with immunomodulatory properties on human cells. Int J Biol Macromol 2017; 103:36-46. [DOI: 10.1016/j.ijbiomac.2017.05.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/17/2022]
|
46
|
Dhama K, Kumar N, Saminathan M, Tiwari R, Karthik K, Kumar MA, Palanivelu M, Shabbir MZ, Malik YS, Singh RK. Duck virus enteritis (duck plague) - a comprehensive update. Vet Q 2017; 37:57-80. [PMID: 28320263 DOI: 10.1080/01652176.2017.1298885] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Duck virus enteritis (DVE), also called duck plague, is one of the major contagious and fatal diseases of ducks, geese and swan. It is caused by duck enteritis virus (DEV)/Anatid herpesvirus-1 of the genus Mardivirus, family Herpesviridae, and subfamily Alpha-herpesvirinae. Of note, DVE has worldwide distribution, wherein migratory waterfowl plays a crucial role in its transmission within and between continents. Furthermore, horizontal and/ or vertical transmission plays a significant role in disease spread through oral-fecal discharges. Either of sexes from varying age groups of ducks is vulnerable to DVE. The disease is characterized by sudden death, vascular damage and subsequent internal hemorrhage, lesions in lymphoid organs, digestive mucosal eruptions, severe diarrhea and degenerative lesions in parenchymatous organs. Huge economic losses are connected with acute nature of the disease, increased morbidity and mortality (5%-100%), condemnations of carcasses, decreased egg production and hatchability. Although clinical manifestations and histopathology can provide preliminary diagnosis, the confirmatory diagnosis involves virus isolation and detection using serological and molecular tests. For prophylaxis, both live-attenuated and killed vaccines are being used in broiler and breeder ducks above 2 weeks of age. Since DEV is capable of becoming latent as well as shed intermittently, recombinant subunit and DNA vaccines either alone or in combination (polyvalent) are being targeted for its benign prevention. This review describes DEV, epidemiology, transmission, the disease (DVE), pathogenesis, and advances in diagnosis, vaccination and antiviral agents/therapies along with appropriate prevention and control strategies.
Collapse
Affiliation(s)
- Kuldeep Dhama
- a Division of Pathology , ICAR - Indian Veterinary Research Institute , Izatnagar , India
| | - Naveen Kumar
- b National Center for Veterinary Type Cultures, ICAR-National Research Center on Equines , Hisar , India
| | - Mani Saminathan
- a Division of Pathology , ICAR - Indian Veterinary Research Institute , Izatnagar , India
| | - Ruchi Tiwari
- c Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences , Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura , India
| | - Kumaragurubaran Karthik
- d Central University Laboratory , Tamil Nadu Veterinary and Animal Sciences University , Chennai , India
| | - M Asok Kumar
- a Division of Pathology , ICAR - Indian Veterinary Research Institute , Izatnagar , India
| | - M Palanivelu
- a Division of Pathology , ICAR - Indian Veterinary Research Institute , Izatnagar , India
| | - Muhammad Zubair Shabbir
- e Quality Operations Laboratory , University of Veterinary and Animal Sciences , Lahore , Pakistan
| | - Yashpal Singh Malik
- f Division of Biological Standardization , ICAR - Indian Veterinary Research Institute , Bareilly , India
| | - Raj Kumar Singh
- g ICAR - Indian Veterinary Research Institute , Izatnagar , India
| |
Collapse
|
47
|
Ilg T. Investigations on the molecular mode of action of the novel immunostimulator ZelNate: Activation of the cGAS-STING pathway in mammalian cells. Mol Immunol 2017; 90:182-189. [PMID: 28802127 DOI: 10.1016/j.molimm.2017.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 02/06/2023]
Abstract
Bovine respiratory disease (BRD) is usually prevented or treated with vaccines and/or antibiotics. The use of antibiotics is, however, of concern due to the potential promotion of microbial resistance and the occurrence of residues. Recently an alternative aid in the treatment of BRD, the cationic lipid/bacterial plasmid DNA liposome-based immunomodulator ZelNate, has entered the veterinary market. In the present study, we provide data on the molecular mode of action of ZelNate. Despite the presence of numerous non-methylated CpG motifs in its plasmid DNA, ZelNate proved to be inactive on human and mouse toll-like receptor 9 (TLR9) in cell culture, in both recombinant and natural cellular receptor settings. However, in the human monocyte cell line THP1 and in the mouse melanoma cell line B16, ZelNate activates strongly the stimulator of interferon genes (STING) pathway, which is known to lead predominantly to interferon response factor 3 (IRF3) activation. Further analysis in THP1 cells suggests that the ZelNate plasmid DNA activates STING via interaction with cyclic guanylate adenylate synthase (cGAS), but not via interferon induced gene 16 (IFI16). Our in vitro observations suggest that ZelNate may act predominantly via the cGAS/STING/IRF3 pathway.
Collapse
Affiliation(s)
- Thomas Ilg
- Bayer Animal Health GmbH, Alfred-Nobel-Strasse 50, 40789 Monheim, Germany.
| |
Collapse
|
48
|
Khandia R, Munjal A, Dhama K. Consequences of Zika Virus Infection During Fetal Stage and Pregnancy Safe Drugs: An Update. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.370.377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
49
|
Ejelonu OC, Elekofehinti OO, Adanlawo IG. Tithonia diversifolia saponin-blood lipid interaction and its influence on immune system of normal wistar rats. Biomed Pharmacother 2017; 87:589-595. [DOI: 10.1016/j.biopha.2017.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/29/2016] [Accepted: 01/02/2017] [Indexed: 12/22/2022] Open
|
50
|
Yakubu A, Salako A, Donato M, Takeet M, Peters S, Wheto M, Okpeku M, Imumorin I. Interleukin-2 ((IL-2) gene polymorphism and association with heat tolerance in Nigerian goats. Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2016.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|