1
|
Barden A, Shinde S, Beilin LJ, Phillips M, Adams L, Bollmann S, Mori TA. Adiposity associates with lower plasma resolvin E1 (Rve1): a population study. Int J Obes (Lond) 2024; 48:725-732. [PMID: 38347128 PMCID: PMC11058310 DOI: 10.1038/s41366-024-01482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Inadequate inflammation resolution may contribute to persistent low-grade inflammation that accompanies many chronic conditions. Resolution of inflammation is an active process driven by Specialized Pro-resolving Mediators (SPM) that derive from long chain n-3 and n-6 fatty acids. This study examined plasma SPM in relation to sex differences, lifestyle and a broad range cardiovascular disease (CVD) risk factors in 978, 27-year olds from the Australian Raine Study. METHODS Plasma SPM pathway intermediates (18-HEPE, 17-HDHA and 14-HDHA), and SPM (E- and D-series resolvins, PD1, MaR1) and LTB4 were measured by liquid chromatography-tandem mass spectrometry (LCMSMS). Pearson correlations and multiple regression analyses assessed relationships between SPM and CVD risk factors. Unpaired t-tests or ANOVA assessed the effect of sex, smoking, unhealthy alcohol consumption and obesity on SPM. RESULTS Women had higher 17-HDHA (p = 0.01) and lower RvE1 (p < 0.0001) and RvD1 (p = 0.05) levels compared with men. In univariate analysis, obesity associated with lower RvE1 (p = 0.002), whereas smoking (p < 0.001) and higher alcohol consumption (p < 0.001) associated with increased RvE1. In multiple regression analysis, plasma RvE1 was negatively associated with a range of measures of adiposity including BMI, waist circumference, waist-to-height ratio, abdominal subcutaneous fat volume, and skinfold thicknesses in both men and women. CONCLUSION This population study suggests that a deficiency in plasma RvE1 may occur in response to increasing adiposity. This observation could be relevant to ongoing inflammation that associates with CVD and other chronic diseases.
Collapse
Affiliation(s)
- Anne Barden
- Medical School, University of Western Australia, Perth, WA, Australia.
| | - Sujata Shinde
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Lawrence J Beilin
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Michael Phillips
- Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- Royal Perth Hospital Research Foundation, Perth, WA, Australia
| | - Leon Adams
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Steffen Bollmann
- School of Information Technology and Electrical Engineering, Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Trevor A Mori
- Medical School, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
2
|
Speckmann B, Wagner T, Jordan PM, Werz O, Wilhelm M, tom Dieck H, Schön C. Synbiotic Bacillus megaterium DSM 32963 and n-3 PUFA Salt Composition Elevates Pro-Resolving Lipid Mediator Levels in Healthy Subjects: A Randomized Controlled Study. Nutrients 2024; 16:1354. [PMID: 38732601 PMCID: PMC11085393 DOI: 10.3390/nu16091354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Beneficial health effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) are partly attributed to specialized pro-resolving mediators (SPMs), which promote inflammation resolution. Strategies to improve n-3 PUFA conversion to SPMs may, therefore, be useful to treat or prevent chronic inflammatory disorders. Here, we explored a synbiotic strategy to increase circulating SPM precursor levels. Healthy participants (n = 72) received either SynΩ3 (250 mg eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) lysine salts; two billion CFU Bacillus megaterium; n = 23), placebo (n = 24), or fish oil (300 mg EPA plus DHA; N = 25) capsules daily for 28 days in a randomized, double-blind placebo-controlled parallel 3-group design. Biomarkers were assessed at baseline and after 2 and 28 days of intervention. The primary analysis involved the comparison between SynΩ3 and placebo. In addition, SynΩ3 was compared to fish oil. The synbiotic SynΩ3 comprising Bacillus megaterium DSM 32963 and n-3 PUFA salts significantly increased circulating SPM precursor levels, including 18-hydroxy-eicosapentaenoic acid (18-HEPE) plus 5-HEPE, which was not achieved to this extent by fish oil with a similar n-3 PUFA content. Omega-3 indices were increased slightly by both SynΩ3 and fish oil. These findings suggest reconsidering conventional n-3 PUFA supplementation and testing the effectiveness of SynΩ3 particularly in conditions related to inflammation.
Collapse
Affiliation(s)
- Bodo Speckmann
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany
| | - Tanja Wagner
- BioTeSys GmbH, Schelztorstrasse 54-56, 73728 Esslingen, Germany
| | - Paul M. Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Manfred Wilhelm
- Department of Mathematics, Natural and Economic Sciences, Ulm University of Applied Sciences, 89081 Ulm, Germany
| | - Heike tom Dieck
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany
| | | |
Collapse
|
3
|
Engert LC, Mullington JM, Haack M. Prolonged experimental sleep disturbance affects the inflammatory resolution pathways in healthy humans. Brain Behav Immun 2023; 113:12-20. [PMID: 37369338 PMCID: PMC10528069 DOI: 10.1016/j.bbi.2023.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/26/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Sleep disturbances, as manifested in insomnia symptoms of difficulties falling asleep or frequent nighttime awakenings, are a strong risk factor for a diverse range of diseases involving immunopathology. Low-grade systemic inflammation has been frequently found associated with sleep disturbances and may mechanistically contribute to increased disease risk. Effects of sleep disturbances on inflammation have been observed to be long lasting and remain after recovery sleep has been obtained, suggesting that sleep disturbances may not only affect inflammatory mediators, but also the so-called specialized pro-resolving mediators (SPMs) that actively resolve inflammation. The goal of this investigation was to test for the first time whether the omega-3 fatty acid-derived D- (RvD) and E-series (RvE) resolvins are impacted by prolonged experimental sleep disturbance (ESD). METHODS Twenty-four healthy participants (12 F, age 20-42 years) underwent two 19-day in-hospital protocols (ESD/control), separated by > 2 months. The ESD protocol consisted of repeated nights of short and disrupted sleep with intermittent nights of undisturbed sleep, followed by three nights of recovery sleep at the end of the protocol. Under the control sleep condition, participants had an undisturbed sleep opportunity of 8 h/night throughout the protocol. The D- and E-series resolvins were measured in plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS The precursor of the D-series resolvins, 17-HDHA, was downregulated in the ESD compared to the control sleep condition (p <.001 for condition), and this effect remained after the third night of recovery sleep has been obtained. This effect was also observed for the resolvins RvD3, RvD4, and RvD5 (p <.001 for condition), while RvD1 was higher in the ESD compared to the control sleep condition (p <.01 for condition) and RvD2 showed a mixed effect of a decrease during disturbed sleep followed by an increase during recovery sleep in the ESD condition (p <.001 for condition*day interaction). The precursor of E-series resolvins, 18-HEPE, was downregulated in the ESD compared to the control sleep condition (p <.01 for condition) and remained low after recovery sleep has been obtained. This effect of downregulation was also observed for RvE2 (p <.01 for condition), while there was no effect for RvE1 (p >.05 for condition or condition*day interaction). Sex-differential effects were found for two of the D-series resolvins, i.e., RvD2 and RvD4. CONCLUSION This first investigation on the effects of experimental sleep disturbance on inflammatory resolution processes shows that SPMs, particularly resolvins of the D-series, are profoundly downregulated by sleep disturbances and remain downregulated after recovery sleep has been obtained, suggesting a longer lasting impact of sleep disturbances on these mediators. These findings also suggest that sleep disturbances contribute to the development and progression of a wide range of diseases characterized by immunopathology by interfering with processes that actively resolve inflammation. Pharmacological interventions aimed at promoting inflammatory resolution physiology may help to prevent future disease risk as a common consequence of sleep disturbances. TRIAL REGISTRATION ClinicalTrials.gov NCT02484742.
Collapse
Affiliation(s)
- Larissa C Engert
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Janet M Mullington
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Monika Haack
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Filiberto AC, Leroy V, Ladd Z, Su G, Elder CT, Pruitt EY, Lu G, Hartman J, Zarrinpar A, Garrett TJ, Sharma AK, Upchurch GR. Sex differences in specialized pro-resolving lipid mediators and their receptors in abdominal aortic aneurysms. JVS Vasc Sci 2023; 4:100107. [PMID: 37292185 PMCID: PMC10245328 DOI: 10.1016/j.jvssci.2023.100107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/08/2023] [Indexed: 06/10/2023] Open
Abstract
Objective In this study, we tested the hypothesis that endogenous expression of specialized pro-resolving lipid mediators (SPMs) that facilitate the resolution of inflammation, specifically Resolvin D1and -D2, as well as Maresin1 (MaR1), can impact abdominal aortic aneurysm (AAA) formation and progression in a sex-specific manner. Methods SPM expression was quantified in aortic tissue from human AAA samples and from a murine in vivo AAA model via liquid chromatography-tandem mass spectrometry. mRNA expression for SPM receptors FPR2, LGR6, and GPR18 were quantified by real-time polymerase chain reaction. A Student t test with nonparametric Mann-Whitney or Wilcoxon test was used for pair-wise comparisons of groups. One-way analysis of variance after post hoc Tukey test was used to determine the differences among multiple comparative groups. Results Human aortic tissue analysis revealed a significant decrease in RvD1 levels in male AAAs compared with controls, whereas FPR2 and LGR6 receptor expressions were downregulated in male AAAs compared with male controls. In vivo studies of elastase-treated mice showed higher levels of RvD2 and MaR1 as well as the SPM precursors, omega-3 fatty acids DHA and EPA, in aortic tissue from males compared with females. FPR2 expression was increased in elastase-treated females compared with males. Conclusions Our findings demonstrate that specific differences in SPMs and their associated G-protein coupled receptors exist between sexes. These results indicate the relevance of SPM-mediated signaling pathways in sex differences impacting the pathogenesis of AAAs.
Collapse
Affiliation(s)
| | - Victoria Leroy
- Department of Surgery, University of Florida, Gainesville, FL
| | - Zachary Ladd
- Department of Surgery, University of Florida, Gainesville, FL
| | - Gang Su
- Department of Surgery, University of Florida, Gainesville, FL
| | - Craig T. Elder
- Department of Surgery, University of Florida, Gainesville, FL
| | - Eric Y. Pruitt
- Department of Surgery, University of Florida, Gainesville, FL
| | - Guanyi Lu
- Department of Surgery, University of Florida, Gainesville, FL
| | - Joseph Hartman
- Department of Surgery, University of Florida, Gainesville, FL
| | - Ali Zarrinpar
- Department of Surgery, University of Florida, Gainesville, FL
| | - Timothy J. Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Ashish K. Sharma
- Department of Surgery, University of Florida, Gainesville, FL
- Aortic Disease Center, University of Florida, Gainesville, FL
| | - Gilbert R. Upchurch
- Department of Surgery, University of Florida, Gainesville, FL
- Aortic Disease Center, University of Florida, Gainesville, FL
| |
Collapse
|
5
|
Fuller H, Race AD, Fenton H, Burke L, Downing A, Williams EA, Rees CJ, Brown LC, Loadman PM, Hull MA. Plasma and rectal mucosal oxylipin levels during aspirin and eicosapentaenoic acid treatment in the seAFOod polyp prevention trial. Prostaglandins Leukot Essent Fatty Acids 2023; 192:102570. [PMID: 37003144 DOI: 10.1016/j.plefa.2023.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Aspirin and eicosapentaenoic acid (EPA) have colorectal polyp prevention activity, alone and in combination. This study measured levels of plasma and rectal mucosal oxylipins in participants of the seAFOod 2 × 2 factorial, randomised, placebo-controlled trial, who received aspirin 300 mg daily and EPA 2000 mg free fatty acid, alone and in combination, for 12 months. METHODS Resolvin (Rv) E1, 15-epi-lipoxin (LX) A4 and respective precursors 18-HEPE and 15-HETE (with chiral separation) were measured by ultra-high performance liquid chromatography-tandem mass spectrometry in plasma taken at baseline, 6 months and 12 months, as well as rectal mucosa obtained at trial exit colonoscopy at 12 months, in 401 trial participants. RESULTS Despite detection of S- and R- enantiomers of 18-HEPE and 15-HETE in ng/ml concentrations, RvE1 or 15‑epi-LXA4 were not detected above a limit of detection of 20 pg/ml in plasma or rectal mucosa, even in individuals randomised to both aspirin and EPA. We have confirmed in a large clinical trial cohort that prolonged (12 months) treatment with EPA is associated with increased plasma 18-HEPE concentrations (median [inter-quartile range] total 18-HEPE 0.51 [0.21-1.95] ng/ml at baseline versus 0.95 [0.46-4.06] ng/ml at 6 months [P<0.0001] in those randomised to EPA alone), which correlate strongly with respective rectal mucosal 18-HEPE levels (r = 0.82; P<0.001), but which do not predict polyp prevention efficacy by EPA or aspirin. CONCLUSION Analysis of seAFOod trial plasma and rectal mucosal samples has not provided evidence of synthesis of the EPA-derived specialised pro-resolving mediator RvE1 or aspirin-trigged lipoxin 15‑epi-LXA4. We cannot rule out degradation of individual oxylipins during sample collection and storage but readily measurable precursor oxylipins argues against widespread degradation.
Collapse
Affiliation(s)
- H Fuller
- Leeds Institute of Medical Research, University of Leeds, UK
| | - A D Race
- Institute of Cancer Therapeutics, University of Bradford, UK
| | - H Fenton
- Leeds Institute of Medical Research, University of Leeds, UK
| | - L Burke
- Institute of Cancer Therapeutics, University of Bradford, UK
| | - A Downing
- Leeds Institute of Medical Research, University of Leeds, UK
| | - E A Williams
- Department of Oncology and Metabolism, University of Sheffield, UK
| | - C J Rees
- Population Health Science Institute, Newcastle University, UK
| | - L C Brown
- MRC Clinical Trials Unit at University College, London, UK
| | - P M Loadman
- Institute of Cancer Therapeutics, University of Bradford, UK
| | - M A Hull
- Leeds Institute of Medical Research, University of Leeds, UK.
| |
Collapse
|
6
|
Al-Shaer AE, Regan J, Buddenbaum N, Tharwani S, Drawdy C, Behee M, Sergin S, Fenton JI, Maddipati KR, Kane S, Butler E, Shaikh SR. Enriched Marine Oil Supplement Increases Specific Plasma Specialized Pro-Resolving Mediators in Adults with Obesity. J Nutr 2022; 152:1783-1791. [PMID: 35349683 PMCID: PMC9258560 DOI: 10.1093/jn/nxac075] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/13/2022] [Accepted: 03/18/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Specialized pro-resolving mediators (SPMs), synthesized from PUFAs, resolve inflammation and return damaged tissue to homeostasis. Thus, increasing metabolites of the SPM biosynthetic pathway may have potential health benefits for select clinical populations, such as subjects with obesity who display dysregulation of SPM metabolism. However, the concentrations of SPMs and their metabolic intermediates in humans with obesity remains unclear. OBJECTIVES The primary objective of this study was to determine if a marine oil supplement increased specific metabolites of the SPM biosynthetic pathway in adults with obesity. The second objective was to determine if the supplement changed the relative abundance of key immune cell populations. Finally, given the critical role of antibodies in inflammation, we determined if ex vivo CD19 + B-cell antibody production was modified by marine oil intervention. METHODS Twenty-three subjects [median age: 56 y; BMI (in kg/m2): 33.1] consumed 2 g/d of a marine oil supplement for 28-30 d. The supplement was particularly enriched with 18-hydroxyeicosapentaenoic (HEPE), 14-hydroxydocosahexaenoic acid (14-HDHA), and 17-HDHA. Blood was collected pre- and postsupplementation for plasma mass spectrometry oxylipin and fatty acid analyses, flow cytometry, and B-cell isolation. Paired t-tests and Wilcoxon tests were used for statistical analyses. RESULTS Relative to preintervention, the supplement increased 6 different HEPEs and HDHAs accompanied by changes in plasma PUFAs. Resolvin E1 and docosapentaenoic acid-derived maresin 1 concentrations were increased 3.5- and 4.7-fold upon intervention, respectively. The supplement did not increase the concentration of D-series resolvins and had no effect on the abundance of immune cells. Ex vivo B-cell IgG but not IgM concentrations were lowered postsupplementation. CONCLUSIONS A marine oil supplement increased select SPMs and their metabolic intermediates in adults with obesity. Additional studies are needed to determine if increased concentrations of specific SPMs control the resolution of inflammation in humans with obesity. This trial was registered at clinicaltrials.gov as NCT04701138.
Collapse
Affiliation(s)
- Abrar E Al-Shaer
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer Regan
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicole Buddenbaum
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sonum Tharwani
- The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Catie Drawdy
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Madeline Behee
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Selin Sergin
- Department of Food Science and Human Nutrition, College of Agriculture and Natural Resources and College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, College of Agriculture and Natural Resources and College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Krishna Rao Maddipati
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University, Detroit, MI, USA
| | - Shawn Kane
- The University of North Carolina at Chapel Hill Family Medicine Center, Chapel Hill, NC, USA
| | - Erik Butler
- The University of North Carolina at Chapel Hill Family Medicine Center, Chapel Hill, NC, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Shum M, London CM, Briottet M, Sy KA, Baillif V, Philippe R, Zare A, Ghorbani-Dalini S, Remus N, Tarze A, Escabasse V, Epaud R, Dubourdeau M, Urbach V. CF Patients’ Airway Epithelium and Sex Contribute to Biosynthesis Defects of Pro-Resolving Lipids. Front Immunol 2022; 13:915261. [PMID: 35784330 PMCID: PMC9244846 DOI: 10.3389/fimmu.2022.915261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/13/2022] [Indexed: 01/07/2023] Open
Abstract
Specialized pro-resolving lipid mediators (SPMs) as lipoxins (LX), resolvins (Rv), protectins (PD) and maresins (MaR) promote the resolution of inflammation. We and others previously reported reduced levels of LXA4 in bronchoalveolar lavages from cystic fibrosis (CF) patients. Here, we investigated the role of CF airway epithelium in SPMs biosynthesis, and we evaluated its sex specificity. Human nasal epithelial cells (hNEC) were obtained from women and men with or without CF. Lipids were quantified by mass spectrometry in the culture medium of hNEC grown at air-liquid interface and the expression level and localization of the main enzymes of SPMs biosynthesis were assessed. The 5-HETE, LXA4, LXB4, RvD2, RvD5, PD1 and RvE3 levels were significantly lower in samples derived from CF patients compared with non-CF subjects. Within CF samples, the 12-HETE, 15-HETE, RvD3, RvD4, 17-HODHE and PD1 were significantly lower in samples derived from females. While the mean expression levels of 15-LO, 5-LO and 12-LO do not significantly differ either between CF and non-CF or between female and male samples, the SPMs content correlates with the level of expression of several enzymes involved in SPMs metabolism. In addition, the 5-LO localization significantly differed from cytoplasmic in non-CF to nucleic (or nuclear envelope) in CF hNEC. Our studies provided evidence for lower abilities of airway epithelial cells derived from CF patients and more markedly, females to produce SPMs. These data are consistent with a contribution of CF airway epithelium in the abnormal resolution of inflammation and with worse pulmonary outcomes in women.
Collapse
Affiliation(s)
- Mickael Shum
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Charlie M. London
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Maelle Briottet
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Khadeeja Adam Sy
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | | | - Reginald Philippe
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1151 – Institut Necker Enfants Malades (INEM), Paris, France
| | - Abdolhossein Zare
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1151 – Institut Necker Enfants Malades (INEM), Paris, France
| | - Sadegh Ghorbani-Dalini
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1151 – Institut Necker Enfants Malades (INEM), Paris, France
| | - Natacha Remus
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
- Centre Hospitalier Intercommunal de Créteil (CHIC), Créteil, France
| | - Agathe Tarze
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| | - Virginie Escabasse
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
- Centre Hospitalier Intercommunal de Créteil (CHIC), Créteil, France
| | - Ralph Epaud
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
- Centre Hospitalier Intercommunal de Créteil (CHIC), Créteil, France
| | | | - Valerie Urbach
- University Paris Est Créteil, Institut National de la Santé Et de la Recherche Médicale (INSERM) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1151 – Institut Necker Enfants Malades (INEM), Paris, France
- *Correspondence: Valerie Urbach,
| |
Collapse
|
8
|
Speckmann B, Kleinbölting J, Börner F, Jordan PM, Werz O, Pelzer S, tom Dieck H, Wagner T, Schön C. Synbiotic Compositions of Bacillus megaterium and Polyunsaturated Fatty Acid Salt Enable Self-Sufficient Production of Specialized Pro-Resolving Mediators. Nutrients 2022; 14:nu14112265. [PMID: 35684065 PMCID: PMC9182845 DOI: 10.3390/nu14112265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Specialized pro-resolving mediators (SPM) have emerged as crucial lipid mediators that confer the inflammation-resolving effects of omega-3 polyunsaturated fatty acids (n-3 PUFA). Importantly, SPM biosynthesis is dysfunctional in various conditions, which may explain the inconclusive efficacy data from n-3 PUFA interventions. To overcome the limitations of conventional n-3 PUFA supplementation strategies, we devised a composition enabling the self-sufficient production of SPM in vivo. Bacillus megaterium strains were fed highly bioavailable n-3 PUFA, followed by metabololipidomics analysis and bioinformatic assessment of the microbial genomes. All 48 tested Bacillus megaterium strains fed with the n-3 PUFA formulation produced a broad range of SPM and precursors thereof in a strain-specific manner, which may be explained by the CYP102A1 gene polymorphisms that we detected. A pilot study was performed to test if a synbiotic Bacillus megaterium/n-3 PUFA formulation increases SPM levels in vivo. Supplementation with a synbiotic capsule product led to significantly increased plasma levels of hydroxy-eicosapentaenoic acids (5-HEPE, 15-HEPE, 18-HEPE) and hydroxy-docosahexaenoic acids (4-HDHA, 7-HDHA) as well as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in healthy humans. To the best of our knowledge, we report here for the first time the development and in vivo application of a self-sufficient SPM-producing formulation. Further investigations are warranted to confirm and expand these findings, which may create a new class of n-3 PUFA interventions targeting inflammation resolution.
Collapse
Affiliation(s)
- Bodo Speckmann
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany; (B.S.); (J.K.); (S.P.); (H.t.D.)
| | - Jessica Kleinbölting
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany; (B.S.); (J.K.); (S.P.); (H.t.D.)
| | - Friedemann Börner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany; (F.B.); (P.M.J.); (O.W.)
| | - Paul M. Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany; (F.B.); (P.M.J.); (O.W.)
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany; (F.B.); (P.M.J.); (O.W.)
| | - Stefan Pelzer
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany; (B.S.); (J.K.); (S.P.); (H.t.D.)
| | - Heike tom Dieck
- Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany; (B.S.); (J.K.); (S.P.); (H.t.D.)
| | - Tanja Wagner
- BioTeSys GmbH, Schelztorstraße 54-56, 73728 Esslingen, Germany;
| | - Christiane Schön
- BioTeSys GmbH, Schelztorstraße 54-56, 73728 Esslingen, Germany;
- Correspondence:
| |
Collapse
|
9
|
Involvement of ischemia-driven 5-lipoxygenase-resolvin-E1-chemokine like receptor-1 axis in the resolution of post-coronary artery bypass graft inflammation in coronary arteries. Mol Biol Rep 2022; 49:3123-3134. [DOI: 10.1007/s11033-022-07143-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
|
10
|
Wang J, Ossemond J, Le Gouar Y, Boissel F, Dupont D, Pédrono F. Encapsulation of Docosahexaenoic Acid Oil Substantially Improves the Oxylipin Profile of Rat Tissues. Front Nutr 2022; 8:812119. [PMID: 35118110 PMCID: PMC8805515 DOI: 10.3389/fnut.2021.812119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023] Open
Abstract
Docosahexaenoic acid (DHA) is a major n-3 polyunsaturated fatty acid (PUFA) particularly involved in cognitive and cardiovascular functions. Due to the high unsaturation index, its dietary intake form has been considered to improve oxidation status and to favor bioaccessibility and bioavailability as well. This study aimed at investigating the effect of DHA encapsulated with natural whey protein. DHA was dietary provided as triacylglycerols to achieve 2.3% over total fatty acids. It was daily supplied to weanling rats for four weeks in omelet as food matrix, consecutively to a 6-hour fasting. First, when DHA oil was encapsulated, consumption of chow diet was enhanced leading to promote animal growth. Second, the brain exhibited a high accretion of 22.8% DHA, which was not improved by dietary supplementation of DHA. Encapsulation of DHA oil did not greatly affect the fatty acid proportions in tissues, but remarkably modified the profile of oxidized metabolites of fatty acids in plasma, heart, and even brain. Specific oxylipins derived from DHA were upgraded, such as Protectin Dx in heart and 14-HDoHE in brain, whereas those generated from n-6 PUFAs were mainly mitigated. This effect did not result from oxylipins measured in DHA oil since DHA and EPA derivatives were undetected after food processing. Collectively, these data suggested that dietary encapsulation of DHA oil triggered a more efficient absorption of DHA, the metabolism of which was enhanced more than its own accretion in our experimental conditions. Incorporating DHA oil in functional food may finally improve the global health status by generating precursors of protectins and maresins.
Collapse
Affiliation(s)
- Jun Wang
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Jordane Ossemond
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Yann Le Gouar
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Françoise Boissel
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Didier Dupont
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
| | - Frédérique Pédrono
- French National Research Institute for Agriculture, Food and Environment (INRAE), Mixed Research Units of Science and Technology of Milk and Eggs (STLO), Rennes, France
- Institut Agro, Agrocampus Ouest, Rennes, France
- *Correspondence: Frédérique Pédrono
| |
Collapse
|
11
|
Troisi F, Pace S, Jordan PM, Meyer KPL, Bilancia R, Ialenti A, Borrelli F, Rossi A, Sautebin L, Serhan CN, Werz O. Sex Hormone-Dependent Lipid Mediator Formation in Male and Female Mice During Peritonitis. Front Pharmacol 2022; 12:818544. [PMID: 35046831 PMCID: PMC8762308 DOI: 10.3389/fphar.2021.818544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/03/2021] [Indexed: 01/07/2023] Open
Abstract
Introduction: Sex differences in inflammation are obvious and contribute to divergences in the incidence and severity of inflammation-related diseases that frequently preponderate in women. Lipid mediators (LMs), mainly produced by lipoxygenase (LOX) and cyclooxygenase (COX) pathways from polyunsaturated fatty acids (PUFAs), regulate all stages of inflammation. Experimental and clinical studies revealed sex divergences for selected LM pathways without covering the entire LM spectrum, and only few studies have addressed the respective role of sex hormones. Here, we performed the comprehensive LM profile analysis with inflammatory peritoneal exudates and plasma from male and female mice in zymosan-induced peritonitis to identify the potential sex differences in LM biosynthesis during the inflammatory response. We also addressed the impact of sex hormones by employing gonadectomy. Methods: Adult male and female CD1 mice received intraperitoneal injection of zymosan to induce peritonitis, a well-established experimental model of acute, self-resolving inflammation. Mice were gonadectomized 5 weeks prior to peritonitis induction. Peritoneal exudates and plasma were taken at 4 (peak of inflammation) and 24 h (onset of resolution) post zymosan and subjected to UPLC-MS-MS-based LM signature profiling; exudates were analyzed for LM biosynthetic proteins by Western blot; and plasma was analyzed for cytokines by ELISA. Results: Pro-inflammatory COX and 5-LOX products predominated in the peritoneum of males at 4 and 24 h post-zymosan, respectively, with slightly higher 12/15-LOX products in males after 24 h. Amounts of COX-2, 5-LOX/FLAP, and 15-LOX-1 were similar in exudates of males and females. In plasma of males, only moderate elevation of these LMs was apparent. At 4 h post-zymosan, gonadectomy strongly elevated 12/15-LOX products in the exudates of males, while in females, free PUFA and LOX products were rather impaired. In plasma, gonadectomy impaired most LMs in both sexes at 4 h with rather up-regulatory effects at 24 h. Finally, elevated 15-LOX-1 protein was evident in exudates of males at 24 h which was impaired by orchiectomy without the striking impact of gonadectomy on other enzymes in both sexes. Conclusions: Our results reveal obvious sex differences and roles of sex hormones in LM biosynthetic networks in acute self-resolving inflammation in mice, with several preponderances in males that appear under the control of androgens.
Collapse
Affiliation(s)
- Fabiana Troisi
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Paul M. Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Katharina P. L. Meyer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Rossella Bilancia
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Armando Ialenti
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Lidia Sautebin
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany,*Correspondence: Oliver Werz,
| |
Collapse
|
12
|
Marzoog B. Lipid Behavior in Metabolic Syndrome Pathophysiology. Curr Diabetes Rev 2022; 18:e150921196497. [PMID: 34525924 DOI: 10.2174/1573399817666210915101321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/17/2021] [Accepted: 07/16/2021] [Indexed: 02/08/2023]
Abstract
Undeniably, lipid plays an extremely important role in the homeostasis balance since lipid contributes to the regulation of the metabolic processes. The metabolic syndrome pathogenesis is multi-pathway that composes neurohormonal disorders, endothelial cell dysfunction, metabolic disturbance, genetic predisposition, in addition to gut commensal microbiota. The heterogenicity of the possible mechanisms gives the metabolic syndrome its complexity and limitation of therapeutic accesses. The main pathological link is that lipid contributes to the emergence of metabolic syndrome via central obesity and visceral obesity that consequently lead to oxidative stress and chronic inflammatory response promotion. Physiologically, a balance is kept between the adiponectin and adipokines levels to maintain the lipid level in the organism. Clinically, extremely important to define the borders of the lipid level in which the pathogenesis of the metabolic syndrome is reversible, otherwise it will be accompanied by irreversible complications and sequelae of the metabolic syndrome (cardiovascular, insulin resistance). The present paper is dedicated to providing novel insights into the role of lipid in the development of metabolic syndrome; hence dyslipidemia is the initiator of insulin resistance syndrome (metabolic syndrome).
Collapse
Affiliation(s)
- Basheer Marzoog
- Department of Medical School Student, National Research Mordovia State University, Russian Federation
| |
Collapse
|
13
|
Serhan CN, Libreros S, Nshimiyimana R. E-series resolvin metabolome, biosynthesis and critical role of stereochemistry of specialized pro-resolving mediators (SPMs) in inflammation-resolution: Preparing SPMs for long COVID-19, human clinical trials, and targeted precision nutrition. Semin Immunol 2022; 59:101597. [PMID: 35227568 PMCID: PMC8847098 DOI: 10.1016/j.smim.2022.101597] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 01/15/2023]
Abstract
The COVID-19 pandemic has raised international awareness of the importance of rigorous scientific evidence and the havoc caused by uncontrolled excessive inflammation. Here we consider the evidence on whether the specialized pro-resolving mediators (SPMs) are ready to meet this challenge as well as targeted metabololipidomics of the resolution-inflammation metabolomes. Specific stereochemical mechanisms in the biosynthesis of SPMs from omega-3 essential fatty acids give rise to unique local-acting lipid mediators. SPMs possess stereochemically defined potent bioactive structures that are high-affinity ligands for cognate G protein-coupled surface receptors that evoke the cellular responses required for efficient resolution of acute inflammation. The SPMs biosynthesized from the major omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are coined Resolvins (resolution phase interaction products; E series and D-series), Protectins and Maresins (macrophage mediators in resolving inflammation). Their biosynthesis and stereochemical assignments are established and confirmed (>1,441 resolvin publications in PubMed.gov) as well as their functional roles on innate immune cells and adaptive immune cells (both lymphocyte T-cell subsets and B-cells). The resolution of a protective acute inflammatory response is governed mainly by phagocytes that actively clear apoptotic cells, debris, blood clots and pathogens. These resolution phase functions of the acute inflammatory response are enhanced by SPMs, which together prepare the inflammatory loci for homeostasis and stimulate tissue regeneration via activating stem cells and the biosynthesis of novel cys-SPMs (e.g. MCTRs, PCTRs and RCTRs). These cys-SPMs also activate regeneration, are organ protective and stimulate resolution of local inflammation. Herein, we review the biosynthesis and functions of the E-series resolvins, namely resolvin E1 (the first n-3 resolvin identified), resolvin E2, resolvin E3 and resolvin E4 biosynthesized from their precursor eicosapentaenoic acid (EPA), and the critical role of total organic synthesis in confirming SPM complete stereochemistry, establishing their potent functions in resolution of inflammation, and novel structures. The physical properties of each biologically derived SPM, i.e., ultra-violet (UV) absorbance, chromatographic behavior, and tandem mass spectrometry (MS2) fragmentation, were matched to SPMs biosynthesized and prepared by stereospecific total organic synthesis. We briefly review this approach, also used with the endogenous D-series resolvins, protectins and maresins confirming their potent functions in resolution of inflammation, that paves the way for their rigorous evaluation in human tissues and clinical trials. The assignment of complete stereochemistry for each of the E and D series Resolvins, Protectins and Maresins was a critical and required step that enabled human clinical studies as in SPM profiling in COVID-19 infections and experimental animal disease models that also opened the promise of resolution physiology, resolution pharmacology and targeted precision nutrition as new areas for monitoring health and disease mechanisms.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Camacho-Muñoz D, Kiezel-Tsugunova M, Kiss O, Uddin M, Sundén M, Ryaboshapkina M, Lind L, Oscarsson J, Nicolaou A. Omega-3 carboxylic acids and fenofibrate differentially alter plasma lipid mediators in patients with non-alcoholic fatty liver disease. FASEB J 2021; 35:e21976. [PMID: 34618982 DOI: 10.1096/fj.202100380rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022]
Abstract
Fibrates and omega-3 polyunsaturated acids are used for the treatment of hypertriglyceridemia but have not demonstrated consistent effects on cardiovascular (CV) risk. In this study, we investigate how these two pharmacological agents influence plasma levels of bioactive lipid mediators, aiming to explore their efficacy beyond that of lipid-lowering agents. Plasma from overweight patients with non-alcoholic fatty liver disease (NAFLD) and hypertriglyceridemia, participating in a randomized placebo-controlled study investigating the effects of 12 weeks treatment with fenofibrate or omega-3 free carboxylic acids (OM-3CA) (200 mg or 4 g per day, respectively), were analyzed for eicosanoids and related PUFA species, N-acylethanolamines (NAE) and ceramides. OM-3CA reduced plasma concentrations of proinflammatory PGE2 , as well as PGE1 , PGD1 and thromboxane B2 but increased prostacyclin, and eicosapentaenoic acid- and docosahexaenoic acid-derived lipids of lipoxygenase and cytochrome P450 monooxygenase (CYP) (e.g., 17-HDHA, 18-HEPE, 19,20-DiHDPA). Fenofibrate reduced plasma concentrations of vasoactive CYP-derived eicosanoids (DHETs). Although OM-3CA increased plasma levels of the NAE docosahexaenoyl ethanolamine and docosapentaenoyl ethanolamine, and fenofibrate increased palmitoleoyl ethanolamine, the effect of both treatments may have been masked by the placebo (olive oil). Fenofibrate was more efficacious than OM-3CA in significantly reducing plasma ceramides, pro-inflammatory lipids associated with CV disease risk. Neither treatment affected putative lipid species associated with NAFLD. Our results show that OM-3CA and fenofibrate differentially modulate the plasma mediator lipidome, with OM-3CA promoting the formation of lipid mediators with potential effects on chronic inflammation, while fenofibrate mainly reducing ceramides. These findings suggest that both treatments could ameliorate chronic inflammation with possible impact on disease outcomes, independent of triglyceride reduction.
Collapse
Affiliation(s)
- Dolores Camacho-Muñoz
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Magdalena Kiezel-Tsugunova
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Orsolya Kiss
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Mohib Uddin
- AstraZeneca Gothenburg, Biopharmaceuticals R&D, Mӧlndal, Sweden
| | - Mattias Sundén
- Department of Economics, University of Gothenburg, Gothenburg, Sweden
| | | | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jan Oscarsson
- AstraZeneca Gothenburg, Biopharmaceuticals R&D, Mӧlndal, Sweden
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
15
|
Zaloga GP. Narrative Review of n-3 Polyunsaturated Fatty Acid Supplementation upon Immune Functions, Resolution Molecules and Lipid Peroxidation. Nutrients 2021; 13:662. [PMID: 33670710 PMCID: PMC7922327 DOI: 10.3390/nu13020662] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Fish oil supplementation is commonplace in human nutrition and is being used in both enteral and parenteral formulations during the treatment of patients with a large variety of diseases and immune status. The biological effects of fish oil are believed to result from their content of n-3 polyunsaturated fatty acids (PUFA), particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). These fatty acids are known to have numerous effects upon immune functions and are described as immunomodulatory. However, immunomodulatory is a nondescript term that encompasses immunostimulation and immunosuppression. The primary goal of this review is to better describe the immune effects of n-3 PUFA as they relate to immunostimulatory vs. immunosuppressive effects. One mechanism proposed for the immune effects of n-3 PUFA relates to the production of specialized pro-resolving mediators (SPMs). A second goal of this review is to evaluate the effects of n-3 PUFA supplementation upon production of SPMs. Although n-3 PUFA are stated to possess anti-oxidative properties, these molecules are highly oxidizable due to multiple double bonds and may increase oxidative stress. Thus, the third goal of this review is to evaluate the effects of n-3 PUFA upon lipid oxidation. We conclude, based upon current scientific evidence, that n-3 PUFA suppress inflammatory responses and most cellular immune responses such as chemotaxis, transmigration, antigen presentation, and lymphocyte functions and should be considered immunosuppressive. n-3 PUFA induced production of resolution molecules is inconsistent with many resolution molecules failing to respond to n-3 PUFA supplementation. n-3 PUFA supplementation is associated with increased lipid peroxidation in most studies. Vitamin E co-administration is unreliable for prevention of the lipid peroxidation. These effects should be considered when administering n-3 PUFA to patients that may be immunosuppressed or under high oxidative stress due to illness or other treatments.
Collapse
Affiliation(s)
- Gary P Zaloga
- MedSciHealth Consultants, 12931 Sorrento Way, Bradenton, FL 34211, USA
| |
Collapse
|
16
|
Farhat S, Zafar MU, Sheikh MA, Qasim CM, Urooj F, Fatima SS. Association of resolvin level in pregnant women with preeclampsia and metabolic syndrome. Taiwan J Obstet Gynecol 2020; 59:105-108. [PMID: 32039775 DOI: 10.1016/j.tjog.2019.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2019] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE Preeclampsia (PE) and Metabolic syndrome (MetS) are multifactorial conditions and are major causes of maternal and neonatal morbidity and mortality worldwide. Both conditions are pro-inflammatory and can be causative factor for vascular damage. Anti-inflammatory mediators such as Resolvin also called resolution-phase interaction products may help to reduce the effect. Therefore, this study aimed to measure the serum Resolvin level in mild pre-eclamptic women with and without metabolic syndrome. MATERIAL AND METHODS A total of 293 pregnant females were recruited in this case control study. They were grouped as: Group A [pre-eclamptic patients with MetS (n = 140)] and Group B [pre-eclamptic patients without MetS (n = 153)]. Preeclampsia was diagnosed according to the ACOG criteria and metabolic syndrome according the NCEP-ATP III guidelines. Anthropometric data, lipid profile, Resolvin, VEGFR and PlGF levels were tested as per manufacturer's guidelines. Data was analyzed by using SPSS version 23. In all instances, a p value of <0.05 was considered significant. RESULTS All females were aged matched so no difference was observed in any group. Blood pressure and triglyceride levels were significantly higher in Group A; whereas VEGFR and PlGF were lower as compared to Group B. Higher Resolvin levels were observed in Group A subjects as compared to Group B [105.19 ± 42.29 pg/ml; 46.74 ± 20.16 pg/ml; p < 0.01 respectively]. Resolvin levels were found to have a weak correlation with BMI (r = 0.264; p = 0.11), while a positive strong correlation with systolic BP (r = 0.722; p < 0.001), diastolic BP (r = 0.664; p < 0.001) and a negative correlation with VEGFR (r = -0.639; p < 0.01) and PlGF (r = -0.523; p < 0.01). CONCLUSION Higher resolvin levels were observed in PE subjects with metabolic syndrome and showed a significant strong positive correlation with blood pressure. Further longitudinal studies are required to identify the causal link.
Collapse
Affiliation(s)
- Sabah Farhat
- Department of Biological and Biomedical Sciences, Aga Khan University, Pakistan
| | | | | | | | - Faiza Urooj
- Medical College, Aga Khan University, Pakistan
| | - Syeda Sadia Fatima
- Department of Biological and Biomedical Sciences, Aga Khan University, Pakistan.
| |
Collapse
|
17
|
So J, Wu D, Lichtenstein AH, Tai AK, Matthan NR, Maddipati KR, Lamon-Fava S. EPA and DHA differentially modulate monocyte inflammatory response in subjects with chronic inflammation in part via plasma specialized pro-resolving lipid mediators: A randomized, double-blind, crossover study. Atherosclerosis 2020; 316:90-98. [PMID: 33303222 DOI: 10.1016/j.atherosclerosis.2020.11.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/23/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS The independent effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on chronic inflammation through their downstream lipid mediators, including the specialized pro-resolving lipid mediators (SPM), remain unstudied. Therefore, we compared the effects of EPA and DHA supplementation on monocyte inflammatory response and plasma polyunsaturated fatty acids (PUFA) SPM lipidome. METHODS After a 4-week lead-in phase (baseline), 9 men and 12 postmenopausal women (50-75 years) with chronic inflammation received two phases of 10-week supplementation with 3 g/day EPA and DHA in a random order, separated by a 10-week washout. RESULTS Compared with baseline, EPA and DHA supplementation differently modulated LPS-stimulated monocyte cytokine expression. EPA lowered TNFA (p < 0.001) whereas DHA reduced TNFA (p < 0.001), IL6 (p < 0.02), MCP1 (p < 0.03), and IL10 (p < 0.01). DHA lowered IL10 expression relative to EPA (p = 0.03). Relative to baseline, EPA, but not DHA, decreased the ratios of TNFA/IL10 and MCP1/IL10 (both p < 0.01). EPA and DHA also significantly changed plasma PUFA SPM lipidome by replacing n-6 AA derivatives with their respective derivatives including 18-hydroxy-EPA (+5 fold by EPA) and 17- and 14-hydroxy-DHA (+3 folds by DHA). However, DHA showed a wider effect than EPA by also significantly increasing EPA derivatives and DPA-derived SPM at a greater expense of AA derivatives. Different groups of PUFA derivatives mediated the differential effects of EPA and DHA on monocyte cytokine expression. CONCLUSIONS EPA and DHA had distinct effects on monocyte inflammatory response with a broader effect of DHA in attenuating pro-inflammatory cytokines. These differential effects were potentially mediated by different groups of PUFA derivatives, suggesting immunomodulatory activities of SPM and their intermediates.
Collapse
Affiliation(s)
- Jisun So
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Dayong Wu
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Albert K Tai
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Nirupa R Matthan
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Krishna Rao Maddipati
- Department of Pathology, Lipidomics Core Facility, Wayne State University, Detroit, MI, USA
| | - Stefania Lamon-Fava
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
| |
Collapse
|
18
|
Callan N, Hanes D, Bradley R. Early evidence of efficacy for orally administered SPM-enriched marine lipid fraction on quality of life and pain in a sample of adults with chronic pain. J Transl Med 2020; 18:401. [PMID: 33087142 PMCID: PMC7579794 DOI: 10.1186/s12967-020-02569-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Marine lipids contain omega-3 fatty acids that can be metabolized into anti-inflammatory and pro-resolving mediators-namely 17-HDHA and 18-HEPE-which can serve as modulators of the pain experience. The purpose of this study was to determine the impact of 4 weeks of oral supplementation with a fractionated marine lipid concentration, standardized to 17-HDHA and 18-HEPE, on health-related quality of life and inflammation in adults with chronic pain. METHODS This study was a prospective, non-randomized, open-label clinical trial. Forty-four adults with ≥ moderate pain intensity for at least 3 months were recruited. The primary outcome was change in health-related quality of life (QOL) using the Patient Reported Outcomes Measurement Information System-43 Profile (PROMIS-43) and the American Chronic Pain Association (ACPA) QOL scale. Exploratory outcomes assessed safety and tolerability, changes in anxiety and depression, levels of pain intensity and interference, patient satisfaction, and impression of change. Changes in blood biomarkers of inflammation (hs-CRP and ESR) were also explored. RESULTS Outcome measures were collected at Baseline, Week 2, and Week 4 (primary endpoint). At Week 4, PROMIS-43 QOL subdomains changed with significance from baseline (p < 0.05), with borderline changes in the ACPA Quality of Life scale (p < 0.052). Exploratory analyses revealed significant changes (p < 0.05) in all measures of pain intensity, pain interference, depression, and anxiety. There were no statistically significant changes in either hs-CRP or ESR, which stayed within normal limits. CONCLUSION We conclude that oral supplementation with a fractionated marine lipid concentration standardized to 17-HDHA and 18-HEPE may improve quality of life, reduce pain intensity and interference, and improve mood within 4 weeks in adults with chronic pain. The consistency and magnitude of these results support the need for placebo-controlled clinical trials of marine lipid concentrations standardized to 17-HDHA and 18-HEPE. Trial registration ClinicalTrials.gov: Influence of an Omega-3 SPM Supplement on Quality of Life, NCT02683850. Registered 17 February 2016-retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT02683850 .
Collapse
Affiliation(s)
- Nini Callan
- National University of Natural Medicine, Helfgott Research Institute, 2220 SW 1st Ave, Portland, OR, 97201, USA
| | - Doug Hanes
- National University of Natural Medicine, Helfgott Research Institute, 2220 SW 1st Ave, Portland, OR, 97201, USA
| | - Ryan Bradley
- National University of Natural Medicine, Helfgott Research Institute, 2220 SW 1st Ave, Portland, OR, 97201, USA. .,Herbert Wertheim School of Public Health, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
19
|
Calder PC. Eicosapentaenoic and docosahexaenoic acid derived specialised pro-resolving mediators: Concentrations in humans and the effects of age, sex, disease and increased omega-3 fatty acid intake. Biochimie 2020; 178:105-123. [PMID: 32860894 DOI: 10.1016/j.biochi.2020.08.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/02/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022]
Abstract
Although inflammation has a physiological role, unrestrained inflammation can be detrimental, causing tissue damage and disease. Under normal circumstances inflammation is self-limiting with induction of active resolution processes. Central to these is the generation of specialised pro-resolving lipid mediators (SPMs) from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These include resolvins, protectins and maresins whose activities have been well described in cell and animal models. A number of SPMs have been reported in plasma or serum in infants, children, healthy adults and individuals with various diseases, as well as in human sputum, saliva, tears, breast milk, urine, synovial fluid and cerebrospinal fluid and in human adipose tissue, skeletal muscle, hippocampus, skin, placenta, lymphoid tissues and atherosclerotic plaques. Differences in SPM concentrations have been reported between health and disease, as would be expected. However, sometimes SPM concentrations are lower in disease and sometimes they are higher. Human studies report that plasma or serum concentrations of some SPMs can be increased by increasing intake of EPA and DHA. However, the relationship of specific intakes of EPA and DHA to enhancement in the appearance of specific SPMs is not clear and needs a more thorough investigation. This is important because of the potential for EPA and DHA to be used more effectively in prevention and treatment of inflammatory conditions. If generation of SPMs represents an important mechanism of action of EPA and DHA, then more needs to be known about the most effective strategies by which EPA and DHA can increase SPM concentrations.
Collapse
Affiliation(s)
- Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
20
|
Kutzner L, Goloshchapova K, Rund KM, Jübermann M, Blum M, Rothe M, Kirsch SF, Schunck WH, Kühn H, Schebb NH. Human lipoxygenase isoforms form complex patterns of double and triple oxygenated compounds from eicosapentaenoic acid. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158806. [PMID: 32841762 DOI: 10.1016/j.bbalip.2020.158806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/27/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
Lipoxygenases (ALOX) are lipid peroxidizing enzymes that catalyze the biosynthesis of pro- and anti-inflammatory lipid mediators and have been implicated in (patho-)physiological processes. In humans, six functional ALOX isoforms exist and their arachidonic acid oxygenation products have been characterized. Products include leukotrienes and lipoxins which are involved in the regulation of inflammation and resolution. Oxygenation of n3-polyunsaturated fatty acids gives rise to specialized pro-resolving mediators, e.g. resolvins. However, the catalytic activity of different ALOX isoforms can lead to a multitude of potentially bioactive products. Here, we characterized the patterns of oxygenation products formed by human recombinant ALOX5, ALOX15, ALOX15B and ALOX12 from eicosapentaenoic acid (EPA) and its 18-hydroxy derivative 18-HEPE with particular emphasis on double and triple oxygenation products. ALOX15 and ALOX5 formed a complex mixture of various double oxygenation products from EPA, which include 5,15-diHEPE and various 8,15-diHEPE isomers. Their biosynthetic mechanisms were explored using heavy oxygen isotopes (H218O, 18O2 gas) and three catalytic activities contributed to product formation: i) fatty acid oxygenase activity, ii) leukotriene synthase activity, iii) lipohydroperoxidase activity. For ALOX15B and ALOX12 more specific product patterns were identified, which was also the case when these enzymes reacted in concert with ALOX5. Several double oxygenated compounds were formed from 18-HEPE by ALOX5, ALOX15B and ALOX12 including previously identified resolvins (RvE2, RvE3), while formation of triple oxygenation products, e.g. 5,17,18-triHEPE, required ALOX5. Taken together our data show that EPA can be converted by human ALOX isoforms to a large number of secondary oxygenation products, which might exhibit bioactivity.
Collapse
Affiliation(s)
- Laura Kutzner
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany
| | - Kateryna Goloshchapova
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, CCO-Building, Virchowweg 6, 10117 Berlin, Germany
| | - Katharina M Rund
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany
| | - Martin Jübermann
- Chair of Organic Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany
| | - Maximilian Blum
- Max Delbrueck Center for Molecular Medicine, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Michael Rothe
- Lipidomix GmbH, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Stefan F Kirsch
- Chair of Organic Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany
| | - Wolf-Hagen Schunck
- Max Delbrueck Center for Molecular Medicine, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Hartmut Kühn
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, CCO-Building, Virchowweg 6, 10117 Berlin, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany.
| |
Collapse
|
21
|
Stefanson A, Bakovic M. Dietary polyacetylene falcarinol upregulated intestinal heme oxygenase-1 and modified plasma cytokine profile in late phase lipopolysaccharide-induced acute inflammation in CB57BL/6 mice. Nutr Res 2020; 80:89-105. [PMID: 32738564 DOI: 10.1016/j.nutres.2020.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022]
Abstract
Unlike polyphenols, which are widely available in the diet, polyacetylenes are available only from the Apiaceae family vegetables, including carrot, parsnip, fennel, celery, and many herbs (parsley, lovage, etc). The aim of this study was to investigate the hypothesis that polyacetylene falcarinol (FA) reduces intestinal inflammation and examine its similarity of effect to isothiocyanate R-sulforaphane during the late phase of acute inflammation. To this end, 3-month-old male CB57BL/6 mice were fed twice daily for 1 week with 5 mg/kg of FA, sulforaphane, or vehicle before receiving an intraperitoneal injection of 5 mg/kg endotoxin (lipopolysaccharide [LPS]) to induce modest acute inflammation. The expression of intestinal and hepatic heme oxygenase-1 at the mRNA and protein levels, circulating cytokines, as well as intestinal and mesenteric n-6 and n-3 fatty acid lipid mediators was compared 24 hours after LPS administration to examine its effects on the late phase of inflammation. Intestinal nuclear factor (erythroid-derived 2)-like 2 target enzyme heme oxygenase-1 was upregulated 8.42-fold at the mRNA level and 10.7-fold at the protein level by FA-supplemented diet. However, the FA-supplemented diet produced a unique type-2 plasma cytokine skew after LPS treatment. Plasma cytokines interleukin (IL)-4, IL-13, IL-9, and IL-10 were upregulated, reflecting the cytokine profile of reduced type 1 inflammation. A detailed lipidomic analysis of n-6 and n-3 fatty acid pro- and anti-inflammatory pathways in the mesentery and intestinal mucosa showed that FA diet was more similar to the control groups than to other LPS treated groups. In this study, we demonstrated that FA-supplemented diet produced a unique immunomodulatory effect not observed with sulforaphane in late phases of inflammation. These results support the hypothesis that FA may have role as a dietary immunosuppressant in patients with inflammatory gastrointestinal as well as other inflammatory disorders that may be alleviated by increasing consumption of carrot or other FA-containing food sources.
Collapse
Affiliation(s)
- Amanda Stefanson
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Rd E, Guelph, Ontario, Canada N1G 2W1.
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Rd E, Guelph, Ontario, Canada N1G 2W1.
| |
Collapse
|
22
|
Denisenko YK, Kytikova OY, Novgorodtseva TP, Antonyuk MV, Gvozdenko TA, Kantur TA. Lipid-Induced Mechanisms of Metabolic Syndrome. J Obes 2020; 2020:5762395. [PMID: 32963827 PMCID: PMC7491450 DOI: 10.1155/2020/5762395] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022] Open
Abstract
Metabolic syndrome (MetS) has a worldwide tendency to increase and depends on many components, which explains the complexity of diagnosis, approaches to the prevention, and treatment of this pathology. Insulin resistance (IR) is the crucial cause of the MetS pathogenesis, which develops against the background of abdominal obesity. In light of recent evidence, it has been shown that lipids, especially fatty acids (FAs), are important signaling molecules that regulate the signaling pathways of insulin and inflammatory mediators. On the one hand, the lack of n-3 polyunsaturated fatty acids (PUFAs) in the body leads to impaired molecular mechanisms of glucose transport, the formation of unresolved inflammation. On the other hand, excessive formation of free fatty acids (FFAs) underlies the development of oxidative stress and mitochondrial dysfunction in MetS. Understanding the molecular mechanisms of the participation of FAs and their metabolites in the pathogenesis of MetS will contribute to the development of new diagnostic methods and targeted therapy for this disease. The purpose of this review is to highlight recent advances in the study of the effect of fatty acids as modulators of insulin response and inflammatory process in the pathogenesis and treatment for MetS.
Collapse
Affiliation(s)
- Yulia K. Denisenko
- Vladivostok Branch of the Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok 690105, Russia
| | - Oxana Yu Kytikova
- Vladivostok Branch of the Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok 690105, Russia
| | - Tatyana P. Novgorodtseva
- Vladivostok Branch of the Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok 690105, Russia
| | - Marina V. Antonyuk
- Vladivostok Branch of the Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok 690105, Russia
| | - Tatyana A. Gvozdenko
- Vladivostok Branch of the Far Eastern Scientific Centre of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, Vladivostok 690105, Russia
| | | |
Collapse
|
23
|
Kwon Y. Immuno-Resolving Ability of Resolvins, Protectins, and Maresins Derived from Omega-3 Fatty Acids in Metabolic Syndrome. Mol Nutr Food Res 2019; 64:e1900824. [PMID: 31797565 DOI: 10.1002/mnfr.201900824] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/19/2019] [Indexed: 12/28/2022]
Abstract
Omega-3 fatty acid consumption has been suggested to be beneficial for the prevention of type 2 diabetes mellitus (T2DM). Its effects have been attributed to anti-inflammatory activity, with the inhibition of arachidonic acid metabolism playing a central role. However, a more recent view is that omega-3 fatty acids play an active role as the precursors of potent, specialized pro-resolving mediators (SPMs), such as resolvins, protectins, and maresins. Docosahexaenoic acid (DHA)- and eicosapentaenoic-acid-derived SPMs are identified in the adipose tissue but the levels of certain SPMs (e.g., protectin D1) are markedly reduced with obesity, suggesting adipose SPM deficiency, potentially resulting in unresolved inflammation. Supplementation of the biosynthetic intermediates of SPM (e.g., 17-hydroxy-DHA) or omega-3 fatty acids increases the level of adipose SPMs, reduces adipose inflammation (decrease in macrophage accumulation and change to less inflammatory macrophages), and enhances insulin sensitivity. The findings from studies using rodent obesity models must be translated to humans. It will be important to further elucidate the underlying mechanisms by which obesity reduces the levels of and the sensitivity to SPM in adipose tissues. This will enable the development of nutrition therapy to enhance the effects of omega-3 fatty acids in the prevention and/or treatment of T2DM.
Collapse
Affiliation(s)
- Youngjoo Kwon
- Department of Food Science and Engineering, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
24
|
Dasilva G, Medina I. Lipidomic methodologies for biomarkers of chronic inflammation in nutritional research: ω-3 and ω-6 lipid mediators. Free Radic Biol Med 2019; 144:90-109. [PMID: 30902758 DOI: 10.1016/j.freeradbiomed.2019.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/20/2019] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
The evolutionary history of hominins has been characterized by significant dietary changes, which include the introduction of meat eating, cooking, and the changes associated with plant and animal domestication. The Western pattern diet has been linked with the onset of chronic inflammation, and serious health problems including obesity, metabolic syndrome, and cardiovascular diseases. Diets enriched with ω-3 marine PUFAs have revealed additional improvements in health status associated to a reduction of proinflammatory ω-3 and ω-6 lipid mediators. Lipid mediators are produced from enzymatic and non-enzymatic oxidation of PUFAs. Interest in better understanding the occurrence of these metabolites has increased exponentially as a result of the growing evidence of their role on inflammatory processes, control of the immune system, cell signaling, onset of metabolic diseases, or even cancer. The scope of this review has been to highlight the recent findings on: a) the formation of lipid mediators and their role in different inflammatory and metabolic conditions, b) the direct use of lipid mediators as antiinflammatory drugs or the potential of new drugs as a new therapeutic option for the synthesis of antiinflammatory or resolving lipid mediators and c) the impact of nutritional interventions to modulate lipid mediators synthesis towards antiinflammatory conditions. In a second part, we have summarized methodological approaches (Lipidomics) for the accurate analysis of lipid mediators. Although several techniques have been used, most authors preferred the combination of SPE with LC-MS. Advantages and disadvantages of each method are herein addressed, as well as the main LC-MS difficulties and challenges for the establishment of new biomarkers and standardization of experimental designs, and finally to deepen the study of mechanisms involved on the inflammatory response.
Collapse
Affiliation(s)
- Gabriel Dasilva
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), c/Eduardo Cabello 6, 36208, Vigo, Spain.
| | - Isabel Medina
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), c/Eduardo Cabello 6, 36208, Vigo, Spain
| |
Collapse
|
25
|
Balas L, Risé P, Gandrath D, Rovati G, Bolego C, Stellari F, Trenti A, Buccellati C, Durand T, Sala A. Rapid Metabolization of Protectin D1 by β-Oxidation of Its Polar Head Chain. J Med Chem 2019; 62:9961-9975. [PMID: 31626541 DOI: 10.1021/acs.jmedchem.9b01463] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protectin D1 [neuroprotectin D1 (NPD1), PD1] has been proposed to play a key role in the resolution of inflammation. Aside from its ω-monohydroxylated metabolite, little has been reported on its metabolic fate. Upon NPD1 incubation in HepG2 cells, liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed the formation of two main metabolites, identified as 2,3-dinor-NPD1 and 2,3,4,5-tetranor-NPD1 by comparison with standards obtained through demanding total chemical syntheses. These data represent the first evidence of β-oxidation occurring in specialized proresolving mediators and show that the biotransformation of NPD1 by human hepatoma cells is extremely rapid and faster than that of leukotriene (LTE4). Unlike LTE4, the main metabolic process occurs from the polar head chain of NPD1. It may limit NPD1 systemic circulation and prevent its urinary excretion, making difficult its detection and quantitation in vivo. Interestingly, tetranor-NPD1, but not dinor-NPD1, maintained the bioactivity of the parent NPD1, inhibiting neutrophil chemotaxis in vitro and neutrophil tissue infiltration in vivo.
Collapse
Affiliation(s)
- Laurence Balas
- Institut des Biomolécules Max Mousseron (IBMM) , UMR 5247, CNRS, Université Montpellier, ENSCM , 34093 Montpellier , France
| | - Patrizia Risé
- Dipartimento di Scienze Farmaceutiche , Università degli Studi di Milano , Via Balzaretti 9 , 20133 Milano , Italia
| | - Dayaker Gandrath
- Institut des Biomolécules Max Mousseron (IBMM) , UMR 5247, CNRS, Université Montpellier, ENSCM , 34093 Montpellier , France
| | - Gianenrico Rovati
- Dipartimento di Scienze Farmaceutiche , Università degli Studi di Milano , Via Balzaretti 9 , 20133 Milano , Italia
| | - Chiara Bolego
- Dipartimento di Scienze del Farmaco , Università di Padova , Largo Meneghetti 2 , 35131 Padova , Italia
| | - Fabio Stellari
- Chiesi Farmaceutici , Via Paradigna , 43122 Parma , Italia
| | - Annalisa Trenti
- Dipartimento di Medicina , Università di Padova, Padova , Via Giustiniani 2 , 35131 Padova , Italia
| | - Carola Buccellati
- Dipartimento di Scienze Farmaceutiche , Università degli Studi di Milano , Via Balzaretti 9 , 20133 Milano , Italia
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM) , UMR 5247, CNRS, Université Montpellier, ENSCM , 34093 Montpellier , France
| | - Angelo Sala
- Dipartimento di Scienze Farmaceutiche , Università degli Studi di Milano , Via Balzaretti 9 , 20133 Milano , Italia.,IBIM , Consiglio Nazionale delle Ricerche , Via Ugo la Malfa 153 , 90146 Palermo , Italia
| |
Collapse
|
26
|
Krężel W, Rühl R, de Lera AR. Alternative retinoid X receptor (RXR) ligands. Mol Cell Endocrinol 2019; 491:110436. [PMID: 31026478 DOI: 10.1016/j.mce.2019.04.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/06/2019] [Accepted: 04/22/2019] [Indexed: 12/15/2022]
Abstract
Retinoid X receptors (RXRs) control a wide variety of functions by virtue of their dimerization with other nuclear hormone receptors (NRs), contributing thereby to activities of different signaling pathways. We review known RXR ligands as transcriptional modulators of specific RXR-dimers and the associated biological processes. We also discuss the physiological relevance of such ligands, which remains frequently a matter of debate and which at present is best met by member(s) of a novel family of retinoids, postulated as Vitamin A5. Through comparison with other natural, but also with synthetic ligands, we discuss high diversity in the modes of ligand binding to RXRs resulting in agonistic or antagonistic profiles and selectivity towards specific subtypes of permissive heterodimers. Despite such diversity, direct ligand binding to the ligand binding pocket resulting in agonistic activity was preferentially preserved in the course of animal evolution pointing to its functional relevance, and potential for existence of other, species-specific endogenous RXR ligands sharing the same mode of function.
Collapse
Affiliation(s)
- Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, Lagoas-Marcosende, 36310, Vigo, Spain
| |
Collapse
|
27
|
Kutzner L, Rund KM, Ostermann AI, Hartung NM, Galano JM, Balas L, Durand T, Balzer MS, David S, Schebb NH. Development of an Optimized LC-MS Method for the Detection of Specialized Pro-Resolving Mediators in Biological Samples. Front Pharmacol 2019; 10:169. [PMID: 30899221 PMCID: PMC6416208 DOI: 10.3389/fphar.2019.00169] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
The cardioprotective and anti-inflammatory effects of long chain omega-3 polyunsaturated fatty acids (n3 PUFA) are believed to be partly mediated by their oxygenated metabolites (oxylipins). In the last two decades interest in a novel group of autacoids termed specialized pro-resolving mediators (SPMs) increased. These are actively involved in the resolution of inflammation. SPMs are multiple hydroxylated fatty acids including resolvins, maresins, and protectins derived from the n3 PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) as well as lipoxins derived from arachidonic acid (ARA). In the present paper, we developed an LC-MS/MS method for a comprehensive set of 18 SPMs derived from ARA, EPA, and DHA and integrated it into our targeted metabolomics platform. Quantification was based on external calibration utilizing five deuterated internal standards in combination with a second internal standard for quality assessment of sample preparation in each sample. The tandem mass spectrometric parameters were carefully optimized for sensitive and specific detection. The influence of source parameters of the used AB Sciex 6500 QTRAP instrument as well as electronic parameters and the selection of transitions are discussed. The method was validated/characterized based on the criteria listed in the European Medicines Agency (EMA) guideline on bioanalytical method validation and method performance is demonstrated regarding recovery of internal standards (between 78 ± 4% and 87 ± 3% from 500 μL of human serum) as well as extraction efficacy of SPMs in spiked plasma (intra-day accuracy within ±20 and ±15% at 0.1 and 0.3 nM in plasma, respectively). Based on the lower limit of quantification of 0.02-0.2 nM, corresponding to 0.18-2.7 pg on column, SPMs were generally not detectable/quantifiable in plasma and serum supporting that circulating levels of SPMs are very low, i.e., <0.1 nM in healthy subjects. Following septic shock or peritonitis, SPMs could be quantified in the samples of several patients. However, in these studies with a small number of patients no clear correlation with severity of inflammation could be observed.
Collapse
Affiliation(s)
- Laura Kutzner
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Katharina M Rund
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Annika I Ostermann
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Nicole M Hartung
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Laurence Balas
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Université de Montpellier, Montpellier, France
| | - Michael S Balzer
- Division of Nephrology and Hypertension, Department of Medicine, Hannover Medical School, Hannover, Germany
| | - Sascha David
- Division of Nephrology and Hypertension, Department of Medicine, Hannover Medical School, Hannover, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
28
|
Gao Y, Su J, Zhang Y, Chan A, Sin JH, Wu D, Min K, Gronert K. Dietary DHA amplifies LXA 4 circuits in tissues and lymph node PMN and is protective in immune-driven dry eye disease. Mucosal Immunol 2018; 11:1674-1683. [PMID: 30104626 PMCID: PMC6279588 DOI: 10.1038/s41385-018-0070-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 02/04/2023]
Abstract
Recently identified regulatory PMN control immune-driven dry eye disease (DED) in females by producing the arachidonic acid (ω-6)-derived specialized pro-resolving mediator (SPM), LXA4, in lymph nodes. Dietary ω-3 docosahexaenoic acid (DHA) is protective in DED but mechanisms of action remain elusive. DHA is converted to ω-3 SPMs by PMN via the same lipoxygenases (LOX) that generate LXA4. We investigated if dietary DHA amplifies SPM formation and affects T effector cell function and/or regulatory PMN in DED. DED was induced in mice on a DHA-enriched or ω-3-deficient diet. DHA deficiency amplified DED with marked sex-specific differences. Dietary DHA protection against dry eye disease correlated with increased PMN levels in lymph nodes, ocular tissues, and unexpectedly, selective amplification of LXA4 tissue levels. Dietary DHA increased 12/15-LOX and decreased 5-LOX expression in lymph nodes and isolated lymph node PMN, which correlated with amplified LXA4 formation. Acute DHA treatment rescued DHA-deficient females from exaggerated DED by amplifying lymph node LXA4 formation, increasing Treg and decreasing TH1 and TH17 effector cells. Our results identify DHA regulation of LXA4 producing PMN in ocular tissues and lymph nodes in health and immune disease as novel mechanism and determinant for T-cell responses to routine ocular injury or stress signals.
Collapse
Affiliation(s)
- Yuan Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
- Vision Science Program, University of California Berkeley, Berkeley, CA, 94720, USA
- School of Optometry, University of California Berkeley, Berkeley, CA, 94720, USA
| | - John Su
- Vision Science Program, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Yibing Zhang
- Vision Science Program, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Allison Chan
- Vision Science Program, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Jun Hyung Sin
- Vision Science Program, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Di Wu
- Vision Science Program, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Kyungi Min
- Vision Science Program, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Karsten Gronert
- Vision Science Program, University of California Berkeley, Berkeley, CA, 94720, USA.
- School of Optometry, University of California Berkeley, Berkeley, CA, 94720, USA.
- Infectious Disease and Immunity Program, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
29
|
Leblanc R, Houssin A, Peyruchaud O. Platelets, autotaxin and lysophosphatidic acid signalling: win-win factors for cancer metastasis. Br J Pharmacol 2018; 175:3100-3110. [PMID: 29777586 PMCID: PMC6031885 DOI: 10.1111/bph.14362] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 12/19/2022] Open
Abstract
Platelets play a crucial role in the survival of metastatic cells in the blood circulation. The interaction of tumour cells with platelets leads to the production of plethoric factors among which our review will focus on lysophosphatidic acid (LPA), because platelets are the highest producers of this bioactive lysophospholipid in the organism. LPA promotes platelet aggregation, and blocking platelet function decreases LPA signalling and leads to inhibition of breast cancer cell metastasis. Autotaxin (ATX), a lysophospholipase D responsible for the basal concentration of LPA in blood, was detected in platelet α-granules. Functionally, active ATX is eventually released following tumour cell-induced platelet aggregation, thereby promoting metastasis. Megakaryocytes do not express ATX but respond to LPA stimulation. Whether LPA-primed megakaryocytes contribute to the recently reported negative action of megakaryocytes on cancer metastasis is not yet known. However, an understanding of the ATX/LPA signalling pathways in platelets, cancer cells and megakaryocytes opens up new approaches for fighting cancer metastasis.
Collapse
Affiliation(s)
- Raphael Leblanc
- Centre de Recherche en Cancérologie de Marseille, INSERM, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Audrey Houssin
- INSERM, UMR_S1033, Université Claude Bernard Lyon-1, Lyon, France
| | | |
Collapse
|
30
|
Mori TA. Reprint of: Marine OMEGA-3 fatty acids in the prevention of cardiovascular disease. Fitoterapia 2018; 126:8-15. [PMID: 29657077 DOI: 10.1016/j.fitote.2018.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 02/08/2023]
Abstract
Omega-6 (ω6) and omega-3 (ω3) fatty acids are two classes of dietary polyunsaturated fatty acids derived from linoleic acid (18:2ω6) and α-linolenic acid (18:3ω3), respectively. Enzymatic metabolism of linoleic and α-linolenic acids generates arachidonic acid (20:4ω6) and eicosapentaenoic acid (20:5ω3; EPA), respectively, both of which are substrates for enzymes that yield eicosanoids with multiple and varying physiological functions. Further elongation and desaturation of EPA yields the 22-carbon fatty acid docosahexaenoic acid (22:6ω3; DHA). The main dietary source of EPA and DHA for human consumption is fish, especially oily fish. There is considerable evidence that EPA and DHA are protective against cardiovascular disease (heart disease and stroke), particularly in individuals with pre-existing disease. ω3 Fatty acids benefit multiple risk factors including blood pressure, blood vessel function, heart function and blood lipids, and they have antithrombotic, anti-inflammatory and anti-oxidative actions. ω3 Fatty acids do not adversely interact with medications. Supplementation with ω3 fatty acids is recommended in individuals with elevated blood triglyceride levels and patients with coronary heart disease. A practical recommendation for the general population is to increase ω3 fatty acid intake by incorporating fish as part of a healthy diet that includes increased fruits and vegetables, and moderation of salt intake. Health authorities recommend the general population should consume at least two oily fish meals per week.
Collapse
Affiliation(s)
- Trevor A Mori
- School of Medicine, Royal Perth Hospital Unit, University of Western Australia and the Cardiovascular Research Centre, Perth, Western Australia, Australia.
| |
Collapse
|
31
|
Specialized Proresolving Mediators: Enhancing Nonalcoholic Steatohepatitis and Fibrosis Resolution. Trends Pharmacol Sci 2018; 39:387-401. [DOI: 10.1016/j.tips.2018.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 12/13/2022]
|
32
|
Mori TA. Marine OMEGA-3 fatty acids in the prevention of cardiovascular disease. Fitoterapia 2017; 123:51-58. [PMID: 28964873 DOI: 10.1016/j.fitote.2017.09.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022]
Abstract
Omega-6 (ω6) and omega-3 (ω3) fatty acids are two classes of dietary polyunsaturated fatty acids derived from linoleic acid (18:2ω6) and α-linolenic acid (18:3ω3), respectively. Enzymatic metabolism of linoleic and α-linolenic acids generates arachidonic acid (20:4ω6) and eicosapentaenoic acid (20:5ω3; EPA), respectively, both of which are substrates for enzymes that yield eicosanoids with multiple and varying physiological functions. Further elongation and desaturation of EPA yields the 22-carbon fatty acid docosahexaenoic acid (22:6ω3; DHA). The main dietary source of EPA and DHA for human consumption is fish, especially oily fish. There is considerable evidence that EPA and DHA are protective against cardiovascular disease (heart disease and stroke), particularly in individuals with pre-existing disease. ω3 Fatty acids benefit multiple risk factors including blood pressure, blood vessel function, heart function and blood lipids, and they have antithrombotic, anti-inflammatory and anti-oxidative actions. ω3 Fatty acids do not adversely interact with medications. Supplementation with ω3 fatty acids is recommended in individuals with elevated blood triglyceride levels and patients with coronary heart disease. A practical recommendation for the general population is to increase ω3 fatty acid intake by incorporating fish as part of a healthy diet that includes increased fruits and vegetables, and moderation of salt intake. Health authorities recommend the general population should consume at least two oily fish meals per week.
Collapse
Affiliation(s)
- Trevor A Mori
- School of Medicine, Royal Perth Hospital Unit, University of Western Australia and the Cardiovascular Research Centre, Perth, Western Australia, Australia.
| |
Collapse
|
33
|
Marine Lipids on Cardiovascular Diseases and Other Chronic Diseases Induced by Diet: An Insight Provided by Proteomics and Lipidomics. Mar Drugs 2017; 15:md15080258. [PMID: 28820493 PMCID: PMC5577612 DOI: 10.3390/md15080258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/21/2022] Open
Abstract
Marine lipids, especially ω-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have largely been linked to prevention of diet-induced diseases. The anti-inflammatory and hypolipidemic properties of EPA and DHA supplementation have been well-described. However, there is still a significant lack of information about their particular mechanism of action. Furthermore, repeated meta-analyses have not shown conclusive results in support of their beneficial health effects. Modern "omics" approaches, namely proteomics and lipidomics, have made it possible to identify some of the mechanisms behind the benefits of marine lipids in the metabolic syndrome and related diseases, i.e., cardiovascular diseases and type 2 diabetes. Although until now their use has been scarce, these "omics" have brought new insights in this area of nutrition research. The purpose of the present review is to comprehensively show the research articles currently available in the literature which have specifically applied proteomics, lipidomics or both approaches to investigate the role of marine lipids intake in the prevention or palliation of these chronic pathologies related to diet. The methodology adopted, the class of marine lipids examined, the diet-related disease studied, and the main findings obtained in each investigation will be reviewed.
Collapse
|
34
|
The future for long chain n-3 PUFA in the prevention of coronary heart disease: do we need to target non-fish-eaters? Proc Nutr Soc 2017; 76:408-418. [PMID: 28508737 DOI: 10.1017/s0029665117000428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dietary guidelines in many countries include a recommendation to consume oily fish, mainly on the basis of evidence from prospective cohort studies that fish consumption is cardioprotective. However, average intakes are very low in a large proportion of the UK population. Some groups, such as vegans and vegetarians, purposely omit fish (along with meat) from their diet resulting in zero or trace intakes of long chain (LC) n-3 PUFA. Although the efficacy of dietary fish oil supplementation in the prevention of CVD has been questioned in recent years, the balance of evidence indicates that LC n-3 PUFA exert systemic pleiotropic effects through their influence on gene expression, cell signalling, membrane fluidity and by conversion to specialised proresolving mediators; autacoid lipid mediators that resolve inflammatory events. The long-term impact of reduced tissue LC n-3 PUFA content on cardiovascular health is surprisingly poorly understood, particularly with regard to how low proportions of LC n-3 PUFA in cell membranes may affect cardiac electrophysiology and chronic inflammation. Randomised controlled trials investigating effects of supplementation on prevention of CHD in populations with low basal LC n-3 PUFA tissue status are lacking, and so the clinical benefits of supplementing non-fish-eating groups with vegetarian sources of LC n-3 PUFA remain to be determined. Refocusing dietary LC n-3 PUFA intervention studies towards those individuals with a low LC n-3 PUFA tissue status may go some way towards reconciling results from randomised controlled trials with the epidemiological evidence.
Collapse
|
35
|
Norling LV, Ly L, Dalli J. Resolving inflammation by using nutrition therapy: roles for specialized proresolving mediators. Curr Opin Clin Nutr Metab Care 2017; 20:145-152. [PMID: 28002074 PMCID: PMC5884427 DOI: 10.1097/mco.0000000000000353] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Inflammation is a unifying component of many of the diseases that afflict Western civilizations. Nutrition therapy and, in particular, essential fatty acid supplementation is one of the approaches that is currently in use for the treatment and management of many inflammatory conditions. The purpose of the present review is to discuss the recent literature in light of the discovery that essential fatty acids are converted by the body to a novel genus of lipid mediators, termed specialized proresolving mediators (SPMs). RECENT FINDINGS The SPM genus is composed of four mediator families - the lipoxins, resolvins, protectins, and maresins. These molecules potently and stereoselectively promote the termination of inflammation, tissue repair, and regeneration. Recent studies indicate that in disease, SPM production becomes dysregulated giving rise to a status of failed resolution. Of note, several studies found that omega-3 fatty acid supplementation, at doses within the recommended daily allowance, led to increases in several SPM families that correlate with enhanced white blood cell responses in humans and reduced inflammation in mice. SUMMARY Given the potent biological actions of SPM in organ protection and promoting bacterial clearance, nutritional therapies enriched in omega-3 fatty acids hold promise as a potential co-therapy approach when coupled with functional lipid mediator profiling.
Collapse
Affiliation(s)
- Lucy V Norling
- The William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Lucy Ly
- The William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
- QMUL Lipid Mediator Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Jesmond Dalli
- The William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
- QMUL Lipid Mediator Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| |
Collapse
|
36
|
Radcliffe J, Thomas J, Bramley A, Kouris-Blazos A, Radford B, Scholey A, Pipingas A, Thomas C, Itsiopoulos C. Controversies in omega-3 efficacy and novel concepts for application. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2016. [DOI: 10.1016/j.jnim.2016.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|