1
|
Brown Z, Yoneshiro T. Brown Fat and Metabolic Health: The Diverse Functions of Dietary Components. Endocrinol Metab (Seoul) 2024; 39:839-846. [PMID: 39566546 PMCID: PMC11695479 DOI: 10.3803/enm.2024.2121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 11/22/2024] Open
Abstract
Brown and beige adipocytes utilize a variety of substrates for cold-induced thermogenesis, contributing to the clearance of metabolites in circulation and, consequently, metabolic health. Food-derived compounds that exhibit agonistic activity at temperature-sensitive transient receptor potential channels may serve as cold mimics to elicit thermogenesis and substrate utilization in brown adipose tissue (BAT). In addition to fatty acids and glucose, branched-chain amino acids (BCAAs), which are essential amino acids obtained from foods, are actively catabolized in BAT through mitochondrial BCAA carrier (MBC). The relative contribution of BCAAs to fueling the tricarboxylic acid cycle as a substrate (i.e., anaplerosis) is estimated to be relatively small, yet BCAA catabolism in BAT exerts a critical role in systemic insulin sensitivity. The nature of this apparent tension remained unclear until the recent discovery that active BCAA catabolism in BAT through MBC is critical for the synthesis of metabolites such as glutathione, which is delivered to the liver to improve hepatic insulin sensitivity through redox homeostasis. Novel mechanistic insights into the control of BAT function and systemic metabolism reveal the therapeutic potential of food-derived compounds for improving metabolic flexibility and insulin sensitivity.
Collapse
Affiliation(s)
- Zachary Brown
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, School of Medicine, San Francisco, CA, USA
| | - Takeshi Yoneshiro
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Díaz-Castro F, Morselli E, Claret M. Interplay between the brain and adipose tissue: a metabolic conversation. EMBO Rep 2024; 25:5277-5293. [PMID: 39558137 PMCID: PMC11624209 DOI: 10.1038/s44319-024-00321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024] Open
Abstract
The central nervous system and adipose tissue interact through complex communication. This bidirectional signaling regulates metabolic functions. The hypothalamus, a key homeostatic brain region, integrates exteroceptive and interoceptive signals to control appetite, energy expenditure, glucose, and lipid metabolism. This regulation is partly achieved via the nervous modulation of white (WAT) and brown (BAT) adipose tissue. In this review, we highlight the roles of sympathetic and parasympathetic innervation in regulating WAT and BAT activities, such as lipolysis and thermogenesis. Adipose tissue, in turn, plays a dual role as an energy reservoir and an endocrine organ, secreting hormones that influence brain function and metabolic health. In addition, this review focuses on recently uncovered communication pathways, including extracellular vesicles and neuro-mesenchymal units, which add new layers of regulation and complexity to the brain-adipose tissue interaction. Finally, we also examine the consequences of disrupted communication between the brain and adipose tissue in metabolic disorders like obesity and type-2 diabetes, emphasizing the potential for new therapeutic strategies targeting these pathways to improve metabolic health.
Collapse
Affiliation(s)
- Francisco Díaz-Castro
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Laboratory of Autophagy and Metabolism, Faculty of Medicine and Sciences, Department of Basic Sciences, Universidad San Sebastián, Santiago de Chile, Chile
- Physiology Department, Biological Science Faculty, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Eugenia Morselli
- Laboratory of Autophagy and Metabolism, Faculty of Medicine and Sciences, Department of Basic Sciences, Universidad San Sebastián, Santiago de Chile, Chile.
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- IBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
- School of Medicine, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
3
|
Maharjan A, Vasamsetti BMK, Park JH. A comprehensive review of capsaicin: Biosynthesis, industrial productions, processing to applications, and clinical uses. Heliyon 2024; 10:e39721. [PMID: 39524861 PMCID: PMC11543913 DOI: 10.1016/j.heliyon.2024.e39721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Capsaicin, the main bioactive compound in chili peppers, is widely known for its diverse pharmacological effects, including antioxidant, anti-inflammatory, and anticancer effects. Despite its therapeutic potential, the low yield of natural capsaicin and the challenges in producing it on a large-scale limit broader industrial and clinical applications. This review provides a comprehensive analysis of capsaicin's biosynthesis in plants, chemical and enzymatic synthesis methods, and recent advancements in green production technologies. In addition, innovative applications such as drug delivery systems using nanoencapsulation and micelles are being developed to improve the bioavailability and therapeutic efficacy of capsaicin. Key findings highlight the use of capsaicin in food preservation, packaging, and pharmaceutical formulations. Future research should prioritize the refinement of synthetic routes, innovative delivery technologies, and the development of sustainable industrial processes to fully exploit the therapeutic and commercial potential of capsaicin.
Collapse
Affiliation(s)
- Anoth Maharjan
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Bala Murali Krishna Vasamsetti
- Toxicity and Risk Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, 55365, Republic of Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
- Department of Applied Biological Engineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
4
|
Lacal JC, Ibrahim SA, Zimmerman T. Is choline kinase alpha a drug target for obesity? Front Endocrinol (Lausanne) 2024; 15:1492753. [PMID: 39568820 PMCID: PMC11576158 DOI: 10.3389/fendo.2024.1492753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024] Open
Abstract
Choline kinase alpha (ChoKα) is a therapeutic target being developed for a variety of diseases, from cancer to rheumatoid arthritis and from parasites to bacterial infections. Nevertheless, the therapeutic potential of this drug target seems not exhausted and may end up as a possible solution for a larger variety of conditions. Here we present our working model for how ChoKα could play a role in obesity and for how drugs being developed as therapeutics for other diseases using ChoKα as a target, could be repurposed as prophylactic treatments for obesity. We also present preliminary observations in support of our model.
Collapse
Affiliation(s)
- Juan Carlos Lacal
- Department of Metabolic & Immune Diseases, Instituto de Investigaciones Biomédicas, Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Salam A. Ibrahim
- Food and Nutritional Sciences Program, Department of Family and Consumer Sciences, North Carolina Agricultural and Technical University, Greensboro, NC, United States
| | - Tahl Zimmerman
- Biomedical Sciences Program, High Point University, One University Parkway, High Point, NC, United States
| |
Collapse
|
5
|
Li F, Hou Y, Pang H, Song X, Li W. Novel derivatives of capsaicin as a potent hypolipidemic and anti-obesity agent. Mol Divers 2024:10.1007/s11030-024-10971-0. [PMID: 39446255 DOI: 10.1007/s11030-024-10971-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/12/2024] [Indexed: 10/25/2024]
Abstract
Capsaicin is a natural product with multiple biological activities, such as anti-inflammatory, analgesic, weight loss, anti-cancer and cardiovascular disease prevention. However, its further applications have been limited by its strong irritation, poor water solubility, and unsatisfied pharmacological effects. To ameliorate the problem, a series of derivatives of capsaicin and its analogues were designed and synthesized. Three candidate compounds (HJ-1-3, HJ-1-4, HJ-1-6) have shown the potential to reduce body fat accumulation and lose weight on different indicators with biological evaluation in vitro and in vivo.
Collapse
Affiliation(s)
- Feng Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang, 262700, China.
| | - Yingwei Hou
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang, 262700, China
| | - Haipeng Pang
- Zhucheng People's Hospital, Weifang, 262200, China
| | | | - Wenbao Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang, 262700, China.
| |
Collapse
|
6
|
Santos KCC, Domingos LF, Nunes FM, Simmer LM, Cordeiro ER, Filetti FM, Bocalini DS, Corrêa CR, Lima-Leopoldo AP, Leopoldo AS. Capsinoids Increase Antioxidative Enzyme Activity and Prevent Obesity-Induced Cardiac Injury without Positively Modulating Body Fat Accumulation and Cardiac Oxidative Biomarkers. Nutrients 2024; 16:3183. [PMID: 39339783 PMCID: PMC11434772 DOI: 10.3390/nu16183183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Capsinoids are potential antioxidant agents capable of reducing oxidative damage and the resulting complications triggered by obesity. Thus, this study aimed to investigate the effects of capsinoids on adiposity and biomarkers of cardiac oxidative stress in obese rats induced by a high-fat diet. METHODS Male Wistar rats were exposed to a high-fat diet for 27 consecutive weeks. After the characterization of obesity (week 19), some of the obese animals began to receive capsinoids (10 mg/kg/day) by orogastric gavage. Adiposity and comorbidities were assessed. In the heart, remodeling, injury, and biomarkers of oxidative stress were determined. RESULTS The treatment did not reduce obesity-induced adiposity but was efficient in reducing cholesterol levels. Capsinoid treatment did not cause a difference in heart and LV mass, despite having reduced troponin I concentrations. Furthermore, capsinoids did not reduce the increase in the advanced oxidation of protein products and carbonylated proteins caused by obesity in cardiac tissue. In addition, obese rats treated with capsinoids presented high levels of malondialdehyde and greater antioxidant enzyme activity compared to untreated obese rats. CONCLUSIONS In conclusion, treatment with capsinoids increases antioxidative enzyme activity and prevents obesity-induced cardiac injury without positively modulating body fat accumulation and cardiac oxidative biomarkers.
Collapse
Affiliation(s)
- Késsia Cristina Carvalho Santos
- Postgraduate Program in Nutrition and Health, Health Sciences Center, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| | - Lucas Furtado Domingos
- Postgraduate Program in Nutrition and Health, Health Sciences Center, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| | - Fabiane Merigueti Nunes
- Postgraduate Program in Nutrition and Health, Health Sciences Center, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| | - Luisa Martins Simmer
- Postgraduate Program in Nutrition and Health, Health Sciences Center, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| | - Evellyn Rodrigues Cordeiro
- Postgraduate Program in Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| | - Filipe Martinuzo Filetti
- Postgraduate Program in Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| | - Danilo Sales Bocalini
- Postgraduate Program in Physical Education, Physical Education and Sports Center, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| | - Camila Renata Corrêa
- Medical School, São Paulo State University (UNESP), Botucatu 18618-686, SP, Brazil
| | - Ana Paula Lima-Leopoldo
- Postgraduate Program in Nutrition and Health, Health Sciences Center, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
- Postgraduate Program in Physical Education, Physical Education and Sports Center, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| | - André Soares Leopoldo
- Postgraduate Program in Nutrition and Health, Health Sciences Center, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
- Postgraduate Program in Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil
| |
Collapse
|
7
|
Cardoso RV, da Silva DVT, Santos-Sodré SDJL, Pereira PR, Freitas CS, Moterle D, Kanis LA, Silva LHMD, Rodrigues AMDC, Paschoalin VMF. Green Ultrasound-Assisted Extraction of Bioactive Compounds from Cumari-Do-Pará Peppers ( Capsicum chinense Jacq.) Employing Vegetable Oils as Solvents. Foods 2024; 13:2765. [PMID: 39272529 PMCID: PMC11394977 DOI: 10.3390/foods13172765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Capsaicin, carotenoids, and phenolic compounds from cumari-do-Pará peppers (Capsicum chinense Jacq.) harvested from two different locations in Pará, Brazil, and at different ripening stages were extracted by employing green methodologies as an alternative to organic solvents. Edible vegetable oils from soybeans (Glycine max), Brazilian nuts (Bertholettia excelsa H.B.), and palm olein were used in combination with ultrasonic-assisted extraction (UAE). The proximate composition of the pepper extracts and vitamin C were determined through AOAC methods, total phenolics and carotenoids were assessed by UV/Vis spectrophotometry, and capsaicin by high-performance liquid chromatography. Antioxidant cumari-do-Pará extract activities were evaluated by the ABTS radical scavenging and β-carotene/linoleic acid assays. The vegetable oils were suitable for extracting and preserving bioactive pepper compounds, especially mature ones harvested from Igarapé-Açu. Bioactive compound content and antioxidant activity varied with harvesting location and ripening stage. Soybean oil was the most effective in extracting bioactive pepper compounds, particularly carotenoids, with 69% recovery. Soybean oil extracts enriched in capsaicin, carotenoids, and phenolics obtained from cumari-do-Pará can be used as spices in foodstuffs and/or as additives in pharmaceutical and nutraceutical formulations. Edible vegetable oils combined with UAE are promising for bioactive compound extraction, representing an environmentally friendly, safe, low-cost, versatile, and fast alternative.
Collapse
Affiliation(s)
- Raiane Vieira Cardoso
- Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Davi Vieira Teixeira da Silva
- Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | | | - Patricia Ribeiro Pereira
- Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Cyntia Silva Freitas
- Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Diego Moterle
- Health Science Institute, South University of Santa Catarina (UNISul), Avenida Jose Acacio Moreira 787, Tubarão 88704-900, SC, Brazil
| | - Luiz Alberto Kanis
- Health Science Institute, South University of Santa Catarina (UNISul), Avenida Jose Acacio Moreira 787, Tubarão 88704-900, SC, Brazil
| | - Luiza Helena Meller da Silva
- Institute of Technology, Federal University of Para (UFPA), Augusto Corrêa 1, Guamá, Belém 66075-110, PA, Brazil
| | | | - Vania Margaret Flosi Paschoalin
- Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
8
|
S H, Deora N, Khusro A. Molecular Docking and Pharmacokinetics Prediction of Piperine and Capsaicin as Human Pancreatic Lipase Inhibitors: An In Silico Study. Cureus 2024; 16:e67870. [PMID: 39328713 PMCID: PMC11424760 DOI: 10.7759/cureus.67870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Obesity is a complex multifaceted disease, characterized by excessive body fat accumulation. It is a major public health concern globally, affecting individuals of all ages, genders, and socioeconomic backgrounds. Lipase, a key enzyme involved in lipid metabolism, plays a crucial role in the hydrolysis of dietary fats. Pancreatic lipase performs hydrolysis of nearly 50%-70% of total dietary fats. Thus, inhibition of pancreatic lipase is recognized as one of the strategies for managing obesity. Aim To predict the effect of phytocompounds from pepper as pancreatic lipase inhibitors using computational approaches. Methodology The drug-likeness and pharmacokinetic properties of compounds were evaluated using Lipinski rule of five and absorption, distribution, metabolism, and excretion (ADME) analysis, respectively. The drug score value was computed using Molinspiration, while the lipase inhibitor potential of ligands was evaluated using prediction of activity spectra for substances. Molecular docking was carried out to evaluate the stability and ligand binding affinity. Results Computational approaches identified both piperine and capsaicin as potential candidates, exhibiting favorable affinities with binding energy values of -9.9 and -7.7 kcal/mol, respectively. Both piperine and capsaicin interacted with Ser-152 and His-263, demonstrating their binding at the substrate binding site. Conclusions Findings provide insights into the underlying anti-obesity potential of these bioactive compounds from pepper and support further experimental investigations for obesity treatment.
Collapse
Affiliation(s)
- Harismitha S
- Department of General Medicine, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Neha Deora
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Ameer Khusro
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
9
|
Liu M, Zhu Y, Wang F. Does chili pepper consumption affect BMI and obesity risk? A cross-sectional analysis. Front Nutr 2024; 11:1410256. [PMID: 38887506 PMCID: PMC11182340 DOI: 10.3389/fnut.2024.1410256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Background The effects of chili intake on overweight and obesity have attracted significant interest in recent years. This study aimed to investigate the correlation between chili consumption frequency, body mass index (BMI), and obesity prevalence in the American population. Methods Data from participants in National Health and Nutrition Examination Survey (NHANES) 2003-2006 were collected. We enrolled 6,138 participants with complete information on chili intake and BMI in this cross-sectional study. Multivariate logistic regression and sensitivity analyses were conducted to explore the relationship between chili intake frequency and BMI and obesity. Subgroup analyses and interaction tests were employed to assess the stability of the observed correlation. Results Increased chili consumption frequency was linked to higher BMI values and a greater prevalence of obesity. Compared to the non-consumption group, the highest frequency group had a multivariate-adjusted β of 0.71 (95% CI: 0.05, 1.38) for BMI and an OR of 1.55 (95% CI: 1.22, 1.97) for obesity in the fully adjusted model. This positive association between chili intake frequency and obesity was more pronounced in females and older adults (≥ 60 years old). Conclusion Our findings suggest a positive association between chili intake frequency and BMI and obesity in United States adults, suggesting that controlling chili intake frequency could potentially contribute to improved weight management in the general population.
Collapse
Affiliation(s)
- Mengxue Liu
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yihao Zhu
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Fei Wang
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
10
|
Kowald A, Palmer D, Secci R, Fuellen G. Healthy Aging in Times of Extreme Temperatures: Biomedical Approaches. Aging Dis 2024; 15:601-611. [PMID: 37450930 PMCID: PMC10917539 DOI: 10.14336/ad.2023.0619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Climate extremes and rising energy prices present interconnected global health risks. Technical solutions can be supplemented with biomedical approaches to promote healthy longevity in hot and cold conditions. In summer, reducing basal metabolic rate through mild caloric restriction or CR mimetics, such as resveratrol, can potentially be used to lower body temperature. In winter, activating brown adipose tissue (BAT) for non-shivering thermogenesis and improved metabolic health can help adaptation to colder environments. Catechins found in green tea and in other food could be alternatives to drugs for these purposes. This review examines and discusses the biomedical evidence supporting the use of CR mimetics and BAT activators for health benefits amid increasingly extreme temperatures.
Collapse
Affiliation(s)
- Axel Kowald
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
| | - Daniel Palmer
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
| | - Riccardo Secci
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
| | - Georg Fuellen
- Institut für Biostatistik und Informatik in Medizin und Alternsforschung, Universitätsmedizin Rostock, Germany.
- Interdisziplinäre Fakultät, Department AGIS (Altern des Individuums und der Gesellschaft), Universität Rostock, Germany.
- School of Medicine, University College Dublin, Ireland.
| |
Collapse
|
11
|
Xiao Z, Yu S, Zhang D, Li C. UHPLC-qTOF-MS-Based Nontargeted Metabolomics to Characterize the Effects of Capsaicin on Plasma and Skin Metabolic Profiles of C57BL/6 Mice-An In vivo Experimental Study. Drug Des Devel Ther 2024; 18:719-729. [PMID: 38476205 PMCID: PMC10929253 DOI: 10.2147/dddt.s423974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Background Capsaicin is the main compound found in chili pepper and has complex pharmacologic effects. This study aimed to elucidate the mechanism of the effect of capsaicin on physiological processes by analyzing changes in metabolites and metabolic pathways. Methods Female C57BL/6 mice were divided into two groups(n = 10/group) and fed with capsaicin-soybean oil solution(group T) or soybean oil(group C) for 6 weeks. Ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC-qTOF-MS) based metabolomics was undertaken to assess plasma and skin metabolic profile changes and identify differential metabolites through multivariate analysis. Results According to the OPLS-DA score plots, the plasma and skin metabolic profiles in the group T and group C were significantly separated. In plasma, 38 significant differential metabolites were identified. KEGG pathway enrichment analysis revealed that the most significant plasma metabolic pathways included pyruvate metabolism and ABC transporters. In skin, seven significant differential metabolites were found. Four metabolic pathways with p values < 0.05 were detected, including sphingolipid metabolism, sphingolipid signaling pathway, apoptosis, and necroptosis. Conclusion These findings will provide metabolomic insights to assess the physiological functions of capsaicin and contribute to a better understanding of the potential effects of a capsaicin-rich diet on health.
Collapse
Affiliation(s)
- Zhen Xiao
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
- Department of Dermatology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Simin Yu
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Deng Zhang
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Chunming Li
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
12
|
Moura E Silva VEL, Panissa VLG, Cholewa JM, Vieira MM, Antunes BM, Moura RC, Rossi PAQ, Santos MAP, Lira FS, Rossi FE. Ten weeks of Capsicum annuum L. extract supplementation did not change adipose tissue-derived hormones, appetite, body composition, and muscle strength when combined with resistance training in healthy untrained men: A clinical trial study. Nutr Res 2024; 122:33-43. [PMID: 38141553 DOI: 10.1016/j.nutres.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
Capsiate (CAP) is a nonpungent capsaicin analog (Capsicum annuum L. extract) that has been studied as a potential antiobesity agent. However, the interaction between chronic CAP supplementation and resistance training is not clear. The purpose of this study was to examine the changes in adipose tissue-derived hormones, body composition, appetite, and muscle strength after 10 weeks of resistance training, combined with chronic CAP supplementation in healthy untrained men. We hypothesized that CAP could induce higher benefits when combined with resistance training after 10 weeks of intervention compared to resistance training alone. Twenty-four young men (age, 22.0 ± 2.9) were randomized to either capsiate supplementation (CAP = 12 mg/day) or placebo (PL), and both groups were assigned to resistance training. Body composition, leptin and adiponectin concentrations, subjective ratings of appetite, energy intake, and exercise performance were assessed at before and after 10 weeks of progressive resistance training. There was a significant increase in body mass (P < .001), fat-free mass (CAP: 58.0 ± 7.1 vs. post, 59.7 ± 7.1 kg; PL: pre, 58.4 ± 7.3 vs. post, 59.8 ± 7.1 kg; P < .001), resting metabolic rate (CAP: pre, 1782.9 ± 160.6 vs. post, 1796.3 ± 162.0 kcal; PL: pre, 1733.0 ± 148.9 vs. post, 1750.5 ± 149.8 kcal; P < .001), maximal strength at 45 leg press (P < .001) and bench press (P < .001) in both groups, but no significant (P > .05) supplementation by training period interaction nor fat mass was observed. For subjective ratings of appetite, energy intake, leptin, and adiponectin, no significant effect of supplementation by training period interaction was observed (P > .05). In conclusion, 10 weeks of resistance training increased total body weight, muscle mass, and maximum strength in healthy untrained men; however, CAP supplementation (12 mg, 7 days per week) failed to change adipose tissue-derived hormones, appetite, body composition and muscle strength in this population. Registered under Brazilian Registry of Clinical Trials (RBR-8cz9kfq).
Collapse
Affiliation(s)
- Vilton E L Moura E Silva
- Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Valéria L G Panissa
- Exercise and Immunometabolism Research Group, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Jason M Cholewa
- Department of Exercise Physiology, University of Lynchburg, Lynchburg, VA, USA
| | - Matheus Mesquita Vieira
- Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Graduate Program in Movement Science, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Barbara M Antunes
- Exercise and Immunometabolism Research Group, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Facultad de Deportes Campus Ensenada, Universidad Autónoma de Baja California, Ensenada, México
| | - Rayane C Moura
- Graduate Program in Science and Health, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Priscila A Q Rossi
- Exercise and Immunometabolism Research Group, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Marcos A P Santos
- Department of Biophysics and Physiology, Federal University of Piaui, Campus Minister Petrônio Portela, Ininga, Teresina, Piaui, Brazil
| | - Fabio S Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Fabrício E Rossi
- Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Department of Exercise Physiology, University of Lynchburg, Lynchburg, VA, USA; Graduate Program in Movement Science, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Graduate Program in Science and Health, Federal University of Piauí (UFPI), Teresina, PI, Brazil.
| |
Collapse
|
13
|
Chae HS, Cantrell CL, Khan IA, Jarret RL, Khan SI. Capsiate-Rich Fraction of Capsicum annuum Induces Muscular Glucose Uptake, Ameliorates Rosiglitazone-Induced Adipogenesis, and Exhibits Activation of NRs Regulating Multiple Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18395-18404. [PMID: 37972244 DOI: 10.1021/acs.jafc.3c06148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Capsiate is a key ingredient in the fruits of a nonpungent cultivar of Capsicum annuum. We investigated the effects of a C. annuum extract (CE) and a capsiate-rich fraction of CE (CR) on nuclear receptors involved in multiple signaling pathways, glucose uptake, and adipogenesis in comparison to pure capsiate (Ca). Similar to the effect of Ca (100 μM), CE (500 μg/mL) and CR (100 μg/mL) caused the activation of PPARα and PPARγ (>3-fold), while CR also activated LXR and NRF2 (>2 fold). CR (200 μg/mL) and Ca (100 μM) decreased lipid accumulation (22.6 ± 14.1 and 49.7 ± 7.3%, respectively) in adipocytes and increased glucose uptake (44.7 ± 6.2 and 30.1 ± 12.2%, respectively) in muscle cells and inhibited the adipogenic effect induced by rosiglitazone by 41.2 ± 5.6 and 13.9 ± 4.3%, respectively. This is the first report to reveal the agonistic action of CR and Ca on multiple nuclear receptors along with their enhanced glucose uptake and antiadipogenic effects. The results indicate the potential utility of the capsiate-rich fraction of C. annuum in alleviating the symptoms of metabolic syndrome and in preventing the undesired adipogenic effects of full PPARγ agonists such as rosiglitazone.
Collapse
Affiliation(s)
- Hee-Sung Chae
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Charles L Cantrell
- Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, University, Mississippi 38677, United States
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
- Department of Biomolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Robert L Jarret
- Plant Genetic Resources Unit, USDA-ARS, 1109 Experiment Street, Griffin, Georgia 30223, United States
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
- Department of Biomolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
14
|
Zhang W, Zhang Q, Wang L, Zhou Q, Wang P, Qing Y, Sun C. The effects of capsaicin intake on weight loss among overweight and obese subjects: a systematic review and meta-analysis of randomised controlled trials. Br J Nutr 2023; 130:1645-1656. [PMID: 36938807 DOI: 10.1017/s0007114523000697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Animal studies have shown that capsaicin plays a positive role in weight management. However, the results in human research are controversial. Therefore, the present systematic review and meta-analysis aimed to evaluate the effect of capsaicin on weight loss in adults. We searched PubMed, Embase, China Biomedical Literature Database (CBM), Cochrane library and clinical registration centre, identifying all randomised controlled trials (RCT) published in English and Chinese to 3 May 2022. A random-effect model was used to calculate the weighted mean difference (WMD) and 95 % CI. Heterogeneity between studies was assessed by the Cochran Q statistic and I-squared tests (I 2 ). Statistical analyses were performed using STATA version 15.1. P-values < 0·05 were considered as statistically significant. From 2377 retrieved studies, fifteen studies were finally included in the meta-analyses. Fifteen RCT with 762 individuals were included in our meta-analysis. Compared with the control group, the supplementation of capsaicin resulted in significant reduction on BMI (WMD: -0·25 kg/m2, 95 % CI = -0·35, -0·15 kg/m2, P < 0·05), body weight (BW) (WMD: -0·51 kg, 95 % CI = -0·86, -0·15 kg, P < 0·05) and waist circumference (WC) (WMD: -1·12 cm, 95 % CI = -2·00, -0·24 cm, P < 0·05). We found no detrimental effect of capsaicin on waist-to-hip ratio (WMD: -0·05, 95 % CI = -0·17, 0·06, P > 0·05). The current meta-analysis suggests that capsaicin supplementation may have rather modest effects in reducing BMI, BW and WC for overweight or obese individuals.
Collapse
Affiliation(s)
- Wensen Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Road, High-Tech Development Zone of States, Zhengzhou450001, People's Republic of China
| | - Qiang Zhang
- School of Nursing and Health, Zhengzhou University, 101 Kexue Road, High-Tech Development Zone of States, Zhengzhou450001, People's Republic of China
| | - Lianke Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Road, High-Tech Development Zone of States, Zhengzhou450001, People's Republic of China
| | - Qianyu Zhou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Road, High-Tech Development Zone of States, Zhengzhou450001, People's Republic of China
| | - Panpan Wang
- School of Nursing and Health, Zhengzhou University, 101 Kexue Road, High-Tech Development Zone of States, Zhengzhou450001, People's Republic of China
| | - Ying Qing
- School of Nursing and Health, Zhengzhou University, 101 Kexue Road, High-Tech Development Zone of States, Zhengzhou450001, People's Republic of China
| | - Changqing Sun
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Road, High-Tech Development Zone of States, Zhengzhou450001, People's Republic of China
- School of Nursing and Health, Zhengzhou University, 101 Kexue Road, High-Tech Development Zone of States, Zhengzhou450001, People's Republic of China
| |
Collapse
|
15
|
Roukka S, Puputti S, Aisala H, Hoppu U, Seppä L, Sandell M. Factors explaining individual differences in the oral perception of capsaicin, l-menthol, and aluminum ammonium sulfate. Clin Transl Sci 2023; 16:1815-1827. [PMID: 37424404 PMCID: PMC10582669 DOI: 10.1111/cts.13587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/28/2023] [Accepted: 06/24/2023] [Indexed: 07/11/2023] Open
Abstract
This research focused on the oral perception of naturally occurring chemical food compounds that are used in the pharma and food industries due to their pharmacological properties. They stimulate chemically sensitive receptors of the somatosensory system and are also chemesthetic compounds. Capsaicin is a naturally occurring alkaloid activating pungency perception. l-Menthol is a cyclic monoterpene working also as a medical cooling agent. Aluminum ammonium sulfate is used as a dehydrating agent and additive known to activate astringency in oral cavity. The objective of the study was to identify factors explaining individual differences in the perception of oral chemesthesis measured as sensitivity to chemesthetic compounds and their recognition. The subjects (N = 205) evaluated quality-specific prototypic compounds at five different concentration levels. Differences between gender were discovered in capsaicin sensitivity with men being less sensitive than women. Age was associated with the perception of capsaicin, l-menthol, aluminum ammonium sulfate, and the combined oral chemesthetic sensitivity. Quality-specific recognition ratings were also contributing to the sensitivity to chemesthetic compounds. A combined oral chemesthetic recognition score was created based on quality-specific recognition ratings. Increasing age generally indicated weaker recognition skills. Better recognizers had a higher combined oral chemesthetic sensitivity score than poorer recognizers. These results provide new information about chemesthesis. The results suggest that age and gender are important factors in explaining individual differences in sensitivity to capsaicin, l-menthol, and aluminum ammonium sulfate. In addition, recognition skills are associated with the sensitivity based on the quality-specific recognition scores.
Collapse
Affiliation(s)
- Sulo Roukka
- Department of Food and NutritionUniversity of HelsinkiHelsinkiFinland
- Functional Foods ForumUniversity of TurkuTurkuFinland
| | - Sari Puputti
- Functional Foods ForumUniversity of TurkuTurkuFinland
- Present address:
Valio Ltd.HelsinkiFinland
| | - Heikki Aisala
- Functional Foods ForumUniversity of TurkuTurkuFinland
- Present address:
VTT Technical Research Centre of Finland Ltd.EspooFinland
| | - Ulla Hoppu
- Department of Food and NutritionUniversity of HelsinkiHelsinkiFinland
- Functional Foods ForumUniversity of TurkuTurkuFinland
| | - Laila Seppä
- Department of Food and NutritionUniversity of HelsinkiHelsinkiFinland
| | - Mari Sandell
- Department of Food and NutritionUniversity of HelsinkiHelsinkiFinland
- Functional Foods ForumUniversity of TurkuTurkuFinland
| |
Collapse
|
16
|
Dludla PV, Cirilli I, Marcheggiani F, Silvestri S, Orlando P, Muvhulawa N, Moetlediwa MT, Nkambule BB, Mazibuko-Mbeje SE, Hlengwa N, Hanser S, Ndwandwe D, Marnewick JL, Basson AK, Tiano L. Bioactive Properties, Bioavailability Profiles, and Clinical Evidence of the Potential Benefits of Black Pepper ( Piper nigrum) and Red Pepper ( Capsicum annum) against Diverse Metabolic Complications. Molecules 2023; 28:6569. [PMID: 37764345 PMCID: PMC10534530 DOI: 10.3390/molecules28186569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The consumption of food-derived products, including the regular intake of pepper, is increasingly evaluated for its potential benefits in protecting against diverse metabolic complications. The current study made use of prominent electronic databases including PubMed, Google Scholar, and Scopus to retrieve clinical evidence linking the intake of black and red pepper with the amelioration of metabolic complications. The findings summarize evidence supporting the beneficial effects of black pepper (Piper nigrum L.), including its active ingredient, piperine, in improving blood lipid profiles, including reducing circulating levels of total cholesterol, low-density lipoprotein cholesterol, and triglycerides in overweight and obese individuals. The intake of piperine was also linked with enhanced antioxidant and anti-inflammatory properties by increasing serum levels of superoxide dismutase while reducing those of malonaldehyde and C-reactive protein in individuals with metabolic syndrome. Evidence summarized in the current review also indicates that red pepper (Capsicum annum), together with its active ingredient, capsaicin, could promote energy expenditure, including limiting energy intake, which is likely to contribute to reduced fat mass in overweight and obese individuals. Emerging clinical evidence also indicates that pepper may be beneficial in alleviating complications linked with other chronic conditions, including osteoarthritis, oropharyngeal dysphagia, digestion, hemodialysis, and neuromuscular fatigue. Notably, the beneficial effects of pepper or its active ingredients appear to be more pronounced when used in combination with other bioactive compounds. The current review also covers essential information on the metabolism and bioavailability profiles of both pepper species and their main active ingredients, which are all necessary to understand their potential beneficial effects against metabolic diseases.
Collapse
Affiliation(s)
- Phiwayinkosi V. Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; (N.M.); (D.N.)
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (N.H.); (A.K.B.)
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| | - Ndivhuwo Muvhulawa
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; (N.M.); (D.N.)
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa; (M.T.M.); (S.E.M.-M.)
| | - Marakiya T. Moetlediwa
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa; (M.T.M.); (S.E.M.-M.)
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Sithandiwe E. Mazibuko-Mbeje
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa; (M.T.M.); (S.E.M.-M.)
| | - Nokulunga Hlengwa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (N.H.); (A.K.B.)
| | - Sidney Hanser
- Department of Physiology and Environmental Health, University of Limpopo, Sovenga 0727, South Africa;
| | - Duduzile Ndwandwe
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; (N.M.); (D.N.)
| | - Jeanine L. Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Albertus K. Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; (N.H.); (A.K.B.)
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (I.C.); (F.M.); (S.S.); (P.O.); (L.T.)
| |
Collapse
|
17
|
Mishra G, Townsend KL. The metabolic and functional roles of sensory nerves in adipose tissues. Nat Metab 2023; 5:1461-1474. [PMID: 37709960 DOI: 10.1038/s42255-023-00868-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/18/2023] [Indexed: 09/16/2023]
Abstract
Homeostatic regulation of adipose tissue is critical for the maintenance of energy balance and whole-body metabolism. The peripheral nervous system provides bidirectional neural communication between the brain and adipose tissue, thereby providing homeostatic control. Most research on adipose innervation and nerve functions has been limited to the sympathetic nerves and their neurotransmitter norepinephrine. In recent years, more work has focused on adipose sensory nerves, but the contributions of subsets of sensory nerves to metabolism and the specific roles contributed by sensory neuropeptides are still understudied. Advances in imaging of adipose innervation and newer tissue denervation techniques have confirmed that sensory nerves contribute to the regulation of adipose functions, including lipolysis and browning. Here, we summarize the historical and latest findings on the regulation, function and plasticity of adipose tissue sensory nerves that contribute to metabolically important processes such as lipolysis, vascular control and sympathetic axis cross-talk.
Collapse
Affiliation(s)
- Gargi Mishra
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
18
|
Kaçak K, Yaman T, Uyar A, Kömüroğlu AU. Inhibitory effect of stinging nettle ( Urtica dioica L.) extract on body weight gain in rats on a high-fat diet. PRZEGLAD GASTROENTEROLOGICZNY 2023; 19:23-32. [PMID: 38571539 PMCID: PMC10985764 DOI: 10.5114/pg.2023.130142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/12/2022] [Indexed: 04/05/2024]
Abstract
Introduction The leaves and seeds of Urtica dioica (UD) are used in folk treatments for many diseases. Anticarcinogenic, anti-inflammatory, antioxidant, and antiallergenic properties of UD have been reported. Aim To uncover the effects of nettle seed (Urtica dioica; UD) extract on body weight gain in rats on a high-fat diet (HFD). Material and methods Male Wistar albino rats (n = 32) were divided into 4 groups, comprising a control group, a group that received a HFD (HFD group), a group that received UD extracts (UD group), and a group that received a HFD as well as UD extracts (HFD + UD group). UD extracts were given a daily dose of 300 mg/kg of body weight orally for 75 days. Results The HFD led to weight gain that was partially moderated by the UD extract. Histopathological findings in the HFD + UD group were uniformly significantly lower than those in the HFD group. Serum alanine transaminase, alanine aminotransferase, triglyceride, and low-density lipoprotein levels were significantly higher in the HFD group than in the HFD + UD group, and the HDL levels were lower in the HFD group than in the control group and the HFD + UD group. Conclusions The cholesterol levels were discovered to be highest in the HFD + UD group. Therefore, it was concluded that the UD extract did not completely protect the rats against body weight gain.
Collapse
Affiliation(s)
| | - Turan Yaman
- Department of Pathology, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Ahmet Uyar
- Department of Pathology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Ahmet Ufuk Kömüroğlu
- Health Service Vocational School of Higher Education, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
19
|
Zhang M, Ma Y, Ye X, Zhang N, Pan L, Wang B. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:261. [PMID: 37402746 DOI: 10.1038/s41392-023-01464-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/26/2023] [Accepted: 04/25/2023] [Indexed: 07/06/2023] Open
Abstract
Transient receptor potential (TRP) channels are sensors for a variety of cellular and environmental signals. Mammals express a total of 28 different TRP channel proteins, which can be divided into seven subfamilies based on amino acid sequence homology: TRPA (Ankyrin), TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipin), TRPN (NO-mechano-potential, NOMP), TRPP (Polycystin), TRPV (Vanilloid). They are a class of ion channels found in numerous tissues and cell types and are permeable to a wide range of cations such as Ca2+, Mg2+, Na+, K+, and others. TRP channels are responsible for various sensory responses including heat, cold, pain, stress, vision and taste and can be activated by a number of stimuli. Their predominantly location on the cell surface, their interaction with numerous physiological signaling pathways, and the unique crystal structure of TRP channels make TRPs attractive drug targets and implicate them in the treatment of a wide range of diseases. Here, we review the history of TRP channel discovery, summarize the structures and functions of the TRP ion channel family, and highlight the current understanding of the role of TRP channels in the pathogenesis of human disease. Most importantly, we describe TRP channel-related drug discovery, therapeutic interventions for diseases and the limitations of targeting TRP channels in potential clinical applications.
Collapse
Affiliation(s)
- Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yueming Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lei Pan
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
20
|
Vrânceanu M, Hegheş SC, Cozma-Petruţ A, Banc R, Stroia CM, Raischi V, Miere D, Popa DS, Filip L. Plant-Derived Nutraceuticals Involved in Body Weight Control by Modulating Gene Expression. PLANTS (BASEL, SWITZERLAND) 2023; 12:2273. [PMID: 37375898 DOI: 10.3390/plants12122273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Obesity is the most prevalent health problem in the Western world, with pathological body weight gain associated with numerous co-morbidities that can be the main cause of death. There are several factors that can contribute to the development of obesity, such as diet, sedentary lifestyle, and genetic make-up. Genetic predispositions play an important role in obesity, but genetic variations alone cannot fully explain the explosion of obesity, which is why studies have turned to epigenetics. The latest scientific evidence suggests that both genetics and environmental factors contribute to the rise in obesity. Certain variables, such as diet and exercise, have the ability to alter gene expression without affecting the DNA sequence, a phenomenon known as epigenetics. Epigenetic changes are reversible, and reversibility makes these changes attractive targets for therapeutic interventions. While anti-obesity drugs have been proposed to this end in recent decades, their numerous side effects make them not very attractive. On the other hand, the use of nutraceuticals for weight loss is increasing, and studies have shown that some of these products, such as resveratrol, curcumin, epigallocatechin-3-gallate, ginger, capsaicin, and caffeine, can alter gene expression, restoring the normal epigenetic profile and aiding weight loss.
Collapse
Affiliation(s)
- Maria Vrânceanu
- Department of Toxicology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Simona-Codruţa Hegheş
- Department of Drug Analysis, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Anamaria Cozma-Petruţ
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Roxana Banc
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Carmina Mariana Stroia
- Department of Pharmacy, Oradea University, 1 Universităţii Street, 410087 Oradea, Romania
| | - Viorica Raischi
- Laboratory of Physiology of Stress, Adaptation and General Sanocreatology, Institute of Physiology and Sanocreatology, 1 Academiei Street, 2028 Chișinău, Moldova
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Daniela-Saveta Popa
- Department of Toxicology, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, "Iuliu Haţieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| |
Collapse
|
21
|
Wang M, Huang W, Xu Y. Effects of spicy food consumption on overweight/obesity, hypertension and blood lipids in China: a meta-analysis of cross-sectional studies. Nutr J 2023; 22:29. [PMID: 37291603 DOI: 10.1186/s12937-023-00857-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Effect of spicy food consumption on health has attracted widespread attention in recent years. However, the relationships between spicy food intake and overweight/obesity, hypertension and blood lipid levels remain unclear. A meta-analysis of available observational studies was conducted in order to explore the associations. METHODS PubMed, Embase, Cochrane Library and Web of science databases were searched for studies published up to 10 August 2021 without language limitation. The fixed and random effects models were selected to aggregate the effect sizes and 95% confidence intervals (CIs) in this study. RESULTS A total of nine observational studies involving 189,817 participants were included. Results from this meta-analysis showed that the highest category of spicy food intake significantly increased the risk of overweight/obesity (pooled Odds Ratio (OR): 1.17; 95% CI: 1.07, 1.28; P < 0.001), compared with the lowest category of spicy food intake. Conversely, a remarkable negative association was observed between the highest category of spicy food intake and hypertension (pooled OR: 0.87; 95% CI: 0.81, 0.93; P = 0.307). In addition, the highest category of spicy food intake increased the level of low density lipoprotein cholesterol (LDL-C) (weighted mean difference (WMD): 0.21; 95% CI: 0.02, 0.39; P = 0.040), and reduced high density lipoprotein cholesterol level (HDL-C) (WMD: -0.06; 95% CI: -0.10, -0.02; P = 0.268) concentrations, but it was not related to total cholesterol (TC) (WMD: 0.09; 95% CI: -0.08, 0.26; P = 0.071) and triglyceride (TG) (WMD: -0.08; 95% CI: -0.19, 0.02; P = 0.333)] levels. CONCLUSION Spicy food intake may have a beneficial effect on hypertension, but adversely affect overweight/obesity, as well as blood lipid levels. However, the results should be interpreted cautiously because the present analyses were based on only observational studies and not intervention studies. More large and high-quality studies in different populations will be needed to verify these associations in the future.
Collapse
Affiliation(s)
- Mei Wang
- Department of Endocrinology and Metabolism, Taikang Sichuan Hospital, Chengdu, 610000, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Wei Huang
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China.
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Yong Xu
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China.
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
22
|
Wang Y, Ye L. Somatosensory innervation of adipose tissues. Physiol Behav 2023; 265:114174. [PMID: 36965573 PMCID: PMC11537203 DOI: 10.1016/j.physbeh.2023.114174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
The increasing prevalence of obesity and type 2 diabetes has led to a greater interest in adipose tissue physiology. Adipose tissue is now understood as an organ with endocrine and thermogenic capacities in addition to its role in fat storage. It plays a critical role in systemic metabolism and energy regulation, and its activity is tightly regulated by the nervous system. Fat is now recognized to receive sympathetic innervation, which transmits information from the brain, as well as sensory innervation, which sends information into the brain. The role of sympathetic innervation in adipose tissue has been extensively studied. However, the extent and the functional significance of sensory innervation have long been unclear. Recent studies have started to reveal that sensory neurons robustly innervate adipose tissue and play an important role in regulating fat activity. This brief review will discuss both historical evidence and recent advances, as well as important remaining questions about the sensory innervation of adipose tissue.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Li Ye
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
23
|
Harb E, Kheder O, Poopalasingam G, Rashid R, Srinivasan A, Izzi-Engbeaya C. Brown adipose tissue and regulation of human body weight. Diabetes Metab Res Rev 2023; 39:e3594. [PMID: 36398906 PMCID: PMC10077912 DOI: 10.1002/dmrr.3594] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/07/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Approximately 30% of the global population is affected by obesity. Traditional non-surgical measures for weight loss have limited efficacy and tolerability. Therefore, there is a need for novel, effective therapies. Brown adipose tissue (BAT) has been implicated in physiological energy expenditure, indicating that it could be targeted to achieve weight loss in humans. The use of 18 F-fluorodeoxyglucose (18 F-FDG) positron emission tomography-computed tomography-(PET-CT) imaging has enabled the discovery of functionally active BAT in the supraclavicular, subclavian, and thoracic spine regions of human adults. This review aims to discuss the reasons behind the renewed interest in BAT, assess whether it is metabolically important in humans, and evaluate its feasibility as a therapeutic target for treating obesity. SOURCES OF MATERIAL PubMed Central, Europe PMC, Medline. FINDINGS In vivo studies have shown that BAT activity is regulated by thyroid hormones and the sympathetic nervous system. Furthermore, BAT uniquely contains uncoupling protein 1 (UCP1) that is largely responsible for non-shivering thermogenesis. Cold exposure can increase BAT recruitment through the browning of white adipose tissue (WAT); however, this technique has practical limitations that may preclude its use. Currently available medicines for humans, such as the β3-adrenergic receptor agonist mirabegron or the farnesoid X receptor agonist obeticholic acid, have generated excitement, although adverse effects are a concern. Capsinoids represent a tolerable alternative, which require further investigation. CONCLUSIONS The use of currently available BAT-activating agents alone is unlikely to achieve significant weight loss in humans. A combination of BAT activation with physical exercise and modern, successful dietary strategies represents a more realistic option.
Collapse
Affiliation(s)
- Elissa Harb
- Imperial College School of Medicine, Imperial College London, London, UK
| | - Omar Kheder
- Imperial College School of Medicine, Imperial College London, London, UK
| | | | - Razi Rashid
- Imperial College School of Medicine, Imperial College London, London, UK
| | - Akash Srinivasan
- Imperial College School of Medicine, Imperial College London, London, UK
| | - Chioma Izzi-Engbeaya
- Imperial College School of Medicine, Imperial College London, London, UK
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| |
Collapse
|
24
|
Siebert E, Lee SY, Prescott MP. Chili pepper preference development and its impact on dietary intake: A narrative review. Front Nutr 2022; 9:1039207. [PMID: 36590220 PMCID: PMC9795841 DOI: 10.3389/fnut.2022.1039207] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
A preference for chili pepper can be an acquired taste. The contrast between a chili lover and a hater illustrates the complexities involved in forming an appreciation for food that evokes a fiery pain sensation. This narrative review aims to understand the factors behind chili pepper preference formation across the life course and how individual chili pepper preferences can impact eating behaviors and dietary intake. This review was conducted using three databases, yielding 38 included articles. Results suggest five determinants of chili pepper preferences: culture, exposure, gender, genetics, and personality. Collective findings indicate that the strongest influences on preference acquisition include the individual environment from childhood to adulthood and repeated exposure to spicy flavors. With frequent exposure to spicy food, the perceived burn becomes less intense. Culture also influences exposure to chili peppers, with the highest consumption patterns seen within Mexico and some Asia countries. Additionally, males reported having a stronger preference for spicy foods than females. Twin studies illustrated that genetics influenced spicy taste preferences, underscoring the complexity of developing individual taste preferences. As for the impact of capsaicin-containing food on individual eating behaviors and dietary behaviors, appetite effects depend on the dose of capsaicin consumed, but three studies found a change in sensory desires for sweet and fatty foods after finishing a capsaicin-containing dish. Inconsistent results were reported for chili pepper's effects on hunger and satiety after consumption, but changes in specific food desires were observed. The impact of chili pepper on appetite and calories consumed was inconsistent, but the greater amount of capsaicin ingested, the greater the effect. Capsaicin's potential to be used for weight control needs to be further reviewed. In conclusion, evidence suggests that chili pepper preferences may be linked to innate and environmental aspects such as an individual's culture, gender, and genetics. Extrinsic factors like repeated exposure may increase the liking for spicy foods.
Collapse
Affiliation(s)
- Emily Siebert
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, United States
| | - Soo-Yeun Lee
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, United States,Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL, United States
| | - Melissa Pflugh Prescott
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, United States,Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL, United States,*Correspondence: Melissa Pflugh Prescott
| |
Collapse
|
25
|
Sheikhhossein F, Amini MR, Askari M, Pourreza S, Hosseini F, Clark CCT, Djafarian K, Ghanbari M, Shab-Bidar S. The effects of capsinoids supplementation on body composition and anthropometric measures: A systematic review and dose-response meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2022; 52:381-394. [PMID: 36513480 DOI: 10.1016/j.clnesp.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/21/2022] [Accepted: 09/19/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS The present systematic review and meta-analysis was conducted to investigate the effects of capsinoids on body mass index (BMI), body weight (BW), waist circumference (WC), waist-hip ratio (WHR), fat mass (FM), fat-free mass (FFM), visceral fat area (VFA), and percentage body fat (PBF). METHODS Four databases were searched from inception to November 2020 using relevant keywords. All clinical trials investigating the effects of capsinoids supplementation on body composition and anthropometric measures were retained. RESULTS Overall, 19 effect sizes and 13 trials with a total sample size of 838 participants were included. Capsinoids supplementation had no effect on BW (P = 0.230), BMI (P = 0.182), WC (P = 0.611), FM (P = 0.946), FFM (P = 0.917), WHR (P = 0.599), VFA (P = 0.836), and PBF (P = 0.973). Findings from subgroup analysis revealed a significant reduction in BW in trials conducted on overweight participants, and lasted ≥12 weeks, However, no significant non-linear associations were found between capsinoids supplementation dosage and study duration with both BW (For dosage: Pnon-linearity = 0.527, for duration: Pnon-linearity = 0.410) and BMI (For dosage: Pnon-linearity = 0.308, for duration: Pnon-linearity = 0.578). CONCLUSION Capsinoids supplementation has no significant effect on obesity indicators. However, capsinoids in trials conducted on overweight participants, and lasted ≥12 weeks may have a significant and modest reduction in BW. Well-designed RCTs with larger sample size and longer duration are needed to confirm these results.
Collapse
Affiliation(s)
- Fatemeh Sheikhhossein
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Askari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sanaz Pourreza
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fatemeh Hosseini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Cain C T Clark
- Centre for Sport, Exercise, and Life Sciences, Coventry University, Coventry, CV15FB, UK
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahtab Ghanbari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
26
|
Ao Z, Huang Z, Liu H. Spicy Food and Chili Peppers and Multiple Health Outcomes: Umbrella Review. Mol Nutr Food Res 2022; 66:e2200167. [PMID: 36111960 PMCID: PMC10078540 DOI: 10.1002/mnfr.202200167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/07/2022] [Indexed: 01/18/2023]
Abstract
Spicy foods and chili peppers contain the primary ingredient capsaicin, which has potential health benefits. However, their efficacy in some health outcomes is also fiercely disputed, and some side effects have been confirmed. To assess the quality and strength of the associations between spicy food and chili pepper consumption and different health outcomes. An umbrella review is performed in humans. Eleven systematic reviews and meta-analyses with a total of 27 findings are identified. The health effect of consuming spicy food and chili peppers is unclear. Furthermore, the characteristics and context of different world regions and populations should be carefully considered. Direct correlations exist in esophageal cancer, gastric cancer, and gallbladder cancer. However, negative connections are reported in metabolism, mortality, and cardiovascular disease. Dose-response analysis reveals a significant nonlinear relationship between gastric cancer risk and capsaicin intake. The consumption of spicy foods and chili peppers is typically safe. However, high-quality proof is available to confirm this conclusion.
Collapse
Affiliation(s)
- Zhimin Ao
- Department of Integrated Traditional and Western MedicineWest China HospitalSichuan UniversityChengdu610041China
| | - Zongyue Huang
- Department of Integrated Traditional and Western MedicineWest China HospitalSichuan UniversityChengdu610041China
- Department of Acupuncture and Moxibustion, The Sixth Medical Center of PLA General HospitalDepartment of Acupuncture and Moxibustion, The Sixth Medical Center of PLA General HospitalBeijing100853China
| | - Hong Liu
- Department of Integrated Traditional and Western MedicineWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
27
|
Spicy food consumption is associated with abdominal obesity among Chinese Han population aged 30-79 years in the Sichuan Basin: a population-based cross-sectional study. BMC Public Health 2022; 22:1881. [PMID: 36210456 PMCID: PMC9549642 DOI: 10.1186/s12889-022-14293-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/27/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Few animal experiments and volunteer-based intervention studies have showed a controversial effect of spicy foods on abdominal obesity. We aimed to examine the association between spicy food frequency, spicy flavor, and abdominal obesity among Chinese Han population in the Sichuan Basin which area eating spicy foods relatively often. METHODS A cross-sectional analysis was conducted using the Sichuan Basin baseline data from the China Multi-Ethnic Cohort (CMEC) study, including data from electronic questionnaires, anthropometric measurements and blood sample collection. A total of 40,877 adults (22,503 females) aged 30-79 years were included in the final analysis. Multivariable logistic regression yielded adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for abdominal obesity associated with the strength of spicy flavor and frequency of spicy food intake. RESULTS The prevalence of daily spicy food eating was 47.3% in males and 52.7% in females, the percentages of abdominal obesity were 52.3%, 48.8%, 51.6% and 55.5% in the spicy food intake subgroups of never, 1-2 days/week, 3-5 days/week and 6-7 days/week, respectively. Compared with males who never consumed spicy food, the adjusted ORs (95% CIs) in the 1-2 days/week, 3-5 days/week and 6-7 days/week subgroups were 1.21 (1.09, 1.34), 1.35 (1.21, 1.51), and 1.35 (1.25, 1.47), respectively (Ptrend < 0.001). The corresponding odds ratios for females were 0.95 (0.87, 1.05), 1.14 (1.03, 1.26), and 1.25 (1.16, 1.35), respectively (Ptrend < 0.001). Similarly, compared with no spicy flavor, the adjusted ORs (95% CIs) of mild, middle, and strong spicy strength for abdominal obesity in males were 1.27 (1.17, 1.38), 1.51 (1.37, 1.67), and 1.36 (1.11, 1.67) respectively (Ptrend < 0.001). The corresponding odds ratios for females were 1.14 (1.06, 1.23), 1.27 (1.15, 1.40), and 1.32 (1.06, 1.65), respectively (Ptrend < 0.001). CONCLUSIONS The data indicated that spicy food consumption was a risk factor for abdominal obesity among Chinese adult population in the Sichuan Basin. The results need to be approved by large cohort studies.
Collapse
|
28
|
Application of Nanomicelles in Enhancing Bioavailability and Biological Efficacy of Bioactive Nutrients. Polymers (Basel) 2022; 14:polym14163278. [PMID: 36015535 PMCID: PMC9415603 DOI: 10.3390/polym14163278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Nutraceuticals provide many biological benefits besides their basic nutritional value. However, their biological efficacies are often limited by poor absorption and low bioavailability. Nanomaterials have received much attention as potential delivery systems of nutrients and phytonutrients for multiple applications. Nanomicelles are nanosized colloidal structures with a hydrophobic core and hydrophilic shell. Due to their unique characteristics, they have shown great perspectives in food and nutraceutical science. In this review, we discussed the unique properties of nanomicelles. We also emphasized the latest advances on the design of different nanomicelles for efficient delivery and improved bioavailability of various nutrients. The role of nanomicelles in the efficacy improvement of bioactive components from nutraceutical and health foods has been included. Importantly, the safety concerns on nano-processed food products were highlighted.
Collapse
|
29
|
Van Schaik L, Kettle C, Green R, Wundersitz D, Gordon B, Irving HR, Rathner JA. Both caffeine and Capsicum annuum fruit powder lower blood glucose levels and increase brown adipose tissue temperature in healthy adult males. Front Physiol 2022; 13:870154. [PMID: 36017333 PMCID: PMC9395699 DOI: 10.3389/fphys.2022.870154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/05/2022] [Indexed: 01/28/2023] Open
Abstract
Using a combination of respiratory gas exchange, infrared thermography, and blood glucose (BGL) analysis, we have investigated the impact of Capsicum annuum (C. annuum) fruit powder (475 mg) or caffeine (100 mg) on metabolic activity in a placebo controlled (lactose, 100 mg) double-blinded three-way cross-over-design experiment. Metabolic measurements were made on day 1 and day 7 of supplementation in eight adult male participants (22.2 ± 2 years of age, BMI 23 ± 2 kg/m2, x̅ ± SD). Participants arrived fasted overnight and were fed a high carbohydrate meal (90 g glucose), raising BGL from fasting baseline (4.4 ± 0.3 mmol/L) to peak BGL (8.5 ± 0.3 mmol/L) 45 min after the meal. Participants consumed the supplement 45 min after the meal, and both caffeine and C. annuum fruit powder restored BGL (F (8,178) = 2.2, p = 0.02) to near fasting levels within 15 min of supplementation compared to placebo (120 min). In parallel both supplements increased energy expenditure (F (2, 21) = 175.6, p < 0.001) over the 120-min test period (caffeine = 50.74 ± 2 kcal/kg/min, C. annuum fruit = 50.95 ± 1 kcal/kg/min, placebo = 29.34 ± 1 kcal/kg/min). Both caffeine and C. annuum fruit powder increased supraclavicular fossa temperature (F (2,42) = 32, p < 0.001) on both day 1 and day 7 of testing over the 120-min test period. No statistical difference in core temperature or reference point temperature, mean arterial pressure or heart rate was observed due to supplementation nor was any statistical difference seen between day 1 and day 7 of intervention. This is important for implementing dietary ingredients as potential metabolism increasing supplements. Together the results imply that through dietary supplements such as caffeine and C. annuum, mechanisms for increasing metabolism can be potentially targeted to improve metabolic homeostasis in people.
Collapse
Affiliation(s)
- Lachlan Van Schaik
- Department of Rural Clinical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia,*Correspondence: Lachlan Van Schaik,
| | - Christine Kettle
- Department of Rural Clinical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Rod Green
- Department of Rural Clinical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Daniel Wundersitz
- Department of Rural Allied Health, Holsworth Research Initiative, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
| | - Brett Gordon
- Department of Rural Allied Health, Holsworth Research Initiative, La Trobe Rural Health School, La Trobe University, Bendigo, VIC, Australia
| | - Helen R. Irving
- Department of Rural Clinical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Joseph A. Rathner
- Department of Rural Clinical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia,Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Osuna-Prieto FJ, Acosta FM, Perez de Arrilucea Le Floc’h UA, Riquelme-Gallego B, Merchan-Ramirez E, Xu H, De La Cruz-Márquez JC, Amaro-Gahete FJ, Llamas-Elvira JA, Triviño-Ibáñez EM, Segura-Carretero A, Ruiz JR. Dihydrocapsiate does not increase energy expenditure nor fat oxidation during aerobic exercise in men with overweight/obesity: a randomized, triple-blinded, placebo-controlled, crossover trial. J Int Soc Sports Nutr 2022; 19:417-436. [PMID: 35875695 PMCID: PMC9302013 DOI: 10.1080/15502783.2022.2099757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/22/2022] [Accepted: 07/02/2022] [Indexed: 11/06/2022] Open
Abstract
Background Prior evidence suggests that capsinoids ingestion may increase resting energy expenditure (EE) and fat oxidation (FATox), yet whether they can modulate those parameters during exercise conditions remains poorly understood. We hypothesized that dihydrocapsiate (DHC) ingestion would increase EE and specifically FATox during an acute bout of aerobic exercise at FATmax intensity (the intensity that elicits maximal fat oxidation during exercise [MFO]) in men with overweight/obesity. Since FATmax and MFO during aerobic exercise appear to be indicators of metabolic flexibility, whether DHC has an impact on FATox in this type of population is of clinical interest. Methods A total of 24 sedentary men (age = 40.2 ± 9.2 years-old; body mass index = 31.6 ± 4.5 kg/m2 [n = 11 overweight, n = 13 obese]) participated in this randomized, triple-blinded, placebo-controlled, crossover trial (registered under ClinicalTrials.gov Identifier no. NCT05156697). On the first day, participants underwent a submaximal exercise test on a cycle ergometer to determine their MFO and FATmax intensity during exercise. After 72 hours had elapsed, the participants returned on 2 further days (≥ 72 hours apart) and performed a 60 min steady-state exercise bout (i.e. cycling at their FATmax, constant intensity) after ingesting either 12 mg of DHC or placebo; these conditions were randomized. Respiratory gas exchange was monitored by indirect calorimetry. Serum marker concentrations (i.e. glucose, triglycerides, non-esterified fatty acids (NEFAs), skin temperature, thermal perception, heart rate, and perceived fatigue) were assessed. Results There were no significant differences (P > 0.05) between DHC and placebo conditions in the EE and FATox during exercise. Similarly, no significant changes were observed in glucose, triglycerides, or NEFAs serum levels, neither in the skin temperature nor thermal perception across conditions. Heart rate and perceived fatigue did not differ between conditions. Conclusions DHC supplementation does not affect energy metabolism during exercise in men with overweight/obesity.
Collapse
Affiliation(s)
- Francisco J. Osuna-Prieto
- Department of Physical and Sports Education, Faculty of Sports Science, PROFITH “PRO-moting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Department of Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Center (CIDAF), Granada, Spain
| | - Francisco M. Acosta
- Department of Physical and Sports Education, Faculty of Sports Science, PROFITH “PRO-moting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Unai A. Perez de Arrilucea Le Floc’h
- Department of Physical and Sports Education, Faculty of Sports Science, PROFITH “PRO-moting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Blanca Riquelme-Gallego
- Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| | - Elisa Merchan-Ramirez
- Department of Physical and Sports Education, Faculty of Sports Science, PROFITH “PRO-moting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Huiwen Xu
- Department of Physical and Sports Education, Faculty of Sports Science, PROFITH “PRO-moting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Juan Carlos De La Cruz-Márquez
- Department of Physical and Sports Education, Faculty of Sports Science, PROFITH “PRO-moting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Francisco J. Amaro-Gahete
- Department of Physical and Sports Education, Faculty of Sports Science, PROFITH “PRO-moting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Department of Physiology, Faculty of Medicine, EFFECTS-262 Research group, University of Granada, Granada, Spain
| | - Jose A. Llamas-Elvira
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Nuclear Medicine. Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Eva M. Triviño-Ibáñez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- Department of Nuclear Medicine. Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Granada, Spain
- Research and Development of Functional Food Center (CIDAF), Granada, Spain
| | - Jonatan R Ruiz
- Department of Physical and Sports Education, Faculty of Sports Science, PROFITH “PRO-moting FITness and Health Through Physical Activity” Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| |
Collapse
|
31
|
Capsaicin for Weight Control: “Exercise in a Pill” (or Just Another Fad)? Pharmaceuticals (Basel) 2022; 15:ph15070851. [PMID: 35890150 PMCID: PMC9316879 DOI: 10.3390/ph15070851] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
Medical management of obesity represents a large unmet clinical need. Animal experiments suggest a therapeutic potential for dietary capsaicin, the pungent ingredient in hot chili peppers, to lose weight. This is an attractive theory since capsaicin has been a culinary staple for thousands of years and is generally deemed safe when consumed in hedonically acceptable, restaurant-like doses. This review critically evaluates the available experimental and clinical evidence for and against capsaicin as a weight control agent and comes to the conclusion that capsaicin is not a magic “exercise in a pill”, although there is emerging evidence that it may help restore a healthy gut microbiota.
Collapse
|
32
|
Dos Santos Nunes DE Moura HP, Cholewa JM, Jäger R, Campos EZ, Rosa BV, DE Sousa Nunes FA, DE Araújo Barros CA, Rossi PAQ, Gerosa-Neto J, Zanchi NE, Rossi FE. Acute Low-Dose Capsiate Supplementation Improves Upper Body Resistance Exercise Performance in Trained Men: A Randomized, Crossover and Double-Blind Study. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2022; 15:1007-1018. [PMID: 36159159 PMCID: PMC9458288 DOI: 10.70252/ynem9216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Objectives The purpose of this study was to compare the effects of two acute doses of Capsiate (CAP; 6 vs. 12 mg) on upper body resistance exercise performance in trained men. Methods Using a randomized, crossover and double-blind design, 20 resistance-trained males were supplemented with low-dose CAP (6 mg), high-dose CAP (12 mg) or placebo 45 minutes before exercise. Subjects performed 4 sets of bench press with repetitions to failure at 70% 1 repetition maximum (1RM) and 2 minutes of rest between each set. The ratings of perceived exertion (RPE) and blood lactate were analyzed at baseline and after exercise. Results Total weight lifted was greater in the low CAP (2,454.6 ± 448.6 kg) compared to placebo (2,354.7 ± 458.6 kg, p = 0.039) and high CAP (2,309.3 ± 428.1 kg, p = 0.001). There was no significant difference between conditions for RPE (p = 0.155) and blood lactate (p = 0.434). Conclusion In summary, 6 mg CAP increased total weight lifted and repetitions to failure on bench press exercise in trained men, while 12 mg did not present any effect.
Collapse
Affiliation(s)
- Helton Pereira Dos Santos Nunes DE Moura
- Science and Health, Federal University of Piauí (UFPI), Teresina-PI, BRAZIL
- Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, Federal University of Piauí (UFPI), Teresina-PI, BRAZIL
| | - Jason Michael Cholewa
- Department of Exercise Physiology, University of Lynchburg, Lynchburg, VA, UNITED STATES
| | - Ralf Jäger
- Increnovo LLC, 2138 E Lafayette Pl, Milwaukee, WI 53202, USA
| | - Eduardo Zapaterra Campos
- Graduate Program in Physical Education, Sports Performance Research Nucleus (NIDE), Federal University of Pernambuco, Recife, BRAZIL
| | - Bruno Viana Rosa
- Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, Federal University of Piauí (UFPI), Teresina-PI, BRAZIL
- Nucleus of Study in Physiology Applied to Performance and Health (NEFADS), Department of Biophysics and Physiology, Federal University of Piaui (UFPI), Teresina-PI, BRAZIL
| | - Flávio Antônio DE Sousa Nunes
- Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, Federal University of Piauí (UFPI), Teresina-PI, BRAZIL
| | - Clara Andressa DE Araújo Barros
- Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, Federal University of Piauí (UFPI), Teresina-PI, BRAZIL
| | - Priscila Almeida Queiroz Rossi
- Science and Health, Federal University of Piauí (UFPI), Teresina-PI, BRAZIL
- Nucleus of Study in Physiology Applied to Performance and Health (NEFADS), Department of Biophysics and Physiology, Federal University of Piaui (UFPI), Teresina-PI, BRAZIL
| | - Jose Gerosa-Neto
- Department of Physical Education of the University Center of Maringá (UniCesumar), Maringa-PR, BRAZIL
| | - Nelo Eidy Zanchi
- Laboratory of Skeletal Muscle Biology and Human Strength Performance (LABFORCEH), Federal University of Maranhão (UFMA), São Luís-MA, BRAZIL
| | - Fabrício Eduardo Rossi
- Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, Federal University of Piauí (UFPI), Teresina-PI, BRAZIL
- Graduate Program in Science and Health, Federal University of Piauí (UFPI), Teresina-PI, BRAZIL
| |
Collapse
|
33
|
Xie D, Yang Z, Hu X, Wen Y. Synthesis, Antibacterial and Insecticidal Activities of Novel Capsaicin Derivatives Containing a Sulfonic Acid Esters Moiety. Front Chem 2022; 10:929050. [PMID: 35774861 PMCID: PMC9237473 DOI: 10.3389/fchem.2022.929050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
In order to develop an efficient and broad-spectrum bactericide, a series of novel capsaicin derivatives containing a sulfonic acid esters moiety was synthesized. The structure of these compounds were confirmed by nuclear magnetic resonance spectroscopy (NMR) and high-resolution mass spectrum (HRMS). The results of the bioactivities revealed that some target compounds exhibited remarkable antibacterial activity. Compound 3b exhibited the highest activities against Pseudomonas syringae pv. actinidiae (Psa), Xanthomonas oryzae pv. oryzae (Xoo), and Xanthomonas axonopodis pv. citri (Xac), and the values were 86, 54, and 92% at 50 μg/ml, respectively, which were higher than were for thiodiazole copper (87, 34, and 77%) and bismerthiazol (87, 37 and 75%). Although some compounds also showed certain activity against Spodoptera frugiperda, it was weaker than the positive controls monosultap and mulfoxaflor. Thus, the bioassay results recommend that these newly designed and synthesized scaffolds should be used as a bactericide lead compound rather than an insecticide lead compound.
Collapse
Affiliation(s)
- Dandan Xie
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- *Correspondence: Dandan Xie,
| | - Zaiping Yang
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Xin Hu
- School of Biological Sciences, Guizhou Education University, Guiyang, China
| | - Yin Wen
- School of Biological Sciences, Guizhou Education University, Guiyang, China
| |
Collapse
|
34
|
Scheel AK, Espelage L, Chadt A. Many Ways to Rome: Exercise, Cold Exposure and Diet-Do They All Affect BAT Activation and WAT Browning in the Same Manner? Int J Mol Sci 2022; 23:ijms23094759. [PMID: 35563150 PMCID: PMC9103087 DOI: 10.3390/ijms23094759] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 02/08/2023] Open
Abstract
The discovery of functional brown adipose tissue (BAT) in adult humans and the possibility to recruit beige cells with high thermogenic potential within white adipose tissue (WAT) depots opened the field for new strategies to combat obesity and its associated comorbidities. Exercise training as well as cold exposure and dietary components are associated with the enhanced accumulation of metabolically-active beige adipocytes and BAT activation. Both activated beige and brown adipocytes increase their metabolic rate by utilizing lipids to generate heat via non-shivering thermogenesis, which is dependent on uncoupling protein 1 (UCP1) in the inner mitochondrial membrane. Non-shivering thermogenesis elevates energy expenditure and promotes a negative energy balance, which may ameliorate metabolic complications of obesity and Type 2 Diabetes Mellitus (T2DM) such as insulin resistance (IR) in skeletal muscle and adipose tissue. Despite the recent advances in pharmacological approaches to reduce obesity and IR by inducing non-shivering thermogenesis in BAT and WAT, the administered pharmacological compounds are often associated with unwanted side effects. Therefore, lifestyle interventions such as exercise, cold exposure, and/or specified dietary regimens present promising anchor points for future disease prevention and treatment of obesity and T2DM. The exact mechanisms where exercise, cold exposure, dietary interventions, and pharmacological treatments converge or rather diverge in their specific impact on BAT activation or WAT browning are difficult to determine. In the past, many reviews have demonstrated the mechanistic principles of exercise- and/or cold-induced BAT activation and WAT browning. In this review, we aim to summarize not only the current state of knowledge on the various mechanistic principles of diverse external stimuli on BAT activation and WAT browning, but also present their translational potential in future clinical applications.
Collapse
Affiliation(s)
- Anna K. Scheel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Medical Faculty, Düsseldorf, Auf’m Hennekamp 65, 40225 Duesseldorf, Germany; (A.K.S.); (L.E.)
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, 85764 München, Germany
| | - Lena Espelage
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Medical Faculty, Düsseldorf, Auf’m Hennekamp 65, 40225 Duesseldorf, Germany; (A.K.S.); (L.E.)
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, 85764 München, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz-Center for Diabetes Research at the Heinrich Heine University, Medical Faculty, Düsseldorf, Auf’m Hennekamp 65, 40225 Duesseldorf, Germany; (A.K.S.); (L.E.)
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, 85764 München, Germany
- Correspondence: ; Tel./Fax: +49-211-3382-577/430
| |
Collapse
|
35
|
Takeda Y, Dai P. Capsaicin directly promotes adipocyte browning in the chemical compound-induced brown adipocytes converted from human dermal fibroblasts. Sci Rep 2022; 12:6612. [PMID: 35459786 PMCID: PMC9033854 DOI: 10.1038/s41598-022-10644-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/12/2022] [Indexed: 01/01/2023] Open
Abstract
Human brown fat is a potential therapeutic target for preventing obesity and related metabolic diseases by dissipating energy as heat through uncoupling protein 1 (UCP1). We have previously reported a method to obtain chemical compound-induced brown adipocytes (ciBAs) converted from human dermal fibroblasts under serum-free conditions. However, pharmacological responses to bioactive molecules have been poorly characterised in ciBAs. This study showed that the treatment with Capsaicin, an agonist of transient receptor potential vanilloid 1, directly activated adipocyte browning such as UCP1 expression, mitochondrial biogenesis, energy consumption rates, and glycerol recycling in ciBAs. Furthermore, genome-wide transcriptome analysis indicated that Capsaicin activated a broad range of metabolic genes including glycerol kinase and glycerol 3-phosphate dehydrogenase 1, which could be associated with the activation of glycerol recycling and triglyceride synthesis. Capsaicin also activated UCP1 expression in immortalised human brown adipocytes but inhibited its expression in mesenchymal stem cell-derived adipocytes. Altogether, ciBAs successfully reflected the direct effects of Capsaicin on adipocyte browning. These findings suggested that ciBAs could serve as a promising cell model for screening of small molecules and dietary bioactive compounds targeting human brown adipocytes.
Collapse
Affiliation(s)
- Yukimasa Takeda
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Ping Dai
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
36
|
Araújo MC, Soczek SHS, Pontes JP, Marques LAC, Santos GS, Simão G, Bueno LR, Maria-Ferreira D, Muscará MN, Fernandes ES. An Overview of the TRP-Oxidative Stress Axis in Metabolic Syndrome: Insights for Novel Therapeutic Approaches. Cells 2022; 11:cells11081292. [PMID: 35455971 PMCID: PMC9030853 DOI: 10.3390/cells11081292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/19/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome (MS) is a complex pathology characterized by visceral adiposity, insulin resistance, arterial hypertension, and dyslipidaemia. It has become a global epidemic associated with increased consumption of high-calorie, low-fibre food and sedentary habits. Some of its underlying mechanisms have been identified, with hypoadiponectinemia, inflammation and oxidative stress as important factors for MS establishment and progression. Alterations in adipokine levels may favour glucotoxicity and lipotoxicity which, in turn, contribute to inflammation and cellular stress responses within the adipose, pancreatic and liver tissues, in addition to hepatic steatosis. The multiple mechanisms of MS make its clinical management difficult, involving both non-pharmacological and pharmacological interventions. Transient receptor potential (TRP) channels are non-selective calcium channels involved in a plethora of physiological events, including energy balance, inflammation and oxidative stress. Evidence from animal models of disease has contributed to identify their specific contributions to MS and may help to tailor clinical trials for the disease. In this context, the oxidative stress sensors TRPV1, TRPA1 and TRPC5, play major roles in regulating inflammatory responses, thermogenesis and energy expenditure. Here, the interplay between these TRP channels and oxidative stress in MS is discussed in the light of novel therapies to treat this syndrome.
Collapse
Affiliation(s)
- Mizael C. Araújo
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (M.C.A.); (G.S.S.)
| | - Suzany H. S. Soczek
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Jaqueline P. Pontes
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 565085-080, MA, Brazil;
| | - Leonardo A. C. Marques
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (L.A.C.M.); (M.N.M.)
| | - Gabriela S. Santos
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (M.C.A.); (G.S.S.)
| | - Gisele Simão
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Laryssa R. Bueno
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Daniele Maria-Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Marcelo N. Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (L.A.C.M.); (M.N.M.)
| | - Elizabeth S. Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
- Correspondence:
| |
Collapse
|
37
|
Biogenic Phytochemicals Modulating Obesity: From Molecular Mechanism to Preventive and Therapeutic Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6852276. [PMID: 35388304 PMCID: PMC8977300 DOI: 10.1155/2022/6852276] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/05/2022] [Indexed: 02/06/2023]
Abstract
The incidence of obesity and over bodyweight is emerging as a major health concern. Obesity is a complex metabolic disease with multiple pathophysiological clinical conditions as comorbidities are associated with obesity such as diabetes, hypertension, cardiovascular disorders, sleep apnea, osteoarthritis, some cancers, and inflammation-based clinical conditions. In obese individuals, adipocyte cells increased the expression of leptin, angiotensin, adipocytokines, plasminogen activators, and C-reactive protein. Currently, options for treatment and lifestyle behaviors interventions are limited, and keeping a healthy lifestyle is challenging. Various types of phytochemicals have been investigated for antiobesity potential. Here, we discuss pathophysiology and signaling pathways in obesity, epigenetic regulations, regulatory mechanism, functional ingredients in natural antiobesity products, and therapeutic application of phytochemicals in obesity.
Collapse
|
38
|
Kaur M, Verma BR, Zhou L, Lak HM, Kaur S, Sammour YM, Kapadia SR, Grimm RA, Griffin BP, Xu B. Association of pepper intake with all-cause and specific cause mortality - A systematic review and meta-analysis. Am J Prev Cardiol 2022; 9:100301. [PMID: 34977833 PMCID: PMC8688560 DOI: 10.1016/j.ajpc.2021.100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE To conduct a comprehensive systematic review and meta-analysis to compare mortality and other clinical outcomes associated with chili pepper (CP) consumption versus no/rare consumption of CP. METHODS A comprehensive search was performed using Ovid, Cochrane, Medline, EMBASE, and Scopus from inception till January 16, 2020. Observational studies and randomized controlled trials were included, while pediatric/animal studies, letters/case reports, reviews, abstracts, and book chapters were excluded. All-cause mortality was studied as the primary outcome. Cardiovascular mortality, cancer-related deaths and cerebrovascular accidents were studied as secondary outcomes. RESULTS From 4729 studies, four studies met the inclusion criteria. Random effects pooled analysis showed that all-cause mortality among CP consumers was lower, compared to rare/non-consumers, with a hazard ratio (HR) of 0.87 [95% CI: 0.85-0.90; p<0.0001; I 2=1%]. HR for cardiovascular mortality was 0.83 [95% CI: 0.74-0.95; p = 0.005, I 2=66%] and for cancer-related mortality as 0.92 [95% CI: 0.87-0.97; p = 0.001; I 2=0%]. However, the HR for CVA was 0.78 [95% CI: 0.56-1.09; p = 0.26; I2 =60%]. The mode and amount of CP consumption varied across the studies, and data were insufficient to design an optimal strategy guiding its intake. CONCLUSION Regular CP consumption was associated with significantly lower all-cause, cardiovascular, and cancer-related mortalities. However, based on current literature, it is difficult to derive a standardized approach to guide the optimal mode and amount of CP consumption. This warrants well-designed prospective studies to further investigate the potential health benefits of CP consumption.
Collapse
Affiliation(s)
- Manpreet Kaur
- Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, 44195
| | - Beni R Verma
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH, 44195
| | - Leon Zhou
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH, 44195
| | | | - Simrat Kaur
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH, 44195
| | - Yasser M Sammour
- Department of Internal Medicine, University of Missouri-Kansas City, MO, 64110
| | - Samir R Kapadia
- Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, 44195
| | - Richard A Grimm
- Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, 44195
- Section of Cardiovascular Imaging, Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, 44195
| | - Brian P Griffin
- Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, 44195
- Section of Cardiovascular Imaging, Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, 44195
| | - Bo Xu
- Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, 44195
- Section of Cardiovascular Imaging, Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, 44195
| |
Collapse
|
39
|
Tsujino S, Nosaka N, Sadamitsu S, Kato K. Effect of Continuous Ingestion of 2 g of Medium-Chain Triglycerides on Substrate Metabolism during Low-Intensity Physical Activity. Nutrients 2022; 14:nu14030536. [PMID: 35276897 PMCID: PMC8839453 DOI: 10.3390/nu14030536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing fat burning during physical activity is thought to be an effective strategy for maintaining health and preventing lifestyle-related diseases, such as obesity and diabetes. In recent years, medium-chain triglycerides (MCTs) have gained attention as a dietary component for increasing fat-burning. However, this fat-burning effect has been unclear in people with high body mass index (BMI). Therefore, we aimed to clarify the effects of 2 g of daily ingestion of MCTs over 2 weeks on substrate oxidation during low-intensity physical activity in sedentary (i.e., with no exercise habit) subjects with a BMI from 25 (kg/m2) to less than 30, which is classified as obese in Japan. A placebo-controlled, randomized, double-blind, crossover study with a 2-week washout period was conducted. The rate of fat oxidation as well as the respiratory exchange ratio (RER) during exercise (with a cycle ergometer at a 20-watt load) were measured with a human calorimeter. MCTs ingestion significantly increased fat oxidation during physical activity and decreased RER compared to long-chain triglycerides ingestion. In conclusion, we suggest that daily ingestion of 2 g of MCTs for 2 weeks increases fat burning during daily physical activities in sedentary persons with a BMI ranging from 25 to less than 30.
Collapse
Affiliation(s)
- Shougo Tsujino
- Central Research Laboratory, The Nisshin OilliO Group, Ltd., Kanagawa 235-8558, Japan; (N.N.); (S.S.)
- Correspondence: ; Tel.: +81-45-757-5461
| | - Naohisa Nosaka
- Central Research Laboratory, The Nisshin OilliO Group, Ltd., Kanagawa 235-8558, Japan; (N.N.); (S.S.)
| | - Shohei Sadamitsu
- Central Research Laboratory, The Nisshin OilliO Group, Ltd., Kanagawa 235-8558, Japan; (N.N.); (S.S.)
| | - Kazuhiko Kato
- Kato Clinic, 1-1-1 Nakaizumi, Komae, Tokyo 201-0012, Japan;
| |
Collapse
|
40
|
Atas U, Erin N, Tazegul G, Elpek GO, Yıldırım B. Distribution of transient receptor potential vanilloid-1 channels in gastrointestinal tract of patients with morbid obesity. World J Clin Cases 2022; 10:79-90. [PMID: 35071508 PMCID: PMC8727248 DOI: 10.12998/wjcc.v10.i1.79] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/25/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Transient receptor potential vanilloid-1 (TRPV1), a nonselective cation channel, is activated by capsaicin, a pungent ingredient of hot pepper. Previous studies have suggested a link between obesity and capsaicin-associated pathways, and activation of TRPV1 may provide an alternative approach for obesity treatment. However, data on the TRPV1 distribution in human gastric mucosa are limited, and the degree of TRPV1 distribution in the gastric and duodenal mucosal cells of obese people in comparison with normal-weight individuals is unknown.
AIM To clarify gastric and duodenal mucosal expression of TRPV1 in humans and compare TRPV1 expression in obese and healthy individuals.
METHODS Forty-six patients with a body mass index (BMI) of > 40 kg/m2 and 20 patients with a BMI between 18-25 kg/m2 were included. Simultaneous biopsies from the fundus, antrum, and duodenum tissues were obtained from subjects between the ages of 18 and 65 who underwent esophagogastroduodenoscopy. Age, sex, history of alcohol and cigarette consumption, and past medical history regarding chronic diseases and medications were accessed from patient charts and were analyzed accordingly. Evaluation with anti-TRPV1 antibody was performed separately according to cell types in the fundus, antrum, and duodenum tissues using an immunoreactivity score. Data were analyzed using SPSS 17.0.
RESULTS TRPV1 expression was higher in the stomach than in the duodenum and was predominantly found in parietal and chief cells of the fundus and mucous and foveolar cells of the antrum. Unlike foveolar cells in the antrum, TRPV1 was relatively low in foveolar cells in the fundus (4.92 ± 0.49 vs 0.48 ± 0.16, P < 0.01, Mann-Whitney U test). Additionally, the mucous cells in the duodenum also had low levels of TRPV1 compared to mucous cells in the antrum (1.33 ± 0.31 vs 2.95 ± 0.46, P < 0.01, Mann-Whitney U test). TRPV1 expression levels of different cell types in the fundus, antrum, and duodenum tissues of the morbidly obese group were similar to those of the control group. Staining with TRPV1 in fundus chief cells and antrum and duodenum mucous cells was higher in patients aged ≥ 45 years than in patients < 45 years (3.03 ± 0.42, 4.37 ± 0.76, 2.28 ± 0.55 vs 1.9 ± 0.46, 1.58 ± 0.44, 0.37 ± 0.18, P = 0.03, P < 0.01, P < 0.01, respectively, Mann-Whitney U test). The mean staining levels of TRPV1 in duodenal mucous cells in patients with diabetes and hypertension were higher than those in patients without diabetes and hypertension (diabetes: 2.11 ± 0.67 vs 1.02 ± 0.34, P = 0.04; hypertension: 2.42 ± 0.75 vs 1.02 ± 0.33, P < 0.01 Mann-Whitney U test).
CONCLUSION The expression of TRPV1 is unchanged in the gastroduodenal mucosa of morbidly obese patients demonstrating that drugs targeting TRPV1 may be effective in these patients.
Collapse
Affiliation(s)
- Unal Atas
- Department of Internal Medicine, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Nuray Erin
- Department of Pharmacology, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Gokhan Tazegul
- Department of Internal Medicine, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Gulsum Ozlem Elpek
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Bülent Yıldırım
- Department of Gastroenterology, Akdeniz University Medical School, Antalya 07070, Turkey
| |
Collapse
|
41
|
Perez LC, Perez LT, Nene Y, Umpierrez GE, Davis GM, Pasquel FJ. Interventions associated with brown adipose tissue activation and the impact on energy expenditure and weight loss: A systematic review. Front Endocrinol (Lausanne) 2022; 13:1037458. [PMID: 36568070 PMCID: PMC9780295 DOI: 10.3389/fendo.2022.1037458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Brown adipose tissue (BAT) plays a role in modulating energy expenditure. People with obesity have been shown to have reduced activation of BAT. Agents such as β-agonists, capsinoids, thyroid hormone, sildenafil, caffeine, or cold exposure may lead to activation of BAT in humans, potentially modulating metabolism to promote weight loss. METHODS We systematically searched electronic databases for clinical trials testing the effect of these agents and cold exposure on energy expenditure/thermogenesis and the extent to which they may impact weight loss in adults. RESULTS A total of 695 studies from PubMed, Web of Science, and Medline electronic databases were identified. After the removal of duplicates and further evaluation, 47 clinical trials were analyzed. We observed significant heterogeneity in the duration of interventions and the metrics utilized to estimate thermogenesis/energy expenditure. Changes observed in energy expenditure do not correlate with major weight changes with different interventions commonly known to stimulate thermogenesis. Even though cold exposure appears to consistently activate BAT and induce thermogenesis, studies are small, and it appears to be an unlikely sustainable therapy to combat obesity. Most studies were small and potential risks associated with known side effects of some agents such as β-agonists (tachycardia), sibutramine (hypertension, tachycardia), thyroid hormone (arrhythmias) cannot be fully evaluated from these small trials. CONCLUSION Though the impact of BAT activation and associated increases in energy expenditure on clinically meaningful weight loss is a topic of great interest, further data is needed to determine long-term feasibility and efficacy.
Collapse
Affiliation(s)
- Luis C. Perez
- Ponce Health Sciences University School of Medicine, Ponce, PR, United States
| | - Laura T. Perez
- Ponce Health Sciences University School of Medicine, Ponce, PR, United States
| | - Yash Nene
- Neurology Residency Program, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Guillermo E. Umpierrez
- Department of Endocrinology, Emory University School of Medicine, Atlanta, GA, United States
| | - Georgia M. Davis
- Department of Endocrinology, Emory University School of Medicine, Atlanta, GA, United States
| | - Francisco J. Pasquel
- Department of Endocrinology, Emory University School of Medicine, Atlanta, GA, United States
- *Correspondence: Francisco J. Pasquel,
| |
Collapse
|
42
|
Shamsi F, Wang CH, Tseng YH. The evolving view of thermogenic adipocytes - ontogeny, niche and function. Nat Rev Endocrinol 2021; 17:726-744. [PMID: 34625737 PMCID: PMC8814904 DOI: 10.1038/s41574-021-00562-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 12/12/2022]
Abstract
The worldwide incidence of obesity and its sequelae, such as type 2 diabetes mellitus, have reached pandemic levels. Central to the development of these metabolic disorders is adipose tissue. White adipose tissue stores excess energy, whereas brown adipose tissue (BAT) and beige (also known as brite) adipose tissue dissipate energy to generate heat in a process known as thermogenesis. Strategies that activate and expand BAT and beige adipose tissue increase energy expenditure in animal models and offer therapeutic promise to treat obesity. A better understanding of the molecular mechanisms underlying the development of BAT and beige adipose tissue and the activation of thermogenic function is the key to creating practical therapeutic interventions for obesity and metabolic disorders. In this Review, we discuss the regulation of the tissue microenvironment (the adipose niche) and inter-organ communication between BAT and other tissues. We also cover the activation of BAT and beige adipose tissue in response to physiological cues (such as cold exposure, exercise and diet). We highlight advances in harnessing the therapeutic potential of BAT and beige adipose tissue by genetic, pharmacological and cell-based approaches in obesity and metabolic disorders.
Collapse
Affiliation(s)
- Farnaz Shamsi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| | - Chih-Hao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
43
|
Zhang S, Tang L, Xu F, Hui Y, Lu H, Liu X. TRPV1 Receptor-Mediated Hypoglycemic Mechanism of Capsaicin in Streptozotocin-Induced Diabetic Rats. Front Nutr 2021; 8:750355. [PMID: 34692753 PMCID: PMC8526734 DOI: 10.3389/fnut.2021.750355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Our previous research showed that capsaicin exhibits hypoglycemic effects by activating the transient receptor potential vanilloid 1 (TRPV1) channel in diabetic rats. Interestingly, capsiate was also able to activate the TRPV1 channel, but with a non-significant hypoglycemic effect. This study aimed to investigate the effect of capsaicin on the glycometabolism of streptozotocin (STZ)-induced diabetic rats by blocking the TRPV1 channel. After a 4-week capsaicin treatment (6 mg/kg·bw), the serum insulin level of STZ-induced diabetic rats increased from 15.2 to 22.1 mIU/L, the content of hepatic glycogen and muscle glycogen increased by 81.2 and 20.2%, respectively, and the blood glucose level decreased significantly from 19.3 to 14.7 mmol/L. When the TRPV1 channel was blocked, capsaicin lost the above-mentioned effects, and the hypoglycemic effect was no longer significant. It was concluded that a combined up-regulation of both TRPV1 receptors and pancreatic duodenal homeobox-1 (PDX-1) led to the hypoglycemic effect of capsaicin, which partially explains our previous observation: capsiate activating TRPV1 without showing a significant hypoglycemic effect was due to the lack of a significant up-regulation of PDX-1. Based on the experimental results, we speculated that two signaling pathways [TRPV1-(PDX1)-(GLUT2/GK) and TRPV1-(PDX-1)-(IRS1/2)] exist in the pancreas of STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Shiqi Zhang
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, China
| | - Lanlan Tang
- College of Food Science, Southwest University, Chongqing, China
| | - Fanshu Xu
- Department of Cell and System Biology, Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Yonghai Hui
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, China
| | - Hongjia Lu
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Science, Chongqing, China
| | - Xiong Liu
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
44
|
Dos Santos Gomes W, de Freitas MC, Dutra YM, Rossi F, Estanislau TB, Gonçalves DC, Campos EZ. Effects of Capsiate Supplementation on Maximal Voluntary Contraction in Healthy Men. Int J Sports Med 2021; 43:466-472. [PMID: 34666412 DOI: 10.1055/a-1502-6563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study aimed to investigate the effects of acute capsaicin analog (Capsiate - CAP) supplementation on maximal voluntary isometric contraction (MVIC) performance in healthy young men. Thirteen subjects (25.2±3.2 yrs) participated in the present study. In two different days separated by one week, the subjects ingested capsiate (12 mg) or placebo (starch: 12 mg) 45 minutes before a MVIC test. The MVIC test consisted of five 10-second knee extension maximal isometric contractions with 45 seconds of recovery between efforts. The peak force, mean force, minimum force, fatigue index, and area under the curve of each contraction were calculated. Main condition effect was found, with higher values of peak force (+4.83%, F=6.867, p=0.02), fatigue index (+8.96%, F=5.228, p=0.041), and area under the curve (+4.19%, F=4.774, p=0.04) for CAP compared to placebo, however, no interaction effect was found for any variable (F=0.090 to 1.356, p≥0.276). In summary, healthy young men produced higher maximal isometric force and delayed fatigue in the CAP condition compared to placebo condition (condition effect) but without significant difference between each effort.
Collapse
Affiliation(s)
| | - Marcelo Conrado de Freitas
- Department of Physical Education, Universidade Estadual Paulista Julio de Mesquita Filho - Campus de Presidente Prudente, Presidente Prudente, Brazil
| | | | - Fabrício Rossi
- Department of Physical Education, Universidade Federal do Piaui, Teresina, Brazil
| | | | | | | |
Collapse
|
45
|
Elmas C, Gezer C. Capsaicin and Its Effects on Body Weight. J Am Coll Nutr 2021; 41:831-839. [PMID: 34383610 DOI: 10.1080/07315724.2021.1962771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Capsaicin is a bioactive compound found in the fruits (i.e., peppers) of the plant genus Capsicum, which is widely used in many cultures. Besides many health effects of this compound, it can also be effective in body weight control through various mechanisms such as regulating lipolysis in adipocytes, increasing the feeling of satiety, stimulating energy expenditure, and reducing energy intake. This study investigated capsaicin and its effects on body weight control. In clinical studies, the amount of capsaicin affecting body weight loss differ. Longitudinal and randomized controlled studies are needed to explain the effects of capsaicin on body weight control.Key teaching points• Capsaicin can decrease hunger through hormones in the gastrointestinal tract.• Capsaicin can increase energy expenditure through brown adipose tissue.• Capsaicin can increase lipolysis in white adipose tissue.• More comprehensive studies are needed to clarify this issue.
Collapse
Affiliation(s)
- Cemre Elmas
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Eastern Mediterranean University, Famagusta, Turkey
| | - Ceren Gezer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Eastern Mediterranean University, Famagusta, Turkey
| |
Collapse
|
46
|
Bessell E, Maunder A, Lauche R, Adams J, Sainsbury A, Fuller NR. Efficacy of dietary supplements containing isolated organic compounds for weight loss: a systematic review and meta-analysis of randomised placebo-controlled trials. Int J Obes (Lond) 2021; 45:1631-1643. [PMID: 33976376 DOI: 10.1038/s41366-021-00839-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND/OBJECTIVES A systematic review with meta-analysis was conducted to synthesise evidence on the efficacy of dietary supplements containing isolated organic compounds for weight loss. SUBJECTS/METHODS Four electronic databases (Medline, Embase, Web of Science, Cinahl) were searched until December 2019. Sixty-seven randomised placebo-controlled trials of dietary supplements containing isolated organic compounds for weight loss were included. Meta-analyses were conducted for chitosan, glucomannan, conjugated linoleic acid and fructans, comparing mean weight difference post-intervention between participants receiving the dietary supplement or placebo. RESULTS Statistically significant weight differences compared to placebo were observed for chitosan (-1.84 kg; 95% confidence interval [CI] -2.79, -0.88; p < 0.01), glucomannan (-1.27 kg; 95%CI -2.45, -0.09; p = 0.04), and conjugated linoleic acid (-1.08 kg; 95%CI -1.61, -0.55; p < 0.01). None met our threshold for clinical significance (≥2.5 kg). There was no statistically significant effect on weight for fructans compared to placebo (p = 0.24). For dietary supplements with an inadequate number of trials for meta-analysis, a statistically and borderline clinically significant weight difference compared to placebo was found for modified cellulose, manno-oligosaccharides (in males), blood orange juice extract, and three multiple-ingredient dietary supplements. These were only reported in one trial of each. Thus, more evidence is needed before recommending them for weight loss. CONCLUSIONS While some dietary supplements containing isolated organic compounds warrant further investigation to determine efficacy and safety, there is currently insufficient evidence to recommend any of these dietary supplements for weight loss.
Collapse
Affiliation(s)
- Erica Bessell
- The University of Sydney, The Boden Collaboration for Obesity, Nutrition, Exercise & Eating Disorders, Charles Perkins Centre, Faculty of Medicine and Health, Sydney, NSW, Australia.
| | - Alison Maunder
- The University of Sydney, The Boden Collaboration for Obesity, Nutrition, Exercise & Eating Disorders, Charles Perkins Centre, Faculty of Medicine and Health, Sydney, NSW, Australia.,Western Sydney University, NICM Health Research Institute, Penrith, NSW, Australia
| | - Romy Lauche
- Southern Cross University, National Centre for Naturopathic Medicine, Lismore, NSW, Australia.,University of Technology Sydney, Australian Research Centre in Complementary and Integrative Medicine (ARCCIM), School of Public Health, Faculty of Health, Sydney, NSW, Australia
| | - Jon Adams
- University of Technology Sydney, Australian Research Centre in Complementary and Integrative Medicine (ARCCIM), School of Public Health, Faculty of Health, Sydney, NSW, Australia
| | - Amanda Sainsbury
- The University of Western Australia, School of Human Sciences, Faculty of Science, Perth, WA, Australia
| | - Nicholas R Fuller
- The University of Sydney, The Boden Collaboration for Obesity, Nutrition, Exercise & Eating Disorders, Charles Perkins Centre, Faculty of Medicine and Health, Sydney, NSW, Australia
| |
Collapse
|
47
|
Drapkina OM, Kim OT. Is brown adipose tissue a new target for obesity therapy? КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2021. [DOI: 10.15829/1728-8800-2021-2860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The rapid increase in the prevalence of obesity and related diseases has prompted researchers to seek novel effective therapeutic targets. Recently, brown adipose tissue has been in the spotlight as a potential target for treatment of metabolic diseases due to its ability to increase energy expenditure and regulate glucose and lipid homeostasis. The review presents the latest data on approaches aimed at activating and expanding brown adipose tissue in order to combat obesity.
Collapse
Affiliation(s)
- O. M. Drapkina
- National Research Center for Therapy and Preventive Medicine
| | - O. T. Kim
- National Research Center for Therapy and Preventive Medicine
| |
Collapse
|
48
|
Therapeutic Perspectives of Thermogenic Adipocytes in Obesity and Related Complications. Int J Mol Sci 2021; 22:ijms22137177. [PMID: 34281227 PMCID: PMC8267903 DOI: 10.3390/ijms22137177] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
There is a rapidly increasing prevalence of obesity and related metabolic disorders such as type 2 diabetes worldwide. White adipose tissue (WAT) stores excess energy, whereas brown and beige adipose tissues consume energy to generate heat in the process of thermogenesis. Adaptive thermogenesis occurs in response to environmental cues as a means of generating heat by dissipating stored chemical energy. Due to its cumulative nature, very small differences in energy expenditure from adaptive thermogenesis can have a significant impact on systemic metabolism over time. Targeting brown adipose tissue (BAT) activation and converting WAT to beige fat as a method to increase energy expenditure is one of the promising strategies to combat obesity. In this review, we discuss the activation of the thermogenic process in response to physiological conditions. We highlight recent advances in harnessing the therapeutic potential of thermogenic adipocytes by genetic, pharmacological and cell-based approaches in the treatment of obesity and metabolic disorders in mice and the human.
Collapse
|
49
|
Sun W, Luo Y, Zhang F, Tang S, Zhu T. Involvement of TRP Channels in Adipocyte Thermogenesis: An Update. Front Cell Dev Biol 2021; 9:686173. [PMID: 34249940 PMCID: PMC8264417 DOI: 10.3389/fcell.2021.686173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/02/2021] [Indexed: 01/27/2023] Open
Abstract
Obesity prevalence became a severe global health problem and it is caused by an imbalance between energy intake and expenditure. Brown adipose tissue (BAT) is a major site of mammalian non-shivering thermogenesis or energy dissipation. Thus, modulation of BAT thermogenesis might be a promising application for body weight control and obesity prevention. TRP channels are non-selective calcium-permeable cation channels mainly located on the plasma membrane. As a research focus, TRP channels have been reported to be involved in the thermogenesis of adipose tissue, energy metabolism and body weight regulation. In this review, we will summarize and update the recent progress of the pathological/physiological involvement of TRP channels in adipocyte thermogenesis. Moreover, we will discuss the potential of TRP channels as future therapeutic targets for preventing and combating human obesity and related-metabolic disorders.
Collapse
Affiliation(s)
- Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yixuan Luo
- Department of Cardiovascular Surgery, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Fei Zhang
- Department of Cardiovascular Surgery, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Shuo Tang
- Department of Orthopaedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Tao Zhu
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
50
|
Gupta K, Testa H, Greenwood T, Kostek M, Haushalter K, Kris-Etherton PM, Petersen KS. The effect of herbs and spices on risk factors for cardiometabolic diseases: a review of human clinical trials. Nutr Rev 2021; 80:400-427. [PMID: 34080628 DOI: 10.1093/nutrit/nuab034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Herbs and spices are recommended to increase flavor and displace salt in the diet. Accumulating evidence suggests herbs and spices may improve risk factors for cardiometabolic diseases. In this narrative review, an overview of evidence from human clinical trials examining the effect of herbs and spices on risk factors for cardiometabolic diseases is provided. Human clinical trials examining supplemental doses of individual spices and herbs, or the active compounds, have yielded some evidence showing improvements to lipid and lipoprotein levels, glycemic control, blood pressure, adiposity, inflammation, and oxidative stress. However, cautious interpretation is warranted because of methodological limitations and substantial between-trial heterogeneity in the findings. Evidence from acute studies suggests intake of mixed herbs and spices as part of a high-saturated fat, high-carbohydrate meal reduces postprandial metabolic impairments, including lipemia, oxidative stress, and endothelial dysfunction. Limited studies have examined the postprandial metabolic effects of incorporating mixed herbs and spices into healthy meals, and, to our knowledge, no trials have assessed the effect of longer-term intake of mixed herbs and spices on risk factors for cardiometabolic diseases. To inform evidence-based guidelines for intake of herbs and spices for general health and cardiometabolic disease risk reduction, rigorously conducted randomized controlled trials are needed, particularly trials examining herb and spice doses that can be incorporated into healthy dietary patterns.
Collapse
Affiliation(s)
- Kunal Gupta
- K. Gupta is with the Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA. H. Testa, T. Greenwood, M. Kostek, K. Haushalter, P.M. Kris-Etherton, and K.S. Petersen are with the Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA. K.S. Petersen is with the Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Hannah Testa
- K. Gupta is with the Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA. H. Testa, T. Greenwood, M. Kostek, K. Haushalter, P.M. Kris-Etherton, and K.S. Petersen are with the Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA. K.S. Petersen is with the Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Tara Greenwood
- K. Gupta is with the Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA. H. Testa, T. Greenwood, M. Kostek, K. Haushalter, P.M. Kris-Etherton, and K.S. Petersen are with the Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA. K.S. Petersen is with the Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Megan Kostek
- K. Gupta is with the Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA. H. Testa, T. Greenwood, M. Kostek, K. Haushalter, P.M. Kris-Etherton, and K.S. Petersen are with the Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA. K.S. Petersen is with the Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Keally Haushalter
- K. Gupta is with the Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA. H. Testa, T. Greenwood, M. Kostek, K. Haushalter, P.M. Kris-Etherton, and K.S. Petersen are with the Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA. K.S. Petersen is with the Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Penny M Kris-Etherton
- K. Gupta is with the Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA. H. Testa, T. Greenwood, M. Kostek, K. Haushalter, P.M. Kris-Etherton, and K.S. Petersen are with the Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA. K.S. Petersen is with the Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Kristina S Petersen
- K. Gupta is with the Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA. H. Testa, T. Greenwood, M. Kostek, K. Haushalter, P.M. Kris-Etherton, and K.S. Petersen are with the Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA. K.S. Petersen is with the Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|