1
|
Tian H, Qiao W, Wen X. Comparison of the effectiveness of protein supplementation combined with resistance training on body composition and physical function in healthy elderly adults: A systematic review and network meta-analysis. J Nutr 2025:S0022-3166(25)00024-0. [PMID: 39889852 DOI: 10.1016/j.tjnut.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/08/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND The global population of individuals over 65 is expected to reach 426 million by 2050. Aging is associated with a progressive loss of muscle mass, strength, and function, leading to sarcopenia and adverse outcomes such as physical disability and increased mortality. Interventions such as resistance training and protein supplementation have shown promise in mitigating these effects. OBJECTIVE To determine the comparative effectiveness of protein supplementation, resistance training, and their combination on body composition and physical function in healthy older adults through a network meta-analysis. METHODS We conducted a systematic review and network meta-analysis following PRISMA guidelines and registered in PROSPERO (CRD42021226561). We included randomized controlled trials comparing protein supplementation, resistance training, and their combination in participants aged 50 years or older. Data were extracted from PubMed, Web of Science, Embase, and Cochrane Library. The risk of bias was assessed using the Cochrane Collaboration Risk of Bias Tool. RESULTS A total of 38 randomized controlled trials involving 2,610 participants were included. The combined intervention of protein supplementation and resistance training significantly improved lean body mass (SMD, 0.44; 95% CI, 0.05 to 0.95) compared to protein supplementation alone. The combined intervention also showed significant improvements in muscle mass (SMD, 1.49; 95% CI, 0.11 to 2.67). The combined intervention (SMD, 2.74, 95% CI 0.76 to 4.74) and resistance training alone (SMD, 2.53, 95% CI 0.29 to 4.84) significantly improved muscle strength compared to controls. The combined intervention (SMD, 4.98, 95% CI 2.72 to 7.17) and resistance training alone (SMD, 4.52, 95% CI 2.30 to 6.64) significantly improved physical function compared to protein supplementation alone. CONCLUSION Combining exercise and protein supplementation is the most effective for improving muscle mass, strength, and physical function in older adults. This approach should be considered for enhancing physical health in this population. Future large-scale trials are necessary to confirm these findings.
Collapse
Affiliation(s)
- Haiping Tian
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wanwan Qiao
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianxiu Wen
- Department of Nursing, Sichuan Provincial People's Hospital (School of Medicine University of Electronic Science and Technology of China), Chengdu, China.
| |
Collapse
|
2
|
Conforto R, Rizzo V, Russo R, Mazza E, Maurotti S, Pujia C, Succurro E, Arturi F, Ferro Y, Sciacqua A, Pujia A, Montalcini T. Advances in body composition and gender differences in susceptibility to frailty syndrome: Role of osteosarcopenic obesity. Metabolism 2024; 161:156052. [PMID: 39490438 DOI: 10.1016/j.metabol.2024.156052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
There is general consensus that an improper diet negatively impacts health and that nutrition is a primary tool for the prevention of non-communicable diseases. Unfortunately, the importance of studying body composition, which can reveal early predictors of gender-related diseases, is still not well understood in this context. Currently, individuals are still classified as obese based solely on their body mass index, without considering the amount of fat, its distribution, and the quantity of muscle and bone mass. In this regard, the body composition phenotype defined as "osteosarcopenic obesity" affects approximately 6-41 % of postmenopausal women, with prevalence increasing with age due to the hormonal and metabolic changes that occur during this period. This particular phenotype arises from the strong relationship between visceral fat, muscle, bone, and gut microbiota and predispose postmenopausal women to frailty. Frailty is a complex clinical phenomenon with significant care and economic implications for our society. Recent studies suggest that women have a higher prevalence of frailty syndrome and its individual components, such as osteoporosis, fractures and sarcopenia, compared to men. Here, we provide a comprehensive overview of recent advances regarding the impact of gender on body composition and frailty. Furthermore, we reflect on the crucial importance of personalized nutritional interventions, with a focus on reducing visceral fat, increasing protein intake and optimizing vitamin D levels. A review of the scientific literature on this topic highlights the importance of studying body composition for a personalized and gender-specific approach to nutrition and dietetics, in order to identify frailty syndrome early and establish personalized treatments. This new method of researching disease predictors could likely help clarify the controversial results of studies on vitamin D, calcium and proteins, translate into practical wellness promotion across diverse elderly populations.
Collapse
Affiliation(s)
- Rosy Conforto
- Department of Clinical and Experimental Medicine, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Valeria Rizzo
- Department of Clinical and Experimental Medicine, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Raffaella Russo
- Department of Clinical and Experimental Medicine, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Elisa Mazza
- Department of Clinical and Experimental Medicine, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Samantha Maurotti
- Department of Clinical and Experimental Medicine, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Carmelo Pujia
- O.U. Clinical Nutrition, Renato Dulbecco Hospital, 88100 Catanzaro, Italy
| | - Elena Succurro
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Franco Arturi
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Yvelise Ferro
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Arturo Pujia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy; Research Center for the Prevention and Treatment of Metabolic Diseases, University "Magna Græcia", 88100 Catanzaro, Italy
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy; Research Center for the Prevention and Treatment of Metabolic Diseases, University "Magna Græcia", 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Artigas-Arias M, Alegría-Molina A, Vidal-Seguel N, Muñoz-Cofre R, Carranza-Leiva J, Sepúlveda-Lara A, Vitzel KF, Huard N, Sapunar J, Salazar LA, Curi R, Marzuca-Nassr GN. Skeletal muscle mass, strength, and physical performance gains are similar between healthy postmenopausal women and postmenopausal breast cancer survivors after 12 weeks of resistance exercise training. Support Care Cancer 2024; 32:818. [PMID: 39579274 PMCID: PMC11585510 DOI: 10.1007/s00520-024-08973-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/29/2024] [Indexed: 11/25/2024]
Abstract
PURPOSE Resistance exercise training (RET) effectively increases skeletal muscle mass and strength in healthy postmenopausal women. However, its effects on these parameters in postmenopausal breast cancer survivors are controversial or limited. Therefore, the aim of this study was to compare the effects of a 12-week progressive whole-body RET program on skeletal muscle mass, strength, and physical performance in healthy postmenopausal women versus postmenopausal women who survived breast cancer. METHODS Thirteen healthy postmenopausal women (HEA, 54 ± 3 years, BMI 26.6 ± 2.7 kg·m2, n = 13) and eleven postmenopausal breast cancer survivors (BCS, 52 ± 5 years, BMI 26.8 ± 2.1 kg·m2, n = 11) participated in the study. Before and after the RET program, evaluations were performed on quadriceps muscle thickness, one-repetition maximum strength (1RM) for various exercises, grip strength, and physical performance. RESULTS Both groups showed significant improvements in quadriceps muscle thickness (time effect, P < 0.001); 1RM strength for leg extension, leg press, chest press, horizontal row, and elbow extension (time effect, all P < 0.001); as well as handgrip strength (time effect, P = 0.035) and physical performance (time effect, all P < 0.001) after the 12-week RET program. There were no significant differences between the groups in response to RET for any of the outcomes measured. CONCLUSION Twelve weeks of RET significantly increases skeletal muscle mass, strength, and physical performance in postmenopausal women. No differences were observed between healthy postmenopausal women and postmenopausal breast cancer survivors. These findings point out that this study's RET promotes skeletal muscle mass, strength, and performance gains regardless of breast cancer. Pre-Print Platform Research Square: https://doi.org/10.21203/rs.3.rs-4145715/v1 ; https://www.researchsquare.com/article/rs-4145715/v1 Clinical trial registration: NCT05690295.
Collapse
Affiliation(s)
- Macarena Artigas-Arias
- Doctorado en Ciencias mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco, Chile
| | - Andrea Alegría-Molina
- Departamento de Ciencias de la Rehabilitación, Facultad de Medicina, Universidad de La Frontera, Claro solar 115, Temuco, Chile
| | - Nicolás Vidal-Seguel
- Facultad de Medicina, Programa de Doctorado en Ciencias Morfológicas, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Rodrigo Muñoz-Cofre
- Facultad de Medicina, Posdoctorado en Ciencias Morfológicas, Universidad de La Frontera, Temuco, Chile
| | - Juan Carranza-Leiva
- Departamento de Ciencias de la Rehabilitación, Facultad de Medicina, Universidad de La Frontera, Claro solar 115, Temuco, Chile
- Clínica de Medicina Física y Rehabilitación MEDIFIS, Unidad de Kinesiología, Temuco, Chile
| | - Alexis Sepúlveda-Lara
- Doctorado en Ciencias mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco, Chile
| | - Kaio Fernando Vitzel
- College of Health, Massey University School of Health Sciences, Auckland, New Zealand
| | - Nolberto Huard
- Departamento de Ciencias Básicas, Facultad de Medicina, Centro de Biología Molecular y Farmacogenética, Universidad de La Frontera, Temuco, Chile
| | - Jorge Sapunar
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
- Departamento de Investigación del Cáncer, Instituto Oncológico Fundación Arturo López Pérez, Santiago, Chile
| | - Luis A Salazar
- Departamento de Ciencias Básicas, Facultad de Medicina, Centro de Biología Molecular y Farmacogenética, Universidad de La Frontera, Temuco, Chile
| | - Rui Curi
- Interdisciplinary Post-graduate Program in Health Sciences, ICAFE, Universidade Cruzeiro do Sul, São Paulo, Brazil
| | - Gabriel Nasri Marzuca-Nassr
- Departamento de Ciencias de la Rehabilitación, Facultad de Medicina, Universidad de La Frontera, Claro solar 115, Temuco, Chile.
| |
Collapse
|
4
|
Mayakrishnan V, Kannappan P, Balakarthikeyan J, Kim CY. Rodent model intervention for prevention and optimal management of sarcopenia: A systematic review on the beneficial effects of nutrients & non-nutrients and exercise to improve skeletal muscle health. Ageing Res Rev 2024; 102:102543. [PMID: 39427886 DOI: 10.1016/j.arr.2024.102543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Sarcopenia is a common musculoskeletal disorder characterized by degenerative processes and is strongly linked to an increased susceptibility to falls, fractures, physical limitations, and mortality. Several models have been used to explore therapeutic and preventative measures as well as to gain insight into the molecular mechanisms behind sarcopenia. With novel experimental methodologies emerging to design foods or novel versions of conventional foods, understanding the impact of nutrition on the prevention and management of sarcopenia has become important. This review provides a thorough assessment of the use of rodent models of sarcopenia for understanding the aging process, focusing the effects of nutrients, plant extracts, exercise, and combined interventions on skeletal muscle health. According to empirical research, nutraceuticals and functional foods have demonstrated potential benefits in enhancing physical performance. In preclinical investigations, the administration of herbal extracts and naturally occurring bioactive compounds yielded advantageous outcomes such as augmented muscle mass and strength generation. Furthermore, herbal treatments exhibited inhibitory effects on muscle atrophy and sarcopenia. A substantial body of information establishes a connection between diet and the muscle mass, strength, and functionality of older individuals. This suggests that nutrition has a major impact in both the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Vijayakumar Mayakrishnan
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Priya Kannappan
- PSG College of Arts & Science, Civil Aerodrome, Coimbatore, Tamil Nadu 641014, India
| | | | - Choon Young Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Department of Food and Nutrition, Yeungnam University Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
5
|
Monsegue AP, Emans P, van Loon LJC, Verdijk LB. Resistance exercise training to improve post-operative rehabilitation in knee arthroplasty patients: A narrative review. Eur J Sport Sci 2024; 24:938-949. [PMID: 38956794 PMCID: PMC11235919 DOI: 10.1002/ejsc.12114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/27/2024] [Accepted: 04/10/2024] [Indexed: 07/04/2024]
Abstract
Knee osteoarthritis is associated with deficits in muscle strength, muscle mass, and physical functioning. These muscle-related deficits are acutely exacerbated following total knee arthroplasty (TKA) and persist long after surgery, despite the application of standardized rehabilitation programs that include physical/functional training. Resistance exercise training (RET) has been shown to be a highly effective strategy to improve muscle-related outcomes in healthy as well as clinical populations. However, the use of RET in traditional rehabilitation programs after TKA is limited. In this narrative review, we provide an updated view on whether adding RET to the standard rehabilitation (SR) in the recovery period (up to 1 year) after TKA leads to greater improvements in muscle-related outcomes when compared to SR alone. Overall, research findings clearly indicate that both muscle strength and muscle mass can be improved to a greater extent with RET-based rehabilitation compared to SR. Additionally, measures of physical functioning that rely on quadriceps strength and balance (e.g., stair climbing, chair standing, etc.) also appear to benefit more from a RET-based program compared to SR, especially in patients with low levels of physical functioning. Importantly though, for RET to be optimally effective, it should be performed at 70%-80% of the one-repetition maximum, with 3-4 sets per exercise, with a minimum of 3 times per week for 8 weeks. Based upon this narrative review, we recommend that such high-intensity progressive RET should be incorporated into standard programs during rehabilitation after TKA.
Collapse
Affiliation(s)
- Alejandra P. Monsegue
- Department of Human BiologySchool of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht University Medical Centre+MaastrichtThe Netherlands
| | - Pieter Emans
- Department of OrthopedicsJoint Preserving ClinicMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Luc J. C. van Loon
- Department of Human BiologySchool of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht University Medical Centre+MaastrichtThe Netherlands
| | - Lex B. Verdijk
- Department of Human BiologySchool of Nutrition and Translational Research in Metabolism (NUTRIM)Maastricht University Medical Centre+MaastrichtThe Netherlands
| |
Collapse
|
6
|
Fuchs CJ, Trommelen J, Weijzen MEG, Smeets JSJ, van Kranenburg J, Verdijk LB, van Loon LJC. Becoming a World Champion Powerlifter at 71 Years of Age: It Is Never Too Late to Start Exercising. Int J Sport Nutr Exerc Metab 2024; 34:223-231. [PMID: 38458181 DOI: 10.1123/ijsnem.2023-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
This case study assessed body composition, muscle strength, cardiorespiratory fitness, and metabolic health of the present female world champion powerlifter in the 70+ age category who started resistance exercise training at 63 years of age with no prior experience with structured exercise training. Measures of body composition (magnetic resonance imaging, computed tomography, and dual-energy X-ray absorptiometry scanning, leg volume); strength (one-repetition maximum leg press and extension, maximum voluntary contraction, and handgrip strength); physical function (short physical performance battery); cardiorespiratory fitness (peak oxygen consumption); and metabolic health (oral glucose tolerance test) were assessed. In addition, a muscle biopsy was collected to assess muscle fiber type distribution and cross-sectional area (CSA). Where possible, data were compared with previously (un)published sex- and age-matched data using z scores. Skeletal muscle mass index was calculated by dividing limb muscle mass by height squared. Data from the control groups are expressed as mean ± 95% confidence interval. Our participant (age: 71 years; body mass: 64.5 kg; body mass index: 27.6 kg/m2) reported a good bone mineral density of 1.09 g/cm2 (T score between -1 and +1) and very low values of abdominal and organ body fat (i.e., between 20% and 70% lower compared with a reference group of postmenopausal women). In addition, she showed a 33% greater skeletal muscle mass index when compared with healthy, older female control subjects (7.9 vs. 5.9 [5.7-6.2] kg/m2; n = 61) as well as 37% greater muscle quadriceps CSA (63.8 vs. 46.6 [44.5-48.7] cm2; n = 48) and 46% greater Type II muscle fiber CSA (4,536 vs. 3,097 [2,707-3,488] μm2; n = 19). Absolute leg press muscle strength was 36% greater (190 vs. 140 [132-147] kg; n = 30) and handgrip strength was 33% greater (33 vs. 25 [23-26] kg; n = 48) when compared with healthy, age-matched controls. In conclusion, even for resistance exercise naïve individuals, starting exercise at an advanced age can lead to improvements in body composition and muscle strength allowing older adults to reduce the risk for developing metabolic syndrome, live independently, and even compete at a world class level.
Collapse
Affiliation(s)
- Cas J Fuchs
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands
| | - Jorn Trommelen
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands
| | - Michelle E G Weijzen
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands
| | - Joey S J Smeets
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands
| | - Janneau van Kranenburg
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands
| | - Lex B Verdijk
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands
| | - Luc J C van Loon
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands
| |
Collapse
|
7
|
Liao CD, Huang SW, Chen HC, Huang MH, Liou TH, Lin CL. Comparative Efficacy of Different Protein Supplements on Muscle Mass, Strength, and Physical Indices of Sarcopenia among Community-Dwelling, Hospitalized or Institutionalized Older Adults Undergoing Resistance Training: A Network Meta-Analysis of Randomized Controlled Trials. Nutrients 2024; 16:941. [PMID: 38612975 PMCID: PMC11013298 DOI: 10.3390/nu16070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Aging-related sarcopenia exerts harmful impacts on muscle mass, strength, and physical mobility. Protein supplementation has been demonstrated to augment efficacy of resistance training (RT) in elderly. This study compared the relative effects of different protein supplements on muscle mass, strength, and mobility outcomes in middle-aged and older individuals undergoing RT. A comprehensive search of online databases was performed to identify randomized controlled trials (RCTs) examining the efficacy of protein supplement plus RT in untrained community-dwelling adults, hospitalized, or institutionalized residents who suffered acute or chronic health conditions. Network meta-analysis (NMA) was performed using a frequentist method for all analyses. Treatment effects for main outcomes were expressed as standard mean difference (SMD) with 95% confidence interval (CI). We used the surface-under-the cumulative-ranking (SUCRA) scores to rank probabilities of effect estimation among all identified treatments. Meta-regression analyses were performed to identify any relevant moderator of the treatment efficacy and results were expressed as β with 95% credible interval (CrI). We finally included 78 RCTs (5272 participants) for analyses. Among the six protein sources identified in this NMA, namely whey, milk, casein, meat, soy, and peanut, whey supplement yielded the most effective treatments augmenting efficacy of RT on muscle mass (SMD = 1.29, 95% CI: 0.96, 1.62; SUCRA = 0.86), handgrip strength (SMD = 1.46, 95% CI: 0.92, 2.00; SUCRA = 0.85), and walking speed (SMD = 0.73, 95% CI: 0.39, 1.07; SUCRA = 0.84). Participant's health condition, sex, and supplementation dose were significant factors moderating the treatment efficacy on muscle mass (β = 0.74; 95% CrI: 0.22, 1.25), handgrip strength (β = -1.72; 95% CrI: -2.68, -0.77), and leg strength (β = 0.76; 95% CrI: 0.06, 1.47), respectively. Our findings suggest whey protein yields the optimal supplements to counter sarcopenia in older individuals undergoing RT.
Collapse
Affiliation(s)
- Chun-De Liao
- International Ph.D. Program in Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, New Taipei City 110301, Taiwan;
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan; (S.-W.H.); (H.-C.C.); (T.-H.L.)
| | - Shih-Wei Huang
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan; (S.-W.H.); (H.-C.C.); (T.-H.L.)
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City 110301, Taiwan
| | - Hung-Chou Chen
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan; (S.-W.H.); (H.-C.C.); (T.-H.L.)
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City 110301, Taiwan
| | - Mao-Hua Huang
- Department of Biochemistry, University of Washington, Seattle, WA 98015, USA;
| | - Tsan-Hon Liou
- Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan; (S.-W.H.); (H.-C.C.); (T.-H.L.)
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City 110301, Taiwan
| | - Che-Li Lin
- Department of Orthopedic Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City 11031, Taiwan
| |
Collapse
|
8
|
Tezze C, Sandri M, Tessari P. Anabolic Resistance in the Pathogenesis of Sarcopenia in the Elderly: Role of Nutrition and Exercise in Young and Old People. Nutrients 2023; 15:4073. [PMID: 37764858 PMCID: PMC10535169 DOI: 10.3390/nu15184073] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
The development of sarcopenia in the elderly is associated with many potential factors and/or processes that impair the renovation and maintenance of skeletal muscle mass and strength as ageing progresses. Among them, a defect by skeletal muscle to respond to anabolic stimuli is to be considered. Common anabolic stimuli/signals in skeletal muscle are hormones (insulin, growth hormones, IGF-1, androgens, and β-agonists such epinephrine), substrates (amino acids such as protein precursors on top, but also glucose and fat, as source of energy), metabolites (such as β-agonists and HMB), various biochemical/intracellular mediators), physical exercise, neurogenic and immune-modulating factors, etc. Each of them may exhibit a reduced effect upon skeletal muscle in ageing. In this article, we overview the role of anabolic signals on muscle metabolism, as well as currently available evidence of resistance, at the skeletal muscle level, to anabolic factors, from both in vitro and in vivo studies. Some indications on how to augment the effects of anabolic signals on skeletal muscle are provided.
Collapse
Affiliation(s)
- Caterina Tezze
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35121 Padova, Italy;
- Veneto Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35121 Padova, Italy;
- Veneto Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Paolo Tessari
- Department of Medicine, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
9
|
Overkamp M, Houben LHP, Aussieker T, van Kranenburg JMX, Pinckaers PJM, Mikkelsen UR, Beelen M, Beijer S, van Loon LJC, Snijders T. Resistance Exercise Counteracts the Impact of Androgen Deprivation Therapy on Muscle Characteristics in Cancer Patients. J Clin Endocrinol Metab 2023; 108:e907-e915. [PMID: 37161470 PMCID: PMC10505531 DOI: 10.1210/clinem/dgad245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/05/2023] [Accepted: 05/09/2023] [Indexed: 05/11/2023]
Abstract
CONTEXT Androgen deprivation therapy (ADT) forms the cornerstone in prostate cancer (PCa) treatment. However, ADT also lowers skeletal muscle mass. OBJECTIVE To identify the impact of ADT with and without resistance exercise training on muscle fiber characteristics in PCa patients. METHODS Twenty-one PCa patients (72 ± 6 years) starting ADT were included. Tissue samples from the vastus lateralis muscle were assessed at baseline and after 20 weeks of usual care (n = 11) or resistance exercise training (n = 10). Type I and II muscle fiber distribution, fiber size, and myonuclear and capillary contents were determined by immunohistochemistry. RESULTS Significant decreases in type I (from 7401 ± 1183 to 6489 ± 1293 μm2, P < .05) and type II (from 6225 ± 1503 to 5014 ± 714 μm2, P < .05) muscle fiber size were observed in the usual care group. In addition, type I and type II individual capillary-to-fiber ratio (C/Fi) declined (-12% ± 12% and -20% ± 21%, respectively, P < .05). In contrast, significant increases in type I (from 6700 ± 1464 to 7772 ± 1319 μm2, P < .05) and type II (from 5248 ± 892 to 6302 ± 1385 μm2, P < .05) muscle fiber size were observed in the training group, accompanied by an increase in type I and type II muscle fiber myonuclear contents (+24% ± 33% and +21% ± 23%, respectively, P < .05) and type I C/Fi (+18% ± 14%, P < .05). CONCLUSION The onset of ADT is followed by a decline in both type I and type II muscle fiber size and capillarization in PCa patients. Resistance exercise training offsets the negative impact of ADT and increases type I and II muscle fiber size and type I muscle fiber capillarization in these patients.
Collapse
Affiliation(s)
- Maarten Overkamp
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, 6200 MD, the Netherlands
- Department of Research & Development, Netherlands Comprehensive Cancer Organisation, Utrecht, 3511 DT, the Netherlands
- Top Institute Food and Nutrition (TiFN), Wageningen, 6709 PA, the Netherlands
| | - Lisanne H P Houben
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, 6200 MD, the Netherlands
- Department of Research & Development, Netherlands Comprehensive Cancer Organisation, Utrecht, 3511 DT, the Netherlands
- Top Institute Food and Nutrition (TiFN), Wageningen, 6709 PA, the Netherlands
| | - Thorben Aussieker
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, 6200 MD, the Netherlands
| | - Janneau M X van Kranenburg
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, 6200 MD, the Netherlands
| | - Philippe J M Pinckaers
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, 6200 MD, the Netherlands
| | - Ulla R Mikkelsen
- Department of Nutrition & Health, Research & Development, Arla Foods Ingredients Group P/S, Viby J, 8260, Denmark
| | - Milou Beelen
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, 6200 MD, the Netherlands
- Top Institute Food and Nutrition (TiFN), Wageningen, 6709 PA, the Netherlands
| | - Sandra Beijer
- Department of Research & Development, Netherlands Comprehensive Cancer Organisation, Utrecht, 3511 DT, the Netherlands
- Top Institute Food and Nutrition (TiFN), Wageningen, 6709 PA, the Netherlands
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, 6200 MD, the Netherlands
- Top Institute Food and Nutrition (TiFN), Wageningen, 6709 PA, the Netherlands
| | - Tim Snijders
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, 6200 MD, the Netherlands
| |
Collapse
|
10
|
Bagheri R, Shakibaee A, Camera DM, Sobhani V, Ghobadi H, Nazar E, Fakhari H, Dutheil F. Effects of 8 weeks of resistance training in combination with a high protein diet on body composition, muscular performance, and markers of liver and kidney function in untrained older ex-military men. Front Nutr 2023; 10:1205310. [PMID: 37457969 PMCID: PMC10342203 DOI: 10.3389/fnut.2023.1205310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Background The effects of a high protein diet in combination with chronic resistance training (RT) on skeletal muscle adaptation responses in untrained older ex-military men is unknown. Therefore, we compared the effects of 8 weeks of RT in combination with either a high (1.6 g/kg/d) or low protein diet (0.8 g/kg/d) on body composition [skeletal muscle mass (SMM) and body fat percentage (BFP)], muscular strength, power, and endurance (upper and lower body), markers of liver [alanine transaminase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transferase (GGT)] and kidney (creatinine and urea) function, and lipid profile low-density lipoprotein (LDL), high-density lipoprotein (HDL), and cholesterol levels in a cohort of healthy, untrained older ex-military males. Methods Forty healthy untrained older ex-military males (age: 61 ± 2 yr, body mass index: 23.2 ± 1.3 kg.m-2) performed 8 weeks (three sessions·w-1) of RT with either 1.6 g/kg/d (RHP; n = 20) or 0.8 g/kg/d of protein (RLP; n = 20). Body composition (assessed by Inbody 720), muscular strength (1-RM for chest and leg press), power (Wingate test), endurance (75% 1-RM for chest and leg press), and markers of liver and kidney function (biochemical kits) were assessed pre and post-intervention. Results SMM and muscular strength (upper and lower body) increased post-intervention in both groups and were significantly greater in RHP compared to RLP, while muscular power increased to the same extent in both groups (p < 0.05) with no between-group differences (p > 0.05). In contrast, there were no post-intervention changes in muscular endurance, HDL, and BFP remained in either group (p > 0.05). ALT and creatinine significantly increased in RHP compared to RLP while GGT, AST, and urea only increased in the RLP group (p < 0.05). LDL and cholesterol significantly decreased in both groups (p < 0.05). Conclusion A daily intake of 1.6 g/kg/d protein was superior to 0.8 g/kg/d (current recommended daily intake) for promoting greater improvements in SMM and muscle strength and thus may be a more suitable level of intake for promoting such adaptive responses. Notwithstanding observed between-group differences in ALT and creatinine and the fact that levels remained within normal ranges, it is feasible to conclude that this daily protein intake is efficacious and well tolerated by healthy, untrained older ex-military males.
Collapse
Affiliation(s)
- Reza Bagheri
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abolfazl Shakibaee
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Donny M. Camera
- Department of Health and Biostatistics, Swinburne University, Melbourne, VIC, Australia
| | - Vahid Sobhani
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Ghobadi
- Department of Exercise Physiology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Eisa Nazar
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Fakhari
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Fred Dutheil
- CNRS, LaPSCo, Physiological and Psychosocial Stress, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Preventive and Occupational Medicine, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
11
|
Kim S, Park J, Kim DH, Sun J, Lee SY. Combined exercise and nutrition intervention for older women with spinal sarcopenia: an open-label single-arm trial. BMC Geriatr 2023; 23:346. [PMID: 37264334 PMCID: PMC10236709 DOI: 10.1186/s12877-023-04063-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
PURPOSE Spinal sarcopenia is a multifactorial disorder associated with atrophy and fatty changes in paraspinal muscles. Interventional studies for spinal sarcopenia are limited. We aimed to evaluate the effectiveness of a combined exercise and nutrition intervention for the treatment of spinal sarcopenia. METHODS 35 community-dwelling older women diagnosed with spinal sarcopenia in a previous cohort study were included. The 12-week combined intervention consisted of back extensor strengthening exercises and protein supplementation. The following outcomes were measured at baseline (week 0), after the intervention (week 12), and follow-up (week 24): conventional variables of sarcopenia (appendicular skeletal muscle mass, handgrip strength, 6-meter gait speed, and short physical performance battery); lumbar extensor muscle mass; lumbar extensor muscle volume and signal intensity; back extensor isokinetic strength; and back performance scale. We used the intention-to-treat analysis method, and repeated measures analysis of variance was used to analyze the data. RESULTS Of the total 35 potential participants, 26 older women participated in the study (mean age 72.5 ± 4.0 years old). After 12 weeks of combined exercise and nutrition intervention, there were no changes in the appendicular skeletal muscle mass, lumbar extensor muscle mass, volume, or signal intensity. Handgrip strength and back extensor isokinetic strength did not change significantly. Short physical performance battery significantly increased (P = 0.042) from 11.46 ± 0.86 to 11.77 ± 0.53 at week 12 and 11.82 ± 0.40 at week 24. The back performance scale sum score also significantly improved (P = 0.034) from 2.68 ± 1.81 to 1.95 ± 1.21 at week 12 and 2.09 ± 1.34 at week 24. CONCLUSION The combined exercise and nutrition intervention for community-dwelling older women with spinal sarcopenia could be feasible and helpful in improving the physical performance as well as back performance.
Collapse
Affiliation(s)
- Seungcheol Kim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jinhee Park
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
| | - Dong Hyun Kim
- Department of Radiology, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Jiyu Sun
- Integrated Biostatistics Branch, Division of Cancer Data Science, National Cancer Center, Goyang-si, Korea
| | - Sang Yoon Lee
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea.
| |
Collapse
|
12
|
Kraková D, Holwerda AM, Betz MW, Lavin KM, Bamman MM, van Loon LJC, Verdijk LB, Snijders T. Muscle fiber type grouping does not change in response to prolonged resistance exercise training in healthy older men. Exp Gerontol 2023; 173:112083. [PMID: 36621699 DOI: 10.1016/j.exger.2023.112083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/02/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
BACKGROUND Ageing of skeletal muscle is characterized in some by muscle fiber type grouping due to denervation-reinnervation cycles, but the severity of fiber type grouping varies widely across individuals of the same chronological age. It remains unknown whether fiber type grouping is associated with lower muscle mass and/or reduced physical function in elderly. Therefore, we assessed the relationship between fiber type grouping and indices of muscle mass and physical function in older adults. In addition, we assessed whether fiber type grouping is affected by prolonged resistance training in older adults. METHODS Twenty young (21 ± 2 y) and twenty older (70 ± 4 y) healthy men participated in the present study. Body composition (DXA-scan), quadriceps cross-sectional area (CT-scan) and muscle strength (1RM) were assessed at baseline (young and old) and following 12 weeks of resistance training (old only). Percutaneous skeletal muscle biopsies from the vastus lateralis were collected at baseline (young and old) and following exercise training (old only). Immunohistochemical analyses were performed to evaluate type I and type II muscle fiber distribution, size, myonuclear content and grouping. RESULTS At baseline, type II fibers were significantly (P < 0.05) smaller in older compared with young adults (5366 ± 1288 vs 6705 ± 1168 μm2). Whereas no differences were observed in type I, type II fiber grouping was significantly (P < 0.05) lower in older (18 ± 18 %) compared with young (32 ± 25 %) men. No significant correlations were observed between fiber type grouping and muscle mass or physical function. Prolonged resistance training in old men resulted in a significant increase (P < 0.05) in type II fiber size (from 5366 ± 1288 to 6165 ± 1484 μm2) with no significant changes in the proportion of type I muscle fibers found grouped. CONCLUSION Muscle fiber type grouping is not associated with lower body strength or muscle mass in healthy, older men. In addition, twelve weeks of resistance exercise training results in type II muscle fiber specific hypertrophy but does not affect fiber type grouping.
Collapse
Affiliation(s)
- Dominika Kraková
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Andrew M Holwerda
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Milan W Betz
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Kaleen M Lavin
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Florida Institute for Human and Machine Cognition, Pensacola, FL, USA
| | - Marcas M Bamman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Florida Institute for Human and Machine Cognition, Pensacola, FL, USA
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Lex B Verdijk
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Tim Snijders
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| |
Collapse
|
13
|
Rodriguez-Lopez P, Rueda-Robles A, Sánchez-Rodríguez L, Blanca-Herrera RM, Quirantes-Piné RM, Borrás-Linares I, Segura-Carretero A, Lozano-Sánchez J. Analysis and Screening of Commercialized Protein Supplements for Sports Practice. Foods 2022; 11:foods11213500. [PMID: 36360118 PMCID: PMC9658000 DOI: 10.3390/foods11213500] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Recent years have seen a rise in the popularity of the consumption of sports-related supplements. However, the hypothesis is raised that it is necessary to analyze the quality aspects of these supplements in relation to the information provided on the label, to avoid associated risks and obtain the greatest possible benefit from their consumption. Therefore, the aim of this study has been to carry out an analysis or screening of the protein supplements that are currently marketed in Spain. We analyzed the labels of 52 protein sports supplements available both in physical stores and online. The analysis consisted of addressing three relevant aspects considering the labeling: (a) the legislative framework in which the supplements are marketed, (b) the quality of the protein, and (c) the presence of other ingredients according to the specifications of the label. In the legislative context, there do not seem to be any specific regulations to guarantee consumer protection, which can lead to unfair practices and misleading advertising. Most of the supplements analyzed to comply with the requirements of their current regulations. However, claims about their benefits that are not allowed under European legislation have been found in some of them. Regarding composition and according to label information, the supplements have been found to provide a sufficient dose of protein in terms of recommended protein intake per serving. Regarding the presence of other ingredients and according to the information on the label, most of them, except for egg supplements, contain other ingredients. Colostrum was also found in one of the supplements evaluated. The conclusions of the study reveal that, due to a lack of knowledge or misleading advertising practices, supplements are often not used properly. The information provided is essential for both professionals and consumers to avoid the risks associated with consumption, such as unintentional doping, interactions between ingredients that reduce the quality of the supplement, and consumption of supplements inappropriately, among others.
Collapse
Affiliation(s)
- Paloma Rodriguez-Lopez
- Department of Food Science and Nutrition, Campus Universitario s/n, University of Granada, 18071 Granada, Spain
| | - Ascensión Rueda-Robles
- Department of Food Science and Nutrition, Campus Universitario s/n, University of Granada, 18071 Granada, Spain
- Correspondence: (A.R.-R.); or (I.B.-L.); Tel.: +34-958241000 (ext. 20702) (A.R.-R.); +34-958637083 (I.B.-L.)
| | - Leticia Sánchez-Rodríguez
- Department of Food Science and Nutrition, Campus Universitario s/n, University of Granada, 18071 Granada, Spain
| | - Rosa María Blanca-Herrera
- Department of Food Science and Nutrition, Campus Universitario s/n, University of Granada, 18071 Granada, Spain
| | - Rosa María Quirantes-Piné
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Edificio BioRegión, Avenida del Conocimiento 37, 18016 Granada, Spain
| | - Isabel Borrás-Linares
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Edificio BioRegión, Avenida del Conocimiento 37, 18016 Granada, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Correspondence: (A.R.-R.); or (I.B.-L.); Tel.: +34-958241000 (ext. 20702) (A.R.-R.); +34-958637083 (I.B.-L.)
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, Campus Universitario s/n, University of Granada, 18071 Granada, Spain
| |
Collapse
|
14
|
Griffen C, Renshaw D, Duncan M, Weickert MO, Hattersley J. Changes in 24-h energy expenditure, substrate oxidation, and body composition following resistance exercise and a high protein diet via whey protein supplementation in healthy older men. Physiol Rep 2022; 10:e15268. [PMID: 37815091 PMCID: PMC9332127 DOI: 10.14814/phy2.15268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate changes in 24-h energy expenditure (EE), substrate oxidation, and body composition following resistance exercise (RE) and a high protein diet via whey protein supplementation (alone and combined) in healthy older men. METHODS In a pooled groups analysis, 33 healthy older men [(mean ± SE) age: 67 ± 1 years; BMI: 25.4 ± 0.4 kg/m2] were randomized to either RE (2×/week; n = 17) or non-exercise (n = 16) and either a high protein diet via whey protein supplementation (PRO, 2 × 25 g whey protein isolate/d; n = 17) or control (CON, 2 × 23.75 g maltodextrin/d; n = 16). An exploratory sub-analysis was also conducted between RE+CON (n = 8) and RE+PRO (n = 9). At baseline and 12 weeks, participants resided in respiration chambers for measurement of 24-h EE and substrate oxidation and wore an accelerometer for 7 days for estimation of free-living EE. RESULTS Resistance exercise resulted in greater increases in fat-free mass (1.0 ± 0.3 kg), resting metabolic rate [(RMR) 36 ± 14 kcal/d], sedentary EE (60 ± 33 kcal/d), and sleeping metabolic rate [(SMR) 45 ± 7 kcal/d] compared to non-exercise (p < 0.05); however, RE decreased activity energy expenditure in free-living (-90 ± 25 kcal/d; p = 0.049) and non-exercise activity inside the respiration chamber (-1.9 ± 1.1%; p = 0.049). PRO decreased fat mass [(FM) -0.5 ± 0.3 kg], increased overnight protein oxidation (30 ± 6 g/d), and decreased 24-h protein balance (-20 ± 4 g/d) greater than CON (p < 0.05). RE+PRO decreased FM (-1.0 ± 0.5 kg) greater than RE+CON (p = 0.04). CONCLUSION Resistance exercise significantly increased RMR, SMR, and sedentary EE in healthy older men, but not total EE. PRO alone and combined with RE decreased FM and aided body weight maintenance. This study was registered at clinicaltrials.gov as NCT03299972.
Collapse
Affiliation(s)
- Corbin Griffen
- Centre for Sport, Exercise and Life SciencesResearch Institute for Health and WellbeingCoventry UniversityCoventryUK
- Human Metabolism Research UnitUniversity Hospitals Coventry and Warwickshire NHS TrustCoventryUK
| | - Derek Renshaw
- Centre for Sport, Exercise and Life SciencesResearch Institute for Health and WellbeingCoventry UniversityCoventryUK
| | - Michael Duncan
- Centre for Sport, Exercise and Life SciencesResearch Institute for Health and WellbeingCoventry UniversityCoventryUK
- School of Life SciencesFaculty of Health and Life SciencesCoventry UniversityCoventryUK
| | - Martin O. Weickert
- Centre for Sport, Exercise and Life SciencesResearch Institute for Health and WellbeingCoventry UniversityCoventryUK
- Department of Endocrinology and DiabetesUniversity Hospitals Coventry and Warwickshire NHS TrustCoventryUK
- Warwick Medical SchoolUniversity of WarwickCoventryUK
| | - John Hattersley
- Centre for Sport, Exercise and Life SciencesResearch Institute for Health and WellbeingCoventry UniversityCoventryUK
- Human Metabolism Research UnitUniversity Hospitals Coventry and Warwickshire NHS TrustCoventryUK
- School of EngineeringUniversity of WarwickCoventryUK
| |
Collapse
|
15
|
Nunes EA, Colenso‐Semple L, McKellar SR, Yau T, Ali MU, Fitzpatrick‐Lewis D, Sherifali D, Gaudichon C, Tomé D, Atherton PJ, Robles MC, Naranjo‐Modad S, Braun M, Landi F, Phillips SM. Systematic review and meta-analysis of protein intake to support muscle mass and function in healthy adults. J Cachexia Sarcopenia Muscle 2022; 13:795-810. [PMID: 35187864 PMCID: PMC8978023 DOI: 10.1002/jcsm.12922] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
We performed a systematic review, meta-analysis, and meta-regression to determine if increasing daily protein ingestion contributes to gaining lean body mass (LBM), muscle strength, and physical/functional test performance in healthy subjects. A protocol for the present study was registered (PROSPERO, CRD42020159001), and a systematic search of Medline, Embase, CINAHL, and Web of Sciences databases was undertaken. Only randomized controlled trials (RCT) where participants increased their daily protein intake and were healthy and non-obese adults were included. Research questions focused on the main effects on the outcomes of interest and subgroup analysis, splitting the studies by participation in a resistance exercise (RE), age (<65 or ≥65 years old), and levels of daily protein ingestion. Three-level random-effects meta-analyses and meta-regressions were conducted on data from 74 RCT. Most of the selected studies tested the effects of additional protein ingestion during RE training. The evidence suggests that increasing daily protein ingestion may enhance gains in LBM in studies enrolling subjects in RE (SMD [standardized mean difference] = 0.22, 95% CI [95% confidence interval] 0.14:0.30, P < 0.01, 62 studies, moderate level of evidence). The effect on LBM was significant in subjects ≥65 years old ingesting 1.2-1.59 g of protein/kg/day and for younger subjects (<65 years old) ingesting ≥1.6 g of protein/kg/day submitted to RE. Lower-body strength gain was slightly higher by additional protein ingestion at ≥1.6 g of protein/kg/day during RE training (SMD = 0.40, 95% CI 0.09:0.35, P < 0.01, 19 studies, low level of evidence). Bench press strength is slightly increased by ingesting more protein in <65 years old subjects during RE training (SMD = 0.18, 95% CI 0.03:0.33, P = 0.01, 32 studies, low level of evidence). The effects of ingesting more protein are unclear when assessing handgrip strength and only marginal for performance in physical function tests. In conclusion, increasing daily protein ingestion results in small additional gains in LBM and lower body muscle strength gains in healthy adults enrolled in resistance exercise training. There is a slight effect on bench press strength and minimal effect performance in physical function tests. The effect on handgrip strength is unclear.
Collapse
Affiliation(s)
- Everson A. Nunes
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
- Laboratory of Investigation of Chronic Diseases, Department of Physiological SciencesFederal University of Santa CatarinaFlorianópolisBrazil
| | - Lauren Colenso‐Semple
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Sean R. McKellar
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Thomas Yau
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Muhammad Usman Ali
- McMaster Evidence Review and Synthesis CentreMcMaster UniversityHamiltonOntarioCanada
| | | | - Diana Sherifali
- School of Nursing, Faculty of Health SciencesMcMaster UniversityHamiltonOntarioCanada
| | - Claire Gaudichon
- Université Paris‐SaclayAgroParisTech, INRAE, UMR PNCAParisFrance
| | - Daniel Tomé
- Université Paris‐SaclayAgroParisTech, INRAE, UMR PNCAParisFrance
| | - Philip J. Atherton
- MRC Versus Arthritis Centre of Excellence for Musculoskeletal Ageing Research (CMAR), NIHR Biomedical Research Centre, School of MedicineUniversity of NottinghamNottinghamUK
| | | | | | - Michelle Braun
- International Flavors & FragrancesResearch and DevelopmentSt. LouisMOUSA
| | - Francesco Landi
- Fondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - Stuart M. Phillips
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
16
|
Kirwan RP, Mazidi M, Rodríguez García C, Lane KE, Jafari A, Butler T, Perez de Heredia F, Davies IG. Protein interventions augment the effect of resistance exercise on appendicular lean mass and handgrip strength in older adults: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2022; 115:897-913. [PMID: 34673936 DOI: 10.1093/ajcn/nqab355] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 10/19/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Increased protein intake is suggested as a strategy to slow or reverse the loss of muscle mass and strength observed in sarcopenia, but results from studies that directly tested this possibility have been inconsistent. OBJECTIVES We assessed the evidence on the effects of whole protein supplementation or higher-protein diets, without the use of amino acids or supplements known to stimulate hypertrophy, alone or in combination with resistance exercise (RE) interventions, on lean body mass (LBM) and strength in older adults. METHODS A systematic search was conducted using PubMed, Medline, Web of Science, and Cochrane CENTRAL databases from January 1990 to July 2021. Randomized controlled trials that assessed the effects of protein supplementation and/or higher-protein dietary interventions in older adults (mean age ≥50 y) on total LBM, appendicular lean mass (ALM), and handgrip (HG) and knee extension (KE) strength were included. RESULTS Twenty-eight studies were identified. In pooled analysis, compared with lower protein controls, protein supplementation did not have a significant positive effect on total LBM [weighted mean difference in change (WMD): 0.34; 95% CI: -0.21, 0.89; I2 = 90.01%], ALM (WMD: 0.4; 95% CI: -0.01, 0.81; I2 = 90.38%), HG strength (WMD: 0.69; 95% CI: -0.69, 2.06; I2 = 94.52%), or KE strength (WMD: 1.88; 95% CI: -0.6, 4.35; I2 = 95.35%). However, in interventions that used also RE, statistically significant positive effects of protein were observed for ALM (WMD: 0.54; 95% CI: 0.03, 1.05; I2 = 89.76%) and HG (WMD: 1.71; 95% CI: 0.12, 3.30; I2 = 88.71%). Meta-regression revealed no significant association between age, per-meal protein dose, duration, and baseline protein intake with change in any outcome. Subgroup analysis revealed the statistically significant effects on ALM occurred only in sarcopenic/frail populations (WMD: 0.88; 95% CI: 0.51, 1.25; I2 = 79.0%). Most studies (n = 22) had some risk of bias. CONCLUSIONS In older adults performing RE, increased protein intake leads to greater ALM and HG strength compared with lower protein controls. Without RE, protein has no additional benefit on changes in total LBM, ALM, or HG strength.
Collapse
Affiliation(s)
- Richard P Kirwan
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Mohsen Mazidi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.,Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Carmen Rodríguez García
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Katie E Lane
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Alireza Jafari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Tom Butler
- School of Applied Health and Social Care and Social Work, Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, UK
| | - Fatima Perez de Heredia
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Ian G Davies
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
17
|
Griffen C, Duncan M, Hattersley J, Weickert MO, Dallaway A, Renshaw D. Effects of resistance exercise and whey protein supplementation on skeletal muscle strength, mass, physical function, and hormonal and inflammatory biomarkers in healthy active older men: a randomised, double-blind, placebo-controlled trial. Exp Gerontol 2021; 158:111651. [PMID: 34896568 DOI: 10.1016/j.exger.2021.111651] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE To determine the individual and combined effects of 12 weeks of resistance exercise (RE) and whey protein supplementation on skeletal muscle strength (primary outcome), mass and physical function, and hormonal and inflammatory biomarkers in older adults. METHODS Thirty-six healthy older men [(mean±SE) age: 67±1 y; BMI: 25.5±0.4 kg/m2] were randomised to either control (CON; n=9), whey protein (PRO; n=9), RE+control (EX+CON; n=9), or RE+whey protein (EX+PRO; n=9) in a double-blinded fashion. Whole-body RE (2 sets of 8 repetitions and 1 set to volitional failure at 80% 1RM) was performed twice weekly. Supplements (PRO, 25 g whey protein isolate; CON, 23.75 g maltodextrin) were consumed twice daily. RESULTS EX+CON and EX+PRO increased leg extension (+19±3 kg and +20±3 kg, respectively) and leg press 1RM (+27±3 kg and +39±2 kg, respectively) greater than the CON and PRO groups (P<0.001, Cohen's d=1.50-1.90). RE (EX+CON and EX+PRO groups pooled) also increased fat-free mass (FFM) (+0.9±0.3 kg) and 6-min walk test distance (+21±5 m) and decreased fat mass (-0.4±0.4 kg), and interleukin-6 (-1.0±0.4 pg/mL) and tumor necrosis factor-alpha concentration (-0.7±0.3 pg/mL) greater than non-exercise (CON and PRO groups pooled; P<0.05, Cohen's f=0.37-0.45). Whey protein supplementation (PRO and EX+PRO groups pooled) increased 4-m gait speed greater than control (CON and EX+CON groups pooled) (+0.08±0.03 m/s; P=0.007, f=0.51). CONCLUSION RE increased muscle strength, FFM and physical function, and decreased markers of systemic inflammation in healthy active older men. Whey protein supplementation alone increased gait speed. No synergistic effects were observed. This study was registered at clinicaltrials.gov as NCT03299972.
Collapse
Affiliation(s)
- Corbin Griffen
- Centre for Sport, Exercise and Life Sciences, Research Institute of Health and Wellbeing, Coventry University, Coventry, CV1 2DS, United Kingdom; Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom.
| | - Michael Duncan
- Centre for Sport, Exercise and Life Sciences, Research Institute of Health and Wellbeing, Coventry University, Coventry, CV1 2DS, United Kingdom; School of Life Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 2DS, United Kingdom
| | - John Hattersley
- Centre for Sport, Exercise and Life Sciences, Research Institute of Health and Wellbeing, Coventry University, Coventry, CV1 2DS, United Kingdom; Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom; School of Engineering, University of Warwick, Coventry, CV4 7HL, United Kingdom
| | - Martin O Weickert
- Centre for Sport, Exercise and Life Sciences, Research Institute of Health and Wellbeing, Coventry University, Coventry, CV1 2DS, United Kingdom; Department of Endocrinology and Diabetes, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom; Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Alexander Dallaway
- Centre for Sport, Exercise and Life Sciences, Research Institute of Health and Wellbeing, Coventry University, Coventry, CV1 2DS, United Kingdom; Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, United Kingdom
| | - Derek Renshaw
- Centre for Sport, Exercise and Life Sciences, Research Institute of Health and Wellbeing, Coventry University, Coventry, CV1 2DS, United Kingdom
| |
Collapse
|
18
|
Ullevig SL, Zuniga K, Austin Lobitz C, Santoyo A, Yin Z. Egg protein supplementation improved upper body muscle strength and protein intake in community-dwelling older adult females who attended congregate meal sites or adult learning centers: A pilot randomized controlled trial. Nutr Health 2021; 28:611-620. [PMID: 34730461 DOI: 10.1177/02601060211051592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background: Older adults that utilize community-based nutrition services are at higher nutritional risk than the general aging population, yet studies on the efficacy of protein interventions in this population are lacking. Aim: A double-blinded randomized controlled pilot study trial evaluated the impact of egg white protein supplementation on muscle mass, strength, and physical function in predominantly low-income Latina community-dwelling adult females aged 60 or older with reduced muscle strength or function. Methods: Participants (mean age = 73.6 ± 8.3 years) were randomly assigned to receive a daily dried egg white (20 g protein) or isocaloric maltodextrin supplement for 6 months (n = 16 intervention; n = 13 control). The primary outcome measure was appendicular skeletal muscle mass. Secondary outcomes were measures of muscle strength and function and dietary protein intake. Comparisons of baseline demographics were conducted using t-tests and χ2 or Fisher's exact tests. Differences between groups were assessed using general linear models, adjusted for baseline values, and differences within groups were assessed using paired t-tests or Kruskal-Wallis. Results: No significant between-group differences were found for all measures, but protein intake, handgrip strength, and the number of arm curls significantly improved in the intervention group. Under-recruitment of study participants and a high dropout rate impacted the ability of this study to detect significant differences between groups. Conclusion: Daily egg white protein supplementation increases protein intake and supports upper body physical function in older adults, but additional studies are needed to investigate its role in the prevention of age-related muscle mass decline in older adults. Trial #NCT03530774 (https://clinicaltrials.gov/ct2/show/NCT03530774).
Collapse
Affiliation(s)
- Sarah L Ullevig
- College for Health, Community and Policy, 12346University of Texas at San Antonio, One UTSA Circle, San Antonio, TX
| | - Krystle Zuniga
- School of Family and Consumer Sciences, Nutrition and Foods Program, 377659Texas State University, San Marcos, Texas, USA
| | - C Austin Lobitz
- College for Health, Community and Policy, 12346University of Texas at San Antonio, One UTSA Circle, San Antonio, TX
| | - Alejandra Santoyo
- College for Health, Community and Policy, 12346University of Texas at San Antonio, One UTSA Circle, San Antonio, TX
| | - Zenong Yin
- College for Health, Community and Policy, 12346University of Texas at San Antonio, One UTSA Circle, San Antonio, TX
| |
Collapse
|
19
|
Estrogen modulates metabolic risk profile after resistance training in early postmenopausal women: a randomized controlled trial. ACTA ACUST UNITED AC 2021; 28:1214-1224. [PMID: 34726661 DOI: 10.1097/gme.0000000000001841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Women experience an unhealthy change in metabolic risk profile at menopause. The purpose of the present study was to determine effects of resistance training with or without transdermal estrogen therapy (ET) on adipose tissue mass and metabolic risk profile in early postmenopausal women. METHODS A double-blinded randomized controlled trial, where healthy, untrained postmenopausal women were allocated to supervised resistance training with placebo (PLC, n = 16) or transdermal ET (n = 15) for 12 weeks. Endpoints with prespecified hypotheses were the change in total fat mass (FM) (main endpoint) and the change in visceral FM (secondary endpoint) from before to after the intervention. Additionally, prespecified endpoints of body composition, metabolic health-related blood markers, fat%, fat cell size, and lipogenic markers in subcutaneous adipose tissue (SAT) from abdominal and femoral region were explored. RESULTS Compared with the ET group, the PLC group experienced a greater reduction (time × treatment interaction P < 0.05) in total FM (PLC vs ET: -5.6% vs -1.1%) and visceral FM (-18.6% vs -6.8%), and femoral SAT (-5.6% vs 1.0%), but not abdominal SAT mass (-8.5% vs -2.8%, P = 0.15).The ET group improved their metabolic blood profile by reduced low-density lipoprotein, glucose and hemoglobin A1c compared with PLC (time × treatment interaction P < 0.05). The intervention induced changes in lipolytic markers of abdominal SAT, whereas no changes were detected in femoral SAT. CONCLUSION Use of transdermal ET reduced adipose tissue loss, but improved metabolic blood markers when combined with 12 weeks of progressive resistance training in early postmenopausal women.
Collapse
|
20
|
Effects of Milk Protein in Resistance Training-Induced Lean Mass Gains for Older Adults Aged ≥ 60 y: A Systematic Review and Meta-Analysis. Nutrients 2021; 13:nu13082815. [PMID: 34444975 PMCID: PMC8398205 DOI: 10.3390/nu13082815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 11/16/2022] Open
Abstract
This review evaluated the effects of milk-based protein supplementation on resistance training (RT)-induced gains in lean body mass or fat free mass (LBM/FFM) and muscle strength for older adults. A systematic search of PubMed, Scopus and EBSCOhost/SPORTDiscus was conducted. Eligibility criteria: Randomized controlled trials comparing all types of milk-based protein supplements with control supplements for the training older adults at mean age ≥ 60 y. Twenty studies were included in the qualitative synthesis, whilst seventeen studies were included in the quantitative synthesis. A dose of 10-15 g of milk protein supplementation was sufficient to augment RT-induced LBM/FFM. Intriguingly, four out of five studies show negative effect of whey protein supplementation at the same dose range (or even higher) compared with control supplementation (-0.49 kg, 95% CI: -0.69, -0.29, I2 = 14%, Z = 4.82, p < 0.001). For milk-based protein supplementation, RT-induced improvements in muscle strength were observed only when the protein doses ≥22 g (+0.66 kg, 95% CI: 0.07, 1.25, I2 = 0%, Z = 2.18, p = 0.03). Conclusion: Milk protein is superior to whey protein in enhancing RT-induced LBM/FFM gains for older adults. Optimal daily protein intake can dilute the protein supplementation effect.
Collapse
|
21
|
Huschtscha Z, Parr A, Porter J, Costa RJS. The Effects of a High-Protein Dairy Milk Beverage With or Without Progressive Resistance Training on Fat-Free Mass, Skeletal Muscle Strength and Power, and Functional Performance in Healthy Active Older Adults: A 12-Week Randomized Controlled Trial. Front Nutr 2021; 8:644865. [PMID: 33816540 PMCID: PMC8010144 DOI: 10.3389/fnut.2021.644865] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
The study aimed to investigate the independent and combined effects of consuming a high-protein dairy milk beverage, twice daily, with or without a progressive resistance training (PRT) program on outcomes of age-related sarcopenia, in healthy active older (≥50 years) adults. In this 12-week, 2 × 2 factorial study, participants were randomly allocated into one of four groups: dairy milk beverage (DM), exercise and dairy milk beverage (EX+DM), exercise alone (EX), and control (CON). The EX group underwent a 12-week whole-body PRT schedule (three sessions/week) and a high-protein dairy milk beverage (DM) was consumed twice daily (30 g protein/day). At weeks 0, 6, and 12, body composition (iDXA), strength [one-repetition maximum (1RM): leg press, chest press, lateral (lat) pull-down, and handgrip], power (countermovement jump), cardiorespiratory fitness (VO2), and physical performance (gait speed) were measured. Before measurements, blood samples were collected to determine the immune (i.e., leukocyte trafficking and inflammatory cytokines) and hormonal (i.e., insulin, cortisol, IGF-1, testosterone, and estradiol) profiles. Participants (n = 37) completed the study within the controlled experimental conditions. Protein intake increased in the EX+DM [mean ± SD, 1.2 ± 0.2 to 1.8 ± 0.4 g/kg body mass (BM) per day-1] and DM (1.3 ± 0.5 to 1.8 ± 0.6 g kg-1 BM day-1) groups during the intervention. Absolute fat-free mass increased in the EX+DM [mean (95% confidence interval) = 0.65 (0.25-1.0) kg] and EX [0.49 (-0.44 to 1.40) kg] groups (P < 0.001) compared to DM [-0.54 (-1.6 to 0.05) kg]. Relative fat mass decreased (group*time, P = 0.018) in DM [-1.8% (-3.3 to -0.35%)] and EX+DM [-1.3% (-2.3 to -0.31%)], which was a greater reduction than that in the CON [0.10% (-0.80 to 1.0%)] group (P < 0.01). Relative maximal strength increased in both the EX and EX+DM (≥35%, P < 0.05) groups, but not in the DM and CON groups. The change in 1RM strength outcomes was higher in EX+DM compared to all other groups (53-78%, P < 0.01). There was an increase in resting plasma IL-10 concentration in EX+DM (88%), compared to all the other groups (P = 0.016). No other differences in systemic inflammatory cytokines were observed. There were no significant changes in all hormone concentrations measured among all groups. In conclusion, a high-protein dairy milk beverage providing additional protein did not further enhance the effects of PRT on outcomes of fat-free mass, power, or physical performance. However, there was a significant augmentative effect for high-protein dairy milk consumption on changes to maximal strength outcomes during PRT in healthy active older adults.
Collapse
Affiliation(s)
- Zoya Huschtscha
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, VIC, Australia
| | - Alexandra Parr
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, VIC, Australia
| | - Judi Porter
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, VIC, Australia
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Ricardo J. S. Costa
- Department of Nutrition Dietetics & Food, Monash University, Notting Hill, VIC, Australia
| |
Collapse
|
22
|
Jadczak AD, Visvanathan R, Barnard R, Luscombe-Marsh N. A Randomized Controlled Pilot Exercise and Protein Effectiveness Supplementation Study (EXPRESS) on Reducing Frailty Risk in Community-Dwelling Older People. J Nutr Gerontol Geriatr 2021; 40:26-45. [PMID: 33691612 DOI: 10.1080/21551197.2021.1886222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This pilot study aimed to examine the feasibility and effectiveness of a 6-months multi-component exercise program combined with twice daily consumption of either rice (RicePro) or whey-based (WheyPro) protein supplements (2 × 20 g of protein) on gait speed, grip strength and physical performance in community-dwelling pre-frail and frail older adults. Secondary outcomes included: frailty score, muscle mass, quality of life, nutritional intake, cognitive performance, depression and physical activity levels. A total of 70 participants (mean age 73.34 ± 6.85 years) were randomly allocated to either RicePro (n = 36) or WheyPro (n = 34). No adverse events were reported in regards to the exercise, however, several gastrointestinal symptoms were noted with the whey protein causing two-fold more symptoms compared to the rice protein. No differences were found between the groups (p > 0.05), except the total consumed energy (kJ) (p = 0.014) and fat (g) (p = 0.012) which was significantly lower in WheyPro. The results indicate that the quality of protein may not be as important as long as a sufficient amount is consumed.
Collapse
Affiliation(s)
- Agathe Daria Jadczak
- National Health and Medical Research Council Centre of Research Excellence Frailty and Healthy Ageing, University of Adelaide, Adelaide, Australia
- Adelaide Geriatrics Training and Research with Aged Care (G-TRAC) Centre, Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Renuka Visvanathan
- National Health and Medical Research Council Centre of Research Excellence Frailty and Healthy Ageing, University of Adelaide, Adelaide, Australia
- Adelaide Geriatrics Training and Research with Aged Care (G-TRAC) Centre, Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Aged and Extended Care Services, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Adelaide, Australia
| | - Robert Barnard
- Centre for Physical Activity in Ageing (CPAA), Central Adelaide Local Health Network, Adelaide, Australia
| | - Natalie Luscombe-Marsh
- Health and Biosecurity, Commonwealth Scientific Industrial Research Organisation (CSIRO), Adelaide, Australia
| |
Collapse
|
23
|
Lamb DA, Moore JH, Smith MA, Vann CG, Osburn SC, Ruple BA, Fox CD, Smith KS, Altonji OM, Power ZM, Cerovsky AE, Ross CO, Cao AT, Goodlett MD, Huggins KW, Fruge AD, Young KC, Roberts MD. The effects of resistance training with or without peanut protein supplementation on skeletal muscle and strength adaptations in older individuals. J Int Soc Sports Nutr 2020; 17:66. [PMID: 33317565 PMCID: PMC7734909 DOI: 10.1186/s12970-020-00397-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Several studies suggest resistance training (RT) while supplementing with various protein supplements can enhance strength and muscle mass in older individuals. However, to date, no study has examined the effects of RT with a peanut protein powder (PP) supplement on these outcomes. Herein, 39 older, untrained individuals (n = 17 female, n = 22 male; age = 58.6 ± 8.0 years; body mass index =28.7 ± 5.8) completed a 6-week (n = 22) or 10-week (n = 17) RT program, where full-body training was implemented twice weekly (ClinicalTrials.gov trial registration NCT04015479; registered July 11, 2019). Participants in each program were randomly assigned to consume either a PP supplement once per day (75 total g powder providing 30 g protein, > 9.2 g essential amino acids, ~ 315 kcal; n = 20) or no supplement (CTL; n = 19). Right leg vastus lateralis (VL) muscle biopsies were obtained prior to and 24 h following the first training bout in all participants to assess the change in myofibrillar protein synthetic rates (MyoPS) as measured via the deuterium-oxide (D2O) tracer method. Pre- and Post-intervention testing in all participants was conducted using dual energy x-ray absorptiometry (DXA), VL ultrasound imaging, a peripheral quantitative computed tomography (pQCT) scan at the mid-thigh, and right leg isokinetic dynamometer assessments. Integrated MyoPS rates over a 24-h period were not significantly different (p < 0.05) between supplement groups following the first training bout. Regarding chronic changes, there were no significant supplement-by-time interactions in DXA-derived fat mass, lean soft tissue mass or percent body fat between supplementation groups. There was, however, a significant increase in VL thickness in PP versus CTL participants when the 6- and 10-week cohorts were pooled (interaction p = 0.041). There was also a significant increase in knee flexion torque in the 10-week PP group versus the CTL group (interaction p = 0.032). In conclusion, a higher-protein, defatted peanut powder supplement in combination with RT positively affects select markers of muscle hypertrophy and strength in an untrained, older adult population. Moreover, subanalyses indicated that gender did not play a role in these adaptations.
Collapse
Affiliation(s)
- Donald A Lamb
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL, 36849, USA
| | - Johnathon H Moore
- Molecular and Applied Sciences Laboratory, Applied Physiology Laboratory, School of Kinesiology, Auburn University, 301 Wire Road, Office 260, Auburn, AL, 36849, USA
| | - Morgan A Smith
- Molecular and Applied Sciences Laboratory, Applied Physiology Laboratory, School of Kinesiology, Auburn University, 301 Wire Road, Office 260, Auburn, AL, 36849, USA
| | - Christopher G Vann
- Molecular and Applied Sciences Laboratory, Applied Physiology Laboratory, School of Kinesiology, Auburn University, 301 Wire Road, Office 260, Auburn, AL, 36849, USA
| | - Shelby C Osburn
- Molecular and Applied Sciences Laboratory, Applied Physiology Laboratory, School of Kinesiology, Auburn University, 301 Wire Road, Office 260, Auburn, AL, 36849, USA
| | - Bradley A Ruple
- Molecular and Applied Sciences Laboratory, Applied Physiology Laboratory, School of Kinesiology, Auburn University, 301 Wire Road, Office 260, Auburn, AL, 36849, USA
| | - Carlton D Fox
- Molecular and Applied Sciences Laboratory, Applied Physiology Laboratory, School of Kinesiology, Auburn University, 301 Wire Road, Office 260, Auburn, AL, 36849, USA
| | - Kristen S Smith
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL, 36849, USA
| | - Olivia M Altonji
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL, 36849, USA
| | - Zade M Power
- Molecular and Applied Sciences Laboratory, Applied Physiology Laboratory, School of Kinesiology, Auburn University, 301 Wire Road, Office 260, Auburn, AL, 36849, USA
| | - Annsley E Cerovsky
- Molecular and Applied Sciences Laboratory, Applied Physiology Laboratory, School of Kinesiology, Auburn University, 301 Wire Road, Office 260, Auburn, AL, 36849, USA
| | - C Owen Ross
- Molecular and Applied Sciences Laboratory, Applied Physiology Laboratory, School of Kinesiology, Auburn University, 301 Wire Road, Office 260, Auburn, AL, 36849, USA
| | - Andy T Cao
- Molecular and Applied Sciences Laboratory, Applied Physiology Laboratory, School of Kinesiology, Auburn University, 301 Wire Road, Office 260, Auburn, AL, 36849, USA
| | - Michael D Goodlett
- Athletics Department, Auburn University, Auburn, AL, 36849, USA.,Edward Via College of Osteopathic Medicine Auburn, Auburn, AL, 36832, USA
| | - Kevin W Huggins
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL, 36849, USA
| | - Andrew D Fruge
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL, 36849, USA
| | - Kaelin C Young
- Molecular and Applied Sciences Laboratory, Applied Physiology Laboratory, School of Kinesiology, Auburn University, 301 Wire Road, Office 260, Auburn, AL, 36849, USA.,Edward Via College of Osteopathic Medicine Auburn, Auburn, AL, 36832, USA
| | - Michael D Roberts
- Molecular and Applied Sciences Laboratory, Applied Physiology Laboratory, School of Kinesiology, Auburn University, 301 Wire Road, Office 260, Auburn, AL, 36849, USA. .,Edward Via College of Osteopathic Medicine Auburn, Auburn, AL, 36832, USA.
| |
Collapse
|
24
|
Effects of adequate dietary protein with whey protein, leucine, and vitamin D supplementation on sarcopenia in older adults: An open-label, parallel-group study. Clin Nutr 2020; 40:1323-1329. [PMID: 32928579 DOI: 10.1016/j.clnu.2020.08.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/15/2020] [Accepted: 08/20/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS Sarcopenia is defined as a syndrome characterized by declines in skeletal muscle mass and strength or an alteration in physical function. Although some studies showed nutritional supplementation alone might have health benefits for older sarcopenic patients, their results were inconsistent and remain controversial. The objective of this study was to evaluate if a diet with high protein supplementation (Supp) can lead to better improvement than additional protein intake via dietary counseling (Diet) in maintaining the muscle mass and strength among sarcopenic elders. METHODS This was an open-label, parallel-group (Supp vs. Diet) trial. In total, 56 sarcopenic elders completed this study. All subjects were advised to achieve adequate protein intake (1.2-1.5 g/kg body weight/day). This amount of protein is recommended for the elderly and is thought to prevent or retard muscle loss due to aging. The diet group (n = 28) was recommended to consume an ordinary protein-rich diet via counselling whereas the Supp group (n = 28) received a vitamin D- and leucine-enriched whey protein supplement for 12 weeks. The appendicular muscle mass index (AMMI), handgrip strength, gait speed, and calorie and macronutrients intake were evaluated after 4 and 12 weeks of the diet intervention. RESULTS Total energy and protein intake increased in both groups. The Supp group had higher intake than the Diet group. The AMMI increased in both groups, and handgrip strength improved in the Diet group. However, no significant differences in AMMI or handgrip strength were found between the two groups. Compared to the Diet group, the Supp group had better improvement in gait speed after 12 weeks of the supplement intervention especially in subjects younger than 75 years. CONCLUSIONS The AMMI can be improved as long as sufficient protein is consumed (1.2-1.5 g/kg body weight/day) in sarcopenic elders. Nutritional supplement allows the sarcopenic elderly to more conveniently meet their protein requirements. Supplementation with whey protein and vitamin D can further improve gait speed in elderly sarcopenic subjects, especially in the "younger" age group. TRIAL REGISTRATION ClinicalTrials.gov NCT03860194.
Collapse
|
25
|
Labata-Lezaun N, Llurda-Almuzara L, López-de-Celis C, Rodríguez-Sanz J, González-Rueda V, Hidalgo-García C, Muniz-Pardos B, Pérez-Bellmunt A. Effectiveness of Protein Supplementation Combined with Resistance Training on Muscle Strength and Physical Performance in Elderly: A Systematic Review and Meta-Analysis. Nutrients 2020; 12:E2607. [PMID: 32867103 PMCID: PMC7551830 DOI: 10.3390/nu12092607] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to evaluate the effectiveness of the combination of resistance training (RT) and protein supplementation (PS), compared to RT alone or combined with a placebo (plS), in the improvement of muscle strength and physical performance. The search strategy in PubMed, Cochrane Library, and Web of Sciences databases found a total of 294 studies. Once inclusion and exclusion criteria were applied, 16 studies were included for the qualitative analysis. A total of 657 healthy elderly (>60 years) participants were analysed. Finally, 15 articles were included in the quantitative analysis with one being excluded due to issues with data availability. Upper-limb, lower-limb, and handgrip strength were the primary outcomes of the meta-analysis. The secondary outcomes, related to physical performance, were Short Physical Performance Battery (SPPB), gait speed, and the five-chair-rise test (5CRT). The main results of the meta-analysis show no statistical differences for upper-limb (SMD: 0.56, 95% CI: -0.09, 1.21, p = 0.09, I2 = 68%), lower-limb (SMD: 0.00, 95% CI: -0.18, 0.18, p = 1.0, I2 = 11%), and handgrip strength (SMD: 0.03, 95% CI: -0.26, 0.32, p = 0.84, I2 = 0%) between the RT + PS and the RT alone (or combined with plS). Moreover, no statistical differences were found relating to physical performance. In view of these results, protein supplementation combined with RT does not provide additional benefits compared to RT alone or with plS in healthy elderly adults.
Collapse
Affiliation(s)
- Noé Labata-Lezaun
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain; (N.L.-L.); (L.L.-A.); (J.R.-S.)
| | - Luis Llurda-Almuzara
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain; (N.L.-L.); (L.L.-A.); (J.R.-S.)
| | - Carlos López-de-Celis
- Physiotherapy Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain; (C.L.-d.-C.); (V.G.-R.)
| | - Jacobo Rodríguez-Sanz
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain; (N.L.-L.); (L.L.-A.); (J.R.-S.)
| | - Vanessa González-Rueda
- Physiotherapy Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain; (C.L.-d.-C.); (V.G.-R.)
| | - César Hidalgo-García
- Physiotherapy Department, Faculty of Health Sciences, Universidad de Zaragoza, 50009 Zaragoza, Spain;
| | - Borja Muniz-Pardos
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, University of Zaragoza, 50009 Zaragoza, Spain;
| | - Albert Pérez-Bellmunt
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain; (N.L.-L.); (L.L.-A.); (J.R.-S.)
| |
Collapse
|
26
|
So E, Joung H. Effect of Dairy Protein Intake on Muscle Mass among Korean Adults: A Prospective Cohort Study. Nutrients 2020; 12:E2537. [PMID: 32825743 PMCID: PMC7551315 DOI: 10.3390/nu12092537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/23/2022] Open
Abstract
This cohort study aimed to identify the associations of dairy protein intake with the risk of developing a low muscle mass during a 12-year follow-up period, using data from 4412 middle-aged Korean Genome and Epidemiology Study participants with a normal baseline muscle mass. Dairy protein intake at baseline was assessed using a semi-quantitative Food Frequency Questionnaire. Skeletal muscle mass index (SMI), defined as the weight-adjusted skeletal muscle mass, was measured biennially using multi-frequency bioelectrical impedance analyses. Cox proportional hazards regression analysis was used to calculate multivariable-adjusted hazard ratios (HRs) and 95% confidence intervals (CIs). Overall, 395 subjects developed a low SMI (%) during an average follow-up of 141 (19-152) months. The average consumption of milk and other dairy products was 73.6 and 104.1 g/day, respectively. In men, a higher dairy protein intake was associated with a decreased risk of developing a low SMI (tertile 3 [T3] vs. T1, HR: 0.63; 95% CI: 0.42, 0.94; p for trend = 0.029). In a stratified analysis according to a total protein intake, this association was stronger in the lower-protein intake group (HR: 0.59; 95% CI: 0.35, 0.99; p for trend = 0.036) but not detected in the higher-protein intake group. Men who consumed milk ≥1 time/day had a significantly lower risk of developing a low SMI (HR: 0.62; 95% CI: 0.39, 0.98; p for trend = 0.023). No significant associations were observed in women. In summary, dairy consumption appears to be beneficial for decreasing the risk of developing a low muscle mass in middle-aged Korean men.
Collapse
Affiliation(s)
- Eunjin So
- Department of Clinical Nutrition, The Catholic University of Korea Seoul St, Mary’s Hospital, Seoul 06591, Korea;
| | - Hyojee Joung
- Department of Public Health, Graduate School of Public Health & Institute of Health and Environment, Seoul National University, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
27
|
Endo Y, Nourmahnad A, Sinha I. Optimizing Skeletal Muscle Anabolic Response to Resistance Training in Aging. Front Physiol 2020; 11:874. [PMID: 32792984 PMCID: PMC7390896 DOI: 10.3389/fphys.2020.00874] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Loss of muscle mass and strength with aging, also termed sarcopenia, results in a loss of mobility and independence. Exercise, particularly resistance training, has proven to be beneficial in counteracting the aging-associated loss of skeletal muscle mass and function. However, the anabolic response to exercise in old age is not as robust, with blunted improvements in muscle size, strength, and function in comparison to younger individuals. This review provides an overview of several physiological changes which may contribute to age-related loss of muscle mass and decreased anabolism in response to resistance training in the elderly. Additionally, the following supplemental therapies with potential to synergize with resistance training to increase muscle mass are discussed: nutrition, creatine, anti-inflammatory drugs, testosterone, and growth hormone (GH). Although these interventions hold some promise, further research is necessary to optimize the response to exercise in elderly patients.
Collapse
Affiliation(s)
- Yori Endo
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Atousa Nourmahnad
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Indranil Sinha
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Harvard Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA, United States
| |
Collapse
|
28
|
Snijders T, Aussieker T, Holwerda A, Parise G, Loon LJC, Verdijk LB. The concept of skeletal muscle memory: Evidence from animal and human studies. Acta Physiol (Oxf) 2020; 229:e13465. [PMID: 32175681 PMCID: PMC7317456 DOI: 10.1111/apha.13465] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
Within the current paradigm of the myonuclear domain theory, it is postulated that a linear relationship exists between muscle fibre size and myonuclear content. The myonuclear domain is kept (relatively) constant by adding additional nuclei (supplied by muscle satellite cells) during muscle fibre hypertrophy and nuclear loss (by apoptosis) during muscle fibre atrophy. However, data from recent animal studies suggest that myonuclei that are added to support muscle fibre hypertrophy are not lost within various muscle atrophy models. Such myonuclear permanence has been suggested to constitute a mechanism allowing the muscle fibre to (re)grow more efficiently during retraining, a phenomenon referred to as "muscle memory." The concept of "muscle memory by myonuclear permanence" has mainly been based on data attained from rodent experimental models. Whether the postulated mechanism also holds true in humans remains largely ambiguous. Nevertheless, there are several studies in humans that provide evidence to potentially support or contradict (parts of) the muscle memory hypothesis. The goal of the present review was to discuss the evidence for the existence of "muscle memory" in both animal and human models of muscle fibre hypertrophy as well as atrophy. Furthermore, to provide additional insight in the potential presence of muscle memory by myonuclear permanence in humans, we present new data on previously performed exercise training studies. Finally, suggestions for future research are provided to establish whether muscle memory really exists in humans.
Collapse
Affiliation(s)
- Tim Snijders
- Department of Human Biology NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht University Maastricht the Netherlands
| | - Thorben Aussieker
- Department of Human Biology NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht University Maastricht the Netherlands
| | - Andy Holwerda
- Department of Human Biology NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht University Maastricht the Netherlands
| | - Gianni Parise
- Department of Kinesiology and Medical Physics & Applied Radiation Sciences McMaster University Hamilton ON Canada
| | - Luc J. C. Loon
- Department of Human Biology NUTRIM School of Nutrition and Translational Research in Metabolism Maastricht University Maastricht the Netherlands
| | | |
Collapse
|
29
|
Effects of low-dose milk protein supplementation following low-to-moderate intensity exercise training on muscle mass in healthy older adults: a randomized placebo-controlled trial. Eur J Nutr 2020; 60:917-928. [PMID: 32524231 PMCID: PMC7900046 DOI: 10.1007/s00394-020-02302-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/05/2020] [Indexed: 01/10/2023]
Abstract
PURPOSE The purpose of this study was to examine whether long-term ingestion of low-dose milk protein supplementation causes a greater increase in muscle mass and strength of older adults during low-to-moderate intensity exercise training intervention than isocaloric carbohydrate. METHODS In a randomized, double-blind, and placebo-controlled design, 122 healthy older adults (60-84 year) received either an acidified milk protein drink containing 10 g of milk protein (MILK; n = 61) or an isocaloric placebo drink (PLA; n = 61) daily throughout 6 months of body weight and medicine ball exercise training. Measurements before and after the intervention included body composition, physical performance and blood biochemistry. RESULTS Lean body mass significantly increased in the MILK group (+ 0.54 kg, p < 0.001), but did not change in the PLA group (- 0.10 kg, p = 0.534). The increases in the MILK group were significantly greater than in the PLA group (p = 0.004). Fat mass (- 0.77 kg) and plasma uric acid levels (- 0.3 mg/dL) significantly decreased only in the MILK group (p < 0.001), with a significant group difference (p = 0.002 and p < 0.001, respectively). Most of the physical performance tests significantly improved in both groups, but no group differences were found. CONCLUSION We conclude that low-dose milk protein supplementation (10 g of protein/day) combined with low-to-moderate intensity exercise training is associated with increased muscle mass, but not improved physical performance compared to carbohydrate combined with exercise in healthy older adults. This study was registered in the UMIN Clinical Trials Registry (UMIN000032189).
Collapse
|
30
|
Effects of slow- v. fast-digested protein supplementation combined with mixed power training on muscle function and functional capacities in older men. Br J Nutr 2020; 125:1017-1033. [PMID: 32498755 DOI: 10.1017/s0007114520001932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ageing leads to a progressive loss of muscle function (MF) and quality (MQ: muscle strength (MS)/lean muscle mass (LM)). Power training and protein (PROT) supplementation have been proposed as efficient interventions to improve MF and MQ. Discrepancies between results appear to be mainly related to the type and/or dose of proteins used. The present study aimed at determining whether or not mixed power training (MPT) combined with fast-digested PROT (F-PROT) leads to greater improvements in MF and MQ in elderly men than MPT combined with slow-digested PROT (S-PROT) or MPT alone. Sixty elderly men (age 69 (sd 7) years; BMI 18-30 kg/m2) were randomised into three groups: (1) placebo + MPT (PLA; n 19); (2) F-PROT + MPT (n 21) and (3) S-PROT + MPT (n 20) completed the intervention. LM, handgrip and knee extensor MS and MQ, functional capacity, serum metabolic markers, skeletal muscle characteristics, dietary intake and total energy expenditure were measured. The interventions consisted in 12 weeks of MPT (3 times/week; 1 h/session) combined with a supplement (30 g:10 g per meal) of F-PROT (whey) or S-PROT (casein) or a placebo. No difference was observed among groups for age, BMI, number of steps and dietary intake pre- and post-intervention. All groups improved significantly their LM, lower limb MS/MQ, functional capacity, muscle characteristics and serum parameters following the MPT. Importantly, no difference between groups was observed following the MPT. Altogether, adding 30 g PROT/d to MPT, regardless of the type, does not provide additional benefits to MPT alone in older men ingesting an adequate (i.e. above RDA) amount of protein per d.
Collapse
|
31
|
Wirth J, Hillesheim E, Brennan L. The Role of Protein Intake and its Timing on Body Composition and Muscle Function in Healthy Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Nutr 2020; 150:1443-1460. [PMID: 32232404 DOI: 10.1093/jn/nxaa049] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Increased protein intake has been suggested to improve gains in muscle mass and strength in adults. Furthermore, the timing of protein intake has been discussed as a margin of opportunity for improved prevention measures. OBJECTIVE This systematic review investigated the effect of protein supplementation on body composition and muscle function (strength and synthesis) in healthy adults, with an emphasis on the timing of protein intake. METHODS Randomized controlled trials were identified using PubMed, Web of Science, CINAHL, and Embase, up to March 2019. For meta-analyses, data on lean body mass (LBM), handgrip strength, and leg press strength were pooled by age group (mean age 18-55 or >55 y) and timing of protein intake. The quality of evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluations approach. RESULTS Data from 65 studies with 2907 participants (1514 men and 1380 women, 13 unknown sex) were included in the review. Twenty-six, 8, and 24 studies were used for meta-analysis on LBM, handgrip strength, and leg press strength, respectively. The protein supplementation was effective in improving (mean difference; 95% CI) LBM in adults (0.62 kg; 0.36, 0.88) and older adults (0.46 kg; 0.23, 0.70), but not handgrip strength (older adults: 0.26 kg; -0.51, 1.04) and leg press strength (adults: 5.80 kg; -0.33, 11.93; older adults: 1.97 kg; -2.78, 6.72). Sensitivity analyses removing studies without exercise training had no impact on the outcomes. Data regarding muscle synthesis were scarce and inconclusive. Subgroup analyses showed no beneficial effect of a specific timing of protein intake on LBM, handgrip strength, and leg press strength. CONCLUSION Overall, the results support the positive impact of protein supplementation on LBM of adults and older adults, independently of intake timing. Effects on muscle strength and synthesis are less clear and need further investigation. This systematic review was registered on PROSPERO as CRD42019126742.
Collapse
Affiliation(s)
- Janine Wirth
- Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Elaine Hillesheim
- Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Lorraine Brennan
- Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
32
|
Master PBZ, Macedo RCO. Effects of dietary supplementation in sport and exercise: a review of evidence on milk proteins and amino acids. Crit Rev Food Sci Nutr 2020; 61:1225-1239. [PMID: 32363897 DOI: 10.1080/10408398.2020.1756216] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dietary supplements, especially protein, are used by athletes to achieve the exercise and training daily demands, and have been receiving research focus on their role regarding recovery and performance. Protein supplements are preferred over traditional protein sources because of their ease of availability and use. In addition to consuming a complete protein supplement, such as whey protein, the ingestion of a supplement containing only amino acids has been of interest for promoting skeletal muscle anabolism and high-quality weight loss. The aim of this study was to review the existing evidence on the effects of protein and amino acid supplementation on exercise. The preponderance of evidence suggests that protein supplementation, especially milk proteins, potentiate muscle protein synthesis, lean mass and exercise recovery. Unlike proteins, amino acids supplementation (branched-chain amino acids, glutamine or leucine) results from research are equivocal and are not warranted.
Collapse
|
33
|
Aas SN, Seynnes O, Benestad HB, Raastad T. Strength training and protein supplementation improve muscle mass, strength, and function in mobility-limited older adults: a randomized controlled trial. Aging Clin Exp Res 2020; 32:605-616. [PMID: 31183750 DOI: 10.1007/s40520-019-01234-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/28/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Adaptation to strength training in very old mobility-limited individuals is not fully characterized. Therefore, the aim of this study was to perform a thorough investigation of the adaptation to a lower body strength training regime in this population, with particular emphasis on the relationship between changes in selected variables. METHODS Twenty-two mobility-limited older men and women (85 ± 6 years) were randomized to either a group performing 30 min of heavy-load strength training three times a week, with daily protein supplementation, for 10 weeks (ST), or a control group. End points were leg lean mass assessed by DXA, muscle thickness assessed by ultrasound, isometric and dynamic strength, rate of torque development, and functional capacity. RESULTS Leg lean mass increased from baseline in ST (0.7 ± 0.3 kg), along with increased thickness of vastus lateralis (4.4 ± 3.2%), rectus femoris (6.7 ± 5.1%), and vastus intermedius (5.8 ± 5.9%). The hypertrophy was accompanied by improved knee extensor strength (20-23%) and functional performance (7-11%). In ST, neither the change in leg lean mass nor muscle thickness correlated with changes in muscle strength. However, a strong correlation was observed between the change in isometric strength and gait velocity (r = 0.70). CONCLUSIONS The mismatch between gains in muscle size and strength suggests that muscle quality-related adaptations contributed to the increases in strength. The correlations observed between improvements in strength and function suggests that interventions eliciting large improvements in strength may also be superior in terms of functional gains in this population.
Collapse
Affiliation(s)
- Sigve Nyvik Aas
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway.
| | - Olivier Seynnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Haakon B Benestad
- Section of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
34
|
Pinto AP, Vieira TS, Marafon BB, Batitucci G, Cabrera EMB, da Rocha AL, Kohama EB, Rodrigues KCC, de Moura LP, Pauli JR, Cintra DE, Ropelle ER, de Freitas EC, da Silva ASR. The Combination of Fasting, Acute Resistance Exercise, and Protein Ingestion Led to Different Responses of Autophagy Markers in Gastrocnemius and Liver Samples. Nutrients 2020; 12:nu12030641. [PMID: 32121154 PMCID: PMC7146592 DOI: 10.3390/nu12030641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/02/2022] Open
Abstract
The present study verified the responses of proteins related to the autophagy pathway after 10 h of fast with resistance exercise and protein ingestion in skeletal muscle and liver samples. The rats were distributed into five experimental groups: control (CT; sedentary and without gavage after fast), exercise immediately (EXE-imm; after fast, rats were submitted to the resistance protocol and received water by gavage immediately after exercise), exercise after 1 h (EXE-1h; after fast, rats were submitted to the resistance protocol and received water by gavage 1 h after exercise), exercise and supplementation immediately after exercise (EXE/Suppl-imm; after fast, rats were submitted to the resistance protocol and received a mix of casein: whey protein 1:1 (w/w) by gavage immediately after exercise), exercise and supplementation 1 h after exercise (EXE/Suppl-1h; after fast, rats were submitted to the resistance protocol and received a mix of casein: whey protein 1:1 (w/w) by gavage 1 h after exercise). In summary, the current findings show that the combination of fasting, acute resistance exercise, and protein blend ingestion (immediately or 1 h after the exercise stimulus) increased the serum levels of leucine, insulin, and glucose, as well as the autophagy protein contents in skeletal muscle, but decreased other proteins related to the autophagic pathway in the liver. These results deserve further mechanistic investigations since athletes are combining fasting with physical exercise to enhance health and performance outcomes.
Collapse
Affiliation(s)
- Ana P. Pinto
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo 14049-900, Brazil; (A.P.P.); (A.L.d.R.); (E.B.K.)
| | - Tales S. Vieira
- Postgraduate Program in Nutritional Science, State University of São Paulo Júlio de Mesquita Filho (Araraquara). Araraquara, São Paulo 14800-903, Brazil; (T.S.V.); (G.B.); (E.C.d.F.)
| | - Bruno B. Marafon
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-907, Brazil;
| | - Gabriela Batitucci
- Postgraduate Program in Nutritional Science, State University of São Paulo Júlio de Mesquita Filho (Araraquara). Araraquara, São Paulo 14800-903, Brazil; (T.S.V.); (G.B.); (E.C.d.F.)
| | - Elisa M. B. Cabrera
- Institute of Translational Nutrigenetics and Nutrigenomics, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Guadalajara 44100, Mexico;
| | - Alisson L. da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo 14049-900, Brazil; (A.P.P.); (A.L.d.R.); (E.B.K.)
| | - Eike B. Kohama
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo 14049-900, Brazil; (A.P.P.); (A.L.d.R.); (E.B.K.)
| | - Kellen C. C. Rodrigues
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (K.C.C.R.); (L.P.d.M.); (J.R.P.); (D.E.C.); (E.R.R.)
| | - Leandro P. de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (K.C.C.R.); (L.P.d.M.); (J.R.P.); (D.E.C.); (E.R.R.)
| | - José R. Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (K.C.C.R.); (L.P.d.M.); (J.R.P.); (D.E.C.); (E.R.R.)
| | - Dennys E. Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (K.C.C.R.); (L.P.d.M.); (J.R.P.); (D.E.C.); (E.R.R.)
| | - Eduardo R. Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (K.C.C.R.); (L.P.d.M.); (J.R.P.); (D.E.C.); (E.R.R.)
| | - Ellen C. de Freitas
- Postgraduate Program in Nutritional Science, State University of São Paulo Júlio de Mesquita Filho (Araraquara). Araraquara, São Paulo 14800-903, Brazil; (T.S.V.); (G.B.); (E.C.d.F.)
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-907, Brazil;
| | - Adelino S. R. da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo 14049-900, Brazil; (A.P.P.); (A.L.d.R.); (E.B.K.)
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo 14040-907, Brazil;
- Correspondence: ; Tel.: +55-16-33150522; Fax: +55-16-33150551
| |
Collapse
|
35
|
Effects of exercise and whey protein on muscle mass, fat mass, myoelectrical muscle fatigue and health-related quality of life in older adults: a secondary analysis of the Liverpool Hope University-Sarcopenia Ageing Trial (LHU-SAT). Eur J Appl Physiol 2020; 120:493-503. [PMID: 31894414 DOI: 10.1007/s00421-019-04293-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/21/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE To investigate the effects of exercise in combination with, or without, a leucine-enriched whey protein supplement on muscle mass, fat mass, myoelectrical muscle fatigue and health-related quality of life (HR-QOL) in older adults. METHODS 100 community-dwelling older adults [52% women, age: 69 ± 6 years (mean ± SD)] were randomised to four [Control (C); Exercise (E); Exercise + Protein (EP); Protein (P)] independent groups. E and EP groups completed 16 weeks of exercise [resistance (2 times/week) and functional (1 time/week]. EP and P groups were also administered a leucine-enriched whey protein supplement (3 times/day) based on body weight (1.5 g/kg/day). Muscle and fat mass (bioelectrical impedance analysis), myoelectrical muscle fatigue (surface electromyography) and HR-QOL (WHOQOL-BREF) were measured pre- and post-intervention. RESULTS At post-intervention, the rectus femoris (E: - 4.8%/min, p = 0.007, ES = 0.86; EP: - 3.3%/min, p = 0.045, ES = 0.58) and bicep femoris (E: - 3.9%/min, p < 0.001, ES = 1.46; EP: - 4.3%/min, p < 0.001, ES = 1.58) muscles became more resistant to fatigue in the E and EP groups, respectively (p < 0.05 versus C). HR-QOL improved in the E group only. Muscle and fat mass did not change (p > 0.05). CONCLUSION Physical exercise is a potent method to improve myoelectrical muscle fatigue and HR-QOL in older adults. However, leucine-enriched whey protein did not augment this response in those already consuming sufficient quantities of protein at trial enrolment.
Collapse
|
36
|
Tan KT, Ang STJ, Tsai SY. Sarcopenia: Tilting the Balance of Protein Homeostasis. Proteomics 2019; 20:e1800411. [PMID: 31722440 DOI: 10.1002/pmic.201800411] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/04/2019] [Indexed: 12/14/2022]
Abstract
Sarcopenia, defined as age-associated decline of muscle mass and function, is a risk factor for mortality and disability, and comorbid with several chronic diseases such as type II diabetes and cardiovascular diseases. Clinical trials showed that nutritional supplements had positive effects on muscle mass, but not on muscle function and strength, demonstrating our limited understanding of the molecular events involved in the ageing muscle. Protein homeostasis, the equilibrium between protein synthesis and degradation, is proposed as the major mechanism underlying the development of sarcopenia. As the key central regulator of protein homeostasis, the mammalian target of rapamycin (mTOR) is proposed to be essential for muscle hypertrophy. Paradoxically, sustained activation of mTOR complex 1 (mTORC1) is associated with a loss of sensitivity to extracellular signaling in the elderly. It is not understood why sustained mTORC1 activity, which should induce muscle hypertrophy, instead results in muscle atrophy. Here, recent findings on the implications of disrupting protein homeostasis on muscle physiology and sarcopenia development in the context of mTOR/protein kinase B (AKT) signaling are reviewed. Understanding the role of these molecular mechanisms during the ageing process will contribute towards the development of targeted therapies that will improve protein metabolism and reduce sarcopenia.
Collapse
Affiliation(s)
- Kuan Ting Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9 Admin Office, Singapore, 117597, Singapore
| | - Seok-Ting Jamie Ang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9 Admin Office, Singapore, 117597, Singapore
| | - Shih-Yin Tsai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9 Admin Office, Singapore, 117597, Singapore
| |
Collapse
|
37
|
Amasene M, Besga A, Echeverria I, Urquiza M, Ruiz JR, Rodriguez-Larrad A, Aldamiz M, Anaut P, Irazusta J, Labayen I. Effects of Leucine-Enriched Whey Protein Supplementation on Physical Function in Post-Hospitalized Older Adults Participating in 12-Weeks of Resistance Training Program: A Randomized Controlled Trial. Nutrients 2019; 11:E2337. [PMID: 31581591 PMCID: PMC6835698 DOI: 10.3390/nu11102337] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 12/25/2022] Open
Abstract
Age-related strength and muscle mass loss is further increased after acute periods of inactivity. To avoid this, resistance training has been proposed as an effective countermeasure, but the additional effect of a protein supplement is not so clear. The aim of this study was to examine the effect of a whey protein supplement enriched with leucine after resistance training on muscle mass and strength gains in a post-hospitalized elderly population. A total of 28 participants were included and allocated to either protein supplementation or placebo supplementation following resistance training for 12 weeks (2 days/week). Physical function (lower and upper body strength, aerobic capacity and the Short Physical Performance Battery (SPPB) test), mini nutritional assessment (MNA) and body composition (Dual X-ray Absorptiometry) were assessed at baseline and after 12 weeks of resistance training. Both groups showed improvements in physical function after the intervention (p < 0.01), but there were no further effects for the protein group (p > 0.05). Muscle mass did not improve after resistance training in either group (p > 0.05). In conclusion, 12 weeks of resistance training are enough to improve physical function in a post-hospitalized elderly population with no further benefits for the protein-supplemented group.
Collapse
Affiliation(s)
- Maria Amasene
- Department of Pharmacy and Food Science, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain.
| | - Ariadna Besga
- Department of Medicine, Araba University Hospital, Bioaraba Research Institute, OSI Araba. CIBERSAM, University of the Basque Country (UPV/EHU), 01004 Vitoria-Gasteiz, Spain.
| | - Iñaki Echeverria
- Department of Physiology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain.
| | - Miriam Urquiza
- Department of Physiology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain.
| | - Jonatan R Ruiz
- PROFITH "PROmoting FITness and Health through physical activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain.
| | - Ana Rodriguez-Larrad
- Department of Physiology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain.
| | - Mikel Aldamiz
- Department of Medicine, Araba University Hospital, Bioaraba Research Institute, OSI Araba. CIBERSAM, University of the Basque Country (UPV/EHU), 01004 Vitoria-Gasteiz, Spain.
| | - Pilar Anaut
- Department of Medicine, Araba University Hospital, Bioaraba Research Institute, OSI Araba. CIBERSAM, University of the Basque Country (UPV/EHU), 01004 Vitoria-Gasteiz, Spain.
| | - Jon Irazusta
- Department of Physiology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain.
| | - Idoia Labayen
- ELIKOS group, Institute for Innovation and Sustainable Development in Food Chain (IS-FOOD), Public University of Navarra, 31006 Pamplona, Spain.
| |
Collapse
|
38
|
Holloway GP, Holwerda AM, Miotto PM, Dirks ML, Verdijk LB, van Loon LJC. Age-Associated Impairments in Mitochondrial ADP Sensitivity Contribute to Redox Stress in Senescent Human Skeletal Muscle. Cell Rep 2019. [PMID: 29539414 DOI: 10.1016/j.celrep.2018.02.069] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It remains unknown if mitochondrial bioenergetics are altered with aging in humans. We established an in vitro method to simultaneously determine mitochondrial respiration and H2O2 emission in skeletal muscle tissue across a range of biologically relevant ADP concentrations. Using this approach, we provide evidence that, although the capacity for mitochondrial H2O2 emission is not increased with aging, mitochondrial ADP sensitivity is impaired. This resulted in an increase in mitochondrial H2O2 and the fraction of electron leak to H2O2, in the presence of virtually all ADP concentrations examined. Moreover, although prolonged resistance training in older individuals increased muscle mass, strength, and maximal mitochondrial respiration, exercise training did not alter H2O2 emission rates in the presence of ADP, the fraction of electron leak to H2O2, or the redox state of the muscle. These data establish that a reduction in mitochondrial ADP sensitivity increases mitochondrial H2O2 emission and contributes to age-associated redox stress.
Collapse
Affiliation(s)
- Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Andrew M Holwerda
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, 6200 Maastricht, the Netherlands
| | - Paula M Miotto
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Marlou L Dirks
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, 6200 Maastricht, the Netherlands
| | - Lex B Verdijk
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, 6200 Maastricht, the Netherlands
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, 6200 Maastricht, the Netherlands
| |
Collapse
|
39
|
Native Whey Induces Similar Adaptation to Strength Training as Milk, despite Higher Levels of Leucine, in Elderly Individuals. Nutrients 2019; 11:nu11092094. [PMID: 31487819 PMCID: PMC6770720 DOI: 10.3390/nu11092094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/05/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Large amounts of protein (40 g) or supplementing suboptimal servings of protein with leucine are able to overcome the anabolic resistance in elderly muscle. Our aim was to compare the effects of supplementation of native whey, high in leucine, with milk on gains in muscle mass and strength during a period of strength training, in elderly individuals. METHODS In this double-blinded, randomized, controlled study, a total of 30 healthy men and women received two daily servings of 20 g of either milk protein or native whey, during an 11-week strength training intervention. Muscle strength, lean mass, m. vastus lateralis thickness, muscle fiber area, and resting and post-exercise phosphorylation of p70S6K, 4E-BP1, and eEF-2 were assessed prior to and after the intervention period. RESULTS Muscle mass and strength increased, by all measures applied in both groups (p < 0.001), with no differences between groups (p > 0.25). p70S6K phosphorylation increased (~1000%, p < 0.045) 2 h after exercise in the untrained and trained state, with no differences between supplements. Total and phosphorylated mTORC-1 decreased after training. CONCLUSION Supplementation with milk or native whey during an 11-week strength training period increased muscle mass and strength similarly in healthy elderly individuals.
Collapse
|
40
|
Park Y, Park HY, Kim J, Hwang H, Jung Y, Kreider R, Lim K. Effects of whey protein supplementation prior to, and following, resistance exercise on body composition and training responses: A randomized double-blind placebo-controlled study. J Exerc Nutrition Biochem 2019; 23:34-44. [PMID: 31337204 PMCID: PMC6651693 DOI: 10.20463/jenb.2019.0015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/05/2023] Open
Abstract
PURPOSE The composition of protein supplements, the consumption timing immedi¬ately before and after resistance exercise training (RET), and the quantity of protein supplementation may be important factors for the im-provement of muscle mass and function. Although these factors should be considered comprehensively for effective improvement of muscular function in protein supplementation, relatively few studies have focused on this area. Therefore, this study was designed to investigate whether a protein blend supplement before and after resistance exercise for 12 weeks would be effective in increasing muscular function. METHODS In total, 18 participants were randomly assigned to a placebo (PLA) or protein blend supplement (PRO) group. All subjects followed the same training routine 3 times per week for 12 weeks, taking placebo or protein supplements immediately before and after each exercise session. The protein supplement consisted of 40 g of blend protein, including hydrolyzed whey protein. The RET consisted of lower body (barbell squat, dead lift, seated leg extension, and lying leg curl) and upper body (bench press, barbell rowing, preacher bench biceps curl, and dumbbell shoulder press) exercises. A repetition was defined as three sets of 10-12 times with 80% of one repetition maximum (1RM). RESULTS Although the PRO group had a lower protein intake in terms of total food intake than the PLA group, the mean changes in muscle circumference, strength, and exercise volume increased, especially at week 12, compared to the PLA group. CONCLUSION These results suggest that the composition and timing of protein intake are more important than the total amount.
Collapse
Affiliation(s)
- Yeram Park
- Department of Physical Education, Konkuk University, SeoulRepublic of Korea
| | - Hun-Young Park
- Physical Activity and Performance Institute, Konkuk University, SeoulRepublic of Korea
| | - Jisu Kim
- Physical Activity and Performance Institute, Konkuk University, SeoulRepublic of Korea
| | - Hyejung Hwang
- Physical Activity and Performance Institute, Konkuk University, SeoulRepublic of Korea
| | - Yanghoon Jung
- CJ Research Institute, CJ CheilJedang, SuwonRepublic of Korea
| | - Richard Kreider
- Department of Health and Kinesiology, Texas A&M University, TexasU.S.A.
| | - Kiwon Lim
- Department of Physical Education, Konkuk University, SeoulRepublic of Korea
- Physical Activity and Performance Institute, Konkuk University, SeoulRepublic of Korea
| |
Collapse
|
41
|
Kirk B, Mooney K, Amirabdollahian F, Khaiyat O. Exercise and Dietary-Protein as a Countermeasure to Skeletal Muscle Weakness: Liverpool Hope University - Sarcopenia Aging Trial (LHU-SAT). Front Physiol 2019; 10:445. [PMID: 31133863 PMCID: PMC6524700 DOI: 10.3389/fphys.2019.00445] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 04/01/2019] [Indexed: 01/06/2023] Open
Abstract
Objective To investigate the effects of a 16-week concurrent exercise regimen [resistance exercise (RE) + functional exercise (FE)] in combination with, or without, a leucine-enriched whey protein isolate supplement on muscle strength, physical functioning, aerobic capacity, and cardiometabolic health in older adults (≥60 years). Physical activity levels were also evaluated 6 months post-cessation of the intervention. Methods Forty-six, community-dwelling, previously untrained males, and females [age: 68 ± 5 years (mean ± SD); BMI: 27.8 ± 6.2 kg/m2] who completed the trial were initially randomized to one of two independent arms [Exercise n = 24 (E); Exercise+Protein n = 22 (EP)]. Both arms completed 16 weeks of RE (performed to fatigue) (2 times/week) with FE (1 time/week) on non-consecutive days. Additionally, EP were administered a leucine-enriched whey protein supplement (3 times/day) for 16 weeks based on individual body-weight (1.5 g/kg/day). Results As a result of dietary supplementation, protein intake increased in EP (∼1.2 ± 0.4 to 1.5 ± 0.7 g/kg/day) during the intervention. Maximal strength (1RM) values for leg press (E: +39 ± 7 kg, p = 0.006; EP: +63 ± 7 kg, p < 0.001), chest press (E: +22 ± 4 kg, p < 0.001; EP: +21 ± 6 kg, p < 0.001), and bicep curl (E: +7 ± 0 kg, p = 0.002; EP: +6 ± 1 kg, p = 0.008) significantly increased in E and EP respectively, with no differences between arms (p > 0.05). Physical functioning in the obstacle course (E: -5.1 ± 6.8 s, p < 0.001; EP: -2.8 ± 0.8 s, p < 0.001) and short-physical performance battery scores (E: +0.5 ± 0.5, p = <0.001; EP: +0.4 ± 0.5, p = 0.038), and aerobic capacity in the 6-min walk test (E: +37 ± 24 m, p = 0.014; EP: +36 ± 3 m, p = 0.005) improved in E and EP respectively, with no differences between arms (p > 0.05). No significant change was observed for markers of cardiometabolic health (glycaemic control or blood pressure) (p > 0.05). At follow-up, 86% of older adults reported to performing physical activity ≥1 per week. Of those, 61% were still participating in strength- and cardiovascular- based exercise. Conclusion Concurrent exercise (RE + FE) offers a potent method to combat age-related muscle weakness, and our results suggest a high proportion of older adults may continue to exercise unsupervised. However, leucine-enriched whey protein isolate supplementation did not confer any additional benefit in those already consuming ample amounts of dietary protein at trial enrolment. Future trials should utilize a whole-foods approach and investigate the effects in frail and non-frail older adults habitually consuming the RDA of protein, to assess if a higher intake of protein is needed to delay the onset of muscle weakness. Trial Registration Clinicaltrials.gov Identifier: NCT02912130.
Collapse
Affiliation(s)
- Ben Kirk
- School of Health Sciences, Liverpool Hope University, Liverpool, United Kingdom
| | - Kate Mooney
- School of Health Sciences, Liverpool Hope University, Liverpool, United Kingdom
| | | | - Omid Khaiyat
- School of Health Sciences, Liverpool Hope University, Liverpool, United Kingdom
| |
Collapse
|
42
|
Dirks ML, Smeets JSJ, Holwerda AM, Kouw IWK, Marzuca-Nassr GN, Gijsen AP, Holloway GP, Verdijk LB, van Loon LJC. Dietary feeding pattern does not modulate the loss of muscle mass or the decline in metabolic health during short-term bed rest. Am J Physiol Endocrinol Metab 2019; 316:E536-E545. [PMID: 30645176 DOI: 10.1152/ajpendo.00378.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Short periods of bed rest lead to the loss of muscle mass and quality. It has been speculated that dietary feeding pattern may have an impact upon muscle protein synthesis rates and, therefore, modulate the loss of muscle mass and quality. We subjected 20 healthy men (age: 25 ± 1 yr, body mass index: 23.8 ± 0.8 kg/m2) to 1 wk of strict bed rest with intermittent (4 meals/day) or continuous (24 h/day) enteral tube feeding. Participants consumed deuterium oxide for 7 days before bed rest and throughout the 7-day bed rest period. Prior to and immediately after bed rest, lean body mass (dual energy X-ray absorptiometry), quadriceps cross-sectional area (CSA; CT), maximal oxygen uptake capacity (V̇o2peak), and whole body insulin sensitivity (hyperinsulinemic-euglycemic clamp) were assessed. Muscle biopsies were collected 7 days before, 1 day before, and immediately after bed rest to assess muscle tracer incorporation. Bed rest resulted in 0.3 ± 0.3 vs. 0.7 ± 0.4 kg lean tissue loss and a 1.1 ± 0.6 vs. 0.8 ± 0.5% decline in quadriceps CSA in the intermittent vs. continuous feeding group, respectively (both P < 0.05), with no differences between groups (both P > 0.05). Moreover, feeding pattern did not modulate the bed rest-induced decline in insulin sensitivity (-46 ± 3% vs. 39 ± 3%; P < 0.001) or V̇o2peak (-2.5 ± 2.2 vs. -8.6 ± 2.2%; P < 0.010) (both P > 0.05). Myofibrillar protein synthesis rates during bed rest did not differ between the intermittent and continuous feeding group (1.33 ± 0.07 vs. 1.50 ± 0.13%/day, respectively; P > 0.05). In conclusion, dietary feeding pattern does not modulate the loss of muscle mass or the decline in metabolic health during 1 wk of bed rest in healthy men.
Collapse
Affiliation(s)
- Marlou L Dirks
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ , The Netherlands
| | - Joey S J Smeets
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ , The Netherlands
| | - Andrew M Holwerda
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ , The Netherlands
| | - Imre W K Kouw
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ , The Netherlands
| | - Gabriel N Marzuca-Nassr
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ , The Netherlands
| | - Annemie P Gijsen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ , The Netherlands
| | - Graham P Holloway
- Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Lex B Verdijk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ , The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ , The Netherlands
| |
Collapse
|
43
|
Nabuco HCG, Tomeleri CM, Sugihara Junior P, Fernandes RR, Cavalcante EF, Venturini D, Barbosa DS, Silva AM, Sardinha LB, Cyrino ES. Effects of pre- or post-exercise whey protein supplementation on body fat and metabolic and inflammatory profile in pre-conditioned older women: A randomized, double-blind, placebo-controlled trial. Nutr Metab Cardiovasc Dis 2019; 29:290-300. [PMID: 30639252 DOI: 10.1016/j.numecd.2018.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIM Protein supplementation and resistance training (RT) are interventions that may counteract decline in muscle mass and increase in fat mass, thus reducing the risk of developing chronic diseases during the aging process. The objective of this study was to investigate the effect of whey protein (WP) pre- or post-RT on metabolic and inflammatory profile in pre-conditioned older women. METHODS AND RESULTS Seventy older women participated in this investigation and were randomly assigned to one of three groups: WP pre-RT and placebo post-RT (WP-PLA, n = 24), placebo pre-RT and WP post-RT (PLA-WP, n = 23) and placebo pre and post-RT (PLA-PLA, n = 23). Each group ingested 35 g of PLA or WP pre- and post-RT. RT was carried out over 12 weeks (three times/week; 3 x 8-12 repetition maximum). Body composition, blood pressure, blood samples and dietary intake were assessed pre- and post-intervention. After the intervention, WP groups showed greater improvements in appendicular lean soft tissue (ALST: WP-PLA, 3.1%; PLA-WP, 3.9%; PLA-PLA, 1.8%) and total cholesterol/high density lipoprotein cholesterol ratio (TC/HDL-C: WP-PLA, -12.11%; PLA-WP, -13.2%; PLA-PLA, -0.7) when compared with PLA-PLA. WP post-RT also showed improvements (P < 0.05) in ALST/appendicular fat mass ratio (PLA-WP, 5.8%; PLA-PLA, 1.3%), total body fat (PLA-WP, -3.8%; PLA-PLA: -0.1) and trunk fat mass (PLA-WP, -3.1%; PLA-PLA, -0.3%) when compared with PLA-PLA. CONCLUSION WP pre- or post- RT promotes improvements in ALST and TC/HDL-C ratio in pre-conditioned older women. WP administered after RT was more effective in improving metabolic health Z-score and in reducing body fat compared to placebo group.
Collapse
Affiliation(s)
- H C G Nabuco
- Federal Institute of Science and Technology of Mato Grosso, Highway BR-364, Km 329, Cuiabá, Mato Grosso 78106-970, Brazil; Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Highway Celso Garcia Cid, Londrina, Paraná 86057-970, Brazil.
| | - C M Tomeleri
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Highway Celso Garcia Cid, Londrina, Paraná 86057-970, Brazil; Exercise Physiology Laboratory, Faculty of Physical Education, University of Campinas, Érico Veríssimo avenue, Campinas, São Paulo, 13083-970, Brazil.
| | - P Sugihara Junior
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Highway Celso Garcia Cid, Londrina, Paraná 86057-970, Brazil.
| | - R R Fernandes
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Highway Celso Garcia Cid, Londrina, Paraná 86057-970, Brazil.
| | - E F Cavalcante
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Highway Celso Garcia Cid, Londrina, Paraná 86057-970, Brazil.
| | - D Venturini
- Clinical Analyses Laboratory. Londrina State University, Londrina, Paraná 86057-970, Brazil.
| | - D S Barbosa
- Clinical Analyses Laboratory. Londrina State University, Londrina, Paraná 86057-970, Brazil.
| | - A M Silva
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, Dafundo 1499-002, Portugal.
| | - L B Sardinha
- Exercise and Health Laboratory, CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, Cruz Quebrada, Dafundo 1499-002, Portugal.
| | - E S Cyrino
- Metabolism, Nutrition, and Exercise Laboratory, Physical Education and Sport Center, Londrina State University, Highway Celso Garcia Cid, Londrina, Paraná 86057-970, Brazil.
| |
Collapse
|
44
|
de Branco FMS, Carneiro MAS, Rossato LT, Nahas PC, Teixeira KRC, de Oliveira GN, Orsatti FL, de Oliveira EP. Protein timing has no effect on lean mass, strength and functional capacity gains induced by resistance exercise in postmenopausal women: A randomized clinical trial. Clin Nutr 2019; 39:57-66. [PMID: 30691866 DOI: 10.1016/j.clnu.2019.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 12/18/2018] [Accepted: 01/09/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS Short-term studies have shown that protein intake immediately post-exercise increases muscle protein synthesis. However, the effect of protein timing (comparing protein intake post-exercise vs. several hours after exercise) on lean mass and strength gains in long-term studies is still not fully elucidated. Thus, the aim of our study was to evaluate the effect of protein timing on lean mass, strength and functional capacity gains induced by resistance exercise in postmenopausal women. METHODS Thirty-four postmenopausal women (60.9 ± 6.7 years) participated in this double-blind, parallel-group, randomized clinical trial. All individuals performed the same resistance training protocol in the morning, 3 times a week, at 70% of 1-maximum repetition (1-RM), over 8 weeks. Participants were randomly assigned to protein-carbohydrate group (PC) (n = 17), that ingested 30 g of whey protein immediately after exercise and 30 g of maltodextrin in the afternoon; and to carbohydrate-protein group (CP) (n = 17), that ingested 30 g of maltodextrin immediately after exercise and 30 g of whey protein in the afternoon. Lean mass was assessed using dual-energy X-ray absorptiometry, handgrip strength by a dynamometer, and strength was evaluated by 1-RM of bench press and leg extension. One mile walk test was performed to assess the functional capacity. RESULTS Both the PC group (37.3 [35.0-39.7] to 38.1 [35.9-40.5] kg) and the CP group (38.2 [36.0-40.5] to 38.8 [36.5-41.3] kg) increased the total lean mass (p < 0.001). An increase was also observed in both groups for 1-RM bench press, 1-RM leg extension and handgrip strength (p < 0.001). In addition, the time of 1-mile walk test decreased in both groups (p = 0.019). No differences were noted for group and time interaction for these variables (p > 0.05). CONCLUSION Protein timing has no effect on lean mass, strength and functional capacity gains induced by resistance exercise in postmenopausal women. This trial was registered at ClinicalTrials.gov as NCT03372876.
Collapse
Affiliation(s)
- Flávia M S de Branco
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Marcelo A S Carneiro
- Exercise Biology Research Group (BioEx), Federal University of Triangulo Mineiro (UFTM), Uberaba, MG, Brazil; Department of Sport Sciences, Federal University of Triangulo Mineiro, Uberaba, MG, Brazil
| | - Luana T Rossato
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Paula C Nahas
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Kely R C Teixeira
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Gersiel N de Oliveira
- Exercise Biology Research Group (BioEx), Federal University of Triangulo Mineiro (UFTM), Uberaba, MG, Brazil; Department of Sport Sciences, Federal University of Triangulo Mineiro, Uberaba, MG, Brazil
| | - Fábio L Orsatti
- Exercise Biology Research Group (BioEx), Federal University of Triangulo Mineiro (UFTM), Uberaba, MG, Brazil; Department of Sport Sciences, Federal University of Triangulo Mineiro, Uberaba, MG, Brazil
| | - Erick P de Oliveira
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil.
| |
Collapse
|
45
|
Morishita S, Tsubaki A, Nakamura M, Nashimoto S, Fu JB, Onishi H. Rating of perceived exertion on resistance training in elderly subjects. Expert Rev Cardiovasc Ther 2019; 17:135-142. [DOI: 10.1080/14779072.2019.1561278] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shinichiro Morishita
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Atsuhiro Tsubaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Masatoshi Nakamura
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Satoshi Nashimoto
- Department of Rehabilitation, Niigata Medical Centre, Niigata, Japan
| | - Jack B. Fu
- Department of Palliative, Rehabilitation & Integrative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
46
|
Hanach NI, McCullough F, Avery A. The Impact of Dairy Protein Intake on Muscle Mass, Muscle Strength, and Physical Performance in Middle-Aged to Older Adults with or without Existing Sarcopenia: A Systematic Review and Meta-Analysis. Adv Nutr 2019; 10:59-69. [PMID: 30624580 PMCID: PMC6370271 DOI: 10.1093/advances/nmy065] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/31/2018] [Indexed: 12/23/2022] Open
Abstract
Sarcopenia is an age-related condition associated with a progressive loss of muscle mass and strength. Insufficient protein intake is a risk factor for sarcopenia. Protein supplementation is suggested to improve muscle anabolism and function in younger and older adults. Dairy products are a good source of high-quality proteins. This review evaluates the effectiveness of dairy proteins on functions associated with sarcopenia in middle-aged and older adults. Randomized controlled trials were identified using PubMed, CINAHL/EBSCO, and Web of Science databases (last search: 10 May 2017) and were quality assessed. The results of appendicular muscle mass and muscle strength of handgrip and leg press were pooled using a random-effects model. The analysis of the Short Physical Performance Battery is presented in narrative form. Adverse events and tolerability of dairy protein supplementation were considered as secondary outcomes. Fourteen studies involving 1424 participants aged between 61 and 81 y met the inclusion criteria. Dairy protein significantly increased appendicular muscle mass (0.13 kg; 95% CI: 0.01, 0.26 kg; P = 0.04); however, it had no effect on improvement in handgrip (0.84 kg; 95% CI: -0.24, 1.93 kg; P = 0.13) or leg press (0.37 kg; 95% CI: -4.79, 5.53 kg; P = 0.89). The effect of dairy protein on the Short Physical Performance Battery was inconclusive. Nine studies reported the dairy protein to be well tolerated with no serious adverse events. Although future high-quality research is required to establish the optimal type of dairy protein, the present systematic review provides evidence of the beneficial effect of dairy protein as a potential nutrition strategy to improve appendicular muscle mass in middle-aged and older adults.
Collapse
Affiliation(s)
- Nivine I Hanach
- Division of Nutritional Sciences, University of Nottingham, Leicestershire, United Kingdom
| | - Fiona McCullough
- Division of Nutritional Sciences, University of Nottingham, Leicestershire, United Kingdom
| | - Amanda Avery
- Division of Nutritional Sciences, University of Nottingham, Leicestershire, United Kingdom,Address correspondence to AA (e-mail: )
| |
Collapse
|
47
|
Kaur D, Rasane P, Singh J, Kaur S, Kumar V, Mahato DK, Dey A, Dhawan K, Kumar S. Nutritional Interventions for Elderly and Considerations for the Development of Geriatric Foods. Curr Aging Sci 2019; 12:15-27. [PMID: 31109282 PMCID: PMC6971894 DOI: 10.2174/1874609812666190521110548] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/22/2022]
Abstract
The process of aging is characterized by numerous changes in the body which has an overall negative effect on the health and lifestyle of elderly. Nutrition deserves special attention as an individual reaches old age. It plays a vital role in affecting the quality of life, including physical, mental and social health. The physiological decline in food intake is very common among older age and this result in nutritional deficiencies. These increased nutritional deficiencies are the major risk factors for certain chronic diseases and deteriorated age related health. Thus, the adoption of nutritional intervention can be a measure to tackle the current situation of nutritional deficiencies and promote a healthy lifestyle.
Collapse
Affiliation(s)
| | - Prasad Rasane
- Address correspondence to this author at the Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India; Tel: +919889532584; E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Krause M, Crognale D, Cogan K, Contarelli S, Egan B, Newsholme P, De Vito G. The effects of a combined bodyweight-based and elastic bands resistance training, with or without protein supplementation, on muscle mass, signaling and heat shock response in healthy older people. Exp Gerontol 2018; 115:104-113. [PMID: 30529477 DOI: 10.1016/j.exger.2018.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022]
Abstract
This investigation sought to determine the effects of twelve weeks of resistance exercise training in addition to protein supplementation on body composition, markers of muscle atrophy/hypertrophy and heat shock response (HSR) in healthy older adults. Thirty-eight healthy sedentary participants (M/F, 18/20; age, 63.5 ± 4.4 y) were randomly assigned to four groups: I) PLACEBO: no training, receiving placebo sachets; II) NUTRITION: no training, receiving protein supplementation sachets; III) EXERCISE PLACEBO: training, placebo sachets and IV) EXERCISE NUTRITION: training, receiving protein sachets. The resistance training (using bodyweight and elastic bands) consisted of 45 min supervised training sessions, 3×/week. Participants from both exercise groups increased their total lean body mass (from 48.4 ± 8.7 to 49.2 ± 8.7 kg and from 44.9 ± 7.8 to 45.9 ± 8.1 kg, average of gain ~0.8 and 1 kg, placebo and nutrition respectively) and improved results in physical tests. Exercise nutrition group also reduced their body fat (from 34.8 ± 7.3 to 32.9 ± 7.4%), increased the expression of proteins/gene involved on the HSR, S6 and eEF2, while FOXO3 and Murf1 were reduced. Expression of MHC-I was reduced in both exercise groups while MHC-IIa increased, with no effect of protein supplementation alone. Body-weight and elastic bands based resistance exercise prompted, in healthy older people, improvements in body composition and muscle function. When protein supplementation was added to the people engaged in resistance training, improvements in fat mass and changes in skeletal muscle signaling were detected, favoring protein synthesis pathways and the protective heat shock response.
Collapse
Affiliation(s)
- Mauricio Krause
- Institute for Sport & Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Ireland; Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Food for Health Ireland, University College Dublin, Ireland.
| | - Domenico Crognale
- Institute for Sport & Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Ireland; Food for Health Ireland, University College Dublin, Ireland
| | - Karl Cogan
- Institute for Sport & Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Ireland
| | - Serena Contarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Brendan Egan
- Institute for Sport & Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Ireland; School of Health & Human Performance, Dublin City University, Ireland
| | - Philip Newsholme
- CHIRI Biosciences Research Precinct, School of Biomedical Sciences, Curtin University, Australia
| | - Giuseppe De Vito
- Institute for Sport & Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Ireland; Food for Health Ireland, University College Dublin, Ireland.
| |
Collapse
|
49
|
Endocrine responses following exhaustive strength exercise with and without the use of protein and protein-carbohydrate supplements. Biol Sport 2018; 35:399-405. [PMID: 30765926 PMCID: PMC6358528 DOI: 10.5114/biolsport.2018.75754] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/27/2017] [Accepted: 04/23/2018] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to determine the effect of carbohydrate-protein supplementation with whey protein (CHO-PROw) after resistance training, and casein protein (PROc) before bedtime on the concentration of growth hormone (GH), insulin (I) and insulin-like growth factor (IGF-1), as well as serum creatine kinase (CK) activity. Twelve strength trained male subjects (age: 25.8 ± 4.7 years; training experience 6.1 ± 0.79 years; body mass 75.9 ± 2.7 kg; body height 171.8 ± 13.3 cm) were recruited for the study. They were randomly divided into an experimental group (group E, n = 6) and a control group (group C, n = 6). All study participants completed full barbell squats with a constant external load of 90% one-repetition maximum (1RM) and a volume of 12 sets. In each set three repetitions were performed with 3 min rest periods after each set. Immediately after the exercise protocol, the subjects from the experimental group received a carbohydrate-protein complex (CHO-PROw) with a dose of 0.5 g/kg of body mass, while before bedtime they ingested a protein supplement (PROc) consisting of 90% casein protein with a dose of 0.3 g/kg of body weight The results indicate that a ignificant increase in GH concentration occurred in the experimental group between the pre-exercise level and after 24 h of recovery (p<0.01), as well as between 1 h and 24 hours of recovery (p<0.01). Significantly higher levels of GH were also found between the control group and the experimental group 24 hours after exercise (p<0.01). The results showed significantly higher levels of IGF-1 in the experimental than in the control group after 24 hours of recovery (p<0.05). In the case of insulin, no significant differences were observed when comparing levels before exercise, after exercise, after 1 hour of recovery and after 24 hours of recovery. The CHO-PROw and the PROc supplements did not reduce post-exercise muscle membrane damage as evidenced by serum CK activity. The intake of these supplements after high-intensity resistance exercise caused an increase in GH and IGF-1 concentration, which could stimulate muscle hypertrophy and inhibit proteolysis.
Collapse
|
50
|
Ten Haaf DSM, Nuijten MAH, Maessen MFH, Horstman AMH, Eijsvogels TMH, Hopman MTE. Effects of protein supplementation on lean body mass, muscle strength, and physical performance in nonfrail community-dwelling older adults: a systematic review and meta-analysis. Am J Clin Nutr 2018; 108:1043-1059. [PMID: 30475963 DOI: 10.1093/ajcn/nqy192] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/16/2018] [Indexed: 12/18/2022] Open
Abstract
Background Increasing protein intake has been suggested as an effective strategy to ameliorate age-related loss of muscle mass and strength. Current reviews assessing the effect of protein supplementation are strongly influenced by the inclusion of studies with frail older adults. Objectives We assessed the effect of protein supplementation on lean body mass, muscle strength, and physical performance in exclusively nonfrail community-dwelling older adults. Moreover, we assessed the superior effects of protein supplementation during concomitant resistance exercise training on muscle characteristics. Design A systematic literature search was conducted on PubMed, Embase, and Web of Science up to 15 May 2018. We included randomized controlled trials that assessed the effect of protein supplementation on lean body mass, muscle thigh cross-sectional area, muscle strength, gait speed, and chair-rise ability and performed random-effects meta-analyses. Results Data from 36 studies with 1682 participants showed no significant effects of protein supplementation on changes in lean body mass [standardized mean difference (SMD): 0.11; 95% CI: -0.06, 0.28], handgrip strength (SMD: 0.58; 95% CI: -0.08, 1.24), lower extremity muscle strength (SMD: 0.03; 95% CI: -0.20, 0.27), gait speed (SMD: 0.41; 95% CI: -0.04, 0.85), or chair-rise ability (SMD: 0.10; 95%: CI -0.08, 0.28) compared with a control condition in nonfrail community-dwelling older adults. Moreover, no superior effects of protein supplementation were found during concomitant resistance exercise training on muscle characteristics. Conclusions Protein supplementation in nonfrail community-dwelling older adults does not lead to increases in lean body mass, muscle cross-sectional area, muscle strength, or physical performance compared with control conditions; nor does it exert superior effects when added to resistance exercise training. Habitual protein intakes of most study participants were already sufficient, and protein interventions differed in terms of type of protein, amount, and timing. Future research should clarify what specific protein supplementation protocol is beneficial for nonfrail community-dwelling older adults with low habitual protein intake.
Collapse
Affiliation(s)
- Dominique S M Ten Haaf
- Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Malou A H Nuijten
- Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Martijn F H Maessen
- Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Thijs M H Eijsvogels
- Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Maria T E Hopman
- Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, Netherlands.,Division of Human Nutrition, Wageningen University, Wageningen, Netherlands
| |
Collapse
|