1
|
Sun H, Wang J, Li Y, Yang S, Chen DD, Tu Y, Liu J, Sun Z. Synthetic biology in microalgae towards fucoxanthin production for pharmacy and nutraceuticals. Biochem Pharmacol 2024; 220:115958. [PMID: 38052271 DOI: 10.1016/j.bcp.2023.115958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Synthetic biology has emerged as a powerful tool for engineering biological systems to produce valuable compounds, including pharmaceuticals and nutraceuticals. Microalgae, in particular, offer a promising platform for the production of bioactive compounds due to their high productivity, low land and water requirements, and ability to perform photosynthesis. Fucoxanthin, a carotenoid pigment found predominantly in brown seaweeds and certain microalgae, has gained significant attention in recent years due to its numerous health benefits, such as antioxidation, antitumor effect and precaution osteoporosis. This review provides an overview of the principles and applications of synthetic biology in the microbial engineering of microalgae for enhanced fucoxanthin production. Firstly, the fucoxanthin bioavailability and metabolism in vivo was introduced for the beneficial roles, followed by the biological functions of anti-oxidant activity, anti-inflammatory activity, antiapoptotic role antidiabetic and antilipemic effects. Secondly, the cultivation condition and strategy were summarized for fucoxanthin improvement with low production costs. Thirdly, the genetic engineering of microalgae, including gene overexpression, knockdown and knockout strategies were discussed for further improving the fucoxanthin production. Then, synthetic biology tools of CRISPR-Cas9 genome editing, transcription activator-like effector nucleases as well as modular assembly and chassis engineering were proposed to precise modification of microalgal genomes to improve fucoxanthin production. Finally, challenges and future perspectives were discussed to realize the industrial production and development of functional foods of fucoxanthin from microalgae.
Collapse
Affiliation(s)
- Han Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; Shanghai Ocean University, Shanghai 201306, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yuelian Li
- China National Chemical Information Center, Beijing 100020, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | | | - Yidong Tu
- Technology Center, Shanghai Inoherb Co. Ltd, 121 Chengyin Road, Shanghai 200083, China
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Algae Innovation Center for Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Zheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China.
| |
Collapse
|
2
|
Fernandes V, Mamatha BS. Fucoxanthin, a Functional Food Ingredient: Challenges in Bioavailability. Curr Nutr Rep 2023; 12:567-580. [PMID: 37642932 DOI: 10.1007/s13668-023-00492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW Fucoxanthin is an orange-red xanthophyll carotenoid found in brown seaweeds and known for its many bioactive properties. In recent years, the bioactive properties of fucoxanthin have been widely explored, making it a compound of immense interest for various health applications like anti-cancer, anti-tumour, anti-diabetic and anti-obesity properties. However, the poor bioavailability and instability of fucoxanthin in the gastrointestinal tract have major limitations. Encapsulation is a promising approach to overcome these challenges by enclosing fucoxanthin in a protective layer, such as liposomes or nano-particles. Encapsulation can improve the stability of fucoxanthin by protecting it from exposure to heat, pH, illumination, gastric acids and enzymes that can accelerate its degradation. RECENT FINDINGS Studies have shown that lipid-based encapsulation systems such as liposomes or nano-structured lipid carriers may solubilise fucoxanthin and enhance its bioavailability (from 25 to 61.2%). In addition, encapsulation can also improve the solubility of hydrophobic fucoxanthin, which is important for its absorption and bioavailability. This review highlights the challenges involved in the absorption of fucoxanthin in the living system, role of micro- and nano-encapsulation of fucoxanthin and their potential to enhance intestinal absorption.
Collapse
Affiliation(s)
- Vanessa Fernandes
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Food Safety and Nutrition, Paneer Campus, Kotekar-Beeri Road, Deralakatte, Mangalore, 575 018, Karnataka, India
| | - Bangera Sheshappa Mamatha
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Food Safety and Nutrition, Paneer Campus, Kotekar-Beeri Road, Deralakatte, Mangalore, 575 018, Karnataka, India.
| |
Collapse
|
3
|
Oliyaei N, Moosavi-Nasab M, Tanideh N, Iraji A. Multiple roles of fucoxanthin and astaxanthin against Alzheimer's disease: Their pharmacological potential and therapeutic insights. Brain Res Bull 2023; 193:11-21. [PMID: 36435362 DOI: 10.1016/j.brainresbull.2022.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Alzheimer's disease (AD) is the most devastating neurodegenerative disorder affecting the elderly. The exact pathology of AD is not yet fully understood and several hallmarks such as the deposition of amyloid-β, tau hyperphosphorylation, and neuroinflammation, as well as mitochondrial, metal ions, autophagy, and cholinergic dysfunctions are known as pathologic features of AD. Since no definitive treatment has been proposed to target AD to date, many natural products have shown promising preventive potentials and contributed to slowing down the disease progression. Algae is a promising source of novel bioactive substances known to prevent neurodegenerative disorders including AD. In this context, fucoxanthin and astaxanthin, natural carotenoids abundant in algae, has shown to possess neuroprotective properties through antioxidant, and anti-inflammatory characteristics in modulating the symptoms of AD. Fucoxanthin and astaxanthin exhibit anti-AD activities by inhibition of AChE, BuChE, BACE-1, and MAO, suppression of Aβ accumulation. Also, fucoxanthin and astaxanthin inhibit apoptosis induced by Aβ1-42 and H2O2-induced cytotoxicity, and modulate the antioxidant enzymes (SOD and CAT), through inhibition of the ERK pathway. Moreover, cellular and animal studies on the beneficial effects of fucoxanthin and astaxanthin against AD were also reviewed. The potential role of fucoxanthin and astaxanthin exhibits great efficacy for the management of AD by acting on multiple targets.
Collapse
Affiliation(s)
- Najmeh Oliyaei
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Seafood Processing Research Center, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Marzieh Moosavi-Nasab
- Seafood Processing Research Center, School of Agriculture, Shiraz University, Shiraz, Iran; Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Central Research laboratory, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Lau TY, Kwan HY. Fucoxanthin Is a Potential Therapeutic Agent for the Treatment of Breast Cancer. Mar Drugs 2022; 20:md20060370. [PMID: 35736173 PMCID: PMC9229252 DOI: 10.3390/md20060370] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Breast cancer (BC) is one of the most common cancers diagnosed and the leading cause of cancer-related death in women. Although there are first-line treatments for BC, drug resistances and adverse events have been reported. Given the incidence of BC keeps increasing, seeking novel therapeutics is urgently needed. Fucoxanthin (Fx) is a dietary carotenoid commonly found in seaweeds and diatoms. Both in vitro and in vivo studies show that Fx and its deacetylated metabolite fucoxanthinol (Fxol) inhibit and prevent BC growth. The NF-κB signaling pathway is considered the major pathway contributing to the anti-proliferation, anti-angiogenesis and pro-apoptotic effects of Fx and Fxol. Other signaling molecules such as MAPK, MMP2/9, CYP and ROS are also involved in the anti-cancer effects by regulating the tumor microenvironment, cancer metastasis, carcinogen metabolism and oxidation. Besides, Fx also possesses anti-obesity effects by regulating UCP1 levels and lipid metabolism, which may help to reduce BC risk. More importantly, mounting evidence demonstrates that Fx overcomes drug resistance. This review aims to give an updated summary of the anti-cancer effects of Fx and summarize the underlying mechanisms of action, which will provide novel strategies for the development of Fx as an anti-cancer therapeutic agent.
Collapse
|
5
|
Murase W, Kamakura Y, Kawakami S, Yasuda A, Wagatsuma M, Kubota A, Kojima H, Ohta T, Takahashi M, Mutoh M, Tanaka T, Maeda H, Miyashita K, Terasaki M. Fucoxanthin Prevents Pancreatic Tumorigenesis in C57BL/6J Mice That Received Allogenic and Orthotopic Transplants of Cancer Cells. Int J Mol Sci 2021; 22:13620. [PMID: 34948416 PMCID: PMC8707761 DOI: 10.3390/ijms222413620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Fucoxanthin (Fx) is a marine carotenoid with anti-inflammatory and anti-cancer properties in various animal models of carcinogenesis. However, there is currently no information on the effects of Fx in animal models of pancreatic cancer. We investigated the chemopreventive effects of Fx in C57BL/6J mice that received allogenic and orthotopic transplantations of cancer cells (KMPC44) derived from a pancreatic cancer murine model (Ptf1aCre/+; LSL-krasG12D/+). Using microarray, immunofluorescence, western blot, and siRNA analyses, alterations in cancer-related genes and protein expression were evaluated in pancreatic tumors of Fx-administered mice. Fx administration prevented the adenocarcinoma (ADC) development of pancreatic and parietal peritoneum tissues in a pancreatic cancer murine model, but not the incidence of ADC. Gene and protein expressions showed that the suppression of chemokine (C-C motif) ligand 21 (CCL21)/chemokine receptor 7 (CCR7) axis, its downstream of Rho A, B- and T-lymphocyte attenuator (BTLA), N-cadherin, αSMA, pFAK(Tyr397), and pPaxillin(Tyr31) were significantly suppressed in the pancreatic tumors of mice treated with Fx. In addition, Ccr7 knockdown significantly attenuated the growth of KMPC44 cells. These results suggest that Fx is a promising candidate for pancreatic cancer chemoprevention that mediates the suppression of the CCL21/CCR7 axis, BTLA, tumor microenvironment, epithelial mesenchymal transition, and adhesion.
Collapse
Affiliation(s)
- Wataru Murase
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
| | - Yukino Kamakura
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
| | - Serina Kawakami
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
| | - Ayaka Yasuda
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
| | - Momoka Wagatsuma
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| | - Tohru Ohta
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| | - Mami Takahashi
- Central Animal Division, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Michihiro Mutoh
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Takuji Tanaka
- Department of Diagnostic Pathology and Research Center of Diagnostic Pathology, Gifu Municipal Hospital, Gifu 500-8513, Japan;
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Aomori 036-8561, Japan;
| | - Kazuo Miyashita
- Center for Industry-University Collaboration, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan;
| | - Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (W.M.); (Y.K.); (S.K.); (A.Y.); (M.W.); (A.K.); (H.K.)
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| |
Collapse
|
6
|
Lourenço-Lopes C, Fraga-Corral M, Jimenez-Lopez C, Carpena M, Pereira A, Garcia-Oliveira P, Prieto M, Simal-Gandara J. Biological action mechanisms of fucoxanthin extracted from algae for application in food and cosmetic industries. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Terasaki M, Ono S, Hashimoto S, Kubota A, Kojima H, Ohta T, Tanaka T, Maeda H, Miyashita K, Mutoh M. Suppression of C-C chemokine receptor 1 is a key regulation for colon cancer chemoprevention in AOM/DSS mice by fucoxanthin. J Nutr Biochem 2021; 99:108871. [PMID: 34571188 DOI: 10.1016/j.jnutbio.2021.108871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 06/03/2021] [Accepted: 09/20/2021] [Indexed: 01/16/2023]
Abstract
Fucoxanthin (Fx) has shown potential cancer chemopreventive functions in a carcinogenic murine azoxymethane/dextran sodium sulfate (AOM/DSS) model. However, the molecular mechanisms based on transcriptome profiles in vivo remain poorly understood. We investigated Fx-dependent alterations of the transcriptome with cancer-associated proteins in colorectal mucosal tissue obtained from AOM/DSS mice with or without Fx treatment. Fx administration (50 mg/kg body weight for 14 weeks) significantly prevented the onset of colorectal adenocarcinoma in AOM/DSS mice. A transcriptome analysis revealed that 11 signals, including adhesion, cell cycle, chemokine receptor, interleukin, MAPK, PI3K/AKT, p53, RAS, STAT, TGF-β, and Wnt were remarkably altered by Fx administration. In particular, chemokine (C-C motif) receptor 1 (Ccr1), which is contained in a gene set related to cytokine-cytokine receptor interactions, was the only significantly down-regulated gene after Fx administration for both 7 and 14 weeks. CCR1, AKT, Cyclin D1, and Smad2 were found to play central roles in the 11 signals shown above. Fx administration significantly down-regulated CCR1 (0.3- and 0.5-fold in mucosal crypts and lamina propria, respectively), pAKT(Ser473) (0.2-fold in mucosal crypts), Cyclin D1 (0.4-fold in mucosal crypts), and pSmad2(Ser465/467) (0.7-fold in mucosal crypts) compared with proteins in these tissues of control mice after Fx administration for 14 weeks. Our findings suggested that Fx exerts a chemopreventive effect in AOM/DSS mice through attenuation of CCR1 expression along with 11 cancer-associated signals.
Collapse
Affiliation(s)
- Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido Japan.
| | - Shion Ono
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido Japan
| | - Saki Hashimoto
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido Japan
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido Japan
| | - Tohru Ohta
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido Japan
| | - Takuji Tanaka
- Department of Diagnostic Pathology and Research Center of Diagnostic Pathology, Gifu Municipal Hospital, Gifu, Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| | - Kazuo Miyashita
- Center for Industry-University Collaboration, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Michihiro Mutoh
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| |
Collapse
|
8
|
Palmer JS, Lawton LA, Kindt R, Edwards C. Rapid analytical methods for the microalgal and cyanobacterial biorefinery: Application on strains of industrial importance. Microbiologyopen 2021; 10:e1156. [PMID: 33650795 PMCID: PMC7917028 DOI: 10.1002/mbo3.1156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 11/12/2022] Open
Abstract
To realize the potential of microalgae in the biorefinery context, exploitation of multiple products is necessary for profitability and bioproduct valorization. Appropriate analytical tools are required for growth optimization, culture monitoring, and quality control purposes, with safe, low-tech, and low-cost solutions favorable. Rapid, high-throughput, and user-friendly methodologies were devised for (a) determination of phycobiliproteins, chlorophylls, carotenoids, proteins, carbohydrates, and lipids and (b) qualitative and quantitative carotenoid profiling using UPLC-PDA-MSE . The complementary methods were applied on 11 commercially important microalgal strains including prasinophytes, haptophytes, and cyanobacteria, highlighting the suitability of some strains for coproduct exploitation and the method utility for research and industrial biotechnology applications. The UPLC method allowed separation of 41 different carotenoid compounds in <15 min. Simple techniques are described for further quantification and comparison of pigment profiles, allowing for easy strain selection and optimization for pigment production, with suitability for biotechnological or biomedical applications.
Collapse
Affiliation(s)
- Joseph S Palmer
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK.,ScotBio, BioCity Scotland, Newhouse, UK
| | - Linda A Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | | | - Christine Edwards
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| |
Collapse
|
9
|
Terasaki M, Kimura R, Kubota A, Kojima H, Tanaka T, Maeda H, Miyashita K, Mutoh M. Continuity of Tumor Microenvironmental Suppression in AOM/DSS Mice by Fucoxanthin May Be Able to Track With Salivary Glycine. In Vivo 2021; 34:3205-3215. [PMID: 33144425 DOI: 10.21873/invivo.12156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND/AIM Fucoxanthin (Fx) is a potent anticancer carotenoid, demonstrated by mouse cancer models. We recently showed the decrease of salivary glycine could represent an attenuation of tumor microenvironment (TME) formation in an azoxymethane/dextran sodium sulfate (AOM/DSS) colon cancer mouse model. However, it remains unclear whether the salivary glycine is an indicator for continuous TME suppression of Fx in the mice. MATERIALS AND METHODS In the present study, we time-dependently analyzed salivary metabolites in AOM/DSS mice, and investigated candidate markers to evaluate the continuous inhibition of colonic TME formation and carcinogenesis in the mice with and without Fx. RESULTS Fx attenuated the incidence and/or multiplicity of colonic lesions developed in AOM/DSS mice. The number of apoptosis-like cleaved caspase-3high cells was significantly increased, and colonic cancer stem cell-like CD44high/EpCAMhigh cells and cancer-associated fibroblast-like αSMAhigh cells were significantly decreased in colon mucosal tissue by Fx administration. Salivary glycine at 4, 11 and 14 weeks after the final DSS exposure in the Fx-treated mice showed successful and consecutive decreases of 0.5-, 0.4- and 0.7-fold respectively compared to that of control mice. CONCLUSION Salivary glycine is a valuable indicator that could evaluate sustained efficacy of cancer chemopreventive effects of Fx in AOM/DSS mice.
Collapse
Affiliation(s)
- Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan .,Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Ryota Kimura
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Takuji Tanaka
- Department of Diagnostic Pathology and Research Center of Diagnostic Pathology, Gifu Municipal Hospital, Gifu, Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Aomori, Japan
| | - Kazuo Miyashita
- Laboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido, Japan
| | - Michihiro Mutoh
- Epidemiology and Preventions Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| |
Collapse
|
10
|
Fucoxanthin and Colorectal Cancer Prevention. Cancers (Basel) 2021; 13:cancers13102379. [PMID: 34069132 PMCID: PMC8156579 DOI: 10.3390/cancers13102379] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is suggested to be preventable by certain food intakes. Fucoxanthin (Fx) is an anticancer agent contained abundantly in edible brown algae. However, epidemiological studies, in vivo and in vitro experiments for CRC, using Fx and Fx-rich foods, have not been fully outlined. To date, it has been reported that Fx, its metabolite of fucoxanthinol (FxOH) and Fx-rich algal extracts exerted anticancer potentials in human CRC cell lines, their cancer stem-cells-like spheroids and CRC animal models through a number of molecular mechanisms. Moreover, many in vivo experiments and interventional human trials have demonstrated that Fx, Fx-rich algal extracts and brown alga itself may improve CRC and/or certain risks, such as obesity, diabetes, metabolic syndrome, inflammation, oxidation, tumor microenvironment and/or gut microbiota. This review is the first report that summarizes the improving effects by Fx, FxOH and its rich brown algae for CRC and the risk factors. Abstract Colorectal cancer (CRC), which ranks among the top 10 most prevalent cancers, can obtain a good outcome with appropriate surgery and/or chemotherapy. However, the global numbers of both new cancer cases and death from CRC are expected to increase up to 2030. Diet-induced lifestyle modification is suggested to be effective in reducing the risk of human CRC; therefore, interventional studies using diets or diet-derived compounds have been conducted to explore the prevention of CRC. Fucoxanthin (Fx), a dietary carotenoid, is predominantly contained in edible brown algae, such as Undaria pinnatifida (wakame) and Himanthalia elongata (Sea spaghetti), which are consumed particularly frequently in Asian countries but also in some Western countries. Fx is responsible for a majority of the anticancer effects exerted by the lipophilic bioactive compounds in those algae. Interventional human trials have shown that Fx and brown algae mitigate certain risk factors for CRC; however, the direct mechanisms underlying the anti-CRC properties of Fx remain elusive. Fx and its deacetylated type “fucoxanthinol” (FxOH) have been reported to exert potential anticancer effects in preclinical cancer models through the suppression of many cancer-related signal pathways and the tumor microenvironment or alteration of the gut microbiota. We herein review the most recent studies on Fx as a potential candidate drug for CRC prevention.
Collapse
|
11
|
Terasaki M, Nishizaka Y, Murase W, Kubota A, Kojima H, Kojoma M, Tanaka T, Maeda H, Miyashita K, Mutoh M, Takahashi M. Effect of Fucoxanthinol on Pancreatic Ductal Adenocarcinoma Cells from an N-Nitrosobis(2-oxopropyl)amine-initiated Syrian Golden Hamster Pancreatic Carcinogenesis Model. Cancer Genomics Proteomics 2021; 18:407-423. [PMID: 33994364 PMCID: PMC8240037 DOI: 10.21873/cgp.20268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/04/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIM Fucoxanthinol (FxOH) is a marine carotenoid metabolite with potent anti-cancer activity. However, little is known about the efficacy of FxOH in pancreatic cancer. In the present study, we investigated the inhibitory effect of FxOH on six types of cells cloned from N-nitrosobis(2-oxopropyl)amine (BOP)-induced hamster pancreatic cancer (HaPC) cells. MATERIALS AND METHODS FxOH action and its molecular mechanisms were investigated in HaPC cells using flow-cytometry, comprehensive gene array, and western blotting analyses. RESULTS FxOH (5.0 μM) significantly suppressed the growth of four out of six types of HaPC cells. Moreover, FxOH significantly suppressed cell cycle, chemokine, integrin, actin polymerization, microtubule organization and PI3K/AKT and TGF-β signals, and activated caspase-3 followed by apoptosis and anoikis induction in HaPC-5 cells. CONCLUSION FxOH may have a high potential as a cancer chemopreventive agent in a hamster pancreatic carcinogenesis model.
Collapse
Affiliation(s)
- Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan;
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Yusaku Nishizaka
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Wataru Murase
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Mareshige Kojoma
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Takuji Tanaka
- Department of Diagnostic Pathology and Research Center of Diagnostic Pathology, Gifu Municipal Hospital, Gifu, Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Aomori, Japan
| | - Kazuo Miyashita
- Center for Industry-University Collaboration, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Michihiro Mutoh
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mami Takahashi
- Central Animal Division, National Cancer Center, Tokyo, Japan
| |
Collapse
|
12
|
Böhm V, Lietz G, Olmedilla-Alonso B, Phelan D, Reboul E, Bánati D, Borel P, Corte-Real J, de Lera AR, Desmarchelier C, Dulinska-Litewka J, Landrier JF, Milisav I, Nolan J, Porrini M, Riso P, Roob JM, Valanou E, Wawrzyniak A, Winklhofer-Roob BM, Rühl R, Bohn T. From carotenoid intake to carotenoid blood and tissue concentrations - implications for dietary intake recommendations. Nutr Rev 2021; 79:544-573. [PMID: 32766681 PMCID: PMC8025354 DOI: 10.1093/nutrit/nuaa008] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is uncertainty regarding carotenoid intake recommendations, because positive and negative health effects have been found or are correlated with carotenoid intake and tissue levels (including blood, adipose tissue, and the macula), depending on the type of study (epidemiological vs intervention), the dose (physiological vs supraphysiological) and the matrix (foods vs supplements, isolated or used in combination). All these factors, combined with interindividual response variations (eg, depending on age, sex, disease state, genetic makeup), make the relationship between carotenoid intake and their blood/tissue concentrations often unclear and highly variable. Although blood total carotenoid concentrations <1000 nmol/L have been related to increased chronic disease risk, no dietary reference intakes (DRIs) exist. Although high total plasma/serum carotenoid concentrations of up to 7500 nmol/L are achievable after supplementation, a plateauing effect for higher doses and prolonged intake is apparent. In this review and position paper, the current knowledge on carotenoids in serum/plasma and tissues and their relationship to dietary intake and health status is summarized with the aim of proposing suggestions for a "normal," safe, and desirable range of concentrations that presumably are beneficial for health. Existing recommendations are likewise evaluated and practical dietary suggestions are included.
Collapse
Affiliation(s)
- Volker Böhm
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Georg Lietz
- Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Begoña Olmedilla-Alonso
- Institute of Food Science, Technology and Nutrition, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - David Phelan
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, Waterford, Ireland
| | | | | | - Patrick Borel
- C2VN, INRAE, INSERM, Aix Marseille Univ, Marseille, France
| | - Joana Corte-Real
- Population Health Department, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Angel R de Lera
- Departmento de Química Orgánica, Centro De Investigaciones Biomédicas and Instituto de Investigación Biomédica de Vigo, Universidade de Vigo, Vigo, Spain
| | | | | | | | - Irina Milisav
- University of Ljubljana, Ljubljana, Slovenia
- University of Ljubljana, Faculty of Health Sciences, Ljubljana, Slovenia and with University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - John Nolan
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, Waterford, Ireland
| | - Marisa Porrini
- Universitàdegli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy
| | - Patrizia Riso
- Universitàdegli Studi di Milano, Department of Food, Environmental and Nutritional Sciences, Division of Human Nutrition, Milan, Italy
| | - Johannes M Roob
- Research Unit Chronic Inflammation in Nephrology, Clinical Division of Nephrology, Department of Internal Medicine, Medical University, Graz, Austria
| | | | - Agata Wawrzyniak
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Brigitte M Winklhofer-Roob
- Human Nutrition & Metabolism Research and Training Center, Institute of Molecular Biosciences, Karl-Franzens University, Graz, Austria
| | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary and with CISCAREX UG, Berlin, Germany
| | - Torsten Bohn
- Population Health Department, Luxembourg Institute of Health, Strassen, Luxembourg
| |
Collapse
|
13
|
Metabolism of Carotenoids in Mammals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33783731 DOI: 10.1007/978-981-15-7360-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Pathways for xanthophyll metabolism have been proposed on the basis of several oxidation products of dietary xanthophylls detected in the tissues of fish, birds, and human subjects. No enzyme reaction had been characterized as responsible for the pathways until a mouse liver homogenate was found to oxidize the 3-hydroxy β-end of xanthophylls to a 3-oxo ε-end in the presence of a cofactor, NAD+. This oxidation consists of dehydrogenation to an unstable intermediate having a 3-oxo β-end group and the subsequent migration of a double bond. β,ε-Caroten-3'-one, a metabolite of β-cryptoxanthin, was found in human plasma, indicating that the same oxidative activity as that found in the mouse liver works in human tissues.The oxidative cleavage of carotenoids is mediated by two dioxygenases: a central cleavage enzyme and an asymmetric cleavage enzyme. In mice, the latter enzyme was suggested to eliminate carotenoids in tissues, while in humans, this enzyme is inactivated, resulting in carotenoid accumulation. In this chapter, carotenoid metabolism in mammals is described in terms of the oxidation of functional groups and cleavage of the carbon skeleton.
Collapse
|
14
|
Fucoxanthin inhibits lipopolysaccharide-induced inflammation and oxidative stress by activating nuclear factor E2-related factor 2 via the phosphatidylinositol 3-kinase/AKT pathway in macrophages. Eur J Nutr 2021; 60:3315-3324. [PMID: 33598775 DOI: 10.1007/s00394-021-02509-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/02/2021] [Indexed: 12/27/2022]
Abstract
PURPOSE Anti-inflammatory and antioxidant effects of fucoxanthin (FCX), a xanthophyll carotenoid, have been suggested. However, underlying mechanisms are elusive. The objective of this study was to elucidate the mechanisms by which FCX and its metabolites inhibit lipopolysaccharide (LPS)-induced inflammation and oxidative stress in macrophages. METHODS The effects of the FCX on mRNA and protein expression of pro-inflammatory cytokines and antioxidant genes, and reactive oxygen species (ROS) accumulation were determined in RAW 264.7 macrophages. A potential role of FCX in the modulation of phosphatidylinositol 3-kinase (PI3K)/AKT/nuclear E2-related factor 2 (NRF2) axis was evaluated. RESULTS FCX significantly decreased LPS-induced interleukin (Il)6, Il1b, and tumor necrosis factor α (Tnf) mRNA abundance and TNFα secretion. FCX attenuated LPS or tert-butyl-hydroperoxide-induced ROS accumulation with concomitant increases in the expression of antioxidant enzymes. Also, trolox equivalent antioxidant capacity assay demonstrated that FCX had a potent free radical scavenging property. FCX markedly increased nuclear translocation of NRF2 in LPS-treated macrophages, consequently inducing its target gene expression. Interestingly, the effect of FCX on NRF2 nuclear translocation was noticeably diminished by LY294002, an inhibitor of PI3K, but not by inhibitors of mitogen-activated protein kinases. Phosphorylation of AKT, a downstream element of PI3K, was also markedly increased by FCX. FCX metabolites, such as fucoxanthinol and amarouciaxanthin A, significantly attenuated LPS-induced ROS accumulation and pro-inflammatory cytokine expression. CONCLUSION FCX exerts anti-inflammatory and antioxidant effects by the activation of NRF2 in the macrophages activated by LPS, which is mediated, at least in part, through the PI3K/AKT pathway.
Collapse
|
15
|
Terasaki M, Takahashi S, Nishimura R, Kubota A, Kojima H, Ohta T, Hamada J, Kuramitsu Y, Maeda H, Miyashita K, Takahashi M, Mutoh M. A Marine Carotenoid of Fucoxanthinol Accelerates the Growth of Human Pancreatic Cancer PANC-1 Cells. Nutr Cancer 2021; 74:357-371. [PMID: 33590779 DOI: 10.1080/01635581.2020.1863994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fucoxanthin and its metabolite fucoxanthinol (FxOH), highly polar xanthophylls, exert strong anticancer effects against many cancer cell types. However, the effects of Fx and FxOH on pancreatic cancer, a high mortality cancer, remain unclear. We herein investigated whether FxOH induces apoptosis in human pancreatic cancer cells. FxOH (5.0 μmol/L) significantly promoted the growth of human pancreatic cancer PANC-1 cells, but induced apoptosis in human colorectal cancer DLD-1 cells. A microarray-based gene analysis revealed that the gene sets of cell cycle, adhesion, PI3K/AKT, MAPK, NRF2, adipogenesis, TGF-β, STAT, and Wnt signals in PANC-1 cells were markedly altered by FxOH. A western blot analysis showed that FxOH up-regulated the expression of integrin β1 and PPARγ as well as the activation of pFAK(Tyr397), pPaxillin(Tyr31), and pAKT(Ser473) in PANC-1 cells, but exerted the opposite effects in DLD-1 cells. Moreover, the expression of FYN, a downstream target of integrin subunits, was up-regulated (7.4-fold by qPCR) in FxOH-treated PANC-1 cells. These results suggest that FxOH accelerates the growth of PANC-1 cells by up-regulating the expression of integrin β1, FAK, Paxillin, FYN, AKT, and PPARγ.
Collapse
Affiliation(s)
- Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.,Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Shouta Takahashi
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Ryuta Nishimura
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Atsuhito Kubota
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.,Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Tohru Ohta
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Junichi Hamada
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Yasuhiro Kuramitsu
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| | - Kazuo Miyashita
- Center for Industry-University Collaboration, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Mami Takahashi
- Central Animal Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Michihiro Mutoh
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
16
|
Chitosan-sodium alginate-fatty acid nanocarrier system: Lutein bioavailability, absorption pharmacokinetics in diabetic rat and protection of retinal cells against H 2O 2 induced oxidative stress in vitro. Carbohydr Polym 2021; 254:117409. [PMID: 33357895 DOI: 10.1016/j.carbpol.2020.117409] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/06/2020] [Accepted: 11/15/2020] [Indexed: 11/21/2022]
Abstract
Aiming to enhance therapeutic efficiency of lutein, lutein loaded chitosan-sodium alginate (CS-SA) based nanocarrier system (LNCs) were prepared and evaluated for lutein bioavailability and pharmacokinetics in diabetic rats in comparison to micellar lutein (control). Further, cytotoxicity, cellular uptake and protective activity against H2O2 induced oxidative stress in ARPE-19 cells were studied. Results revealed that LNCs displayed maximal lutein AUC in plasma, liver and eye respectively in normal (3.1, 2.7 and 5.2 folds) and diabetic (7.3, 3.4 and 2.8 folds) rats. Lutein from LNCs exhibited a higher half-life time, mean residence time and slow clearance from the plasma, indicating prolonged circulation compared to control. In ARPE-19 cells, pre-treatment with LNCs (10 μM) have significantly attenuated H2O2 induced cell death, intracellular ROS and mitochondrial membrane potential compared to control. In conclusion, LNCs improve the lutein bioavailability in conditions like diabetes, diabetic retinopathy and cataract to curtail oxidative stress in retinal cells.
Collapse
|
17
|
Lutein attenuates excessive lipid accumulation in differentiated 3T3-L1 cells and abdominal adipose tissue of rats by the SIRT1-mediated pathway. Int J Biochem Cell Biol 2021; 133:105932. [PMID: 33529717 DOI: 10.1016/j.biocel.2021.105932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/07/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Obesity is now a worldwide disease and is mainly attributable to increased body fat deposition. In a growing number of epidemiological studies, lutein has been revealed to have different degrees of anti-obesity properties, but the potential underlying mechanisms that have been reported are limited. Therefore, we aimed to clarify the protective effects of lutein against excessive lipid accumulation, and we explored the role of SIRT1 and SIRT1-mediated pathways both in abdominal adipose tissue and mature 3T3-L1 cells during lutein administration. METHODS In our design, male Sprague-Dawley rats were fed either control or high-fat diets with or without 25 mg/kg·bw/day lutein for 5 weeks. Additionally, differentiated 3T3-L1 cells were incubated with 40 μM lutein or 10 μM Ex527 for 24 h. RESULTS Lutein supplementation decreased the body weight, abdominal fat index ratio, frequency and mean area of larger adipocytes in HE staining induced by the high-fat diet and then activated the expression of SIRT1 and thus upregulated FoxO1, ATGL, and HSL expression and downregulated SREBP-1, FAS, and ACC expression both in abdominal adipose tissue and differentiated 3T3-L1 cells. However, coincubation with Ex527 and lutein suppressed the activation of SIRT1 and reversed the expression of FoxO1, ATGL, HSL, SREBP-1, FAS, and ACC in comparison to those in the Lut group. CONCLUSIONS Overall, we suggest that the effects of lutein on attenuating excessive lipid accumulation are dependent on the SIRT1-mediated pathway in vivo and in vitro, which indicates that lutein administration may be a potential strategy for preventing excessive lipid accumulation and obesity.
Collapse
|
18
|
von Lintig J, Moon J, Lee J, Ramkumar S. Carotenoid metabolism at the intestinal barrier. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158580. [PMID: 31794861 PMCID: PMC7987234 DOI: 10.1016/j.bbalip.2019.158580] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
Carotenoids exert a rich variety of physiological functions in mammals and are beneficial for human health. These lipids are acquired from the diet and metabolized to apocarotenoids, including retinoids (vitamin A and its metabolites). The small intestine is a major site for their absorption and bioconversion. From here, carotenoids and their metabolites are distributed within the body in triacylglycerol-rich lipoproteins to support retinoid signaling in peripheral tissues and photoreceptor function in the eyes. In recent years, much progress has been made in identifying carotenoid metabolizing enzymes, transporters, and binding proteins. A diet-responsive regulatory network controls the activity of these components and adapts carotenoid absorption and bioconversion to the bodily requirements of these lipids. Genetic variability in the genes encoding these components alters carotenoid homeostasis and is associated with pathologies. We here summarize the advanced state of knowledge about intestinal carotenoid metabolism and its impact on carotenoid and retinoid homeostasis of other organ systems, including the eyes, liver, and immune system. The implication of the findings for science-based intake recommendations for these essential dietary lipids is discussed. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Joan Lee
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| | - Srinivasagan Ramkumar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States of America
| |
Collapse
|
19
|
Gabbia D, De Martin S. Brown Seaweeds for the Management of Metabolic Syndrome and Associated Diseases. Molecules 2020; 25:E4182. [PMID: 32932674 PMCID: PMC7570850 DOI: 10.3390/molecules25184182] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023] Open
Abstract
Metabolic syndrome is characterized by the coexistence of different metabolic disorders which increase the risk of developing type 2 diabetes mellitus and cardiovascular diseases. Therefore, metabolic syndrome leads to a reduction in patients' quality of life as well as to an increase in morbidity and mortality. In the last few decades, it has been demonstrated that seaweeds exert multiple beneficial effects by virtue of their micro- and macronutrient content, which could help in the management of cardiovascular and metabolic diseases. This review aims to provide an updated overview on the potential of brown seaweeds for the prevention and management of metabolic syndrome and its associated diseases, based on the most recent evidence obtained from in vitro and in vivo preclinical and clinical studies. Owing to their great potential for health benefits, brown seaweeds are successfully used in some nutraceuticals and functional foods for treating metabolic syndrome comorbidities. However, some issues still need to be tackled and deepened to improve the knowledge of their ADME/Tox profile in humans, in particular by finding validated indexes of their absorption and obtaining reliable information on their efficacy and long-term safety.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
20
|
Kotake-Nara E, Hase M. Effect of dispersed form on the bioavailability of β-carotene from daily intake in humans. Biosci Biotechnol Biochem 2020; 84:2545-2557. [PMID: 32835607 DOI: 10.1080/09168451.2020.1803728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In a randomized double-blind crossover study, a canned beverage was prepared using an emulsion dispersion formulation (EM) of β-carotene and a crystal dispersion formulation (CR) of β-carotene; the beverages were ingested by human subjects daily for 2 weeks to compare the β-carotene bioavailability. EM-β-carotene enhanced the β-carotene concentrations in human plasma approximately 4-fold, but CR-β-carotene showed no statistically significant enhancement. Bioaccessibility is the ratio of the solubilized fraction to the whole amount ingested. Bioaccessibility of β-carotene from EM-β-carotene was higher than that from CR-β-carotene in an in vitro digestion test. Contrarily, β-carotene from CR-β-carotene, consists of all-trans-β-carotene, was higher than that from EM-β-carotene, consists of a mixture of cis and all-trans-β-carotene, on the uptake by intestinal Caco-2 cells, suggesting that bioaccessibility was a critical factor in β-carotene bioavailability in this study. EM-β-carotene thus has potential as a food coloring agent with value added because it enhances β-carotene bioavailability.
Collapse
Affiliation(s)
- Eiichi Kotake-Nara
- Food Research Institute, National Agriculture and Food Research Organization , Tsukuba, Japan
| | - Megumi Hase
- Food Research Institute, National Agriculture and Food Research Organization , Tsukuba, Japan
| |
Collapse
|
21
|
Genç Y, Bardakci H, Yücel Ç, Karatoprak GŞ, Küpeli Akkol E, Hakan Barak T, Sobarzo-Sánchez E. Oxidative Stress and Marine Carotenoids: Application by Using Nanoformulations. Mar Drugs 2020; 18:md18080423. [PMID: 32823595 PMCID: PMC7459739 DOI: 10.3390/md18080423] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Carotenoids are natural fat-soluble pigments synthesized by plants, algae, fungi and microorganisms. They are responsible for the coloration of different photosynthetic organisms. Although they play a role in photosynthesis, they are also present in non-photosynthetic plant tissues, fungi, and bacteria. These metabolites have mainly been used in food, cosmetics, and the pharmaceutical industry. In addition to their utilization as pigmentation, they have significant therapeutically applications, such as improving immune system and preventing neurodegenerative diseases. Primarily, they have attracted attention due to their antioxidant activity. Several statistical investigations indicated an association between the use of carotenoids in diets and a decreased incidence of cancer types, suggesting the antioxidant properties of these compounds as an important factor in the scope of the studies against oxidative stress. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. Marine carotenoids (astaxanthin, fucoxanthin, β-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol) have recently shown antioxidant properties in reducing oxidative stress markers. Numerous of bioactive compounds such as marine carotenoids have low stability, are poorly absorbed, and own very limited bioavailability. The new technique is nanoencapsulation, which can be used to preserve marine carotenoids and their original properties during processing, storage, improve their physiochemical properties and increase their health-promoting effects. This review aims to describe the role of marine carotenoids, their potential applications and different types of advanced nanoformulations preventing and treating oxidative stress related disorders.
Collapse
Affiliation(s)
- Yasin Genç
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Sıhhiye, 06100 Ankara, Turkey;
| | - Hilal Bardakci
- Department of Pharmacognosy, Faculty of Pharmacy, Acibadem Mehmet Ali Aydınlar University, 34752 Istanbul, Turkey; (H.B.); (T.H.B.)
| | - Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey;
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, 06330 Ankara, Turkey
- Correspondence: (E.K.A.); (E.S.-S.); Tel.: +90-312-2023185 (E.K.A.); +90-569-53972783 (E.S.-S.); Fax: +90-312-2235018 (E.K.A.)
| | - Timur Hakan Barak
- Department of Pharmacognosy, Faculty of Pharmacy, Acibadem Mehmet Ali Aydınlar University, 34752 Istanbul, Turkey; (H.B.); (T.H.B.)
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Correspondence: (E.K.A.); (E.S.-S.); Tel.: +90-312-2023185 (E.K.A.); +90-569-53972783 (E.S.-S.); Fax: +90-312-2235018 (E.K.A.)
| |
Collapse
|
22
|
Yokoyama R, Kojima H, Takai R, Ohta T, Maeda H, Miyashita K, Mutoh M, Terasaki M. Effects of CLIC4 on Fucoxanthinol-Induced Apoptosis in Human Colorectal Cancer Cells. Nutr Cancer 2020; 73:889-898. [PMID: 33703973 DOI: 10.1080/01635581.2020.1779760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fucoxanthin is a marine xanthophyll found in edible brown algae, and a metabolite, fucoxanthinol (FxOH), possesses a potent apoptosis inducing effect in many cancer cells. Chloride intracellular channel 4 (CLIC4) is a member of the CLIC family that plays an important role in cancer development and apoptosis. However, the role of CLIC4 in FxOH-induced apoptosis is not well understood. In this study, we investigated whether CLIC4 affects the apoptotic properties of FxOH in human colorectal cancer (CRC) cells under FxOH treatment. Treating human CRC DLD-1 cells with 5.0 μmol/L FxOH significantly induced apoptosis. FxOH downregulated CLIC4, integrin β1, NHERF2 and pSmad2 (Ser465/467) by 0.6-, 0.7-, 0.7-, and 0.5-fold, respectively, compared with control cells without alteration of Rab35 expression. No colocalizing change was observed in CLIC4-related proteins in either control or FxOH-treated cells. CLIC4 knockdown suppressed cell growth and apoptosis. Interestingly, apoptosis induction by FxOH almost disappeared with CLIC4 knockdown. Our findings suggested that CLIC4 could be involved in FxOH-induced apoptosis in human CRC.
Collapse
Affiliation(s)
- Reo Yokoyama
- School of Pharmaceutical Sciences, Health Science University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Science University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Rie Takai
- Research Institute of Health Sciences, Health Science University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Tohru Ohta
- Research Institute of Health Sciences, Health Science University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| | - Kazuo Miyashita
- Laboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Michihiro Mutoh
- Epidemiology and Preventions Group, Center for Public Health Sciences, National Cancer Center, Chuo-ku, Tokyo, Japan
| | - Masaru Terasaki
- School of Pharmaceutical Sciences, Health Science University of Hokkaido, Ishikari-Tobetsu, Japan.,Cancer Prevention Laboratories, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| |
Collapse
|
23
|
Rodríguez-Rodríguez E, Beltrán-de-Miguel B, Samaniego-Aguilar KX, Sánchez-Prieto M, Estévez-Santiago R, Olmedilla-Alonso B. Extraction and Analysis by HPLC-DAD of Carotenoids in Human Faeces from Spanish Adults. Antioxidants (Basel) 2020; 9:E484. [PMID: 32503206 PMCID: PMC7346146 DOI: 10.3390/antiox9060484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Carotenoids are bioactive compounds with widely accepted health benefits. Their quantification in human faeces can be a useful non-invasive approach to assess their bioavailability. Identification and quantification of major dietary carotenoids in human faeces was the aim of the present study. Faeces and dietary intake were obtained from 101 healthy adults (45-65 years). Carotenoid concentrations were determined by HPLC in faeces and by 3-day food records in dietary intake. Carotenoids quantified in faeces (µg/g dry weight, median) were: β-carotene (39.5), lycopene (20), lutein (17.5), phytoene (11.4), zeaxanthin (6.3), β-cryptoxanthin (4.5), phytofluene (2.9). α-carotene (5.3) and violaxanthin were found 75.5% and 7.1% of the faeces. The carotenoids found in the highest concentrations corresponded to the ones consumed in the greatest amounts (µg/d): lycopene (13,146), phytoene (2697), β-carotene (1812), lutein+zeaxanthin (1148). Carotenoid concentration in faeces and in dietary intake showed correlation for the total non-provitamin A carotenoids (r = 0.302; p = 0.003), phytoene (r = 0.339; p = 0.001), phytofluene (r = 0.279; p = 0.005), lycopene (0.223; p = 0.027), lutein+zeaxanthin (r = 0.291; p = 0.04) and β-cryptoxanthin (r = 0.323; p = 0.001). A high proportion of dietary carotenoids, especially those with provitamin A activity and some of their isomers, reach the large intestine, suggesting a low bioavailability of their intact forms.
Collapse
Affiliation(s)
- Elena Rodríguez-Rodríguez
- Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (E.R.-R.); (B.B.-d.-M.)
| | - Beatriz Beltrán-de-Miguel
- Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (E.R.-R.); (B.B.-d.-M.)
| | - Kerly X. Samaniego-Aguilar
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (K.X.S.-A.); (M.S.-P.); (R.E.-S.)
| | - Milagros Sánchez-Prieto
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (K.X.S.-A.); (M.S.-P.); (R.E.-S.)
| | - Rocío Estévez-Santiago
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (K.X.S.-A.); (M.S.-P.); (R.E.-S.)
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Begoña Olmedilla-Alonso
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain; (K.X.S.-A.); (M.S.-P.); (R.E.-S.)
| |
Collapse
|
24
|
Li Z, Zheng J, Luo X, Manabe Y, Hirata T, Sugawara T. Absorption and Tissue Distribution of Siphonaxanthin from Green Algae. Mar Drugs 2020; 18:md18060291. [PMID: 32492769 PMCID: PMC7345836 DOI: 10.3390/md18060291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022] Open
Abstract
Siphonaxanthin has been known to possess inhibitory effects against obesity, inflammation, and angiogenesis. However, little information on its in vivo bioavailability and biotransformation is available. To assess the bioavailability and metabolism of siphonaxanthin, its absorption and accumulation were evaluated using intestinal Caco-2 cells and Institute of Cancer Research (ICR) mice. Siphonaxanthin was absorbed and exhibited non-uniform accumulation and distribution patterns in tissues of ICR mice. Notably, in addition to siphonaxanthin, three main compounds were detected following dietary administration of siphonaxanthin. Because the compounds showed changes on mass spectra compared with that of siphonaxanthin, they were presumed to be metabolites of siphonaxanthin in ICR mice. Siphonaxanthin mainly accumulated in stomach and small intestine, while putative metabolites of siphonaxanthin mainly accumulated in liver and adipose tissues. Furthermore, siphonaxanthin and its putative metabolites selectively accumulated in white adipose tissue (WAT), especially mesenteric WAT. These results provide useful evidence regarding the in vivo bioactivity of siphonaxanthin. In particular, the results regarding the specific accumulation of siphonaxanthin and its metabolites in WAT have important implications for understanding their anti-obesity effects and regulatory roles in lipid metabolism.
Collapse
Affiliation(s)
- Zhuosi Li
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 6068502, Japan; (Z.L.); (J.Z.); (X.L.); (Y.M.); (T.H.)
| | - Jiawen Zheng
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 6068502, Japan; (Z.L.); (J.Z.); (X.L.); (Y.M.); (T.H.)
| | - Xiaolin Luo
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 6068502, Japan; (Z.L.); (J.Z.); (X.L.); (Y.M.); (T.H.)
| | - Yuki Manabe
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 6068502, Japan; (Z.L.); (J.Z.); (X.L.); (Y.M.); (T.H.)
| | - Takashi Hirata
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 6068502, Japan; (Z.L.); (J.Z.); (X.L.); (Y.M.); (T.H.)
- Department of Rehabilitation, Shijonawate Gakuen University, Osaka 5740011, Japan
| | - Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 6068502, Japan; (Z.L.); (J.Z.); (X.L.); (Y.M.); (T.H.)
- Correspondence: ; Tel.: +81-75-753-6212
| |
Collapse
|
25
|
Miyashita K, Beppu F, Hosokawa M, Liu X, Wang S. Nutraceutical characteristics of the brown seaweed carotenoid fucoxanthin. Arch Biochem Biophys 2020; 686:108364. [PMID: 32315653 DOI: 10.1016/j.abb.2020.108364] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/10/2020] [Accepted: 04/12/2020] [Indexed: 02/08/2023]
Abstract
Fucoxanthin (Fx), a major carotenoid found in brown seaweed, is known to show a unique and wide variety of biological activities. Upon absorption, Fx is metabolized to fucoxanthinol and amarouciaxanthin, and these metabolites mainly accumulate in visceral white adipose tissue (WAT). As seen in other carotenoids, Fx can quench singlet oxygen and scavenge a wide range of free radicals. The antioxidant activity is related to the neuroprotective, photoprotective, and hepatoprotective effects of Fx. Fx is also reported to show anti-cancer activity through the regulation of several biomolecules and signaling pathways that are involved in either cell cycle arrest, apoptosis, or metastasis suppression. Among the biological activities of Fx, anti-obesity is the most well-studied and most promising effect. This effect is primarily based on the upregulation of thermogenesis by uncoupling protein 1 expression and the increase in the metabolic rate induced by mitochondrial activation. In addition, Fx shows anti-diabetic effects by improving insulin resistance and promoting glucose utilization in skeletal muscle.
Collapse
Affiliation(s)
- Kazuo Miyashita
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan.
| | - Fumiaki Beppu
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan
| | - Masashi Hosokawa
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, 041-8611, Japan
| | - Xiaoyong Liu
- Shandong Haizhibao Ocean Science and Technology Co., Ltd., Rongcheng City, 264300, China
| | - Shuzhou Wang
- Shandong Haizhibao Ocean Science and Technology Co., Ltd., Rongcheng City, 264300, China
| |
Collapse
|
26
|
Therapeutic Effect of Seaweed Derived Xanthophyl Carotenoid on Obesity Management; Overview of the Last Decade. Int J Mol Sci 2020; 21:ijms21072502. [PMID: 32260306 PMCID: PMC7177665 DOI: 10.3390/ijms21072502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/26/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Present-day lifestyles associated with high calorie-fat intake and accumulation, as well as energy imbalance, have led to the development of obesity and its comorbidities, which have emerged as some of the major health issues globally. To combat the disease, many studies have reported the anti-obesity effects of natural compounds in foods, with some advantages over chemical treatments. Carotenoids, such as xanthophyll derived from seaweeds, have attracted the attention of researchers due to their notable biological activities, which are associated mainly with their antioxidant properties. Their involvement in oxidative stress modulation, the regulation of major transcription factors and enzymes, and their antagonistic effects on various obesity parameters have been examined in both in vitro and in vivo studies. The present review is a collation of published research over the last decade on the antioxidant properties of seaweed xanthophyll carotenoids, with a focus on fucoxanthin and astaxanthin and their mechanisms of action in obesity prevention and treatment.
Collapse
|
27
|
Zare M, Norouzi Roshan Z, Assadpour E, Jafari SM. Improving the cancer prevention/treatment role of carotenoids through various nano-delivery systems. Crit Rev Food Sci Nutr 2020; 61:522-534. [PMID: 32180434 DOI: 10.1080/10408398.2020.1738999] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
One of the emerging and recent strategies to combat cancer is application of natural bioactive compounds and phytochemicals. Carotenoids including lycopene, β-carotene, astaxanthin, crocin, β-cryptoxanthin, and lutein, are the main group of plant pigments which play important roles in the prevention and healing process of different diseases including cancer. The pharmacological use of carotenoid compounds is frequently limited by their low bioavailability and solubility as they are mainly lipophilic compounds. The present study focuses on the current data on formulation of different carotenoid nanodelivery systems for cancer therapy and a brief overview of the obtained results. Encapsulation of carotenoids within different nanocarriers is a remarkable approach and innovative strategy for the improvement of health-promoting features and particularly, cancer prevention/treatment roles of these compounds through enhancing their solubility, cellular uptake, membrane permeation, bioaccessibility, and stability. There is various nanocarrier for loading carotenoids including polymeric/biopolymeric, lipid-based, inorganic, and hybrid nanocarriers. Almost in all relevant studies, these nano delivery systems have shown promising results in improving the efficiency of carotenoids in cancer therapy. [Formula: see text].
Collapse
Affiliation(s)
- Mahboobeh Zare
- Faculty of Medicinal Plants, Department of Basic and Science, Amol University of Special Modern Technologies, Amol, Iran
| | - Zahra Norouzi Roshan
- Department of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Elham Assadpour
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
28
|
Bae M, Kim MB, Park YK, Lee JY. Health benefits of fucoxanthin in the prevention of chronic diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158618. [PMID: 31931174 DOI: 10.1016/j.bbalip.2020.158618] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 01/22/2023]
Abstract
Fucoxanthin is a xanthophyll carotenoid abundant in macroalgae, such as brown seaweeds. When fucoxanthin is consumed, it can be esterified or hydrolyzed to fucoxanthinol in the gastrointestinal tract and further converted into amarouciaxanthin A in the liver. It has a unique chemical structure that confers its biological effects. Fucoxanthin has a strong antioxidant capacity by scavenging singlet molecular oxygen and free radicals. Also, it exerts an anti-inflammatory effect. Studies have demonstrated potential health benefits of fucoxanthin for the prevention of chronic diseases, such as cancer, obesity, diabetes mellitus, and liver disease. Animal studies have shown that fucoxanthin supplementation has no adverse effects. However, investigation of the safety of fucoxanthin consumption in humans is lacking. Clinical trials are required to assess the safety of fucoxanthin in conjunction with the study of mechanisms by which fucoxanthin exhibits its health benefits. This review focuses on current knowledge of metabolism and functions of fucoxanthin with its potential health benefits. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Minkyung Bae
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
29
|
Brown Macroalgae as Valuable Food Ingredients. Antioxidants (Basel) 2019; 8:antiox8090365. [PMID: 31480675 PMCID: PMC6769643 DOI: 10.3390/antiox8090365] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022] Open
Abstract
Due to the balanced nutritional value and abundance of bioactive compounds, seaweeds represent great candidates to be used as health-promoting ingredients by the food industry. In this field, Phaeophyta, i.e., brown macroalgae, have been receiving great attention particularly due to their abundance in complex polysaccharides, phlorotannins, fucoxanthin and iodine. In the past decade, brown algae and their extracts have been extensively studied, aiming at the development of well-accepted products with the simultaneous enhancement of nutritional value and/or shelf-life. However, the reports aiming at their bioactivity in in vivo models are still scarce and need additional exploration. Therefore, this manuscript revises the relevant literature data regarding the development of Phaeophyta-enriched food products, namely those focused on species considered as safe for human consumption in Europe. Hopefully, this will create awareness to the need of further studies in order to determine how those benefits can translate to human beings.
Collapse
|
30
|
Coronel J, Pinos I, Amengual J. β-carotene in Obesity Research: Technical Considerations and Current Status of the Field. Nutrients 2019; 11:E842. [PMID: 31013923 PMCID: PMC6521044 DOI: 10.3390/nu11040842] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/02/2019] [Accepted: 04/06/2019] [Indexed: 12/21/2022] Open
Abstract
Over the past decades, obesity has become a rising health problem as the accessibility to high calorie, low nutritional value food has increased. Research shows that some bioactive components in fruits and vegetables, such as carotenoids, could contribute to the prevention and treatment of obesity. Some of these carotenoids are responsible for vitamin A production, a hormone-like vitamin with pleiotropic effects in mammals. Among these effects, vitamin A is a potent regulator of adipose tissue development, and is therefore important for obesity. This review focuses on the role of the provitamin A carotenoid β-carotene in human health, emphasizing the mechanisms by which this compound and its derivatives regulate adipocyte biology. It also discusses the physiological relevance of carotenoid accumulation, the implication of the carotenoid-cleaving enzymes, and the technical difficulties and considerations researchers must take when working with these bioactive molecules. Thanks to the broad spectrum of functions carotenoids have in modern nutrition and health, it is necessary to understand their benefits regarding to metabolic diseases such as obesity in order to evaluate their applicability to the medical and pharmaceutical fields.
Collapse
Affiliation(s)
- Johana Coronel
- Department of Food Sciences and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
| | - Ivan Pinos
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
| | - Jaume Amengual
- Department of Food Sciences and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
- Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
31
|
Gille A, Stojnic B, Derwenskus F, Trautmann A, Schmid-Staiger U, Posten C, Briviba K, Palou A, Bonet ML, Ribot J. A Lipophilic Fucoxanthin-Rich Phaeodactylum tricornutum Extract Ameliorates Effects of Diet-Induced Obesity in C57BL/6J Mice. Nutrients 2019; 11:nu11040796. [PMID: 30959933 PMCID: PMC6521120 DOI: 10.3390/nu11040796] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/26/2022] Open
Abstract
Phaeodactylum tricornutum (P. tricornutum) comprise several lipophilic constituents with proposed anti-obesity and anti-diabetic properties. We investigated the effect of an ethanolic P. tricornutum extract (PTE) on energy metabolism in obesity-prone mice fed a high fat diet (HFD). Six- to eight-week-old male C57BL/6J mice were switched to HFD and, at the same time, received orally placebo or PTE (100 mg or 300 mg/kg body weight/day). Body weight, body composition, and food intake were monitored. After 26 days, blood and tissue samples were collected for biochemical, morphological, and gene expression analyses. PTE-supplemented mice accumulated fucoxanthin metabolites in adipose tissues and attained lower body weight gain, body fat content, weight of white adipose tissue (WAT) depots, and inguinal WAT adipocyte size than controls, independent of decreased food intake. PTE supplementation was associated with lower expression of Mest (a marker of fat tissue expandability) in WAT depots, lower gene expression related to lipid uptake and turnover in visceral WAT, increased expression of genes key to fatty acid oxidation and thermogenesis (Cpt1, Ucp1) in subcutaneous WAT, and signs of thermogenic activation including enhanced UCP1 protein in interscapular brown adipose tissue. In conclusion, these data show the potential of PTE to ameliorate HFD-induced obesity in vivo.
Collapse
Affiliation(s)
- Andrea Gille
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Physiology and Biochemistry of Nutrition, 76131 Karlsruhe, Germany.
| | - Bojan Stojnic
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain.
| | - Felix Derwenskus
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, 70569 Stuttgart, Germany.
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany.
| | - Andreas Trautmann
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Sciences III Bioprocess Engineering, 76131 Karlsruhe, Germany.
| | - Ulrike Schmid-Staiger
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany.
| | - Clemens Posten
- Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in Life Sciences III Bioprocess Engineering, 76131 Karlsruhe, Germany.
| | - Karlis Briviba
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Physiology and Biochemistry of Nutrition, 76131 Karlsruhe, Germany.
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 07122 Palma de Mallorca, Spain.
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain.
| | - M Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 07122 Palma de Mallorca, Spain.
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain.
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 07122 Palma de Mallorca, Spain.
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain.
| |
Collapse
|
32
|
Viera I, Pérez-Gálvez A, Roca M. Bioaccessibility of Marine Carotenoids. Mar Drugs 2018; 16:E397. [PMID: 30360450 PMCID: PMC6213429 DOI: 10.3390/md16100397] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/26/2022] Open
Abstract
The benefit of carotenoids to human health is undeniable and consequently, their use for this purpose is growing rapidly. Additionally, the nutraceutical properties of carotenoids have attracted attention of the food industry, especially in a new market area, the 'cosmeceuticals.' Marine organisms (microalgae, seaweeds, animals, etc.) are a rich source of carotenoids, with optimal properties for industrial production and biotechnological manipulation. Consequently, several papers have reviewed the analysis, characterization, extraction and determination methods, biological functions and industrial applications. But, now, the bioaccessibility and bioactivity of marine carotenoids has not been focused of any review, although important achievements have been published. The specific and diverse characteristic of the marine matrix determines the bioavailability of carotenoids, some of them unique in the nature. Considering the importance of the bioavailability not just from the health and nutritional point of view but also to the food and pharmaceutical industry, we consider that the present review responds to an actual demand.
Collapse
Affiliation(s)
- Isabel Viera
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), University Campus, Building 46, Carretera de Utrera km. 1., 41013 Sevilla, Spain.
| | - Antonio Pérez-Gálvez
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), University Campus, Building 46, Carretera de Utrera km. 1., 41013 Sevilla, Spain.
| | - María Roca
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), University Campus, Building 46, Carretera de Utrera km. 1., 41013 Sevilla, Spain.
| |
Collapse
|
33
|
Gille A, Neumann U, Louis S, Bischoff SC, Briviba K. Microalgae as a potential source of carotenoids: Comparative results of an in vitro digestion method and a feeding experiment with C57BL/6J mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
34
|
Fucoxanthin bioavailability from fucoxanthin-fortified milk: In vivo and in vitro study. Food Chem 2018; 258:79-86. [DOI: 10.1016/j.foodchem.2018.03.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 03/01/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022]
|
35
|
Terasaki M, Matsumoto N, Hashimoto R, Endo T, Maeda H, Hamada J, Osada K, Miyashita K, Mutoh M. Fucoxanthin administration delays occurrence of tumors in xenograft mice by colonospheres, with an anti-tumor predictor of glycine. J Clin Biochem Nutr 2018; 64:52-58. [PMID: 30705512 PMCID: PMC6348407 DOI: 10.3164/jcbn.18-45] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/06/2018] [Indexed: 12/15/2022] Open
Abstract
Fucoxanthin and its major metabolite, fucoxanthinol, have potent anti-cancer properties in carcinogenic model mice and against cancer cells. Evidence has accumulated regarding the diagnostic potential of biological metabolites as invasive and non-invasive obtainable approaches. We recently demonstrated that glycine was an effective predictor of the suppression of sphere formation and epithelial mesenchymal transition by fucoxanthinol in human colorectal cancer stem-like spheroids (colonospheres) under normoxia and hypoxia. In the present study, we investigated the suppressive effect of fucoxanthin on tumorigenesis derived from colonospheres in xenograft mice, and the alteration on the metabolite profiles of mouse tumors by fucoxanthin was evaluated. Fucoxanthin administration at 2.5 mg/kg body weight (p.o.) for 4 weeks significantly inhibited the incidence of tumors by inoculation of colonospheres suspension in BALB/c nu/nu mice compared with control mice, but not tumor sizes. In addition, fucoxanthin down-regulated tumor Cyclin D1 expression by 0.7-fold of that observed in the tumors of the control mice. Moreover, the tumor glycine level in the xenograft mice was decreased by fucoxanthin administration to 0.5-fold. These results imply the possibility of tumor metabolites as a prediction marker of tumorigenicity derived from colorectal cancer stem cells in mice.
Collapse
Affiliation(s)
- Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan.,Cancer Prevention Laboratories, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Naoya Matsumoto
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Ryuichi Hashimoto
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Tetsuya Endo
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Junichi Hamada
- Cancer Prevention Laboratories, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan.,School of Nursing and Social Services, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Kazumi Osada
- School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Kazuo Miyashita
- Laboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Michihiro Mutoh
- Epidemiology and Preventions Group, Center for Public Health Sciences, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
36
|
Pérez-Gálvez A, Sánchez-García A, Garrido-Fernández J, Ríos J. MS tools for a systematic approach in survey for carotenoids and their common metabolites. Arch Biochem Biophys 2018; 650:85-92. [DOI: 10.1016/j.abb.2018.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/18/2018] [Accepted: 05/09/2018] [Indexed: 11/30/2022]
|
37
|
Sato Y, Joumura T, Nashimoto S, Yokoyama S, Takekuma Y, Yoshida H, Sugawara M. Enhancement of lymphatic transport of lutein by oral administration of a solid dispersion and a self-microemulsifying drug delivery system. Eur J Pharm Biopharm 2018; 127:171-176. [DOI: 10.1016/j.ejpb.2018.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/04/2017] [Accepted: 02/07/2018] [Indexed: 12/19/2022]
|
38
|
Terasaki M, Maeda H, Miyashita K, Mutoh M. Induction of Anoikis in Human Colorectal Cancer Cells by Fucoxanthinol. Nutr Cancer 2017; 69:1043-1052. [PMID: 28990814 DOI: 10.1080/01635581.2017.1339814] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Fucoxanthin (Fx), one of the major xanthophylls in brown algae, is known to be effective for colorectal cancer (CRC) chemoprevention through inhibiting cell growth, cell cycle and caspase activation. Recently, we observed fucoxanthinol (FuOH), an anti-cancer active metabolite of Fx, treatment of human CRC cells resulted in plenty of living floating cells several hours after exposure, and induced apoptosis. In the present study, we investigated whether FuOH induced anchorage-dependent apoptosis, that is "anoikis", along with integrin signal suppression in human CRC cells. We found that cells exposed to 2.5 μM FuOH clearly showed anti-proliferative and apoptotic effects to DLD-1 cells, human CRC cells. FuOH treatment of DLD-1 cells led to an increase in anoikis-like changes represented by Calcein AM negative/ethidium homodimer-1 positive cell and living floating cells. Moreover, FuOH decreased FAK activation, and altered integrin β1 expression and distribution after 6 h treatment. After 24 h, the cells decreased PPARγ expression and Akt activation and increased integrin β1 expression. Our findings suggested that FuOH can induce anoikis in CRC cells through suppression of integrin signals in human CRC cells.
Collapse
Affiliation(s)
- Masaru Terasaki
- a School of Pharmaceutical Sciences, Health Sciences University of Hokkaido , Kanazawa, Ishikari-Tobetsu, Hokkaido , Japan
| | - Hayato Maeda
- b Faculty of Agriculture and Life Science, Hirosaki University , Hirosaki, Aomori , Japan
| | - Kazuo Miyashita
- c Laboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University , Hakodate, Hokkaido , Japan
| | - Michihiro Mutoh
- d Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute , Tsukiji, Chuo-ku, Tokyo , Japan
| |
Collapse
|
39
|
Miyashita K, Hosokawa M. Fucoxanthin in the management of obesity and its related disorders. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
40
|
Terasaki M, Maeda H, Miyashita K, Tanaka T, Miyamoto S, Mutoh M. A marine bio-functional lipid, fucoxanthinol, attenuates human colorectal cancer stem-like cell tumorigenicity and sphere formation. J Clin Biochem Nutr 2017; 61:25-32. [PMID: 28751806 PMCID: PMC5525009 DOI: 10.3164/jcbn.16-112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/11/2017] [Indexed: 01/11/2023] Open
Abstract
Fucoxanthinol (FuOH), an intestinal metabolite form of fucoxanthin (Fx) isolated from marine algae, is known to possess multiple health benefits, such as prevention of human cancer. However, there is little available information about the effects of FuOH on colorectal cancer stem cells (CCSCs) and their contribution to drug resistance, tumorigenesis and cancer recurrence. In the present study, we investigated the anti-proliferative effect of FuOH on two putative CCSCs, CD44high/EpCAMhigh cells and colonospheres (Csps) formed by HT-29 human colorectal cancer cells, and the suppressive effects of FuOH on the growth of xenografted tumor. FuOH significantly inhibited the growth of CD44high/EpCAMhigh cells and disintegrated Csps and induced many condensed chromatin bodies in the cells in a dose-dependent manner. The IC50 value of FuOH for these changes in Csps was 1.8 µM. FuOH down-regulated pAkt (Ser473), PPARβ/δ and PPARγ in Csps. These proteins play a critical role in cell proliferation, the cell cycle, metastasis and extracellular adhesion. Ten days after the administration of FuOH (5 mg/kg body weight) to the mice every 3 to 4 days significantly suppressed the Csps tumorigenesis when compared to the untreated control mice. Our results suggest that FuOH could be used as a chemopreventive agent against human CCSC.
Collapse
Affiliation(s)
- Masaru Terasaki
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Kazuo Miyashita
- Laboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Takuji Tanaka
- Department of Diagnostic Pathology and Research Center of Diagnostic Pathology, Gifu Municipal Hospital, 7-1 Kashima-cho, Gifu 500-8513, Japan
| | - Shingo Miyamoto
- Epidemiology and Preventions Group, Center for Public Health Sciences, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Michihiro Mutoh
- Epidemiology and Preventions Group, Center for Public Health Sciences, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
41
|
Rodriguez-Rodriguez R, Jiménez-Altayó F, Alsina L, Onetti Y, Rinaldi de Alvarenga JF, Claro C, Ogalla E, Casals N, Lamuela-Raventos RM. Mediterranean tomato-based sofrito
protects against vascular alterations in obese Zucker rats by preserving NO bioavailability. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201601010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/17/2017] [Accepted: 03/03/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Rosalia Rodriguez-Rodriguez
- Basic Sciences Department; Faculty of Medicine and Health Sciences; Universitat Internacional de Catalunya; Sant Cugat del Vallès Barcelona Spain
| | - Francesc Jiménez-Altayó
- Departament de Farmacologia, de Terapèutica i de Toxicologia; Institut de Neurociències; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
| | - Laia Alsina
- Departament de Farmacologia, de Terapèutica i de Toxicologia; Institut de Neurociències; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
| | - Yara Onetti
- Departament de Farmacologia, de Terapèutica i de Toxicologia; Institut de Neurociències; Facultat de Medicina; Universitat Autònoma de Barcelona; Bellaterra Spain
| | | | - Carmen Claro
- Departamento de Farmacología; Facultad de Farmacia; Universidad de Sevilla; Sevilla Spain
| | - Elena Ogalla
- Departamento de Farmacología; Facultad de Farmacia; Universidad de Sevilla; Sevilla Spain
| | - Núria Casals
- Basic Sciences Department; Faculty of Medicine and Health Sciences; Universitat Internacional de Catalunya; Sant Cugat del Vallès Barcelona Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
| | - Rosa M. Lamuela-Raventos
- Nutrition, Food Science Department and Gastronomy; XaRTA, INSA-UB Pharmacy; University of Barcelona; Barcelona Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
| |
Collapse
|
42
|
Effect of Carotenoid Supplemented Formula on Carotenoid Bioaccumulation in Tissues of Infant Rhesus Macaques: A Pilot Study Focused on Lutein. Nutrients 2017; 9:nu9010051. [PMID: 28075370 PMCID: PMC5295095 DOI: 10.3390/nu9010051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022] Open
Abstract
Lutein is the predominant carotenoid in the developing primate brain and retina, and may have important functional roles. However, its bioaccumulation pattern during early development is not understood. In this pilot study, we investigated whether carotenoid supplementation of infant formula enhanced lutein tissue deposition in infant rhesus macaques. Monkeys were initially breastfed; from 1 to 3 months of age they were fed either a formula supplemented with lutein, zeaxanthin, β-carotene and lycopene, or a control formula with low levels of these carotenoids, for 4 months (n = 2/group). All samples were analyzed by high pressure liquid chromatography (HPLC). Final serum lutein in the supplemented group was 5 times higher than in the unsupplemented group. All brain regions examined showed a selective increase in lutein deposition in the supplemented infants. Lutein differentially accumulated across brain regions, with highest amounts in occipital cortex in both groups. β-carotene accumulated, but zeaxanthin and lycopene were undetectable in any brain region. Supplemented infants had higher lutein concentrations in peripheral retina but not in macular retina. Among adipose sites, abdominal subcutaneous adipose tissue exhibited the highest lutein level and was 3-fold higher in the supplemented infants. The supplemented formula enhanced carotenoid deposition in several other tissues. In rhesus infants, increased intake of carotenoids from formula enhanced their deposition in serum and numerous tissues and selectively increased lutein in multiple brain regions.
Collapse
|
43
|
Palczewski G, Widjaja-Adhi MAK, Amengual J, Golczak M, von Lintig J. Genetic dissection in a mouse model reveals interactions between carotenoids and lipid metabolism. J Lipid Res 2016; 57:1684-95. [PMID: 27389691 DOI: 10.1194/jlr.m069021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Indexed: 02/05/2023] Open
Abstract
Carotenoids affect a rich variety of physiological functions in nature and are beneficial for human health. However, knowledge about their biological action and the consequences of their dietary accumulation in mammals is limited. Progress in this research field is limited by the expeditious metabolism of carotenoids in rodents and the confounding production of apocarotenoid signaling molecules. Herein, we established a mouse model lacking the enzymes responsible for carotenoid catabolism and apocarotenoid production, fed on either a β-carotene- or a zeaxanthin-enriched diet. Applying a genome wide microarray analysis, we assessed the effects of the parent carotenoids on the liver transcriptome. Our analysis documented changes in pathways for liver lipid metabolism and mitochondrial respiration. We biochemically defined these effects, and observed that β-carotene accumulation resulted in an elevation of liver triglycerides and liver cholesterol, while zeaxanthin accumulation increased serum cholesterol levels. We further show that carotenoids were predominantly transported within HDL particles in the serum of mice. Finally, we provide evidence that carotenoid accumulation influenced whole-body respiration and energy expenditure. Thus, we observed that accumulation of parent carotenoids interacts with lipid metabolism and that structurally related carotenoids display distinct biological functions in mammals.
Collapse
Affiliation(s)
- Grzegorz Palczewski
- Departments of Biochemistry School of Medicine, Case Western Reserve University, Cleveland, OH
| | | | - Jaume Amengual
- Department of Cell Biology, School of Medicine, New York University, New York, NY
| | - Marcin Golczak
- Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Johannes von Lintig
- Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
44
|
Kotake-Nara E, Hase M, Kobayashi M, Nagao A. 3′-Hydroxy-ε,ε-caroten-3-one inhibits the differentiation of 3T3-L1 cells to adipocytes. Biosci Biotechnol Biochem 2016; 80:518-23. [DOI: 10.1080/09168451.2015.1095066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
An oxidative metabolite of lutein, 3′-hydroxy-ε,ε-caroten-3-one, inhibited the differentiation of 3T3-L1 cells to adipocytes and the subsequent triacylglycerol production, but lutein did not. The α,β-unsaturated carbonyl structure of 3′-hydroxy-ε,ε-caroten-3-one was considered to participate in the inhibitory effect, suggesting that this lutein metabolite has the potential to prevent metabolic syndrome.
Collapse
Affiliation(s)
- Eiichi Kotake-Nara
- Food Resource Division, National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Megumi Hase
- Food Resource Division, National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Miyuki Kobayashi
- Food Resource Division, National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Akihiko Nagao
- Food Resource Division, National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
45
|
Nidhi B, Sharavana G, Ramaprasad TR, Vallikannan B. Lutein derived fragments exhibit higher antioxidant and anti-inflammatory properties than lutein in lipopolysaccharide induced inflammation in rats. Food Funct 2016; 6:450-60. [PMID: 25469663 DOI: 10.1039/c4fo00606b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the present study, we appraise the anti-inflammatory efficacy of lutein oxidative degradation derivatives mediated through UV-irradiation over lutein in counteracting the inflammation induced by lipopolysaccharide (LPS) in rats (n = 5 per group). UV-irradiated lutein fragments were identified as anhydrolutein (B, C40H54O), 2,6,6-trimethylcyclohexa-1,4-dienylium (M1, C9H13), (2E,4E,6E,8E)-9-(4-hydroxy-2,6,6-trimethylcyclohex-1-1en-1-yl)-3,7-dimethylnona-2,4,6,8-tetraen-1-ylium (M2, C20H29O), 4-[(1E,3E,5E,7E)-3,7,-dimethyldeca-1,3,5,7-tetraen-1-yl]-3,5,5-methylcyclohex-3-en-1-ol (M3, C21H30O) and zeaxanthin (M4, C40H56O) and its isomers as 13'-Z zeaxanthin, 13'-Z lutein, all-trans zeaxanthin, and 9-Z lutein. Induction of inflammation by LPS significantly increased the production of nitrites (3.3 fold in the serum and 2.6 fold in the liver), prostaglandin E2 (26 fold in the serum), and pro-inflammatory cytokines like tumor necrosis factor-α (6.6 fold in the serum), and interleukin-6 (4.8 fold in the serum). Oxidative derivatives of lutein, especially M1, M2 and M3, ameliorated acute inflammation in rats by inhibiting the production of nitrites, malondialdehyde (MDA), PGE2, TNF-α, and IL-6 cytokines more efficiently than lutein in rats. The anti-inflammatory mechanism of derivatives might be related to the decrease of inflammatory cytokines and the increase of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione S transferase, glutathione reductase), which would result in the reduction of iNOS, COX-2 and MDA and subsequently inflammatory responses.
Collapse
Affiliation(s)
- Bhatiwada Nidhi
- Department of Molecular Nutrition, CSIR - Central Food Technological Research Institute, Mysore - 570020, Karnataka, India.
| | | | | | | |
Collapse
|
46
|
Gao YY, Ji J, Jin L, Sun BL, Xu LH, Wang CK, Bi YZ. Xanthophyll supplementation regulates carotenoid and retinoid metabolism in hens and chicks. Poult Sci 2016; 95:541-9. [DOI: 10.3382/ps/pev335] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/03/2015] [Indexed: 01/19/2023] Open
|
47
|
Bernstein PS, Li B, Vachali PP, Gorusupudi A, Shyam R, Henriksen BS, Nolan JM. Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog Retin Eye Res 2016; 50:34-66. [PMID: 26541886 PMCID: PMC4698241 DOI: 10.1016/j.preteyeres.2015.10.003] [Citation(s) in RCA: 331] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/04/2015] [Accepted: 10/29/2015] [Indexed: 12/31/2022]
Abstract
The human macula uniquely concentrates three carotenoids: lutein, zeaxanthin, and meso-zeaxanthin. Lutein and zeaxanthin must be obtained from dietary sources such as green leafy vegetables and orange and yellow fruits and vegetables, while meso-zeaxanthin is rarely found in diet and is believed to be formed at the macula by metabolic transformations of ingested carotenoids. Epidemiological studies and large-scale clinical trials such as AREDS2 have brought attention to the potential ocular health and functional benefits of these three xanthophyll carotenoids consumed through the diet or supplements, but the basic science and clinical research underlying recommendations for nutritional interventions against age-related macular degeneration and other eye diseases are underappreciated by clinicians and vision researchers alike. In this review article, we first examine the chemistry, biochemistry, biophysics, and physiology of these yellow pigments that are specifically concentrated in the macula lutea through the means of high-affinity binding proteins and specialized transport and metabolic proteins where they play important roles as short-wavelength (blue) light-absorbers and localized, efficient antioxidants in a region at high risk for light-induced oxidative stress. Next, we turn to clinical evidence supporting functional benefits of these carotenoids in normal eyes and for their potential protective actions against ocular disease from infancy to old age.
Collapse
Affiliation(s)
- Paul S Bernstein
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| | - Binxing Li
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| | - Preejith P Vachali
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| | - Aruna Gorusupudi
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| | - Rajalekshmy Shyam
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| | - Bradley S Henriksen
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah School of Medicine, 65 Mario Capecchi Drive, Salt Lake City, UT, 84132, USA.
| | - John M Nolan
- Macular Pigment Research Group, Vision Research Centre, School of Health Science, Carriganore House, Waterford Institute of Technology West Campus, Carriganore, Waterford, Ireland.
| |
Collapse
|
48
|
|
49
|
Carotenoids from Marine Microalgae: A Valuable Natural Source for the Prevention of Chronic Diseases. Mar Drugs 2015; 13:5128-55. [PMID: 26287216 PMCID: PMC4557017 DOI: 10.3390/md13085128] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 08/03/2015] [Indexed: 12/12/2022] Open
Abstract
Epidemiological studies have shown a relation between antioxidants and the prevention of several chronic diseases. Microalgae are a potential novel source of bioactive molecules, including a wide range of different carotenoids that can be used as nutraceuticals, food supplements and novel food products. The objective of this review is (i) to update the research that has been carried out on the most known carotenoids produced by marine microalgae, including reporting on their high potentialities to produce other less known important compounds; (ii) to compile the work that has been done in order to establish some relationship between carotenoids and oxidative protection and treatment; (iii) to summarize the association of oxidative stress and the various reactive species including free radicals with several human diseases; and (iv) to provide evidence of the potential of carotenoids from marine microalgae to be used as therapeutics to treat or prevent these oxidative stress-related diseases.
Collapse
|
50
|
Wu W, Li Y, Wu Y, Zhang Y, Wang Z, Liu X. Lutein suppresses inflammatory responses through Nrf2 activation and NF-κB inactivation in lipopolysaccharide-stimulated BV-2 microglia. Mol Nutr Food Res 2015; 59:1663-73. [PMID: 26016441 DOI: 10.1002/mnfr.201500109] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/09/2015] [Accepted: 05/13/2015] [Indexed: 12/19/2022]
Abstract
SCOPE In this study, the effects of lutein on neuroinflammation in lipopolysaccharide (LPS)-activated BV-2 microglia were investigated. METHODS AND RESULTS The production of proinflammatory cytokines tumor necrosis factor-α, interleukin-1β, and nitric oxide was measured in culture medium using enzyme immunoassay and Griess reagent, respectively. The expression of proteins was determined using Western blot. Pretreatment with lutein (50 μM) prior to LPS (1 μg/mL, 12 h) stimulation resulted in a significant inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression, as well as tumor necrosis factor-α, interleukin-1β, and nitric oxide production (p < 0.05). Further experiments demonstrated that lutein suppressed LPS-induced NF-κB activation by inhibiting the phosphorylation of p38 kinase, c-Jun N-terminal kinase (JNK), and Akt kinase (p < 0.05). Moreover, lutein markedly quenched reactive oxygen species and promoted antioxidant protein expression including heme oxygenase-1 and NAD(P)H quinone oxidoreductase by enhancing the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) mediated NF-E2-related factor 2 (Nrf2) activation (p < 0.05). CONCLUSION These results suggest that lutein attenuates neuroinflammation in LPS-activated BV-2 microglia partly through inhibiting p38-, JNK-, and Akt-stimulated NF-κB activation and promoting ERK-induced Nrf2 activation, suggesting that lutein has great potential as a nutritional preventive strategy in inflammation-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Wanqiang Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuelian Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yue Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yawen Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhen Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|