1
|
Feng J, Du Y, Chen L, Su W, Wei H, Liu A, Jiang X, Guo J, Dai C, Xu Y, Peng T. A quadrivalent recombinant influenza Hemagglutinin vaccine induced strong protective immune responses in animal models. Vaccine 2024; 42:126008. [PMID: 38834431 DOI: 10.1016/j.vaccine.2024.05.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/05/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Globally, influenza poses a substantial threat to public health, serving as a major contributor to both morbidity and mortality. The current vaccines for seasonal influenza are not optimal. A novel recombinant hemagglutinin (rHA) protein-based quadrivalent seasonal influenza vaccine, SCVC101, has been developed. SCVC101-S contains standard dose protein (15μg of rHA per virus strain) and an oil-in-water adjuvant, CD-A, which enhances the immunogenicity and cross-protection of the vaccine. Preclinical studies in mice, rats, and rhesus macaques demonstrate that SCVC101-S induces robust humoral and cellular immune responses, surpassing those induced by commercially available vaccines. Notably, a single injection with SCVC101-S can induce a strong immune response in macaques, suggesting the potential for a standard-dose vaccination with a recombinant protein influenza vaccine. Furthermore, SCVC101-S induces cross-protection immune responses against heterologous viral strains, indicating broader protection than current vaccines. In conclusion, SCVC101-S has demonstrated safety and efficacy in preclinical settings and warrants further investigation in human clinical trials. Its potential as a valuable addition to the vaccines against seasonal influenza, particularly for the elderly population, is promising.
Collapse
MESH Headings
- Animals
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Macaca mulatta
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Cross Protection/immunology
- Mice
- Rats
- Female
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Immunity, Cellular
- Mice, Inbred BALB C
- Disease Models, Animal
- Immunity, Humoral
- Adjuvants, Vaccine/administration & dosage
- Humans
Collapse
Affiliation(s)
- Jin Feng
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; Guangzhou National Laboratory, Guangzhou Bio-Island, Guangzhou 510005, China; Guangdong South China Vaccine Co., Ltd., Guangzhou 510530, China
| | - Yingying Du
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; Guangdong South China Vaccine Co., Ltd., Guangzhou 510530, China
| | - Liyun Chen
- Guangdong South China Vaccine Co., Ltd., Guangzhou 510530, China
| | - Wenhan Su
- Guangdong South China Vaccine Co., Ltd., Guangzhou 510530, China
| | - Hailiu Wei
- Guangdong South China Vaccine Co., Ltd., Guangzhou 510530, China
| | - Aijiao Liu
- Guangdong South China Vaccine Co., Ltd., Guangzhou 510530, China
| | - Xiaojun Jiang
- Guangdong South China Vaccine Co., Ltd., Guangzhou 510530, China
| | - Jianmin Guo
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou 510900, China
| | - Cailing Dai
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou 510900, China
| | - Yuhua Xu
- Guangdong South China Vaccine Co., Ltd., Guangzhou 510530, China.
| | - Tao Peng
- Sino-French Hoffmann Institute, State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China; Guangdong South China Vaccine Co., Ltd., Guangzhou 510530, China.
| |
Collapse
|
2
|
Cowling BJ, Okoli GN. Influenza Vaccine Effectiveness and Progress Towards a Universal Influenza Vaccine. Drugs 2024; 84:1013-1023. [PMID: 39167316 PMCID: PMC11438668 DOI: 10.1007/s40265-024-02083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2024] [Indexed: 08/23/2024]
Abstract
At various times in recent decades, surges have occurred in optimism about the potential for universal influenza vaccines that provide strong, broad, and long-lasting protection and could substantially reduce the disease burden associated with seasonal influenza epidemics as well as the threat posed by pandemic influenza. Each year more than 500 million doses of seasonal influenza vaccine are administered around the world, with most doses being egg-grown inactivated subunit or split-virion vaccines. These vaccines tend to have moderate effectiveness against medically attended influenza for influenza A(H1N1) and influenza B, and somewhat lower for influenza A(H3N2) where differences between vaccine strains and circulating strains can occur more frequently due to antigenic drift and egg adaptations in the vaccine strains. Several enhanced influenza vaccine platforms have been developed including cell-grown antigen, the inclusion of adjuvants, or higher antigen doses, to improve immunogenicity and protection. During the COVID-19 pandemic there was unprecedented speed in development and roll-out of relatively new vaccine platforms, including mRNA vaccines and viral vector vaccines. These new platforms present opportunities to improve protection for influenza beyond existing products. Other approaches continue to be explored. Incremental improvements in influenza vaccine performance should be achievable in the short to medium term.
Collapse
Affiliation(s)
- Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, Hong Kong, China.
| | - George N Okoli
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| |
Collapse
|
3
|
Tang P, Cui E, Cheng J, Li B, Tao J, Shi Y, Jiao J, Du E, Wang J, Liu H. A ferritin nanoparticle vaccine based on the hemagglutinin extracellular domain of swine influenza A (H1N1) virus elicits protective immune responses in mice and pigs. Front Immunol 2024; 15:1361323. [PMID: 38835763 PMCID: PMC11148206 DOI: 10.3389/fimmu.2024.1361323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Swine influenza viruses (SIVs) pose significant economic losses to the pig industry and are a burden on global public health systems. The increasing complexity of the distribution and evolution of different serotypes of influenza strains in swine herds escalates the potential for the emergence of novel pandemic viruses, so it is essential to develop new vaccines based on swine influenza. Methods Here, we constructed a self-assembling ferritin nanoparticle vaccine based on the hemagglutinin (HA) extracellular domain of swine influenza A (H1N1) virus using insect baculovirus expression vector system (IBEVS), and after two immunizations, the immunogenicities and protective efficacies of the HA-Ferritin nanoparticle vaccine against the swine influenza virus H1N1 strain in mice and piglets were evaluated. Results Our results demonstrated that HA-Ferritin nanoparticle vaccine induced more efficient immunity than traditional swine influenza vaccines. Vaccination with the HA-Ferritin nanoparticle vaccine elicited robust hemagglutinin inhibition titers and antigen-specific IgG antibodies and increased cytokine levels in serum. MF59 adjuvant can significantly promote the humoral immunity of HA-Ferritin nanoparticle vaccine. Furthermore, challenge tests showed that HA-Ferritin nanoparticle vaccine conferred full protection against lethal challenge with H1N1 virus and significantly decreased the severity of virus-associated lung lesions after challenge in both BALB/c mice and piglets. Conclusion Taken together, these results indicate that the hemagglutinin extracellular-based ferritin nanoparticle vaccine may be a promising vaccine candidate against SIVs infection.
Collapse
Affiliation(s)
- Pan Tang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Enhui Cui
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Jinghua Cheng
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Benqiang Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jie Tao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ying Shi
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jiajie Jiao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Enqi Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Huili Liu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
4
|
Cui Y, Ho M, Hu Y, Shi Y. Vaccine adjuvants: current status, research and development, licensing, and future opportunities. J Mater Chem B 2024; 12:4118-4137. [PMID: 38591323 PMCID: PMC11180427 DOI: 10.1039/d3tb02861e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Vaccines represent one of the most significant inventions in human history and have revolutionized global health. Generally, a vaccine functions by triggering the innate immune response and stimulating antigen-presenting cells, leading to a defensive adaptive immune response against a specific pathogen's antigen. As a key element, adjuvants are chemical materials often employed as additives to increase a vaccine's efficacy and immunogenicity. For over 90 years, adjuvants have been essential components in many human vaccines, improving their efficacy by enhancing, modulating, and prolonging the immune response. Here, we provide a timely and comprehensive review of the historical development and the current status of adjuvants, covering their classification, mechanisms of action, and roles in different vaccines. Additionally, we perform systematic analysis of the current licensing processes and highlights notable examples from clinical trials involving vaccine adjuvants. Looking ahead, we anticipate future trends in the field, including the development of new adjuvant formulations, the creation of innovative adjuvants, and their integration into the broader scope of systems vaccinology and vaccine delivery. The article posits that a deeper understanding of biochemistry, materials science, and vaccine immunology is crucial for advancing vaccine technology. Such advancements are expected to lead to the future development of more effective vaccines, capable of combating emerging infectious diseases and enhancing public health.
Collapse
Affiliation(s)
- Ying Cui
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Megan Ho
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Yongjie Hu
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, USA.
| | - Yuan Shi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
5
|
Wang J, Zhu H, Gan J, Liang G, Li L, Zhao Y. Engineered mRNA Delivery Systems for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308029. [PMID: 37805865 DOI: 10.1002/adma.202308029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Indexed: 10/09/2023]
Abstract
Messenger RNA (mRNA)-based therapeutic strategies have shown remarkable promise in preventing and treating a staggering range of diseases. Optimizing the structure and delivery system of engineered mRNA has greatly improved its stability, immunogenicity, and protein expression levels, which has led to a wider range of uses for mRNA therapeutics. Herein, a thorough analysis of the optimization strategies used in the structure of mRNA is first provided and delivery systems are described in great detail. Furthermore, the latest advancements in biomedical engineering for mRNA technology, including its applications in combatting infectious diseases, treating cancer, providing protein replacement therapy, conducting gene editing, and more, are summarized. Lastly, a perspective on forthcoming challenges and prospects concerning the advancement of mRNA therapeutics is offered. Despite these challenges, mRNA-based therapeutics remain promising, with the potential to revolutionize disease treatment and contribute to significant advancements in the biomedical field.
Collapse
Affiliation(s)
- Ji Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Haofang Zhu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jingjing Gan
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Gaofeng Liang
- Institute of Organoids on Chips Translational Research, Henan Academy of Sciences, Zhengzhou, 450009, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Institute of Organoids on Chips Translational Research, Henan Academy of Sciences, Zhengzhou, 450009, China
| |
Collapse
|
6
|
ElSherif M, Halperin SA. Benefits of Combining Molecular Biology and Controlled Human Infection Model Methodologies in Advancing Vaccine Development. J Mol Biol 2023; 435:168322. [PMID: 37866477 DOI: 10.1016/j.jmb.2023.168322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Infectious diseases continue to account for a significant portion of global deaths despite the use of vaccines for several centuries. Immunization programs around the world are a testament to the great success of multiple vaccines, yet there are still diseases without vaccines and others that require safer more effective ones. Addressing uncontrolled and emerging disease threats is restrained by the limitations and bottlenecks encountered with traditional vaccine development paradigms. Recent advances in modern molecular biology technologies have enhanced the interrogation of host pathogen interaction and deciphered complex pathways, thereby uncovering the myriad interplay of biological events that generate immune protection against foreign agents. Consequent to insights into the immune system, modern biology has been instrumental in the development and production of next generation 21st century vaccines. As these biological tools, commonly and collectively referred to as 'omics, became readily available, there has been a renewed consideration of Controlled Human Infection Models (CHIMs). Successful and reproducible CHIMs can complement modern molecular biology for the study of infectious diseases and development of effective vaccines in a regulated process that mitigates risk, cost, and time, with capacity to discern immune correlates of protection.
Collapse
Affiliation(s)
- May ElSherif
- Canadian Center for Vaccinology, IWK Health, Nova Scotia Health, and Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Scott A Halperin
- Canadian Center for Vaccinology, IWK Health, Nova Scotia Health, and Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
7
|
Kim D, Kim E, Kim S, Chung Y, Cho SD, Choi Y, Lai CJ, Dai X, Kang S, Kwak MJ, Cha I, Liu Z, Choi Y, Park SH, Choi YK, Jung JU. Self-assembling Gn head ferritin nanoparticle vaccine provides full protection from lethal challenge of Dabie Bandavirus in aged ferrets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549761. [PMID: 37503275 PMCID: PMC10370104 DOI: 10.1101/2023.07.19.549761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Dabie Bandavirus (DBV), previously known as Severe Fever with Thrombocytopenia Syndrome (SFTS) Virus, induces a characteristic thrombocytopenia with a mortality rate ranging from 12% to as high as 30%. The sero-prevalence of DBV in healthy people is not significantly different among age groups, but clinically diagnosed SFTS patients are older than ~50 years, suggesting that age is the critical risk factor for SFTS morbidity and mortality. Accordingly, our immune-competent ferret model demonstrates an age (>4 years old)-dependent DBV infection and pathogenesis that fully recapitulates human clinical manifestation. To protect the aged population from DBV-induced SFTS, vaccine should carry robust immunogenicity with high safety profile. Previous studies have shown that glycoproteins Gn/Gc are the most effective antigens for inducing both neutralizing antibody (NAb)- and T cell-mediated immunity and, thereby, protection. Here, we report the development of a protein subunit vaccine with 24-mer self-assembling ferritin (FT) nanoparticle to present DBV Gn head region (GnH) for enhanced immunogenicity. Anion exchange chromatography and size exclusion chromatography readily purified the GnH-FT nanoparticles to homogeneity with structural integrity. Mice immunized with GnH-FT nanoparticles induced robust NAb response and T-cell immunity against DBV Gn. Furthermore, aged ferrets immunized with GnH-FT nanoparticles were fully protected from DBV challenge without SFTS symptoms such as body weight loss, thrombocytopenia, leukopenia, and fatality. This study demonstrates that DBV GnH-FT nanoparticles provide an efficient vaccine efficacy in mouse and aged ferret models and should be an outstanding vaccine candidate targeted for the aged population against fatal DBV infection.
Collapse
Affiliation(s)
- Dokyun Kim
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Eunha Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Sciences, Daejeon, Republic of Korea
| | - Semi Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Sciences, Daejeon, Republic of Korea
| | - Youseung Chung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sung-Dong Cho
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yunseo Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Chih-Jen Lai
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xinghong Dai
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Seokmin Kang
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mi-Jeong Kwak
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Inho Cha
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ziyi Liu
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Younho Choi
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Young Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Sciences, Daejeon, Republic of Korea
| | - Jae U. Jung
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
8
|
Kim D, Kim E, Kim S, Chung Y, Lai CJ, Cha I, Cho SD, Choi Y, Dai X, Kim S, Kang S, Kwak MJ, Liu Z, Choi Y, Park SH, Choi YK, Jung JU. Self-assembling Gn head ferritin nanoparticle vaccine provides full protection from lethal challenge of Dabie bandavirus in aged ferrets. mBio 2023; 14:e0186823. [PMID: 37712692 PMCID: PMC10653821 DOI: 10.1128/mbio.01868-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023] Open
Abstract
IMPORTANCE Dabie bandavirus (DBV) is an emerging tick-borne virus that causes severe fever with thrombocytopenia syndrome (SFTS) in infected patients. Human SFTS symptoms progress from fever, fatigue, and muscle pain to the depletion of white blood cells and platelets with fatality rates up to 30%. The recent spread of its vector tick to over 20 states in the United States increases the potential for outbreaks of the SFTS beyond the East Asia. Thus, the development of vaccine to control this rapidly emerging virus is a high priority. In this study, we applied self-assembling ferritin (FT) nanoparticle to enhance the immunogenicity of DBV Gn head domain (GnH) as a vaccine target. Mice immunized with the GnH-FT nanoparticle vaccine induced potent antibody responses and cellular immunity. Immunized aged ferrets were fully protected from the lethal challenge of DBV. Our study describes the GnH-FT nanoparticle vaccine candidate that provides protective immunity against the emerging DBV infection.
Collapse
Affiliation(s)
- Dokyun Kim
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Eunha Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Sciences, Daejeon, Republic of Korea
| | - Semi Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Sciences, Daejeon, Republic of Korea
| | - Youseung Chung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Chih-Jen Lai
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Inho Cha
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sung-Dong Cho
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yunseo Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Xinghong Dai
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Stephanie Kim
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Seokmin Kang
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mi-Jeong Kwak
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ziyi Liu
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Younho Choi
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, Florida, USA
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Young Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
- Zoonotic Infectious Disease Research Center, Chungbuk National University, Cheongju, Republic of Korea
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Sciences, Daejeon, Republic of Korea
| | - Jae U. Jung
- Department of Cancer Biology, Infection Biology Program, and Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Schmader KE, Liu CK, Flannery B, Rountree W, Auerbach H, Barnett ED, Schlaudecker EP, Todd CA, Poniewierski M, Staat MA, Harrington T, Li R, Broder KR, Walter EB. Immunogenicity of adjuvanted versus high-dose inactivated influenza vaccines in older adults: a randomized clinical trial. Immun Ageing 2023; 20:30. [PMID: 37393237 DOI: 10.1186/s12979-023-00355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/15/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Adjuvanted inactivated influenza vaccine (aIIV) and high-dose inactivated influenza vaccine (HD-IIV) are U.S.-licensed for adults aged ≥ 65 years. This study compared serum hemagglutination inhibition (HAI) antibody titers for the A(H3N2) and A(H1N1)pdm09 and B strains after trivalent aIIV3 and trivalent HD-IIV3 in an older adult population. RESULTS The immunogenicity population included 342 participants who received aIIV3 and 338 participants who received HD-IIV3. The proportion of participants that seroconverted to A(H3N2) vaccine strains after allV3 (112 participants [32.8%]) was inferior to the proportion of participants that seroconverted after HD-IIV3 (130 participants [38.5%]) at day 29 after vaccination (difference, - 5.8%; 95%CI, - 12.9% to 1.4%). There were no significant differences between the vaccine groups in percent seroconversion to A(H1N1)pdm09 or B vaccine strains, in percent seropositivity for any of the strains, or in post-vaccination GMT for the A(H1N1)pdm09 strain. The GMTs for the post-vaccination A(H3N2) and B strains were higher after HD-IIV than after aIIV3. CONCLUSIONS Overall immune responses were similar after aIIV3 and HD-IIV3. For the primary outcome, the aIIV3 seroconversion rate for H3N2 did not meet noninferiority criteria compared with HD-IIV3, but the HD-IIV3 seroconversion rate was not statistically superior to the aIIV3 seroconversion rate. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03183908.
Collapse
Affiliation(s)
- Kenneth E Schmader
- Division of Geriatrics, Department of Medicine and Center for the Study of Aging, Duke University School of Medicine, Durham, NC, USA.
- Geriatric Research Education and Clinical Center (GRECC), Durham VA Health Care System, Box 3003, Durham, NC, 27710, USA.
| | - Christine K Liu
- Section of Geriatrics, Division of Primary Care and Population Health, Stanford University, Stanford, CA, USA
- Geriatric Research and Education Clinical Center (GRECC), Palo Alto Veterans Affairs Health Care System, Palo Alto, CA, USA
- Geriatrics Section, Department of Medicine, School of Medicine and Boston Medical Center, Boston University, Chobanian & Avedisian, Boston, MA, USA
| | - Brendan Flannery
- Infuenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Wes Rountree
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Heidi Auerbach
- Geriatrics Section, Department of Medicine, School of Medicine and Boston Medical Center, Boston University, Chobanian & Avedisian, Boston, MA, USA
| | - Elizabeth D Barnett
- Department of Pediatrics, Section of Pediatric Infectious Diseases, School of Medicine and Boston Medical Center, Boston University, Chobanian & Avedisian, Boston, MD, USA
| | - Elizabeth P Schlaudecker
- Department of Pediatrics Division of Infectious Diseases, University of Cincinnati College of Medicine and Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA
| | - Christopher A Todd
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Marek Poniewierski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Mary A Staat
- Department of Pediatrics Division of Infectious Diseases, University of Cincinnati College of Medicine and Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA
| | - Theresa Harrington
- Immunization Safety Office, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Rongxia Li
- Immunization Safety Office, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Karen R Broder
- Immunization Safety Office, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Emmanuel B Walter
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
10
|
Bauer DL, Bachnak L, Limbert VM, Horowitz RM, Baudier RL, D'Souza SJ, Immethun VE, Kurtz JR, Grant SB, McLachlan JB. The Adjuvant Combination of dmLT and Monophosphoryl Lipid A Activates the Canonical, Nonpyroptotic NLRP3 Inflammasome in Dendritic Cells and Significantly Interacts to Expand Antigen-Specific CD4 T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1519-1530. [PMID: 37023458 PMCID: PMC10159919 DOI: 10.4049/jimmunol.2200221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/08/2023] [Indexed: 04/08/2023]
Abstract
Adjuvants are often essential additions to vaccines that enhance the activation of innate immune cells, leading to more potent and protective T and B cell responses. Only a few vaccine adjuvants are currently used in approved vaccine formulations in the United States. Combinations of one or more adjuvants have the potential to increase the efficacy of existing and next-generation vaccines. In this study, we investigated how the nontoxic double mutant Escherichia coli heat-labile toxin R192G/L211A (dmLT), when combined with the TLR4 agonist monophosphoryl lipid A (MPL-A), impacted innate and adaptive immune responses to vaccination in mice. We found that the combination of dmLT and MPL-A induced an expansion of Ag-specific, multifaceted Th1/2/17 CD4 T cells higher than that explained by adding responses to either adjuvant alone. Furthermore, we observed more robust activation of primary mouse bone marrow-derived dendritic cells in the combination adjuvant-treated group via engagement of the canonical NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome complex. This was marked by a multiplicative increase in the secretion of active IL-1β that was independent of classical gasdermin D-mediated pyroptosis. Moreover, the combination adjuvant increased the production of the secondary messengers cAMP and PGE2 in dendritic cells. These results demonstrate how certain adjuvant combinations could be used to potentiate better vaccine responses to combat a variety of pathogens.
Collapse
Affiliation(s)
- David L Bauer
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Louay Bachnak
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Vanessa M Limbert
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Rebecca M Horowitz
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Robin L Baudier
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA
| | - Shaina J D'Souza
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Victoria E Immethun
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Jonathan R Kurtz
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Samuel B Grant
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
11
|
A Comprehensive Review of mRNA Vaccines. Int J Mol Sci 2023; 24:ijms24032700. [PMID: 36769023 PMCID: PMC9917162 DOI: 10.3390/ijms24032700] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
mRNA vaccines have been demonstrated as a powerful alternative to traditional conventional vaccines because of their high potency, safety and efficacy, capacity for rapid clinical development, and potential for rapid, low-cost manufacturing. These vaccines have progressed from being a mere curiosity to emerging as COVID-19 pandemic vaccine front-runners. The advancements in the field of nanotechnology for developing delivery vehicles for mRNA vaccines are highly significant. In this review we have summarized each and every aspect of the mRNA vaccine. The article describes the mRNA structure, its pharmacological function of immunity induction, lipid nanoparticles (LNPs), and the upstream, downstream, and formulation process of mRNA vaccine manufacturing. Additionally, mRNA vaccines in clinical trials are also described. A deep dive into the future perspectives of mRNA vaccines, such as its freeze-drying, delivery systems, and LNPs targeting antigen-presenting cells and dendritic cells, are also summarized.
Collapse
|
12
|
Singleton KL, Joffe A, Leitner WW. Review: Current trends, challenges, and success stories in adjuvant research. Front Immunol 2023; 14:1105655. [PMID: 36742311 PMCID: PMC9892189 DOI: 10.3389/fimmu.2023.1105655] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Vaccine adjuvant research is being fueled and driven by progress in the field of innate immunity that has significantly advanced in the past two decades with the discovery of countless innate immune receptors and innate immune pathways. Receptors for pathogen-associated molecules (PAMPs) or host-derived, danger-associated molecules (DAMPs), as well as molecules in the signaling pathways used by such receptors, are a rich source of potential targets for agonists that enable the tuning of innate immune responses in an unprecedented manner. Targeted modulation of immune responses is achieved not only through the choice of immunostimulator - or select combinations of adjuvants - but also through formulation and systematic modifications of the chemical structure of immunostimulatory molecules. The use of medium and high-throughput screening methods for finding immunostimulators has further accelerated the identification of promising novel adjuvants. However, despite the progress that has been made in finding new adjuvants through systematic screening campaigns, the process is far from perfect. A major bottleneck that significantly slows the process of turning confirmed or putative innate immune receptor agonists into vaccine adjuvants continues to be the lack of defined in vitro correlates of in vivo adjuvanticity. This brief review discusses recent developments, exciting trends, and notable successes in the adjuvant research field, albeit acknowledging challenges and areas for improvement.
Collapse
|
13
|
The Function of DNA and RNA Nanovaccines in the Treatment of Cancer. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
14
|
Yang J, Kim J, Kwak C, Poo H. Poly-γ-glutamic acid/Alum adjuvanted pH1N1 vaccine-immunized aged mice exhibit a significant increase in vaccine efficacy with a decrease in age-associated CD8+ T cell proportion in splenocytes. Immun Ageing 2022; 19:22. [PMID: 35606855 PMCID: PMC9124744 DOI: 10.1186/s12979-022-00282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
Abstract
Background Highly contagious respiratory diseases caused by viral infections are a constantly emerging threat, particularly the elderly with the higher risk of developing serious complications. Vaccines are the best strategy for protection against influenza-related diseases. However, the elderly has lower vaccine efficacy than young population and the age-driven decline of the influenza vaccine efficacy remains unresolved. Objectives This study investigates the effect of an adjuvant, poly-γ-glutamic acid and alum (PGA/Alum) on vaccine efficacy in aged mice (18-months) and its mechanism is investigated using ovalbumin as a model antigen and a commercial pandemic H1N1 (pH1N1) flu vaccine. Antigen trafficking, dendritic cell (DC) activation, and the DC-mediated T cell activation were analyzed via in vivo imaging and flow cytometry. Antigen-specific humoral and cellular immune responses were evaluated in sera and splenocytes from the vaccinated mice. Also, we analyzed gene expression profiles of splenocytes from the vaccinated mice via single-cell transcriptome sequencing and evaluated the protective efficacy against pH1N1 virus challenge. Results Aged mice had lower antigen trafficking and DC activation than younger mice (6-weeks), which was ameliorated by PGA/Alum with increased antigen uptake and DC activation leading to improved antigen-specific IFN-γ+CD8+ T lymphocyte frequencies higher in the vaccinated aged mice, to a similar extent as PGA/Alum adjuvanted vaccine-immunized young mice. The results of single-cell transcriptome sequencing display that PGA/Alum also reduced the proportion of age-associated CD8+ T cell subsets and gene levels of inhibitory regulators in CD8+ T cells, which may play a role in the recovery of CD8+ T cell activation. Finally, PGA/Alum adjuvanted pH1N1 vaccine-immunized aged mice were completely protected (100% survival) compared to aged mice immunized with vaccine only (0% survival) after pH1N1 virus challenge, akin to the efficacy of the vaccinated young mice (100% survival). Conclusions PGA/Alum adjuvanted pH1N1 vaccine-immunized aged mice showed a significant increase in vaccine efficacy compared to aged mice administered with vaccine only. The enhanced vaccine efficacy by PGA/Alum is associated with significant increases of activation of DCs and effector CD8+ T cells and a decrease in age-associated CD8+ T cell proportion of splenocytes. Collectively, PGA/Alum adjuvanted flu vaccine may be a promising vaccine candidate for the elderly. Supplementary information The online version contains supplementary material available at 10.1186/s12979-022-00282-z.
Collapse
|
15
|
Distinct immunological and molecular signatures underpinning influenza vaccine responsiveness in the elderly. Nat Commun 2022; 13:6894. [PMID: 36371426 PMCID: PMC9653450 DOI: 10.1038/s41467-022-34487-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Seasonal influenza outbreaks, especially in high-risk groups such as the elderly, represent an important public health problem. Prevailing inadequate efficacy of seasonal vaccines is a crucial bottleneck. Understanding the immunological and molecular mechanisms underpinning differential influenza vaccine responsiveness is essential to improve vaccination strategies. Here we show comprehensive characterization of the immune response of randomly selected elderly participants (≥ 65 years), immunized with the adjuvanted influenza vaccine Fluad. In-depth analyses by serology, multi-parametric flow cytometry, multiplex and transcriptome analysis, coupled to bioinformatics and mathematical modelling, reveal distinguishing immunological and molecular features between responders and non-responders defined by vaccine-induced seroconversion. Non-responders are specifically characterized by multiple suppressive immune mechanisms. The generated comprehensive high dimensional dataset enables the identification of putative mechanisms and nodes responsible for vaccine non-responsiveness independently of confounding age-related effects, with the potential to facilitate development of tailored vaccination strategies for the elderly.
Collapse
|
16
|
Wang R, Huang X, Cao T, Sun C, Luo D, Qiu H, Wu M, Huang X, Yu C, Li J, Kong D, Ma J, Zhang X, Hu P, Zhang Y, Luo C, Zhao H, Li Y, Deng Y, Qin C, Xie L. Development of a thermostable SARS-CoV-2 variant-based bivalent protein vaccine with cross-neutralizing potency against Omicron subvariants. Virology 2022; 576:61-68. [PMID: 36174448 PMCID: PMC9486464 DOI: 10.1016/j.virol.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 01/07/2023]
Abstract
SARS-CoV-2 variants have posed significant challenges to the hopes of using ancestral strain-based vaccines to address the risk of breakthrough infection by variants. We designed and developed a bivalent vaccine based on SARS-CoV-2 Alpha and Beta variants (named SCTV01C). SCTV01C antigens were stable at 25 oC for at least 6 months. In the presence of a squalene-based oil-in-water adjuvant SCT-VA02B, SCTV01C showed significant protection efficacy against antigen-matched Beta variant, with favorable safety profiles in rodents. Notably, SCTV01C exhibited cross-neutralization capacity against Omicron subvariants (BA.1, BA.1.1, BA.2, BA.3, and BA.4/5) in mice, superior to a WT (D614G)-based vaccine, which reinforced our previously published findings that SCTV01C exhibited broad-spectrum neutralizing potencies against over a dozen pre-Omicron variants and the Omicron BA.1 variant. In summary, variant-based multivalent protein vaccine could be a platform approach to address the challenging issues of emerging variants, vaccine hesitancy and the needs of affordable and thermal stable vaccines.
Collapse
Affiliation(s)
- Rui Wang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, 100176, China
| | - Xun Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Tianshu Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Chunyun Sun
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, 100176, China
| | - Dan Luo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Hongying Qiu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Mei Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Xingyao Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Chulin Yu
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, 100176, China
| | - Jing Li
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, 100176, China
| | - Desheng Kong
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, 100176, China
| | - Juan Ma
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, 100176, China
| | - Xiao Zhang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, 100176, China
| | - Ping Hu
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, 100176, China
| | - Yanjing Zhang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, 100176, China
| | - Chunxia Luo
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, 100176, China
| | - Hui Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Yuchang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Yongqiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China.
| | - Chengfeng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China.
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, 100176, China; Cell Culture Engineering Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
17
|
Azeredo JB, Thedy MEC, Godoi M, Keller MH, de Souza BS, Roehrs JA. Polysorbate 80/UHP as a recyclable, bio-degradable and metal-free safer system for the fast oxidation of thiols. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Wang R, Sun C, Ma J, Yu C, Kong D, Chen M, Liu X, Zhao D, Gao S, Kou S, Sun L, Ge Z, Zhao J, Li K, Zhang T, Zhang Y, Luo C, Li X, Wang Y, Xie L. A Bivalent COVID-19 Vaccine Based on Alpha and Beta Variants Elicits Potent and Broad Immune Responses in Mice against SARS-CoV-2 Variants. Vaccines (Basel) 2022; 10:vaccines10050702. [PMID: 35632456 PMCID: PMC9143086 DOI: 10.3390/vaccines10050702] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
With the emergence and rapid spread of new pandemic variants, especially variants of concern (VOCs), the development of next-generation vaccines with broad-spectrum neutralizing activities is of great importance. In this study, SCTV01C, a clinical stage bivalent vaccine based on trimeric spike extracellular domain (S-ECD) of SARS-CoV-2 variants Alpha (B.1.1.7) and Beta (B.1.351) with a squalene-based oil-in-water adjuvant was evaluated in comparison to its two corresponding (Alpha and Beta) monovalent vaccines in mouse immunogenicity studies. The two monovalent vaccines induced potent neutralizing antibody responses against the antigen-matched variants, but drastic reductions in neutralizing antibody titers against antigen-mismatched variants were observed. In comparison, the bivalent vaccine SCTV01C induced relatively higher and broad-spectrum cross-neutralizing activities against various SARS-CoV-2 variants, including the D614G variant, VOCs (B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.1.529), variants of interest (VOIs) (C.37, B.1.621), variants under monitoring (VUMs) (B.1.526, B.1.617.1, B.1.429, C.36.3) and other variants (B.1.618, 20I/484Q). All three vaccines elicited potent Th1-biased T-cell immune responses. These results provide direct evidence that variant-based multivalent vaccines could play important roles in addressing the critical issue of reduced protective efficacy against the existing and emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Rui Wang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Chunyun Sun
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Juan Ma
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Chulin Yu
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Desheng Kong
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Meng Chen
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Xuejie Liu
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Dandan Zhao
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Shuman Gao
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Shuyuan Kou
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Lili Sun
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Zeyong Ge
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Jun Zhao
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Kuokuo Li
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Tao Zhang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Yanjing Zhang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Chunxia Luo
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Xuefeng Li
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Yang Wang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (R.W.); (C.S.); (J.M.); (C.Y.); (D.K.); (M.C.); (X.L.); (D.Z.); (S.G.); (S.K.); (L.S.); (Z.G.); (J.Z.); (K.L.); (T.Z.); (Y.Z.); (C.L.); (X.L.); (Y.W.)
- Cell Culture Engineering Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100176, China
- Correspondence: ; Tel.: +86-010-58628378; Fax: +86-010-58628299
| |
Collapse
|
19
|
Fulop T, Larbi A, Pawelec G, Cohen AA, Provost G, Khalil A, Lacombe G, Rodrigues S, Desroches M, Hirokawa K, Franceschi C, Witkowski JM. Immunosenescence and Altered Vaccine Efficiency in Older Subjects: A Myth Difficult to Change. Vaccines (Basel) 2022; 10:vaccines10040607. [PMID: 35455356 PMCID: PMC9030923 DOI: 10.3390/vaccines10040607] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022] Open
Abstract
Organismal ageing is associated with many physiological changes, including differences in the immune system of most animals. These differences are often considered to be a key cause of age-associated diseases as well as decreased vaccine responses in humans. The most often cited vaccine failure is seasonal influenza, but, while it is usually the case that the efficiency of this vaccine is lower in older than younger adults, this is not always true, and the reasons for the differential responses are manifold. Undoubtedly, changes in the innate and adaptive immune response with ageing are associated with failure to respond to the influenza vaccine, but the cause is unclear. Moreover, recent advances in vaccine formulations and adjuvants, as well as in our understanding of immune changes with ageing, have contributed to the development of vaccines, such as those against herpes zoster and SARS-CoV-2, that can protect against serious disease in older adults just as well as in younger people. In the present article, we discuss the reasons why it is a myth that vaccines inevitably protect less well in older individuals, and that vaccines represent one of the most powerful means to protect the health and ensure the quality of life of older adults.
Collapse
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.K.); (G.L.)
- Correspondence: (T.F.); (S.R.)
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore;
| | - Graham Pawelec
- Department of Immunology, University of Tübingen, 72072 Tübingen, Germany;
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| | - Alan A. Cohen
- Groupe de Recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC J1H 5N4, Canada;
| | | | - Abedelouahed Khalil
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.K.); (G.L.)
| | - Guy Lacombe
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.K.); (G.L.)
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, 48009 Bilbao, Spain;
- BCAM—The Basque Center for Applied Mathematics, 48009 Bilbao, Spain
- Correspondence: (T.F.); (S.R.)
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, CEDEX, 06902 Sophia Antipolis, France;
- The Jean Alexandre Dieudonné Laboratory, Université Côte d’Azur, CEDEX 2, 06108 Nice, France
| | - Katsuiku Hirokawa
- Institute of Health and Life Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
| | - Claudio Franceschi
- IRCCS Institute of Neurological Sciences of Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
- Department of Applied Mathematics and Laboratory of Systems Biology of Healthy Aging, Lobachevsky State University, 603000 Nizhny Novgorod, Russia
| | - Jacek M. Witkowski
- Department of Pathophysiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| |
Collapse
|
20
|
Abstract
Although the need for a universal influenza vaccine has long been recognized, only a handful of candidates have been identified so far, with even fewer advancing in the clinical pipeline. The 24–amino acid ectodomain of M2 protein (M2e) has been developed over the past two decades. However, M2e-based vaccine candidates have shortcomings, including the need for several administrations and the lack of sustained antibody titers over time. We report here a vaccine targeting strategy that has the potential to confer sustained and strong protection upon a single shot of a small amount of M2e antigen. The current COVID-19 pandemic has highlighted the importance of developing versatile, powerful platforms for the rapid deployment of vaccines against any incoming threat. Influenza, commonly referred to as “flu,” is a major global public health concern and a huge economic burden to societies. Current influenza vaccines need to be updated annually to match circulating strains, resulting in low take-up rates and poor coverage due to inaccurate prediction. Broadly protective universal flu vaccines that do not need to be updated annually have therefore been pursued. The highly conserved 24–amino acid ectodomain of M2 protein (M2e) is a leading candidate, but its poor immunogenicity has been a major roadblock in its clinical development. Here, we report a targeting strategy that shuttles M2e to a specific dendritic cell subset (cDC1) by engineering a recombinant anti-Clec9A monoclonal antibody fused at each of its heavy chains with three copies of M2e. Single administration in mice of 2 µg of the Clec9A–M2e construct triggered an exceptionally sustained anti-M2e antibody response and resulted in a strong anamnestic protective response upon influenza challenge. Furthermore, and importantly, Clec9A–M2e immunization significantly boosted preexisting anti-M2e titers from prior flu exposure. Thus, the Clec9A-targeting strategy allows antigen and dose sparing, addressing the shortcomings of current M2e vaccine candidates. As the cDC1 subset exists in humans, translation to humans is an exciting and realistic avenue.
Collapse
|
21
|
Fang E, Liu X, Li M, Zhang Z, Song L, Zhu B, Wu X, Liu J, Zhao D, Li Y. Advances in COVID-19 mRNA vaccine development. Signal Transduct Target Ther 2022; 7:94. [PMID: 35322018 PMCID: PMC8940982 DOI: 10.1038/s41392-022-00950-y] [Citation(s) in RCA: 202] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
To date, the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has determined 399,600,607 cases and 5,757,562 deaths worldwide. COVID-19 is a serious threat to human health globally. The World Health Organization (WHO) has declared COVID-19 pandemic a major public health emergency. Vaccination is the most effective and economical intervention for controlling the spread of epidemics, and consequently saving lives and protecting the health of the population. Various techniques have been employed in the development of COVID-19 vaccines. Among these, the COVID-19 messenger RNA (mRNA) vaccine has been drawing increasing attention owing to its great application prospects and advantages, which include short development cycle, easy industrialization, simple production process, flexibility to respond to new variants, and the capacity to induce better immune response. This review summarizes current knowledge on the structural characteristics, antigen design strategies, delivery systems, industrialization potential, quality control, latest clinical trials and real-world data of COVID-19 mRNA vaccines as well as mRNA technology. Current challenges and future directions in the development of preventive mRNA vaccines for major infectious diseases are also discussed.
Collapse
Affiliation(s)
- Enyue Fang
- National Institute for Food and Drug Control, Beijing, 102629, China
- Wuhan Institute of Biological Products, Co., Ltd., Wuhan, 430207, China
| | - Xiaohui Liu
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Miao Li
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Zelun Zhang
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Lifang Song
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Baiyu Zhu
- Texas A&M University, College Station, TX, 77843, USA
| | - Xiaohong Wu
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Jingjing Liu
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Danhua Zhao
- National Institute for Food and Drug Control, Beijing, 102629, China
| | - Yuhua Li
- National Institute for Food and Drug Control, Beijing, 102629, China.
| |
Collapse
|
22
|
Veenhuis RT, Zeiss CJ. Animal Models of COVID-19 II. Comparative Immunology. ILAR J 2021; 62:17-34. [PMID: 33914873 PMCID: PMC8135340 DOI: 10.1093/ilar/ilab010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/03/2020] [Accepted: 12/20/2020] [Indexed: 12/22/2022] Open
Abstract
Developing strong animal models is essential for furthering our understanding of how the immune system functions in response to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. The alarming speed at which SARS-CoV-2 has spread, and the high mortality rate of severe Coronavirus Disease 2019 (COVID-19), has required both basic science and clinical research to move at an unprecedented pace. Models previously developed to study the immune response against SARS-CoV have been rapidly deployed to now study SARS-CoV-2. To date, both small and large animal models are remarkably consistent when infected with SARS-CoV-2; however, certain models have proven more useful when answering specific immunological questions than others. Small animal models, such as Syrian hamsters, ferrets, and mice carrying the hACE2 transgene, appear to reliably recapitulate the initial cytokine surge seen in COVID-19 as well as show significant innate and adaptive cell infiltration in to the lung early in infection. Additionally, these models develop strong antibody responses to the virus, are protected from reinfection, and genetically modified versions exist that can be used to ask specific immunological questions. Large animal models such as rhesus and cynomologus macaques and African green monkeys are critical to understanding how the immune system responds to SARS-CoV-2 infection because they are considered to be the most similar to humans. These models are considered the gold standard for assessing vaccine efficacy and protection, and recapitulate the initial cytokine surge, immune cell infiltration into the lung, certain aspects of thrombosis, and the antibody and T-cell response to the virus. In this review, we discuss both small and large animal model studies previously used in SARS-CoV-2 research that may be useful in elucidating the immunological contributions to hallmark syndromes observed with COVID-19.
Collapse
Affiliation(s)
- Rebecca T Veenhuis
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Caroline J Zeiss
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
23
|
Fallani E, Orsi A, Signori A, Icardi G, Domnich A. An exploratory study to assess patterns of influenza- and pneumonia-related mortality among the Italian elderly. Hum Vaccin Immunother 2021; 17:5514-5521. [PMID: 34965179 PMCID: PMC8916782 DOI: 10.1080/21645515.2021.2005381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Older adults are at disproportionately high risk of severe influenza-related outcomes and represent the main target of the annual influenza vaccination. The protective effect of seasonal influenza vaccination on the observed mortality indicators is controversial. In this ecological study, spatiotemporal patterns of pneumonia- and influenza-related mortality registered in the Italian elderly over seven (2011–2017) consecutive seasons were explored and the epidemiological association between the observed local pneumonia- and influenza-related mortality and influenza vaccination campaign features were modeled by using both fixed- and random-effects panel regression models. The descriptive spatiotemporal analysis showed a clear North–South gradient, where northern regions tended to report more pneumonia- and influenza-related deaths. After adjustment for potential confounders, it was found that each 1% increase in influenza vaccination coverage rate would be associated (P < .001) with a 1.6–1.9% decrease in pneumonia- and influenza-related mortality. Moreover, each 1% increase in the use of MF59®-adjuvanted trivalent influenza vaccine would be associated (P < .05) with a further 0.4% decrease in pneumonia- and influenza-related mortality. This study supports the increase in annual influenza vaccination in Italy and suggests that a higher level of use of the adjuvanted influenza vaccine in the elderly may be beneficial.
Collapse
Affiliation(s)
- Elettra Fallani
- Seqirus S.R.L., Monteriggioni, Italy.,Department of Life Sciences, University of Siena, Siena, Italy
| | - Andrea Orsi
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.,Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Alessio Signori
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Giancarlo Icardi
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.,Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Alexander Domnich
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| |
Collapse
|
24
|
Xu H, Cai L, Hufnagel S, Cui Z. Intranasal vaccine: Factors to consider in research and development. Int J Pharm 2021; 609:121180. [PMID: 34637935 DOI: 10.1016/j.ijpharm.2021.121180] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023]
Abstract
Most existing vaccines for human use are administered by needle-based injection. Administering vaccines needle-free intranasally has numerous advantages over by needle-based injection, but there are only a few intranasal vaccines that are currently approved for human use, and all of them are live attenuated influenza virus vaccines. Clearly, there are immunological as well as non-immunological challenges that prevent vaccine developers from choosing the intranasal route of administration. We reviewed current approved intranasal vaccines and pipelines and described the target of intranasal vaccines, i.e. nose and lymphoid tissues in the nasal cavity. We then analyzed factors unique to intranasal vaccines that need to be considered when researching and developing new intranasal vaccines. We concluded that while the choice of vaccine formulations, mucoadhesives, mucosal and epithelial permeation enhancers, and ligands that target M-cells are important, safe and effective intranasal mucosal vaccine adjuvants are needed to successfully develop an intranasal vaccine that is not based on live-attenuated viruses or bacteria. Moreover, more effective intranasal vaccine application devices that can efficiently target a vaccine to lymphoid tissues in the nasal cavity as well as preclinical animal models that can better predict intranasal vaccine performance in clinical trials are needed to increase the success rate of intranasal vaccines in clinical trials.
Collapse
Affiliation(s)
- Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Lucy Cai
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stephanie Hufnagel
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States.
| |
Collapse
|
25
|
Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov 2021; 20:817-838. [PMID: 34433919 PMCID: PMC8386155 DOI: 10.1038/s41573-021-00283-5] [Citation(s) in RCA: 609] [Impact Index Per Article: 203.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Over the past several decades, messenger RNA (mRNA) vaccines have progressed from a scepticism-inducing idea to clinical reality. In 2020, the COVID-19 pandemic catalysed the most rapid vaccine development in history, with mRNA vaccines at the forefront of those efforts. Although it is now clear that mRNA vaccines can rapidly and safely protect patients from infectious disease, additional research is required to optimize mRNA design, intracellular delivery and applications beyond SARS-CoV-2 prophylaxis. In this Review, we describe the technologies that underlie mRNA vaccines, with an emphasis on lipid nanoparticles and other non-viral delivery vehicles. We also overview the pipeline of mRNA vaccines against various infectious disease pathogens and discuss key questions for the future application of this breakthrough vaccine platform.
Collapse
Affiliation(s)
- Namit Chaudhary
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
26
|
Nuwarda RF, Alharbi AA, Kayser V. An Overview of Influenza Viruses and Vaccines. Vaccines (Basel) 2021; 9:1032. [PMID: 34579269 PMCID: PMC8473132 DOI: 10.3390/vaccines9091032] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 01/12/2023] Open
Abstract
Influenza remains one of the major public health concerns because it causes annual epidemics and can potentially instigate a global pandemic. Numerous countermeasures, including vaccines and antiviral treatments, are in use against seasonal influenza infection; however, their effectiveness has always been discussed due to the ongoing resistance to antivirals and relatively low and unpredictable efficiency of influenza vaccines compared to other vaccines. The growing interest in vaccines as a promising approach to prevent and control influenza may provide alternative vaccine development options with potentially increased efficiency. In addition to currently available inactivated, live-attenuated, and recombinant influenza vaccines on the market, novel platforms such as virus-like particles (VLPs) and nanoparticles, and new vaccine formulations are presently being explored. These platforms provide the opportunity to design influenza vaccines with improved properties to maximize quality, efficacy, and safety. The influenza vaccine manufacturing process is also moving forward with advancements relating to egg- and cell-based production, purification processes, and studies into the physicochemical attributes and vaccine degradation pathways. These will contribute to the design of more stable, optimized vaccine formulations guided by contemporary analytical testing methods and via the implementation of the latest advances in the field.
Collapse
Affiliation(s)
| | | | - Veysel Kayser
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Sydney, NSW 2006, Australia; (R.F.N.); (A.A.A.)
| |
Collapse
|
27
|
Meng FY, Gao F, Jia SY, Wu XH, Li JX, Guo XL, Zhang JL, Cui BP, Wu ZM, Wei MW, Ma ZL, Peng HL, Pan HX, Fan L, Zhang J, Wan JQ, Zhu ZK, Wang XW, Zhu FC. Safety and immunogenicity of a recombinant COVID-19 vaccine (Sf9 cells) in healthy population aged 18 years or older: two single-center, randomised, double-blind, placebo-controlled, phase 1 and phase 2 trials. Signal Transduct Target Ther 2021; 6:271. [PMID: 34267185 PMCID: PMC8281021 DOI: 10.1038/s41392-021-00692-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/17/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022] Open
Abstract
COVID-19 vaccines from multiple manufacturers are needed to cope with the problem of insufficient supply. We did two single-center, randomised, double-blind, placebo-controlled phase 1 and phase 2 trials to assess the safety, tolerability and immunogenicity of a recombinant COVID-19 vaccine (Sf9 cells) in healthy population aged 18 years or older in China. Eligible participants were enrolled, the ratio of candidate vaccine and placebo within each dose group was 3:1 (phase 1) or 5:1 (phase 2). From August 28, 2020, 168 participants were sequentially enrolled and randomly assigned to receive the low dose vaccine, high dose vaccine or placebo with the schedule of 0, 28 days or 0, 14, 28 days in phase 1 trial. From November 18, 2020, 960 participants were randomly assigned to receive the low dose vaccine, high dose vaccine or placebo with the schedule of 0, 21 days or 0, 14, 28 days in phase 2 trial. The most common solicited injection site adverse reaction within 7 days in both trials was pain. The most common solicited systematic adverse reactions within 7 days were fatigue, cough, sore throat, fever and headache. ELISA antibodies and neutralising antibodies increased at 14 days, and peaked at 28 days (phase 1) or 30 days (phase 2) after the last dose vaccination. The GMTs of neutralising antibody against live SARS-CoV-2 at 28 days or 30 days after the last dose vaccination were highest in the adult high dose group (0, 14, 28 days), with 102.9 (95% CI 61.9–171.2) and 102.6 (95% CI 75.2–140.1) in phase 1 and phase 2 trials, respectively. Specific T-cell response peaked at 14 days after the last dose vaccination in phase 1 trial. This vaccine is safe, and induced significant immune responses after three doses of vaccination.
Collapse
Affiliation(s)
- Fan-Yue Meng
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Fan Gao
- China National Institute for Food and Drug Control, Beijing, China
| | - Si-Yue Jia
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Xiang-Hong Wu
- Sheyang County Center for Disease Control and Prevention, Yancheng, China
| | - Jing-Xin Li
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Xi-Ling Guo
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jia-Lu Zhang
- China National Institute for Food and Drug Control, Beijing, China
| | - Bo-Pei Cui
- China National Institute for Food and Drug Control, Beijing, China
| | - Zhi-Ming Wu
- Jiangdu District Center for Disease Control and Prevention, Yangzhou, China
| | - Ming-Wei Wei
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Zhi-Long Ma
- Taizhou Center for Disease Control and Prevention, Taizhou, China
| | - Hai-Lin Peng
- Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Hong-Xing Pan
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Lin Fan
- Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Jing Zhang
- Sheyang County Center for Disease Control and Prevention, Yancheng, China
| | - Jiu-Qin Wan
- Jiangdu District Center for Disease Control and Prevention, Yangzhou, China
| | - Zhong-Kui Zhu
- Taizhou Center for Disease Control and Prevention, Taizhou, China
| | - Xue-Wen Wang
- Shanghai Canming Medical Technology Co., Ltd, Shanghai, China
| | - Feng-Cai Zhu
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.
| |
Collapse
|
28
|
Tavakol S, Alavijeh MS, Seifalian AM. COVID-19 Vaccines in Clinical Trials and their Mode of Action for Immunity against the Virus. Curr Pharm Des 2021; 27:1553-1563. [PMID: 33100195 DOI: 10.2174/1381612826666201023143956] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/10/2020] [Accepted: 09/25/2020] [Indexed: 11/22/2022]
Abstract
For nearly two decades, coronaviruses have caused many health and economic problems, while no effective commercial vaccine has yet been developed. It is worth mentioning that despite some mutations and recombination in SARS-CoV-2, its genotype is very close to the original strain from Wuhan, China. Therefore, the development of an effective vaccine would be promising. It might be hypothesized that BCG vaccination is performed in high-risk populations before the commercialization of an effective SARS-CoV-2 vaccine. However, the development of an effective vaccine without considering the adverse immune reactions derived from antibody-dependent or cell-based immune enhancement may threaten vaccinated people's lives and long-term side effects must be considered. To this end, targeting of the receptor-binding domain (RBD) in spike and not whole spike, glycolization of FC receptors, PD-1 blockers, CPPs, etc., are promising. Therefore, the subunit vaccines or RNA vaccines that encode the RBP segment of the spike are of interest. To enhance the vaccine efficacy, its co-delivery with an adjuvant has been recommended. Nanoparticles modulate immune response with higher efficiency than the soluble form of antigens and can be functionalized with the positively charged moieties and ligands of targeted cells, such as dendritic cells, to increase cellular uptake of the antigens and their presentation on the surface of immune cells. This research aimed to discuss the COVID-19 vaccines entering the clinical trial and their mode of action effective immunity against the virus and discusses their advantages compared to each other.
Collapse
Affiliation(s)
- Shima Tavakol
- Pharmidex Pharmaceutical Services Ltd., London, United Kingdom
| | - Mo S Alavijeh
- Pharmidex Pharmaceutical Services Ltd., London, United Kingdom
| | - Alexander M Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (NanoRegMed Ltd), London BioScience Innovation Centre, London, United Kingdom
| |
Collapse
|
29
|
Hassanzadeh P. The significance of bioengineered nanoplatforms against SARS-CoV-2: From detection to genome editing. Life Sci 2021; 274:119289. [PMID: 33676931 PMCID: PMC7930743 DOI: 10.1016/j.lfs.2021.119289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/12/2021] [Accepted: 02/20/2021] [Indexed: 12/19/2022]
Abstract
COVID-19 outbreak can impose serious negative impacts on the infrastructures of societies including the healthcare systems. Despite the increasing research efforts, false positive or negative results that may be associated with serologic or even RT-PCR tests, inappropriate or variable immune response, and high rates of mutations in coronavirus may negatively affect virus detection process and effectiveness of the vaccines or drugs in development. Nanotechnology-based research attempts via developing state-of-the-art techniques such as nanomechatronics ones and advanced materials including the sensors for detecting the pathogen loads at very low concentrations or site-specific delivery of therapeutics, and real-time protections against the pandemic outbreaks by nanorobots can provide outstanding biomedical breakthroughs. Considering the unique characteristics of pathogens particularly the newly-emerged ones and avoiding the exaggerated optimism or simplistic views on the prophylactic and therapeutic approaches including the one-size-fits-all ones or presenting multiple medications that may be associated with synergistic toxicities rather than enhanced efficiencies might pave the way towards the development of more appropriate treatment strategies with reduced safety concerns. This paper highlights the significance of nanoplatforms against the viral disorders and their capabilities of genome editing that may facilitate taking more appropriate measures against SARS-CoV-2.
Collapse
Affiliation(s)
- Parichehr Hassanzadeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran.
| |
Collapse
|
30
|
Tanner AR, Dorey RB, Brendish NJ, Clark TW. Influenza vaccination: protecting the most vulnerable. Eur Respir Rev 2021; 30:200258. [PMID: 33650528 PMCID: PMC9488965 DOI: 10.1183/16000617.0258-2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/03/2020] [Indexed: 11/30/2022] Open
Abstract
Influenza virus infection causes seasonal epidemics and occasional pandemics, leading to huge morbidity and mortality worldwide. Vaccination against influenza is needed annually as protection from constantly mutating strains is required. Groups at high risk of poor outcomes include the elderly, the very young, pregnant women and those with chronic health conditions. However, vaccine effectiveness in the elderly is generally poor due to immunosenescence and may be altered due to "original antigenic sin". Strategies to overcome these challenges in the elderly include high-dose or adjuvant vaccines. Other options include vaccinating healthcare workers and children as this reduces community-level influenza transmission. Current guidelines in the UK are that young children receive a live attenuated nasal spray vaccine, adults aged >65 years receive an adjuvanted trivalent inactivated vaccine and adults aged <65 years with comorbidities receive a quadrivalent inactivated vaccine. The goal of a universal influenza vaccine targeting conserved regions of the virus and avoiding the need for annual vaccination is edging closer with early-phase trials under way.
Collapse
Affiliation(s)
- Alex R Tanner
- Dept of Medicine for the Elderly, The Royal Bournemouth and Christchurch Hospitals NHS Foundation Trust, Bournemouth, UK
| | - Robert B Dorey
- NIHR Southampton Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Nathan J Brendish
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Dept of Infection, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Tristan W Clark
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Dept of Infection, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
31
|
Winokur P, El Sahly HM, Mulligan MJ, Frey SE, Rupp R, Anderson EJ, Edwards KM, Bernstein DI, Schmader K, Jackson LA, Chen WH, Hill H, Bellamy A. Immunogenicity and safety of different dose schedules and antigen doses of an MF59-adjuvanted H7N9 vaccine in healthy adults aged 65 years and older. Vaccine 2021; 39:1339-1348. [PMID: 33485646 PMCID: PMC8504682 DOI: 10.1016/j.vaccine.2020.11.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND The number of human influenza A (H7N9) infections has escalated since 2013 with high resultant mortality. We conducted a phase II, randomized, partially-blinded trial to evaluate the safety and immunogenicity of an MF59-adjuvanted inactivated, split virion, H7N9 influenza vaccine (H7N9 IIV) administered at various dose levels and schedules in older adults. METHODS 479 adults ≥ 65 years of age in stable health were randomized to one of six groups to receive either 3.75, 7.5 or 15 µg of influenza A/Shanghai/02/2013 (H7N9) IIV adjuvanted with MF59 given as a 3-dose series either on days 1, 28 and 168 or on days 1, 57 and 168. Immunogenicity was assessed using both hemagglutination inhibition (HAI) and microneutralization (MN) assays prior to and 28 days following each dose. Safety was assessed through 1 year following the last dose. RESULTS Subjects in all groups had only modest immune responses, with the HAI GMT < 20 after the second vaccine dose and <29 after the third vaccine dose. HAI titers ≥ 40 were seen in <37% of subjects after the second dose and <49% after the third dose. There were no significant differences seen between the two dose schedules. MN titers followed similar patterns, although the titers were approximately two-fold higher than the HAI titers. Logistic regression modeling demonstrated no statistically significant associations between the immune responses and age, sex or body mass index whereas recent prior receipt of seasonal influenza vaccine significantly reduced the HAI response [OR 0.13 (95% CI 0.05, 0.33); p < 0.001]. Overall, the vaccine was well tolerated. Two mild potentially immune mediated adverse events occurred, lichen planus and guttate psoriasis. CONCLUSIONS MF59-adjuvanted H7N9 IIV was only modestly immunogenic in the older adult population following three doses. There were no significant differences in antibody responses noted among the various antigen doses or the two dose schedules.
Collapse
Affiliation(s)
- Patricia Winokur
- Division of Infectious Diseases, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States.
| | - Hana M El Sahly
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Mark J Mulligan
- The Hope Clinic of the Emory Vaccine Center, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Sharon E Frey
- Department of Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Richard Rupp
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
| | - Evan J Anderson
- Emory Children's Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Kathryn M Edwards
- Department of Pediatrics, Vanderbilt Vaccine Research Program, Vanderbilt University, Nashville, TN, United States
| | - David I Bernstein
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | | | - Lisa A Jackson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, United States
| | - Wilbur H Chen
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Heather Hill
- The Emmes Corporation, Rockville, MD, United States
| | | |
Collapse
|
32
|
The impact of immuno-aging on SARS-CoV-2 vaccine development. GeroScience 2021; 43:31-51. [PMID: 33569701 PMCID: PMC7875765 DOI: 10.1007/s11357-021-00323-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
The SARS-CoV-2 pandemic has almost 56 million confirmed cases resulting in over 1.3 million deaths as of November 2020. This infection has proved more deadly to older adults (those >65 years of age) and those with immunocompromising conditions. The worldwide population aged 65 years and older is increasing, and the total number of aged individuals will outnumber those younger than 65 years by the year 2050. Aging is associated with a decline in immune function and chronic activation of inflammation that contributes to enhanced viral susceptibility and reduced responses to vaccination. Here we briefly review the pathogenicity of the virus, epidemiology and clinical response, and the underlying mechanisms of human aging in improving vaccination. We review current methods to improve vaccination in the older adults using novel vaccine platforms and adjuvant systems. We conclude by summarizing the existing clinical trials for a SARS-CoV-2 vaccine and discussing how to address the unique challenges for vaccine development presented with an aging immune system.
Collapse
|
33
|
Zhao W, Zhang P, Bai S, Lv M, Wang J, Chen W, Wu J. Immune Responses to Adjuvanted H7N9 Split Antigen in Aged Mice. Viral Immunol 2021; 34:112-116. [PMID: 33577421 DOI: 10.1089/vim.2020.0307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The avian influenza A H7N9 virus has caused severe infection and high mortality in humans. It can be extremely hazardous to the elderly since age might diminish the immune response, and poor immunogenicity of H7 hemagglutinin could diminish the vaccine efficacy in this population. To overcome this issue, adjuvants are used to induce a stronger immune response. In this study, we generated a recombinant H7N9 influenza virus using reverse genetic techniques, consisting of hemagglutinin and neuraminidase genes derived from a human H7N9 virus, with the remaining genes from H1N1 A/Puerto Rico/8/34 (PR8). To evaluate whether the adjuvant can improve immune responses in aged animals, the humoral and cellular immune responses of 18-month-old BALB/c mice to different doses of split avian influenza A H7N9 vaccine with and without the adjuvant MF59 were compared. Our data showed that aged mice immunized with MF59 elicited higher levels of hemagglutination inhibition and microneutralization antibodies and interferon-gamma-specific enzyme-linked immunospot assay (ELISPOT) responses when compared with antigens alone. It is suggested that the split avian influenza A H7N9 vaccine combined with MF59 may significantly improve immune responses to influenza vaccination in elderly humans.
Collapse
Affiliation(s)
- Wei Zhao
- Institute for Immunization and Prevention, Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Peng Zhang
- Institute for Immunization and Prevention, Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Shuang Bai
- Institute for Immunization and Prevention, Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Min Lv
- Institute for Immunization and Prevention, Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Jian Wang
- Institute for Immunization and Prevention, Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Weixin Chen
- Institute for Immunization and Prevention, Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Jiang Wu
- Institute for Immunization and Prevention, Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing, China
| |
Collapse
|
34
|
Kao CM, Orenstein WA, Anderson EJ. The Importance of Advancing Severe Acute Respiratory Syndrome Coronavirus 2 Vaccines in Children. Clin Infect Dis 2021; 72:515-518. [PMID: 33527122 PMCID: PMC7314192 DOI: 10.1093/cid/ciaa712] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/02/2020] [Indexed: 12/28/2022] Open
Abstract
While the role of children in the chain of transmission of SARS-CoV-2 remains to be fully defined, they likely play an important role based on our knowledge of other respiratory viruses. Children are more likely to be asymptomatic or have milder symptoms and less likely to present for healthcare and be tested for SARS-CoV-2; thus, our current estimates are likely under-representative of the true burden of SARS-CoV-2 in children. Given the potential direct benefit of a SARS-CoV-2 vaccine in children and the substantial indirect benefit through community protection or ‘herd immunity’, we argue that planning and implementation of SARS-CoV-2 vaccines should include children. Furthermore, community protection occurred after widespread implementation of prior childhood vaccines against Streptococcus pneumoniae, rubella and rotavirus. We detail considerations for vaccine clinical trials, potential barriers to the implementation of widespread vaccination and argue why children would be an ideal target population for vaccination.
Collapse
Affiliation(s)
- Carol M Kao
- Department of Pediatrics, Emory University School of Medicine, Emory + Children's Pediatric Institute, Atlanta, Georgia, USA
| | - Walter A Orenstein
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.,Emory Vaccine Center, Atlanta, Georgia, USA
| | - Evan J Anderson
- Department of Pediatrics, Emory University School of Medicine, Emory + Children's Pediatric Institute, Atlanta, Georgia, USA.,Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
35
|
Li Z, Zhao Y, Li Y, Chen X. Adjuvantation of Influenza Vaccines to Induce Cross-Protective Immunity. Vaccines (Basel) 2021; 9:75. [PMID: 33494477 PMCID: PMC7911902 DOI: 10.3390/vaccines9020075] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Influenza poses a huge threat to global public health. Influenza vaccines are the most effective and cost-effective means to control influenza. Current influenza vaccines mainly induce neutralizing antibodies against highly variable globular head of hemagglutinin and lack cross-protection. Vaccine adjuvants have been approved to enhance seasonal influenza vaccine efficacy in the elderly and spare influenza vaccine doses. Clinical studies found that MF59 and AS03-adjuvanted influenza vaccines could induce cross-protective immunity against non-vaccine viral strains. In addition to MF59 and AS03 adjuvants, experimental adjuvants, such as Toll-like receptor agonists, saponin-based adjuvants, cholera toxin and heat-labile enterotoxin-based mucosal adjuvants, and physical adjuvants, are also able to broaden influenza vaccine-induced immune responses against non-vaccine strains. This review focuses on introducing the various types of adjuvants capable of assisting current influenza vaccines to induce cross-protective immunity in preclinical and clinical studies. Mechanisms of licensed MF59 and AS03 adjuvants to induce cross-protective immunity are also introduced. Vaccine adjuvants hold a great promise to adjuvant influenza vaccines to induce cross-protective immunity.
Collapse
Affiliation(s)
| | | | | | - Xinyuan Chen
- Biomedical & Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Room 480, Kingston, RI 02881, USA; (Z.L.); (Y.Z.); (Y.L.)
| |
Collapse
|
36
|
Damjanovska S, Smith C, Sayin I, Burant CJ, Gravenstein S, Canaday DH. Adjuvant effect of type I interferon induced by many but not all commercial influenza vaccines. Vaccine 2020; 39:786-789. [PMID: 33390292 DOI: 10.1016/j.vaccine.2020.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/23/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Seasonal influenza vaccines approved and offered in the United States have varying reported degrees of effectiveness year over year and between manufacturers. Influenza vaccines produced from live virus may include single stranded RNA (ssRNA) that is a potent activator of the innate Toll-like receptor 7 (TLR-7) ligand. Plasmacytoid dendritic cells (pDC) can be activated by ssRNA to produce type I interferons such as IFN-α, which has been shown to have an adjuvant-like effect. OBJECTIVE Our aim was to determine if IFN-α induction in peripheral blood mononuclear cells (PBMCs) exposed to eight different commercial influenza vaccines is a pDC-dependent process mediated through TLR-7 signaling. RESULTS We demonstrate the ability of multiple vaccines to induce IFN-α in a TLR-7-dependent fashion. A number of vaccines however lacked IFN-α induction. The significance of these differences between vaccines is unclear, since all the approved vaccine formulations offer some degree of protection.
Collapse
Affiliation(s)
- Sofi Damjanovska
- Department of Medicine, Cleveland VA Medical Center, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106-4984, United States
| | - Carson Smith
- Department of Pathology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106-4984, United States
| | - Ismail Sayin
- Department of Medicine, Cleveland VA Medical Center, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106-4984, United States
| | - Christopher J Burant
- Case Western Reserve University School of Nursing, Cleveland VA Medical Center, 10900 Euclid Ave, Cleveland, OH 44106-7343, United States
| | - Stefan Gravenstein
- Brown University, Providence VA Medical Center, Providence, RI 02912, United States
| | - David H Canaday
- Department of Medicine, Cleveland VA Medical Center, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106-4984, United States.
| |
Collapse
|
37
|
Bulut O, Kilic G, Domínguez-Andrés J, Netea MG. Overcoming immune dysfunction in the elderly: trained immunity as a novel approach. Int Immunol 2020; 32:741-753. [PMID: 32766848 PMCID: PMC7680842 DOI: 10.1093/intimm/dxaa052] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
People with advanced age have a higher susceptibility to infections and exhibit increased mortality and morbidity as the ability of the immune system to combat infections decreases with age. While innate immune cells display functional defects such as decreased phagocytosis, chemotaxis and cytokine production, adaptive immune cells exhibit reduced receptor diversity, defective antibody production and a sharp decline in naive cell populations. Successful responses to vaccination in the elderly are critical to prevent common infections such as influenza and pneumonia, but vaccine efficacy decreases in older individuals compared with young adults. Trained immunity is a newly emerging concept that showed that innate immune cells possess non-specific immunological memory established through epigenetic and metabolic reprogramming upon encountering certain pathogenic stimuli. Clinical studies suggest that trained immunity can be utilized to enhance immune responses against infections and improve the efficiency of vaccinations in adults; however, how trained immunity responses are shaped with advanced age is still an open question. In this review, we provide an overview of the age-related changes in the immune system with a focus on innate immunity, discuss current vaccination strategies for the elderly, present the concept of trained immunity and propose it as a novel approach to enhance responses against infections and vaccinations in the elderly population.
Collapse
Affiliation(s)
- Ozlem Bulut
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, GA Nijmegen, The Netherlands
| | - Gizem Kilic
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, GA Nijmegen, The Netherlands
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, GA Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, GA Nijmegen, The Netherlands
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
38
|
Allen JC, Toapanta FR, Chen W, Tennant SM. Understanding immunosenescence and its impact on vaccination of older adults. Vaccine 2020; 38:8264-8272. [PMID: 33229108 DOI: 10.1016/j.vaccine.2020.11.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/23/2020] [Accepted: 11/01/2020] [Indexed: 12/31/2022]
Abstract
Older adults are more susceptible to viral and bacterial infection, and experience higher incidence and severity of infectious diseases. Although vaccination is the most logical solution in preventing infectious diseases, primary vaccine responses in individuals aged ≥65 years-old fail to generate complete protection. This is presumably attributed to immunosenescence, a term that describes functional differences associated with the immune system and natural age advancement. Both the innate and adaptive immune systems experience age-related impairments that contribute to insufficient protection following vaccination. This review addresses current knowledge of age-related changes that affect vaccine responsiveness; including the deficits in innate cell functions, dampened humoral and cell-mediated immune responses, current vaccination schedules for older adults, and concludes with potential strategies for improving vaccine efficacy specifically for this age group. Due to an age-related decline in immunity and poor vaccine responses, infectious diseases remain a burden among the aged population.
Collapse
Affiliation(s)
- Jessica C Allen
- Center for Vaccine Development and Global Health, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Franklin R Toapanta
- Center for Vaccine Development and Global Health, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wilbur Chen
- Center for Vaccine Development and Global Health, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sharon M Tennant
- Center for Vaccine Development and Global Health, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
39
|
McConeghy KW, Davidson HE, Canaday DH, Han L, Saade E, Mor V, Gravenstein S. Cluster-randomized trial of adjuvanted vs. non-adjuvanted trivalent influenza vaccine in 823 U.S. nursing homes. Clin Infect Dis 2020; 73:e4237-e4243. [PMID: 32882710 DOI: 10.1093/cid/ciaa1233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Influenza leads in preventable infection-related hospitalization in nursing home (NH) residents. The adjuvanted trivalent influenza vaccine (aTIV) is more immunogenic than similarly-dosed non-adjuvanted trivalent influenza vaccine (TIV) and observational studies suggest aTIV better prevents hospitalizations in older adults. We prospectively tested this in a NH setting. METHODS NHs with ≥ 50 long-stay residents ≥ 65 years were randomized to offer aTIV or TIV for residents for the 2016-17 influenza season. Using intent-to-treat resident-level analysis with Cox proportional hazards regression models adjusted for clustering by facility and a priori baseline covariates (e.g., age, heart failure, and facility-level characteristics), we assessed relative aTIV:TIV effectiveness for hospitalization [i.e., all-cause, respiratory, and pneumonia and influenza, (P&I)]. RESULTS We randomized 823 NHs, housing 50,012 eligible residents, to aTIV or TIV. Residents were similar between groups by age (mean, ~79), heart failure, lung disease, and influenza and pneumococcal vaccine uptake, except aTIV homes housed fewer Black residents (14.5 vs. 18.9%). Staff vaccine uptake was similar (~55%). P&I and all-cause resident hospitalization rates were lower (adjusted HR 0.80, 95% CI: 0.66, 0.98, p=0.03; aHR 0.94, 95% CI: 0.89, 0.99, p=0.02, respectively) for aTIV vs TIV, while the respiratory hospitalization rate was similar, in a season where vaccine effectiveness was considered poor. CONCLUSIONS aTIV was more effective than TIV in preventing all-cause and P&I hospitalization from NHs during an A/H3N2 predominant season when TIV was relatively ineffective.Funded by Seqirus. ClinicalTrials.gov number, NCT02882100.
Collapse
Affiliation(s)
- Kevin W McConeghy
- Center on Innovation in Long-Term Services and Supports, Veterans Administration Medical Center, Providence, Rhode Island, United States.,School of Public Health, Brown University, Providence, Rhode Island, United States
| | | | - David H Canaday
- Louis Stokes Veterans Administration Center, Cleveland Ohio, United States.,Department of Medicine, Case Western Reserve University, Cleveland Ohio, United States.,University Hospitals Cleveland Medical Center, Cleveland Ohio, United States
| | - Lisa Han
- Insight Therapeutics, LLC, Norfolk, Virginia, United States
| | - Elie Saade
- Louis Stokes Veterans Administration Center, Cleveland Ohio, United States.,Department of Medicine, Case Western Reserve University, Cleveland Ohio, United States.,University Hospitals Cleveland Medical Center, Cleveland Ohio, United States
| | - Vince Mor
- Center on Innovation in Long-Term Services and Supports, Veterans Administration Medical Center, Providence, Rhode Island, United States.,School of Public Health, Brown University, Providence, Rhode Island, United States.,Center for Gerontology and Healthcare Research, Brown University, Providence, Rhode Island, United States
| | - Stefan Gravenstein
- Center on Innovation in Long-Term Services and Supports, Veterans Administration Medical Center, Providence, Rhode Island, United States.,School of Public Health, Brown University, Providence, Rhode Island, United States.,Center for Gerontology and Healthcare Research, Brown University, Providence, Rhode Island, United States
| |
Collapse
|
40
|
Callender LA, Curran M, Bates SM, Mairesse M, Weigandt J, Betts CJ. The Impact of Pre-existing Comorbidities and Therapeutic Interventions on COVID-19. Front Immunol 2020; 11:1991. [PMID: 32903476 PMCID: PMC7437504 DOI: 10.3389/fimmu.2020.01991] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/23/2020] [Indexed: 01/08/2023] Open
Abstract
Evidence from the global outbreak of SARS-CoV-2 has clearly demonstrated that individuals with pre-existing comorbidities are at a much greater risk of dying from COVID-19. This is of great concern for individuals living with these conditions, and a major challenge for global healthcare systems and biomedical research. Not all comorbidities confer the same risk, however, many affect the function of the immune system, which in turn directly impacts the response to COVID-19. Furthermore, the myriad of drugs prescribed for these comorbidities can also influence the progression of COVID-19 and limit additional treatment options available for COVID-19. Here, we review immune dysfunction in response to SARS-CoV-2 infection and the impact of pre-existing comorbidities on the development of COVID-19. We explore how underlying disease etiologies and common therapies used to treat these conditions exacerbate COVID-19 progression. Moreover, we discuss the long-term challenges associated with the use of both novel and repurposed therapies for the treatment of COVID-19 in patients with pre-existing comorbidities.
Collapse
Affiliation(s)
- Lauren A. Callender
- Immunotoxicology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
- Department of Surgery, University of Cambridge, NIHR Cambridge Biomedical, Cambridge, United Kingdom
| | - Michelle Curran
- Immunotoxicology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
- Department of Surgery, University of Cambridge, NIHR Cambridge Biomedical, Cambridge, United Kingdom
| | - Stephanie M. Bates
- Immunotoxicology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Maelle Mairesse
- Immunotoxicology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Julia Weigandt
- Immunotoxicology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Catherine J. Betts
- Immunotoxicology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
41
|
Pacifici N, Bolandparvaz A, Lewis JS. Stimuli-Responsive Biomaterials for Vaccines and Immunotherapeutic Applications. ADVANCED THERAPEUTICS 2020; 3:2000129. [PMID: 32838028 PMCID: PMC7435355 DOI: 10.1002/adtp.202000129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/16/2020] [Indexed: 12/26/2022]
Abstract
The immune system is the key target for vaccines and immunotherapeutic approaches aimed at blunting infectious diseases, cancer, autoimmunity, and implant rejection. However, systemwide immunomodulation is undesirable due to the severe side effects that typically accompany such strategies. In order to circumvent these undesired, harmful effects, scientists have turned to tailorable biomaterials that can achieve localized, potent release of immune-modulating agents. Specifically, "stimuli-responsive" biomaterials hold a strong promise for delivery of immunotherapeutic agents to the disease site or disease-relevant tissues with high spatial and temporal accuracy. This review provides an overview of stimuli-responsive biomaterials used for targeted immunomodulation. Stimuli-responsive or "environmentally responsive" materials are customized to specifically react to changes in pH, temperature, enzymes, redox environment, photo-stimulation, molecule-binding, magnetic fields, ultrasound-stimulation, and electric fields. Moreover, the latest generation of this class of materials incorporates elements that allow for response to multiple stimuli. These developments, and other stimuli-responsive materials that are on the horizon, are discussed in the context of controlling immune responses.
Collapse
Affiliation(s)
- Noah Pacifici
- Department of Biomedical Engineering University of California Davis Davis CA 95616 USA
| | - Amir Bolandparvaz
- Department of Biomedical Engineering University of California Davis Davis CA 95616 USA
| | - Jamal S Lewis
- Department of Biomedical Engineering University of California Davis Davis CA 95616 USA
| |
Collapse
|
42
|
Abstract
SARS-CoV-2, the causal agent of COVID-19, first emerged in late 2019 in China. It has since infected more than 870,000 individuals and caused more than 43,000 deaths globally. Here, we discuss therapeutic and prophylactic interventions for SARS-CoV-2 with a focus on vaccine development and its challenges. Vaccines are being rapidly developed but will likely come too late to affect the first wave of a potential pandemic. Nevertheless, critical lessons can be learned for the development of vaccines against rapidly emerging viruses. Importantly, SARS-CoV-2 vaccines will be essential to reducing morbidity and mortality if the virus establishes itself in the population.
Collapse
Affiliation(s)
- Fatima Amanat
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
43
|
Zhang J, Zeng H, Gu J, Li H, Zheng L, Zou Q. Progress and Prospects on Vaccine Development against SARS-CoV-2. Vaccines (Basel) 2020; 8:E153. [PMID: 32235387 PMCID: PMC7349596 DOI: 10.3390/vaccines8020153] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/15/2022] Open
Abstract
In December 2019, the outbreak of pneumonia caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a serious pandemic in China and other countries worldwide. So far, more than 460,000 confirmed cases were diagnosed in nearly 190 countries, causing globally over 20,000 deaths. Currently, the epidemic is still spreading and there is no effective means to prevent the infection. Vaccines are proved to be the most effective and economical means to prevent and control infectious diseases. Several countries, companies, and institutions announced their programs and progress on vaccine development against the virus. While most of the vaccines are under design and preparation, there are some that have entered efficacy evaluation in animals and initial clinical trials. This review mainly focused on the progress and our prospects on field of vaccine development against SARS-CoV-2.
Collapse
Affiliation(s)
- Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing 400038, China; (J.Z.); (H.Z.); (J.G.); (H.L.)
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing 400038, China; (J.Z.); (H.Z.); (J.G.); (H.L.)
| | - Jiang Gu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing 400038, China; (J.Z.); (H.Z.); (J.G.); (H.L.)
| | - Haibo Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing 400038, China; (J.Z.); (H.Z.); (J.G.); (H.L.)
| | - Lixin Zheng
- Laboratory of the Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing 400038, China; (J.Z.); (H.Z.); (J.G.); (H.L.)
| |
Collapse
|
44
|
Abstract
The adaptive immune response to influenza virus infection is multifaceted and complex, involving antibody and cellular responses at both systemic and mucosal levels. Immune responses to natural infection with influenza virus in humans are relatively broad and long-lived, but influenza viruses can escape from these responses over time owing to their high mutation rates and antigenic flexibility. Vaccines are the best available countermeasure against infection, but vaccine effectiveness is low compared with other viral vaccines, and the induced immune response is narrow and short-lived. Furthermore, inactivated influenza virus vaccines focus on the induction of systemic IgG responses but do not effectively induce mucosal IgA responses. Here, I review the differences between natural infection and vaccination in terms of the antibody responses they induce and how these responses protect against future infection. A better understanding of how natural infection induces broad and long-lived immune responses will be key to developing next-generation influenza virus vaccines.
Collapse
|
45
|
Vanderven HA, Barr I, Reynaldi A, Wheatley AK, Wines BD, Davenport MP, Hogarth PM, Kent SJ. Fc functional antibody responses to adjuvanted versus unadjuvanted seasonal influenza vaccination in community-dwelling older adults. Vaccine 2020; 38:2368-2377. [PMID: 32035709 DOI: 10.1016/j.vaccine.2020.01.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Seasonal influenza vaccination with a standard trivalent influenza vaccine (TIV) induces a modest, and cross-reactive, Fc functional antibody response in older adults. Recent improvements to influenza vaccines include a quadrivalent influenza vaccine (QIV) and a TIV adjuvanted with the squalene-based oil-in-water emulsion MF59. METHODS Pre- and post-vaccination serum samples from older adults vaccinated with QIV (n = 27) and adjuvanted TIV (n = 44) were studied using hemagglutination inhibition (HAI) assays and dimeric Fc-gamma receptor IIIa binding ELISAs, as a surrogate of antibody-dependent cellular cytotoxicity (ADCC). RESULTS We found that the unadjuvanted QIV elicited a stronger HAI response against the H1N1 vaccine virus than the adjuvanted TIV. Post-vaccination levels of HA-specific ADCC antibodies were similar for older adults vaccinated with QIV and adjuvanted TIV. The ADCC response to influenza vaccination was largely determined by pre-vaccination or baseline levels of these antibodies, with older adults with low baseline levels of ADCC activity demonstrating greater post-vaccination rises. CONCLUSIONS In this cohort of community-dwelling older adults, the QIV was at least as good as the adjuvanted TIV in the induction of ADCC and HAI responses. Further studies on how these antibody responses translate to efficacy in preventing influenza infections are warranted.
Collapse
Affiliation(s)
- Hillary A Vanderven
- Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Douglas, Queensland, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
| | - Ian Barr
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia; WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Arnold Reynaldi
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Victoria, Australia
| | - Bruce D Wines
- Immune Therapies Laboratory, Burnet Institute, Victoria, Australia
| | - Miles P Davenport
- Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales Australia, Sydney, New South Wales, Australia
| | - P Mark Hogarth
- Immune Therapies Laboratory, Burnet Institute, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Victoria, Australia; Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Australia.
| |
Collapse
|
46
|
Yang J, Zhang J, Han T, Liu C, Li X, Yan L, Yang B, Yang X. Effectiveness, immunogenicity, and safety of influenza vaccines with MF59 adjuvant in healthy people of different age groups: A systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e19095. [PMID: 32049815 PMCID: PMC7035094 DOI: 10.1097/md.0000000000019095] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Influenza is a severe disease burden among all age groups. This study aimed to review the efficacy of inactivated influenza vaccines with MF59 adjuvant and non-adjuvanted inactivated influenza vaccines among all age groups against specific influenza vaccine strains. METHODS Literature search of PubMed, Embase, Medline, OVID, and Cochrane Library Trials (CENTRAL) was implemented up to March 1, 2019. Homogeneity qualified studies were included forData were extracted such as study country location, demographic characteristics, and measure outcomes, and were analyzed by a random effect model and sensitivity analyses to identify heterogeneity. Risk of bias was evaluated using the Cochrane Risk of Bias Tool. RESULTS We retrieved 1,021 publications and selected 31 studies for full review, including 17 trials for meta-analysis and 6 trials for qualitative synthesis. MF59-adjuvanted influenza vaccines demonstrated better immunogenicity against specific vaccine virus strains compared to non-adjuvanted influenza vaccine both in healthy adult group (RR = 2.10; 95% CI: 1.28-3.44) and the healthy aged (RR = 1.26; 95% CI: 1.10-1.44). CONCLUSION The quality of evidence is moderate to high for seroconversion and seroprotection rates of influenza vaccine. MF59-adjuvanted influenza vaccines are superior to non-adjuvanted influenza vaccines to enhance immune responses of vaccination in healthy adults and older adults, and could be considered for routine use especially the monovalent prepandemic influenza vaccines.
Collapse
Affiliation(s)
- Jing Yang
- National Institute of Engineering Technology Research in Combination Vaccine
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei province
| | - Jiayou Zhang
- National Institute of Engineering Technology Research in Combination Vaccine
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei province
| | - Tian Han
- National Institute of Engineering Technology Research in Combination Vaccine
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei province
| | - Chen Liu
- National Institute of Engineering Technology Research in Combination Vaccine
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei province
| | - Xinghang Li
- National Institute of Engineering Technology Research in Combination Vaccine
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei province
| | - Luyao Yan
- National Institute of Engineering Technology Research in Combination Vaccine
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei province
| | - Baifeng Yang
- National Institute of Engineering Technology Research in Combination Vaccine
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei province
| | - Xiaoming Yang
- National Institute of Engineering Technology Research in Combination Vaccine
- China Biotechnology Co., Ltd., Peking China, China
| |
Collapse
|
47
|
Intratumoral injection of the seasonal flu shot converts immunologically cold tumors to hot and serves as an immunotherapy for cancer. Proc Natl Acad Sci U S A 2019; 117:1119-1128. [PMID: 31888983 PMCID: PMC6969546 DOI: 10.1073/pnas.1904022116] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy has revolutionized cancer treatment, yielding unprecedented long-term responses and survival. However, a significant proportion of patients remain refractory, which correlates with the absence of immune-infiltrated (“hot”) tumors. Here, we observed that FDA-approved unadjuvanted seasonal influenza vaccines administered via intratumoral injection not only provide protection against active influenza virus lung infection, but also reduce tumor growth by increasing antitumor CD8+ T cells and decreasing regulatory B cells within the tumor. Ultimately, intratumoral unadjuvanted seasonal influenza vaccine converts immunologically inactive “cold” tumors to “hot,” generates systemic responses, and sensitizes resistant tumors to checkpoint blockade. Repurposing the “flu shot” may increase response rates to immunotherapy, and based on its current FDA approval and safety profile, may be quickly translated for clinical care. Reprogramming the tumor microenvironment to increase immune-mediated responses is currently of intense interest. Patients with immune-infiltrated “hot” tumors demonstrate higher treatment response rates and improved survival. However, only the minority of tumors are hot, and a limited proportion of patients benefit from immunotherapies. Innovative approaches that make tumors hot can have immediate impact particularly if they repurpose drugs with additional cancer-unrelated benefits. The seasonal influenza vaccine is recommended for all persons over 6 mo without prohibitive contraindications, including most cancer patients. Here, we report that unadjuvanted seasonal influenza vaccination via intratumoral, but not intramuscular, injection converts “cold” tumors to hot, generates systemic CD8+ T cell-mediated antitumor immunity, and sensitizes resistant tumors to checkpoint blockade. Importantly, intratumoral vaccination also provides protection against subsequent active influenza virus lung infection. Surprisingly, a squalene-based adjuvanted vaccine maintains intratumoral regulatory B cells and fails to improve antitumor responses, even while protecting against active influenza virus lung infection. Adjuvant removal, B cell depletion, or IL-10 blockade recovers its antitumor effectiveness. Our findings propose that antipathogen vaccines may be utilized for both infection prevention and repurposing as a cancer immunotherapy.
Collapse
|
48
|
Bellino S, Piovesan C, Bella A, Rizzo C, Pezzotti P, Ramigni M. Determinants of vaccination uptake, and influenza vaccine effectiveness in preventing deaths and hospital admissions in the elderly population; Treviso, Italy, 2014/2015-2016/2017 seasons. Hum Vaccin Immunother 2019; 16:301-312. [PMID: 31486347 PMCID: PMC7062427 DOI: 10.1080/21645515.2019.1661754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Seasonal influenza is an important cause of morbidity and mortality, particularly among the elderly population. Determinants of vaccination uptake and its impact on health outcomes in the seasons 2014/2015–2016/2017 in elderly living in Treviso area (Veneto Region, North-Eastern Italy) were evaluated. A retrospective cohort study was conducted combining information from several health administrative databases, and multiple Poisson regression models were applied to evaluate the influenza vaccine effectiveness, also adjusting for confounding factors. MF59-adjuvanted trivalent-inactivated vaccine was mainly administered. Data from more than 83,000 elderly people were analyzed by year. Vaccine coverage was about 50%; influenza vaccination uptake was independently associated with older age, male sex, increasing number of underlying chronic conditions, previous pneumococcal vaccination, annual expenses for specialist medical cares, and general practitioner to whom the elderly was in charge. After adjusting for previously described characteristics, vaccination was associated with lower mortality and influenza-related hospitalization rates. Specifically, during influenza season the adjusted incidence rate ratio of death and of influenza-related hospitalizations for vaccinated compared to unvaccinated persons was 0.63 [95% confidence interval (CI) 0.58–0.69, p < .001] and 0.86 (95% CI 0.81–0.91, p < .001), respectively. A similar effectiveness was estimated for death in all age groups (≤74, 75–84, ≥85 years old), whereas a higher effect was found for hospitalizations in subjects aged ≥75 years old. Vaccination was also effective both in males and females. Findings suggest a health benefit of the influenza vaccination in the elderly population. Efforts should be focused on strategies to increase the vaccination uptake as important instrument of prevention.
Collapse
Affiliation(s)
- Stefania Bellino
- Department of Infectious Diseases, Italian National Institute of Health (Istituto Superiore di Sanità, ISS), Rome, Italy
| | - Cinzia Piovesan
- Department of Epidemiology, Local Health Unit 2 Marca Trevigiana, Treviso, Italy
| | - Antonino Bella
- Department of Infectious Diseases, Italian National Institute of Health (Istituto Superiore di Sanità, ISS), Rome, Italy
| | - Caterina Rizzo
- Direction of Clinical Departments, Bambino Gesù Children's Hospital, Rome, Italy
| | - Patrizio Pezzotti
- Department of Infectious Diseases, Italian National Institute of Health (Istituto Superiore di Sanità, ISS), Rome, Italy
| | - Mauro Ramigni
- Department of Epidemiology, Local Health Unit 2 Marca Trevigiana, Treviso, Italy
| |
Collapse
|
49
|
Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence and human vaccine immune responses. IMMUNITY & AGEING 2019; 16:25. [PMID: 31528180 PMCID: PMC6743147 DOI: 10.1186/s12979-019-0164-9] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
Abstract
The age-related dysregulation and decline of the immune system-collectively termed "immunosenescence"-has been generally associated with an increased susceptibility to infectious pathogens and poor vaccine responses in older adults. While numerous studies have reported on the clinical outcomes of infected or vaccinated individuals, our understanding of the mechanisms governing the onset of immunosenescence and its effects on adaptive immunity remains incomplete. Age-dependent differences in T and B lymphocyte populations and functions have been well-defined, yet studies that demonstrate direct associations between immune cell function and clinical outcomes in older individuals are lacking. Despite these knowledge gaps, research has progressed in the development of vaccine and adjuvant formulations tailored for older adults in order to boost protective immunity and overcome immunosenescence. In this review, we will discuss the development of vaccines for older adults in light of our current understanding-or lack thereof-of the aging immune system. We highlight the functional changes that are known to occur in the adaptive immune system with age, followed by a discussion of current, clinically relevant pathogens that disproportionately affect older adults and are the central focus of vaccine research efforts for the aging population. We conclude with an outlook on personalized vaccine development for older adults and areas in need of further study in order to improve our fundamental understanding of adaptive immunosenescence.
Collapse
Affiliation(s)
- Stephen N Crooke
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Guggenheim Building 611D, 200 First Street SW, Rochester, MN 55905 USA
| |
Collapse
|
50
|
Self-reported diabetes and herpes zoster are associated with a weak humoral response to the seasonal influenza A H1N1 vaccine antigen among the elderly. BMC Infect Dis 2019; 19:656. [PMID: 31337344 PMCID: PMC6651912 DOI: 10.1186/s12879-019-4214-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/23/2019] [Indexed: 12/29/2022] Open
Abstract
Background The immune response to seasonal influenza vaccines decreases with advancing age. Therefore, an adjuvanted inactivated trivalent influenza vaccine (Fluad®) exists for elderly individuals. Fluad® is more immunogenic and efficacious than conventional influenza vaccines. However, the immune response varies and may still result in high frequencies of poor responders. Therefore, we aimed to a) examine the prevalence of a weak response to Fluad® and b) identify potential risk factors. Methods A prospective population-based study among individuals 65–80 years old was conducted in 2015/2016 in Hannover, Germany (n = 200). Hemagglutination-inhibition titers 21 days after vaccination with Fluad® served as indicator of vaccine responsiveness. Results The percentage of vaccinees with an inadequate vaccine response varied depending on the influenza strain: it was lowest for H3N2 (13.5%; 95% CI, 9.4–18.9%), intermediate for B strain (37.0%; 30.6–43.9%), and highest for H1N1 (49.0%; 42.2–55.9%). The risk of a weak response to the influenza A H1N1 strain was independently associated with self-reported diabetes (AOR, 4.64; 95% CI, 1.16–18.54), a history of herpes zoster (2.27; 1.01–5.10) and, to a much lesser extent, increasing age (change per year, 1.08; 0.99–1.16). In addition, herpes zoster was the only risk factor for a weak response to the H3N2 antigen (AOR, 3.12; 1.18–8.23). We found no significant association between sex, Body Mass Index, cancer, hypertension, heart attack and CMV seropositivity and a weak response to these two influenza A antigens. Despite its occurence in over one third of vaccinees, none of the variables examined proved to be risk factors for a weak response to the B antigen. Conclusions A considerable proportion of elderly individuals displayed a weak vaccine response to this adjuvanted seasonal influenza vaccine and further efforts are thus needed to improve immune responses to influenza vaccination among the elderly. Diabetes and herpes zoster were identified as potentially modifiable risk factors for a poor vaccine response against influenza A antigens, but the results also reveal the need for broader investigations to identify risk factors for inadequate responses to influenza B antigens. Trial registration No. NCT02362919 (ClinicalTrials.gov, date of registration: 09.02.2015). Electronic supplementary material The online version of this article (10.1186/s12879-019-4214-x) contains supplementary material, which is available to authorized users.
Collapse
|