1
|
Sterr F, Bauernfeind L, Knop M, Rester C, Metzing S, Palm R. Weaning-associated interventions for ventilated intensive care patients: A scoping review. Nurs Crit Care 2024; 29:1564-1579. [PMID: 39155350 DOI: 10.1111/nicc.13143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Mechanical ventilation is a core intervention in critical care, but may also lead to negative consequences. Therefore, ventilator weaning is crucial for patient recovery. Numerous weaning interventions have been investigated, but an overview of interventions to evaluate different foci on weaning research is still missing. AIM To provide an overview of interventions associated with ventilator weaning. STUDY DESIGN We conducted a scoping review. A systematic search of the Medline, CINAHL and Cochrane Library databases was carried out in May 2023. Interventions from studies or reviews that aimed to extubate or decannulate mechanically ventilated patients in intensive care units were included. Studies concerning children, outpatients or non-invasive ventilation were excluded. Screening and data extraction were conducted independently by three reviewers. Identified interventions were thematically analysed and clustered. RESULTS Of the 7175 records identified, 193 studies were included. A total of six clusters were formed: entitled enteral nutrition (three studies), tracheostomy (17 studies), physical treatment (13 studies), ventilation modes and settings (47 studies), intervention bundles (42 studies), and pharmacological interventions including analgesic agents (8 studies), sedative agents (53 studies) and other agents (15 studies). CONCLUSIONS Ventilator weaning is widely researched with a special focus on ventilation modes and pharmacological agents. Some aspects remain poorly researched or unaddressed (e.g. nutrition, delirium treatment, sleep promotion). RELEVANCE TO CLINICAL PRACTICE This review compiles studies on ventilator weaning interventions in thematic clusters, highlighting the need for multidisciplinary care and consideration of various interventions. Future research should combine different interventions and investigate their interconnection.
Collapse
Affiliation(s)
- Fritz Sterr
- Faculty of Health, School of Nursing Sciences, Witten/Herdecke University, Witten, Germany
- Faculty of Applied Healthcare Sciences, Deggendorf Institute of Technology, Deggendorf, Germany
| | - Lydia Bauernfeind
- Faculty of Applied Healthcare Sciences, Deggendorf Institute of Technology, Deggendorf, Germany
- Institute of Nursing Science and Practice, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Michael Knop
- Faculty of Applied Healthcare Sciences, Deggendorf Institute of Technology, Deggendorf, Germany
| | - Christian Rester
- Faculty of Applied Healthcare Sciences, Deggendorf Institute of Technology, Deggendorf, Germany
| | - Sabine Metzing
- Faculty of Health, School of Nursing Sciences, Witten/Herdecke University, Witten, Germany
| | - Rebecca Palm
- Faculty of Health, School of Nursing Sciences, Witten/Herdecke University, Witten, Germany
- School VI Medicine and Health Sciences, Department of Health Services Research, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
2
|
Pérez-Torres I, Aisa-Álvarez A, Casarez-Alvarado S, Borrayo G, Márquez-Velasco R, Guarner-Lans V, Manzano-Pech L, Cruz-Soto R, Gonzalez-Marcos O, Fuentevilla-Álvarez G, Gamboa R, Saucedo-Orozco H, Franco-Granillo J, Soto ME. Impact of Treatment with Antioxidants as an Adjuvant to Standard Therapy in Patients with Septic Shock: Analysis of the Correlation between Cytokine Storm and Oxidative Stress and Therapeutic Effects. Int J Mol Sci 2023; 24:16610. [PMID: 38068931 PMCID: PMC10706209 DOI: 10.3390/ijms242316610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Cellular homeostasis is lost or becomes dysfunctional during septic shock due to the activation of the inflammatory response and the deregulation of oxidative stress. Antioxidant therapy administered alongside standard treatment could restore this lost homeostasis. We included 131 patients with septic shock who were treated with standard treatment and vitamin C (Vit C), vitamin E (Vit E), N-acetylcysteine (NAC), or melatonin (MT), in a randomized trial. Organ damage quantified by Sequential Organ Failure Assessment (SOFA) score, and we determined levels of Interleukins (IL) IL1β, Tumor necrosis factor alpha (TNFα), IL-6, monocyte chemoattractant protein-1 (MCP-1), Transforming growth factor B (TGFβ), IL-4, IL-10, IL-12, and Interferon-γ (IFNγ). The SOFA score decreased in patients treated with Vit C, NAC, and MT. Patients treated with MT had statistically significantly reduced of IL-6, IL-8, MCP-1, and IL-10 levels. Lipid peroxidation, Nitrates and nitrites (NO3- and NO2-), glutathione reductase, and superoxide dismutase decreased after treatment with Vit C, Vit E, NAC, and MT. The levels of thiols recovered with the use of Vit E, and all patients treated with antioxidants maintained their selenium levels, in contrast with controls (p = 0.04). The findings regarding oxidative stress markers and cytokines after treatment with antioxidants allow us to consider to future the combined use of antioxidants in a randomized clinical trial with a larger sample to demonstrate the reproducibility of these beneficial effects.
Collapse
Affiliation(s)
- Israel Pérez-Torres
- Cardiovascular Biomedicine Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (I.P.-T.); (L.M.-P.)
| | - Alfredo Aisa-Álvarez
- Critical Care Department, American British Cowdray (ABC) Medical Center, PAI ABC Sur 136 No. 116, Col. las Américas, Mexico City 01120, Mexico; (A.A.-Á.); (O.G.-M.); (J.F.-G.)
| | - Sergio Casarez-Alvarado
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (S.C.-A.); (R.M.-V.); (R.C.-S.)
| | - Gabriela Borrayo
- Instituto Mexicano del Seguro Social, Dirección de Prestaciones Médicas Coordinación de Innovación en Salud, Ciudad de México 06700, Mexico;
| | - Ricardo Márquez-Velasco
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (S.C.-A.); (R.M.-V.); (R.C.-S.)
| | - Verónica Guarner-Lans
- Physiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (V.G.-L.); (G.F.-Á.); (R.G.)
| | - Linaloe Manzano-Pech
- Cardiovascular Biomedicine Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (I.P.-T.); (L.M.-P.)
| | - Randall Cruz-Soto
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (S.C.-A.); (R.M.-V.); (R.C.-S.)
| | - Omar Gonzalez-Marcos
- Critical Care Department, American British Cowdray (ABC) Medical Center, PAI ABC Sur 136 No. 116, Col. las Américas, Mexico City 01120, Mexico; (A.A.-Á.); (O.G.-M.); (J.F.-G.)
| | - Giovanny Fuentevilla-Álvarez
- Physiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (V.G.-L.); (G.F.-Á.); (R.G.)
| | - Ricardo Gamboa
- Physiology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (V.G.-L.); (G.F.-Á.); (R.G.)
| | | | - Juvenal Franco-Granillo
- Critical Care Department, American British Cowdray (ABC) Medical Center, PAI ABC Sur 136 No. 116, Col. las Américas, Mexico City 01120, Mexico; (A.A.-Á.); (O.G.-M.); (J.F.-G.)
| | - María Elena Soto
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico; (S.C.-A.); (R.M.-V.); (R.C.-S.)
- Research Direction Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, Mexico City 14380, Mexico
- Cardiovascular Line in American British Cowdray (ABC) Medical Center, PAI ABC Sur 136 No. 116, Col. Las Américas, Mexico City 01120, Mexico
| |
Collapse
|
3
|
Zhang J, Feng J, Jia J, Wang X, Zhou J, Liu L. Research progress on the pathogenesis and treatment of ventilator-induced diaphragm dysfunction. Heliyon 2023; 9:e22317. [PMID: 38053869 PMCID: PMC10694316 DOI: 10.1016/j.heliyon.2023.e22317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
Prolonged controlled mechanical ventilation (CMV) can cause diaphragm fiber atrophy and inspiratory muscle weakness, resulting in diaphragmatic contractile dysfunction, called ventilator-induced diaphragm dysfunction (VIDD). VIDD is associated with higher rates of in-hospital deaths, nosocomial pneumonia, difficulty weaning from ventilators, and increased costs. Currently, appropriate clinical strategies to prevent and treat VIDD are unavailable, necessitating the importance of exploring the mechanisms of VIDD and suitable treatment options to reduce the healthcare burden. Numerous animal studies have demonstrated that ventilator-induced diaphragm dysfunction is associated with oxidative stress, increased protein hydrolysis, disuse atrophy, and calcium ion disorders. Therefore, this article summarizes the molecular pathogenesis and treatment of ventilator-induced diaphragm dysfunction in recent years so that it can be better served clinically and is essential to reduce the duration of mechanical ventilation use, intensive care unit (ICU) length of stay, and the medical burden.
Collapse
Affiliation(s)
- Jumei Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jianguo Feng
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jing Jia
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Xiaobin Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| |
Collapse
|
4
|
Lu X, Wang Z, Chen L, Wei X, Ma Y, Tu Y. Efficacy and safety of selenium or vitamin E administration alone or in combination in ICU patients: A systematic review and meta-analysis. Clin Nutr ESPEN 2023; 57:550-560. [PMID: 37739705 DOI: 10.1016/j.clnesp.2023.07.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Micronutrient administration that contributes to antioxidant defense has been extensively studied in critically ill patients, but consensus remains elusive. Selenium and vitamin E are two important micronutrients that have synergistic antioxidant effects. This meta-analysis aimed to assess the effect of selenium or vitamin E administration alone and the combination of both on clinical outcomes in patients hospitalized in the ICU. METHODS After electronic searches on PubMed, Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure (CNKI), SinoMed, VIP database and Wanfang data, initially 1767 papers were found, and 30 interventional studies were included in this analysis. We assessed the risk-difference between treatment and control (standard treatment) groups by pooling available data on length of stay (ICU length of stay and hospital length of stay), mortality (ICU mortality, hospital mortality, 28-day mortality, 6-month mortality and all-cause mortality), duration of mechanical ventilation, adverse events and new infections. RESULTS By analyzing the included studies, we found no significant effect of selenium administration alone on mortality, mechanical ventilation duration, or adverse events in ICU patients. However, after excluding studies with high heterogeneity, the meta-analysis showed that selenium alone reduced the length of hospital stay (MD: -1.38; 95% CI: -2.52, -0.23; I-square: 0%). Vitamin E administration alone had no significant effect on mortality, duration of mechanical ventilation, or adverse events in ICU patients. However, after excluding studies with high heterogeneity, the meta-analysis showed that vitamin E alone could reduce the length of ICU stay (MD: -1.27; 95% CI: -1.86, -0.67; I-square: 16%). Combined administration of selenium and vitamin E had no significant effect on primary outcomes in ICU patients. CONCLUSIONS Selenium administration alone may shorten the length of hospital stay, while vitamin E alone may reduce the length of ICU stay. The putative synergistic beneficial effect of combined administration of selenium and vitamin E in ICU patients has not been observed, but more clinical studies are pending to confirm it further.
Collapse
Affiliation(s)
- Xin Lu
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Zhibin Wang
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Linlin Chen
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Xin Wei
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yabin Ma
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Ye Tu
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
5
|
Zhang D, Wang L, Wang Z, Shi X, Tang W, Jiang L, Bo Ran Yi BYCH, Lv X, Hu C, Xiao D. Immunological responses of septic rats to combination therapy with thymosin α1 and vitamin C. Open Life Sci 2023; 18:20220551. [PMID: 36816800 PMCID: PMC9922062 DOI: 10.1515/biol-2022-0551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 02/10/2023] Open
Abstract
This study investigated the effect of combined thymosin α1 and vitamin C (Tα1 + VitC) on the immunological responses of septic rats. Five groups were designed. The septic model was established by the cecal ligation puncture (CLP) method. The sham group did not undergo CLP, the model group was given normal saline solution, the Tα1 group was given Tα1 (200 µg/kg), the VitC group was given VitC (200 mg/kg), and the Tα1 + VitC group was given Tα1 + VitC. Specimens for immunological analyses were collected at 6, 12, 24, and 48 h posttreatment in each group except for the sham group (only at 48 h). CD4 + CD25 + T cells in the peripheral blood and dendritic cell (DC) proportions in the spleen were analyzed by flow cytometry. Tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), transforming growth factor-β (TGF-ß1), and nuclear factor kappa-B (NF-κB) were measured by ELISA. CD4 + CD25 + T cells and OX62 + DCs levels significantly increased in the model group and decreased in the Tα1 and/or VitC treatment groups. Similarly, the levels of TNF-α, IL-6, TGF-ß1, and NF-κB significantly increased in the model group and decreased in the Tα1, VitC, and Tα1 + VitC groups, indicating that combined Tα1 and VitC therapy may help regulate the immunological state of patients with sepsis, thereby improving prognosis.
Collapse
Affiliation(s)
- Daquan Zhang
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Lu Wang
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Zhigao Wang
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Xiaohui Shi
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Wen Tang
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Long Jiang
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Ba Yin Cha Han Bo Ran Yi
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Xinwei Lv
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Congyu Hu
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Dong Xiao
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| |
Collapse
|
6
|
Dresen E, Pimiento JM, Patel JJ, Heyland DK, Rice TW, Stoppe C. Overview of oxidative stress and the role of micronutrients in critical illness. JPEN J Parenter Enteral Nutr 2023; 47 Suppl 1:S38-S49. [PMID: 36468328 DOI: 10.1002/jpen.2421] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022]
Abstract
Inflammation and oxidative stress represent physiological response mechanisms to different types of stimuli and injury during critical illness. Its proper regulation is fundamental to cellular and organismal survival and are paramount to outcomes and recovery from critical illness. A proper maintenance of the delicate balance between inflammation, oxidative stress, and immune response is crucial for resolution from critical illness with important implications for patient outcome. The extent of inflammation and oxidative stress under normal conditions is limited by the antioxidant defense system of the human body, whereas the antioxidant capacity is commonly significantly compromised, and serum levels of micronutrients and vitamins significantly depleted in patients who are critically ill. Hence, the provision of antioxidants and anti-inflammatory nutrients may help to reduce the extent of oxidative stress and therefore improve clinical outcomes in patients who are critically ill. As existing evidence of the beneficial effects of antioxidant supplementation in patients who are critically ill is still unclear, actual findings about the most promising anti-inflammatory and antioxidative candidates selenium, vitamin C, zinc, and vitamin D will be discussed in this narrative review. The existing evidence provided so far demonstrates that several factors need to be considered to determine the efficacy of an antioxidant supplementation strategy in patients who are critically ill and indicates the need for adequately designed multicenter prospective randomized control trials to evaluate the clinical significance of different types and doses of micronutrients and vitamins in selected groups of patients with different types of critical illness.
Collapse
Affiliation(s)
- Ellen Dresen
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Jose M Pimiento
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Jayshil J Patel
- Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Daren K Heyland
- Clinical Evaluation Research Unit, Kingston Health Sciences Centre, Kingston, Ontario, Canada.,Department of Critical Care Medicine, Queen's University, Kingston, Ontario, Canada
| | - Todd W Rice
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Christian Stoppe
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
7
|
The revised recommendation for administering vitamin C in septic patients: the Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020. J Intensive Care 2022; 10:50. [PMID: 36447298 PMCID: PMC9706956 DOI: 10.1186/s40560-022-00641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Given the available clinical evidence through the literature search when the Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 was being created, we suggested administering vitamin C to such patients. Recently, several randomized control trials have been published, some of which suggested the harmful effect of vitamin C in terms of mortality or persistent organ dysfunction. Therefore, we performed updated systematic reviews and meta-analyses. Accordingly, we revised our recommendation as "We suggest against administering vitamin C to septic patients (GRADE 2D: certainty of evidence = "very low")."
Collapse
|
8
|
Martimbianco ALC, Pacheco RL, Bagattini ÂM, de Fátima Carreira Moreira Padovez R, Azevedo LCP, Riera R. Vitamin C-based regimens for sepsis and septic shock: Systematic review and meta-analysis of randomized clinical trials. J Crit Care 2022; 71:154099. [PMID: 35763993 DOI: 10.1016/j.jcrc.2022.154099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/16/2022] [Accepted: 06/13/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE to critically appraise and synthesize the evidence on the effects of vitamin C-based regimens for patients with sepsis or septic shock. METHODS a broad search was performed on May 2021 to identify randomized clinical trials (RCTs) assessing vitamin C-based regimens as adjuvant therapy for adults with sepsis or septic shock. We used the Cochrane Risk of Bias table to assess the methodological quality of the included RCTs and the GRADE approach to evaluate the evidence certainty. RESULTS We included 20 RCTs (2124 participants). Evidence from low to very low certainty showed that vitamin C compared to placebo may reduce all-cause mortality up to 28 days (relative risk [RR] 0.60, 95% confidence interval (CI) 0.45 to 0.80, 4 RCTs, 335 participants). Considering the other comparisons (vitamin C alone or combined with thiamine and/or hydrocortisone, compared to placebo, standard care or hydrocortisone), there were a little to no difference or very uncertain evidence for adverse events, SOFA score, ICU length of stay, acute kidney injury, mechanical ventilation- and vasoactive drugs-free days up to 28 days. CONCLUSION Further RCTs with higher methodological quality, an increased number of participants and assessing clinically relevant outcomes are needed to provide better decision-making guidance. PROSPERO REGISTER CRD42021251786.
Collapse
Affiliation(s)
- Ana Luiza Cabrera Martimbianco
- Hospital Sírio-Libanês (HSL), São Paulo, SP, Brazil; Universidade Metropolitana de Santos (Unimes), Santos, SP, Brazil; Oxford-Brazil EBM Alliance, Brazil
| | - Rafael Leite Pacheco
- Hospital Sírio-Libanês (HSL), São Paulo, SP, Brazil; Oxford-Brazil EBM Alliance, Brazil; Centro Universitário São Camilo (CUSC), São Paulo, SP, Brazil; Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brazil.
| | | | | | | | - Rachel Riera
- Hospital Sírio-Libanês (HSL), São Paulo, SP, Brazil; Oxford-Brazil EBM Alliance, Brazil; Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brazil
| |
Collapse
|
9
|
Gudivada KK, Kumar A, Sriram K, Baby J, Shariff M, Sampath S, Sivakoti S, Krishna B. Antioxidant micronutrient supplements for adult critically ill patients: A bayesian multiple treatment comparisons meta-analysis. Clin Nutr ESPEN 2022; 47:78-88. [PMID: 35063246 DOI: 10.1016/j.clnesp.2021.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/26/2021] [Accepted: 12/19/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Antioxidant micronutrients (AxMs) have been administered to critically ill adults attempting to counteract the oxidative stress imposed during critical illness. However, results are conflicting and relative effectiveness of AxMs regimens is unknown. We conducted a Bayesian multi-treatment comparison (MTC) meta-analysis to identify the best AxM treatment regimen that will improve clinical outcomes. METHODS PubMed, EMBASE, Web of Science and Cochrane databases were searched from the inception of databases through August 2020. Randomized controlled trials (RCT) comparing AxMs supplementations with placebo among critically ill adults were included. Two authors assessed trial quality using Cochrane risk of bias tool and assessed certainty of evidence (CoE). A random effect model, non-informative priors Bayesian MTC meta-analysis using gemtc package in R version 3.6.2 was performed. AxMs treatment effect on clinical outcomes (mortality, infection rates, intensive care unit (ICU) and hospital stays and ventilator days) were represented by absolute risk differences (ARD) for dichotomous outcomes and mean differences (MD) for continuous outcomes. Prior to final analysis, we repeated the search through January 2021. RESULTS 37 RCT (4905 patients) were included with 16 direct comparisons. With respect to mortality, the ARD for "vitamin E" compared with placebo was centred at -0.19 [95%CrI: -0.54,0.16; very low CoE] and was ranked the best treatment for mortality reduction as per surface under the cumulative ranking curve (SUCRA 0.71, 95%CrI: 0.07,1.00). A combination of "selenium, zinc and copper" was ranked the best for lowest ICU stay [-9.40, 95% CrI: -20.0,1.50; low CoE]. A combination of "selenium, zinc, copper and vitamin E" was ranked the best treatment for infection risk reduction [-0.22, 95% CrI: -0.61,0.17; very low CoE]. Ventilator days were least with a combination of "selenium, zinc and manganese" [2.80, 95% CrI: -6.30,0.89; low CoE]. Hospital stay was the lowest using a combination of "selenium, zinc and copper" [-13.00, 95% CrI: -38.00,13.00; very low CoE]. There is substantial uncertainty present in the rankings due to wide and overlapping 95% CrIs of SUCRA scores for the treatments. CONCLUSIONS Studies on critically ill adult patients have suggested a possible beneficial effects of certain AxM supplementations over and above the recommended dietary allowance. However, evidence does not support their use in clinical practice due to the low confidence in the estimates. Current studies evaluating specific AxMs or their combinations are limited with small sample sizes. REGISTRATION PROSPERO, CRD42020210199. TAKE-HOME MESSAGE Evidence suggesting a potential benefit of AxMs use more than recommended doses in critically ill adults is weak, indicating that there is no justification for this practice.
Collapse
Affiliation(s)
- Kiran Kumar Gudivada
- Department of Anaesthesiology, All India Institute of Medical Sciences, Bibinagar, Hyderabad Metropolitan Region, Telangana, India.
| | - Ashish Kumar
- Department of Critical Care Medicine, St. John's Medical College, Bangalore, India; Department of Internal Medicine, Cleveland Clinic Akron General, Akron, OH, USA; Section of Cardiovascular Research, Heart, Vascular, and Thoracic Department, Cleveland Clinic Akron General, Akron, OH, USA
| | - Krishnan Sriram
- US Veterans Affairs Tele Critical Care West, Minneapolis, MN, USA
| | - Jeswin Baby
- Division of Epidemiology and Biostatistics, St John's Research Institute, Bangalore, India
| | - Mariam Shariff
- Department of Critical Care Medicine, St. John's Medical College, Bangalore, India
| | - Sriram Sampath
- Department of Critical Care Medicine, St. John's Medical College, Bangalore, India
| | - Sumitra Sivakoti
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bibinagar, Hyderabad Metropolitan Region, Telangana 508126, India
| | - Bhuvana Krishna
- Department of Critical Care Medicine, St. John's Medical College, Bangalore, India
| |
Collapse
|
10
|
The revised recommendation for administering vitamin C in septic patients: The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020. Acute Med Surg 2022; 9:e801. [PMID: 36425300 PMCID: PMC9679883 DOI: 10.1002/ams2.801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
|
11
|
Different Tidal Volumes May Jeopardize Pulmonary Redox and Inflammatory Status in Healthy Rats Undergoing Mechanical Ventilation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5196896. [PMID: 34745417 PMCID: PMC8570858 DOI: 10.1155/2021/5196896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022]
Abstract
Mechanical ventilation (MV) is essential for the treatment of critical patients since it may provide a desired gas exchange. However, MV itself can trigger ventilator-associated lung injury in patients. We hypothesized that the mechanisms of lung injury through redox imbalance might also be associated with pulmonary inflammatory status, which has not been so far described. We tested it by delivering different tidal volumes to normal lungs undergoing MV. Healthy Wistar rats were divided into spontaneously breathing animals (control group, CG), and rats were submitted to MV (controlled ventilation mode) with tidal volumes of 4 mL/kg (MVG4), 8 mL/kg (MVG8), or 12 mL/kg (MVG12), zero end-expiratory pressure (ZEEP), and normoxia (FiO2 = 21%) for 1 hour. After ventilation and euthanasia, arterial blood, bronchoalveolar lavage fluid (BALF), and lungs were collected for subsequent analysis. MVG12 presented lower PaCO2 and bicarbonate content in the arterial blood than CG, MVG4, and MVG8. Neutrophil influx in BALF and MPO activity in lung tissue homogenate were significantly higher in MVG12 than in CG. The levels of CCL5, TNF-α, IL-1, and IL-6 in lung tissue homogenate were higher in MVG12 than in CG and MVG4. In the lung parenchyma, the lipid peroxidation was more important in MVG12 than in CG, MVG4, and MVG8, while there was more protein oxidation in MVG12 than in CG and MVG4. The stereological analysis confirmed the histological pulmonary changes in MVG12. The association of controlled mode ventilation and high tidal volume, without PEEP and normoxia, impaired pulmonary histoarchitecture and triggered redox imbalance and lung inflammation in healthy adult rats.
Collapse
|
12
|
Egi M, Ogura H, Yatabe T, Atagi K, Inoue S, Iba T, Kakihana Y, Kawasaki T, Kushimoto S, Kuroda Y, Kotani J, Shime N, Taniguchi T, Tsuruta R, Doi K, Doi M, Nakada TA, Nakane M, Fujishima S, Hosokawa N, Masuda Y, Matsushima A, Matsuda N, Yamakawa K, Hara Y, Sakuraya M, Ohshimo S, Aoki Y, Inada M, Umemura Y, Kawai Y, Kondo Y, Saito H, Taito S, Takeda C, Terayama T, Tohira H, Hashimoto H, Hayashida K, Hifumi T, Hirose T, Fukuda T, Fujii T, Miura S, Yasuda H, Abe T, Andoh K, Iida Y, Ishihara T, Ide K, Ito K, Ito Y, Inata Y, Utsunomiya A, Unoki T, Endo K, Ouchi A, Ozaki M, Ono S, Katsura M, Kawaguchi A, Kawamura Y, Kudo D, Kubo K, Kurahashi K, Sakuramoto H, Shimoyama A, Suzuki T, Sekine S, Sekino M, Takahashi N, Takahashi S, Takahashi H, Tagami T, Tajima G, Tatsumi H, Tani M, Tsuchiya A, Tsutsumi Y, Naito T, Nagae M, Nagasawa I, Nakamura K, Nishimura T, Nunomiya S, Norisue Y, Hashimoto S, Hasegawa D, Hatakeyama J, Hara N, Higashibeppu N, Furushima N, Furusono H, Matsuishi Y, Matsuyama T, Minematsu Y, Miyashita R, Miyatake Y, Moriyasu M, Yamada T, Yamada H, Yamamoto R, Yoshida T, Yoshida Y, Yoshimura J, Yotsumoto R, Yonekura H, Wada T, Watanabe E, Aoki M, Asai H, Abe T, Igarashi Y, Iguchi N, Ishikawa M, Ishimaru G, Isokawa S, Itakura R, Imahase H, Imura H, Irinoda T, Uehara K, Ushio N, Umegaki T, Egawa Y, Enomoto Y, Ota K, Ohchi Y, Ohno T, Ohbe H, Oka K, Okada N, Okada Y, Okano H, Okamoto J, Okuda H, Ogura T, Onodera Y, Oyama Y, Kainuma M, Kako E, Kashiura M, Kato H, Kanaya A, Kaneko T, Kanehata K, Kano KI, Kawano H, Kikutani K, Kikuchi H, Kido T, Kimura S, Koami H, Kobashi D, Saiki I, Sakai M, Sakamoto A, Sato T, Shiga Y, Shimoto M, Shimoyama S, Shoko T, Sugawara Y, Sugita A, Suzuki S, Suzuki Y, Suhara T, Sonota K, Takauji S, Takashima K, Takahashi S, Takahashi Y, Takeshita J, Tanaka Y, Tampo A, Tsunoyama T, Tetsuhara K, Tokunaga K, Tomioka Y, Tomita K, Tominaga N, Toyosaki M, Toyoda Y, Naito H, Nagata I, Nagato T, Nakamura Y, Nakamori Y, Nahara I, Naraba H, Narita C, Nishioka N, Nishimura T, Nishiyama K, Nomura T, Haga T, Hagiwara Y, Hashimoto K, Hatachi T, Hamasaki T, Hayashi T, Hayashi M, Hayamizu A, Haraguchi G, Hirano Y, Fujii R, Fujita M, Fujimura N, Funakoshi H, Horiguchi M, Maki J, Masunaga N, Matsumura Y, Mayumi T, Minami K, Miyazaki Y, Miyamoto K, Murata T, Yanai M, Yano T, Yamada K, Yamada N, Yamamoto T, Yoshihiro S, Tanaka H, Nishida O. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020). J Intensive Care 2021; 9:53. [PMID: 34433491 PMCID: PMC8384927 DOI: 10.1186/s40560-021-00555-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023] Open
Abstract
The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created as revised from J-SSCG 2016 jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in September 2020 and published in February 2021. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. The purpose of this guideline is to assist medical staff in making appropriate decisions to improve the prognosis of patients undergoing treatment for sepsis and septic shock. We aimed to provide high-quality guidelines that are easy to use and understand for specialists, general clinicians, and multidisciplinary medical professionals. J-SSCG 2016 took up new subjects that were not present in SSCG 2016 (e.g., ICU-acquired weakness [ICU-AW], post-intensive care syndrome [PICS], and body temperature management). The J-SSCG 2020 covered a total of 22 areas with four additional new areas (patient- and family-centered care, sepsis treatment system, neuro-intensive treatment, and stress ulcers). A total of 118 important clinical issues (clinical questions, CQs) were extracted regardless of the presence or absence of evidence. These CQs also include those that have been given particular focus within Japan. This is a large-scale guideline covering multiple fields; thus, in addition to the 25 committee members, we had the participation and support of a total of 226 members who are professionals (physicians, nurses, physiotherapists, clinical engineers, and pharmacists) and medical workers with a history of sepsis or critical illness. The GRADE method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members.As a result, 79 GRADE-based recommendations, 5 Good Practice Statements (GPS), 18 expert consensuses, 27 answers to background questions (BQs), and summaries of definitions and diagnosis of sepsis were created as responses to 118 CQs. We also incorporated visual information for each CQ according to the time course of treatment, and we will also distribute this as an app. The J-SSCG 2020 is expected to be widely used as a useful bedside guideline in the field of sepsis treatment both in Japan and overseas involving multiple disciplines.
Collapse
Affiliation(s)
- Moritoki Egi
- Department of Surgery Related, Division of Anesthesiology, Kobe University Graduate School of Medicine, Kusunoki-cho 7-5-2, Chuo-ku, Kobe, Hyogo, Japan.
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Medical School, Yamadaoka 2-15, Suita, Osaka, Japan.
| | - Tomoaki Yatabe
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kazuaki Atagi
- Department of Intensive Care Unit, Nara Prefectural General Medical Center, Nara, Japan
| | - Shigeaki Inoue
- Department of Disaster and Emergency Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University, Tokyo, Japan
| | - Yasuyuki Kakihana
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tatsuya Kawasaki
- Department of Pediatric Critical Care, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Shigeki Kushimoto
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Kuroda
- Department of Emergency, Disaster, and Critical Care Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Joji Kotani
- Department of Surgery Related, Division of Disaster and Emergency Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takumi Taniguchi
- Department of Anesthesiology and Intensive Care Medicine, Kanazawa University, Kanazawa, Japan
| | - Ryosuke Tsuruta
- Acute and General Medicine, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Kent Doi
- Department of Acute Medicine, The University of Tokyo, Tokyo, Japan
| | - Matsuyuki Doi
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Taka-Aki Nakada
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaki Nakane
- Department of Emergency and Critical Care Medicine, Yamagata University Hospital, Yamagata, Japan
| | - Seitaro Fujishima
- Center for General Medicine Education, Keio University School of Medicine, Tokyo, Japan
| | - Naoto Hosokawa
- Department of Infectious Diseases, Kameda Medical Center, Kamogawa, Japan
| | - Yoshiki Masuda
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Asako Matsushima
- Department of Advancing Acute Medicine, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuma Yamakawa
- Department of Emergency Medicine, Osaka Medical College, Osaka, Japan
| | - Yoshitaka Hara
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masaaki Sakuraya
- Department of Emergency and Intensive Care Medicine, JA Hiroshima General Hospital, Hatsukaichi, Japan
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshitaka Aoki
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mai Inada
- Member of Japanese Association for Acute Medicine, Tokyo, Japan
| | - Yutaka Umemura
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | - Yusuke Kawai
- Department of Nursing, Fujita Health University Hospital, Toyoake, Japan
| | - Yutaka Kondo
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Hiroki Saito
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Yokohama City Seibu Hospital, Yokohama, Japan
| | - Shunsuke Taito
- Division of Rehabilitation, Department of Clinical Support and Practice, Hiroshima University Hospital, Hiroshima, Japan
| | - Chikashi Takeda
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| | - Takero Terayama
- Department of Psychiatry, School of Medicine, National Defense Medical College, Tokorozawa, Japan
| | | | - Hideki Hashimoto
- Department of Emergency and Critical Care Medicine/Infectious Disease, Hitachi General Hospital, Hitachi, Japan
| | - Kei Hayashida
- The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Toru Hifumi
- Department of Emergency and Critical Care Medicine, St. Luke's International Hospital, Tokyo, Japan
| | - Tomoya Hirose
- Emergency and Critical Care Medical Center, Osaka Police Hospital, Osaka, Japan
| | - Tatsuma Fukuda
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Tomoko Fujii
- Intensive Care Unit, Jikei University Hospital, Tokyo, Japan
| | - Shinya Miura
- The Royal Children's Hospital Melbourne, Melbourne, Australia
| | - Hideto Yasuda
- Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Toshikazu Abe
- Department of Emergency and Critical Care Medicine, Tsukuba Memorial Hospital, Tsukuba, Japan
| | - Kohkichi Andoh
- Division of Anesthesiology, Division of Intensive Care, Division of Emergency and Critical Care, Sendai City Hospital, Sendai, Japan
| | - Yuki Iida
- Department of Physical Therapy, School of Health Sciences, Toyohashi Sozo University, Toyohashi, Japan
| | - Tadashi Ishihara
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Kentaro Ide
- Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kenta Ito
- Department of General Pediatrics, Aichi Children's Health and Medical Center, Obu, Japan
| | - Yusuke Ito
- Department of Infectious Disease, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Yu Inata
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Akemi Utsunomiya
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Unoki
- Department of Acute and Critical Care Nursing, School of Nursing, Sapporo City University, Sapporo, Japan
| | - Koji Endo
- Department of Pharmacoepidemiology, Kyoto University Graduate School of Medicine and Public Health, Kyoto, Japan
| | - Akira Ouchi
- College of Nursing, Ibaraki Christian University, Hitachi, Japan
| | - Masayuki Ozaki
- Department of Emergency and Critical Care Medicine, Komaki City Hospital, Komaki, Japan
| | - Satoshi Ono
- Gastroenterological Center, Shinkuki General Hospital, Kuki, Japan
| | | | | | - Yusuke Kawamura
- Department of Rehabilitation, Showa General Hospital, Tokyo, Japan
| | - Daisuke Kudo
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenji Kubo
- Department of Emergency Medicine and Department of Infectious Diseases, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Kiyoyasu Kurahashi
- Department of Anesthesiology and Intensive Care Medicine, International University of Health and Welfare School of Medicine, Narita, Japan
| | | | - Akira Shimoyama
- Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Takeshi Suzuki
- Department of Anesthesiology, Tokai University School of Medicine, Isehara, Japan
| | - Shusuke Sekine
- Department of Anesthesiology, Tokyo Medical University, Tokyo, Japan
| | - Motohiro Sekino
- Division of Intensive Care, Nagasaki University Hospital, Nagasaki, Japan
| | - Nozomi Takahashi
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Sei Takahashi
- Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Takahashi
- Department of Cardiology, Steel Memorial Muroran Hospital, Muroran, Japan
| | - Takashi Tagami
- Department of Emergency and Critical Care Medicine, Nippon Medical School Musashi Kosugi Hospital, Kawasaki, Japan
| | - Goro Tajima
- Nagasaki University Hospital Acute and Critical Care Center, Nagasaki, Japan
| | - Hiroomi Tatsumi
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masanori Tani
- Division of Critical Care Medicine, Saitama Children's Medical Center, Saitama, Japan
| | - Asuka Tsuchiya
- Department of Emergency and Critical Care Medicine, National Hospital Organization Mito Medical Center, Ibaraki, Japan
| | - Yusuke Tsutsumi
- Department of Emergency and Critical Care Medicine, National Hospital Organization Mito Medical Center, Ibaraki, Japan
| | - Takaki Naito
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Masaharu Nagae
- Department of Intensive Care Medicine, Kobe University Hospital, Kobe, Japan
| | | | - Kensuke Nakamura
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, Hitachi, Japan
| | - Tetsuro Nishimura
- Department of Traumatology and Critical Care Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shin Nunomiya
- Department of Anesthesiology and Intensive Care Medicine, Division of Intensive Care, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Yasuhiro Norisue
- Department of Emergency and Critical Care Medicine, Tokyo Bay Urayasu Ichikawa Medical Center, Urayasu, Japan
| | - Satoru Hashimoto
- Department of Anesthesiology and Intensive Care Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Hasegawa
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Junji Hatakeyama
- Department of Emergency and Critical Care Medicine, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Naoki Hara
- Department of Pharmacy, Yokohama Rosai Hospital, Yokohama, Japan
| | - Naoki Higashibeppu
- Department of Anesthesiology and Nutrition Support Team, Kobe City Medical Center General Hospital, Kobe City Hospital Organization, Kobe, Japan
| | - Nana Furushima
- Department of Anesthesiology, Kobe University Hospital, Kobe, Japan
| | - Hirotaka Furusono
- Department of Rehabilitation, University of Tsukuba Hospital/Exult Co., Ltd., Tsukuba, Japan
| | - Yujiro Matsuishi
- Doctoral program in Clinical Sciences. Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tasuku Matsuyama
- Department of Emergency Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yusuke Minematsu
- Department of Clinical Engineering, Osaka University Hospital, Suita, Japan
| | - Ryoichi Miyashita
- Department of Intensive Care Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yuji Miyatake
- Department of Clinical Engineering, Kakogawa Central City Hospital, Kakogawa, Japan
| | - Megumi Moriyasu
- Division of Respiratory Care and Rapid Response System, Intensive Care Center, Kitasato University Hospital, Sagamihara, Japan
| | - Toru Yamada
- Department of Nursing, Toho University Omori Medical Center, Tokyo, Japan
| | - Hiroyuki Yamada
- Department of Primary Care and Emergency Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Ryo Yamamoto
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Yoshida
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuhei Yoshida
- Nursing Department, Osaka General Medical Center, Osaka, Japan
| | - Jumpei Yoshimura
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | | | - Hiroshi Yonekura
- Department of Clinical Anesthesiology, Mie University Hospital, Tsu, Japan
| | - Takeshi Wada
- Department of Anesthesiology and Critical Care Medicine, Division of Acute and Critical Care Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Eizo Watanabe
- Department of Emergency and Critical Care Medicine, Eastern Chiba Medical Center, Togane, Japan
| | - Makoto Aoki
- Department of Emergency Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hideki Asai
- Department of Emergency and Critical Care Medicine, Nara Medical University, Kashihara, Japan
| | - Takakuni Abe
- Department of Anesthesiology and Intensive Care, Oita University Hospital, Yufu, Japan
| | - Yutaka Igarashi
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Naoya Iguchi
- Department of Anesthesiology and Intensive Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masami Ishikawa
- Department of Anesthesiology, Emergency and Critical Care Medicine, Kure Kyosai Hospital, Kure, Japan
| | - Go Ishimaru
- Department of General Internal Medicine, Soka Municipal Hospital, Soka, Japan
| | - Shutaro Isokawa
- Department of Emergency and Critical Care Medicine, St. Luke's International Hospital, Tokyo, Japan
| | - Ryuta Itakura
- Department of Emergency and Critical Care Medicine, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Hisashi Imahase
- Department of Biomedical Ethics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruki Imura
- Department of Infectious Diseases, Rakuwakai Otowa Hospital, Kyoto, Japan
- Department of Health Informatics, School of Public Health, Kyoto University, Kyoto, Japan
| | | | - Kenji Uehara
- Department of Anesthesiology, National Hospital Organization Iwakuni Clinical Center, Iwakuni, Japan
| | - Noritaka Ushio
- Advanced Medical Emergency Department and Critical Care Center, Japan Red Cross Maebashi Hospital, Maebashi, Japan
| | - Takeshi Umegaki
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan
| | - Yuko Egawa
- Advanced Emergency and Critical Care Center, Saitama Red Cross Hospital, Saitama, Japan
| | - Yuki Enomoto
- Department of Emergency and Critical Care Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kohei Ota
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshifumi Ohchi
- Department of Anesthesiology and Intensive Care, Oita University Hospital, Yufu, Japan
| | - Takanori Ohno
- Department of Emergency and Critical Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Hiroyuki Ohbe
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan
| | | | - Nobunaga Okada
- Department of Emergency Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohei Okada
- Department of Primary care and Emergency medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiromu Okano
- Department of Anesthesiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Jun Okamoto
- Department of ER, Hashimoto Municipal Hospital, Hashimoto, Japan
| | - Hiroshi Okuda
- Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Takayuki Ogura
- Tochigi prefectural Emergency and Critical Care Center, Imperial Gift Foundation Saiseikai, Utsunomiya Hospital, Utsunomiya, Japan
| | - Yu Onodera
- Department of Anesthesiology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Yuhta Oyama
- Department of Internal Medicine, Dialysis Center, Kichijoji Asahi Hospital, Tokyo, Japan
| | - Motoshi Kainuma
- Anesthesiology, Emergency Medicine, and Intensive Care Division, Inazawa Municipal Hospital, Inazawa, Japan
| | - Eisuke Kako
- Department of Anesthesiology and Intensive Care Medicine, Nagoya-City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masahiro Kashiura
- Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Hiromi Kato
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akihiro Kanaya
- Department of Anesthesiology, Sendai Medical Center, Sendai, Japan
| | - Tadashi Kaneko
- Emergency and Critical Care Center, Mie University Hospital, Tsu, Japan
| | - Keita Kanehata
- Advanced Medical Emergency Department and Critical Care Center, Japan Red Cross Maebashi Hospital, Maebashi, Japan
| | - Ken-Ichi Kano
- Department of Emergency Medicine, Fukui Prefectural Hospital, Fukui, Japan
| | - Hiroyuki Kawano
- Department of Gastroenterological Surgery, Onga Hospital, Fukuoka, Japan
| | - Kazuya Kikutani
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hitoshi Kikuchi
- Department of Emergency and Critical Care Medicine, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Takahiro Kido
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
| | - Sho Kimura
- Division of Critical Care Medicine, Saitama Children's Medical Center, Saitama, Japan
| | - Hiroyuki Koami
- Center for Translational Injury Research, University of Texas Health Science Center at Houston, Houston, USA
| | - Daisuke Kobashi
- Advanced Medical Emergency Department and Critical Care Center, Japan Red Cross Maebashi Hospital, Maebashi, Japan
| | - Iwao Saiki
- Department of Anesthesiology, Tokyo Medical University, Tokyo, Japan
| | - Masahito Sakai
- Department of General Medicine Shintakeo Hospital, Takeo, Japan
| | - Ayaka Sakamoto
- Department of Emergency and Critical Care Medicine, University of Tsukuba Hospital, Tsukuba, Japan
| | - Tetsuya Sato
- Tohoku University Hospital Emergency Center, Sendai, Japan
| | - Yasuhiro Shiga
- Department of Orthopaedic Surgery, Center for Advanced Joint Function and Reconstructive Spine Surgery, Graduate school of Medicine, Chiba University, Chiba, Japan
| | - Manabu Shimoto
- Department of Primary care and Emergency medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinya Shimoyama
- Department of Pediatric Cardiology and Intensive Care, Gunma Children's Medical Center, Shibukawa, Japan
| | - Tomohisa Shoko
- Department of Emergency and Critical Care Medicine, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Yoh Sugawara
- Department of Anesthesiology, Yokohama City University, Yokohama, Japan
| | - Atsunori Sugita
- Department of Acute Medicine, Division of Emergency and Critical Care Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Suzuki
- Department of Intensive Care, Okayama University Hospital, Okayama, Japan
| | - Yuji Suzuki
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomohiro Suhara
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Sonota
- Department of Intensive Care Medicine, Miyagi Children's Hospital, Sendai, Japan
| | - Shuhei Takauji
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kohei Takashima
- Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Sho Takahashi
- Department of Cardiology, Fukuyama City Hospital, Fukuyama, Japan
| | - Yoko Takahashi
- Department of General Internal Medicine, Koga General Hospital, Koga, Japan
| | - Jun Takeshita
- Department of Anesthesiology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Yuuki Tanaka
- Fukuoka Prefectural Psychiatric Center, Dazaifu Hospital, Dazaifu, Japan
| | - Akihito Tampo
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Taichiro Tsunoyama
- Department of Emergency Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Kenichi Tetsuhara
- Emergency and Critical Care Center, Kyushu University Hospital, Fukuoka, Japan
| | - Kentaro Tokunaga
- Department of Intensive Care Medicine, Kumamoto University Hospital, Kumamoto, Japan
| | - Yoshihiro Tomioka
- Department of Anesthesiology and Intensive Care Unit, Todachuo General Hospital, Toda, Japan
| | - Kentaro Tomita
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Tominaga
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Mitsunobu Toyosaki
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yukitoshi Toyoda
- Department of Emergency and Critical Care Medicine, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Hiromichi Naito
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Isao Nagata
- Intensive Care Unit, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Tadashi Nagato
- Department of Respiratory Medicine, Tokyo Yamate Medical Center, Tokyo, Japan
| | - Yoshimi Nakamura
- Department of Emergency and Critical Care Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Yuki Nakamori
- Department of Clinical Anesthesiology, Mie University Hospital, Tsu, Japan
| | - Isao Nahara
- Department of Anesthesiology and Critical Care Medicine, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Hiromu Naraba
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, Hitachi, Japan
| | - Chihiro Narita
- Department of Emergency Medicine and Intensive Care Medicine, Shizuoka General Hospital, Shizuoka, Japan
| | - Norihiro Nishioka
- Department of Preventive Services, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoya Nishimura
- Advanced Medical Emergency Department and Critical Care Center, Japan Red Cross Maebashi Hospital, Maebashi, Japan
| | - Kei Nishiyama
- Division of Emergency and Critical Care Medicine Niigata University Graduate School of Medical and Dental Science, Niigata, Japan
| | - Tomohisa Nomura
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Taiki Haga
- Department of Pediatric Critical Care Medicine, Osaka City General Hospital, Osaka, Japan
| | - Yoshihiro Hagiwara
- Department of Emergency and Critical Care Medicine, Saiseikai Utsunomiya Hospital, Utsunomiya, Japan
| | - Katsuhiko Hashimoto
- Research Associate of Minimally Invasive Surgical and Medical Oncology, Fukushima Medical University, Fukushima, Japan
| | - Takeshi Hatachi
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Toshiaki Hamasaki
- Department of Emergency Medicine, Japanese Red Cross Society Wakayama Medical Center, Wakayama, Japan
| | - Takuya Hayashi
- Division of Critical Care Medicine, Saitama Children's Medical Center, Saitama, Japan
| | - Minoru Hayashi
- Department of Emergency Medicine, Fukui Prefectural Hospital, Fukui, Japan
| | - Atsuki Hayamizu
- Department of Emergency Medicine, Saitama Saiseikai Kurihashi Hospital, Kuki, Japan
| | - Go Haraguchi
- Division of Intensive Care Unit, Sakakibara Heart Institute, Tokyo, Japan
| | - Yohei Hirano
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Ryo Fujii
- Department of Emergency Medicine and Critical Care Medicine, Tochigi Prefectural Emergency and Critical Care Center, Imperial Foundation Saiseikai Utsunomiya Hospital, Utsunomiya, Japan
| | - Motoki Fujita
- Acute and General Medicine, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Naoyuki Fujimura
- Department of Anesthesiology, St. Mary's Hospital, Our Lady of the Snow Social Medical Corporation, Kurume, Japan
| | - Hiraku Funakoshi
- Department of Emergency and Critical Care Medicine, Tokyo Bay Urayasu Ichikawa Medical Center, Urayasu, Japan
| | - Masahito Horiguchi
- Department of Emergency and Critical Care Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Jun Maki
- Department of Critical Care Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Naohisa Masunaga
- Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yosuke Matsumura
- Department of Intensive Care, Chiba Emergency Medical Center, Chiba, Japan
| | - Takuya Mayumi
- Department of Internal Medicine, Kanazawa Municipal Hospital, Kanazawa, Japan
| | - Keisuke Minami
- Ishikawa Prefectual Central Hospital Emergency and Critical Care Center, Kanazawa, Japan
| | - Yuya Miyazaki
- Department of Emergency and General Internal Medicine, Saiseikai Kawaguchi General Hospital, Kawaguchi, Japan
| | - Kazuyuki Miyamoto
- Department of Emergency and Disaster Medicine, Showa University, Tokyo, Japan
| | - Teppei Murata
- Department of Cardiology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Machi Yanai
- Department of Emergency Medicine, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Takao Yano
- Department of Critical Care and Emergency Medicine, Miyazaki Prefectural Nobeoka Hospital, Nobeoka, Japan
| | - Kohei Yamada
- Department of Traumatology and Critical Care Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Naoki Yamada
- Department of Emergency Medicine, University of Fukui Hospital, Fukui, Japan
| | - Tomonori Yamamoto
- Department of Intensive Care Unit, Nara Prefectural General Medical Center, Nara, Japan
| | - Shodai Yoshihiro
- Pharmaceutical Department, JA Hiroshima General Hospital, Hatsukaichi, Japan
| | - Hiroshi Tanaka
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Osamu Nishida
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
13
|
Dixit SB, Tiwari NR, Zirpe KG, Tolat AG, Khatib KI, Kulkarni AP, Mehta Y, Mishra RC, Govil D, Chaudhry D, Ahsina Jahan L. How Have Nutrition Practices in the ICU Changed in the Last Decade (2011-2020): A Scoping Review. Cureus 2021; 13:e15422. [PMID: 34249568 PMCID: PMC8253490 DOI: 10.7759/cureus.15422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2021] [Indexed: 01/03/2023] Open
Abstract
Malnutrition is more prevalent in the critically ill than ambulatory patients due to a variety of factors. Strategies employed in the optimization of nutrition practices rely largely on the review of published literature and guidelines. While the last decade was marked by some landmark large randomized controlled trials taking place and some high-quality systematic reviews, it still has left us with many unanswered questions. The evidence generated by these trials can, to a good extent, extrapolate to the developed countries. However, its implementation in developing and third-world countries needs further elaboration and logistical considerations. With this scoping review, we attempt to provide insights into the landmark developments in the decade 2011-2020. Solutions to employ and implement the results of these developments and ways for their corroboration into a larger population are also discussed.
Collapse
Affiliation(s)
| | - Nishant R Tiwari
- Internal Medicine, Byramjee Jeejeebhoy Medical College, Pune, IND
| | - Kapil G Zirpe
- Neurocritical Care, Ruby Hall Clinic, Grant Medical Foundation, Pune, IND
| | - Aditya G Tolat
- General Surgery, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, IND
| | - Khalid I Khatib
- Critical Care Medicine, Smt Kashibai Navale Medical College and General Hospital, Pune, IND
| | - Atul P Kulkarni
- Anaesthesiology and Critical Care Medicine, Tata Memorial Hospital, Mumbai, IND
| | - Yatin Mehta
- Anaesthesiology and Critical Care Medicine, Medanta-The Medicity, Gurugram, IND
| | - Rajesh C Mishra
- Critical Care Medicine, Sanjivani Super Speciality Hospital, Ahmedabad, IND
| | - Deepak Govil
- Anaesthesiology and Critical Care Medicine, Medanta-The Medicity, Gurugram, IND
| | - Dhruva Chaudhry
- Pulmonary and Critical Care Medicine, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, IND
| | - Lopa Ahsina Jahan
- Critical Care Medicine, MH Samorita Hospital and Medical College, Dhaka, BGD
| |
Collapse
|
14
|
Samad N, Dutta S, Sodunke TE, Fairuz A, Sapkota A, Miftah ZF, Jahan I, Sharma P, Abubakar AR, Rowaiye AB, Oli AN, Charan J, Islam S, Haque M. Fat-Soluble Vitamins and the Current Global Pandemic of COVID-19: Evidence-Based Efficacy from Literature Review. J Inflamm Res 2021; 14:2091-2110. [PMID: 34045883 PMCID: PMC8149275 DOI: 10.2147/jir.s307333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022] Open
Abstract
The outbreak of pneumonia caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), later named COVID-19 by the World Health Organization (WHO), was initiated at Wuhan, Hubei, China, and there was a rapid spread of novel SARS-CoV-2 and the disease COVID-19 in late 2019. The entire world is now experiencing the challenge of COVID-19 infection. However, still very few evidence-based treatment options are available for the prevention and treatment of COVID-19 disease. The present review aims to summarize the publicly available information to give a comprehensive yet balanced scientific overview of all the fat-soluble vitamins concerning their role in SARS-CoV-2 virus infection. The roles of different fat-soluble vitamins and micronutrients in combating SARS-CoV-2 infection have been recently explored in several studies. There are various hypotheses to suggest their use to minimize the severity of COVID-19 infection. These vitamins are pivotal in the maintenance and modulation of innate and cell-mediated, and antibody-mediated immune responses. The data reported in recent literature demonstrate that deficiency in one or more of these vitamins compromises the patients' immune response and makes them more vulnerable to viral infections and perhaps worse disease prognosis. Vitamins A, D, E, and K boost the body's defense mechanism against COVID-19 infection and specifically prevent its complications such as cytokine storm and other inflammatory processes, leading to increased morbidity and mortality overemphasis. However, more detailed randomized double-blind clinical pieces of evidence are required to define the use of these supplements in preventing or reducing the severity of the COVID-19 infection.
Collapse
Affiliation(s)
- Nandeeta Samad
- Department of Public Health, North South University, Dhaka, 1229, Bangladesh
| | - Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | | | - Adiba Fairuz
- Department of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Ashmita Sapkota
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | | | - Iffat Jahan
- Department of Physiology, Eastern Medical College, Cumilla, Bangladesh
| | - Paras Sharma
- Department of Pharmacognosy, BVM College of Pharmacy, Gwalior, India
| | - Abdullahi Rabiu Abubakar
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University, Kano, Nigeria
| | - Adekunle Babajide Rowaiye
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Jaykaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Collie JTB, Greaves RF, Jones OAH, Eastwood G, Bellomo R. Vitamin C measurement in critical illness: challenges, methodologies and quality improvements. Clin Chem Lab Med 2021; 58:460-470. [PMID: 31829967 DOI: 10.1515/cclm-2019-0912] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/12/2019] [Indexed: 01/29/2023]
Abstract
Background There is renewed interest in high-dose vitamin C interventions in clinical medicine due to its antioxidant properties, safe use and cost-effectiveness. Yet, randomised control trials (RCTs) employing these interventions are failing to include robust analytical methodology and proper sample handling and processing techniques. Consequently, comparisons between studies becomes impossible as there is no metrological traceability and results may be prone to pre-analytical errors. Content Through published vitamin C stability studies, method comparison papers and data from vitamin C external quality assurance programs, an assessment was made on the functionality of current methods for critically ill patient samples. Summary Data was obtained from two external quality assurance programs, two papers assessing sample stability and interlaboratory agreement and a publication on vitamin C method comparisons. A shift from spectrophotometric and enzymatic methodologies to high performance liquid chromatography (HPLC) greatly improved the variability and interlaboratory agreement. Therefore, the current analytical performance of vitamin C HPLC methodologies are acceptable for the requirements of a high-dose vitamin C RCTs. Outlook Recommendations across the total testing process of vitamin C have been provided to improve the quality of the results. The harmonisation of sample handling and processing procedures will further improve the reliability of current analytical methodologies.
Collapse
Affiliation(s)
- Jake T B Collie
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
- Dorevitch Pathology, Heidelberg, Australia
- RCPAQAP - Australasian Association of Clinical Biochemists Vitamins Advisory Committee, Alexandria, Australia
| | - Ronda F Greaves
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
- RCPAQAP - Australasian Association of Clinical Biochemists Vitamins Advisory Committee, Alexandria, Australia
- Victorian Clinical Genetic Services, Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Oliver A H Jones
- Australian Centre for Research on Separation Science, School of Science, RMIT University, Melbourne, Australia
| | - Glenn Eastwood
- Department of Intensive Care, Austin Health, Heidelberg, Australia
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Health, Heidelberg, Australia
- School of Medicine, University of Melbourne, Parkville, Australia
| |
Collapse
|
16
|
Chavarría AP, Vázquez RRV, Cherit JGD, Bello HH, Suastegui HC, Moreno-Castañeda L, Alanís Estrada G, Hernández F, González-Marcos O, Saucedo-Orozco H, Manzano-Pech L, Márquez-Velasco R, Guarner-Lans V, Pérez-Torres I, Soto ME. Antioxidants and pentoxifylline as coadjuvant measures to standard therapy to improve prognosis of patients with pneumonia by COVID-19. Comput Struct Biotechnol J 2021; 19:1379-1390. [PMID: 33680348 PMCID: PMC7910139 DOI: 10.1016/j.csbj.2021.02.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/01/2021] [Accepted: 02/16/2021] [Indexed: 01/08/2023] Open
Abstract
The type 2 coronavirus causes severe acute respiratory syndrome (SARS-CoV-2) and produces pneumonia with pulmonary alveolar collapse. In some cases it also causes sepsis and septic shock. There is no specific treatment for coronavirus disease 2019 (COVID-19). Vitamin C (Vit C), Vitamin E (Vit E), N-acetylcysteine (NAC) and Melatonin (MT) increase the intracellular content of GSH, kidnap free radicals and protect DNA, proteins in the cytosol and lipids in cell membranes. Pentoxifylline (Px) has anti-inflammatory activities. Here we evaluate the effect of Vit C, Vit E, NAC, and MT plus Px in COVID-19 patients with moderate and severe pneumonia. 110 patients of either sex were included. They were divided into five groups with 22 patients each. Group 1 received Vit C + Px, group 2 Vit E + Px, group 3 NAC + Px, group 4 MT + Px, and group 5 only Px. Oxidative stress (OS) markers such as lipid peroxidation (LPO) levels, total antioxidant capacity (TAC) and nitrites (NO2 -) were evaluated in plasma. The antioxidant therapy improved the survival scores including the Sequential Organ Failure Assessment (SOFA), the Acute Physiology and chronic Health Evaluation II (Apache II), the Simplified Acute Physiology Score II (SAPS II), the Critical Illness Risk Score, Launched during COVID-19 crisis (COVIDGRAM) and the Glasgow Coma Scale (GCS). We found that LPO (p≤0.04) and inflammation markers such as interleukin-6 (IL-6, p≤ 0.01), C reactive protein (CRP, p ≤ 0.01) and procalcitonin (PCT, p ≤ 0.05) were elevated. TAC (p ≤ 0.03) and NO2 - (p ≤ 0.04) found themselves diminished in diminished in COVID-19 patients upon admission to the hospital. The different antioxidants reversed this alteration at the end of the treatment. The treatment with antioxidant supplements such as Vit C, E, NAC, and MT plus Px could decelerate the aggressive and lethal development of COVID-19. Antioxidant therapy can be effective in this pandemia since it improves the survival scores including SOFA, Apache II, SAPS II, COVIDGRAM, GCS by lowering the LPO, IL-6, CRP, PCT and increasing systemic TAC and NO2 -.
Collapse
Affiliation(s)
- Adrián Palacios Chavarría
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center Av. del Conscripto 311, Lomas de Sotelo, Hipódromo de las Américas, Miguel Hidalgo, 11200 Ciudad de México, CDMX, Mexico
- Critical Care in American British Cowdray (ABC) Medical Center, I.A.P. ABC I.A.P. ABC Sur 136 No. 116 Col. Las Américas, México City 01120 , Mexico
| | - Rafael Ricardo Valdez Vázquez
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center Av. del Conscripto 311, Lomas de Sotelo, Hipódromo de las Américas, Miguel Hidalgo, 11200 Ciudad de México, CDMX, Mexico
| | - José Guillermo Domínguez Cherit
- Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” Vasco de Quiroga 15, Sección XVI, Tlalpan, México City 14000, Mexico
- Tecnológico de Monterrey EMCS, Mexico
| | - Héctor Herrera Bello
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center Av. del Conscripto 311, Lomas de Sotelo, Hipódromo de las Américas, Miguel Hidalgo, 11200 Ciudad de México, CDMX, Mexico
| | - Humberto Castillejos Suastegui
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center Av. del Conscripto 311, Lomas de Sotelo, Hipódromo de las Américas, Miguel Hidalgo, 11200 Ciudad de México, CDMX, Mexico
| | - Lidia Moreno-Castañeda
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center Av. del Conscripto 311, Lomas de Sotelo, Hipódromo de las Américas, Miguel Hidalgo, 11200 Ciudad de México, CDMX, Mexico
| | - Gabriela Alanís Estrada
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center Av. del Conscripto 311, Lomas de Sotelo, Hipódromo de las Américas, Miguel Hidalgo, 11200 Ciudad de México, CDMX, Mexico
| | - Fabián Hernández
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center Av. del Conscripto 311, Lomas de Sotelo, Hipódromo de las Américas, Miguel Hidalgo, 11200 Ciudad de México, CDMX, Mexico
| | - Omar González-Marcos
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center Av. del Conscripto 311, Lomas de Sotelo, Hipódromo de las Américas, Miguel Hidalgo, 11200 Ciudad de México, CDMX, Mexico
| | - Huitzilihuitl Saucedo-Orozco
- Cardioneumology Department, Instituto Nacional de Cardiología Ignacio Chávez, Mexico
- Cardioneumology Department, Centro Médico Nacional La Raza Instituto Mexicano del Seguro Social Seris y Zaachila, Col. La Raza Azcapotzalco, 02990 Ciudad de México, CDMX, Mexico
| | - Linaloe Manzano-Pech
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez. Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Ricardo Márquez-Velasco
- Department of Immunology, Instituto Nacional de Cardiología Ignacio Chávez. Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez. Badiano 1, Sección XVI, Tlalpan, México City 14080 Mexico
| | - Israel Pérez-Torres
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez. Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico
| | - Maria Elena Soto
- Department of Immunology , Instituto Nacional de Cardiología Ignacio Chávez. Juan Badiano 1 , Sección XVI , Tlalpan , México City 14080 , Mexico
- American British Cowdray (ABC) Medical Center , I.A.P. ABC I.A.P. ABC Sur 136 No. 116 Col. Las Américas , México City 01120 , Mexico
| |
Collapse
|
17
|
Scholz SS, Borgstedt R, Ebeling N, Menzel LC, Jansen G, Rehberg S. Mortality in septic patients treated with vitamin C: a systematic meta-analysis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:17. [PMID: 33407793 PMCID: PMC7787590 DOI: 10.1186/s13054-020-03438-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
Abstract
Background Supplementation of vitamin C in septic patients remains controversial despite eight large clinical trials published only in 2020. We aimed to evaluate the evidence on potential effects of vitamin C treatment on mortality in adult septic patients. Methods Data search included PubMed, Web of Science, and the Cochrane Library. A meta-analysis of eligible peer-reviewed studies was performed in accordance with the PRISMA statement. Only studies with valid classifications of sepsis and intravenous vitamin C treatment (alone or combined with hydrocortisone/thiamine) were included. Results A total of 17 studies including 3133 patients fulfilled the predefined criteria and were analyzed. Pooled analysis indicated no mortality reduction in patients treated with vitamin C when compared to reference (risk difference − 0.05 [95% CI − 0.11 to − 0.01]; p = 0.08; p for Cochran Q = 0.002; I2 = 56%). Notably, subgroup analyses revealed an improved survival, if vitamin C treatment was applied for 3–4 days (risk difference, − 0.10 [95% CI − 0.19 to − 0.02]; p = 0.02) when compared to patients treated for 1–2 or > 5 days. Also, timing of the pooled mortality assessment indicated a reduction concerning short-term mortality (< 30 days; risk difference, − 0.08 [95% CI − 0.15 to − 0.01]; p = 0.02; p for Cochran Q = 0.02; I2 = 63%). Presence of statistical heterogeneity was noted with no sign of significant publication bias. Conclusion Although vitamin C administration did not reduce pooled mortality, patients may profit if vitamin C is administered over 3 to 4 days. Consequently, further research is needed to identify patient subgroups that might benefit from intravenous supplementation of vitamin C.
Collapse
Affiliation(s)
- Sean S Scholz
- Department of Anaesthesiology, Intensive Care, Emergency Medicine, Transfusion Medicine and Pain Therapy, Protestant Hospital of the Bethel Foundation, University Hospital OWL, University of Bielefeld, Campus Bielefeld-Bethel, Burgsteig 13, Haus Gilead I, 33617, Bielefeld, Germany.
| | - Rainer Borgstedt
- Department of Anaesthesiology, Intensive Care, Emergency Medicine, Transfusion Medicine and Pain Therapy, Protestant Hospital of the Bethel Foundation, University Hospital OWL, University of Bielefeld, Campus Bielefeld-Bethel, Burgsteig 13, Haus Gilead I, 33617, Bielefeld, Germany
| | - Nicole Ebeling
- Department of Anaesthesiology, Intensive Care, Emergency Medicine, Transfusion Medicine and Pain Therapy, Protestant Hospital of the Bethel Foundation, University Hospital OWL, University of Bielefeld, Campus Bielefeld-Bethel, Burgsteig 13, Haus Gilead I, 33617, Bielefeld, Germany
| | - Leoni C Menzel
- Institute for Diagnostic and Interventional Radiology, Protestant Hospital of the Bethel Foundation, Bielefeld, Germany
| | - Gerrit Jansen
- Department of Anaesthesiology, Intensive Care, Emergency Medicine, Transfusion Medicine and Pain Therapy, Protestant Hospital of the Bethel Foundation, University Hospital OWL, University of Bielefeld, Campus Bielefeld-Bethel, Burgsteig 13, Haus Gilead I, 33617, Bielefeld, Germany
| | - Sebastian Rehberg
- Department of Anaesthesiology, Intensive Care, Emergency Medicine, Transfusion Medicine and Pain Therapy, Protestant Hospital of the Bethel Foundation, University Hospital OWL, University of Bielefeld, Campus Bielefeld-Bethel, Burgsteig 13, Haus Gilead I, 33617, Bielefeld, Germany
| |
Collapse
|
18
|
Egi M, Ogura H, Yatabe T, Atagi K, Inoue S, Iba T, Kakihana Y, Kawasaki T, Kushimoto S, Kuroda Y, Kotani J, Shime N, Taniguchi T, Tsuruta R, Doi K, Doi M, Nakada T, Nakane M, Fujishima S, Hosokawa N, Masuda Y, Matsushima A, Matsuda N, Yamakawa K, Hara Y, Sakuraya M, Ohshimo S, Aoki Y, Inada M, Umemura Y, Kawai Y, Kondo Y, Saito H, Taito S, Takeda C, Terayama T, Tohira H, Hashimoto H, Hayashida K, Hifumi T, Hirose T, Fukuda T, Fujii T, Miura S, Yasuda H, Abe T, Andoh K, Iida Y, Ishihara T, Ide K, Ito K, Ito Y, Inata Y, Utsunomiya A, Unoki T, Endo K, Ouchi A, Ozaki M, Ono S, Katsura M, Kawaguchi A, Kawamura Y, Kudo D, Kubo K, Kurahashi K, Sakuramoto H, Shimoyama A, Suzuki T, Sekine S, Sekino M, Takahashi N, Takahashi S, Takahashi H, Tagami T, Tajima G, Tatsumi H, Tani M, Tsuchiya A, Tsutsumi Y, Naito T, Nagae M, Nagasawa I, Nakamura K, Nishimura T, Nunomiya S, Norisue Y, Hashimoto S, Hasegawa D, Hatakeyama J, Hara N, Higashibeppu N, Furushima N, Furusono H, Matsuishi Y, Matsuyama T, Minematsu Y, Miyashita R, Miyatake Y, Moriyasu M, Yamada T, Yamada H, Yamamoto R, Yoshida T, Yoshida Y, Yoshimura J, Yotsumoto R, Yonekura H, Wada T, Watanabe E, Aoki M, Asai H, Abe T, Igarashi Y, Iguchi N, Ishikawa M, Ishimaru G, Isokawa S, Itakura R, Imahase H, Imura H, Irinoda T, Uehara K, Ushio N, Umegaki T, Egawa Y, Enomoto Y, Ota K, Ohchi Y, Ohno T, Ohbe H, Oka K, Okada N, Okada Y, Okano H, Okamoto J, Okuda H, Ogura T, Onodera Y, Oyama Y, Kainuma M, Kako E, Kashiura M, Kato H, Kanaya A, Kaneko T, Kanehata K, Kano K, Kawano H, Kikutani K, Kikuchi H, Kido T, Kimura S, Koami H, Kobashi D, Saiki I, Sakai M, Sakamoto A, Sato T, Shiga Y, Shimoto M, Shimoyama S, Shoko T, Sugawara Y, Sugita A, Suzuki S, Suzuki Y, Suhara T, Sonota K, Takauji S, Takashima K, Takahashi S, Takahashi Y, Takeshita J, Tanaka Y, Tampo A, Tsunoyama T, Tetsuhara K, Tokunaga K, Tomioka Y, Tomita K, Tominaga N, Toyosaki M, Toyoda Y, Naito H, Nagata I, Nagato T, Nakamura Y, Nakamori Y, Nahara I, Naraba H, Narita C, Nishioka N, Nishimura T, Nishiyama K, Nomura T, Haga T, Hagiwara Y, Hashimoto K, Hatachi T, Hamasaki T, Hayashi T, Hayashi M, Hayamizu A, Haraguchi G, Hirano Y, Fujii R, Fujita M, Fujimura N, Funakoshi H, Horiguchi M, Maki J, Masunaga N, Matsumura Y, Mayumi T, Minami K, Miyazaki Y, Miyamoto K, Murata T, Yanai M, Yano T, Yamada K, Yamada N, Yamamoto T, Yoshihiro S, Tanaka H, Nishida O. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020). Acute Med Surg 2021; 8:e659. [PMID: 34484801 PMCID: PMC8390911 DOI: 10.1002/ams2.659] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created as revised from J-SSCG 2016 jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in September 2020 and published in February 2021. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. The purpose of this guideline is to assist medical staff in making appropriate decisions to improve the prognosis of patients undergoing treatment for sepsis and septic shock. We aimed to provide high-quality guidelines that are easy to use and understand for specialists, general clinicians, and multidisciplinary medical professionals. J-SSCG 2016 took up new subjects that were not present in SSCG 2016 (e.g., ICU-acquired weakness [ICU-AW], post-intensive care syndrome [PICS], and body temperature management). The J-SSCG 2020 covered a total of 22 areas with four additional new areas (patient- and family-centered care, sepsis treatment system, neuro-intensive treatment, and stress ulcers). A total of 118 important clinical issues (clinical questions, CQs) were extracted regardless of the presence or absence of evidence. These CQs also include those that have been given particular focus within Japan. This is a large-scale guideline covering multiple fields; thus, in addition to the 25 committee members, we had the participation and support of a total of 226 members who are professionals (physicians, nurses, physiotherapists, clinical engineers, and pharmacists) and medical workers with a history of sepsis or critical illness. The GRADE method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members. As a result, 79 GRADE-based recommendations, 5 Good Practice Statements (GPS), 18 expert consensuses, 27 answers to background questions (BQs), and summaries of definitions and diagnosis of sepsis were created as responses to 118 CQs. We also incorporated visual information for each CQ according to the time course of treatment, and we will also distribute this as an app. The J-SSCG 2020 is expected to be widely used as a useful bedside guideline in the field of sepsis treatment both in Japan and overseas involving multiple disciplines.
Collapse
|
19
|
Usefulness of Antioxidants as Adjuvant Therapy for Septic Shock: A Randomized Clinical Trial. ACTA ACUST UNITED AC 2020; 56:medicina56110619. [PMID: 33213070 PMCID: PMC7698534 DOI: 10.3390/medicina56110619] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022]
Abstract
Background and objectives: Oxidative stress (OS) participates in the pathophysiology of septic shock, which leads to multiple organ failure (MOF), ischemia-reperfusion injury, and acute respiratory distress syndrome. Therefore, antioxidants have been proposed as therapy. Here, we evaluated the effect of antioxidant treatments in patients with septic shock with MOF and determined levels OS before and after treatment. This study was a randomized, controlled, triple-masked, and with parallel assignment clinical trial with a control group without treatment. Materials and Methods: It included 97 patients of either sex with septic shock. 5 treatments were used each in an independent group of 18 patients. Group 1 received vitamin C (Vit C), group 2 vitamin E (Vit E), group 3 n-acetylcysteine (NAC), group 4 melatonin (MT), and group 5 served as control. All antioxidants were administered orally or through a nasogastric tube for five days as an adjuvant to the standard therapy. Results: The results showed that all patients presented MOF due to sepsis upon admission and that the treatment decreased it (p = 0.007). The antioxidant treatment with NAC increased the total antioxidant capacity (p < 0.05). The patients that received Vit C had decreased levels of the nitrate and nitrite ratio (p < 0.01) and C-reactive protein levels (p = 0.04). Procalcitonin levels were reduced by Vit E (p = 0.04), NAC (p = 0.001), and MT (p = 0.04). Lipid-peroxidation was reduced in patients that received MT (p = 0.04). Conclusions: In conclusion, antioxidant therapy associated with standard therapy reduces MOF, OS, and inflammation in patients with septic shock.
Collapse
|
20
|
Schloss J, Leach M, Brown D, Hannan N, Kendall-Reed P, Steel A. The effects of N-acetyl cysteine on acute viral respiratory infections in humans: A rapid review. ADVANCES IN INTEGRATIVE MEDICINE 2020; 7:232-239. [PMID: 32837898 PMCID: PMC7398034 DOI: 10.1016/j.aimed.2020.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Current evidence suggests that N-Acetyl Cysteine (NAC) administration may help improve outcomes in people with acute respiratory distress syndrome and acute lung injury – conditions that closely resemble the signs and symptoms of COVID-19. Few mild and transient adverse events were reported in published randomised-controlled trials, indicating that NAC may be reasonably safe. These findings suggest that NAC may complement the management of COVID-19 infection, particularly when administered intravenously within an intensive care unit (ICU) environment. Verdict Current evidence suggests that N-Acetyl Cysteine (NAC) administration may help improve outcomes in people with acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) – conditions that closely resemble the signs and symptoms of COVID-19. In this rapid review, NAC was predominately administered intravenously to patients with ARDS or ALI, who were at risk of or requiring mechanical ventilation, and were admitted to a hospital intensive care unit. Findings indicated that NAC administration may assist in improving markers of inflammation or oxidation, systemic oxygenation, the need for / duration of ventilation, rate of patient recovery and clinical improvement score. The effects of NAC on patient length of stay, CT/x-ray images, mortality rate and pulmonary complications were inconclusive. Few mild and transient adverse events were noted, indicating that NAC may be safe for use in acute respiratory distress syndrome or acute lung injury. Based on the evidence identified, and the similar symptomatic profiles of ARDS/ALI and COVID-19, the findings suggest that NAC may be used to complement the management of COVID-19 infection within an acute care setting. The safety and efficacy of orally administered NAC for the management of milder forms of COVID-19 infection within the community setting, remains uncertain. The current research evidence suggests NAC warrants further research for acute respiratory viral infections, including COVID-19.
Collapse
Affiliation(s)
- Janet Schloss
- Endeavour College of Natural Health, Brisbane,Queensland, Australia
| | - Matthew Leach
- National Centre for Naturopathic Medicine, Southern Cross University, Lismore, New South Wales, Australia
| | - Danielle Brown
- Endeavour College of Natural Health, Brisbane,Queensland, Australia.,Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Nicole Hannan
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, Queensland, Australia
| | | | - Amie Steel
- Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|
21
|
Soto ME, Guarner-Lans V, Soria-Castro E, Manzano Pech L, Pérez-Torres I. Is Antioxidant Therapy a Useful Complementary Measure for Covid-19 Treatment? An Algorithm for Its Application. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E386. [PMID: 32752010 PMCID: PMC7466376 DOI: 10.3390/medicina56080386] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes the corona virus disease-19 which is accompanied by severe pneumonia, pulmonary alveolar collapses and which stops oxygen exchange. Viral transmissibility and pathogenesis depend on recognition by a receptor in the host, protease cleavage of the host membrane and fusion. SARS-CoV-2 binds to the angiotensin converting enzyme 2 receptor. Here, we discuss the general characteristics of the virus, its mechanism of action and the way in which the mechanism correlates with the comorbidities that increase the death rate. We also discuss the currently proposed therapeutic measures and propose the use of antioxidant drugs to help patients infected with the SARS-CoV-2. Oxidizing agents come from phagocytic leukocytes such as neutrophils, monocytes, macrophages and eosinophils that invade tissue. Free radicals promote cytotoxicity thus injuring cells. They also trigger the mechanism of inflammation by mediating the activation of NFkB and inducing the transcription of cytokine production genes. Release of cytokines enhances the inflammatory response. Oxidative stress is elevated during critical illnesses and contributes to organ failure. In corona virus disease-19 there is an intense inflammatory response known as a cytokine storm that could be mediated by oxidative stress. Although antioxidant therapy has not been tested in corona virus disease-19, the consequences of antioxidant therapy in sepsis, acute respiratory distress syndrome and acute lung injury are known. It improves oxygenation rates, glutathione levels and strengthens the immune response. It reduces mechanical ventilation time, the length of stay in the intensive care unit, multiple organ dysfunctions and the length of stay in the hospital and mortality rates in acute lung injury/acute respiratory distress syndrome and could thus help patients with corona virus disease-19.
Collapse
Affiliation(s)
- María Elena Soto
- Immunology Department, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Verónica Guarner-Lans
- Physiology Department, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico;
| | - Elizabeth Soria-Castro
- Vascular Biomedicine Department, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico; (E.S.-C.); (L.M.P.)
| | - Linaloe Manzano Pech
- Vascular Biomedicine Department, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico; (E.S.-C.); (L.M.P.)
| | - Israel Pérez-Torres
- Vascular Biomedicine Department, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano 1, Sección XVI, Tlalpan, México City 14080, Mexico; (E.S.-C.); (L.M.P.)
| |
Collapse
|
22
|
Gudivada KK, Kumar A, Shariff M, Sampath S, Varma MM, Sivakoti S, Krishna B. Antioxidant micronutrient supplementation in critically ill adults: A systematic review with meta-analysis and trial sequential analysis. Clin Nutr 2020; 40:740-750. [PMID: 32723509 DOI: 10.1016/j.clnu.2020.06.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The role of antioxidant micronutrient (AxM) supplementation in the critically ill patients has been controversial, and recent trials have suggested a tendency to harm. Therefore, we performed a systematic review with meta-analysis and trial sequential analysis (TSA) of randomized controlled trials (RCT) to examine the effect of AxM supplementation on clinical outcomes among critically ill adults. METHODS PubMed, EMBASE, Cochrane, CINAHL, LILACS, DARE, SCOPUS, and Web of sciences databases were searched from inception to March 2019. RCTs that compared AxM supplements with placebo in adult critically ill patients and reporting mortality as an outcomes were included. Trial quality was assessed using updated cochrane risk of bias (RoB-II) tool. Primary outcome was all-cause mortality. Secondary outcomes were 28-day mortality, intensive care unit (ICU) and hospital length of stay (LOS), ventilator days and infection between the two groups. Outcomes were summarised using random-effects estimators. Quality of evidence (QOE) was rated using Grading of Recommendations, Assessment, Development and Evaluation. Prior to final analysis, we repeated the search through September 2019. R version 3.6.2 and STATA version 13 were used for all statistical analyses. RESULTS Pooled analysis of 34 trials with 4678 patients revealed that AxM supplementation was associated with possible reduction in all-cause mortality (relative risk [RR], 0.89 [95%CI 0.79 to 0.99], TSA adjusted CI 0.77 to 1.03; Low QOE). Fragility index and number needed to treat were 1 and 41, respectively. Eight studies with low RoB (RR, 1.08; 95%CI 0.95 to 1.23; TSA CI, 0.64 to 1.82; moderate QOE) did not show mortality reduction with AxM supplementation. SECONDARY OUTCOMES ICU LOS (weighted mean difference [WMD], -0.84; 95%CI -1.50 to -0.18; moderate QOE), hospitalization days (WMD, -2.83; 95%CI -3.91to -1.75; low QOE) and ventilator days (WMD, -1.87; 95%CI -3.60 to -0.14; very low QOE) showed a statistically significant benefit with AxM supplementation. In meta-regression analysis, neither the duration of AxM therapy nor the dosage of selenium, which was the most widely studied AxM, reported an association with mortality. CONCLUSION Although AxM supplementation was associated with possible reduction in all-cause mortality, results from the TSA and studies with low RoB showing null effect suggest that the evidence of benefit is questionable. Secondary outcomes attained statistically significant benefit with AxM supplements, but the certainity of evidence was low. To summarize, current evidence does not justify administration of AxM in critically ill patients. REGISTRATION PROSPERO, CRD42019125898.
Collapse
Affiliation(s)
- Kiran Kumar Gudivada
- Department of Critical Care Medicine, St. John's Medical College, Bangalore, 560034, India.
| | - Ashish Kumar
- Department of Critical Care Medicine, St. John's Medical College, Bangalore, 560034, India
| | - Mariam Shariff
- Department of Critical Care Medicine, St. John's Medical College, Bangalore, 560034, India
| | - Sriram Sampath
- Department of Critical Care Medicine, St. John's Medical College, Bangalore, 560034, India
| | - Manu Mk Varma
- Department of Critical Care Medicine, St. John's Medical College, Bangalore, 560034, India
| | - Sumitra Sivakoti
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, 560029, India; Department of Pathology, All India Institute of Medical Sciences (AIIMS), Bibinagar, Telangana, 508126, India
| | - Bhuvana Krishna
- Department of Critical Care Medicine, St. John's Medical College, Bangalore, 560034, India
| |
Collapse
|
23
|
da Silva ACL, de Matos NA, de Souza ABF, Castro TDF, Cândido LDS, Oliveira MADGS, Costa GDP, Talvani A, Cangussú SD, Bezerra FS. Sigh maneuver protects healthy lungs during mechanical ventilation in adult Wistar rats. Exp Biol Med (Maywood) 2020; 245:1404-1413. [PMID: 32640895 DOI: 10.1177/1535370220940995] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mechanical ventilation (MV) is a tool used for the treatment of patients with acute or chronic respiratory failure. However, MV is a non-physiological resource, and it can cause metabolic disorders such as release of pro-inflammatory cytokines and production of reactive oxygen species. In clinical setting, maneuvers such as sigh, are used to protect the lungs. Thus, this study aimed to evaluate the effects of sigh on oxidative stress and lung inflammation in healthy adult Wistar rats submitted to MV. Male Wistar rats were divided into four groups: control (CG), mechanical ventilation (MVG), MV set at 20 sighs/h (MVG20), and MV set at 40 sighs/h (MVG40). The MVG, MVG20, and MVG40 were submitted to MV for 1 h. After the protocol, all animals were euthanized and the blood, bronchoalveolar lavage fluid, and lungs were collected for subsequent analysis. In the arterial blood, MVG40 presented higher partial pressure of oxygen and lower partial pressure of carbon dioxide compared to control. The levels of bicarbonate in MVG20 were lower compared to CG. The neutrophil influx in bronchoalveolar lavage fluid was higher in the MVG compared to CG and MVG40. In the lung parenchyma, the lipid peroxidation was higher in MVG compared to CG, MVG20, and MVG40. Superoxide dismutase and catalase activity were higher in MVG compared to CG, MVG20, and MVG40. The levels of IL-1, IL-6, and TNF in the lung homogenate were higher in MVG compared to CG, MVG20, and MVG40. The use of sigh plays a protective role as it reduced redox imbalance and pulmonary inflammation caused by MV.
Collapse
Affiliation(s)
- Andréa Cristiane Lopes da Silva
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Natália Alves de Matos
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Leandro da Silva Cândido
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Michel Angelo das Graças Silva Oliveira
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Guilherme de Paula Costa
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation (LABIIN), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Sílvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto (UFOP), Ouro Preto, MG 35400-000, Brazil
| |
Collapse
|
24
|
Is Mitochondrial Oxidative Stress the Key Contributor to Diaphragm Atrophy and Dysfunction in Critically Ill Patients? Crit Care Res Pract 2020; 2020:8672939. [PMID: 32377432 PMCID: PMC7191397 DOI: 10.1155/2020/8672939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/10/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023] Open
Abstract
Diaphragm dysfunction is prevalent in the progress of respiratory dysfunction in various critical illnesses. Respiratory muscle weakness may result in insufficient ventilation, coughing reflection suppression, pulmonary infection, and difficulty in weaning off respirators. All of these further induce respiratory dysfunction and even threaten the patients' survival. The potential mechanisms of diaphragm atrophy and dysfunction include impairment of myofiber protein anabolism, enhancement of myofiber protein degradation, release of inflammatory mediators, imbalance of metabolic hormones, myonuclear apoptosis, autophagy, and oxidative stress. Among these contributors, mitochondrial oxidative stress is strongly implicated to play a key role in the process as it modulates diaphragm protein synthesis and degradation, induces protein oxidation and functional alteration, enhances apoptosis and autophagy, reduces mitochondrial energy supply, and is regulated by inflammatory cytokines via related signaling molecules. This review aims to provide a concise overview of pathological mechanisms of diaphragmatic dysfunction in critically ill patients, with special emphasis on the role and modulating mechanisms of mitochondrial oxidative stress.
Collapse
|
25
|
Redox modulation of muscle mass and function. Redox Biol 2020; 35:101531. [PMID: 32371010 PMCID: PMC7284907 DOI: 10.1016/j.redox.2020.101531] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022] Open
Abstract
Muscle mass and strength are very important for exercise performance. Training-induced musculoskeletal injuries usually require periods of complete immobilization to prevent any muscle contraction of the affected muscle groups. Disuse muscle wasting will likely affect every sport practitioner in his or her lifetime. Even short periods of disuse results in significant declines in muscle size, fiber cross sectional area, and strength. To understand the molecular signaling pathways involved in disuse muscle atrophy is of the utmost importance to develop more effective countermeasures in sport science research. We have divided our review in four different sections. In the first one we discuss the molecular mechanisms involved in muscle atrophy including the main protein synthesis and protein breakdown signaling pathways. In the second section of the review we deal with the main cellular, animal, and human atrophy models. The sources of reactive oxygen species in disuse muscle atrophy and the mechanism through which they regulate protein synthesis and proteolysis are reviewed in the third section of this review. The last section is devoted to the potential interventions to prevent muscle disuse atrophy with especial consideration to studies on which the levels of endogenous antioxidants enzymes or dietary antioxidants have been tested.
Collapse
|
26
|
Hemilä H, Chalker E. Vitamin C may reduce the duration of mechanical ventilation in critically ill patients: a meta-regression analysis. J Intensive Care 2020; 8:15. [PMID: 32047636 PMCID: PMC7006137 DOI: 10.1186/s40560-020-0432-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/17/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Our recent meta-analysis indicated that vitamin C may shorten the length of ICU stay and the duration of mechanical ventilation. Here we analyze modification of the vitamin C effect on ventilation time, by the control group ventilation time (which we used as a proxy for severity of disease in the patients of each trial). METHODS We searched MEDLINE, Scopus, and the Cochrane Central Register of Controlled Trials and reference lists of relevant publications. We included controlled trials in which the administration of vitamin C was the only difference between the study groups. We did not limit our search to randomized trials and did not require placebo control. We included all doses and all durations of vitamin C administration. One author extracted study characteristics and outcomes from the trial reports and entered the data in a spreadsheet. Both authors checked the data entered against the original reports. We used meta-regression to examine whether the vitamin C effect on ventilation time depends on the duration of ventilation in the control group. RESULTS We identified nine potentially eligible trials, eight of which were included in the meta-analysis. We pooled the results of the eight trials, including 685 patients in total, and found that vitamin C shortened the length of mechanical ventilation on average by 14% (P = 0.00001). However, there was significant heterogeneity in the effect of vitamin C between the trials. Heterogeneity was fully explained by the ventilation time in the untreated control group. Vitamin C was most beneficial for patients with the longest ventilation, corresponding to the most severely ill patients. In five trials including 471 patients requiring ventilation for over 10 h, a dosage of 1-6 g/day of vitamin C shortened ventilation time on average by 25% (P < 0.0001). CONCLUSIONS We found strong evidence that vitamin C shortens the duration of mechanical ventilation, but the magnitude of the effect seems to depend on the duration of ventilation in the untreated control group. The level of baseline illness severity should be considered in further research. Different doses should be compared directly in future trials.
Collapse
Affiliation(s)
- Harri Hemilä
- Department of Public Health, University of Helsinki, POB 41, FI-00014 Helsinki, Finland
| | | |
Collapse
|
27
|
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC Diaphragm dysfunction and atrophy develop during controlled mechanical ventilation. Although oxidative stress injures muscle during controlled mechanical ventilation, it is unclear whether it causes autophagy or fiber atrophy. WHAT THIS ARTICLE TELLS US THAT IS NEW Pretreatment of rats undergoing 24 h of mechanical ventilation with N-acetylcysteine prevents decreases in diaphragm contractility, inhibits the autophagy and proteasome pathways, but has no influence on the development of diaphragm fiber atrophy. BACKGROUND Diaphragm dysfunction and atrophy develop during prolonged controlled mechanical ventilation. Fiber atrophy has been attributed to activation of the proteasome and autophagy proteolytic pathways. Oxidative stress activates the proteasome during controlled mechanical ventilation, but it is unclear whether it also activates autophagy. This study investigated whether pretreatment with the antioxidant N-acetylcysteine affects controlled mechanical ventilation-induced diaphragm contractile dysfunction, fiber atrophy, and proteasomal and autophagic pathway activation. The study also explored whether proteolytic pathway activity during controlled mechanical ventilation is mediated by microRNAs that negatively regulate ubiquitin E3 ligases and autophagy-related genes. METHODS Three groups of adult male rats were studied (n = 10 per group). The animals in the first group were anesthetized and allowed to spontaneously breathe. Animals in the second group were pretreated with saline before undergoing controlled mechanical ventilation for 24 h. The animals in the third group were pretreated with N-acetylcysteine (150 mg/kg) before undergoing controlled mechanical ventilation for 24 h. Diaphragm contractility and activation of the proteasome and autophagy pathways were measured. Expressions of microRNAs that negatively regulate ubiquitin E3 ligases and autophagy-related genes were measured with quantitative polymerase chain reaction. RESULTS Controlled mechanical ventilation decreased diaphragm twitch force from 428 ± 104 g/cm (mean ± SD) to 313 ± 50 g/cm and tetanic force from 2,491 ± 411 g/cm to 1,618 ± 177 g/cm. Controlled mechanical ventilation also decreased diaphragm fiber size, increased expression of several autophagy genes, and augmented Atrogin-1, MuRF1, and Nedd4 expressions by 36-, 41-, and 8-fold, respectively. Controlled mechanical ventilation decreased the expressions of six microRNAs (miR-20a, miR-106b, miR-376, miR-101a, miR-204, and miR-93) that regulate autophagy genes. Pretreatment with N-acetylcysteine prevented diaphragm contractile dysfunction, attenuated protein ubiquitination, and downregulated E3 ligase and autophagy gene expression. It also reversed controlled mechanical ventilation-induced microRNA expression decreases. N-Acetylcysteine pretreatment had no affect on fiber atrophy. CONCLUSIONS Prolonged controlled mechanical ventilation activates the proteasome and autophagy pathways in the diaphragm through oxidative stress. Pathway activation is accomplished, in part, through inhibition of microRNAs that negatively regulate autophagy-related genes.
Collapse
|
28
|
|
29
|
Wang Y, Lin H, Lin BW, Lin JD. Effects of different ascorbic acid doses on the mortality of critically ill patients: a meta-analysis. Ann Intensive Care 2019; 9:58. [PMID: 31111241 PMCID: PMC6527630 DOI: 10.1186/s13613-019-0532-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/13/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Low levels of ascorbic acid (AA) have been detected in critically ill patients in which AA supplementation leads to promising outcomes. However, the ability of AA to reduce mortality in critically ill patients remains controversial. In this study, we have performed a meta-analysis to evaluate the effects of AA dose on the mortality of critically ill adults. METHODS Electronic databases were searched for trials in which AA had been intravenously administered to critically ill patients regardless of the dose or the co-administration of antioxidant agents. The predefined primary outcome included all-cause mortality at final follow-up. RESULTS The included trials enrolled a total of 1210 patients. Intravenous (IV) AA doses of 3-10 g/d reduced the mortality of critically ill patients (OR 0.25; 95% CI (0.14-0.46); p < 0.001; I2 = 0.0%), while low (< 3 g/d) and high AA doses (≥ 10 g/d) had no effect (OR 1.44; 95% CI (0.79-2.61); p = 0.234; I2 = 0.0% versus OR 1.12; 95% CI (0.62-2.03); p = 0.700; I2 = 0.0%). AA was associated with a decreased duration of vasopressor support and mechanical ventilation, but did not influence fluid requirement or urine output during the first 24 h of admission. The number of patients suffering from acute kidney injury and the length of intensive care unit or hospital stays were also unaffected by the AA. CONCLUSION Intravenous AA reduces the duration of vasopressor support and mechanical ventilation; 3-10 g AA results in lower overall mortality rates. Given the limitations of the primary literature, further studies are required to fully clarify the effectiveness of AA during the management of critically ill patients.
Collapse
Affiliation(s)
- Ying Wang
- Clinical School, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Huan Lin
- Shool of Mathematics and Statistics, University of New South Wales, Sydney, Australia
| | - Bing-wen Lin
- Department of Intensive Care Unit, First Affiliated Hospital of Fujian Medical University, Chazhong Road, Fuzhou, Fujian Province China
| | - Jian-dong Lin
- Department of Intensive Care Unit, First Affiliated Hospital of Fujian Medical University, Chazhong Road, Fuzhou, Fujian Province China
| |
Collapse
|
30
|
Tang H, Shrager JB. The Signaling Network Resulting in Ventilator-induced Diaphragm Dysfunction. Am J Respir Cell Mol Biol 2019; 59:417-427. [PMID: 29768017 DOI: 10.1165/rcmb.2018-0022tr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mechanical ventilation (MV) is a life-saving measure for those incapable of adequately ventilating or oxygenating without assistance. Unfortunately, even brief periods of MV result in diaphragm weakness (i.e., ventilator-induced diaphragm dysfunction [VIDD]) that may render it difficult to wean the ventilator. Prolonged MV is associated with cascading complications and is a strong risk factor for death. Thus, prevention of VIDD may have a dramatic impact on mortality rates. Here, we summarize the current understanding of the pathogenic events underlying VIDD. Numerous alterations have been proven important in both human and animal MV diaphragm. These include protein degradation via the ubiquitin proteasome system, autophagy, apoptosis, and calpain activity-all causing diaphragm muscle fiber atrophy, altered energy supply via compromised oxidative phosphorylation and upregulation of glycolysis, and also mitochondrial dysfunction and oxidative stress. Mitochondrial oxidative stress in fact appears to be a central factor in each of these events. Recent studies by our group and others indicate that mitochondrial function is modulated by several signaling molecules, including Smad3, signal transducer and activator of transcription 3, and FoxO. MV rapidly activates Smad3 and signal transducer and activator of transcription 3, which upregulate mitochondrial oxidative stress. Additional roles may be played by angiotensin II and leaky ryanodine receptors causing elevated calcium levels. We present, here, a hypothetical scaffold for understanding the molecular pathogenesis of VIDD, which links together these elements. These pathways harbor several drug targets that could soon move toward testing in clinical trials. We hope that this review will shape a short list of the most promising candidates.
Collapse
Affiliation(s)
- Huibin Tang
- Stanford University School of Medicine, Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford, California; and Veterans Affairs Palo Alto Healthcare System, Palo Alto, California
| | - Joseph B Shrager
- Stanford University School of Medicine, Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford, California; and Veterans Affairs Palo Alto Healthcare System, Palo Alto, California
| |
Collapse
|
31
|
Hemilä H, Chalker E. Vitamin C Can Shorten the Length of Stay in the ICU: A Meta-Analysis. Nutrients 2019; 11:E708. [PMID: 30934660 PMCID: PMC6521194 DOI: 10.3390/nu11040708] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
A number of controlled trials have previously found that in some contexts, vitamin C can have beneficial effects on blood pressure, infections, bronchoconstriction, atrial fibrillation, and acute kidney injury. However, the practical significance of these effects is not clear. The purpose of this meta-analysis was to evaluate whether vitamin C has an effect on the practical outcomes: length of stay in the intensive care unit (ICU) and duration of mechanical ventilation. We identified 18 relevant controlled trials with a total of 2004 patients, 13 of which investigated patients undergoing elective cardiac surgery. We carried out the meta-analysis using the inverse variance, fixed effect options, using the ratio of means scale. In 12 trials with 1766 patients, vitamin C reduced the length of ICU stay on average by 7.8% (95% CI: 4.2% to 11.2%; p = 0.00003). In six trials, orally administered vitamin C in doses of 1⁻3 g/day (weighted mean 2.0 g/day) reduced the length of ICU stay by 8.6% (p = 0.003). In three trials in which patients needed mechanical ventilation for over 24 hours, vitamin C shortened the duration of mechanical ventilation by 18.2% (95% CI 7.7% to 27%; p = 0.001). Given the insignificant cost of vitamin C, even an 8% reduction in ICU stay is worth exploring. The effects of vitamin C on ICU patients should be investigated in more detail.
Collapse
Affiliation(s)
- Harri Hemilä
- Department of Public Health, University of Helsinki, POB 41, FI-00014 Helsinki, Finland.
| | - Elizabeth Chalker
- School of Public Health, University of Sydney, Sydney 2006, Australia.
| |
Collapse
|
32
|
Shih YM, Cooke MS, Pan CH, Chao MR, Hu CW. Clinical relevance of guanine-derived urinary biomarkers of oxidative stress, determined by LC-MS/MS. Redox Biol 2018; 20:556-565. [PMID: 30508700 PMCID: PMC6279954 DOI: 10.1016/j.redox.2018.11.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/18/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022] Open
Abstract
A reliable and fast liquid chromatography-tandem mass spectrometry method has been developed for the simultaneous determination of three oxidized nucleic acid damage products in urine, 8-oxoguanine (8-oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo). We applied this method to assess the effect of various urine workup procedures on the urinary concentrations of the oxidized nucleic acid products. Our results showed that frozen urine samples must be warmed (i.e., to 37 °C) to re-dissolve any precipitates prior to analysis. We showed that common workup procedures, such as thawing at room temperature or dilution with deionized water, are not capable of releasing fully the oxidized nucleic acid products from the precipitates, and result in significant underestimation (up to ~ 100% for 8-oxoGua, ~ 86% for both 8-oxodGuo and 8-oxoGuo). With this method, we further assessed and compared the ability of the three oxidized nucleic acid products, as well as malondialdehyde (MDA, a product of lipid peroxidation), to biomonitor oxidative stress in vivo. We measured a total of 315 urine samples from subjects with burdens of oxidative stress from low to high, including healthy subjects, patients with chronic obstructive pulmonary disease (COPD), and patients on mechanical ventilation (MV). The results showed that both the MV and COPD patients had significantly higher urinary levels of 8-oxoGua, 8-oxodGuo, and 8-oxoGuo (P < 0.001), but lower MDA levels, compared to healthy controls. Receiver operating characteristic curve analysis revealed that urinary 8-oxoGuo is the most sensitive biomarker for oxidative stress with area under the curve (AUC) of 0.91, followed by 8-oxodGuo (AUC: 0.80) and 8-oxoGua (AUC: 0.76). Interestingly, MDA with AUC of 0.34 failed to discriminate the patients from healthy controls. Emerging evidence suggests a potential clinical utility for the measurement of urinary 8-oxoGuo, and to a lesser extent 8-oxodGuo, which is strongly supported by our findings.
Collapse
Affiliation(s)
- Ying-Ming Shih
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan; Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Environmental Health Sciences, and Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Chih-Hong Pan
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, New Taipei City 221, Taiwan
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| |
Collapse
|
33
|
Tamura T, Otulakowski G, Kavanagh BP. Could nanotechnology make vitamin E therapeutically effective? Am J Physiol Lung Cell Mol Physiol 2018; 316:L1-L5. [PMID: 30407864 DOI: 10.1152/ajplung.00430.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vitamin E (VitE) has important antioxidant and anti-inflammatory effects and is necessary for normal physiological function. α-Tocopherol (α-T), the predominant form of VitE in human tissues, has been extensively studied. Other VitE forms, particularly γ-tocopherol (γ-T), are also potent bioactive molecules. The effects are complex, involving both reactive oxygen and nitrogen species, but trials of VitE have been generally negative. We propose that a nanoparticle approach to delivery of VitE might provide effective delivery and therapeutic effect.
Collapse
Affiliation(s)
- Tetsuya Tamura
- Program in Translational Medicine, The Research Institute, and the Departments of Critical Care Medicine and Anesthesia, Hospital for Sick Children, University of Toronto , Toronto , Canada
| | - Gail Otulakowski
- Program in Translational Medicine, The Research Institute, and the Departments of Critical Care Medicine and Anesthesia, Hospital for Sick Children, University of Toronto , Toronto , Canada
| | - Brian P Kavanagh
- Program in Translational Medicine, The Research Institute, and the Departments of Critical Care Medicine and Anesthesia, Hospital for Sick Children, University of Toronto , Toronto , Canada
| |
Collapse
|
34
|
Zhang M, Jativa DF. Vitamin C supplementation in the critically ill: A systematic review and meta-analysis. SAGE Open Med 2018; 6:2050312118807615. [PMID: 30364374 PMCID: PMC6196621 DOI: 10.1177/2050312118807615] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Low plasma levels of vitamin C are associated with adverse outcomes, including increased mortality, in critically ill patients. Several trials have suggested that the administration of intravenous vitamin C in this setting may have beneficial effects, such as reducing the incidence of organ failure and improving survival. However, these studies have generally involved combination therapies consisting of vitamin C along with other antioxidants, confounding the effects of vitamin C alone. The primary objective of this meta-analysis is to investigate the effects of isolated intravenous supplementation of vitamin C in adults with critical illness. METHODS A database search was conducted for studies on the use of intravenous vitamin C in adult patients with critical illness. The primary outcome assessed was mortality at the longest follow-up time available. Secondary outcomes were the duration of mechanical ventilation, duration of vasopressor support, fluid requirements, and urine output in the first 24 h of intensive care unit admission. RESULTS Five studies (four randomized controlled trials and one retrospective review) enrolling a total of 142 patients were included in this meta-analysis. Compared with controls, the administration of intravenous vitamin C was associated with a decreased need for vasopressor support (standardized mean difference -0.71; 95% confidence interval (-1.16 to -0.26); p = 0.002) and decreased duration of mechanical ventilation (standardized mean difference -0.5; 95% confidence interval (-0.93 to -0.06); p = 0.03), but no difference was found in mortality (odds ratio 0.76; 95% confidence interval (0.27 to 2.16); p = 0.6). Trends were also noted toward decreased fluid requirements and increased urine output. No adverse effects were reported. CONCLUSION The administration of intravenous vitamin C may lead to vasopressor sparing effects and a reduced need for mechanical ventilation in the critically ill, without affecting overall mortality. However, these results should be interpreted in light of the limitations of the primary literature and should serve as a preview of upcoming trials in this area.
Collapse
Affiliation(s)
- Michael Zhang
- Department of Medicine, VA Medical Center, Cleveland, OH, USA
| | - David F Jativa
- Department of Medicine, Aventura Hospital & Medical Center, Aventura, FL, USA
| |
Collapse
|
35
|
ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr 2018; 38:48-79. [PMID: 30348463 DOI: 10.1016/j.clnu.2018.08.037] [Citation(s) in RCA: 1379] [Impact Index Per Article: 197.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023]
Abstract
Following the new ESPEN Standard Operating Procedures, the previous guidelines to provide best medical nutritional therapy to critically ill patients have been updated. These guidelines define who are the patients at risk, how to assess nutritional status of an ICU patient, how to define the amount of energy to provide, the route to choose and how to adapt according to various clinical conditions. When to start and how to progress in the administration of adequate provision of nutrients is also described. The best determination of amount and nature of carbohydrates, fat and protein are suggested. Special attention is given to glutamine and omega-3 fatty acids. Particular conditions frequently observed in intensive care such as patients with dysphagia, frail patients, multiple trauma patients, abdominal surgery, sepsis, and obesity are discussed to guide the practitioner toward the best evidence based therapy. Monitoring of this nutritional therapy is discussed in a separate document.
Collapse
|
36
|
Diaphragm Weakness in the Critically Ill: Basic Mechanisms Reveal Therapeutic Opportunities. Chest 2018; 154:1395-1403. [PMID: 30144420 DOI: 10.1016/j.chest.2018.08.1028] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022] Open
Abstract
The diaphragm is the primary muscle of inspiration. Its capacity to respond to the load imposed by pulmonary disease is a major determining factor both in the onset of ventilatory failure and in the ability to successfully separate patients from ventilator support. It has recently been established that a very large proportion of critically ill patients exhibit major weakness of the diaphragm, which is associated with poor clinical outcomes. The two greatest risk factors for the development of diaphragm weakness in critical illness are the use of mechanical ventilation and the presence of sepsis. Loss of force production by the diaphragm under these conditions is caused by a combination of defective contractility and reduced diaphragm muscle mass. Importantly, many of the same molecular mechanisms are implicated in the diaphragm dysfunction associated with both mechanical ventilation and sepsis. This review outlines the primary cellular mechanisms identified thus far at the nexus of diaphragm dysfunction associated with mechanical ventilation and/or sepsis, and explores the potential for treatment or prevention of diaphragm weakness in critically ill patients through therapeutic manipulation of these final common pathway targets.
Collapse
|
37
|
Hill A, Wendt S, Benstoem C, Neubauer C, Meybohm P, Langlois P, Adhikari NK, Heyland DK, Stoppe C. Vitamin C to Improve Organ Dysfunction in Cardiac Surgery Patients-Review and Pragmatic Approach. Nutrients 2018; 10:nu10080974. [PMID: 30060468 PMCID: PMC6115862 DOI: 10.3390/nu10080974] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/22/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022] Open
Abstract
The pleiotropic biochemical and antioxidant functions of vitamin C have sparked recent interest in its application in intensive care. Vitamin C protects important organ systems (cardiovascular, neurologic and renal systems) during inflammation and oxidative stress. It also influences coagulation and inflammation; its application might prevent organ damage. The current evidence of vitamin C's effect on pathophysiological reactions during various acute stress events (such as sepsis, shock, trauma, burn and ischemia-reperfusion injury) questions whether the application of vitamin C might be especially beneficial for cardiac surgery patients who are routinely exposed to ischemia/reperfusion and subsequent inflammation, systematically affecting different organ systems. This review covers current knowledge about the role of vitamin C in cardiac surgery patients with focus on its influence on organ dysfunctions. The relationships between vitamin C and clinical health outcomes are reviewed with special emphasis on its application in cardiac surgery. Additionally, this review pragmatically discusses evidence on the administration of vitamin C in every day clinical practice, tackling the issues of safety, monitoring, dosage, and appropriate application strategy.
Collapse
Affiliation(s)
- Aileen Hill
- Department of Intensive Care Medicine, University Hospital RWTH, D-52074 Aachen, Germany.
- Department of Anesthesiology, University Hospital RWTH, D-52074 Aachen, Germany.
- 3CARE-Cardiovascular Critical Care & Anesthesia Evaluation and Research, D-52074 Aachen, Germany.
| | - Sebastian Wendt
- 3CARE-Cardiovascular Critical Care & Anesthesia Evaluation and Research, D-52074 Aachen, Germany.
- Department of Thoracic, Cardiac and Vascular Surgery, University Hospital RWTH, D-52074 Aachen, Germany.
| | - Carina Benstoem
- Department of Intensive Care Medicine, University Hospital RWTH, D-52074 Aachen, Germany.
- 3CARE-Cardiovascular Critical Care & Anesthesia Evaluation and Research, D-52074 Aachen, Germany.
| | - Christina Neubauer
- Department of Intensive Care Medicine, University Hospital RWTH, D-52074 Aachen, Germany.
- 3CARE-Cardiovascular Critical Care & Anesthesia Evaluation and Research, D-52074 Aachen, Germany.
| | - Patrick Meybohm
- Department of Anesthesiology and Intensive Care, University Hospital Frankfurt, D-60590 Frankfurt, Germany.
| | - Pascal Langlois
- Department of Anesthesiology and Reanimation, Faculty of Médecine and Health Sciences, Sherbrooke University Hospital, Sherbrooke, Québec, QC J1H 5N4, Canada.
| | - Neill Kj Adhikari
- Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Interdepartmental Division of Critical Care Medicine, University of Toronto; Toronto, ON M4N 3M5, Canada.
| | - Daren K Heyland
- Clinical Evaluation Research Unit, Kingston General Hospital, Kingston, ON K7L 2V7, Canada.
| | - Christian Stoppe
- Department of Intensive Care Medicine, University Hospital RWTH, D-52074 Aachen, Germany.
- 3CARE-Cardiovascular Critical Care & Anesthesia Evaluation and Research, D-52074 Aachen, Germany.
| |
Collapse
|
38
|
Tang H, L Kennedy C, Lee M, Gao Y, Xia H, Olguin F, Fraga DA, Ayers K, Choi S, Kim M, Tehrani A, Sowb YA, Rando TA, Shrager JB. Smad3 initiates oxidative stress and proteolysis that underlies diaphragm dysfunction during mechanical ventilation. Sci Rep 2017; 7:14530. [PMID: 29109401 DOI: 10.1038/s41598-017-11978-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 08/23/2017] [Indexed: 01/08/2023] Open
Abstract
Prolonged use of mechanical ventilation (MV) leads to atrophy and dysfunction of the major inspiratory muscle, the diaphragm, contributing to ventilator dependence. Numerous studies have shown that proteolysis and oxidative stress are among the major effectors of ventilator-induced diaphragm muscle dysfunction (VIDD), but the upstream initiator(s) of this process remain to be elucidated. We report here that periodic diaphragm contraction via phrenic nerve stimulation (PNS) substantially reduces MV-induced proteolytic activity and oxidative stress in the diaphragm. We show that MV rapidly induces phosphorylation of Smad3, and PNS nearly completely prevents this effect. In cultured cells, overexpressed Smad3 is sufficient to induce oxidative stress and protein degradation, whereas inhibition of Smad3 activity suppresses these events. In rats subjected to MV, inhibition of Smad3 activity by SIS3 suppresses oxidative stress and protein degradation in the diaphragm and prevents the reduction in contractility that is induced by MV. Smad3's effect appears to link to STAT3 activity, which we previously identified as a regulator of VIDD. Inhibition of Smad3 suppresses STAT3 signaling both in vitro and in vivo. Thus, MV-induced diaphragm inactivity initiates catabolic changes via rapid activation of Smad3 signaling. An early intervention with PNS and/or pharmaceutical inhibition of Smad3 may prevent clinical VIDD.
Collapse
Affiliation(s)
- Huibin Tang
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Palo Alto, CA, USA.,VA Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Catherine L Kennedy
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Palo Alto, CA, USA.,VA Palo Alto Healthcare System, Palo Alto, CA, USA.,University of Maryland School of Medicine, Baltimore, MD, USA
| | - Myung Lee
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Palo Alto, CA, USA.,VA Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Yang Gao
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Palo Alto, CA, USA.,VA Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Hui Xia
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Palo Alto, CA, USA.,VA Palo Alto Healthcare System, Palo Alto, CA, USA.,Department of Thoracic-cardio Surgery, First Affiliated Hospital of PLA General Hospital, Beijing, China
| | - Francesca Olguin
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Palo Alto, CA, USA.,VA Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Danielle A Fraga
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Palo Alto, CA, USA.,VA Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Kelsey Ayers
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sehoon Choi
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Palo Alto, CA, USA.,VA Palo Alto Healthcare System, Palo Alto, CA, USA.,Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, Seoul, Korea
| | - Michael Kim
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Palo Alto, CA, USA.,VA Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Amir Tehrani
- Respiratory Management Technologies, LLC., San Francisco, CA, USA
| | - Yasser A Sowb
- Respiratory Management Technologies, LLC., San Francisco, CA, USA
| | - Thomas A Rando
- VA Palo Alto Healthcare System, Palo Alto, CA, USA.,Paul F. Glenn Laboratories for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph B Shrager
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Palo Alto, CA, USA. .,VA Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
39
|
Otulakowski G, Engelberts D, Arima H, Hirate H, Bayir H, Post M, Kavanagh BP. α-Tocopherol transfer protein mediates protective hypercapnia in murine ventilator-induced lung injury. Thorax 2017; 72:538-549. [PMID: 28159772 DOI: 10.1136/thoraxjnl-2016-209501] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/27/2022]
Abstract
RATIONALE Hypercapnia is common in mechanically ventilated patients. Experimentally, 'therapeutic hypercapnia' can protect, but it can also cause harm, depending on the mechanism of injury. Hypercapnia suppresses multiple signalling pathways. Previous investigations have examined mechanisms that were known a priori, but only a limited number of pathways, each suppressed by CO2, have been reported. OBJECTIVE Because of the complexity and interdependence of processes in acute lung injury, this study sought to fill in knowledge gaps using an unbiased screen, aiming to identify a specifically upregulated pathway. METHODS AND RESULTS Using genome-wide gene expression analysis in a mouse model of ventilator-induced lung injury, we discovered a previously unsuspected mechanism by which CO2 can protect against injury: induction of the transporter protein for α-tocopherol, α-tocopherol transfer protein (αTTP). Pulmonary αTTP was induced by inspired CO2 in two in vivo murine models of ventilator-induced lung injury; the level of αTTP expression correlated with degree of lung protection; and, absence of the αTTP gene significantly reduced the protective effects of CO2. α-Tocopherol is a potent antioxidant and hypercapnia increased lung α-tocopherol in wild-type mice, but this did not alter superoxide generation or expression of NRF2-dependent antioxidant response genes in wild-type or in αTTP-/- mice. In concordance with a regulatory role for α-tocopherol in lipid mediator synthesis, hypercapnia attenuated 5-lipoxygenase activity and this was dependent on the presence of αTTP. CONCLUSIONS Inspired CO2 upregulates αTTP which increases lung α-tocopherol levels and inhibits synthesis of a pathogenic chemoattractant.
Collapse
Affiliation(s)
- Gail Otulakowski
- Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Canada
| | - Doreen Engelberts
- Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Canada
| | - Hajime Arima
- Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Canada.,Department of Critical Care Medicine, Hospital for Sick Children, Toronto, Canada.,Department of Anesthesiology and Intensive Care Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Hirate
- Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Canada.,Department of Critical Care Medicine, Hospital for Sick Children, Toronto, Canada.,Department of Anesthesiology and Intensive Care Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hülya Bayir
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Martin Post
- Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Canada
| | - Brian P Kavanagh
- Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Canada.,Department of Critical Care Medicine, Hospital for Sick Children, Toronto, Canada.,Department of Anesthesia, University of Toronto, Toronto, Canada
| |
Collapse
|
40
|
Ward D, Fulbrook P. Nursing Strategies for Effective Weaning of the Critically Ill Mechanically Ventilated Patient. Crit Care Nurs Clin North Am 2016; 28:499-512. [PMID: 28236395 DOI: 10.1016/j.cnc.2016.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The risks imposed by mechanical ventilation can be mitigated by nurses' use of strategies that promote early but appropriate reduction of ventilatory support and timely extubation. Weaning from mechanical ventilation is confounded by the multiple impacts of critical illness on the body's systems. Effective weaning strategies that combine several interventions that optimize weaning readiness and assess readiness to wean, and use a weaning protocol in association with spontaneous breathing trials, are likely to reduce the requirement for mechanical ventilatory support in a timely manner. Weaning strategies should be reviewed and updated regularly to ensure congruence with the best available evidence.
Collapse
Affiliation(s)
- Darian Ward
- Education, Training and Research, Wide Bay Hospital and Health Service, 65 Main Street, Hervey Bay, Queensland 4655, Australia.
| | - Paul Fulbrook
- Nursing Research and Practice Development Centre, The Prince Charles Hospital, Brisbane 4032, Australia; School of Nursing, Midwifery and Paramedicine, Australian Catholic University, 1100 Nudgee Road, Brisbane 4014, Australia
| |
Collapse
|
41
|
Koekkoek WAC(K, van Zanten ARH. Antioxidant Vitamins and Trace Elements in Critical Illness. Nutr Clin Pract 2016; 31:457-74. [DOI: 10.1177/0884533616653832] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
42
|
|