1
|
Halder N, Yadav S, Lal G. Neuroimmune communication of the cholinergic system in gut inflammation and autoimmunity. Autoimmun Rev 2024; 23:103678. [PMID: 39500481 DOI: 10.1016/j.autrev.2024.103678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Neuroimmune communication in the body forms a bridge between two central regulatory systems of the body, i.e., nervous and immune systems. The cholinergic system is a crucial modulatory neurotransmitter in the central and peripheral nervous system. It includes the neurotransmitter acetylcholine (ACh), the enzyme required for the synthesis of ACh (choline acetyltransferase, ChAT), the enzyme required for its degradation (acetylcholinesterase, AChE), and cholinergic receptors (Nicotinic acetylcholine receptors and muscarinic acetylcholine receptors). The cholinergic system in neurons is well known for its role in cognitive function, sensory perception, motor control, learning, and memory processes. It has been shown that the non-neuronal cholinergic system (NNCS) is present in various tissues and immune cells and forms a neuroimmune communications system. In the present review, we discussed the NNCS on immune cells, its role in homeostasis and inflammatory reactions in the gut, and how it can be exploited in treating inflammatory responses.
Collapse
Affiliation(s)
- Namrita Halder
- Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), SPPU campus, Ganeshkhind, Pune, MH-411007, India
| | - Sourabh Yadav
- Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), SPPU campus, Ganeshkhind, Pune, MH-411007, India
| | - Girdhari Lal
- Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), SPPU campus, Ganeshkhind, Pune, MH-411007, India.
| |
Collapse
|
2
|
Natarajan C, Le LHD, Gunasekaran M, Tracey KJ, Chernoff D, Levine YA. Electrical stimulation of the vagus nerve ameliorates inflammation and disease activity in a rat EAE model of multiple sclerosis. Proc Natl Acad Sci U S A 2024; 121:e2322577121. [PMID: 38968104 PMCID: PMC11252997 DOI: 10.1073/pnas.2322577121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024] Open
Abstract
Multiple sclerosis (MS) is a demyelinating central nervous system (CNS) disorder that is associated with functional impairment and accruing disability. There are multiple U.S. Food and Drug Administration (FDA)-approved drugs that effectively dampen inflammation and slow disability progression. However, these agents do not work well for all patients and are associated with side effects that may limit their use. The vagus nerve (VN) provides a direct communication conduit between the CNS and the periphery, and modulation of the inflammatory reflex via electrical stimulation of the VN (VNS) shows efficacy in ameliorating pathology in several CNS and autoimmune disorders. We therefore investigated the impact of VNS in a rat experimental autoimmune encephalomyelitis (EAE) model of MS. In this study, VNS-mediated neuroimmune modulation is demonstrated to effectively decrease EAE disease severity and duration, infiltration of neutrophils and pathogenic lymphocytes, myelin damage, blood-brain barrier disruption, fibrinogen deposition, and proinflammatory microglial activation. VNS modulates expression of genes that are implicated in MS pathogenesis, as well as those encoding myelin proteins and transcription factors regulating new myelin synthesis. Together, these data indicate that neuroimmune modulation via VNS may be a promising approach to treat MS, that not only ameliorates symptoms but potentially also promotes myelin repair (remyelination).
Collapse
Affiliation(s)
| | | | | | - Kevin J. Tracey
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY11030
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
| | | | - Yaakov A. Levine
- SetPoint Medical, Valencia, CA91355
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY11549
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm171 76, Sweden
| |
Collapse
|
3
|
Abraham MN, Nedeljkovic-Kurepa A, Fernandes TD, Yaipen O, Brewer MR, Leisman DE, Taylor MD, Deutschman CS. M1 cholinergic signaling in the brain modulates cytokine levels and splenic cell sub-phenotypes following cecal ligation and puncture. Mol Med 2024; 30:22. [PMID: 38317082 PMCID: PMC10845657 DOI: 10.1186/s10020-024-00787-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The contribution of the central nervous system to sepsis pathobiology is incompletely understood. In previous studies, administration of endotoxin to mice decreased activity of the vagus anti-inflammatory reflex. Treatment with the centrally-acting M1 muscarinic acetylcholine (ACh) receptor (M1AChR) attenuated this endotoxin-mediated change. We hypothesize that decreased M1AChR-mediated activity contributes to inflammation following cecal ligation and puncture (CLP), a mouse model of sepsis. METHODS In male C57Bl/6 mice, we quantified basal forebrain cholinergic activity (immunostaining), hippocampal neuronal activity, serum cytokine/chemokine levels (ELISA) and splenic cell subtypes (flow cytometry) at baseline, following CLP and following CLP in mice also treated with the M1AChR agonist xanomeline. RESULTS At 48 h. post-CLP, activity in basal forebrain cells expressing choline acetyltransferase (ChAT) was half of that observed at baseline. Lower activity was also noted in the hippocampus, which contains projections from ChAT-expressing basal forebrain neurons. Serum levels of TNFα, IL-1β, MIP-1α, IL-6, KC and G-CSF were higher post-CLP than at baseline. Post-CLP numbers of splenic macrophages and inflammatory monocytes, TNFα+ and ILβ+ neutrophils and ILβ+ monocytes were higher than baseline while numbers of central Dendritic Cells (cDCs), CD4+ and CD8+ T cells were lower. When, following CLP, mice were treated with xanomeline activity in basal forebrain ChAT-expressing neurons and in the hippocampus was significantly higher than in untreated animals. Post-CLP serum concentrations of TNFα, IL-1β, and MIP-1α, but not of IL-6, KC and G-CSF, were significantly lower in xanomeline-treated mice than in untreated mice. Post-CLP numbers of splenic neutrophils, macrophages, inflammatory monocytes and TNFα+ neutrophils also were lower in xanomeline-treated mice than in untreated animals. Percentages of IL-1β+ neutrophils, IL-1β+ monocytes, cDCs, CD4+ T cells and CD8+ T cells were similar in xanomeline-treated and untreated post-CLP mice. CONCLUSION Our findings indicate that M1AChR-mediated responses modulate CLP-induced alterations in serum levels of some, but not all, cytokines/chemokines and affected splenic immune response phenotypes.
Collapse
Affiliation(s)
- Mabel N Abraham
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, New York, USA
- Sepsis Research Laboratories, The Feinstein Institutes for Medical Research, Northwell Health, Room 3140, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Ana Nedeljkovic-Kurepa
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, New York, USA
- Sepsis Research Laboratories, The Feinstein Institutes for Medical Research, Northwell Health, Room 3140, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Tiago D Fernandes
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, New York, USA
- Sepsis Research Laboratories, The Feinstein Institutes for Medical Research, Northwell Health, Room 3140, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Omar Yaipen
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, New York, USA
- Sepsis Research Laboratories, The Feinstein Institutes for Medical Research, Northwell Health, Room 3140, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Mariana R Brewer
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, New York, USA
- Sepsis Research Laboratories, The Feinstein Institutes for Medical Research, Northwell Health, Room 3140, 350 Community Drive, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Daniel E Leisman
- Department of Medicine, Massachusetts General Hospital, Boston, USA
| | - Matthew D Taylor
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, New York, USA
- Sepsis Research Laboratories, The Feinstein Institutes for Medical Research, Northwell Health, Room 3140, 350 Community Drive, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Clifford S Deutschman
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, New York, USA.
- Sepsis Research Laboratories, The Feinstein Institutes for Medical Research, Northwell Health, Room 3140, 350 Community Drive, Manhasset, NY, 11030, USA.
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
4
|
Keever KR, Cui K, Casteel JL, Singh S, Hoover DB, Williams DL, Pavlov VA, Yakubenko VP. Cholinergic signaling via the α7 nicotinic acetylcholine receptor regulates the migration of monocyte-derived macrophages during acute inflammation. J Neuroinflammation 2024; 21:3. [PMID: 38178134 PMCID: PMC10765732 DOI: 10.1186/s12974-023-03001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND The involvement of the autonomic nervous system in the regulation of inflammation is an emerging concept with significant potential for clinical applications. Recent studies demonstrate that stimulating the vagus nerve activates the cholinergic anti-inflammatory pathway that inhibits pro-inflammatory cytokines and controls inflammation. The α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages plays a key role in mediating cholinergic anti-inflammatory effects through a downstream intracellular mechanism involving inhibition of NF-κB signaling, which results in suppression of pro-inflammatory cytokine production. However, the role of the α7nAChR in the regulation of other aspects of the immune response, including the recruitment of monocytes/macrophages to the site of inflammation remained poorly understood. RESULTS We observed an increased mortality in α7nAChR-deficient mice (compared with wild-type controls) in mice with endotoxemia, which was paralleled with a significant reduction in the number of monocyte-derived macrophages in the lungs. Corroborating these results, fluorescently labeled α7nAChR-deficient monocytes adoptively transferred to WT mice showed significantly diminished recruitment to the inflamed tissue. α7nAChR deficiency did not affect monocyte 2D transmigration across an endothelial monolayer, but it significantly decreased the migration of macrophages in a 3D fibrin matrix. In vitro analysis of major adhesive receptors (L-selectin, β1 and β2 integrins) and chemokine receptors (CCR2 and CCR5) revealed reduced expression of integrin αM and αX on α7nAChR-deficient macrophages. Decreased expression of αMβ2 was confirmed on fluorescently labeled, adoptively transferred α7nAChR-deficient macrophages in the lungs of endotoxemic mice, indicating a potential mechanism for α7nAChR-mediated migration. CONCLUSIONS We demonstrate a novel role for the α7nAChR in mediating macrophage recruitment to inflamed tissue, which indicates an important new aspect of the cholinergic regulation of immune responses and inflammation.
Collapse
Affiliation(s)
- Kasey R Keever
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70582, Johnson, TN, USA
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson, TN, USA
| | - Kui Cui
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70582, Johnson, TN, USA
| | - Jared L Casteel
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70582, Johnson, TN, USA
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson, TN, USA
| | - Sanjay Singh
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70582, Johnson, TN, USA
| | - Donald B Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70582, Johnson, TN, USA
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson, TN, USA
| | - David L Williams
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson, TN, USA
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson, TN, USA
| | - Valentin A Pavlov
- Center for Biomedical Science and Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11550, USA
| | - Valentin P Yakubenko
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70582, Johnson, TN, USA.
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson, TN, USA.
| |
Collapse
|
5
|
D’Haens G, Eberhardson M, Cabrijan Z, Danese S, van den Berg R, Löwenberg M, Fiorino G, Schuurman PR, Lind G, Almqvist P, Olofsson PS, Tracey KJ, Hanauer SB, Zitnik R, Chernoff D, Levine YA. Neuroimmune Modulation Through Vagus Nerve Stimulation Reduces Inflammatory Activity in Crohn's Disease Patients: A Prospective Open-label Study. J Crohns Colitis 2023; 17:1897-1909. [PMID: 37738465 PMCID: PMC10798868 DOI: 10.1093/ecco-jcc/jjad151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Indexed: 09/24/2023]
Abstract
BACKGROUND AND AIMS Crohn's disease [CD] is a debilitating, inflammatory condition affecting the gastrointestinal tract. There is no cure and sustained clinical and endoscopic remission is achieved by fewer than half of patients with current therapies. The immunoregulatory function of the vagus nerve, the 'inflammatory reflex', has been established in patients with rheumatoid arthritis and biologic-naive CD. The aim of this study was to explore the safety and efficacy of vagus nerve stimulation in patients with treatment-refractory CD, in a 16-week, open-label, multicentre, clinical trial. METHODS A vagus nerve stimulator was implanted in 17 biologic drug-refractory patients with moderately to severely active CD. One patient exited the study pre-treatment, and 16 patients were treated with vagus nerve stimulation [4/16 receiving concomitant biologics] during 16 weeks of induction and 24 months of maintenance treatment. Endpoints included clinical improvement, patient-reported outcomes, objective measures of inflammation [endoscopic/molecular], and safety. RESULTS There was a statistically significant and clinically meaningful decrease in CD Activity Index at Week 16 [mean ± SD: -86.2 ± 92.8, p = 0.003], a significant decrease in faecal calprotectin [-2923 ± 4104, p = 0.015], a decrease in mucosal inflammation in 11/15 patients with paired endoscopies [-2.1 ± 1.7, p = 0.23], and a decrease in serum tumour necrosis factor and interferon-γ [46-52%]. Two quality-of-life indices improved in 7/11 patients treated without biologics. There was one study-related severe adverse event: a postoperative infection requiring device explantation. CONCLUSIONS Neuroimmune modulation via vagus nerve stimulation was generally safe and well tolerated, with a clinically meaningful reduction in clinical disease activity associated with endoscopic improvement, reduced levels of faecal calprotectin and serum cytokines, and improved quality of life.
Collapse
Affiliation(s)
- Geert D’Haens
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Michael Eberhardson
- Department of Medicine, Karolinska Institutet, Solna, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Zeljko Cabrijan
- Division of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, Zagreb, Croatia
- Division of Gastroenterology, University of Applied Health Sciences, Zagreb, Croatia
- Josip Juraj Strossmayer University of Osijek School of Medicine, Osijek, Croatia
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Italy
- Department of Gastroenterology and Endoscopy, University Vita-Salute San Raffaele, Milano, Italy
| | - Remco van den Berg
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Mark Löwenberg
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gionata Fiorino
- Department of Gastroenterology and Digestive Endoscopy, VIta-Salute San Raffaele Hospital, Milan, Italy
- IBD Unit, Department of Gastroenterology and Digestive Endoscopy, San Camillo-Forlanini Hospital, Rome, Italy
| | | | - Göran Lind
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Per Almqvist
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
- Neurosurgery Stockholm AB, Stockholm, Sweden
| | - Peder S Olofsson
- Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Feinstein Institutes for Medical Research, Manhasset, New York
| | - Kevin J Tracey
- Feinstein Institutes for Medical Research, Manhasset, New York
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Stephen B Hanauer
- Division of Gastroenterology and Hepatology, Northwestern University–Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ralph Zitnik
- SetPoint Medical, Valencia, California, USA
- Valerio Consulting, Santa Barbara, California, USA
| | | | - Yaakov A Levine
- Department of Medicine, Karolinska Institutet, Solna, Sweden
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- SetPoint Medical, Valencia, California, USA
| |
Collapse
|
6
|
Huang FF, Cui WH, Ma LY, Chen Q, Liu Y. Crosstalk of nervous and immune systems in pancreatic cancer. Front Cell Dev Biol 2023; 11:1309738. [PMID: 38099290 PMCID: PMC10720593 DOI: 10.3389/fcell.2023.1309738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Pancreatic cancer is a highly malignant tumor known for its extremely low survival rate. The combination of genetic disorders within pancreatic cells and the tumor microenvironment contributes to the emergence and progression of this devastating disease. Extensive research has shed light on the nature of the microenvironmental cells surrounding the pancreatic cancer, including peripheral nerves and immune cells. Peripheral nerves release neuropeptides that directly target pancreatic cancer cells in a paracrine manner, while immune cells play a crucial role in eliminating cancer cells that have not evaded the immune response. Recent studies have revealed the intricate interplay between the nervous and immune systems in homeostatic condition as well as in cancer development. In this review, we aim to summarize the function of nerves in pancreatic cancer, emphasizing the significance to investigate the neural-immune crosstalk during the advancement of this malignant cancer.
Collapse
Affiliation(s)
- Fei-Fei Huang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wen-Hui Cui
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lan-Yue Ma
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Chen
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Yang Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
7
|
Wang L, Gao F, Wang Z, Liang F, Dai Y, Wang M, Wu J, Chen Y, Yan Q, Wang L. Transcutaneous auricular vagus nerve stimulation in the treatment of disorders of consciousness: mechanisms and applications. Front Neurosci 2023; 17:1286267. [PMID: 37920298 PMCID: PMC10618368 DOI: 10.3389/fnins.2023.1286267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
This review provides an in-depth exploration of the mechanisms and applications of transcutaneous auricular vagus nerve stimulation (taVNS) in treating disorders of consciousness (DOC). Beginning with an exploration of the vagus nerve's role in modulating brain function and consciousness, we then delve into the neuroprotective potential of taVNS demonstrated in animal models. The subsequent sections assess the therapeutic impact of taVNS on human DOC, discussing the safety, tolerability, and various factors influencing the treatment response. Finally, the review identifies the current challenges in taVNS research and outlines future directions, emphasizing the need for large-scale trials, optimization of treatment parameters, and comprehensive investigation of taVNS's long-term effects and underlying mechanisms. This comprehensive overview positions taVNS as a promising and safe modality for DOC treatment, with a focus on understanding its intricate neurophysiological influence and optimizing its application in clinical settings.
Collapse
Affiliation(s)
- Likai Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fei Gao
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhan Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Feng Liang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yongli Dai
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Mengchun Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jingyi Wu
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yaning Chen
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Qinjie Yan
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Litong Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Abraham MN, Nedeljkovic-Kurepa A, Fernandes T, Yaipen O, Brewer MR, Taylor MD, Deutschman C. M1 Cholinergic Signaling Modulates Cytokine Levels and Splenocyte Sub-Phenotypes Following Cecal Ligation and Puncture. RESEARCH SQUARE 2023:rs.3.rs-3353062. [PMID: 37886474 PMCID: PMC10602092 DOI: 10.21203/rs.3.rs-3353062/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Background The contribution of the central nervous system to sepsis pathobiology is incompletely understood. In previous studies, administration of endotoxin to mice decreased activity of the vagus anti-inflammatory reflex. Treatment with the centrally-acting M1/M4 muscarinic acetylcholine (ACh) receptor (M1/M4AChR) attenuated this endotoxin-mediated change. We hypothesize that decreased M1/M4AChR-mediated activity contributes to inflammation following cecal ligation and puncture (CLP), a mouse model of sepsis. Methods Basal forebrain cholinergic activity (immunostaining), serum cytokine/chemokine levels (ELISA) and splenocyte subtypes (flow cytometry) were examined at baseline and following CLP in male C57BL/6 male mice. Rersults At 48hrs. post-CLP, activity in basal forebrain cells expressing choline acetyltransferase (ChAT) was half of that observed at baseline. Lower activity was also noted in the hippocampus, which contains projections from ChAT-expressing basal forebrain neurons. Serum levels of TNFα, IL-1β, MIP-1α, IL-6, KC and G-CSF were higher post-CLP than at baseline. Post-CLP numbers of splenic macrophages and inflammatory monocytes, TNFa+ and ILb+ neutrophils and ILb+ monocytes were higher than baseline while numbers of central Dendritic Cells (cDCs), CD4+ and CD8+ T cells were lower. When, following CLP, mice were treated with xanomeline, a central-acting M1AChR agonist, activity in basal forebrain ChAT-expressing neurons and in the hippocampus was significantly higher than in untreated animals. Post-CLP serum concentrations of TNFα, IL-1β, and MIP-1α, but not of IL-6, KC and G-CSF, were significantly lower in xanomline-treated mice than in untreated mice. Post-CLP numbers of splenic neutrophils, macrophages, inflammatory monocytes and TNFα+ neutrophils also were lower in xanomeline-treated mice than in untreated animals. The effects of CLP on percentages of IL-1β+ neutrophils, IL-1β+ monocytes, cDCs, CD4+ T cells and CD8+ T cells were similar in xanomeline - treated and untreated post-CLP mice. Conclusion Our findings indicate that M1/M4AChR-mediated responses modulate CLP-induced alterations in the distribution of some, but not all, leukocyte phenotypes and certain cytokines and chemokines.
Collapse
Affiliation(s)
| | | | | | - Omar Yaipen
- Northwell Health Feinstein Institutes for Medical Research
| | | | | | - Clifford Deutschman
- Hofstra Northwell School of Medicine at Hofstra University: Donald and Barbara Zucker School of Medicine at Hofstra/Northwell
| |
Collapse
|
9
|
Bravo-Iñiguez CE, Fritz JR, Shukla S, Sarangi S, Thompson DA, Amin SG, Tsaava T, Chaudhry S, Valentino SP, Hoffman HB, Imossi CW, Addorisio ME, Valdes-Ferrer SI, Chavan SS, Blanc L, Czura CJ, Tracey KJ, Huston JM. Vagus nerve stimulation primes platelets and reduces bleeding in hemophilia A male mice. Nat Commun 2023; 14:3122. [PMID: 37264009 PMCID: PMC10235098 DOI: 10.1038/s41467-023-38505-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/05/2023] [Indexed: 06/03/2023] Open
Abstract
Deficiency of coagulation factor VIII in hemophilia A disrupts clotting and prolongs bleeding. While the current mainstay of therapy is infusion of factor VIII concentrates, inhibitor antibodies often render these ineffective. Because preclinical evidence shows electrical vagus nerve stimulation accelerates clotting to reduce hemorrhage without precipitating systemic thrombosis, we reasoned it might reduce bleeding in hemophilia A. Using two different male murine hemorrhage and thrombosis models, we show vagus nerve stimulation bypasses the factor VIII deficiency of hemophilia A to decrease bleeding and accelerate clotting. Vagus nerve stimulation targets acetylcholine-producing T lymphocytes in spleen and α7 nicotinic acetylcholine receptors (α7nAChR) on platelets to increase calcium uptake and enhance alpha granule release. Splenectomy or genetic deletion of T cells or α7nAChR abolishes vagal control of platelet activation, thrombus formation, and bleeding in male mice. Vagus nerve stimulation warrants clinical study as a therapy for coagulation disorders and surgical or traumatic bleeding.
Collapse
Affiliation(s)
- Carlos E Bravo-Iñiguez
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Jason R Fritz
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Shilpa Shukla
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Department of Pediatric Hematology and Oncology, Cohen Children's Medical Center, Northwell Health, Lake Success, NY, 11040, USA
| | - Susmita Sarangi
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Department of Pediatric Hematology and Oncology, Cohen Children's Medical Center, Northwell Health, Lake Success, NY, 11040, USA
| | - Dane A Thompson
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Department of Surgery, Northwell Health, 300 Community Drive, Manhasset, NY, 11030, USA
| | - Seema G Amin
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Department of Pediatric Hematology and Oncology, Cohen Children's Medical Center, Northwell Health, Lake Success, NY, 11040, USA
| | - Tea Tsaava
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Saher Chaudhry
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Sara P Valentino
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Hannah B Hoffman
- Department of Surgery, Northwell Health, 300 Community Drive, Manhasset, NY, 11030, USA
| | - Catherine W Imossi
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Meghan E Addorisio
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Sergio I Valdes-Ferrer
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Sangeeta S Chavan
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Lionel Blanc
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Departments of Molecular Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Boulevard, Hempstead, NY, 11549, USA
| | - Christopher J Czura
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Kevin J Tracey
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Jared M Huston
- Institute of Bioelectronic Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
- Department of Surgery, Northwell Health, 300 Community Drive, Manhasset, NY, 11030, USA.
- Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Boulevard, Hempstead, NY, 11549, USA.
| |
Collapse
|
10
|
Liu J, Dong S, Liu S. Aberrant parasympathetic responses in acupuncture therapy for restoring immune homeostasis. ACUPUNCTURE AND HERBAL MEDICINE 2023; 3:69-75. [DOI: 10.1097/hm9.0000000000000060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Acupuncture is an effective therapy used worldwide to treat various diseases, including infections, allergic disorders, autoimmune diseases, and immunodeficiency syndromes. Except for the hypothalamic-pituitary-adrenal axis, acupuncture exerts its regulatory effect mainly by producing autonomic reflexes, including somatic-sympathetic and somatic-parasympathetic reflexes. In this review, we discuss the updated progress of the cholinergic vagal efferent pathway, vagal-adrenal axis, local spinal sacral-parasympathetic pathway, and the somatotopic evocation of parasympathetic responses related to restoring immune homeostasis within acupuncture therapy. Targeting the parasympathetic reflex offers scientific instruction for the design of acupuncture protocols for immunological diseases, providing more specialized comprehensive treatment recommendations.
Graphical abstract:
http://links.lww.com/AHM/A49
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Shun Dong
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Shenbin Liu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Huashan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Jacob Y, Schneider B, Spies C, Heinrich M, von Haefen C, Kho W, Pohrt A, Müller A. In a secondary analysis from a randomised, double-blind placebo-controlled trial Dexmedetomidine blocks cholinergic dysregulation in delirium pathogenesis in patients with major surgery. Sci Rep 2023; 13:3971. [PMID: 36894596 PMCID: PMC9998872 DOI: 10.1038/s41598-023-30756-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Dexmedetomidine is an alpha-2 adrenoreceptor agonist with anti-inflammatory and anti-delirogenic properties. Pathogenesis of postoperative delirium (POD) includes cholinergic dysfunction and deregulated inflammatory response to surgical trauma. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are discussed as biomarkers for both POD and severity in acute inflammation. To show whether there is a link between blood cholinesterase activities and dexmedetomidine, we performed a secondary analysis of a randomised, double-blind, placebo-controlled trial that recently showed a lower incidence of POD in the dexmedetomidine group. Abdominal or cardiac surgical patients aged ≥ 60 years were randomised to receive dexmedetomidine or placebo intra- and postoperatively in addition to standard general anaesthesia. We analysed the course of perioperative cholinesterase activities of 56 patients, measured preoperatively and twice postoperatively. Dexmedetomidine resulted in no change in AChE activity and caused a rapid recovery of BChE activity after an initial decrease, while placebo showed a significant decrease in both cholinesterase activities. There were no significant between-group differences at any point in time. From these data it can be assumed that dexmedetomidine could alleviate POD via altering the cholinergic anti-inflammatory pathway (CAIP). We advocate for further investigations to show the direct connection between dexmedetomidine and cholinesterase activity.
Collapse
Affiliation(s)
- Yanite Jacob
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charité Platz 1, 10117, Berlin, Germany
| | - Bill Schneider
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charité Platz 1, 10117, Berlin, Germany
| | - Claudia Spies
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charité Platz 1, 10117, Berlin, Germany
| | - Maria Heinrich
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charité Platz 1, 10117, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, 10178, Berlin, Germany
| | - Clarissa von Haefen
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charité Platz 1, 10117, Berlin, Germany
| | - Widuri Kho
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charité Platz 1, 10117, Berlin, Germany
| | - Anne Pohrt
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Anika Müller
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Charité Platz 1, 10117, Berlin, Germany.
| |
Collapse
|
12
|
Bao S, Lu Y, Zhang J, Xue L, Zhang Y, Wang P, Zhang F, Gu N, Sun J. Rapid improvement of heart repair in rats after myocardial infarction by precise magnetic stimulation on the vagus nerve with an injectable magnetic hydrogel. NANOSCALE 2023; 15:3532-3541. [PMID: 36723151 DOI: 10.1039/d2nr05073k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The imbalance between the sympathetic and the parasympathetic nervous system is one of the main pathogeneses of myocardial infarction (MI). Vagus nerve stimulation (VNS), which restores autonomic nervous balance by enhancing the parasympathetic drive, is shown to have benefits for patients with MI. As a clinically safe and effective remote neuromodulation method, magnetic stimulation is expected to overcome the problems of infection and nerve injury caused by electrode implantation. However, it is difficult to achieve precise stimulation on a single vagus nerve due to the poor focus of the magnetic field. Here, we described a novel magnetic vagus nerve stimulation (mVNS) system, which consisted of an injectable chitosan/β-glycerophosphate (CS/GP) hydrogel loaded with superparamagnetic iron oxide (SPIO) nanoparticles and a mild magnetic pulse sequence. The injectable hydrogel prepared from clinically safe materials ensured minimally invasive implantation, and the SPIO nanoparticles in the hydrogel mediated the precise magnetic stimulation of a single vagus nerve. Under a mild magnetic field (∼100 mT), a decrease in heart rate and a change in vagus nerve potential were found in rats under in situ injection of a magnetic CS/GP hydrogel. Magnetic stimulation on the vagus nerve for 4 weeks (20 Hz, three times daily, 5 minutes each time) significantly improved the cardiac function and reduced the infarct size of the rats subjected to myocardial infarction, accompanied by suppression of inflammatory cell infiltration and inflammation factor expression. Taken together, these results demonstrated that the mVNS exhibited promising potential for treating myocardial infarction in the clinic.
Collapse
Affiliation(s)
- Siyuan Bao
- The State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China.
| | - Yao Lu
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210009, P. R. China.
- Department of Cardiology, Xuzhou Central Hospital, The Affiliated XuZhou Hospital of Nanjing Medical University, No. 199 Jiefang South Road, Xuzhou, 221009, P. R. China
| | - Jian Zhang
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210009, P. R. China.
| | - Le Xue
- The State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China.
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, P. R. China
| | - Peng Wang
- The State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China.
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Fengxiang Zhang
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210009, P. R. China.
| | - Ning Gu
- School of Medicine, Nanjing University, Nanjing, 210009, P. R. China.
| | - Jianfei Sun
- The State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China.
| |
Collapse
|
13
|
Zivkovic AR, Paul GM, Hofer S, Schmidt K, Brenner T, Weigand MA, Decker SO. Increased Enzymatic Activity of Acetylcholinesterase Indicates the Severity of the Sterile Inflammation and Predicts Patient Outcome following Traumatic Injury. Biomolecules 2023; 13:biom13020267. [PMID: 36830636 PMCID: PMC9952955 DOI: 10.3390/biom13020267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Traumatic injury induces sterile inflammation, an immune response often associated with severe organ dysfunction. The cholinergic system acts as an anti-inflammatory in injured patients. Acetylcholinesterase (AChE), an enzyme responsible for the hydrolysis of acetylcholine, plays an essential role in controlling cholinergic activity. We hypothesized that a change in the AChE activity might indicate the severity of the traumatic injury. This study included 82 injured patients with an Injury Severity Score (ISS) of 4 or above and 40 individuals without injuries. Bedside-measured AChE was obtained on hospital arrival, followed by a second measurement 4-12 h later. C-reactive protein (CRP), white blood cell count (WBCC), and Sequential Organ Failure Assessment (SOFA) score were simultaneously collected. Injured patients showed an early and sustained increase in AChE activity. CRP remained unaffected at hospital admission and increased subsequently. Initially elevated WBCC recovered 4-12 h later. AChE activity directly correlated with the ISS and SOFA scores and predicted the length of ICU stay when measured at hospital admission. An early and sustained increase in AChE activity correlated with the injury severity and could predict the length of ICU stay in injured patients, rendering this assay a complementary diagnostic and prognostic tool at the hand of the attending clinician in the emergency unit.
Collapse
Affiliation(s)
- Aleksandar R. Zivkovic
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Correspondence: (A.R.Z.); (S.O.D.); Tel.: +49-(0)-62-21-56-36-843 (A.R.Z.); +49-(0)-62-21-56-36-380 (S.O.D.); Fax: +49-(0)-62-21-56-53-45 (A.R.Z. & S.O.D.)
| | - Georgina M. Paul
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Stefan Hofer
- Clinic for Anesthesiology, Intensive Care, Emergency Medicine I and Pain Therapy, Westpfalz Hospital, 67661 Kaiserslautern, Germany
| | - Karsten Schmidt
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Markus A. Weigand
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sebastian O. Decker
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Correspondence: (A.R.Z.); (S.O.D.); Tel.: +49-(0)-62-21-56-36-843 (A.R.Z.); +49-(0)-62-21-56-36-380 (S.O.D.); Fax: +49-(0)-62-21-56-53-45 (A.R.Z. & S.O.D.)
| |
Collapse
|
14
|
Alvarez MR, Alarcon JM, Roman CA, Lazaro D, Bobrowski-Khoury N, Baena-Caldas GP, Esber GR. Can a basic solution activate the inflammatory reflex? A review of potential mechanisms, opportunities, and challenges. Pharmacol Res 2023; 187:106525. [PMID: 36441036 DOI: 10.1016/j.phrs.2022.106525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022]
Abstract
Stimulation of the inflammatory reflex (IR) is a promising strategy to treat systemic inflammatory disorders. However, this strategy is hindered by the cost and side effects of traditional IR activators. Recently, oral intake of sodium bicarbonate (NaHCO3) has been suggested to activate the IR, providing a safe and inexpensive alternative. Critically, the mechanisms whereby NaHCO3 might achieve this effect and more broadly the pathways underlying the IR remain poorly understood. Here, we argue that the recognition of NaHCO3 as a potential IR activator presents exciting clinical and research opportunities. To aid this quest, we provide an integrative review of our current knowledge of the neural and cellular pathways mediating the IR and discuss the status of physiological models of IR activation. From this vantage point, we derive testable hypotheses on potential mechanisms whereby NaHCO3 might stimulate the IR and compare NaHCO3 with classic IR activators. Elucidation of these mechanisms will help determine the therapeutic value of NaHCO3 as an IR activator and provide new insights into the IR circuitry.
Collapse
Affiliation(s)
- Milena Rodriguez Alvarez
- Department of Internal Medicine, Division of Rheumatology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA.
| | - Juan Marcos Alarcon
- Department of Pathology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Christopher A Roman
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Deana Lazaro
- Division of Rheumatology, Department of Internal Medicine, Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY, USA
| | | | | | | |
Collapse
|
15
|
Cruz CJ, Dewberry LS, Otto KJ, Allen KD. Neuromodulation as a Potential Disease-Modifying Therapy for Osteoarthritis. Curr Rheumatol Rep 2023; 25:1-11. [PMID: 36435890 PMCID: PMC11438129 DOI: 10.1007/s11926-022-01094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW The following review discusses the therapeutic potential of targeting the autonomic nervous system (ANS) for osteoarthritis (OA) treatment and encourages the field to consider the candidacy of bioelectronic medicine as a novel OA treatment strategy. RECENT FINDINGS The study of OA pathogenesis has focused on changes occurring at the joint level. As such, treatments for OA have been aimed at the local joint environment, intending to resolve local inflammation and decrease pain. However, OA pathogenesis has shown to be more than joint wear and tear. Specifically, OA-related peripheral and central sensitization can prompt neuroplastic changes in the nervous system beyond the articular joint. These neuroplastic changes may alter physiologic systems, like the neuroimmune axis. In this way, OA and related comorbidities may share roots in the form of altered neuroimmune communication and autonomic dysfunction. ANS modulation may be able to modify OA pathogenesis or reduce the impact of OA comorbidities. Moreover, blocking chronic nociceptive drive from the joint may help to prevent maladaptive nervous system plasticity in OA.
Collapse
Affiliation(s)
- Carlos J Cruz
- J. Crayton Pruitt Family Department of Biomedical Engineering, Biomedical Sciences Building, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
- Pain Research and Intervention Center of Excellence, Gainesville, FL, USA
| | - L Savannah Dewberry
- J. Crayton Pruitt Family Department of Biomedical Engineering, Biomedical Sciences Building, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
| | - Kevin J Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, Biomedical Sciences Building, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, Biomedical Sciences Building, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA.
- Pain Research and Intervention Center of Excellence, Gainesville, FL, USA.
- Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
16
|
Payne SC, Romas E, Hyakumura T, Muntz F, Fallon JB. Abdominal vagus nerve stimulation alleviates collagen-induced arthritis in rats. Front Neurosci 2022; 16:1012133. [PMID: 36478876 PMCID: PMC9721112 DOI: 10.3389/fnins.2022.1012133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 09/10/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune inflammatory disease. Despite therapeutic advances, a significant proportion of RA patients are resistant to pharmacological treatment. Stimulation of the cervical vagus nerve is a promising alternative bioelectric neuromodulation therapeutic approach. However, recent clinical trials show cervical vagus nerve stimulation (VNS) was not effective in a significant proportion of drug resistant RA patients. Here we aim to assess if abdominal vagus nerve stimulation reduces disease severity in a collagen-induced arthritis (CIA) rat model. The abdominal vagus nerve of female Dark Agouti rats was implanted and CIA induced using collagen type II injection. VNS (1.6 mA, 200 μs pulse width, 50 μs interphase gap, 27 Hz frequency) was applied to awake freely moving rats for 3 h/day (days 11-17). At 17 days following the collagen injection, unstimulated CIA rats (n = 8) had significantly worse disease activity index, tumor necrosis factor-alpha (TNF-α) and receptor activator of NFκB ligand (RANKL) levels, synovitis and cartilage damage than normal rats (n = 8, Kruskal-Wallis: P < 0.05). However, stimulated CIA rats (n = 5-6) had significantly decreased inflammatory scores and ankle swelling (Kruskal-Wallis: P < 0.05) compared to unstimulated CIA rats (n = 8). Levels of tumor necrosis factor-alpha (TNF-α) remained at undetectable levels in stimulated CIA rats while levels of receptor activator of NFκB ligand (RANKL) were significantly less in stimulated CIA rats compared to unstimulated CIA rats (P < 0.05). Histopathological score of inflammation and cartilage loss in stimulated CIA rats were no different from that of normal (P > 0.05). In conclusion, abdominal VNS alleviates CIA and could be a promising therapy for patients with RA.
Collapse
Affiliation(s)
- Sophie C. Payne
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia
| | - Evange Romas
- Bionics Institute, East Melbourne, VIC, Australia
- Department of Rheumatology, St. Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - Tomoko Hyakumura
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia
| | - Fenella Muntz
- Experimental Sciences Medical Unit, St. Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - James B. Fallon
- Bionics Institute, East Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Parkville, VIC, Australia
- Department of Otolaryngology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
17
|
Morton C, Cotero V, Ashe J, Ginty F, Puleo C. Accelerating cutaneous healing in a rodent model of type II diabetes utilizing non-invasive focused ultrasound targeted at the spleen. Front Neurosci 2022; 16:1039960. [PMID: 36478877 PMCID: PMC9721138 DOI: 10.3389/fnins.2022.1039960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
Healing of wounds is delayed in Type 2 Diabetes Mellitus (T2DM), and new treatment approaches are urgently needed. Our earlier work showed that splenic pulsed focused ultrasound (pFUS) alters inflammatory cytokines in models of acute endotoxemia and pneumonia via modulation of the cholinergic anti-inflammatory pathway (CAP) (ref below). Based on these earlier results, we hypothesized that daily splenic exposure to pFUS during wound healing would accelerate closure rate via altered systemic cytokine titers. In this study, we applied non-invasive ultrasound directed to the spleen of a rodent model [Zucker Diabetic Sprague Dawley (ZDSD) rats] of T2DM with full thickness cutaneous excisional wounds in an attempt to accelerate wound healing via normalization of T2DM-driven aberrant cytokine expression. Daily (1x/day, Monday-Friday) pFUS pulses were targeted externally to the spleen area for 3 min over the course of 15 days. Wound diameter was measured daily, and levels of cytokines were evaluated in spleen and wound bed lysates. Non-invasive splenic pFUS accelerated wound closure by up to 4.5 days vs. sham controls. The time to heal in all treated groups was comparable to that of healthy rats from previously published studies (ref below), suggesting that the pFUS treatment restored a normal wound healing phenotype to the ZDSD rats. IL-6 was lower in stimulated spleen (-2.24 ± 0.81 Log2FC, p = 0.02) while L-selectin was higher in the wound bed of stimulated rodents (2.53 ± 0.72 Log2FC, p = 0.003). In summary, splenic pFUS accelerates healing in a T2DM rat model, demonstrating the potential of the method to provide a novel, non-invasive approach for wound care in diabetes.
Collapse
Affiliation(s)
| | | | | | - Fiona Ginty
- Biology and Applied Physics, GE Research, Niskayuna, NY, United States
| | - Christopher Puleo
- GE Research, Niskayuna, NY, United States
- *Correspondence: Christopher Puleo,
| |
Collapse
|
18
|
Roberts LB, Berkachy R, Wane M, Patel DF, Schnoeller C, Lord GM, Gounaris K, Ryffel B, Quesniaux V, Darby M, Horsnell WGC, Selkirk ME. Differential Regulation of Allergic Airway Inflammation by Acetylcholine. Front Immunol 2022; 13:893844. [PMID: 35711456 PMCID: PMC9196131 DOI: 10.3389/fimmu.2022.893844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/03/2022] [Indexed: 01/14/2023] Open
Abstract
Acetylcholine (ACh) from neuronal and non-neuronal sources plays an important role in the regulation of immune responses and is associated with the development of several disease pathologies. We have previously demonstrated that group 2 innate lymphoid cell (ILC2)-derived ACh is required for optimal type 2 responses to parasitic infection and therefore sought to determine whether this also plays a role in allergic inflammation. RoraCre+ChatLoxP mice (in which ILC2s cannot synthesize ACh) were exposed to an allergenic extract of the fungus Alternaria alternata, and immune responses in the airways and lung tissues were analyzed. Airway neutrophilia and expression of the neutrophil chemoattractants CXCL1 and CXCL2 were enhanced 24 h after exposure, suggesting that ILC2-derived ACh plays a role in limiting excessive pulmonary neutrophilic inflammation. The effect of non-selective depletion of ACh was examined by intranasal administration of a stable parasite-secreted acetylcholinesterase. Depletion of airway ACh in this manner resulted in a more profound enhancement of neutrophilia and chemokine expression, suggesting multiple cellular sources for the release of ACh. In contrast, depletion of ACh inhibited Alternaria-induced activation of ILC2s, suppressing the expression of IL-5, IL-13, and subsequent eosinophilia. Depletion of ACh reduced macrophages with an alternatively activated M2 phenotype and an increase in M1 macrophage marker expression. These data suggest that ACh regulates allergic airway inflammation in several ways, enhancing ILC2-driven eosinophilia but suppressing neutrophilia through reduced chemokine expression.
Collapse
Affiliation(s)
- Luke B. Roberts
- Department of Life Sciences, Imperial College London, London, United Kingdom,School of Immunology and Microbial Sciences, King’s College London, Great Maze Pond, London, United Kingdom,*Correspondence: Luke B. Roberts, ; Murray E. Selkirk,
| | - Rita Berkachy
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Madina Wane
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Dhiren F. Patel
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Corinna Schnoeller
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Graham M. Lord
- School of Immunology and Microbial Sciences, King’s College London, Great Maze Pond, London, United Kingdom,Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kleoniki Gounaris
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Bernhard Ryffel
- Laboratory of Molecular and Experimental Immunology and Neurogenetics, UMR 7355, CNRS-University of Orleans and Le Studium Institute for Advanced Studies, Rue Dupanloup, Orléans, France
| | - Valerie Quesniaux
- Laboratory of Molecular and Experimental Immunology and Neurogenetics, UMR 7355, CNRS-University of Orleans and Le Studium Institute for Advanced Studies, Rue Dupanloup, Orléans, France
| | - Matthew Darby
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - William G. C. Horsnell
- Laboratory of Molecular and Experimental Immunology and Neurogenetics, UMR 7355, CNRS-University of Orleans and Le Studium Institute for Advanced Studies, Rue Dupanloup, Orléans, France,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Murray E. Selkirk
- Department of Life Sciences, Imperial College London, London, United Kingdom,*Correspondence: Luke B. Roberts, ; Murray E. Selkirk,
| |
Collapse
|
19
|
Pan S, Wu YJ, Zhang SS, Cheng XP, Olatunji OJ, Yin Q, Zuo J. The Effect of α7nAChR Signaling on T Cells and Macrophages and Their Clinical Implication in the Treatment of Rheumatic Diseases. Neurochem Res 2022; 47:531-544. [PMID: 34783974 DOI: 10.1007/s11064-021-03480-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune disease and until now, the etiology and pathogenesis of RA is not fully understood, although dysregulation of immune cells is one of the leading cause of RA-related pathological changes. Based on current understanding, the priority of anti-rheumatic treatments is to restore immune homeostasis. There are several anti-rheumatic drugs with immunomodulatory effects available nowadays, but most of them have obvious safety or efficacy shortcomings. Therefore, the development of novel anti-rheumatic drugs is still in urgently needed. Cholinergic anti-inflammatory pathway (CAP) has been identified as an important aspect of the so-called neuro-immune regulation feedback, and the interaction between acetylcholine and alpha 7 nicotinic acetylcholine receptor (α7nAChR) serves as the foundation for this signaling. Consistent to its immunomodulatory functions, α7nAChR is extensively expressed by immune cells. Accordingly, CAP activation greatly affects the differentiation and function of α7nAChR-expressing immune cells. As a result, targeting α7nAChR will bring profound therapeutic impacts on the treatment of inflammatory diseases like RA. RA is widely recognized as a CD4+ T cells-driven disease. As a major component of innate immunity, macrophages also significantly contribute to RA-related immune abnormalities. Theoretically, manipulation of CAP in immune cells is a feasible way to treat RA. In this review, we summarized the roles of different T cells and macrophages subsets in the occurrence and progression of RA, and highlighted the immune consequences of CAP activation in these cells under RA circumstances. The in-depth discussion is supposed to inspire the development of novel cell-specific CAP-targeting anti-rheumatic regimens.
Collapse
Affiliation(s)
- Shu Pan
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, China
| | - Yi-Jin Wu
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, China
| | - Sa-Sa Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, China
| | - Xiu-Ping Cheng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | - Opeyemi Joshua Olatunji
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Qin Yin
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China.
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China.
| | - Jian Zuo
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China.
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, 241000, China.
| |
Collapse
|
20
|
Wu CH, Inoue T, Nakamura Y, Uni R, Hasegawa S, Maekawa H, Sugahara M, Wada Y, Tanaka T, Nangaku M, Inagi R. Activation of α7 nicotinic acetylcholine receptors attenuates monocyte-endothelial adhesion through FUT7 inhibition. Biochem Biophys Res Commun 2022; 590:89-96. [PMID: 34973535 DOI: 10.1016/j.bbrc.2021.12.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/02/2022]
Abstract
Cholinergic anti-inflammatory pathway (CAP) describes a neuronal-inflammatory reflex centered on systemic cytokine regulation by α7 nicotinic acetylcholine receptor (α7nAChR) activation of spleen-residue macrophage. However, the CAP mechanism attenuating distal tissue inflammation, inducing a low level of systemic inflammation, is lesser known. In this study, we hypothesized that CAP regulates monocyte accessibility by influencing their adhesion to endothelial cells. Using RNA-seq analysis, we identified that α1,3-Fucosyltransferase 7 (FucT-VII), the enzyme required for processing selectin ligands, was significantly downregulated by α7nAChR agonist among other cell-cell adhesion genes. The α7nAChR agonist inhibited monocytic cell line U-937 binding to P-selectin and adhesion to endothelial cells. Furthermore, α7nAChR agonist selectivity was confirmed by α7nAChR knockdown assays, showing that FUT7 inhibition and adhesion attenuation by the agonist was abolished by siRNA targeting α7nAChR encoding gene. Consistently, FUT7 knockdown inhibited the adhesive properties of U-937 and prevented them to adhere to endothelial cells. Overexpression of FUT7 also abrogated the adhesion attenuation induced by GTS-21 indicating that FUT7 inhibition was sufficient for inhibiting adhesion by α7nAChR activation. Our work demonstrated that α7nAChR activation regulates monocyte adhesion to endothelial cells through FUT7 inhibition, providing a novel insight into the CAP mechanism.
Collapse
Affiliation(s)
- Chia-Hsien Wu
- Department of Physiology of Visceral Function and Body Fluid, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tsuyoshi Inoue
- Department of Physiology of Visceral Function and Body Fluid, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Yasuna Nakamura
- Department of Physiology of Visceral Function and Body Fluid, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Rie Uni
- Division of CKD Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Sho Hasegawa
- Division of CKD Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Maekawa
- Division of CKD Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Mai Sugahara
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Tetsuhiro Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Reiko Inagi
- Division of CKD Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Mehranfard D, Speth RC. Cholinergic anti-inflammatory pathway and COVID-19. BIOIMPACTS : BI 2022; 12:171-174. [PMID: 35411295 PMCID: PMC8905591 DOI: 10.34172/bi.2022.23980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/28/2021] [Indexed: 01/09/2023]
Abstract
The cholinergic anti-inflammatory pathway (CAP) first described by Wang et al, 2003 has contemporary interest arising from the COVID-19 pandemic. While tobacco smoking has been considered an aggravating factor in the severity of COVID-19 infections, it has been suggested by some that the nicotine derived from tobacco could lessen the severity of COVID-19 infections. This spotlight briefly describes the CAP and its potential role as a therapeutic target for the treatment of COVID-19 infections using vagus nerve stimulation or selective alpha7 nicotinic acetylcholine receptor agonists.
Collapse
Affiliation(s)
- Danial Mehranfard
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Robert C. Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
- Department of Pharmacology and Physiology, School of Medicine, Georgetown University, Washington, DC, USA
| |
Collapse
|
22
|
Ramos-Martínez IE, Rodríguez MC, Cerbón M, Ramos-Martínez JC, Ramos-Martínez EG. Role of the Cholinergic Anti-Inflammatory Reflex in Central Nervous System Diseases. Int J Mol Sci 2021; 22:ijms222413427. [PMID: 34948222 PMCID: PMC8705572 DOI: 10.3390/ijms222413427] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
In several central nervous system diseases, it has been reported that inflammation may be related to the etiologic process, therefore, therapeutic strategies are being implemented to control inflammation. As the nervous system and the immune system maintain close bidirectional communication in physiological and pathological conditions, the modulation of inflammation through the cholinergic anti-inflammatory reflex has been proposed. In this review, we summarized the evidence supporting chemical stimulation with cholinergic agonists and vagus nerve stimulation as therapeutic strategies in the treatment of various central nervous system pathologies, and their effect on inflammation.
Collapse
Affiliation(s)
- Ivan Emmanuel Ramos-Martínez
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Université Paris Est Créteil (UPEC), 94010 Créteil, France;
| | - María Carmen Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, SSA, Morelos 62100, Mexico;
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Correspondence: (M.C.); (E.G.R.-M.)
| | - Juan Carlos Ramos-Martínez
- Cardiology Department, Hospital General Regional Lic. Ignacio Garcia Tellez IMSS, Yucatán 97150, Mexico;
| | - Edgar Gustavo Ramos-Martínez
- Escuela de Ciencias, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico
- Instituto de Cómputo Aplicado en Ciencias, Oaxaca 68044, Mexico
- Correspondence: (M.C.); (E.G.R.-M.)
| |
Collapse
|
23
|
May SM, Chiang E, Reyes A, Martir G, Patel A, Karmali S, Patel S, West S, Del Arroyo AG, Gourine AV, Ackland GL. Neuromodulation of innate immunity by remote ischaemic conditioning in humans: Experimental cross-over study. Brain Behav Immun Health 2021; 16:100299. [PMID: 34589791 PMCID: PMC8417773 DOI: 10.1016/j.bbih.2021.100299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 02/04/2023] Open
Abstract
Experimental animal studies on the mechanisms of remote ischaemic conditioning (RIC)-induced cardioprotection against ischaemia/reperfusion injury demonstrate involvement of both neuronal and humoral pathways. Autonomic parasympathetic (vagal) pathways confer organ protection through both direct innervation and/or immunomodulation, but evidence in humans is lacking. During acute inflammation, vagal release of acetylcholine suppresses CD11b expression, a critical β2-integrin regulating neutrophil adhesion to the endothelium and transmigration to sites of injury. Here, we tested the hypothesis that RIC recruits vagal activity in humans and has an anti-inflammatory effect by reducing neutrophil CD11b expression. Participants (age:50 ± 19 years; 53% female) underwent ultrasound-guided injection of local anaesthetic within the brachial plexus before applying 3 × 8 min cycles of brachial artery occlusion using a blood pressure cuff (RICblock). RIC was repeated 6 weeks later without brachial plexus block. Masked analysers quantified vagal activity (heart rate, heart rate variability (HRV)) before, and 10 min after, the last cycle of RIC. RR-interval increased after RIC (reduced heart rate) by 40 ms (95% confidence intervals (95%CI):13–66; n = 17 subjects; P = 0.003). RR-interval did not change after brachial plexus blockade (mean difference: 20 ms (95%CI:-11 to 50); P = 0.19). The high-frequency component of HRV was reduced after RICblock, but remained unchanged after RIC (P < 0.001), indicating that RIC preserved vagal activity. LPS-induced CD16+CD11b+ expression in whole blood (measured by flow cytometry) was reduced by RIC (3615 median fluorescence units (95%CI:475-6754); P = 0.026), compared with 2331 units (95%CI:-3921 to 8582); P = 0.726) after RICblock. These data suggest that in humans RIC recruits vagal cardiac and anti-inflammatory mechanisms via ischaemia/reperfusion-induced activation of sensory nerve fibres that innervate the organ undergoing RIC.
Collapse
Affiliation(s)
- Shaun M May
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Eric Chiang
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Anna Reyes
- University College Hospital NHS Trust, London, UK
| | | | - Amour Patel
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Shamir Karmali
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Sanjiv Patel
- University College Hospital NHS Trust, London, UK
| | - Simeon West
- University College Hospital NHS Trust, London, UK
| | - Ana Gutierrez Del Arroyo
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, UK
| | - Gareth L Ackland
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| |
Collapse
|
24
|
Wedn AM, El-Bassossy HM, Eid AH, El-Mas MM. Modulation of preeclampsia by the cholinergic anti-inflammatory pathway: Therapeutic perspectives. Biochem Pharmacol 2021; 192:114703. [PMID: 34324867 DOI: 10.1016/j.bcp.2021.114703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
The cholinergic anti-inflammatory pathway (CAP) is vital for the orchestration of the immune and inflammatory responses under normal and challenged conditions. Over the past two decades, peripheral and central circuits of CAP have been shown to be critically involved in dampening the inflammatory reaction in a wide array of inflammatory disorders. Additionally, emerging evidence supports a key role for CAP in the regulation of the female reproductive system during gestation as well as in the advent of serious pregnancy-related inflammatory insults such as preeclampsia (PE). Within this framework, the modulatory action of CAP encompasses the perinatal maternal and fetal adverse consequences that surface due to antenatal PE programming. Albeit, a considerable gap still exists in our knowledge of the precise cellular and molecular underpinnings of PE/CAP interaction, which hampered global efforts in safeguarding effective preventive or therapeutic measures against PE complications. Here, we summarize reports in the literature regarding the roles of peripheral and reflex cholinergic neuroinflammatory pathways of nicotinic acetylcholine receptors (nAChRs) in reprogramming PE complications in mothers and their progenies. The possible contributions of α7-nAChRs, cholinesterases, immune cells, adhesion molecules, angiogenesis, and endothelial dysfunction to the interaction have also been reviewed.
Collapse
Affiliation(s)
- Abdalla M Wedn
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hany M El-Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait.
| |
Collapse
|
25
|
Meroni E, Stakenborg N, Gomez-Pinilla PJ, Stakenborg M, Aguilera-Lizarraga J, Florens M, Delfini M, de Simone V, De Hertogh G, Goverse G, Matteoli G, Boeckxstaens GE. Vagus Nerve Stimulation Promotes Epithelial Proliferation and Controls Colon Monocyte Infiltration During DSS-Induced Colitis. Front Med (Lausanne) 2021; 8:694268. [PMID: 34307422 PMCID: PMC8292675 DOI: 10.3389/fmed.2021.694268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Background: We previously showed increased susceptibility to dextran sulfate sodium (DSS)-induced colitis in vagotomized mice. Here, we evaluated whether vagus nerve stimulation (VNS) is able to reduce the severity of DSS colitis and aimed to unravel the mechanism involved. Methods: Colitis was induced in wild type mice by 2.5% DSS administration in drinking water for 5 days. VNS (5 Hz, 1 ms, 1 mA) was applied 1 day prior to and after 4 days of DSS administration to evaluate changes in epithelial integrity and inflammatory response, respectively. Epithelial integrity was assessed using TUNEL and Ki67 staining. Monocytes, immature and mature macrophages were sorted from colonic samples and gene expression levels of pro-inflammatory cytokines were studied. Results: VNS applied prior to DSS administration (i.e., prophylactic VNS) reduced disease activity index (VNS 0.8 ± 0.6 vs. sham 2.8 ± 0.7, p < 0.001, n = 5) and tended to improve histology score. Prophylactic VNS significantly increased epithelial cell proliferation and diminished apoptosis compared to sham stimulation. VNS applied at day 4 during DSS administration (i.e., therapeutic VNS) decreased the influx of monocytes, monocyte-derived macrophages and neutrophils, and significantly reduced pro-inflammatory cytokine expression (i.e., Tnfα and Cxcl1) in immature macrophages compared to sham stimulation. Conclusions: A single period of VNS applied prior to DSS exposure reduced DSS-induced colitis by an improvement in epithelial integrity. On the other hand, VNS applied during the inflammatory phase of DSS colitis reduced cytokine expression in immature macrophages. Our data further underscores the potential of VNS as novel therapeutic approach for inflammatory bowel diseases.
Collapse
Affiliation(s)
- Elisa Meroni
- Translational Research Center for Gastrointestinal Disorders (TARGID), Lab for Intestinal Neuro-Immune Interaction, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven - University of Leuven, Leuven, Belgium
| | - Nathalie Stakenborg
- Translational Research Center for Gastrointestinal Disorders (TARGID), Lab for Intestinal Neuro-Immune Interaction, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven - University of Leuven, Leuven, Belgium
| | - Pedro J Gomez-Pinilla
- Translational Research Center for Gastrointestinal Disorders (TARGID), Lab for Intestinal Neuro-Immune Interaction, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven - University of Leuven, Leuven, Belgium
| | - Michelle Stakenborg
- Translational Research Center for Gastrointestinal Disorders (TARGID), Lab for Mucosal Immunology, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven - University of Leuven, Leuven, Belgium
| | - Javier Aguilera-Lizarraga
- Translational Research Center for Gastrointestinal Disorders (TARGID), Lab for Intestinal Neuro-Immune Interaction, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven - University of Leuven, Leuven, Belgium
| | - Morgane Florens
- Translational Research Center for Gastrointestinal Disorders (TARGID), Lab for Intestinal Neuro-Immune Interaction, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven - University of Leuven, Leuven, Belgium
| | - Marcello Delfini
- Translational Research Center for Gastrointestinal Disorders (TARGID), Lab for Intestinal Neuro-Immune Interaction, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven - University of Leuven, Leuven, Belgium
| | - Veronica de Simone
- Translational Research Center for Gastrointestinal Disorders (TARGID), Lab for Mucosal Immunology, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven - University of Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Department of Pathology, Universitair Ziekenhuis Leuven, Leuven, Belgium
| | - Gera Goverse
- Translational Research Center for Gastrointestinal Disorders (TARGID), Lab for Mucosal Immunology, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven - University of Leuven, Leuven, Belgium
| | - Gianluca Matteoli
- Translational Research Center for Gastrointestinal Disorders (TARGID), Lab for Mucosal Immunology, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven - University of Leuven, Leuven, Belgium
| | - Guy E Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders (TARGID), Lab for Intestinal Neuro-Immune Interaction, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Halder N, Lal G. Cholinergic System and Its Therapeutic Importance in Inflammation and Autoimmunity. Front Immunol 2021; 12:660342. [PMID: 33936095 PMCID: PMC8082108 DOI: 10.3389/fimmu.2021.660342] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Neurological and immunological signals constitute an extensive regulatory network in our body that maintains physiology and homeostasis. The cholinergic system plays a significant role in neuroimmune communication, transmitting information regarding the peripheral immune status to the central nervous system (CNS) and vice versa. The cholinergic system includes the neurotransmitter\ molecule, acetylcholine (ACh), cholinergic receptors (AChRs), choline acetyltransferase (ChAT) enzyme, and acetylcholinesterase (AChE) enzyme. These molecules are involved in regulating immune response and playing a crucial role in maintaining homeostasis. Most innate and adaptive immune cells respond to neuronal inputs by releasing or expressing these molecules on their surfaces. Dysregulation of this neuroimmune communication may lead to several inflammatory and autoimmune diseases. Several agonists, antagonists, and inhibitors have been developed to target the cholinergic system to control inflammation in different tissues. This review discusses how various molecules of the neuronal and non-neuronal cholinergic system (NNCS) interact with the immune cells. What are the agonists and antagonists that alter the cholinergic system, and how are these molecules modulate inflammation and immunity. Understanding the various functions of pharmacological molecules could help in designing better strategies to control inflammation and autoimmunity.
Collapse
Affiliation(s)
- Namrita Halder
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| |
Collapse
|
27
|
Hilderman M, Bruchfeld A. The cholinergic anti-inflammatory pathway in chronic kidney disease-review and vagus nerve stimulation clinical pilot study. Nephrol Dial Transplant 2021; 35:1840-1852. [PMID: 33151338 PMCID: PMC7643692 DOI: 10.1093/ndt/gfaa200] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/17/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation and autonomic dysfunction are common findings in chronic and end-stage kidney disease and contribute to a markedly increased risk of mortality in this patient population. The cholinergic anti-inflammatory pathway (CAP) is a vagal neuro-immune circuit that upholds the homoeostatic balance of inflammatory activity in response to cell injury and pathogens. CAP models have been examined in preclinical studies to investigate its significance in a range of clinical inflammatory conditions and diseases. More recently, cervical vagus nerve stimulation (VNS) implants have been shown to be of potential benefit for patients with chronic autoimmune diseases such as rheumatoid arthritis and inflammatory bowel disease. We have previously shown that dialysis patients have a functional CAP ex vivo. Here we review the field and the potential role of the CAP in acute kidney injury and chronic kidney disease (CKD) as well as in hypertension. We also present a VNS pilot study in haemodialysis patients. Controlling inflammation by neuroimmune modulation may lead to new therapeutic modalities for improved treatment, outcome, prognosis and quality of life for patients with CKD.
Collapse
Affiliation(s)
- Marie Hilderman
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annette Bruchfeld
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
28
|
Williams JG, Ly D, Geraghty NJ, McArthur JD, Vyas HKN, Gorman J, Tsatsaronis JA, Sluyter R, Sanderson-Smith ML. Streptococcus pyogenes M1T1 Variants Induce an Inflammatory Neutrophil Phenotype Including Activation of Inflammatory Caspases. Front Cell Infect Microbiol 2021; 10:596023. [PMID: 33585270 PMCID: PMC7876443 DOI: 10.3389/fcimb.2020.596023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
Invasive infections due to group A Streptococcus (GAS) advance rapidly causing tissue degradation and unregulated inflammation. Neutrophils are the primary immune cells that respond to GAS. The neutrophil response to GAS was characterised in response to two M1T1 isolates; 5448 and animal passaged variant 5448AP. Co-incubation of neutrophils with 5448AP resulted in proliferation of GAS and lowered the production of reactive oxygen species when compared with 5448. Infection with both strains invoked neutrophil death, however apoptosis was reduced in response to 5448AP. Both strains induced neutrophil caspase-1 and caspase-4 expression in vitro, with inflammatory caspase activation detected in vitro and in vivo. GAS infections involving strains such as 5448AP that promote an inflammatory neutrophil phenotype may contribute to increased inflammation yet ineffective bacterial eradication, contributing to the severity of invasive GAS infections.
Collapse
Affiliation(s)
- Jonathan G. Williams
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Diane Ly
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Nicholas J. Geraghty
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Jason D. McArthur
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Heema K. N. Vyas
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Jody Gorman
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - James A. Tsatsaronis
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Martina L. Sanderson-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
29
|
Gauthier AG, Wu J, Lin M, Sitapara R, Kulkarni A, Thakur GA, Schmidt EE, Perron JC, Ashby CR, Mantell LL. The Positive Allosteric Modulation of alpha7-Nicotinic Cholinergic Receptors by GAT107 Increases Bacterial Lung Clearance in Hyperoxic Mice by Decreasing Oxidative Stress in Macrophages. Antioxidants (Basel) 2021; 10:135. [PMID: 33477969 PMCID: PMC7835977 DOI: 10.3390/antiox10010135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/15/2021] [Indexed: 12/20/2022] Open
Abstract
Supplemental oxygen therapy with supraphysiological concentrations of oxygen (hyperoxia; >21% O2) is a life-saving intervention for patients experiencing respiratory distress. However, prolonged exposure to hyperoxia can compromise bacterial clearance processes, due to oxidative stress-mediated impairment of macrophages, contributing to the increased susceptibility to pulmonary infections. This study reports that the activation of the α7 nicotinic acetylcholine receptor (α7nAChR) with the delete allosteric agonistic-positive allosteric modulator, GAT107, decreases the bacterial burden in mouse lungs by improving hyperoxia-induced lung redox imbalance. The incubation of RAW 264.7 cells with GAT107 (3.3 µM) rescues hyperoxia-compromised phagocytic functions in cultured macrophages, RAW 264.7 cells, and primary bone marrow-derived macrophages. Similarly, GAT107 (3.3 µM) also attenuated oxidative stress in hyperoxia-exposed macrophages, which prevents oxidation and hyper-polymerization of phagosome filamentous actin (F-actin) from oxidation. Furthermore, GAT107 (3.3 µM) increases the (1) activity of superoxide dismutase 1; (2) activation of Nrf2 and (3) the expression of heme oxygenase-1 (HO-1) in macrophages exposed to hyperoxia. Overall, these data suggest that the novel α7nAChR compound, GAT107, could be used to improve host defense functions in patients, such as those with COVID-19, who are exposed to prolonged periods of hyperoxia.
Collapse
Affiliation(s)
- Alex G. Gauthier
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, NY 11439, USA; (A.G.G.); (J.W.); (M.L.); (R.S.); (J.C.P.); (C.R.A.J.)
| | - Jiaqi Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, NY 11439, USA; (A.G.G.); (J.W.); (M.L.); (R.S.); (J.C.P.); (C.R.A.J.)
| | - Mosi Lin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, NY 11439, USA; (A.G.G.); (J.W.); (M.L.); (R.S.); (J.C.P.); (C.R.A.J.)
| | - Ravikumar Sitapara
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, NY 11439, USA; (A.G.G.); (J.W.); (M.L.); (R.S.); (J.C.P.); (C.R.A.J.)
| | - Abhijit Kulkarni
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (A.K.); (G.A.T.)
| | - Ganesh A. Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (A.K.); (G.A.T.)
| | - Edward E. Schmidt
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| | - Jeanette C. Perron
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, NY 11439, USA; (A.G.G.); (J.W.); (M.L.); (R.S.); (J.C.P.); (C.R.A.J.)
| | - Charles R. Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, NY 11439, USA; (A.G.G.); (J.W.); (M.L.); (R.S.); (J.C.P.); (C.R.A.J.)
| | - Lin L. Mantell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, New York, NY 11439, USA; (A.G.G.); (J.W.); (M.L.); (R.S.); (J.C.P.); (C.R.A.J.)
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY 11030, USA
| |
Collapse
|
30
|
Geng QS, Shen ZB, Zheng YY, Xue WH, Li LF, Zhao J. Precise medication for tumor patients in the context of mental stress. Cell Transplant 2021; 30:9636897211049813. [PMID: 34719974 PMCID: PMC8564128 DOI: 10.1177/09636897211049813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 11/17/2022] Open
Abstract
Cancer is the leading cause of disease-related death worldwide due to its late diagnosis and poor outcomes. Precision medicine plays an important role in the treatment of tumors. As found for many types of tumors, mental stress plays a vital role in the promotion and progression of tumors. In this paper, we briefly introduce the manifestation and effects of mental symptoms in tumor patients. We next specifically discuss the multiple roles of precision medicine in the tumor therapy. Finally, we also highlight the precision medicine strategy for psychiatric symptoms in tumor patients, which promises to enhance the efficacy of tumor therapy.
Collapse
Affiliation(s)
- Qi-Shun Geng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou
University, Zhengzhou, China
- Qi-Shun Geng and Zhi-Bo Shen are co-first author and equally
contributed to this work
| | - Zhi-Bo Shen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou
University, Zhengzhou, China
- Qi-Shun Geng and Zhi-Bo Shen are co-first author and equally
contributed to this work
| | - Yuan-Yuan Zheng
- Internet Medical and System Applications of National Engineering
Laboratory, Zhengzhou, Henan, China
| | - Wen-Hua Xue
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou
University, Zhengzhou, China
| | - Li-Feng Li
- Internet Medical and System Applications of National Engineering
Laboratory, Zhengzhou, Henan, China
| | - Jie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou
University, Zhengzhou, China
- Internet Medical and System Applications of National Engineering
Laboratory, Zhengzhou, Henan, China
| |
Collapse
|
31
|
Cotero V, Kao TJ, Graf J, Ashe J, Morton C, Chavan SS, Zanos S, Tracey KJ, Puleo CM. Evidence of Long-range nerve pathways connecting and coordinating activity in secondary lymph organs. Bioelectron Med 2020; 6:21. [PMID: 33110929 PMCID: PMC7584093 DOI: 10.1186/s42234-020-00056-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/09/2020] [Indexed: 01/23/2023] Open
Abstract
Background Peripheral nerve reflexes enable organ systems to maintain long-term physiological homeostasis while responding to rapidly changing environmental conditions. Electrical nerve stimulation is commonly used to activate these reflexes and modulate organ function, giving rise to an emerging class of therapeutics called bioelectronic medicines. Dogma maintains that immune cell migration to and from organs is mediated by inflammatory signals (i.e. cytokines or pathogen associated signaling molecules). However, nerve reflexes that regulate immune function have only recently been elucidated, and stimulation of these reflexes for therapeutic effect has not been fully investigated. Methods We utilized both electrical and ultrasound-based nerve stimulation to activate nerve pathways projecting to specific lymph nodes. Tissue and cell analysis of the stimulated lymph node, distal lymph nodes and immune organs is then utilized to measure the stimulation-induced changes in neurotransmitter/neuropeptide concentrations and immune cellularity in each of these sites. Results and conclusions In this report, we demonstrate that activation of nerves and stimulated release of neurotransmitters within a local lymph node results in transient retention of immune cells (e.g. lymphocytes and neutrophils) at that location. Furthermore, such stimulation results in transient changes in neurotransmitter concentrations at distal organs of the immune system, spleen and liver, and mobilization of immune cells into the circulation. This report will enable future studies in which stimulation of these long-range nerve connections between lymphatic and immune organs can be applied for clinical purpose, including therapeutic modulation of cellularity during vaccination, active allergic response, or active auto-immune disease.
Collapse
Affiliation(s)
| | - Tzu-Jen Kao
- General Electric Research, Niskayuna, NY USA
| | - John Graf
- General Electric Research, Niskayuna, NY USA
| | | | | | | | - Stavros Zanos
- Feinstein Institutes for Medical Research, Manhasset, NY USA
| | - Kevin J. Tracey
- Feinstein Institutes for Medical Research, Manhasset, NY USA
| | | |
Collapse
|
32
|
Şen LS, Özdemir Kumral ZN, Memi G, Ercan F, Yeğen BC, Yeğen C. The gastroprotective effect of obestatin on indomethacin-induced acute ulcer is mediated by a vagovagal mechanism. Physiol Int 2020; 107:243-255. [PMID: 32692714 DOI: 10.1556/2060.2020.00025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022]
Abstract
In order to investigate the role of the vagus nerve in the possible gastroprotective effect of obestatin on the indomethacin-induced acute oxidative gastric injury, Sprague-Dawley rats of both sexes were injected subcutaneously with indomethacin (25 mg/kg, 5% NaHCO3) followed by obestatin (10, 30 or 100 μg/kg). In other sets of rats, surgical vagotomy (Vx) or selective degeneration of vagal afferent fibers by perivagal capsaicin was performed before the injections of indomethacin or indomethacin + obestatin (30 μg/kg). Gastric serosal blood flow was measured, and 4 h after ulcer induction gastric tissue samples were taken for histological and biochemical assays. Obestatin reduced the severity of indomethacin-induced acute ulcer via the reversal of reactive hyperemia, by inhibiting ulcer-induced neutrophil infiltration and lipid peroxidation along with the replenishment of glutathione (GSH) stores, whereas Vx abolished the inhibitory effect of obestatin on blood flow and lipid peroxidation, and worsened the severity of ulcer. On the other hand, serosal blood flow was even amplified by the selective denervation of the capsaicin-sensitive vagal afferent fibers, but obestatin-induced reduction in ulcer severity was not altered. In conclusion, the gastroprotective effect of obestatin on indomethacin-induced ulcer appears to involve the activation of the vagovagal pathway.
Collapse
Affiliation(s)
- Leyla Semiha Şen
- 1Department of Physiology, Marmara University School of Medicine, İstanbul, Turkey.,3Department of General Surgery, Marmara University School of Medicine, İstanbul, Turkey
| | | | - Gülsün Memi
- 1Department of Physiology, Marmara University School of Medicine, İstanbul, Turkey
| | - Feriha Ercan
- 2Department of Histology & Embryology, Marmara University School of Medicine, İstanbul, Turkey
| | - Berrak C Yeğen
- 1Department of Physiology, Marmara University School of Medicine, İstanbul, Turkey
| | - Cumhur Yeğen
- 3Department of General Surgery, Marmara University School of Medicine, İstanbul, Turkey
| |
Collapse
|
33
|
Yang MW, Tao LY, Jiang YS, Yang JY, Huo YM, Liu DJ, Li J, Fu XL, He R, Lin C, Liu W, Zhang JF, Hua R, Li Q, Jiang SH, Hu LP, Tian GA, Zhang XX, Niu N, Lu P, Shi J, Xiao GG, Wang LW, Xue J, Zhang ZG, Sun YW. Perineural Invasion Reprograms the Immune Microenvironment through Cholinergic Signaling in Pancreatic Ductal Adenocarcinoma. Cancer Res 2020; 80:1991-2003. [PMID: 32098780 DOI: 10.1158/0008-5472.can-19-2689] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/09/2020] [Accepted: 02/21/2020] [Indexed: 12/29/2022]
Abstract
Perineural invasion is a common feature of pancreatic ductal adenocarcinoma (PDAC). Here, we investigated the effect of perineural invasion on the microenvironment and how this affects PDAC progression. Transcriptome expression profiles of PDAC tissues with different perineural invasion status were compared, and the intratumoral T-cell density and levels of neurotransmitters in these tissues were assessed. Perineural invasion was associated with impaired immune responses characterized by decreased CD8+ T and Th1 cells, and increased Th2 cells. Acetylcholine levels were elevated in severe perineural invasion. Acetylcholine impaired the ability of PDAC cells to recruit CD8+ T cells via HDAC1-mediated suppression of CCL5. Moreover, acetylcholine directly inhibited IFNγ production by CD8+ T cells in a dose-dependent manner and favored Th2 over Th1 differentiation. Furthermore, hyperactivation of cholinergic signaling enhanced tumor growth by suppressing the intratumoral T-cell response in an orthotopic PDAC model. Conversely, blocking perineural invasion with bilateral subdiaphragmatic vagotomy in tumor-bearing mice was associated with an increase in CD8+ T cells, an elevated Th1/Th2 ratio, and improved survival. In conclusion, perineural invasion-triggered cholinergic signaling favors tumor growth by promoting an immune-suppressive microenvironment characterized by impaired CD8+ T-cell infiltration and a reduced Th1/Th2 ratio. SIGNIFICANCE: These findings provide a promising therapeutic strategy to modulate the immunosuppressive microenvironment of pancreatic ductal adenocarcinoma with severe perineural invasion.
Collapse
Affiliation(s)
- Min-Wei Yang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ling-Ye Tao
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yong-Sheng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jian-Yu Yang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yan-Miao Huo
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - De-Jun Liu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jiao Li
- Department of Hepatobiliary Pancreas Surgery, Shanghai East Hospital, Tong Ji University School of Medicine, Shanghai, P.R. China
| | - Xue-Liang Fu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ruizhe He
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Chaoyi Lin
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Wei Liu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jun-Feng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Rong Hua
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Qing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Guang-Ang Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xiao-Xin Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ningning Niu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ping Lu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Juanjuan Shi
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Gary G Xiao
- Department of Pharmacy at School of Chemical Engineering, Dalian University of Technology, Dalian, P.R. China.,Functional Genomics and Proteomics Laboratories, Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska
| | - Li-Wei Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, P.R. China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| | - Yong-Wei Sun
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.
| |
Collapse
|
34
|
Zhou L, Lin X, Ma X, Liu Y, Ma L, Chen Z, Chen H, Si L, Chen X. Acetylcholine regulates the development of experimental autoimmune encephalomyelitis via the CD4+ cells proliferation and differentiation. Int J Neurosci 2020; 130:788-803. [PMID: 31906749 DOI: 10.1080/00207454.2019.1706504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Linli Zhou
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong China
- Epidemiology and Infection Control Section, Medical Affairs Department, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiuli Lin
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Xiaomeng Ma
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Yingying Liu
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Lili Ma
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Zhaoyu Chen
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Hao Chen
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Lei Si
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Xiaohong Chen
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong China
| |
Collapse
|
35
|
Hodo TW, de Aquino MTP, Shimamoto A, Shanker A. Critical Neurotransmitters in the Neuroimmune Network. Front Immunol 2020; 11:1869. [PMID: 32973771 PMCID: PMC7472989 DOI: 10.3389/fimmu.2020.01869] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Immune cells rely on cell-cell communication to specify and fine-tune their responses. They express an extensive network of cell communication modes, including a vast repertoire of cell surface and transmembrane receptors and ligands, membrane vesicles, junctions, ligand and voltage-gated ion channels, and transporters. During a crosstalk between the nervous system and the immune system these modes of cellular communication and the downstream signal transduction events are influenced by neurotransmitters present in the local tissue environments in an autocrine or paracrine fashion. Neurotransmitters thus influence innate and adaptive immune responses. In addition, immune cells send signals to the brain through cytokines, and are present in the brain to influence neural responses. Altered communication between the nervous and immune systems is emerging as a common feature in neurodegenerative and immunopathological diseases. Here, we present the mechanistic frameworks of immunostimulatory and immunosuppressive effects critical neurotransmitters - dopamine (3,4-dihydroxyphenethylamine), serotonin (5-hydroxytryptamine), substance P (trifluoroacetate salt powder), and L-glutamate - exert on lymphocytes and non-lymphoid immune cells. Furthermore, we discuss the possible roles neurotransmitter-driven neuroimmune networks play in the pathogenesis of neurodegenerative disorders, autoimmune diseases, cancer, and outline potential clinical implications of balancing neuroimmune crosstalk by therapeutic modulation.
Collapse
Affiliation(s)
- Thomas Wesley Hodo
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States.,Department of Microbiology and Immunology, Meharry Medical College School of Medicine, Nashville, TN, United States.,School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Maria Teresa Prudente de Aquino
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States
| | - Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States.,School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States.,Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
36
|
Kanashiro A, Hiroki CH, da Fonseca DM, Birbrair A, Ferreira RG, Bassi GS, Fonseca MD, Kusuda R, Cebinelli GCM, da Silva KP, Wanderley CW, Menezes GB, Alves-Fiho JC, Oliveira AG, Cunha TM, Pupo AS, Ulloa L, Cunha FQ. The role of neutrophils in neuro-immune modulation. Pharmacol Res 2019; 151:104580. [PMID: 31786317 DOI: 10.1016/j.phrs.2019.104580] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/07/2019] [Accepted: 11/27/2019] [Indexed: 01/10/2023]
Abstract
Neutrophils are peripheral immune cells that represent the first recruited innate immune defense against infections and tissue injury. However, these cells can also induce overzealous responses and cause tissue damage. Although the role of neutrophils activating the immune system is well established, only recently their critical implications in neuro-immune interactions are becoming more relevant. Here, we review several aspects of neutrophils in the bidirectional regulation between the nervous and immune systems. First, the role of neutrophils as a diffuse source of acetylcholine and catecholamines is controversial as well as the effects of these neurotransmitters in neutrophil's functions. Second, neutrophils contribute for the activation and sensitization of sensory neurons, and thereby, in events of nociception and pain. In addition, nociceptor activation promotes an axon reflex triggering a local release of neural mediators and provoking neutrophil activation. Third, the recruitment of neutrophils in inflammatory responses in the nervous system suggests these immune cells as innovative targets in the treatment of central infectious, neurological and neurodegenerative disorders. Multidisciplinary studies involving immunologists and neuroscientists are required to define the role of the neurons-neutrophils communication in the pathophysiology of infectious, inflammatory, and neurological disorders.
Collapse
Affiliation(s)
- Alexandre Kanashiro
- Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Carlos Hiroji Hiroki
- Department of Immunology and Biochemistry, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Denise Morais da Fonseca
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Raphael Gomes Ferreira
- Araguaína Medical School, Federal University of Tocantins, Avenida Paraguai s/n, 77824-838, Araguaína, TO, Brazil
| | - Gabriel Shimizu Bassi
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, 27710, USA
| | - Mirian D Fonseca
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo Kusuda
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Katiussia Pinho da Silva
- Department of Pharmacology, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Carlos Wagner Wanderley
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - José Carlos Alves-Fiho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - André Gustavo Oliveira
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - André Sampaio Pupo
- Department of Pharmacology, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, 27710, USA.
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
37
|
Eliwan HO, Watson WRG, Regan I, Philbin B, O'Hare FM, Strickland T, O'Neill A, O'Rourke M, Blanco A, Healy M, Nolan B, Smith O, Molloy EJ. Pediatric Intensive Care: Immunomodulation With Activated Protein C ex vivo. Front Pediatr 2019; 7:386. [PMID: 31612119 PMCID: PMC6776988 DOI: 10.3389/fped.2019.00386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 09/06/2019] [Indexed: 11/21/2022] Open
Abstract
Objective: Sepsis is major cause of morbidity and mortality in the Pediatric Intensive Care Unit (PICU). PICU patients may develop transient immune deficiency during sepsis. Activated Protein C (APC) has significant anti-inflammatory and cytoprotective effects. Clinical trials of APC in adult sepsis initially showed improved outcome but recent trials showed no benefit in adults or children. We aimed to assess the effects of APC treatment on innate immune responses in children. Design and Subjects: We compared neutrophil and monocyte responses to lipopolysaccharide (LPS) with and without APC treatment in PICU patients at the time of evaluation for sepsis compared with healthy adults and age-matched pediatric controls. We used flow cytometry to examine cell activation (CD11b expression), function [intracellular reactive oxygen intermediate (ROI) release] and LPS recognition [Toll like Receptor 4 (TLR4) expression]. Results: PICU patients had significantly decreased protein c levels and LPS responses compared with adult and pediatric controls for all parameters. APC reduced LPS-induced neutrophil PICU TLR4 and adult ROI (p < 0.05). PICU non-survivors had increased LPS induced neutrophil and monocyte ROI production vs. survivors which was significantly reduced by APC. Conclusion: PICU patients demonstrate significantly reduced endotoxin reactivity which may predispose them to sepsis and alter effective antibacterial responses. APC reduces LPS-induced ROI production in adults and may have a role in treating severely compromised PICU patients especially given that newer APC forms are associated with decreased bleeding risk and enhanced anti-inflammatory effects.
Collapse
Affiliation(s)
- Hassan O Eliwan
- Neonatology, National Maternity Hospital, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland.,Paediatrics, Royal College of Surgeons in Ireland, Dublin, Ireland.,University College Dublin School of Medicine and Medical Sciences, Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - William R G Watson
- University College Dublin School of Medicine and Medical Sciences, Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Irene Regan
- Haematology, Our Lady's Children's Hospital, Dublin, Ireland
| | - Brian Philbin
- Haematology, Our Lady's Children's Hospital, Dublin, Ireland
| | - Fiona M O'Hare
- Neonatology, National Maternity Hospital, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland.,University College Dublin School of Medicine and Medical Sciences, Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Tammy Strickland
- Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland
| | - Amanda O'Neill
- University College Dublin School of Medicine and Medical Sciences, Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | | | - Alfonso Blanco
- University College Dublin School of Medicine and Medical Sciences, Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Martina Healy
- Critical Care, Our Lady's Children's Hospital, Dublin, Ireland
| | - Beatrice Nolan
- Haematology, Our Lady's Children's Hospital, Dublin, Ireland
| | - Owen Smith
- Haematology, Our Lady's Children's Hospital, Dublin, Ireland
| | - Eleanor J Molloy
- Neonatology, National Maternity Hospital, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland.,Paediatrics, Royal College of Surgeons in Ireland, Dublin, Ireland.,University College Dublin School of Medicine and Medical Sciences, Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.,Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland.,Neonatology, Our Lady's Children's Hospital, Dublin, Ireland.,Paediatrics, Coombe Women's and Infant's University Hospital, Dublin, Ireland
| |
Collapse
|
38
|
Quatrini L, Vivier E, Ugolini S. Neuroendocrine regulation of innate lymphoid cells. Immunol Rev 2018; 286:120-136. [PMID: 30294960 PMCID: PMC6221181 DOI: 10.1111/imr.12707] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/17/2018] [Indexed: 12/16/2022]
Abstract
The activities of the immune system in repairing tissue injury and combating pathogens were long thought to be independent of the nervous system. However, a major regulatory role of immunomodulatory molecules released locally or systemically by the neuroendocrine system has recently emerged. A number of observations and discoveries support indeed the notion of the nervous system as an immunoregulatory system involved in immune responses. Innate lymphoid cells (ILCs), including natural killer (NK) cells and tissue-resident ILCs, form a family of effector cells present in organs and mucosal barriers. ILCs are involved in the maintenance of tissue integrity and homeostasis. They can also secrete effector cytokines rapidly, and this ability enables them to play early roles in the immune response. ILCs are activated by multiple pathways including epithelial and myeloid cell-derived cytokines. Their functions are also regulated by mediators produced by the nervous system. In particular, the peripheral nervous system, through neurotransmitters and neuropeptides, works in parallel with the hypothalamic-pituitary-adrenal and gonadal axis to modulate inflammatory events and maintain homeostasis. We summarize here recent findings concerning the regulation of ILC activities by neuroendocrine mediators in homeostatic and inflammatory conditions.
Collapse
Affiliation(s)
- Linda Quatrini
- Aix Marseille UnivCNRSINSERMCIMLCentre d'Immunologie de Marseille‐LuminyMarseilleFrance
| | - Eric Vivier
- Aix Marseille UnivCNRSINSERMCIMLCentre d'Immunologie de Marseille‐LuminyMarseilleFrance
- ImmunologyMarseille ImmunopoleHôpital de la TimoneAssistance Publique des Hôpitaux de MarseilleMarseilleFrance
- Innate Pharma Research LaboratoriesInnate PharmaMarseilleFrance
| | - Sophie Ugolini
- Aix Marseille UnivCNRSINSERMCIMLCentre d'Immunologie de Marseille‐LuminyMarseilleFrance
| |
Collapse
|
39
|
Reardon C, Murray K, Lomax AE. Neuroimmune Communication in Health and Disease. Physiol Rev 2018; 98:2287-2316. [PMID: 30109819 PMCID: PMC6170975 DOI: 10.1152/physrev.00035.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 12/14/2022] Open
Abstract
The immune and nervous systems are tightly integrated, with each system capable of influencing the other to respond to infectious or inflammatory perturbations of homeostasis. Recent studies demonstrating the ability of neural stimulation to significantly reduce the severity of immunopathology and consequently reduce mortality have led to a resurgence in the field of neuroimmunology. Highlighting the tight integration of the nervous and immune systems, afferent neurons can be activated by a diverse range of substances from bacterial-derived products to cytokines released by host cells. While activation of vagal afferents by these substances dominates the literature, additional sensory neurons are responsive as well. It is becoming increasingly clear that although the cholinergic anti-inflammatory pathway has become the predominant model, a multitude of functional circuits exist through which neuronal messengers can influence immunological outcomes. These include pathways whereby efferent signaling occurs independent of the vagus nerve through sympathetic neurons. To receive input from the nervous system, immune cells including B and T cells, macrophages, and professional antigen presenting cells express specific neurotransmitter receptors that affect immune cell function. Specialized immune cell populations not only express neurotransmitter receptors, but express the enzymatic machinery required to produce neurotransmitters, such as acetylcholine, allowing them to act as signaling intermediaries. Although elegant experiments have begun to decipher some of these interactions, integration of these molecules, cells, and anatomy into defined neuroimmune circuits in health and disease is in its infancy. This review describes these circuits and highlights continued challenges and opportunities for the field.
Collapse
Affiliation(s)
- Colin Reardon
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California ; and Department of Biomedical and Molecular Sciences and Department of Medicine, Queen's University , Kingston, Ontario , Canada
| | - Kaitlin Murray
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California ; and Department of Biomedical and Molecular Sciences and Department of Medicine, Queen's University , Kingston, Ontario , Canada
| | - Alan E Lomax
- Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, UC Davis, Davis, California ; and Department of Biomedical and Molecular Sciences and Department of Medicine, Queen's University , Kingston, Ontario , Canada
| |
Collapse
|
40
|
Mandal P, Tewari P, Kumar S, Yadav S, Ayanur A, Chaturvedi RK, Das M, Tripathi A. Argemone oil, an edible oil adulterant, induces systemic immunosuppression in Balb/c mice in an oral 28 days repeated dose toxicity study. Chem Biol Interact 2018; 287:57-69. [PMID: 29655912 DOI: 10.1016/j.cbi.2018.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
Abstract
Consumption of edible oils contaminated with Argemone oil (AO) leads to a clinical condition called "Epidemic dropsy". Earlier studies have reported that metabolism and oxidative stress primarily contributes to AO toxicity, however, the involvement of immune system has not been assessed so far. Therefore, the present study was undertaken to systematically assess the effect of AO exposure on the function of immune system in Balb/c mice. The repeated exposure of AO for 28 days caused prominent regression of spleen and thymus; severe inflammatory changes in spleen depicted by the loss of distinct follicles, increased megakaryocyte infiltration, and enhanced expression levels of inflammatory markers (iNOS & COX-2). At the functional level, AO exposure significantly abrogated the mixed lymphocyte reaction and mitogen-stimulated lymphoproliferative activity of T and B cells, which is reflective of profound lymphocyte dysfunction upon antigen exposure. In concordance with the loss in functional activity of lymphocytes in AO exposed animals, it was found the AO altered the relative percentage of CD3+, CD4+, and CD28 + T cells. Further, there was a marked decrease in the relative distribution of cells with prominent MHC I and CD1d expression in AO exposed splenocytes. Moreover, reduced levels of immune stimulatory cytokines (TNF-α, IFN-γ, IL-2, IL-4, and IL-6), and increased levels of immunosuppressive cytokine IL-10 were detected in the serum of AO treated mice. Along with T and B cells, AO exposure also affected the phenotype and activation status of macrophages suggesting the inclination towards "alternative activation of macrophages". Altogether, these functional changes in the immune cells are contributing factors in AO induced immunosuppression.
Collapse
Affiliation(s)
- Payal Mandal
- Food, Drugs and Chemical Toxicology Group, CSIR- Indian Institute of Toxicology Research, India; Academy of Scientific and Innovative Research (AcSIR) CSIR-IITR Campus, Lucknow, India
| | - Prachi Tewari
- Food, Drugs and Chemical Toxicology Group, CSIR- Indian Institute of Toxicology Research, India; Academy of Scientific and Innovative Research (AcSIR) CSIR-IITR Campus, Lucknow, India
| | - Sachin Kumar
- Food, Drugs and Chemical Toxicology Group, CSIR- Indian Institute of Toxicology Research, India; Academy of Scientific and Innovative Research (AcSIR) CSIR-IITR Campus, Lucknow, India
| | - Sarika Yadav
- Food, Drugs and Chemical Toxicology Group, CSIR- Indian Institute of Toxicology Research, India; Academy of Scientific and Innovative Research (AcSIR) CSIR-IITR Campus, Lucknow, India
| | - Anjaneya Ayanur
- Central Pathology Laboratory, CSIR- Indian Institute of Toxicology Research, India
| | - Rajnish K Chaturvedi
- Academy of Scientific and Innovative Research (AcSIR) CSIR-IITR Campus, Lucknow, India; Systems Toxicology & Health Risk Assessment, CSIR- Indian Institute of Toxicology Research, India
| | - Mukul Das
- Food, Drugs and Chemical Toxicology Group, CSIR- Indian Institute of Toxicology Research, India; Academy of Scientific and Innovative Research (AcSIR) CSIR-IITR Campus, Lucknow, India.
| | - Anurag Tripathi
- Food, Drugs and Chemical Toxicology Group, CSIR- Indian Institute of Toxicology Research, India; Academy of Scientific and Innovative Research (AcSIR) CSIR-IITR Campus, Lucknow, India.
| |
Collapse
|
41
|
Abstract
The nervous system regulates immunity and inflammation. The molecular detection of pathogen fragments, cytokines, and other immune molecules by sensory neurons generates immunoregulatory responses through efferent autonomic neuron signaling. The functional organization of this neural control is based on principles of reflex regulation. Reflexes involving the vagus nerve and other nerves have been therapeutically explored in models of inflammatory and autoimmune conditions, and recently in clinical settings. The brain integrates neuro-immune communication, and brain function is altered in diseases characterized by peripheral immune dysregulation and inflammation. Here we review the anatomical and molecular basis of the neural interface with immunity, focusing on peripheral neural control of immune functions and the role of the brain in the model of the immunological homunculus. Clinical advances stemming from this knowledge within the framework of bioelectronic medicine are also briefly outlined.
Collapse
Affiliation(s)
- Valentin A Pavlov
- Center for Biomedical Science and Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030, USA; , ,
| | - Sangeeta S Chavan
- Center for Biomedical Science and Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030, USA; , ,
| | - Kevin J Tracey
- Center for Biomedical Science and Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030, USA; , ,
| |
Collapse
|
42
|
Abstract
Preeclampsia (PE) is one of the leading causes of maternal morbidity and mortality worldwide. This disease is believed to occur in two stages with placental dysfunction in early pregnancy leading to maternal clinical findings after 20 weeks of gestation, as consequence of systemic inflammation, oxidative stress, and endothelial dysfunction. Much evidence suggests that PE women display an overshooting inflammatory response throughout pregnancy due to an unbalanced regulation of innate and adaptive immune responses. Recently, it has been suggested that dysregulation of endogenous protective pathways might be associated with PE etiopathogenesis. Resolution of inflammation is an active process coordinated by mediators from diverse nature that regulate key cellular events to restore tissue homeostasis. Inadequate or insufficient resolution of inflammation is believed to play an important role in the development of chronic inflammatory diseases, like PE. In this narrative review, we discuss possible pro-resolution pathways that might be compromised in PE women, which could be targets to novel therapeutic strategies in this disease.
Collapse
|
43
|
Huston JM, Fritz JR. The inflammatory reflex and neural tourniquet: harnessing the healing power of the vagus nerve. ACTA ACUST UNITED AC 2018. [DOI: 10.2217/bem-2017-0002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The CNS helps protect against tissue injury. The most important priorities include limiting blood loss and systemic inflammation. We elucidated two endogenous neural pathways that rapidly and specifically improve hemostasis and decrease inflammation through vagus nerve signaling. Activation of the neural tourniquet or inflammatory reflex via electrical vagus nerve stimulation (VNS) significantly improves outcomes in preclinical disease models. Currently, VNS is clinically approved for the treatment of medically refractory epilepsy and depression. The growing field of bioelectronic medicine will help physicians harness the Neural Tourniquet™ and inflammatory reflex for clinical use as well. Considering the substantial harm caused by uncontrolled bleeding and inflammation, electrical VNS may dramatically improve the care of millions of patients.
Collapse
Affiliation(s)
- Jared M Huston
- Assistant Professor of Surgery & Science Education, Division of Trauma & Acute Care Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Assistant Professor, Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, 300 Community Drive, Manhasset, NY 11030, USA
| | - Jason R Fritz
- Staff Scientist, Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, 300 Community Drive, Manhasset, NY 11030, USA
| |
Collapse
|
44
|
The Neural Tourniquet. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00130-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
|
46
|
Reduced serum cholinesterase activity indicates splenic modulation of the sterile inflammation. J Surg Res 2017; 220:275-283. [DOI: 10.1016/j.jss.2017.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/05/2017] [Accepted: 07/17/2017] [Indexed: 01/01/2023]
|
47
|
Zhao C, Yang X, Su EM, Huang Y, Li L, Matthay MA, Su X. Signals of vagal circuits engaging with AKT1 in α7 nAChR +CD11b + cells lessen E. coli and LPS-induced acute inflammatory injury. Cell Discov 2017; 3:17009. [PMID: 28529765 PMCID: PMC5419718 DOI: 10.1038/celldisc.2017.9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/13/2017] [Indexed: 12/14/2022] Open
Abstract
Vagal circuits-α7 nAChR (α7 nicotinic acetylcholine receptor, coded by Chrna7) signaling utilizes spleen as a hub to dampen systemic inflammatory responses. Vagal innervations also extend to the distal airways and alveoli. Vagotomy and deficiency of α7 nAChR deteriorate E. coli and lipopolysaccharide (LPS)-induced acute lung inflammatory responses; however, the underlying mechanisms remain elusive. Here, we hypothesized that vagal circuits would limit splenic release and lung recruitment of α7 nAChR+CD11b+ cells (CD11b is coded by Itgam, a surface marker of monocytes and neutrophils) via phosphorylation of AKT1 and that this process would define the severity of lung injury. Using both E. coli and LPS-induced lung injury mouse models, we found that vagotomy augmented splenic egress and lung recruitment of α7 nAChR+CD11b+ cells, and consequently worsened lung inflammatory responses. Rescue of vagotomy with an α7 nAChR agonist preserved α7 nAChR+CD11b+ cells in the spleen, suppressed recruitment of these cells to the lung and attenuated lung inflammatory responses. Vagal signals via α7 nAChR promoted serine473 phosphorylation of AKT1 in α7 nAChR+CD11b+ cells and stabilized these cells in the spleen. Deletion of Akt1 enhanced splenic egress and lung recruitment of α7 nAChR+CD11b+ cells, which elicited neutrophil-infiltrated lung inflammation and injury. Vagotomy and double deletion of Chrna7 and Itgam reduced serine473 phosphorylation of AKT1 in the spleen and BAL (bronchoalveolar lavage) Ly6CintGr1hi neutrophils and Ly6Chi monocytes, and they facilitated the recruitment of neutrophils and monocytes to the airspaces of E. coli-injured lungs. Double deletion of Chrna7 and Itgam increased lung recruitment of monocytes and/or neutrophils and deteriorated E. coli and LPS-induced lung injury. Thus, signals of vagal circuits engaging with AKT1 in α7 nAChR+CD11b+ cells attenuate E. coli and LPS-induced acute lung inflammatory responses. Targeting this signaling pathway could provide novel therapeutic strategies for treating acute lung injury.
Collapse
Affiliation(s)
- Caiqi Zhao
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xi Yang
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Emily M Su
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Yuanyuan Huang
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ling Li
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Michael A Matthay
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Xiao Su
- CAS Key Laboratory of Molecular Virology & Immunology, Unit of Respiratory Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
48
|
Reardon C. Neuro-immune interactions in the cholinergic anti-inflammatory reflex. Immunol Lett 2016; 178:92-6. [PMID: 27542331 DOI: 10.1016/j.imlet.2016.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 10/21/2022]
Abstract
Communication between the nervous and immune systems can significantly alter immune cell function in a number of inflammatory diseases. Elegant studies have defined a basic functional circuit in a "cholinergic anti-inflammatory pathway" that highlights a unique role for the vagus nerve, and has brought about a resurgence in the field of neuro-immunology. This research has further identified that in addition to tonic signals that can restrain immune cell activation; the anti-inflammatory reflex arc is amiable to targeted stimulation as a therapeutic modality. The success of vagal electrical neural stimulation in a plethora of pre-clinical inflammation models has spurred the development of "electroceuticals" or neurostimulatory devices in the treatment of chronic inflammation. This development has begun despite addressing of fundamental questions such as the functional neural circuitry being crudely mapped and unresolved mechanisms of action of acetylcholine on target immune cells. Perhaps fortuitously, rapid advances in neuroscience techniques may allow us to begin to answer some of these longstanding questions and clarify recent controversies.
Collapse
Affiliation(s)
- Colin Reardon
- University of California Davis, School of Veterinary Medicine, Department of Anatomy, Physiology, and Cell Biology, 1089 Veterinary Medicine Drive, VM3B, Room 2007, Davis, CA 95616, United States.
| |
Collapse
|
49
|
Silva RL, Castanheira FV, Figueiredo JG, Bassi GS, Ferreira SH, Cunha FQ, Cunha TM, Kanashiro A. Pharmacological Beta-Adrenergic Receptor Activation Attenuates Neutrophil Recruitment by a Mechanism Dependent on Nicotinic Receptor and the Spleen. Inflammation 2016; 39:1405-13. [DOI: 10.1007/s10753-016-0372-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
Badner A, Vawda R, Laliberte A, Hong J, Mikhail M, Jose A, Dragas R, Fehlings M. Early Intravenous Delivery of Human Brain Stromal Cells Modulates Systemic Inflammation and Leads to Vasoprotection in Traumatic Spinal Cord Injury. Stem Cells Transl Med 2016; 5:991-1003. [PMID: 27245367 DOI: 10.5966/sctm.2015-0295] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/07/2016] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED : Spinal cord injury (SCI) is a life-threatening condition with multifaceted complications and limited treatment options. In SCI, the initial physical trauma is closely followed by a series of secondary events, including inflammation and blood spinal cord barrier (BSCB) disruption, which further exacerbate injury. This secondary pathology is partially mediated by the systemic immune response to trauma, in which cytokine production leads to the recruitment/activation of inflammatory cells. Because early intravenous delivery of mesenchymal stromal cells (MSCs) has been shown to mitigate inflammation in various models of neurologic disease, this study aimed to assess these effects in a rat model of SCI (C7-T1, 35-gram clip compression) using human brain-derived stromal cells. Quantitative polymerase chain reaction for a human-specific DNA sequence was used to assess cell biodistribution/clearance and confirmed that only a small proportion (approximately 0.001%-0.002%) of cells are delivered to the spinal cord, with the majority residing in the lung, liver, and spleen. Intriguingly, although cell populations drastically declined in all aforementioned organs, there remained a persistent population in the spleen at 7 days. Furthermore, the cell infusion significantly increased splenic and circulating levels of interleukin-10-a potent anti-inflammatory cytokine. Through this suppression of the systemic inflammatory response, the cells also reduced acute spinal cord BSCB permeability, hemorrhage, and lesion volume. These early effects further translated into enhanced functional recovery and tissue sparing 10 weeks after SCI. This work demonstrates an exciting therapeutic approach whereby a minimally invasive cell-transplantation procedure can effectively reduce secondary damage after SCI through systemic immunomodulation. SIGNIFICANCE Central nervous system pericytes (perivascular stromal cells) have recently gained significant attention within the scientific community. In addition to being recognized as major players in neurotrauma, pericytes have been discovered to share a common origin and potentially function with traditionally defined mesenchymal stromal cells (MSCs). Although there have been several in vitro comparisons, the in vivo therapeutic application of human brain-derived stromal cells has not been previously evaluated. This study demonstrates that these cells not only display a MSC phenotype in vitro but also have similar in vivo immunomodulatory effects after spinal cord injury that are more potent than those of non-central nervous system tissue-derived cells. Therefore, these cells are of great interest for therapeutic use in spinal cord injury.
Collapse
Affiliation(s)
- Anna Badner
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Toronto, Ontario, Canada Institute of Medical Science, University of Toronto, Ontario, Canada
| | - Reaz Vawda
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Toronto, Ontario, Canada
| | - Alex Laliberte
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Toronto, Ontario, Canada Institute of Medical Science, University of Toronto, Ontario, Canada
| | - James Hong
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Toronto, Ontario, Canada Institute of Medical Science, University of Toronto, Ontario, Canada
| | - Mirriam Mikhail
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Toronto, Ontario, Canada
| | - Alejandro Jose
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Toronto, Ontario, Canada
| | - Rachel Dragas
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Toronto, Ontario, Canada Institute of Medical Science, University of Toronto, Ontario, Canada
| | - Michael Fehlings
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Toronto, Ontario, Canada Institute of Medical Science, University of Toronto, Ontario, Canada Spinal Program, University Health Network, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|