1
|
Wang C, Sun H, Wang R, Ma X, Sun Y. FGL2: A new target molecule for coagulation and immune regulation in infectious disease. Int Immunopharmacol 2024; 143:113505. [PMID: 39488038 DOI: 10.1016/j.intimp.2024.113505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
Infectious diseases are complex inflammatory-immunologic host responses caused by various pathogens, such as viruses, bacteria, parasites, and fungi. In the process of infectious disease development, immune cells are activated, and a substantial number of inflammatory factors are released within the endothelium, which results in coagulation activation and the formation of intravascular thrombi. Furthermore, infection-induced hypercoagulability amplifies the inflammatory response and immune dysregulation. Emerging evidence suggests that fibrinogen-like protein 2 (FGL2) has a crucial role in facilitating procoagulant, pro-inflammatory, and immune-regulatory responses in various infectious diseases. This review illustrates the complex procoagulation and immunoregulatory roles of FGL2, suggesting it could be a target for novel immune interventions in intractable infectious diseases.
Collapse
Affiliation(s)
- Chaoyang Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - He Sun
- Department of Hepatobiliary Surgery and Transplantation, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China
| | - Rui Wang
- Department of Pediatrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaochun Ma
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yini Sun
- Department of Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Baroncini L, Muller CKS, Kadzioch NP, Wolfensberger R, Russenberger D, Bredl S, Mlambo T, Speck RF. Pro-inflammatory macrophages suppress HIV replication in humanized mice and ex vivo co-cultures. Front Immunol 2024; 15:1439328. [PMID: 39575258 PMCID: PMC11578737 DOI: 10.3389/fimmu.2024.1439328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/04/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Very little is known about the role of macrophages as immune mediators during natural HIV infection. Humanized mice are an extremely valuable in vivo model for studying HIV pathogenesis. However, the presence of murine mononuclear phagocytes in these models represents a significant limitation for studying their human counterpart. Therefore, we have developed a novel humanized mouse model that allows selective depletion of human myeloid cells at a time point of our choosing. Methods We genetically engineered human hematopoietic stem and progenitor cells (HSPCs) to express an inducible caspase-9 (iCas9) suicide system under a synthetic myeloid promoter. Using these HSPCs, we generated humanized mice. iCasp9 induction in vivo resulted in selective human myeloid cell death in this inducible human myeloid depletion (iHMD) mouse model. In addition, we co-cultured monocyte-derived macrophages with ex vivo HIV-infected PBMCs to further mechanistically investigate the effect of macrophages on HIV replication using flow cytometry, cytokine analysis, and RNA sequencing of both macrophages and CD4+ T cells. Results HIV infection induced a pro-inflammatory phenotype in HIV-infected humanized NSG mice during the early and late stages of HIV infection. Myeloid cell depletion in HIV-infected iHMD-NSG mice resulted in a rapid increase in HIV RNA replication, which was accompanied by a loss of pro-inflammatory cytokines. Co-culture of macrophages with ex vivo HIV-infected PBMCs reproduced their anti-HIV effects observed in vivo. Transcriptomic data showed macrophages upregulate antiviral cytokines and chemokines in co-culture, while inducing CD4+ T cells to upregulate HIV restriction factors and downregulate pathways involved in protein expression and cell replication. Discussion This study describes a novel role of macrophages as effector cells, both ex vivo and in vivo, acting against HIV replication and limiting disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Roberto F. Speck
- Department of Infectious Diseases and Hospital Epidemiology, University of Zurich,
University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Yaman Y, Kişi YE, Şengül SS, Yıldırım Y, Bay V. Unveiling genetic signatures associated with resilience to neonatal diarrhea in lambs through two GWAS approaches. Sci Rep 2024; 14:13072. [PMID: 38844604 PMCID: PMC11156902 DOI: 10.1038/s41598-024-64093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024] Open
Abstract
Neonatal diarrhea presents a significant global challenge due to its multifactorial etiology, resulting in high morbidity and mortality rates, and substantial economic losses. While molecular-level studies on genetic resilience/susceptibility to neonatal diarrhea in farm animals are scarce, prior observations indicate promising research directions. Thus, the present study utilizes two genome-wide association approaches, pKWmEB and MLM, to explore potential links between genetic variations in innate immunity and neonatal diarrhea in Karacabey Merino lambs. Analyzing 707 lambs, including 180 cases and 527 controls, revealed an overall prevalence rate of 25.5%. The pKWmEB analysis identified 13 significant SNPs exceeding the threshold of ≥ LOD 3. Moreover, MLM detected one SNP (s61781.1) in the SLC22A8 gene (p-value, 1.85eE-7), which was co-detected by both methods. A McNemar's test was conducted as the final assessment to identify whether there are any major effective markers among the detected SNPs. Results indicate that four markers-oar3_OAR1_122352257, OAR17_77709936.1, oar3_OAR18_17278638, and s61781.1-have a substantial impact on neonatal diarrhea prevalence (odds ratio: 2.03 to 3.10; statistical power: 0.88 to 0.99). Therefore, we propose the annotated genes harboring three of the associated markers, TIAM1, YDJC, and SLC22A8, as candidate major genes for selective breeding against neonatal diarrhea.
Collapse
Affiliation(s)
- Yalçın Yaman
- Department of Genetics, Faculty of Veterinary Medicine, Siirt University, Siirt, 56000, Türkiye.
| | - Yiğit Emir Kişi
- Sheep Research and Breeding Institute, Bandırma Balikesir, Türkiye
| | - Serkan S Şengül
- Sheep Research and Breeding Institute, Bandırma Balikesir, Türkiye
| | - Yasin Yıldırım
- Sheep Research and Breeding Institute, Bandırma Balikesir, Türkiye
| | - Veysel Bay
- Department of Animal Science, Faculty of Agriculture, Ege University, İzmir, 35100, Türkiye
| |
Collapse
|
4
|
Parker E, Judge MA, Pastor L, Fuente-Soro L, Jairoce C, Carter KW, Anderson D, Mandomando I, Clifford HD, Naniche D, Le Souëf PN. Gene dysregulation in acute HIV-1 infection – early transcriptomic analysis reveals the crucial biological functions affected. Front Cell Infect Microbiol 2023; 13:1074847. [PMID: 37077524 PMCID: PMC10106835 DOI: 10.3389/fcimb.2023.1074847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
IntroductionTranscriptomic analyses from early human immunodeficiency virus (HIV) infection have the potential to reveal how HIV causes widespread and lasting damage to biological functions, especially in the immune system. Previous studies have been limited by difficulties in obtaining early specimens.MethodsA hospital symptom-based screening approach was applied in a rural Mozambican setting to enrol patients with suspected acute HIV infection (Fiebig stage I-IV). Blood samples were collected from all those recruited, so that acute cases and contemporaneously recruited, uninfected controls were included. PBMC were isolated and sequenced using RNA-seq. Sample cellular composition was estimated from gene expression data. Differential gene expression analysis was completed, and correlations were determined between viral load and differential gene expression. Biological implications were examined using Cytoscape, gene set enrichment analysis, and enrichment mapping.ResultsTwenty-nine HIV infected subjects one month from presentation and 46 uninfected controls were included in this study. Subjects with acute HIV infection demonstrated profound gene dysregulation, with 6131 (almost 13% of the genome mapped in this study) significantly differentially expressed. Viral load was correlated with 1.6% of dysregulated genes, in particular, highly upregulated genes involved in key cell cycle functions, were correlated with viremia. The most profoundly upregulated biological functions related to cell cycle regulation, in particular, CDCA7 may drive aberrant cell division, promoted by overexpressed E2F family proteins. Also upregulated were DNA repair and replication, microtubule and spindle organization, and immune activation and response. The interferome of acute HIV was characterized by broad activation of interferon-stimulated genes with antiviral functions, most notably IFI27 and OTOF. BCL2 downregulation alongside upregulation of several apoptotic trigger genes and downstream effectors may contribute to cycle arrest and apoptosis. Transmembrane protein 155 (TMEM155) was consistently highly overexpressed during acute infection, with roles hitherto unknown.DiscussionOur study contributes to a better understanding of the mechanisms of early HIV-induced immune damage. These findings have the potential to lead to new earlier interventions that improve outcomes.
Collapse
Affiliation(s)
- Erica Parker
- School of Medicine, University of Western Australia, Crawley, WA, Australia
| | - Melinda A. Judge
- School of Medicine, University of Western Australia, Crawley, WA, Australia
- *Correspondence: Melinda A. Judge,
| | - Lucia Pastor
- ISGlobal, Barcelona Institute for Global Health, Hospital Clinic–Universitat de Barcelona, Barcelona, Spain
- AIDS Research Institute-IrsiCaixa, Institut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Laura Fuente-Soro
- ISGlobal, Barcelona Institute for Global Health, Hospital Clinic–Universitat de Barcelona, Barcelona, Spain
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | | | | | - Inácio Mandomando
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | | | - Denise Naniche
- ISGlobal, Barcelona Institute for Global Health, Hospital Clinic–Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Peter Neils Le Souëf
- School of Medicine, University of Western Australia, Crawley, WA, Australia
- Telethon Kids Institute, Perth, WA, Australia
| |
Collapse
|
5
|
Chandrasekar AP, Cummins NW, Natesampillai S, Misra A, Alto A, Laird G, Badley AD. The BCL-2 Inhibitor Venetoclax Augments Immune Effector Function Mediated by Fas Ligand, TRAIL, and Perforin/Granzyme B, Resulting in Reduced Plasma Viremia and Decreased HIV Reservoir Size during Acute HIV Infection in a Humanized Mouse Model. J Virol 2022; 96:e0173022. [PMID: 36448802 PMCID: PMC9769373 DOI: 10.1128/jvi.01730-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
The BCL-2 prosurvival protein is implicated in HIV persistence and is a potential therapeutic target for HIV eradication efforts. We now know that cells harboring HIV are preferentially enriched for high BCL-2 expression, enabling their survival, and that the BCL-2 inhibitor venetoclax promotes the death of actively replicating HIV-infected cells in vitro and ex vivo. Herein, we assess the effect of venetoclax on immune clearance of infected cells and show that BCL-2 inhibition significantly enhances target cell killing induced by Fas ligand, TRAIL (tumor necrosis factor-related apoptosis-inducing ligand), and perforin/granzyme B and synergistically enhances autologous NK (natural killer) and CD8 cells' killing of target cells. In a humanized mouse model of acute HIV infection, venetoclax monotherapy significantly decreases plasma viremia and normalizes CD4:CD8 ratios, and results in more mice with undetectable provirus levels than control. In this model, treatment was associated with leukopenia, as has been described clinically in patients receiving venetoclax for other indications. These data confirm meaningful anti-HIV effects of venetoclax during HIV infection but suggest that venetoclax use should be combined with ART (antiretroviral therapy) to reduce toxicity. IMPORTANCE This study is the first to examine the applicability of BCL-2 inhibition in the setting of active HIV infection in vivo. Furthermore, this study demonstrates that venetoclax significantly enhances target cell killing induced by Fas ligand, TRAIL, and perforin/granzyme B and synergistically enhances autologous NK and CD8 cells' killing of target cells.
Collapse
Affiliation(s)
| | - Nathan W. Cummins
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Anisha Misra
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Alecia Alto
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Greg Laird
- Accelevir Diagnostics, Baltimore, Maryland, USA
| | - Andrew D. Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
A genetic variant in IL-6 lowering its expression is protective for critical patients with COVID-19. Signal Transduct Target Ther 2022; 7:112. [PMID: 35368020 PMCID: PMC8976167 DOI: 10.1038/s41392-022-00923-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 12/30/2022] Open
Abstract
Critical coronavirus disease 2019 (COVID-19) is associated with high mortality and potential genetic factors have been reported to be involved in the development of critical COVID-19. We performed a genome-wide association study to identify the genetic factors responsible for developing critical COVID-19. 632 critical patients with COVID-19 and 3021 healthy controls from the Chinese population were recruited. First, we identified a genome-wide significant difference of IL-6 rs2069837 (p = 9.73 × 10−15, OR = 0.41) between 437 critical patients with COVID-19 and 2551 normal controls in the discovery cohort. When replicated these findings in a set of 195 patients with critical COVID-19 and 470 healthy controls, we detected significant association of rs2069837 with COVID-19 (p = 8.89 × 10−3, OR = 0.67). This variant surpassed the formal threshold for genome-wide significance (combined p = 4.64 × 10−16, OR = 0.49). Further analysis revealed that there was a significantly stronger expression of IL-6 in the serum from patients with critical COVID-19 than in that from patients with asymptomatic COVID-19. An in vitro assay showed that the A to G allele changes in rs2069837 within IL-6 obviously decreased the luciferase expression activity. When analyzing the effect of this variant on the IL-6 in the serum based on the rs2069837 genotype, we found that the A to G variation in rs2069837 decreased the expression of IL-6, especially in the male. Overall, we identified a genetic variant in IL-6 that protects against critical conditions with COVID-19 though decreasing IL-6 expression in the serum.
Collapse
|
7
|
Shi Y, Su J, Chen R, Wei W, Yuan Z, Chen X, Wang X, Liang H, Ye L, Jiang J. The Role of Innate Immunity in Natural Elite Controllers of HIV-1 Infection. Front Immunol 2022; 13:780922. [PMID: 35211115 PMCID: PMC8861487 DOI: 10.3389/fimmu.2022.780922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/19/2022] [Indexed: 12/26/2022] Open
Abstract
The natural process of human immunodeficiency virus type 1(HIV-1) infection is characterized by high viral load, immune cell exhaustion, and immunodeficiency, which eventually leads to the stage of acquired immunodeficiency syndrome (AIDS) and opportunistic infections. Rapidly progressing HIV-1 individuals often die of AIDS several years after infection without treatment. The promotion of ART greatly prolongs the survival time of HIV-infected persons. However, some patients have incomplete immune function reconstruction after ART due to latent storage of HIV-infected cells. Therefore, how to achieve a functional cure has always been the focus and hot spot of global AIDS research. Fortunately, the emergence of ECs/LTNPs who can control virus replication naturally has ignited new hope for realizing a functional cure for AIDS. Recently, a special category of infected individuals has attracted attention that can delay the progression of the disease more rigorously than the natural progression of HIV-1 infection described above. These patients are characterized by years of HIV-1 infection, long-term asymptomatic status, and normal CD4+T cell count without ART, classified as HIV-infected long-term nonprogressors (LTNPs) and elite controllers (ECs). Numerous studies have shown that the host and virus jointly determine the progression of HIV-1 infection, in which the level of innate immunity activation plays an important role. As the first line of defense against pathogen invasion, innate immunity is also a bridge to induce adaptive immunity. Compared with natural progressors, innate immunity plays an antiviral role in HIV-1 infection by inducing or activating many innate immune-related factors in the natural ECs. Learning the regulation of ECs immunity, especially the innate immunity in different characteristics, and thus studying the mechanism of the control of disease progression naturally, will contribute to the realization of the functional cure of AIDS. Therefore, this review will explore the relationship between innate immunity and disease progression in ECs of HIV-1 infection from the aspects of innate immune cells, signaling pathways, cytokines, which is helpful to provide new targets and theoretical references for the functional cure, prevention and control of AIDS, and development of a vaccine.
Collapse
Affiliation(s)
- Yuting Shi
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jinming Su
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Rongfeng Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Wudi Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Zongxiang Yuan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xiu Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xinwei Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Ma Y, Guo J, Li D, Cai X. Identification of potential key genes and functional role of CENPF in osteosarcoma using bioinformatics and experimental analysis. Exp Ther Med 2021; 23:80. [PMID: 34934449 PMCID: PMC8652394 DOI: 10.3892/etm.2021.11003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 09/21/2021] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma, which arises from bone tissue, is considered to be one of the most common types of cancer in children and teenagers. As the etiology of osteosarcoma has not been fully elucidated, the overall prognosis for patients is generally poor. In recent years, the development of bioinformatical technology has allowed researchers to identify numerous molecular biological characteristics associated with the prognosis of osteosarcoma using online databases. In the present study, Gene Expression Omnibus (GEO) database was used and three microarray datasets were obtained. The GEO2R web tool was utilized and differentially expressed genes (DEGs) in osteosarcoma tissue were identified. Venn analysis was performed to determine the intersection of the DEG profiles. DEGs were analyzed by Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Protein-protein interactions (PPIs) between these DEGs were analyzed using the Search Tool for the Retrieval of Interacting Genes database, and the PPI network was then visualized using Cytoscape software. The top ten genes were identified based on measurement of degree, density of maximum neighborhood component, maximal clique centrality and mononuclear cell counts in the PPI network, and five overlapping genes [origin recognition complex subunit 6 (ORC6), IGF-binding protein 5 (IGFBP5), minichromosome maintenance 10 replication initiation factor (MCM10), MET proto-oncogene, receptor tyrosine kinase (MET) and centromere protein F (CENPF)] were identified. Additionally, three module networks were analyzed by Molecular Complex Detection (MCODE), and six key genes [ORC6, MCM10, DEP domain containing 1 (DEPDC1), CENPF, TIMELESS interacting protein (TIPIN) and shugoshin 1 (SGOL1)] were screened. Combined with the results from Cytoscape and MCODE, eight hub genes (ORC6, MCM10, DEPDC1, CENPF, TIPIN, SGOL1, MET and IGFBP5) were obtained. Furthermore, Kaplan-Meier plotter survival analysis was used to evaluate the prognostic value of these eight hub genes in patients with osteosarcoma. Oncomine and GEPIA databases were applied to further confirm the expression levels of hub genes in tissue. Finally, the functional roles of the core gene CENPF were investigated using Cell Counting Kit-8, wound healing and Transwell assays, which indicated that CENPF knockdown inhibited the proliferation, migration and invasion of osteosarcoma cells. These results provided potential prognostic markers, as well as a basis for further investigation of the mechanism underlying osteosarcoma.
Collapse
Affiliation(s)
- Yihui Ma
- Department of Stomatology, General Hospital of Central Theater Command of the People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Jiaping Guo
- Department of Stomatology, General Hospital of Central Theater Command of the People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Da Li
- Department of Stomatology, General Hospital of Central Theater Command of the People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Xianhua Cai
- Department of Orthopedics, General Hospital of Central Theater Command of the People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
9
|
Hossain SMM, Khatun L, Ray S, Mukhopadhyay A. Identification of key immune regulatory genes in HIV-1 progression. Gene 2021; 792:145735. [PMID: 34048875 DOI: 10.1016/j.gene.2021.145735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022]
Abstract
Human immunodeficiency virus (HIV) infection causes acquired immunodeficiency syndrome (AIDS), one of the most devastating diseases affecting humankind. Here, we have proposed a framework to examine the differences among microarray gene expression data of uninfected and three different HIV-1 infection stages using module preservation statistics. We leverage the advantage of gene co-expression networks (GCN) constructed for each infection stages to detect the topological and structural changes of a group of differentially expressed genes. We examine the relationship among a set of co-expression modules by constructing a module eigengene network considering the overall similarity/dissimilarity among the genes within the modules. We have utilized different module preservation statistics with two composite statistics: "Zsummary" and "MedianRank" to examine the changes in co-expression patterns between modules. We have found several interesting results on the preservation characteristics of gene modules across different stages. Some genes are identified to be preserved in a pair of stages while altering their characteristics across other stages. We further validated the obtained results using permutation test and classification techniques. The biological significances of the obtained modules have also been examined using gene ontology and pathway-based analysis. Additionally, we have identified a set of key immune regulatory hub genes in the associated protein-protein interaction networks (PPINs) of the differentially expressed (DE) genes, which interacts with HIV-1 proteins and are likely to act as potential biomarkers in HIV-1 progression.
Collapse
Affiliation(s)
- Sk Md Mosaddek Hossain
- Department of Computer Science and Engineering, Aliah University, Kolkata 700160, India; Department of Computer Science and Engineering, University of Kalyani, Kalyani 741235, India.
| | - Lutfunnesa Khatun
- Department of Computer Science and Engineering, University of Kalyani, Kalyani 741235, India
| | - Sumanta Ray
- Department of Computer Science and Engineering, Aliah University, Kolkata 700160, India.
| | - Anirban Mukhopadhyay
- Department of Computer Science and Engineering, University of Kalyani, Kalyani 741235, India.
| |
Collapse
|
10
|
Hendricks CM, Cordeiro T, Gomes AP, Stevenson M. The Interplay of HIV-1 and Macrophages in Viral Persistence. Front Microbiol 2021; 12:646447. [PMID: 33897659 PMCID: PMC8058371 DOI: 10.3389/fmicb.2021.646447] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
HIV-1 has evolved mechanisms to evade host cell immune responses and persist for lifelong infection. Latent cellular reservoirs are responsible for this persistence of HIV-1 despite the powerful effects of highly active antiretroviral therapies (HAART) to control circulating viral load. While cellular reservoirs have been extensively studied, much of these studies have focused on peripheral blood and resting memory CD4+ T cells containing latent HIV-1 provirus; however, efforts to eradicate cellular reservoirs have been stunted by reservoirs found in tissues compartments that are not easily accessible. These tissues contain resting memory CD4+ T cells and tissue resident macrophages, another latent cellular reservoir to HIV-1. Tissue resident macrophages have been associated with HIV-1 infection since the 1980s, and evidence has continued to grow regarding their role in HIV-1 persistence. Specific biological characteristics play a vital role as to why macrophages are latent cellular reservoirs for HIV-1, and in vitro and in vivo studies exhibit how macrophages contribute to viral persistence in individuals and animals on antiretroviral therapies. In this review, we characterize the role and evolutionary advantages of macrophage reservoirs to HIV-1 and their contribution to HIV-1 persistence. In acknowledging the interplay of HIV-1 and macrophages in the host, we identify reasons why current strategies are incapable of eliminating HIV-1 reservoirs and why efforts must focus on eradicating reservoirs to find a future functional cure.
Collapse
Affiliation(s)
- Chynna M Hendricks
- Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Thaissa Cordeiro
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Ana Paula Gomes
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Mario Stevenson
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
11
|
Gondim MVP, Sherrill-Mix S, Bibollet-Ruche F, Russell RM, Trimboli S, Smith AG, Li Y, Liu W, Avitto AN, DeVoto JC, Connell J, Fenton-May AE, Pellegrino P, Williams I, Papasavvas E, Lorenzi JCC, Salantes DB, Mampe F, Monroy MA, Cohen YZ, Heath S, Saag MS, Montaner LJ, Collman RG, Siliciano JM, Siliciano RF, Plenderleith LJ, Sharp PM, Caskey M, Nussenzweig MC, Shaw GM, Borrow P, Bar KJ, Hahn BH. Heightened resistance to host type 1 interferons characterizes HIV-1 at transmission and after antiretroviral therapy interruption. Sci Transl Med 2021; 13:eabd8179. [PMID: 33441429 PMCID: PMC7923595 DOI: 10.1126/scitranslmed.abd8179] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/04/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Type 1 interferons (IFN-I) are potent innate antiviral effectors that constrain HIV-1 transmission. However, harnessing these cytokines for HIV-1 cure strategies has been hampered by an incomplete understanding of their antiviral activities at later stages of infection. Here, we characterized the IFN-I sensitivity of 500 clonally derived HIV-1 isolates from the plasma and CD4+ T cells of 26 individuals sampled longitudinally after transmission or after antiretroviral therapy (ART) and analytical treatment interruption. We determined the concentration of IFNα2 and IFNβ that reduced viral replication in vitro by 50% (IC50) and found consistent changes in the sensitivity of HIV-1 to IFN-I inhibition both across individuals and over time. Resistance of HIV-1 isolates to IFN-I was uniformly high during acute infection, decreased in all individuals in the first year after infection, was reacquired concomitant with CD4+ T cell loss, and remained elevated in individuals with accelerated disease. HIV-1 isolates obtained by viral outgrowth during suppressive ART were relatively IFN-I sensitive, resembling viruses circulating just before ART initiation. However, viruses that rebounded after treatment interruption displayed the highest degree of IFNα2 and IFNβ resistance observed at any time during the infection course. These findings indicate a dynamic interplay between host innate responses and the evolving HIV-1 quasispecies, with the relative contribution of IFN-I to HIV-1 control affected by both ART and analytical treatment interruption. Although elevated at transmission, host innate pressures are the highest during viral rebound, limiting the viruses that successfully become reactivated from latency to those that are IFN-I resistant.
Collapse
Affiliation(s)
- Marcos V P Gondim
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott Sherrill-Mix
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederic Bibollet-Ruche
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ronnie M Russell
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Yingying Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weimin Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexa N Avitto
- Gene Therapy Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia C DeVoto
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jesse Connell
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Pierre Pellegrino
- Centre for Clinical Research in Infection and Sexual Health, Institute for Global Health, University College London, London WC1E 6JB, UK
| | - Ian Williams
- Centre for Clinical Research in Infection and Sexual Health, Institute for Global Health, University College London, London WC1E 6JB, UK
| | | | - Julio C C Lorenzi
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | | | - Felicity Mampe
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Alexandra Monroy
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Sonya Heath
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael S Saag
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Luis J Montaner
- Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104, USA
| | - Ronald G Collman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janet M Siliciano
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Paul M Sharp
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Marina Caskey
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, Rockefeller University, New York, NY 10065, USA
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Katharine J Bar
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Expression, distribution and regulation of RIG-1 in duck bursa of Fabricius during innate immune development. Gene 2020; 771:145342. [PMID: 33340563 DOI: 10.1016/j.gene.2020.145342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 11/21/2022]
|
13
|
Ramdas P, Sahu AK, Mishra T, Bhardwaj V, Chande A. From Entry to Egress: Strategic Exploitation of the Cellular Processes by HIV-1. Front Microbiol 2020; 11:559792. [PMID: 33343516 PMCID: PMC7746852 DOI: 10.3389/fmicb.2020.559792] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/05/2020] [Indexed: 01/23/2023] Open
Abstract
HIV-1 employs a rich arsenal of viral factors throughout its life cycle and co-opts intracellular trafficking pathways. This exquisitely coordinated process requires precise manipulation of the host microenvironment, most often within defined subcellular compartments. The virus capitalizes on the host by modulating cell-surface proteins and cleverly exploiting nuclear import pathways for post entry events, among other key processes. Successful virus–cell interactions are indeed crucial in determining the extent of infection. By evolving defenses against host restriction factors, while simultaneously exploiting host dependency factors, the life cycle of HIV-1 presents a fascinating montage of an ongoing host–virus arms race. Herein, we provide an overview of how HIV-1 exploits native functions of the host cell and discuss recent findings that fundamentally change our understanding of the post-entry replication events.
Collapse
Affiliation(s)
- Pavitra Ramdas
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Amit Kumar Sahu
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Tarun Mishra
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Vipin Bhardwaj
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Ajit Chande
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| |
Collapse
|
14
|
Nagdas SK, Wallace S, Eaford D, Baker R, Carr K, Raychoudhuri SS. Fibrinogen-related protein, FGL2, of hamster cauda epididymal fluid: Purification, kinetic analysis of its prothrombinase activity, and its role in segregation of nonviable spermatozoa. Mol Reprod Dev 2020; 87:1206-1218. [PMID: 33216420 DOI: 10.1002/mrd.23438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/30/2020] [Accepted: 11/02/2020] [Indexed: 11/11/2022]
Abstract
Although the epididymal environment promotes the maturation and survival of spermatozoa, not all spermatozoa remain viable during passage through the epididymis. Does the epididymis has a protective mechanism(s) to segregate the viable sperm from defective spermatozoa? Previously, we identified 260/280 kDa oligomers (termed eFGL-Epididymal Fibrinogen-Like oligomer) are composed of two disulfide-linked subunits: a 64 kDa polypeptide identified as fibrinogen-like protein-2 (FGL2) and a 33 kDa polypeptide identified as fibrinogen-like protein-1 (FGL1). Our morphological studies demonstrated that the eFGL, secreted from the principal cells of the cauda epididymis, is polymerized into a death cocoon-like complex (DCF), masking defective luminal spermatozoa but, not the viable sperm population. In the present study, we purified FGL2 from hamster cauda epididymal fluid toward homogeneity and its prothrombinase catalytic activity was examined. Time-course conversion studies revealed that all prothrombin was converted to thrombin by purified hamster FGL2. Our biochemical studies demonstrate that FGL2 is a lipid-activated serine protease and functions as a lectin by binding specific carbohydrate residues. Co-immunoprecipitation analysis demonstrated that FGL2 of cauda epididymal fluid is ubiquitinated but not the FGL1. We propose that FGL2/FGL1 oligomers represent a novel and unique mechanism to shield the viable sperm population from degenerating spermatozoa contained within the tubule lumen.
Collapse
Affiliation(s)
- Subir K Nagdas
- Department of Chemistry, Physics & Materials Science, Fayetteville State University, Fayetteville, North Carolina, USA
| | - Shamar Wallace
- Department of Chemistry, Physics & Materials Science, Fayetteville State University, Fayetteville, North Carolina, USA
| | - Don Eaford
- Department of Chemistry, Physics & Materials Science, Fayetteville State University, Fayetteville, North Carolina, USA
| | - Rashad Baker
- Department of Chemistry, Physics & Materials Science, Fayetteville State University, Fayetteville, North Carolina, USA
| | - Ky'ara Carr
- Department of Chemistry, Physics & Materials Science, Fayetteville State University, Fayetteville, North Carolina, USA
| | - Samir S Raychoudhuri
- Department of Biology, Chemistry and Environmental Health Science, Benedict College, Columbia, South Carolina, USA
| |
Collapse
|
15
|
Feng Y, Guo C, Wang H, Zhao L, Wang W, Wang T, Feng Y, Yuan K, Huang G. Fibrinogen-Like Protein 2 (FGL2) is a Novel Biomarker for Clinical Prediction of Human Breast Cancer. Med Sci Monit 2020; 26:e923531. [PMID: 32716910 PMCID: PMC7409386 DOI: 10.12659/msm.923531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/04/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Fibrinogen-like protein 2 (FGL2) is a member of the fibrinogen-like protein family and possesses important regulatory functions in both innate and adaptive immune responses. FGL2 is overexpressed in glioma, and its expression level is negatively associated with the prognosis of glioma patients. However, the diagnostic value of FGL2 is unknown in breast carcinoma. MATERIAL AND METHODS We comprehensively analyzed the expression pattern of FGL2 in breast cancer. Several online databases - TCGA, Oncomine, GEPIA, Kaplan-Meier plotter, and PrognoScan - were used in this study. RESULTS Based on the TCGA dataset and Oncomine database, we found that the expression level of FGL2 was remarkably lower in breast cancer compared with adjacent normal tissues. Clinical data showed that the expression level of FGL2 was significantly associated with radiation therapy, PR status, and tumor stage. Bioinformatics analysis of the GEPIA, Kaplan-Meier plotter, and PrognoScan databases showed that lower FGL2 expression levels were associated with a worse prognosis in breast cancer patients. Furthermore, the expression level of FGL2 was positively correlated with the immune cell infiltrations in breast cancer, especially those cells with high antitumor activities. GO, KEGG, and GSEA analyses also validated that FGL2 was closely related to genes involved in the immune response, signal transduction, and T cell receptor signaling pathway in breast cancer. CONCLUSIONS The results demonstrated that high expression of FGL2 is a useful marker for breast cancer treatment and appears to be correlated with enhanced antitumor activities in breast cancer patients.
Collapse
Affiliation(s)
- Yanyan Feng
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Chunguang Guo
- Department of Abdominal Surgical Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, P.R. China
| | - Hesong Wang
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Lu Zhao
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Wei Wang
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Ting Wang
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Yuyin Feng
- Department of Biochemistry, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Kai Yuan
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Guangrui Huang
- Department of Biochemistry, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, P.R. China
| |
Collapse
|
16
|
Chen H, Moussa M, Catalfamo M. The Role of Immunomodulatory Receptors in the Pathogenesis of HIV Infection: A Therapeutic Opportunity for HIV Cure? Front Immunol 2020; 11:1223. [PMID: 32714317 PMCID: PMC7343933 DOI: 10.3389/fimmu.2020.01223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Immune activation is the hallmark of HIV infection and plays a role in the pathogenesis of the disease. In the context of suppressed HIV RNA replication by combination antiretroviral therapy (cART), there remains immune activation which is associated to the HIV reservoirs. Persistent virus contributes to a sustained inflammatory environment promoting accumulation of "activated/exhausted" T cells with diminished effector function. These T cells show increased expression of immunomodulatory receptors including Programmed cell death protein (PD1), Cytotoxic T Lymphocyte Associated Protein 4 (CTLA4), Lymphocyte activation gene 3 (LAG3), T cell immunoglobulin and ITIM domain (TIGIT), T cell immunoglobulin and mucin domain containing 3 (TIM3) among others. More importantly, recent reports had demonstrated that, HIV infected T cells express checkpoint receptors, contributing to their survival and promoting maintenance of the viral reservoir. Therapeutic strategies are focused on viral reservoir elimination and/or those to achieve sustained cART-free virologic remission. In this review, we will discuss the immunological basis and the latest advances of the use of checkpoint inhibitors to treat HIV infection.
Collapse
Affiliation(s)
- Hui Chen
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
- CMRS/Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Maha Moussa
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
| | - Marta Catalfamo
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
| |
Collapse
|
17
|
Judge M, Parker E, Naniche D, Le Souëf P. Gene Expression: the Key to Understanding HIV-1 Infection? Microbiol Mol Biol Rev 2020; 84:e00080-19. [PMID: 32404327 PMCID: PMC7233484 DOI: 10.1128/mmbr.00080-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gene expression profiling of the host response to HIV infection has promised to fill the gaps in our knowledge and provide new insights toward vaccine and cure. However, despite 20 years of research, the biggest questions remained unanswered. A literature review identified 62 studies examining gene expression dysregulation in samples from individuals living with HIV. Changes in gene expression were dependent on cell/tissue type, stage of infection, viremia, and treatment status. Some cell types, notably CD4+ T cells, exhibit upregulation of cell cycle, interferon-related, and apoptosis genes consistent with depletion. Others, including CD8+ T cells and natural killer cells, exhibit perturbed function in the absence of direct infection with HIV. Dysregulation is greatest during acute infection. Differences in study design and data reporting limit comparability of existing research and do not as yet provide a coherent overview of gene expression in HIV. This review outlines the extraordinarily complex host response to HIV and offers recommendations to realize the full potential of HIV host transcriptomics.
Collapse
Affiliation(s)
- Melinda Judge
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Erica Parker
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Denise Naniche
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigação de Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Peter Le Souëf
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| |
Collapse
|
18
|
Transketolase and vitamin B1 influence on ROS-dependent neutrophil extracellular traps (NETs) formation. PLoS One 2019; 14:e0221016. [PMID: 31415630 PMCID: PMC6695114 DOI: 10.1371/journal.pone.0221016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 07/30/2019] [Indexed: 12/23/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are a recently identified, web-like, extracellular structure composed of decondensed nuclear DNA and associated antimicrobial granules. NETs are extruded into the extracellular environment via the reactive oxygen species (ROS)-dependent cell death pathway participating in inflammation and autoimmune diseases. Transketolase (TKT) is a thiamine pyrophosphate (vitamin B1)-dependent enzyme that links the pentose phosphate pathway with the glycolytic pathway by feeding excess sugar phosphates into the main carbohydrate metabolic pathways to generate biosynthetic reducing capacity in the form of NADPH as a substrate for ROS generation. In this work, TKT was selected as a lead candidate from 24 NET-associated proteins obtained by literature screening and knowledge gap assessment. Consequently, we determined whether TKT influenced NET formation in vitro. We firstly established that the release of ROS-dependent NETs was significantly decreased after purified human PMNs were pretreated with oxythiamine, a TKT inhibitor, and in a concentration dependent manner. As a cofactor for TKT reaction, we evaluated the release of NET formation either in vitamin B1 treatment or in combined use of oxythiamine and vitamin B1, and found that those treatments also exerted a significant suppressive effect on the amount of NET-DNA and ROS production. The regulation of TKT by oxythiamine and/or vitamin B1 may therefore be associated with response to the modulation of NET formation by preventing generation of excessive NETs in inflammatory diseases.
Collapse
|
19
|
Kong X, Sawalha AH. Takayasu arteritis risk locus in IL6 represses the anti-inflammatory gene GPNMB through chromatin looping and recruiting MEF2-HDAC complex. Ann Rheum Dis 2019; 78:1388-1397. [PMID: 31315839 DOI: 10.1136/annrheumdis-2019-215567] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Previous work has revealed a genetic association between Takayasu arteritis and a non-coding genetic variant in an enhancer region within IL6 (rs2069837 A/G). The risk allele in this variant (allele A) has a protective effect against chronic viral infection and cancer. The goal of this study was to characterise the functional consequences of this disease-associated risk locus. METHODS A combination of experimental and bioinformatics tools were used to mechanistically understand the effects of the disease-associated genetic locus in IL6. These included electrophoretic mobility shift assay, DNA affinity precipitation assays followed by mass spectrometry and western blotting, luciferase reporter assays and chromosome conformation capture (3C) to identify chromatin looping in the IL6 locus. Both cell lines and peripheral blood primary monocyte-derived macrophages were used. RESULTS We identified the monocyte/macrophage anti-inflammatory gene GPNMB,~520 kb from IL6, as a target gene regulated by rs2069837. We revealed preferential recruitment of myocyte enhancer factor 2-histone deacetylase (MEF2-HDAC) repressive complex to the Takayasu arteritis risk allele. Further, we demonstrated suppression of GPNMB expression in monocyte-derived macrophages from healthy individuals with AA compared with AG genotype, which was reversed by histone deacetylase inhibition. Our data show that the risk allele in rs2069837 represses the expression of GPNMB by recruiting MEF2-HDAC complex, enabled through a long-range intrachromatin looping. Suppression of this anti-inflammatory gene might mediate increased susceptibility in Takayasu arteritis and enhance protective immune responses in chronic infection and cancer. CONCLUSIONS Takayasu arteritis risk locus in IL6 might increase disease susceptibility by suppression of the anti-inflammatory gene GPNMB through chromatin looping and recruitment of MEF2-HDAC epigenetic repressive complex. Our data highlight long-range chromatin interactions in functional genomic and epigenomic studies in autoimmunity.
Collapse
Affiliation(s)
- Xiufang Kong
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Division of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Amr H Sawalha
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA .,Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Wong ME, Jaworowski A, Hearps AC. The HIV Reservoir in Monocytes and Macrophages. Front Immunol 2019; 10:1435. [PMID: 31297114 PMCID: PMC6607932 DOI: 10.3389/fimmu.2019.01435] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022] Open
Abstract
In people living with HIV (PLWH) who are failing or unable to access combination antiretroviral therapy (cART), monocytes and macrophages are important drivers of pathogenesis and progression to AIDS. The relevance of the monocyte/macrophage reservoir in PLWH receiving cART is debatable as in vivo evidence for infected cells is limited and suggests the reservoir is small. Macrophages were assumed to have a moderate life span and lack self-renewing potential, but recent discoveries challenge this dogma and suggest a potentially important role of these cells as long-lived HIV reservoirs. This, combined with new HIV infection animal models, has led to a resurgence of interest in monocyte/macrophage reservoirs. Infection of non-human primates with myeloid-tropic SIV implicates monocyte/macrophage activation and infection in the brain with neurocognitive disorders, and infection of myeloid-only humanized mouse models are consistent with the potential of the monocyte/macrophage reservoir to sustain infection and be a source of rebound viremia following cART cessation. An increased resistance to HIV-induced cytopathic effects and a reduced susceptibility to some antiretroviral drugs implies macrophages may be relevant to residual replication under cART and to rebound viremia. With a reappraisal of monocyte circulation dynamics, and the development of techniques to differentiate between self-renewing tissue-resident, and monocyte-derived macrophages in different tissues, a new framework exists to contextualize and evaluate the significance and relevance of the monocyte/macrophage HIV reservoir. In this review, we discuss recent developments in monocyte and macrophage biology and appraise current and emerging techniques to quantify the reservoir. We discuss how this knowledge influences our evaluation of the myeloid HIV reservoir, the implications for HIV pathogenesis in both viremic and virologically-suppressed PLWH and the need to address the myeloid reservoir in future treatment and cure strategies.
Collapse
Affiliation(s)
- Michelle E Wong
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia
| | - Anthony Jaworowski
- Chronic Inflammatory and Infectious Diseases Program, School of Health and Biomedical Sciences, Bundoora, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Anna C Hearps
- Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Okamoto M, Hidaka A, Toyama M, Baba M. Galectin-3 is involved in HIV-1 expression through NF-κB activation and associated with Tat in latently infected cells. Virus Res 2018; 260:86-93. [PMID: 30481548 DOI: 10.1016/j.virusres.2018.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/12/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022]
Abstract
Galectin-3 (Gal-3) is involved in many biological processes and pathogenesis of diseases in part through nuclear factor (NF)-κB activation. We demonstrated that Gal-3 expression was significantly induced by tumor necrosis factor (TNF)-α or phorbol 12-myristate 13-acetate in OM-10.1 and ACH-2 cells, which are considered as a model of HIV-1 latently infected cells. The expression of Gal-3 was also associated with their viral production. However, the induction of Gal-3 by TNF-α was not observed in their uninfected parental cells. Knockdown of Gal-3 resulted in the suppression of NF-κB activation and HIV-1 replication in the latently infected cells. The expression level of Gal-3 was highly correlated with that of HIV-1 Tat in the latently infected cells stimulated with TNF-α. Furthermore, colocalization and possible interaction of Gal-3 and Tat were observed in the stimulated cells. These results suggent that Gal-3 expression is closely correlated with HIV-1 expression in latently infected cells through NF-κB activation and the interaction with Tat.
Collapse
Affiliation(s)
- Mika Okamoto
- Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Akemi Hidaka
- Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Masaaki Toyama
- Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Masanori Baba
- Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Kagoshima University, Kagoshima, 890-8544, Japan.
| |
Collapse
|
22
|
Seeking “protective” and “harmful” immune genes during chronic HIV-1 infection by transcriptome analysis. JOURNAL OF BIO-X RESEARCH 2018. [DOI: 10.1097/jbr.0000000000000015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
23
|
A compartmentalized type I interferon response in the gut during chronic HIV-1 infection is associated with immunopathogenesis. AIDS 2018; 32:1599-1611. [PMID: 29762170 DOI: 10.1097/qad.0000000000001863] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE(S) Type I interferon (IFN-I) responses confer both protective and pathogenic effects in persistent virus infections. IFN-I diversity, stage of infection and tissue compartment may account for this dichotomy. The gut is a major site of early HIV-1 replication and microbial translocation, but the nature of the IFN-I response in this compartment remains unclear. DESIGN Samples were obtained from two IRB-approved cross-sectional studies. The first study included individuals with chronic, untreated HIV-1 infection (n = 24) and age/sex-balanced uninfected controls (n = 14). The second study included antiretroviral-treated, HIV-1-infected individuals (n = 15) and uninfected controls (n = 15). METHODS The expression of 12 IFNα subtypes, IFNβ and antiviral IFN-stimulated genes (ISGs) were quantified in peripheral blood mononuclear cells (PBMCs) and colon biopsies using real-time PCR and next-generation sequencing. In untreated HIV-1-infected individuals, associations between IFN-I responses and gut HIV-1 RNA levels as well as previously established measures of colonic and systemic immunological indices were determined. RESULTS IFNα1, IFNα2, IFNα4, IFNα5 and IFNα8 were upregulated in PBMCs during untreated chronic HIV-1 infection, but IFNβ was undetectable. By contrast, IFNβ was upregulated and all IFNα subtypes were downregulated in gut tissue. Gut ISG levels positively correlated with gut HIV-1 RNA and immune activation, microbial translocation and inflammation markers. Gut IFN-I responses were not significantly different between HIV-1-infected individuals on antiretroviral treatment and uninfected controls. CONCLUSION The IFN-I response is compartmentalized during chronic untreated HIV-1 infection, with IFNβ being more predominant in the gut. Gut IFN-I responses are associated with immunopathogenesis, and viral replication is likely a major driver of this response.
Collapse
|
24
|
Fleischer LM, Somaiya RD, Miller GM. Review and Meta-Analyses of TAAR1 Expression in the Immune System and Cancers. Front Pharmacol 2018; 9:683. [PMID: 29997511 PMCID: PMC6029583 DOI: 10.3389/fphar.2018.00683] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 06/06/2018] [Indexed: 12/29/2022] Open
Abstract
Since its discovery in 2001, the major focus of TAAR1 research has been on its role in monoaminergic regulation, drug-induced reward and psychiatric conditions. More recently, TAAR1 expression and functionality in immune system regulation and immune cell activation has become a topic of emerging interest. Here, we review the immunologically-relevant TAAR1 literature and incorporate open-source expression and cancer survival data meta-analyses. We provide strong evidence for TAAR1 expression in the immune system and cancers revealed through NCBI GEO datamining and discuss its regulation in a spectrum of immune cell types as well as in numerous cancers. We discuss connections and logical directions for further study of TAAR1 in immunological function, and its potential role as a mediator or modulator of immune dysregulation, immunological effects of psychostimulant drugs of abuse, and cancer progression.
Collapse
Affiliation(s)
- Lisa M Fleischer
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Rachana D Somaiya
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Gregory M Miller
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States.,Department of Chemical Engineering, Northeastern University, Boston, MA, United States.,Center for Drug Discovery, Northeastern University, Boston, MA, United States
| |
Collapse
|
25
|
Ray S, Maulik U. Discovering Perturbation of Modular Structure in HIV Progression by Integrating Multiple Data Sources Through Non-Negative Matrix Factorization. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:869-877. [PMID: 28029629 DOI: 10.1109/tcbb.2016.2642184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Detecting perturbation in modular structure during HIV-1 disease progression is an important step to understand stage specific infection pattern of HIV-1 virus in human cell. In this article, we proposed a novel methodology on integration of multiple biological information to identify such disruption in human gene module during different stages of HIV-1 infection. We integrate three different biological information: gene expression information, protein-protein interaction information, and gene ontology information in single gene meta-module, through non negative matrix factorization (NMF). As the identified meta-modules inherit those information so, detecting perturbation of these, reflects the changes in expression pattern, in PPI structure and in functional similarity of genes during the infection progression. To integrate modules of different data sources into strong meta-modules, NMF based clustering is utilized here. Perturbation in meta-modular structure is identified by investigating the topological and intramodular properties and putting rank to those meta-modules using a rank aggregation algorithm. We have also analyzed the preservation structure of significant GO terms in which the human proteins of the meta-modules participate. Moreover, we have performed an analysis to show the change of coregulation pattern of identified transcription factors (TFs) over the HIV progression stages.
Collapse
|
26
|
Radetskyy R, Daher A, Gatignol A. ADAR1 and PKR, interferon stimulated genes with clashing effects on HIV-1 replication. Cytokine Growth Factor Rev 2018; 40:48-58. [PMID: 29625900 DOI: 10.1016/j.cytogfr.2018.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/15/2022]
Abstract
The induction of hundreds of Interferon Stimulated Genes (ISGs) subsequent to virus infection generates an antiviral state that functions to restrict virus growth at multiple steps of their replication cycles. In the context of Human Immunodeficiency Virus-1 (HIV-1), ISGs also possess antiviral functions, but some ISGs show proapoptotic or proviral activity. One of the most studied ISGs, the RNA activated Protein Kinase (PKR), shuts down the viral protein synthesis upon activation. HIV-1 has evolved to evade its inhibition by PKR through viral and cellular mechanisms. One of the cellular mechanisms is the induction of another ISG, the Adenosine Deaminase acting on RNA 1 (ADAR1). ADAR1 promotes viral replication by acting as an RNA sensing inhibitor, by editing viral RNA and by inhibiting PKR. This review challenges the orthodox dogma of ISGs as antiviral proteins, by demonstrating that two ISGs have opposing and clashing effects on viral replication.
Collapse
Affiliation(s)
- Roman Radetskyy
- Laboratory of Virus-Cell Interactions, Lady Davis Institute for Medical Research, Canada; Department of Medicine, Division of Experimental Medicine, Canada
| | - Aïcha Daher
- Laboratory of Virus-Cell Interactions, Lady Davis Institute for Medical Research, Canada
| | - Anne Gatignol
- Laboratory of Virus-Cell Interactions, Lady Davis Institute for Medical Research, Canada; Department of Medicine, Division of Experimental Medicine, Canada; Department of Medicine, Division of Infectious Diseases, Canada; Department of Microbiology-Immunology, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
27
|
Liu XG, Liu Y, Chen F. Soluble fibrinogen like protein 2 (sFGL2), the novel effector molecule for immunoregulation. Oncotarget 2018; 8:3711-3723. [PMID: 27732962 PMCID: PMC5356913 DOI: 10.18632/oncotarget.12533] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/29/2016] [Indexed: 02/07/2023] Open
Abstract
Soluble fibrinogen-like protein 2 (sFGL2) is the soluble form of fibrinogen-like protein 2 belonging to the fibrinogen-related protein superfamily. It is now well characterized that sFGL2 is mainly secreted by regulatory T cell (Treg) populations, and exerts potently immunosuppressive activities. By repressing not only the differentiation and proliferation of T cells but also the maturation of dendritic cells (DCs), sFGL2 acts largely as an immunosuppressant. Moreover, sFGL2 also induces apoptosis of B cells, tubular epithelial cells (TECs), sinusoidal endothelial cells (SECs), and hepatocytes. This mini-review focuses primarily on the recent literature with respect to the signaling mechanism of sFGL2 in immunomodulation, and discusses the clinical implications of sFGL2 in transplantation, hepatitis, autoimmunity, and tumors.
Collapse
Affiliation(s)
- Xin-Guang Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, P. R. China
| | - Yu Liu
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, P. R. China
| | - Feng Chen
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, P. R. China.,Capital Medical University Cancer Center, Beijing Shijitan Hospital, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing, China
| |
Collapse
|
28
|
Gliddon HD, Herberg JA, Levin M, Kaforou M. Genome-wide host RNA signatures of infectious diseases: discovery and clinical translation. Immunology 2017; 153:171-178. [PMID: 28921535 PMCID: PMC5765383 DOI: 10.1111/imm.12841] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 12/31/2022] Open
Abstract
The use of whole blood gene expression to derive diagnostic biomarkers capable of distinguishing between phenotypically similar diseases holds great promise but remains a challenge. Differential gene expression analysis is used to identify the key genes that undergo changes in expression relative to healthy individuals, as well as to patients with other diseases. These key genes can act as diagnostic, prognostic and predictive markers of disease. Gene expression ‘signatures’ in the blood hold the potential to be used for the diagnosis of infectious diseases, where current diagnostics are unreliable, ineffective or of limited potential. For diagnostic tests based on RNA signatures to be useful clinically, the first step is to identify the minimum set of gene transcripts that accurately identify the disease in question. The second requirement is rapid and cost‐effective detection of the gene expression levels. Signatures have been described for a number of infectious diseases, but ‘clinic‐ready’ technologies for RNA detection from clinical samples are limited, though existing methods such as RT‐PCR are likely to be superseded by a number of emerging technologies, which may form the basis of the translation of gene expression signatures into routine diagnostic tests for a range of disease states.
Collapse
Affiliation(s)
- Harriet D Gliddon
- London Centre for Nanotechnology, University College London, London, UK
| | | | - Michael Levin
- Department of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
29
|
Zhao F, Ma J, Huang L, Deng Y, Li L, Zhou Y, Li J, Li S, Jiang H, Yang H, Gao S, Wang H, Liu Y. Comparative transcriptome analysis of PBMC from HIV patients pre- and post-antiretroviral therapy. Meta Gene 2017. [DOI: 10.1016/j.mgene.2017.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
30
|
HIVed, a knowledgebase for differentially expressed human genes and proteins during HIV infection, replication and latency. Sci Rep 2017; 7:45509. [PMID: 28358052 PMCID: PMC5371986 DOI: 10.1038/srep45509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/27/2017] [Indexed: 12/22/2022] Open
Abstract
Measuring the altered gene expression level and identifying differentially expressed genes/proteins during HIV infection, replication and latency is fundamental for broadening our understanding of the mechanisms of HIV infection and T-cell dysfunction. Such studies are crucial for developing effective strategies for virus eradication from the body. Inspired by the availability and enrichment of gene expression data during HIV infection, replication and latency, in this study, we proposed a novel compendium termed HIVed (HIV expression database; http://hivlatency.erc.monash.edu/) that harbours comprehensive functional annotations of proteins, whose genes have been shown to be dysregulated during HIV infection, replication and latency using different experimental designs and measurements. We manually curated a variety of third-party databases for structural and functional annotations of the protein entries in HIVed. With the goal of benefiting HIV related research, we collected a number of biological annotations for all the entries in HIVed besides their expression profile, including basic protein information, Gene Ontology terms, secondary structure, HIV-1 interaction and pathway information. We hope this comprehensive protein-centric knowledgebase can bridge the gap between the understanding of differentially expressed genes and the functions of their protein products, facilitating the generation of novel hypotheses and treatment strategies to fight against the HIV pandemic.
Collapse
|
31
|
Ray S, Maulik U. Identifying differentially coexpressed module during HIV disease progression: A multiobjective approach. Sci Rep 2017; 7:86. [PMID: 28273892 PMCID: PMC5428367 DOI: 10.1038/s41598-017-00090-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/31/2017] [Indexed: 11/13/2022] Open
Abstract
Microarray analysis based on gene coexpression is widely used to investigate the coregulation pattern of a group (or cluster) of genes in a specific phenotype condition. Recent approaches go one step beyond and look for differential coexpression pattern, wherein there exists a significant difference in coexpression pattern between two phenotype conditions. These changes of coexpression patterns generally arise due to significant change in regulatory mechanism across different conditions governed by natural progression of diseases. Here we develop a novel multiobjective framework DiffCoMO, to identify differentially coexpressed modules that capture altered coexpression in gene modules across different stages of HIV-1 progression. The objectives are built to emphasize the distance between coexpression pattern of two phenotype stages. The proposed method is assessed by comparing with some state-of-the-art techniques. We show that DiffCoMO outperforms the state-of-the-art for detecting differential coexpressed modules. Moreover, we have compared the performance of all the methods using simulated data. The biological significance of the discovered modules is also investigated using GO and pathway enrichment analysis. Additionally, miRNA enrichment analysis is carried out to identify TF to miRNA and miRNA to TF connections. The gene modules discovered by DiffCoMO manifest regulation by miRNA-28, miRNA-29 and miRNA-125 families.
Collapse
Affiliation(s)
- Sumanta Ray
- Department of Computer Science and Engineering, Aliah University, Kolkata, 700156, India.
| | - Ujjwal Maulik
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, 700108, India
| |
Collapse
|
32
|
Nagdas SK, Winfrey VP, Olson GE. Two fibrinogen-like proteins, FGL1 and FGL2 are disulfide-linked subunits of oligomers that specifically bind nonviable spermatozoa. Int J Biochem Cell Biol 2016; 80:163-172. [PMID: 27732889 DOI: 10.1016/j.biocel.2016.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/08/2016] [Indexed: 11/16/2022]
Abstract
Nevertheless, a nonviable sperm population is present in the cauda epididymidis of many species. Degenerating spermatozoa release enzymes that could have detrimental effects on the viability of neighboring cells, and they are source of autoantigens that induce an autoimmune response if they escape the blood-epididymis barrier. Does the epididymis have specialized protective mechanism(s) to segregate the viable sperm population from defective spermatozoa? Previously, we identified a fibrinogen-like protein-2 (fgl2) that specifically binds to and polymerizes into a cocoon-like complex coating defective spermatozoa and sperm fragments. The objective of the present study is to identify the subunit composition of the fgl2-containing oligomers both in the soluble and cocoon-like complex. Our proteomic studies indicate that the 260/280kDa oligomers (termed eFGL) contain two distinct disulfide-linked subunits; 64kDa fgl2 and 33kDa fgl1. Utilizing a PCR-based cloning strategy, the 33kDa polypeptide has been identified as fibrinogen-like protein-1 (fgl1). Immunocytochemical studies revealed that fgl1 selectively binds to defective spermatozoa in the cauda epididymidis. Northern blot analysis and in situ hybridization demonstrated the high expression of fgl1 in the principal cells of the proximal cauda epididymidis. Co-immunoprecipitation analyses of cauda epididymal fluid, using anti-fgl2, demonstrate that both fgl1 and fgl2 are present in the soluble eFGL. Our study is the first to show an association of fgl1 and fgl2 both in the soluble and in the sperm-associated eFGL. We conclude that our results provide new insights into the mechanisms by which the potentially unique epididymal protein functions in the recognition and elimination of defective spermatozoa.
Collapse
Affiliation(s)
- Subir K Nagdas
- Department of Chemistry and Physics, Fayetteville State University, Fayetteville, NC, 28301, United States; Department of Cell Biology, Vanderbilt University, Nashville, TN, United States.
| | - Virginia P Winfrey
- Department of Cell Biology, Vanderbilt University, Nashville, TN, United States
| | - Gary E Olson
- Department of Cell Biology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
33
|
Singh H, Marathe SD, Nain S, Nema V, Ghate MV, Gangakhedkar RR. APOBEC3B deletion impacts on susceptibility to acquire HIV-1 and its advancement among individuals in western India. APMIS 2016; 124:881-7. [PMID: 27522954 DOI: 10.1111/apm.12578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 06/14/2016] [Indexed: 11/29/2022]
Abstract
APOBEC3B deletion polymorphism has been associated with risk of HIV-1 acquisition and its progression. Therefore, we aimed to investigate the association of APOBEC3B ins/del polymorphism with risk of acquisition of HIV-1 and its progression. In the present case-control study, we enrolled a total of 150 HIV-infected individuals and 150 healthy controls. Polymorphism for APOBEC3B gene was genotyped by PCR. APOBEC3B ID, DD genotypes, and D allele were associated with higher risk of acquisition of HIV-1 (p = 0.004, OR = 4.96; p = 0.03, OR = 3.55; and p = 0.004; OR = 1.60). The individuals with ID genotypes and combined genotype ID+DD of APOBEC3B in the presence of tobacco and alcohol showed the higher risk of advancement of HIV disease; however, risk could not reach statistical significance (OR = 1.14, 95% CI: 0.59-2.18; OR = 1.33, 95% CI: 0.83-2.15 and OR = 1.44, 95% CI: 0.77-2.69; OR = 1.50, 95% CI: 0.94-2.40). Individuals in advanced HIV disease stage and ID genotype and combined genotype ID + DD of APOBEC3B were more likely to be associated with advanced HIV disease stage but risk could not reach significant (OR = 1.50, 95% CI: 0.94-2.40; OR = 1.27, 95% CI: 0.88-1.84). Individuals with ID and DD genotype of APOBEC3B had influence on susceptibility to acquisition of HIV-1. This suggests that APOBEC3B deletion may attenuate innate cellular immunity against HIV-1 and thus confer the host persistence for HIV infection.
Collapse
Affiliation(s)
- HariOm Singh
- Department of Molecular Biology, National AIDS Research Institute, Pune, India. ,
| | - Shruti D Marathe
- Department of Molecular Biology, National AIDS Research Institute, Pune, India
| | - Sumitra Nain
- Department of Molecular Biology, National AIDS Research Institute, Pune, India
| | - Vijay Nema
- Department of Molecular Biology, National AIDS Research Institute, Pune, India
| | - Manisha V Ghate
- Department of Clinical Sciences, National AIDS Research Institute, Pune, India
| | | |
Collapse
|
34
|
Saxena D, Spino M, Tricta F, Connelly J, Cracchiolo BM, Hanauske AR, D’Alliessi Gandolfi D, Mathews MB, Karn J, Holland B, Park MH, Pe’ery T, Palumbo PE, Hanauske-Abel HM. Drug-Based Lead Discovery: The Novel Ablative Antiretroviral Profile of Deferiprone in HIV-1-Infected Cells and in HIV-Infected Treatment-Naive Subjects of a Double-Blind, Placebo-Controlled, Randomized Exploratory Trial. PLoS One 2016; 11:e0154842. [PMID: 27191165 PMCID: PMC4871512 DOI: 10.1371/journal.pone.0154842] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/18/2016] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Antiretrovirals suppress HIV-1 production yet spare the sites of HIV-1 production, the HIV-1 DNA-harboring cells that evade immune detection and enable viral resistance on-drug and viral rebound off-drug. Therapeutic ablation of pathogenic cells markedly improves the outcome of many diseases. We extend this strategy to HIV-1 infection. Using drug-based lead discovery, we report the concentration threshold-dependent antiretroviral action of the medicinal chelator deferiprone and validate preclinical findings by a proof-of-concept double-blind trial. In isolate-infected primary cultures, supra-threshold concentrations during deferiprone monotherapy caused decline of HIV-1 RNA and HIV-1 DNA; did not allow viral breakthrough for up to 35 days on-drug, indicating resiliency against viral resistance; and prevented, for at least 87 days off-drug, viral rebound. Displaying a steep dose-effect curve, deferiprone produced infection-independent deficiency of hydroxylated hypusyl-eIF5A. However, unhydroxylated deoxyhypusyl-eIF5A accumulated particularly in HIV-infected cells; they preferentially underwent apoptotic DNA fragmentation. Since the threshold, ascertained at about 150 μM, is achievable in deferiprone-treated patients, we proceeded from cell culture directly to an exploratory trial. HIV-1 RNA was measured after 7 days on-drug and after 28 and 56 days off-drug. Subjects who attained supra-threshold concentrations in serum and completed the protocol of 17 oral doses, experienced a zidovudine-like decline of HIV-1 RNA on-drug that was maintained off-drug without statistically significant rebound for 8 weeks, over 670 times the drug's half-life and thus clearance from circulation. The uniform deferiprone threshold is in agreement with mapping of, and crystallographic 3D-data on, the active site of deoxyhypusyl hydroxylase (DOHH), the eIF5A-hydroxylating enzyme. We propose that deficiency of hypusine-containing eIF5A impedes the translation of mRNAs encoding proline cluster ('polyproline')-containing proteins, exemplified by Gag/p24, and facilitated by the excess of deoxyhypusine-containing eIF5A, releases the innate apoptotic defense of HIV-infected cells from viral blockade, thus depleting the cellular reservoir of HIV-1 DNA that drives breakthrough and rebound. TRIAL REGISTRATION ClinicalTrial.gov NCT02191657.
Collapse
Affiliation(s)
- Deepti Saxena
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Michael Spino
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- ApoPharma Inc., Toronto, Ontario, Canada
| | | | | | - Bernadette M. Cracchiolo
- Department of Obstetrics, Gynecology and Women’s Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Axel-Rainer Hanauske
- Oncology Center and Medical Clinic III, Asklepios Klinik St. Georg, Hamburg, Germany
| | | | - Michael B. Mathews
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Bart Holland
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Myung Hee Park
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institute of Health, Bethesda, Maryland, United States of America
| | - Tsafi Pe’ery
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Paul E. Palumbo
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- * E-mail: (PEP); (HMHA)
| | - Hartmut M. Hanauske-Abel
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- Department of Obstetrics, Gynecology and Women’s Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- * E-mail: (PEP); (HMHA)
| |
Collapse
|
35
|
Zhao L, Gao J, Li Y, Liu L, Yang Y, Guo B, Zhu B. Disrupted Homeostatic Cytokines Expression in Secondary Lymph Organs during HIV Infection. Int J Mol Sci 2016; 17:413. [PMID: 27011165 PMCID: PMC4813265 DOI: 10.3390/ijms17030413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/05/2016] [Accepted: 03/14/2016] [Indexed: 12/13/2022] Open
Abstract
Research has firmly established that infection by human immunodeficiency virus (HIV) leads to structural disruption in secondary lymph organs (SLOs) and that IL-7 expression by SLOs is downregulated in simian immunodeficiency virus (SIV)-infected rhesus macaques. However, the foregoing has not been demonstrated in HIV-infected patients. As well, SLO-produced chemokines and cytokines, other than IL-7, have not been tested. In this study, SLOs in HIV-infected patients exhibit decreased levels of lymphoid cytokines, such as IL-7 and C–C motif chemokine ligand 21 (CCL21), due to lower expression of lymphotoxin (LT)-β. Previous research has shown that LT-β is produced mainly by CD4+T cells in rhesus macaques, while our study found the same level of LT-β expressed by CD4+T and CD8+T cells in humans. CD8+T cells substitute for depleted CD4+T cells LT-β production. Only the total number of CD3+T cells can account for the majority of LT-β in human SLOs. This study indicates a possible mechanism and a potential target for improvement of SLO function in HIV-infected patients, a novel adjuvant therapy for AIDS.
Collapse
Affiliation(s)
- Lintao Zhao
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Jianbao Gao
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Yan Li
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Lina Liu
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Yang Yang
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Bo Guo
- Department of Pathogenic Biology, Third Military Medical University, Chongqing 400037, China.
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
36
|
Tjernlund A, Burgener A, Lindvall JM, Peng T, Zhu J, Öhrmalm L, Picker LJ, Broliden K, McElrath MJ, Corey L. In Situ Staining and Laser Capture Microdissection of Lymph Node Residing SIV Gag-Specific CD8+ T cells--A Tool to Interrogate a Functional Immune Response Ex Vivo. PLoS One 2016; 11:e0149907. [PMID: 26986062 PMCID: PMC4795610 DOI: 10.1371/journal.pone.0149907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/05/2016] [Indexed: 11/18/2022] Open
Abstract
While a plethora of data describes the essential role of systemic CD8+ T cells in the control of SIV replication little is known about the local in situ CD8+ T cell immune responses against SIV at the intact tissue level, due to technical limitations. In situ staining, using GagCM9 Qdot 655 multimers, were here combined with laser capture microdissection to detect and collect SIV Gag CM9 specific CD8+ T cells in lymph node tissue from SIV infected rhesus macaques. CD8+ T cells from SIV infected and uninfected rhesus macaques were also collected and compared to the SIV GagCM9 specific CD8+ T cells. Illumina bead array and transcriptional analyses were used to assess the transcriptional profiles and the three different CD8+ T cell populations displayed unique transcriptional patterns. This pilot study demonstrates that rapid and specific immunostaining combined with laser capture microdissection in concert with transcriptional profiling may be used to elucidate phenotypic differences between CD8+ T cells in SIV infection. Such technologies may be useful to determine differences in functional activities of HIV/SIV specific T cells.
Collapse
Affiliation(s)
- Annelie Tjernlund
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, L8:01, 17176 Stockholm, Sweden
- * E-mail:
| | - Adam Burgener
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, L8:01, 17176 Stockholm, Sweden
- National Laboratory for HIV Immunology, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, 730 William Ave. Winnipeg, MB, Canada
| | - Jessica M. Lindvall
- Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Stockholm, Sweden
| | - Tao Peng
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Jia Zhu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States of America
| | - Lars Öhrmalm
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, L8:01, 17176 Stockholm, Sweden
| | - Louis J. Picker
- Department of Pathology, Vaccine and Gene Therapy Institute, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States of America
| | - Kristina Broliden
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, L8:01, 17176 Stockholm, Sweden
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
37
|
Blazkova J, Boughorbel S, Presnell S, Quinn C, Chaussabel D. A curated transcriptome dataset collection to investigate the immunobiology of HIV infection. F1000Res 2016; 5:327. [PMID: 27134731 PMCID: PMC4838008 DOI: 10.12688/f1000research.8204.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/04/2016] [Indexed: 12/22/2022] Open
Abstract
Compendia of large-scale datasets available in public repositories provide an opportunity to identify and fill current gaps in biomedical knowledge. But first, these data need to be readily accessible to research investigators for interpretation. Here, we make available a collection of transcriptome datasets relevant to HIV infection. A total of 2717 unique transcriptional profiles distributed among 34 datasets were identified, retrieved from the NCBI Gene Expression Omnibus (GEO), and loaded in a custom web application, the Gene Expression Browser (GXB), designed for interactive query and visualization of integrated large-scale data. Multiple sample groupings and rank lists were created to facilitate dataset query and interpretation via this interface. Web links to customized graphical views can be generated by users and subsequently inserted in manuscripts reporting novel findings, such as discovery notes. The tool also enables browsing of a single gene across projects, which can provide new perspectives on the role of a given molecule across biological systems. This curated dataset collection is available at:
http://hiv.gxbsidra.org/dm3/geneBrowser/list.
Collapse
Affiliation(s)
| | | | - Scott Presnell
- Benaroya Research Institute, Research Technology, Seattle, WA, USA
| | - Charlie Quinn
- Benaroya Research Institute, Research Technology, Seattle, WA, USA
| | | |
Collapse
|
38
|
Next-Generation mRNA Sequencing Reveals Pyroptosis-Induced CD4+ T Cell Death in Early Simian Immunodeficiency Virus-Infected Lymphoid Tissues. J Virol 2015; 90:1080-7. [PMID: 26559826 DOI: 10.1128/jvi.02297-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/02/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Lymphoid tissues (LTs) are the principal sites where human immunodeficiency virus type 1 (HIV-1) replicates and virus-host interactions take place, resulting in immunopathology in the form of inflammation, immune activation, and CD4(+) T cell death. The HIV-1 pathogenesis in LTs has been extensively studied; however, our understanding of the virus-host interactions in the very early stages of infection remains incomplete. We investigated virus-host interactions in the rectal draining lymph nodes (dLNs) of rhesus macaques at different times after intrarectal inoculation (days postinoculation [dpi]) with simian immunodeficiency virus (SIV). At 3 dpi, 103 differentially expressed genes (DEGs) were detected using next-generation mRNA sequencing (RNA-seq). At 6 and 10 dpi, concomitant with increased SIV replication, 366 and 1,350 DEGs were detected, respectively, including upregulation of genes encoding proteins that play a role in innate antiviral immune responses, inflammation, and immune activation. Notably, genes (IFI16, caspase-1, and interleukin 1β [IL-1β]) in the canonical pyroptosis pathway were significantly upregulated in expression. We further validated increased pyroptosis using flow cytometry and found that the number of CD4(+) T cells expressing activated caspase-1 protein, the hallmark of ongoing pyroptosis, were significantly increased, which is correlated with decreased CD4(+) T cells in dLNs. Our results demonstrated that pyroptosis contributes to the CD4(+) T cell death in vivo in early SIV infection, which suggests that pyroptosis may play a pivotal role in the pathogenesis of SIV, and by extension, that of HIV-1, since pyroptosis not only induces CD4(+) T cell death but also amplifies inflammation and immune activation. Thus, blocking CD4(+) T cell pyroptosis could be a complementary treatment to antiretroviral therapy. IMPORTANCE Although secondary lymphoid tissues (LTs) are principal sites of human immunodeficiency virus type 1 (HIV-1) replication, inflammation, immune activation, and CD4(+) T cell death, immunopathogenesis in LTs during early infection remains largely unknown. Using the simian immunodeficiency virus (SIV)/rhesus monkey model of HIV rectal infection, we investigated early virus-host interactions. Our results revealed elevated potent host responses in early infection in LTs, including upregulation of genes involved in antiviral immune response, inflammation, and immune activation. Importantly, genes involved in the canonical pyroptosis pathway were significantly upregulated, and there was a strong correlation between CD4(+) T cell decrease and increased number of CD4(+) T cells expressing activated caspase-1 protein, demonstrating that pyroptosis contributes to CD4(+) T cell death in vivo in very early SIV infection. Our finding suggests that blocking pyroptosis may be able to decrease CD4(+) T cell loss during early SIV infection.
Collapse
|
39
|
Hermes RB, Santana BB, Lima SS, Neris Martins Feitosa R, de Oliveira Guimarães Ishak M, Ishak R, Vallinoto ACR. FAS -670 A/G polymorphism may be associated with the depletion of CD4(+) T lymphocytes in HIV-1 infection. Hum Immunol 2015; 76:742-6. [PMID: 26429326 DOI: 10.1016/j.humimm.2015.09.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 08/12/2015] [Accepted: 09/27/2015] [Indexed: 11/24/2022]
Abstract
In this study, the polymorphisms in the FAS and FASL genes was investigated in a sample of 198 HIV-1-seropositive individuals and 191 seronegative controls to evaluate a possible association between polymorphisms and the infection. The identification of the A and G alleles of the FAS -670 polymorphism was accomplished through polymerase chain reaction assays followed by digestion with the restriction enzyme MvaI. The identification of the A and G alleles of the FAS -124 polymorphism and the T and delT alleles of the FAS -169 polymorphism were performed using the amplification-created restriction site method followed by restriction fragment length polymorphism reactions. The comparative analysis of allelic and genotypic frequencies between the groups did not reveal any significant differences. However, the quantitative analysis of CD4(+) T lymphocytes suggests that the G allele of the FAS -670 A/G polymorphism can be a protective factor against the depletion of these cells in the course of an HIV-1 infection. Polymorphisms in the FAS and FASL genes were not associated with the number of CD8(+) T lymphocytes or the plasma viral load. Our findings suggest that the FAS -670 polymorphism may be associated with apoptosis of CD4(+) T lymphocytes after infection by HIV-1.
Collapse
Affiliation(s)
- Renata Bezerra Hermes
- Laboratory of Virology (Laboratório de Virologia), Institute of Biological Sciences (Instituto de Ciências Biológicas), Federal University of Pará (Universidade Federal do Pará), Belém, Pará, Brazil
| | - Bárbara Brasil Santana
- Laboratory of Virology (Laboratório de Virologia), Institute of Biological Sciences (Instituto de Ciências Biológicas), Federal University of Pará (Universidade Federal do Pará), Belém, Pará, Brazil
| | - Sandra Souza Lima
- Laboratory of Virology (Laboratório de Virologia), Institute of Biological Sciences (Instituto de Ciências Biológicas), Federal University of Pará (Universidade Federal do Pará), Belém, Pará, Brazil
| | - Rosimar Neris Martins Feitosa
- Laboratory of Virology (Laboratório de Virologia), Institute of Biological Sciences (Instituto de Ciências Biológicas), Federal University of Pará (Universidade Federal do Pará), Belém, Pará, Brazil
| | - Marluísa de Oliveira Guimarães Ishak
- Laboratory of Virology (Laboratório de Virologia), Institute of Biological Sciences (Instituto de Ciências Biológicas), Federal University of Pará (Universidade Federal do Pará), Belém, Pará, Brazil
| | - Ricardo Ishak
- Laboratory of Virology (Laboratório de Virologia), Institute of Biological Sciences (Instituto de Ciências Biológicas), Federal University of Pará (Universidade Federal do Pará), Belém, Pará, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Laboratory of Virology (Laboratório de Virologia), Institute of Biological Sciences (Instituto de Ciências Biológicas), Federal University of Pará (Universidade Federal do Pará), Belém, Pará, Brazil.
| |
Collapse
|
40
|
Sherrill-Mix S, Ocwieja KE, Bushman FD. Gene activity in primary T cells infected with HIV89.6: intron retention and induction of genomic repeats. Retrovirology 2015; 12:79. [PMID: 26377088 PMCID: PMC4574318 DOI: 10.1186/s12977-015-0205-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/28/2015] [Indexed: 02/07/2023] Open
Abstract
Background HIV infection has been reported to alter cellular gene activity, but published studies have commonly assayed transformed cell lines and lab-adapted HIV strains, yielding inconsistent results. Here we carried out a deep RNA-Seq analysis of primary human T cells infected with the low passage HIV isolate HIV89.6. Results Seventeen percent of cellular genes showed altered activity 48 h after infection. In a meta-analysis including four other studies, our data differed from studies of HIV infection in cell lines but showed more parallels with infections of primary cells. We found a global trend toward retention of introns after infection, suggestive of a novel cellular response to infection. HIV89.6 infection was also associated with activation of several human endogenous retroviruses (HERVs) and retrotransposons, of interest as possible novel antigens that could serve as vaccine targets. The most highly activated group of HERVs was a subset of the ERV-9. Analysis showed that activation was associated with a particular variant of ERV-9 long terminal repeats that contains an indel near the U3-R border. These data also allowed quantification of >70 splice forms of the HIV89.6 RNA and specified the main types of chimeric HIV89.6-host RNAs. Comparison to over 100,000 integration site sequences from the same infected cell populations allowed quantification of authentic versus artifactual chimeric reads, showing that 5′ read-in, splicing out of HIV89.6 from the D4 donor and 3′ read-through were the most common HIV89.6-host cell chimeric RNA forms. Conclusions Analysis of RNA abundance after infection of primary T cells with the low passage HIV89.6 isolate disclosed multiple novel features of HIV-host interactions, notably intron retention and induction of transcription of retrotransposons and endogenous retroviruses. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0205-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Scott Sherrill-Mix
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, 425 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA.
| | - Karen E Ocwieja
- Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, 425 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
41
|
Flores Saiffe Farías A, Jaime Herrera López E, Moreno Vázquez CJ, Li W, Prado Montes de Oca E. Predicting functional regulatory SNPs in the human antimicrobial peptide genes DEFB1 and CAMP in tuberculosis and HIV/AIDS. Comput Biol Chem 2015; 59 Pt A:117-25. [PMID: 26447748 DOI: 10.1016/j.compbiolchem.2015.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 01/04/2023]
Abstract
Single nucleotide polymorphisms (SNPs) in transcription factor binding sites (TFBSs) within gene promoter region or enhancers can modify the transcription rate of genes related to complex diseases. These SNPs can be called regulatory SNPs (rSNPs). Data compiled from recent projects, such as the 1000 Genomes Project and ENCODE, has revealed essential information used to perform in silico prediction of the molecular and biological repercussions of SNPs within TFBS. However, most of these studies are very limited, as they only analyze SNPs in coding regions or when applied to promoters, and do not integrate essential biological data like TFBSs, expression profiles, pathway analysis, homotypic redundancy (number of TFBSs for the same TF in a region), chromatin accessibility and others, which could lead to a more accurate prediction. Our aim was to integrate different data in a biologically coherent method to analyze the proximal promoter regions of two antimicrobial peptide genes, DEFB1 and CAMP, that are associated with tuberculosis (TB) and HIV/AIDS. We predicted SNPs within the promoter regions that are more likely to interact with transcription factors (TFs). We also assessed the impact of homotypic redundancy using a novel approach called the homotypic redundancy weight factor (HWF). Our results identified 10 SNPs, which putatively modify the binding affinity of 24 TFs previously identified as related to TB and HIV/AIDS expression profiles (e.g. KLF5, CEBPA and NFKB1 for TB; FOXP2, BRCA1, CEBPB, CREB1, EBF1 and ZNF354C for HIV/AIDS; and RUNX2, HIF1A, JUN/AP-1, NR4A2, EGR1 for both diseases). Validating with the OregAnno database and cell-specific functional/non functional SNPs from additional 13 genes, our algorithm performed 53% sensitivity and 84.6% specificity to detect functional rSNPs using the DNAseI-HUP database. We are proposing our algorithm as a novel in silico method to detect true functional rSNPs in antimicrobial peptide genes. With further improvement, this novel method could be applied to other promoters in order to design probes and to discover new drug targets for complex diseases.
Collapse
Affiliation(s)
- Adolfo Flores Saiffe Farías
- Personalized Medicine Laboratory (LAMPER), Medical and Pharmaceutical Biotechnology, Guadalajara Unit, Research Center of Technology and Design Assistance of Jalisco State, National Council of Science and Technology (CIATEJ AC, CONACYT), Av. Normalistas 800, Col. Colinas de la Normal, CP 44270 Guadalajara, Jalisco, Mexico.
| | - Enrique Jaime Herrera López
- Industrial Biotechnology, CIATEJ AC, Zapopan Unit, CONACYT, Camino Arenero 1227, Col. El Bajío del Arenal, CP 45019 Zapopan, Jalisco, Mexico.
| | - Cristopher Jorge Moreno Vázquez
- Personalized Medicine Laboratory (LAMPER), Medical and Pharmaceutical Biotechnology, Guadalajara Unit, Research Center of Technology and Design Assistance of Jalisco State, National Council of Science and Technology (CIATEJ AC, CONACYT), Av. Normalistas 800, Col. Colinas de la Normal, CP 44270 Guadalajara, Jalisco, Mexico.
| | - Wentian Li
- The Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, 350 Community Dr. Manhasset, NY 11030, USA.
| | - Ernesto Prado Montes de Oca
- Personalized Medicine Laboratory (LAMPER), Medical and Pharmaceutical Biotechnology, Guadalajara Unit, Research Center of Technology and Design Assistance of Jalisco State, National Council of Science and Technology (CIATEJ AC, CONACYT), Av. Normalistas 800, Col. Colinas de la Normal, CP 44270 Guadalajara, Jalisco, Mexico; Molecular Biology Laboratory, Biosafety Area, Medical and Pharmaceutical Biotechnology, Guadalajara Unit, CIATEJ AC, CONACYT, Av. Normalistas 800, Col. Colinas de la Normal, CP 44270 Guadalajara, Jalisco, Mexico.
| |
Collapse
|
42
|
McLaren PJ, Gawanbacht A, Pyndiah N, Krapp C, Hotter D, Kluge SF, Götz N, Heilmann J, Mack K, Sauter D, Thompson D, Perreaud J, Rausell A, Munoz M, Ciuffi A, Kirchhoff F, Telenti A. Identification of potential HIV restriction factors by combining evolutionary genomic signatures with functional analyses. Retrovirology 2015; 12:41. [PMID: 25980612 PMCID: PMC4434878 DOI: 10.1186/s12977-015-0165-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/24/2015] [Indexed: 02/07/2023] Open
Abstract
Background Known antiretroviral restriction factors are encoded by genes that are under positive selection pressure, induced during HIV-1 infection, up-regulated by interferons, and/or interact with viral proteins. To identify potential novel restriction factors, we performed genome-wide scans for human genes sharing molecular and evolutionary signatures of known restriction factors and tested the anti-HIV-1 activity of the most promising candidates. Results Our analyses identified 30 human genes that share characteristics of known restriction factors. Functional analyses of 27 of these candidates showed that over-expression of a strikingly high proportion of them significantly inhibited HIV-1 without causing cytotoxic effects. Five factors (APOL1, APOL6, CD164, TNFRSF10A, TNFRSF10D) suppressed infectious HIV-1 production in transfected 293T cells by >90% and six additional candidates (FCGR3A, CD3E, OAS1, GBP5, SPN, IFI16) achieved this when the virus was lacking intact accessory vpr, vpu and nef genes. Unexpectedly, over-expression of two factors (IL1A, SP110) significantly increased infectious HIV-1 production. Mechanistic studies suggest that the newly identified potential restriction factors act at different steps of the viral replication cycle, including proviral transcription and production of viral proteins. Finally, we confirmed that mRNA expression of most of these candidate restriction factors in primary CD4+ T cells is significantly increased by type I interferons. Conclusions A limited number of human genes share multiple characteristics of genes encoding for known restriction factors. Most of them display anti-retroviral activity in transient transfection assays and are expressed in primary CD4+ T cells. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0165-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paul J McLaren
- École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland. .,Swiss Institute of Bioinformatics, 1005, Lausanne, Switzerland.
| | - Ali Gawanbacht
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Nitisha Pyndiah
- Institute of Microbiology, University of Lausanne, 1011, Lausanne, Switzerland.
| | - Christian Krapp
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Silvia F Kluge
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Nicola Götz
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Jessica Heilmann
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Katharina Mack
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Danielle Thompson
- Institute of Microbiology, University of Lausanne, 1011, Lausanne, Switzerland.
| | - Jérémie Perreaud
- Institute of Microbiology, University of Lausanne, 1011, Lausanne, Switzerland.
| | - Antonio Rausell
- Swiss Institute of Bioinformatics, 1005, Lausanne, Switzerland. .,Institute of Microbiology, University of Lausanne, 1011, Lausanne, Switzerland.
| | - Miguel Munoz
- Institute of Microbiology, University of Lausanne, 1011, Lausanne, Switzerland.
| | - Angela Ciuffi
- Institute of Microbiology, University of Lausanne, 1011, Lausanne, Switzerland.
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| | | |
Collapse
|
43
|
de Goede AL, Andeweg AC, van den Ham HJ, Bijl MA, Zaaraoui-Boutahar F, van IJcken WFJ, Wilgenhof S, Aerts JL, Gruters RA, Osterhaus ADME. DC immunotherapy in HIV-1 infection induces a major blood transcriptome shift. Vaccine 2015; 33:2922-9. [PMID: 25913415 DOI: 10.1016/j.vaccine.2015.04.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/06/2015] [Accepted: 04/14/2015] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This study aimed to evaluate the effect of dendritic cell (DC) vaccination against HIV-1 on host gene expression profiles. DESIGN Longitudinal PBMC samples were collected from participants of the DC-TRN trial for immunotherapy against HIV. Microarray-assisted gene expression profiling was performed to evaluate the effects of vaccination and subsequent interruption of antiretroviral therapy on host genome expression. Data from the DC-TRN trial were compared with results from other vaccination trials. METHODS We used Affymetrix GeneChips for microarray gene expression analysis. Data were analyzed by principal component analysis and differential gene expression was assessed using linear modeling. Gene ontology enrichment and gene set analysis were used to characterize differentially expressed genes. Transcriptome analysis included comparison with PBMCs obtained from DC-vaccinated melanoma patients and of healthy individuals who received seasonal influenza vaccination. RESULTS DC-TRN immunotherapy in HIV-infected individuals resulted in a major shift in the transcriptome. Longitudinal analysis demonstrated that changes in the transcriptome sustained also during interruption of antiretroviral therapy. After DC-vaccination, the transcriptome was enriched for cellular immunity associated genes that were also induced in healthy adults who received live attenuated influenza virus vaccination. These beneficial responses were accompanied by detrimental signals of general immune activation. CONCLUSIONS The DC-TRN induced changes in the transcriptome were profound, lasting, and consisted of both protective signals and signatures of inflammation and immune exhaustion, with a net result of decreased viral load, without clinical benefit. Thus transcriptome analysis provides useful information, dissecting both positive and negative effects, for the evaluation of safety and efficacy of immunotherapeutic strategies.
Collapse
Affiliation(s)
- Anna L de Goede
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands; Department of Hospital Pharmacy, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Arno C Andeweg
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Henk-Jan van den Ham
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Maarten A Bijl
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Fatiha Zaaraoui-Boutahar
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Wilfred F J van IJcken
- Erasmus Center for Biomics, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Sofie Wilgenhof
- Department of Medical Oncology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium; Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Medical School of the Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | - Joeri L Aerts
- Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Medical School of the Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | - Rob A Gruters
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Albert D M E Osterhaus
- Department of Viroscience, Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | |
Collapse
|
44
|
Juno JA, Stalker AT, Waruk JL, Oyugi J, Kimani M, Plummer FA, Kimani J, Fowke KR. Elevated expression of LAG-3, but not PD-1, is associated with impaired iNKT cytokine production during chronic HIV-1 infection and treatment. Retrovirology 2015; 12:17. [PMID: 25810006 PMCID: PMC4332911 DOI: 10.1186/s12977-015-0142-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/16/2015] [Indexed: 01/08/2023] Open
Abstract
Background LAG-3 is a potent negative regulator of the immune response but its impact in HIV infection in poorly understood. Unlike exhaustion markers such as PD-1, Tim-3, 2B4 and CD160, LAG-3 is poorly expressed on bulk and antigen-specific T cells during chronic HIV infection and its expression on innate lymphocyte subsets is not well understood. The aim of this study was to assess LAG-3 expression and association with cellular dysfunction on T cells, NK cells and iNKT cells among a cohort of healthy and HIV-infected female sex workers in Nairobi, Kenya. Results Ex vivo LAG-3 expression was measured by multiparametric flow cytometry, and plasma cytokine/chemokine concentrations measured by bead array. Although LAG-3 expression on bulk T cells was significantly increased among HIV-infected women, the proportion of cells expressing the marker was extremely low. In contrast, LAG-3 was more highly expressed on NK and iNKT cells and was not reduced among women treated with ART. To assess the functional impact of LAG-3 on iNKT cells, iNKT cytokine production was measured in response to lipid (αGalCer) and PMA/Io stimulation by both flow cytometry and cytokine bead array. iNKT cytokine production is profoundly altered by both HIV infection and treatment, and LAG-3, but not PD-1, expression is associated with a reduction in iNKT IFNγ production. Conclusions LAG-3 does not appear to mediate T cell exhaustion in this African population, but is instead expressed on innate lymphocyte subsets including iNKT cells. HIV infection alters iNKT cytokine production patterns and LAG-3 expression is uniquely associated with iNKT dysfunction. The continued expression of LAG-3 during treatment suggests it may contribute to the lack of innate immune reconstitution commonly observed during ART. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0142-z) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Wagener R, Alexandrov LB, Montesinos-Rongen M, Schlesner M, Haake A, Drexler HG, Richter J, Bignell GR, McDermott U, Siebert R. Analysis of mutational signatures in exomes from B-cell lymphoma cell lines suggest APOBEC3 family members to be involved in the pathogenesis of primary effusion lymphoma. Leukemia 2015; 29:1612-5. [DOI: 10.1038/leu.2015.22] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
46
|
Demers A, Kang G, Ma F, Lu W, Yuan Z, Li Y, Lewis M, Kraiselburd EN, Montaner L, Li Q. The mucosal expression pattern of interferon-ε in rhesus macaques. J Leukoc Biol 2014; 96:1101-7. [PMID: 25139290 PMCID: PMC4226795 DOI: 10.1189/jlb.3a0214-088rrr] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 07/28/2014] [Accepted: 08/02/2014] [Indexed: 11/24/2022] Open
Abstract
Type I IFNs play an important role in innate and adaptive immunity against viral infections. A novel type I IFN, namely IFN-ε, which can protect against vaginal transmission of HSV2 and Chlamydia muridarum bacterial infection, has been described in mice and humans. Nevertheless, the principle cell type and the expression pattern of IFN-ε in tissues remain uncertain. In addition, the expression of IFN-ε in Indian rhesus macaques (Macaca mulatta) has not been reported. Here, we analyzed IFN-ε expression in multiple mucosal sites of uninfected or SIV-infected Indian rhesus macaques using IHCS. We report for the first time the detection of IFN-ε expression in situ in the lung, foreskin, vaginal, cervical, and small and large intestinal mucosae of rhesus macaques. We found that the expression of IFN-ε was exclusive to the epithelial cells in all of the aforementioned mucosal tissues. Furthermore, the macaque IFN-ε sequence in this study revealed that macaque IFN-ε is highly conserved among human and other nonhuman primates. Lastly, SIV rectal infection did not significantly alter the expression of IFN-ε in rectal mucosae. Together, these findings indicate that IFN-ε may function as the first line of defense against the invasion of mucosal pathogens. Further studies should be conducted to examine IFN-ε protection against gastrointestinal as well as respiratory infections.
Collapse
Affiliation(s)
- Andrew Demers
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Guobin Kang
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Fungrui Ma
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Wuxun Lu
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Zhe Yuan
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Yue Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA; College of Life Sciences, Nankai University, Tianjin, China
| | | | - Edmundo N Kraiselburd
- Department of Microbiology and Zoology, University of Puerto Rico-School of Medicine, San Juan, Puerto Rico; and
| | - Luis Montaner
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA;
| |
Collapse
|
47
|
Hu J, Yan J, Rao G, Latha K, Overwijk WW, Heimberger AB, Li S. The Duality of Fgl2 - Secreted Immune Checkpoint Regulator Versus Membrane-Associated Procoagulant: Therapeutic Potential and Implications. Int Rev Immunol 2014; 35:325-339. [PMID: 25259408 DOI: 10.3109/08830185.2014.956360] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fibrinogen-like protein 2 (Fgl2), a member of the fibrinogen family, can be expressed as a membrane-associated protein with coagulation activity or in a secreted form possessing unique immune suppressive functions. The biological importance of Fgl2 is evident within viral-induced fibrin depositing inflammatory diseases and malignancies and provides a compelling rationale for Fgl2 expression to not only be considered as a disease biomarker but also as a therapeutic target. This article will provide a comprehensive review of the currently known biological properties of Fgl2 and clarifies future scientific directives.
Collapse
Affiliation(s)
- Jiemiao Hu
- a Department of Pediatrics-Research , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Jun Yan
- a Department of Pediatrics-Research , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Ganesh Rao
- b Department of Neurosurgery , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Khatri Latha
- b Department of Neurosurgery , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Willem W Overwijk
- c Department of Melanoma Medical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Amy B Heimberger
- b Department of Neurosurgery , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Shulin Li
- a Department of Pediatrics-Research , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
48
|
Lu W, Ma F, Churbanov A, Wan Y, Li Y, Kang G, Yuan Z, Wang D, Zhang C, Xu J, Lewis M, Li Q. Virus-host mucosal interactions during early SIV rectal transmission. Virology 2014; 464-465:406-414. [PMID: 25128762 PMCID: PMC4808581 DOI: 10.1016/j.virol.2014.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/07/2014] [Accepted: 07/08/2014] [Indexed: 02/03/2023]
Abstract
To deepen our understanding of early rectal transmission of HIV-1, we studied virus-host interactions in the rectal mucosa using simian immunodeficiency virus (SIV)-Indian rhesus macaque model and mRNA deep sequencing. We found that rectal mucosa actively responded to SIV as early as 3 days post-rectal inoculation (dpi) and mobilized more robust responses at 6 and 10 dpi. Our results suggest that the failure of the host to contain virus replication at the portal of entry is attributable to both a high-level expression of lymphocyte chemoattractant, proinflammatory and immune activation genes, which can recruit and activate viral susceptible target cells into mucosa; and a high-level expression of SIV accessory genes, which are known to be able to counter and evade host restriction factors and innate immune responses. This study provides new insights into the mechanism of rectal transmission.
Collapse
Affiliation(s)
- Wuxun Lu
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Fangrui Ma
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Alexander Churbanov
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Yanmin Wan
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Yue Li
- College of Life Sciences, Nankai University, Tianjin, China; Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Guobin Kang
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Zhe Yuan
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Dong Wang
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China; State Key Laboratory for Infectious Disease Prevention and Control, China CDC, Beijing, China
| | | | - Qingsheng Li
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
49
|
Overexpression of fibrinogen-like protein 2 induces epithelial-to-mesenchymal transition and promotes tumor progression in colorectal carcinoma. Med Oncol 2014; 31:181. [PMID: 25129313 PMCID: PMC7090555 DOI: 10.1007/s12032-014-0181-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/10/2014] [Indexed: 01/16/2023]
Abstract
The main cause of death in colorectal carcinoma (CRC) patients is tumor metastasis; however, the underlying molecular mechanisms are largely unknown. In the present study, a novel metastasis-related gene, fibrinogen-like protein 2 (FGL2), was characterized for its role in CRC metastasis and underlying molecular mechanisms. The clinical significance of FGL2 was investigated using tissue microarray analysis of samples from 82 patients with CRC. The molecular effects of FGL2 in CRC cells were determined using RNA interference and ectopic expression of FGL2. The overexpression of FGL2 was examined by immunohistochemistry in 82 CRC patients, and it was determined to be an independent predictor of overall survival (P < 0.05). The depletion of FGL2 expression inhibited tumor progression and epithelial-to-mesenchymal transition (EMT) in vitro and in vivo, while ectopic overexpression of FGL2 enhanced cell invasion and induced EMT in vitro. Our results suggest that FGL2 plays an important oncogenic role in CRC aggressiveness by inducing EMT, and FGL2 could be employed as a novel prognostic marker and effective therapeutic target for CRC.
Collapse
|
50
|
Franchini DM, Petersen-Mahrt SK. AID and APOBEC deaminases: balancing DNA damage in epigenetics and immunity. Epigenomics 2014; 6:427-43. [DOI: 10.2217/epi.14.35] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DNA mutations and genomic recombinations are the origin of oncogenesis, yet parts of developmental programs as well as immunity are intimately linked to, or even depend on, such DNA damages. Therefore, the balance between deleterious DNA damages and organismal survival utilizing DNA editing (modification and repair) is in continuous flux. The cytosine deaminases AID/APOBEC are a DNA editing family and actively participate in various biological processes. In conjunction with altered DNA repair, the mutagenic potential of the family allows for APOBEC3 proteins to restrict viral infection and transposons propagation, while AID can induce somatic hypermutation and class switch recombination in antibody genes. On the other hand, the synergy between effective DNA repair and the nonmutagenic potential of the DNA deaminases can induce local DNA demethylation to support epigenetic cellular identity. Here, we review the current state of knowledge on the mechanisms of action of the AID/APOBEC family in immunity and epigenetics.
Collapse
Affiliation(s)
- Don-Marc Franchini
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Instituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milano, Italy
| | - Svend K Petersen-Mahrt
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Instituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milano, Italy
| |
Collapse
|