1
|
Barman D, Drolia R. Caveolin-Mediated Endocytosis: Bacterial Pathogen Exploitation and Host-Pathogen Interaction. Cells 2024; 14:2. [PMID: 39791703 PMCID: PMC11719516 DOI: 10.3390/cells14010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
Within mammalian cells, diverse endocytic mechanisms, including phagocytosis, pinocytosis, and receptor-mediated endocytosis, serve as gateways exploited by many bacterial pathogens and toxins. Among these, caveolae-mediated endocytosis is characterized by lipid-rich caveolae and dimeric caveolin proteins. Caveolae are specialized microdomains on cell surfaces that impact cell signaling. Caveolin proteins facilitate the creation of caveolae and have three members in vertebrates: caveolin-1, caveolin-2, and caveolin-3. Many bacterial pathogens hijack caveolin machinery to invade host cells. For example, the Gram-positive facultative model intracellular bacterial pathogen Listeria monocytogenes exploits caveolin-mediated endocytosis for efficient cellular entry, translocation across the intestinal barrier, and cell-cell spread. Caveolin facilitates the internalization of group A streptococci by promoting the formation of invaginations in the plasma membrane and avoiding fusion with lysosomes, thereby aiding intracellular survival. Caveolin plays a crucial role in internalizing and modulation of host immune responses by Gram-negative bacterial pathogens, such as Escherichia coli K1, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium. Here, we summarize how bacterial pathogens manipulate the host's caveolin system to facilitate bacterial entry and movement within and between host cells, to support intracellular survival, to evade immune responses, and to trigger inflammation. This knowledge enhances the intervention of new therapeutic targets against caveolin in microbial invasion and immune evasion processes.
Collapse
Affiliation(s)
| | - Rishi Drolia
- Molecular and Cellular Microbiology Laboratory, Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA;
| |
Collapse
|
2
|
Zhai J, Wang C, Jin L, Liu F, Xiao Y, Gu H, Liu M, Chen Y. Gut Microbiota Metabolites Mediate Bax to Reduce Neuronal Apoptosis via cGAS/STING Axis in Epilepsy. Mol Neurobiol 2024; 61:9794-9809. [PMID: 37605097 DOI: 10.1007/s12035-023-03545-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023]
Abstract
The beneficial effects of gut flora on reducing nerve cell apoptosis and inflammation and improving epilepsy (EP) symptoms have been reported, but the specific mechanism of action is still unclear. A series of in vitro and in vivo experiments revealed the relationship between gut microbiota metabolites and the cGAS/STING axis and their role in EP. These results suggest that antibiotic-induced dysbiosis of gut microbiota exacerbated epileptic symptoms, probiotic supplements reduced epileptic symptoms in mice. Antibiotics and probiotics altered the diversity and composition of gut microbiota. The changes in gut bacteria composition, such as in the abundance of Firmicutes, Bacteroidetes, Lactobacillus and Ruminococcus, were associated with the production of short-chain fatty acids (SCFA) in the gut. The concentrations of propionate, butyrate and isovalerate were changed after feeding antibiotics and probiotics, and the increase in butyrate levels reduced the expression of cGAS/STING in nerve cell further reduced Bax protein expression. The reduction of Bax protein attenuated the hippocampal neuron cell apoptosis in PTZ-induced EP and EP progression. Our findings provide new insights into the roles and mechanisms of action of the gut microbiota in attenuating EP symptoms and progression.
Collapse
Affiliation(s)
- Jinxia Zhai
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Chao Wang
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Liang Jin
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Fangtao Liu
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Yinzhu Xiao
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Hongfeng Gu
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Mingjie Liu
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Yongjun Chen
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
3
|
Fan J, Zheng S, Wang M, Yuan X. The critical roles of caveolin-1 in lung diseases. Front Pharmacol 2024; 15:1417834. [PMID: 39380904 PMCID: PMC11458383 DOI: 10.3389/fphar.2024.1417834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Caveolin-1 (Cav-1), a structural and functional component in the caveolae, plays a critical role in transcytosis, endocytosis, and signal transduction. Cav-1 has been implicated in the mediation of cellular processes by interacting with a variety of signaling molecules. Cav-1 is widely expressed in the endothelial cells, smooth muscle cells, and fibroblasts in the various organs, including the lungs. The Cav-1-mediated internalization and regulation of signaling molecules participate in the physiological and pathological processes. Particularly, the MAPK, NF-κB, TGFβ/Smad, and eNOS/NO signaling pathways have been involved in the regulatory effects of Cav-1 in lung diseases. The important effects of Cav-1 on the lungs indicate that Cav-1 can be a potential target for the treatment of lung diseases. A Cav-1 scaffolding domain peptide CSP7 targeting Cav-1 has been developed. In this article, we mainly discuss the structure of Cav-1 and its critical roles in lung diseases, such as pneumonia, acute lung injury (ALI), asthma, chronic obstructive pulmonary disease (COPD), pulmonary hypertension, pulmonary fibrosis, and lung cancer.
Collapse
Affiliation(s)
| | | | | | - Xiaoliang Yuan
- Department of Respiratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
4
|
Wu Y, Riehle A, Pollmeier B, Kadow S, Schumacher F, Drab M, Kleuser B, Gulbins E, Grassmé H. Caveolin-1 affects early mycobacterial infection and apoptosis in macrophages and mice. Tuberculosis (Edinb) 2024; 147:102493. [PMID: 38547568 DOI: 10.1016/j.tube.2024.102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 06/14/2024]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, remains one of the deadliest infections in humans. Because Mycobacterium bovis Bacillus Calmette-Guérin (BCG) share genetic similarities with Mycobacterium tuberculosis, it is often used as a model to elucidate the molecular mechanisms of more severe tuberculosis infection. Caveolin-1 has been implied in many physiological processes and diseases, but it's role in mycobacterial infections has barely been studied. We isolated macrophages from Wildtype or Caveolin-1 deficient mice and analyzed hallmarks of infection, such as internalization, induction of autophagy and apoptosis. For in vivo assays we intravenously injected mice with BCG and investigated tissues for bacterial load with colony-forming unit assays, bioactive lipids with mass spectrometry and changes of protein expressions by Western blotting. Our results revealed that Caveolin-1 was important for early killing of BCG infection in vivo and in vitro, controlled acid sphingomyelinase (Asm)-dependent ceramide formation, apoptosis and inflammatory cytokines upon infection with BCG. In accordance, Caveolin-1 deficient mice and macrophages showed higher bacterial burdens in the livers. The findings indicate that Caveolin-1 plays a role in infection of mice and murine macrophages with BCG, by controlling cellular apoptosis and inflammatory host response. These clues might be useful in the fight against tuberculosis.
Collapse
Affiliation(s)
- Yuqing Wu
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Andrea Riehle
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Barbara Pollmeier
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Stephanie Kadow
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | | | - Marek Drab
- Unit of Nanostructural Biointeractions, Department of Immunology of Infectious Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla Street, 53-114, Wroclaw, Poland
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Heike Grassmé
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
5
|
Rudraprasad D, Naik MN, Joseph J. Proteome profiling of Extracellular Vesicles in Pseudomonas aeruginosa endophthalmitis: Prognostic and therapeutic significance in a mouse model. Exp Cell Res 2022; 419:113306. [PMID: 35963322 DOI: 10.1016/j.yexcr.2022.113306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/20/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022]
Abstract
Endophthalmitis is a sight-threatening infection and a serious consequence of complications during intraocular surgery or penetrating injury of which Pseudomonas aeruginosa is an important etiology. Extracellular vesicles (EVs) have evolved as a promising entity for developing diagnostic and therapeutic biomarkers due to their involvement in intracellular communication and pathogenesis of diseases. We aimed to characterise the protein cargo of extracellular vesicles, isolated from a murine (C57BL/6) model of P. aeruginosa endophthalmitis by LC-MS/MS at 24 h post infection (p.i). EVs were extracted by ultracentrifugation, characterized by Dynamic Light Scattering (DLS) and western blotting with tetraspannin markers, CD9 and CD81 and quantified by the ExoCet quantification kit. Multiplex ELISA was performed to estimate the levels of TNF-α, IL-6, IFN-γ and IL-1β. Proteomic analysis identified 2010 proteins (FDR ≤0.01) in EVs from infected mice eyes, of which 137 were differentially expressed (P-value ≤ 0.05). A total of 101 proteins were upregulated and 36 were downregulated. Additionally, 43 proteins were exclusive to infection set. KEGG and Gene Ontology revealed, Focal adhesion, Phagosome pathway, Complement cascade and IL-17 signalling pathway are crucial upregulated pathways involving proteins such as Tenascin, caveolin 1, caveolin 2, glutamine synthetase, microtubule-associated protein, C1, C8 and IL-17. Tenascin and caveolins are known to suppress anti-inflammatory cytokines further exacerbating the disease. The result of this study provides insight into the global extracellular vesicle proteome of P. aeruginosa endophthalmitis with their functional correlation and distinctive pattern of expression and tenascin, caveolin 1 and caveolin 2 are attractive biomarkers for P. aeruginosa endophthalmitis.
Collapse
Affiliation(s)
- Dhanwini Rudraprasad
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana, India; Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Milind N Naik
- Ophthalmic Plastic Surgery & Facial Aesthetics, LV. Prasad Eye Institute, Hyderabad, Telangana, India.
| | - Joveeta Joseph
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana, India; Ramoji Foundation Centre of Ocular Infections, L.V. Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
6
|
Lannes-Costa PS, Pimentel BADS, Nagao PE. Role of Caveolin-1 in Sepsis – A Mini-Review. Front Immunol 2022; 13:902907. [PMID: 35911737 PMCID: PMC9334647 DOI: 10.3389/fimmu.2022.902907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022] Open
Abstract
Sepsis is a generalized disease characterized by an extreme response to a severe infection. Moreover, challenges remain in the diagnosis, treatment and management of septic patients. In this mini-review we demonstrate developments on cellular pathogenesis and the role of Caveolin-1 (Cav-1) in sepsis. Studies have shown that Cav-1 has a significant role in sepsis through the regulation of membrane traffic and intracellular signaling pathways. In addition, activation of apoptosis/autophagy is considered relevant for the progression and development of sepsis. However, how Cav-1 is involved in sepsis remains unclear, and the precise mechanisms need to be further investigated. Finally, the role of Cav-1 in altering cell permeability during inflammation, in sepsis caused by microorganisms, apoptosis/autophagy activation and new therapies under study are discussed in this mini-review.
Collapse
|
7
|
Kotlyarov S, Kotlyarova A. Molecular Mechanisms of Lipid Metabolism Disorders in Infectious Exacerbations of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:7634. [PMID: 34299266 PMCID: PMC8308003 DOI: 10.3390/ijms22147634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Exacerbations largely determine the character of the progression and prognosis of chronic obstructive pulmonary disease (COPD). Exacerbations are connected with changes in the microbiological landscape in the bronchi due to a violation of their immune homeostasis. Many metabolic and immune processes involved in COPD progression are associated with bacterial colonization of the bronchi. The objective of this review is the analysis of the molecular mechanisms of lipid metabolism and immune response disorders in the lungs in COPD exacerbations. The complex role of lipid metabolism disorders in the pathogenesis of some infections is only beginning to be understood, however, there are already fewer and fewer doubts even now about its significance both in the pathogenesis of infectious exacerbations of COPD and in general in the progression of the disease. It is shown that the lipid rafts of the plasma membranes of cells are involved in many processes related to the detection of pathogens, signal transduction, the penetration of pathogens into the cell. Smoking disrupts the normally proceeded processes of lipid metabolism in the lungs, which is a part of the COPD pathogenesis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
8
|
Sun D, Yin Y, Guo C, Liu L, Mao S, Zhu W, Liu J. Transcriptomic analysis reveals the molecular mechanisms of rumen wall morphological and functional development induced by different solid diet introduction in a lamb model. J Anim Sci Biotechnol 2021; 12:33. [PMID: 33750470 PMCID: PMC7944623 DOI: 10.1186/s40104-021-00556-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
Background This study aimed to elucidate the molecular mechanisms of solid diet introduction initiating the cellular growth and maturation of rumen tissues and characterize the shared and unique biological processes upon different solid diet regimes. Methods Twenty-four Hu lambs were randomly allocated to three groups fed following diets: goat milk powder only (M, n = 8), goat milk powder + alfalfa hay (MH, n = 8), and goat milk powder + concentrate starter (MC, n = 8). At 42 days of age, the lambs were slaughtered. Ruminal fluid sample was collected for analysis of concentration of volatile fatty acid (VFA) and microbial crude protein (MCP). The sample of the rumen wall from the ventral sac was collected for analysis of rumen papilla morphology and transcriptomics. Results Compared with the M group, MH and MC group had a higher concentration of VFA, MCP, rumen weight, and rumen papilla area. The transcriptomic results of rumen wall showed that there were 312 shared differentially expressed genes (DEGs) between in “MH vs. M” and “MC vs. M”, and 232 or 796 unique DEGs observed in “MH vs. M” or “MC vs. M”, respectively. The shared DEGs were most enriched in VFA absorption and metabolism, such as peroxisome proliferator-activated receptor (PPAR) signaling pathway, butanoate metabolism, and synthesis and degradation of ketone bodies. Additionally, a weighted gene co-expression network analysis identified M16 (2,052 genes) and M18 (579 genes) modules were positively correlated with VFA and rumen wall morphology. The M16 module was mainly related to metabolism pathway, while the M18 module was mainly associated with signaling transport. Moreover, hay specifically depressed expression of genes involved in cytokine production, immune response, and immunocyte activation, and concentrate starter mainly altered nutrient transport and metabolism, especially ion transport, amino acid, and fatty acid metabolism. Conclusions The energy production during VFA metabolism may drive the rumen wall development directly. The hay introduction facilitated establishment of immune function, while the concentrate starter enhanced nutrient transport and metabolism, which are important biological processes required for rumen development. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00556-4.
Collapse
Affiliation(s)
- Daming Sun
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.,National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuyang Yin
- Huzhou Academy of Agricultural Sciences, Huzhou, 313000, China
| | - Changzheng Guo
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.,National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lixiang Liu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.,National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengyong Mao
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.,National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyun Zhu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.,National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junhua Liu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China. .,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China. .,National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
9
|
Brandel A, Aigal S, Lagies S, Schlimpert M, Meléndez AV, Xu M, Lehmann A, Hummel D, Fisch D, Madl J, Eierhoff T, Kammerer B, Römer W. The Gb3-enriched CD59/flotillin plasma membrane domain regulates host cell invasion by Pseudomonas aeruginosa. Cell Mol Life Sci 2021; 78:3637-3656. [PMID: 33555391 PMCID: PMC8038999 DOI: 10.1007/s00018-021-03766-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/22/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa has gained precedence over the years due to its ability to develop resistance to existing antibiotics, thereby necessitating alternative strategies to understand and combat the bacterium. Our previous work identified the interaction between the bacterial lectin LecA and its host cell glycosphingolipid receptor globotriaosylceramide (Gb3) as a crucial step for the engulfment of P. aeruginosa via the lipid zipper mechanism. In this study, we define the LecA-associated host cell membrane domain by pull-down and mass spectrometry analysis. We unraveled a predilection of LecA for binding to saturated, long fatty acyl chain-containing Gb3 species in the extracellular membrane leaflet and an induction of dynamic phosphatidylinositol (3,4,5)-trisphosphate (PIP3) clusters at the intracellular leaflet co-localizing with sites of LecA binding. We found flotillins and the GPI-anchored protein CD59 not only to be an integral part of the LecA-interacting membrane domain, but also majorly influencing bacterial invasion as depletion of either of these host cell proteins resulted in about 50% reduced invasiveness of the P. aeruginosa strain PAO1. In summary, we report that the LecA-Gb3 interaction at the extracellular leaflet induces the formation of a plasma membrane domain enriched in saturated Gb3 species, CD59, PIP3 and flotillin thereby facilitating efficient uptake of PAO1.
Collapse
Affiliation(s)
- Annette Brandel
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Sahaja Aigal
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Simon Lagies
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstraße 49, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany
| | - Manuel Schlimpert
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstraße 49, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany
| | - Ana Valeria Meléndez
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany
| | - Maokai Xu
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Anika Lehmann
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Daniel Hummel
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Department of Biochemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211, Geneva, Switzerland
| | - Daniel Fisch
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Josef Madl
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, and Faculty of Medicine, University of Freiburg, Elsässer Straße 2q, 79110, Freiburg, Germany
| | - Thorsten Eierhoff
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Clinic for Vascular and Endovascular Surgery, University Hospital Münster, Albert Schweitzer Campus 1, 48149, Münster, Germany
| | - Bernd Kammerer
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstraße 49, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany.
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany.
| |
Collapse
|
10
|
Dudãu M, Codrici E, Tanase C, Gherghiceanu M, Enciu AM, Hinescu ME. Caveolae as Potential Hijackable Gates in Cell Communication. Front Cell Dev Biol 2020; 8:581732. [PMID: 33195223 PMCID: PMC7652756 DOI: 10.3389/fcell.2020.581732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Caveolae are membrane microdomains described in many cell types involved in endocytocis, transcytosis, cell signaling, mechanotransduction, and aging. They are found at the interface with the extracellular environment and are structured by caveolin and cavin proteins. Caveolae and caveolins mediate transduction of chemical messages via signaling pathways, as well as non-chemical messages, such as stretching or shear stress. Various pathogens or signals can hijack these gates, leading to infectious, oncogenic and even caveolin-related diseases named caveolinopathies. By contrast, preclinical and clinical research have fallen behind in their attempts to hijack caveolae and caveolins for therapeutic purposes. Caveolae involvement in human disease is not yet fully explored or understood and, of all their scaffold proteins, only caveolin-1 is being considered in clinical trials as a possible biomarker of disease. This review briefly summarizes current knowledge about caveolae cell signaling and raises the hypothesis whether these microdomains could serve as hijackable “gatekeepers” or “gateways” in cell communication. Furthermore, because cell signaling is one of the most dynamic domains in translating data from basic to clinical research, we pay special attention to translation of caveolae, caveolin, and cavin research into clinical practice.
Collapse
Affiliation(s)
- Maria Dudãu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Elena Codrici
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Cristiana Tanase
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Clinical Biochemistry Department, Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Mihaela Gherghiceanu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Enciu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihail E Hinescu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
11
|
Zhu F, Huang J, Wang X, Li P, Yan Y, Zheng Y, He Y, Wu T, Ren Y, Wu R. The expression and significance of serum caveolin-1 in patients with Kawasaki disease. CHINESE J PHYSIOL 2020; 63:90-94. [PMID: 32341235 DOI: 10.4103/cjp.cjp_71_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We investigated the expression of caveolin-1 (Cav-1) in Kawasaki disease (KD) and analyzed its relationship with coronary artery lesions (CALs). Cav-1 participated in the progression of CAL in KD. A total of 68 children with KD (23 with CALs), age matched with a fever control group (F, n = 28) and a normal control group (N, n = 24) were enrolled in this study. Cav-1 expression was detected using an enzyme-linked immunosorbent assay. The results are the following: (1) Compared with the F and N, Cav-1 expression was significantly increased in the children with KD (P < 0.05); there was no significant difference in Cav-1 between the F and N. (2) The serum level of Cav-1 was significantly higher in children with KD and CALs during the acute phase than in children with KD without CALs (P < 0.05). (3) Serum Cav-1 may be a biomarker that reflects CALs in children with KD based on a receiver operating characteristic (ROC) curve analysis. (4) Those children with KD who were given intravenous immunoglobulin (2 g/kg, 10-12 h) during the acute phase showed decreased expression of Cav-1 compared to the N. Conclusions are as follows: (1) The serum level of Cav-1 during the acute phase of KD increased significantly, while in KD patients with CALs the increase was even greater. (2) Based on our ROC curve analysis, Cav-1 may be a predictor of CALs in children with KD.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Child Healthcare, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
| | - Jing Huang
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Institute of Cardiovascular Development and Translational Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuliang Wang
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Institute of Cardiovascular Development and Translational Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ping Li
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Institute of Cardiovascular Development and Translational Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yaoyao Yan
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Institute of Cardiovascular Development and Translational Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunyun Zheng
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Institute of Cardiovascular Development and Translational Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yue'e He
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Institute of Cardiovascular Development and Translational Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tingting Wu
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Institute of Cardiovascular Development and Translational Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yue Ren
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Institute of Cardiovascular Development and Translational Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rongzhou Wu
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Institute of Cardiovascular Development and Translational Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
12
|
John V, Kotze LA, Ribechini E, Walzl G, Du Plessis N, Lutz MB. Caveolin-1 Controls Vesicular TLR2 Expression, p38 Signaling and T Cell Suppression in BCG Infected Murine Monocytic Myeloid-Derived Suppressor Cells. Front Immunol 2019; 10:2826. [PMID: 31849990 PMCID: PMC6901706 DOI: 10.3389/fimmu.2019.02826] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Monocytic myeloid-derived suppressor cells (M-MDSCs) and granulocytic MDSCs (G-MDSCs) have been found to be massively induced in TB patients as well in murine Mtb infection models. However, the interaction of mycobacteria with MDSCs and its role in TB infection is not well studied. Here, we investigated the role of Cav-1 for MDSCs infected with Mycobacterium bovis Bacille-Calmette-Guerín (BCG). MDSCs that were generated from murine bone marrow (MDSCs) of wild-type (WT) or Cav1−/− mice upregulated Cav-1, TLR4 and TLR2 expression after BCG infection on the cell surface. However, Cav-1 deficiency resulted in a selective defect of intracellular TLR2 levels predominantly in the M-MDSC subset. Further analysis indicated no difference in the phagocytosis of BCG by M-MDSCs from WT and Cav1−/− mice or caveosome formation, but a reduced capacity to up-regulate surface markers, to secrete various cytokines, to induce iNOS and NO production required for suppression of T cell proliferation, whereas Arg-1 was not affected. Among the signaling pathways affected by Cav-1 deficiency, we found lower phosphorylation of the p38 mitogen-activated protein kinase (MAPK). Together, our findings implicate that (i) Cav-1 is dispensable for the internalization of BCG, (ii) vesicular TLR2 signaling in M-MDSCs is a major signaling pathway induced by BCG, (iii) vesicular TLR2 signals are controlled by Cav-1, (iv) vesicular TLR2/Cav-1 signaling is required for T cell suppressor functions.
Collapse
Affiliation(s)
- Vini John
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Leigh A Kotze
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Eliana Ribechini
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Gerhard Walzl
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Nelita Du Plessis
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Manfred B Lutz
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Host's Endogenous Caveolin-1 Expression is Downregulated in the Lung During Sepsis to Promote Cytoprotection. Shock 2019; 50:199-208. [PMID: 28957875 DOI: 10.1097/shk.0000000000001005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The present study focuses on the profile of "endogeneous" caveolin-1 protein in septic lung (CLP model).Caveolin-1, CD25, pP38, pAkt, and 14-3-3b protein expression profiles were studied using flow cytometry and immunohistochemistry 6, 12, 24, 36, and 48 h after sepsis induction. Cell viability was determined by 7-AAD staining and fibrosis by Masson trichrome stain. The effect of protein C zymogen concentrate (PC) on caveolin-1 expression was also investigated given that PC, once dissociated from caveolin-1, elicits a PAR-1-mediated protective signaling by forming a complex with endothelial protein C receptor (EPCR).CLP treatment increased lung inflammation and cell apoptosis. Fibrosis was apparent in vessels and alveoli. Caveolin-1+ cells presented reduced protein expression, especially 12 h post-CLP (P = 0.002). Immunohistochemistry revealed caveolin-1 positive expression mainly in regions with strong inflammatory reaction. Early induction of pP38+ cell population (P = 0.014) and gradual increase of CD25+ cells were also observed. Alternations in 14-3-3b expression related to apoptosis were apparent and accompanied by increased AKT phosphorylation activity late during sepsis progression.After PC administration, cell apoptosis was reduced (P = 0.004) and both the percentile and expression intensity of caveolin-1 positive cells were compromised (P = 0.009 and P = 0.027, respectively). 14-3-3b, CD25, and pP38 protein expression were decreased (P = 0.014, P = 0.004, and P = 0.007, respectively), whereas pAkt expression was induced (P = 0.032).The observed decline of endogenous caveolin-1 protein expression during sepsis implies its involvement in host's cytoprotective reaction either directly, by controlling caveolae population to decrease bacterial burden, or indirectly via regulating 14-3-3b-dependent apoptosis and EPCR-PAR-1-dependent protective signaling.
Collapse
|
14
|
Alharris E, Alghetaa H, Seth R, Chatterjee S, Singh NP, Nagarkatti M, Nagarkatti P. Resveratrol Attenuates Allergic Asthma and Associated Inflammation in the Lungs Through Regulation of miRNA-34a That Targets FoxP3 in Mice. Front Immunol 2018; 9:2992. [PMID: 30619345 PMCID: PMC6306424 DOI: 10.3389/fimmu.2018.02992] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023] Open
Abstract
Asthma is a chronic inflammatory disease of airways mediated by T-helper 2 (Th2) cells involving complex signaling pathways. Although resveratrol has previously been shown to attenuate allergic asthma, the role of miRNA in this process has not been studied. We investigated the effect of resveratrol on ovalbumin-induced experimental allergic asthma in mice. To that end, BALB/c mice were immunized with ovalbumin (OVA) intraperitoneally followed by oral gavage of vehicle (OVA-veh) or resveratrol (100 mg/kg body) (OVA-res). On day 7, the experimental groups received intranasal challenge of OVA followed by 7 days of additional oral gavage of vehicle or resveratrol. At day 15, all mice were euthanized and bronchioalveolar fluid (BALF), serum and lung infiltrating cells were collected and analyzed. The data showed that resveratrol significantly reduced IL-5, IL-13, and TGF-β in the serum and BALF in mice with OVA-induced asthma. Also, we saw a decrease in CD3+CD4+, CD3+CD8+, and CD4+IL-4+ cells with increase in CD4+CD25+FOXP3+ cells in pulmonary inflammatory cell infiltrate in OVA-res group when compared to OVA-veh. miRNA expression arrays using lung infiltrating cells showed that resveratrol caused significant alterations in miRNA expression, specifically downregulating the expression of miR-34a. Additionally, miR-34a was found to target FOXP3, as evidenced by enhanced expression of FOXP3 in the lung tissue. Also, transfection studies showed that miR-34a inhibitor upregulated FOXP3 expression while miR-34a-mimic downregulated FOXP3 expression. The current study suggests that resveratrol attenuates allergic asthma by downregulating miR-34a that induces increased expression of FOXP3, a master regulator of Treg development and functions.
Collapse
Affiliation(s)
- Esraah Alharris
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Hasan Alghetaa
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Ratanesh Seth
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina,Columbia, SC, United States
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina,Columbia, SC, United States
| | - Narendra P. Singh
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States,*Correspondence: Prakash Nagarkatti
| |
Collapse
|
15
|
de Almeida CJG. Caveolin-1 and Caveolin-2 Can Be Antagonistic Partners in Inflammation and Beyond. Front Immunol 2017; 8:1530. [PMID: 29250058 PMCID: PMC5715436 DOI: 10.3389/fimmu.2017.01530] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/27/2017] [Indexed: 12/26/2022] Open
Abstract
Caveolins, encoded by the CAV gene family, are the main protein components of caveolae. In most tissues, caveolin-1 (Cav-1) and caveolin-2 (Cav-2) are co-expressed, and Cav-2 targeting to caveolae depends on the formation of heterooligomers with Cav-1. Notwithstanding, Cav-2 has unpredictable activities, opposing Cav-1 in the regulation of some cellular processes. While the major roles of Cav-1 as a modulator of cell signaling in inflammatory processes and in immune responses have been extensively discussed elsewhere, the aim of this review is to focus on data revealing the distinct activity of Cav-1 and Cav-2, which suggest that these proteins act antagonistically to fine-tune a variety of cellular processes relevant to inflammation.
Collapse
|
16
|
Udayantha HMV, Bathige SDNK, Priyathilaka TT, Lee S, Kim MJ, Lee J. Identification and characterization of molluscan caveolin-1 ortholog from Haliotis discus discus: Possible involvement in embryogenesis and host defense mechanism against pathogenic stress. Gene Expr Patterns 2017; 27:85-92. [PMID: 29128397 DOI: 10.1016/j.gep.2017.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/13/2017] [Accepted: 11/06/2017] [Indexed: 02/05/2023]
Abstract
Caveolins are principal membrane proteins of caveolae that play a central role in signal transduction, substrate transport, and membrane trafficking in various cell types. Numerous studies have reported the crucial role of caveolin-1 (CAV1) in response to invading microbes; yet, very little is known about molluscan CAV1. In this study, we identified and characterized CAV1 ortholog from the disk abalone, Haliotis discus discus (HdCAV1). The cDNA sequence of HdCAV1 is 826 bp long and encodes a 127-amino acid polypeptide. Characteristic caveolin superfamily domain (Glu3 - Lys126) and two possible transmembrane domains (Cys48 - Tyr67 and Ile103 - Phe120) were identified in the HdCAV1 protein. Homology analysis revealed that HdCAV1 shared higher identity (>47%) with molluscans, but lower identity with other species. Phylogenetic tree constructed by the neighbor-joining (NJ) method revealed a distinct evolutionary pathway for molluscans. Transcriptional analysis by SYBR Green qPCR showed the highest expression of HdCAV1 mRNA in late veliger stage, as compared to that in other embryonic developmental stages of disk abalone. In adult animals, gill tissue showed highest HdCAV1 transcript levels under normal physiological condition. Stimulations with two bacteria (Vibrio parahaemolyticus and Listeria monocytogenes), viral hemorrhagic septicemia virus, and two pathogen-associated molecular patterns (LPS and poly I:C) significantly modulated the expression of HdCAV1 transcripts. Collectively, these data suggest that CAV1 plays an important role in embryogenesis and host immune defense in disk abalone.
Collapse
Affiliation(s)
- H M V Udayantha
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Department of Fisheries and Aquaculture, Faculty of Fisheries and Marine Sciences and Technology, University of Ruhuna, Matara, Sri Lanka
| | - S D N K Bathige
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Sri Lanka Institute of Nanotechnology (SLINTEC), Nanotechnology and Science Park, Mahenwatta, Pitipana, Homagama, Sri Lanka
| | - Thanthrige Thiunuwan Priyathilaka
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Sukkyoung Lee
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Myoung-Jin Kim
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea.
| |
Collapse
|
17
|
Bagam P, Singh DP, Inda ME, Batra S. Unraveling the role of membrane microdomains during microbial infections. Cell Biol Toxicol 2017; 33:429-455. [PMID: 28275881 PMCID: PMC7088210 DOI: 10.1007/s10565-017-9386-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023]
Abstract
Infectious diseases pose major socioeconomic and health-related threats to millions of people across the globe. Strategies to combat infectious diseases derive from our understanding of the complex interactions between the host and specific bacterial, viral, and fungal pathogens. Lipid rafts are membrane microdomains that play important role in life cycle of microbes. Interaction of microbial pathogens with host membrane rafts influences not only their initial colonization but also their spread and the induction of inflammation. Therefore, intervention strategies aimed at modulating the assembly of membrane rafts and/or regulating raft-directed signaling pathways are attractive approaches for the. management of infectious diseases. The current review discusses the latest advances in terms of techniques used to study the role of membrane microdomains in various pathological conditions and provides updated information regarding the role of membrane rafts during bacterial, viral and fungal infections.
Collapse
Affiliation(s)
- Prathyusha Bagam
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Dhirendra P Singh
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Maria Eugenia Inda
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha, Rosario, Argentina
| | - Sanjay Batra
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
18
|
Flagellar Hooks and Hook Protein FlgE Participate in Host Microbe Interactions at Immunological Level. Sci Rep 2017; 7:1433. [PMID: 28469201 PMCID: PMC5431167 DOI: 10.1038/s41598-017-01619-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 03/30/2017] [Indexed: 01/02/2023] Open
Abstract
Host-microbe interactions determine the outcome of host responses to commensal and pathogenic microbes. Previously, two epithelial cell-binding peptides were found to be homologues of two sites (B, aa168–174; F, aa303–309) in the flagellar hook protein FlgE of Pseudomonas aeruginosa. Tertiary modeling predicted these sites at the interface of neighboring FlgE monomers in the fully formed hook. Recombinant FlgE protein stimulated proinflammatory cytokine production in a human cell line and in murine lung organoid culture as detected with real-time RT-PCR and ELISA assays. When administered to mice, FlgE induced lung inflammation and enhanced the Th2-biased humoral response to ovalbumin. A pull-down assay performed with FlgE-saturated resin identified caveolin-1 as an FlgE-binding protein, and caveolin-1 deficiency impaired FlgE-induced inflammation and downstream Erk1/2 pathway activation in lung organoids. Intact flagellar hooks from bacteria were also proinflammatory. Mutations to sites B and F impaired bacteria motility and proinflammatory potency of FlgE without altering adjuvanticity of FlgE. These findings suggest that the flagellar hook and FlgE are novel players in host-bacterial interactions at immunological level. Further studies along this direction would provide new opportunities for understanding and management of diseases related with bacterial infection.
Collapse
|
19
|
Moore JE, Mastoridis P. Clinical implications of Pseudomonas aeruginosa location in the lungs of patients with cystic fibrosis. J Clin Pharm Ther 2017; 42:259-267. [PMID: 28374433 DOI: 10.1111/jcpt.12521] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/05/2017] [Indexed: 12/18/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Pseudomonas aeruginosa is the leading cause of lung infection in patients with cystic fibrosis (CF) and is associated with significant morbidity and mortality. Antibiotics are regarded as the foundational pharmacological treatment for the suppressive management of chronic P. aeruginosa infections and to eradicate the first infection by P. aeruginosa. Inhalation remains a preferred route for drug administration, providing direct access to the site of infection while minimizing systemic side effects. Effective suppressive management of P. aeruginosa infections, however, requires an understanding of the location of the bacteria in the lungs and consideration of the factors that could limit access of the inhaled antibiotic to the infected area. This review provides a systematic assessment of the scientific literature to gain insight into the location of P. aeruginosa in the lungs of patients with CF and its clinical implications. The characteristics of antibiotic inhalation systems are also discussed in this context. METHODS We reviewed evidence-based literature from both human and animal studies in which P. aeruginosa lung location was reported. Relevant publications were identified through a screening strategy and summarized by reported P. aeruginosa location. RESULTS AND DISCUSSION Most areas of the conductive and respiratory zones of the lungs are susceptible to P. aeruginosa colonization. Deposition of an inhaled antibiotic is dependent on the device and formulation characteristics, as well as the ability of the patient to generate sufficient inhaled volume. As patients with CF often experience a decline in lung function, the challenge is to ensure that the inhaled antibiotic can be delivered throughout the bronchial tree. WHAT IS NEW AND CONCLUSION An effective drug delivery system that can target P. aeruginosa in both the respiratory and conductive zones is required. The chosen inhalation device should also offer a drug formulation that can be quickly and effectively delivered to specific lung locations, with minimal inspiratory effort from the patient.
Collapse
Affiliation(s)
- J E Moore
- Northern Ireland Public Health Laboratory, Department of Bacteriology, Belfast City Hospital, Belfast, UK
| | - P Mastoridis
- Respiratory Department, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| |
Collapse
|
20
|
Fröhlich EE, Farzi A, Mayerhofer R, Reichmann F, Jačan A, Wagner B, Zinser E, Bordag N, Magnes C, Fröhlich E, Kashofer K, Gorkiewicz G, Holzer P. Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication. Brain Behav Immun 2016; 56:140-55. [PMID: 26923630 PMCID: PMC5014122 DOI: 10.1016/j.bbi.2016.02.020] [Citation(s) in RCA: 493] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence indicates that disruption of the gut microbial community (dysbiosis) impairs mental health. Germ-free mice and antibiotic-induced gut dysbiosis are two approaches to establish causality in gut microbiota-brain relationships. However, both models have limitations, as germ-free mice display alterations in blood-brain barrier and brain ultrastructure and antibiotics may act directly on the brain. We hypothesized that the concerns related to antibiotic-induced gut dysbiosis can only adequately be addressed if the effect of intragastric treatment of adult mice with multiple antibiotics on (i) gut microbial community, (ii) metabolite profile in the colon, (iii) circulating metabolites, (iv) expression of neuronal signaling molecules in distinct brain areas and (v) cognitive behavior is systematically investigated. Of the antibiotics used (ampicillin, bacitracin, meropenem, neomycin, vancomycin), ampicillin had some oral bioavailability but did not enter the brain. 16S rDNA sequencing confirmed antibiotic-induced microbial community disruption, and metabolomics revealed that gut dysbiosis was associated with depletion of bacteria-derived metabolites in the colon and alterations of lipid species and converted microbe-derived molecules in the plasma. Importantly, novel object recognition, but not spatial, memory was impaired in antibiotic-treated mice. This cognitive deficit was associated with brain region-specific changes in the expression of cognition-relevant signaling molecules, notably brain-derived neurotrophic factor, N-methyl-d-aspartate receptor subunit 2B, serotonin transporter and neuropeptide Y system. We conclude that circulating metabolites and the cerebral neuropeptide Y system play an important role in the cognitive impairment and dysregulation of cerebral signaling molecules due to antibiotic-induced gut dysbiosis.
Collapse
Affiliation(s)
- Esther E Fröhlich
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria.
| | - Aitak Farzi
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Raphaela Mayerhofer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Angela Jačan
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Bernhard Wagner
- Institute of Biomedical Science, FH JOANNEUM University of Applied Sciences, Eggenberger Allee 13, 8020 Graz, Austria
| | - Erwin Zinser
- Institute of Biomedical Science, FH JOANNEUM University of Applied Sciences, Eggenberger Allee 13, 8020 Graz, Austria
| | - Natalie Bordag
- Center for Biomarker Research in Medicine, CBmed GmbH, Stiftingtalstrasse 5, 8010 Graz, Austria
| | - Christoph Magnes
- HEALTH Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz, Austria
| | - Eleonore Fröhlich
- Core Facility Microscopy, Center for Medical Research, Medical University of Graz, Stiftingtalstrasse 24/1, 8010 Graz, Austria
| | - Karl Kashofer
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, 8036 Graz, Austria
| | - Gregor Gorkiewicz
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, 8036 Graz, Austria; Theodor Escherich Laboratory for Medical Microbiome Research, Medical University of Graz, Auenbruggerplatz 25, 8036 Graz, Austria; BioTechMed-Graz, Krenngasse 37/1, 8010 Graz, Austria
| | - Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria.
| |
Collapse
|
21
|
Liu Z, Wang L, Dong Z, Pan J, Zhu H, Zhang Z, Ma X. Heparin inhibits lipopolysaccharide-induced inflammation via inducing caveolin-1 and activating the p38/mitogen-activated protein kinase pathway in murine peritoneal macrophages. Mol Med Rep 2015; 12:3895-3901. [PMID: 25998703 DOI: 10.3892/mmr.2015.3807] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 03/12/2015] [Indexed: 11/05/2022] Open
Abstract
Heparin is a soluble glycosaminoglycan largely used as an anti-coagulant drug and with well known anti‑inflammatory effects. However, heparin is currently not used as an anti‑inflammatory agent in the clinic due to a risk of bleeding as well as its complex mechanism of action. The underlying mechanism of the anti‑inflammatory action of heparin and its effector targets have remained to be fully elucidated. The present study confirmed the anti‑inflammatory effects of heparin in lipopolysaccharide (LPS)‑induced murine peritoneal macrophages through decreasing the levels of the inflammatory cytokines tumor necrosis factor alpha (TNF‑α), interleukin 6 (IL‑6), IL‑8 and IL‑1β. Caveolin‑1 participated in the anti‑inflammatory process and it was able to be induced by heparin. Transfection of small interfering RNA of caveolin‑1 into murine peritoneal macrophages attenuated the anti‑inflammatory effects of heparin. Furthermore, following caveolin‑1 silencing, the p38/mitogen‑activated protein kinase (MAPK) pathway was still able to be activated by heparin, while the extracellular signal‑regulated kinase and c‑Jun N‑terminal kinase pathways were inhibited. In conclusion, these results suggested that heparin inhibits LPS‑induced inflammation via inducing caveolin‑1 and activating the p38/MAPK pathway in murine peritoneal macrophages. Revealing the anti‑inflammatory mechanisms of heparin will aid in its development for clinical treatment in the future.
Collapse
Affiliation(s)
- Zhiyong Liu
- Department of Intensive Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Liang Wang
- Department of Intensive Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhe Dong
- Department of Intensive Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jieyi Pan
- Department of Intensive Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hong Zhu
- Department of Dermatology and Venereology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhidan Zhang
- Department of Intensive Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaochun Ma
- Department of Intensive Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
22
|
Zhang PX, Cheng J, Zou S, D’Souza AD, Koff JL, Lu J, Lee PJ, Krause DS, Egan ME, Bruscia EM. Pharmacological modulation of the AKT/microRNA-199a-5p/CAV1 pathway ameliorates cystic fibrosis lung hyper-inflammation. Nat Commun 2015; 6:6221. [PMID: 25665524 PMCID: PMC4324503 DOI: 10.1038/ncomms7221] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 01/07/2015] [Indexed: 12/12/2022] Open
Abstract
In cystic fibrosis (CF) patients, hyper-inflammation is a key factor in lung destruction and disease morbidity. We have previously demonstrated that macrophages drive the lung hyper-inflammatory response to LPS in CF mice, because of reduced levels of the scaffold protein CAV1 with subsequent uncontrolled TLR4 signalling. Here we show that reduced CAV1 and, consequently, increased TLR4 signalling, in human and murine CF macrophages and murine CF lungs, is caused by high microRNA-199a-5p levels, which are PI3K/AKT-dependent. Downregulation of microRNA-199a-5p or increased AKT signalling restores CAV1 expression and reduces hyper-inflammation in CF macrophages. Importantly, the FDA-approved drug celecoxib re-establishes the AKT/miR-199a-5p/CAV1 axis in CF macrophages, and ameliorates lung hyper-inflammation in Cftr-deficient mice. Thus, we identify the AKT/miR-199a-5p/CAV1 pathway as a regulator of innate immunity, which is dysfunctional in CF macrophages contributing to lung hyper-inflammation. In addition, we found that this pathway can be targeted by celecoxib.
Collapse
Affiliation(s)
- Ping-xia Zhang
- Department of Pediatrics, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Department of Laboratory Medicine, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Jijun Cheng
- Department of Genetics, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Yale Stem Cell Center, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Yale Cancer Center, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Siying Zou
- Department of Cell Biology, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Anthony D. D’Souza
- Department of Laboratory Medicine, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Jonathan L. Koff
- Department of Pulmonary, Critical Care and Sleep Medicine, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Jun Lu
- Department of Genetics, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Yale Stem Cell Center, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Yale Cancer Center, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Patty J. Lee
- Department of Pulmonary, Critical Care and Sleep Medicine, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Diane S. Krause
- Department of Laboratory Medicine, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Yale Stem Cell Center, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Yale Cancer Center, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Department of Cell Biology, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Marie E. Egan
- Department of Pediatrics, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
- Department of Cellular and Molecular Physiology, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| | - Emanuela M. Bruscia
- Department of Pediatrics, 333 Cedar Street, Yale University School of Medicine, New Haven Connecticut, USA
| |
Collapse
|
23
|
Li X, Gu X, Boyce TM, Zheng M, Reagan AM, Qi H, Mandal N, Cohen AW, Callegan MC, Carr DJJ, Elliott MH. Caveolin-1 increases proinflammatory chemoattractants and blood-retinal barrier breakdown but decreases leukocyte recruitment in inflammation. Invest Ophthalmol Vis Sci 2014; 55:6224-34. [PMID: 25159208 DOI: 10.1167/iovs.14-14613] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Caveolin-1 (Cav-1), the signature protein of caveolae, modulates inflammatory responses, and innate immunity. However, Cav-1's role in retinal inflammation has not been rigorously tested. In this study, we examined the effect of Cav-1 ablation on the sensitivity of the retina to inflammation. METHODS Cav-1 knockout (KO) mice were challenged by intravitreal injection of lipopolysaccharide (LPS) and inflammatory cell recruitment was assessed by flow cytometry and immunohistochemistry. Leukostasis was assessed in retinal flatmounts after perfusion with FITC-labeled Concanavalin A (FITC-ConA). Chemoattractants were measured by multiplex immunoassays. Blood-retinal barrier (BRB) breakdown was assessed quantitatively by a FITC-dextran permeability assay. The ratio of extravascular to total immune cells was determined by CD45 immunohistochemistry of retinal flatmounts. RESULTS Inflammatory challenge resulted in significant blunting of proinflammatory cytokine (monocyte chemoattractant protein-1 [MCP-1/CCL2], CXCL1/KC, IL-6, and IL-1β) responses as well as reduced inflammatory BRB breakdown in Cav-1 KO retinas. Paradoxically, Cav-1 deficiency resulted in significantly increased recruitment of immune cells compared with controls as well as increased leukostasis. A similar ratio of extravascular/total leukocytes were found in Cav-1 KO and wild-type (WT) retinas suggesting that Cav-1 deficient leukocytes were as competent to extravasate as those from WT mice. We found increased levels of circulating immune cells in naïve (not challenged with LPS) Cav-1 KO mice compared with controls. CONCLUSIONS Caveolin-1 paradoxically modulates inflammatory signaling and leukocyte infiltration through distinct mechanisms. We hypothesize that Cav-1 expression may enhance inflammatory signaling while at the same time supporting the physical properties of the BRB.
Collapse
Affiliation(s)
- Xiaoman Li
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Xiaowu Gu
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Timothy M Boyce
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Min Zheng
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Alaina M Reagan
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Hui Qi
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Nawajes Mandal
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Alex W Cohen
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Michelle C Callegan
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Daniel J J Carr
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Michael H Elliott
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
24
|
Vandermeulen E, Ruttens D, Verleden SE, Vos R, Van Raemdonck DE, Kastelijn EA, Wauters E, Lambrechts D, Nawrot TS, Cox B, Verleden GM, Vanaudenaerde BM. Genetic Variation in Caveolin-1 Affects Survival After Lung Transplantation. Transplantation 2014; 98:354-9. [DOI: 10.1097/tp.0000000000000058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Becker KA, Henry B, Ziobro R, Riethmüller J, Gulbins E. Lipids in cystic fibrosis. Expert Rev Respir Med 2014; 5:527-35. [DOI: 10.1586/ers.11.36] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Chand S, Holle JU, Hilhorst M, Simmonds MJ, Smith S, Kamesh L, Hewins P, McKnight AJ, Maxwell AP, Cohen Tervaert JW, Wieczorek S, Harper L, Borrows R. Caveolin-1 single nucleotide polymorphism in antineutrophil cytoplasmic antibody associated vasculitis. PLoS One 2013; 8:e69022. [PMID: 23894397 PMCID: PMC3716813 DOI: 10.1371/journal.pone.0069022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/03/2013] [Indexed: 01/29/2023] Open
Abstract
Objective Immunosuppression is cornerstone treatment of antineutrophil cytoplasmic antibody associated vasculitis (AAV) but is later complicated by infection, cancer, cardiovascular and chronic kidney disease. Caveolin-1 is an essential structural protein for small cell membrane invaginations known as caveolae. Its functional role has been associated with these complications. For the first time, caveolin-1 (CAV1) gene variation is studied in AAV. Methods CAV1 single nucleotide polymorphism rs4730751 was analysed in genomic DNA from 187 white patients with AAV from Birmingham, United Kingdom. The primary outcome measure was the composite endpoint of time to all-cause mortality or renal replacement therapy. Secondary endpoints included time to all-cause mortality, death from sepsis or vascular disease, cancer and renal replacement therapy. Validation of results was sought from 589 white AAV patients, from two European cohorts. Results The primary outcome occurred in 41.7% of Birmingham patients. In a multivariate model, non-CC genotype variation at the studied single nucleotide polymorphism was associated with increased risk from: the primary outcome measure [HR 1.86; 95% CI: 1.14-3.04; p=0.013], all-cause mortality [HR:1.83; 95% CI: 1.02-3.27; p=0.042], death from infection [HR:3.71; 95% CI: 1.28-10.77; p=0.016], death from vascular disease [HR:3.13; 95% CI: 1.07-9.10; p=0.037], and cancer [HR:5.55; 95% CI: 1.59-19.31; p=0.007]. In the validation cohort, the primary outcome rate was far lower (10.4%); no association between genotype and the studied endpoints was evident. Conclusions The presence of a CC genotype in Birmingham is associated with protection from adverse outcomes of immunosuppression treated AAV. Lack of replication in the European cohort may have resulted from low clinical event rates. These findings are worthy of further study in larger cohorts.
Collapse
Affiliation(s)
- Sourabh Chand
- Centre for Translational Inflammation Research, University of Birmingham, Birmingham, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Feng H, Guo W, Han J, Li XA. Role of caveolin-1 and caveolae signaling in endotoxemia and sepsis. Life Sci 2013; 93:1-6. [PMID: 23727353 DOI: 10.1016/j.lfs.2013.05.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 05/09/2013] [Accepted: 05/14/2013] [Indexed: 12/28/2022]
Abstract
Caveolae, plasma membrane invaginations of 60-80nm in diameter, are a subset of lipid rafts enriched in cholesterol and sphingolipids. Caveolae are expressed in various tissues and cell types, such as endothelial cells, macrophages, neutrophils and adipocytes. The functions of caveolae are diverse and include endocytosis, transcytosis, potocytosis, calcium signaling, and regulation of various signaling events. Although growing evidence has increased our understanding of caveolae function, the role of caveolae in sepsis is still a controversial issue. In this review, we present a number of studies addressing caveolae and sepsis and describe the signaling pathways involved, including the LPS-eNOS-TLR4-NFκB, MKK3/p38 MAPK, cPLA2/p38 MAPK, STAT3/NFκB and IL-1β-IL-1R1 pathways. Different studies using endotoxemia and bacteremia animal models have provided distinct conclusions about the function of caveolae, and we discuss these inconsistencies. Taken together, the current data suggest that the function of caveolae in sepsis, which involves a number of signaling pathways, is complex and warrants further studies.
Collapse
Affiliation(s)
- Hong Feng
- Department of Tumor Research and Therapy Center, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Wen Guo
- Taian Central Hospital, Taian, Shandong 271000, China
| | - Junqing Han
- Department of Tumor Research and Therapy Center, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Xiang-An Li
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY 40536, United States.
| |
Collapse
|
28
|
Zhang PX, Murray TS, Villella VR, Ferrari E, Esposito S, D'Souza A, Raia V, Maiuri L, Krause DS, Egan ME, Bruscia EM. Reduced caveolin-1 promotes hyperinflammation due to abnormal heme oxygenase-1 localization in lipopolysaccharide-challenged macrophages with dysfunctional cystic fibrosis transmembrane conductance regulator. THE JOURNAL OF IMMUNOLOGY 2013; 190:5196-206. [PMID: 23606537 DOI: 10.4049/jimmunol.1201607] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have previously reported that TLR4 signaling is increased in LPS-stimulated cystic fibrosis (CF) macrophages (MΦs), contributing to the robust production of proinflammatory cytokines. The heme oxygenase-1 (HO-1)/CO pathway modulates cellular redox status, inflammatory responses, and cell survival. The HO-1 enzyme, together with the scaffold protein caveolin 1 (CAV-1), also acts as a negative regulator of TLR4 signaling in MΦs. In this study, we demonstrate that in LPS-challenged CF MΦs, HO-1 does not compartmentalize normally to the cell surface and instead accumulates intracellularly. The abnormal HO-1 localization in CF MΦs in response to LPS is due to decreased CAV-1 expression, which is controlled by the cellular oxidative state, and is required for HO-1 delivery to the cell surface. Overexpression of HO-1 or stimulating the pathway with CO-releasing molecules enhances CAV-1 expression in CF MΦs, suggesting a positive-feed forward loop between HO-1/CO induction and CAV-1 expression. These manipulations re-established HO-1 and CAV-1 cell surface localization in CF MΦs. Consistent with restoration of HO-1/CAV-1-negative regulation of TLR4 signaling, genetic or pharmacological (CO-releasing molecule 2) induced enhancement of this pathway decreased the inflammatory response of CF MΦs and CF mice treated with LPS. In conclusion, our results demonstrate that the counterregulatory HO-1/CO pathway, which is critical in balancing and limiting the inflammatory response, is defective in CF MΦs through a CAV-1-dependent mechanism, exacerbating the CF MΦ response to LPS. This pathway could be a potential target for therapeutic intervention for CF lung disease.
Collapse
Affiliation(s)
- Ping-Xia Zhang
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06509, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hitkova I, Yuan G, Anderl F, Gerhard M, Kirchner T, Reu S, Röcken C, Schäfer C, Schmid RM, Vogelmann R, Ebert MPA, Burgermeister E. Caveolin-1 protects B6129 mice against Helicobacter pylori gastritis. PLoS Pathog 2013; 9:e1003251. [PMID: 23592983 PMCID: PMC3623771 DOI: 10.1371/journal.ppat.1003251] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 02/04/2013] [Indexed: 02/07/2023] Open
Abstract
Caveolin-1 (Cav1) is a scaffold protein and pathogen receptor in the mucosa of the gastrointestinal tract. Chronic infection of gastric epithelial cells by Helicobacter pylori (H. pylori) is a major risk factor for human gastric cancer (GC) where Cav1 is frequently down-regulated. However, the function of Cav1 in H. pylori infection and pathogenesis of GC remained unknown. We show here that Cav1-deficient mice, infected for 11 months with the CagA-delivery deficient H. pylori strain SS1, developed more severe gastritis and tissue damage, including loss of parietal cells and foveolar hyperplasia, and displayed lower colonisation of the gastric mucosa than wild-type B6129 littermates. Cav1-null mice showed enhanced infiltration of macrophages and B-cells and secretion of chemokines (RANTES) but had reduced levels of CD25+ regulatory T-cells. Cav1-deficient human GC cells (AGS), infected with the CagA-delivery proficient H. pylori strain G27, were more sensitive to CagA-related cytoskeletal stress morphologies (“humming bird”) compared to AGS cells stably transfected with Cav1 (AGS/Cav1). Infection of AGS/Cav1 cells triggered the recruitment of p120 RhoGTPase-activating protein/deleted in liver cancer-1 (p120RhoGAP/DLC1) to Cav1 and counteracted CagA-induced cytoskeletal rearrangements. In human GC cell lines (MKN45, N87) and mouse stomach tissue, H. pylori down-regulated endogenous expression of Cav1 independently of CagA. Mechanistically, H. pylori activated sterol-responsive element-binding protein-1 (SREBP1) to repress transcription of the human Cav1 gene from sterol-responsive elements (SREs) in the proximal Cav1 promoter. These data suggested a protective role of Cav1 against H. pylori-induced inflammation and tissue damage. We propose that H. pylori exploits down-regulation of Cav1 to subvert the host's immune response and to promote signalling of its virulence factors in host cells. Infection with the bacterium Helicobacter pylori (H. pylori) mainly affects children in the developing countries who are at risk to progress to gastric cancer (GC) as adults after many years of persistent infection, especially with strains which are positive for the oncogenic virulence factor CagA. Eradication of H. pylori by antibiotics is a treatment of choice but may also alter the susceptibility to allergies and other tumor types. Thus, novel diagnostic or prognostic markers are needed which detect early molecular changes in the stomach mucosa during the transition of chronic inflammation to cancer. In our study, we found that the tumor suppressor caveolin-1 (Cav1) is reduced upon infection with H. pylori, and CagA was sufficient but not necessary for this down-regulation. Loss of Cav1 was caused by H. pylori-dependent activation of sterol-responsive element-binding protein-1 (SREBP1), and this event abolished the interaction of Cav1 with p120 RhoGTPase-activating protein/deleted in liver cancer-1 (p120RhoGAP/DLC1), a second bona fide tumor suppressor in gastric tissue. Conclusively, Cav1 and DLC1 may constitute novel molecular markers in the H. pylori-infected gastric mucosa before neoplastic transformation of the epithelium.
Collapse
Affiliation(s)
- Ivana Hitkova
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gang Yuan
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Florian Anderl
- Institute of Medical Microbiology, Immunology and Hygiene, Technische Universität München, München, Germany
| | - Markus Gerhard
- Institute of Medical Microbiology, Immunology and Hygiene, Technische Universität München, München, Germany
- German Centre for Infection Research (DZIF), München, Germany
| | - Thomas Kirchner
- Institute of Pathology, Klinikum der Universität München, München, Germany
| | - Simone Reu
- Institute of Pathology, Klinikum der Universität München, München, Germany
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts Universität, Kiel, Germany
| | - Claus Schäfer
- Department of Medicine II, Klinikum der Universität München, München, Germany
| | - Roland M. Schmid
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Roger Vogelmann
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias P. A. Ebert
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elke Burgermeister
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- * E-mail:
| |
Collapse
|
30
|
Clarke LA, Sousa L, Barreto C, Amaral MD. Changes in transcriptome of native nasal epithelium expressing F508del-CFTR and intersecting data from comparable studies. Respir Res 2013; 14:38. [PMID: 23537407 PMCID: PMC3637641 DOI: 10.1186/1465-9921-14-38] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 03/07/2013] [Indexed: 01/06/2023] Open
Abstract
Background Microarray studies related to cystic fibrosis (CF) airway gene expression have gone some way in clarifying the complex molecular background of CF lung diseases, but have made little progress in defining a robust “molecular signature” associated with mutant CFTR expression. Disparate methodological and statistical analyses complicate comparisons between independent studies of the CF transcriptome, and although each study may be valid in isolation, the conclusions reached differ widely. Methods We carried out a small-scale whole genome microarray study of gene expression in human native nasal epithelial cells from F508del-CFTR homozygotes in comparison to non-CF controls. We performed superficial comparisons with other microarray datasets in an attempt to identify a subset of regulated genes that could act as a signature of F508del-CFTR expression in native airway tissue samples. Results Among the alterations detected in CF, up-regulation of genes involved in cell proliferation, and down-regulation of cilia genes were the most notable. Other changes involved gene expression changes in calcium and membrane pathways, inflammation, defence response, wound healing and the involvement of estrogen signalling. Comparison of our data set with previously published studies allowed us to assess the consistency of independent microarray data sets, and shed light on the limitations of such snapshot studies in measuring a system as subtle and dynamic as the transcriptome. Comparison of in-vivo studies nevertheless yielded a small molecular CF signature worthy of future investigation. Conclusions Despite the variability among the independent studies, the current CF transcriptome meta-analysis identified subsets of differentially expressed genes in native airway tissues which provide both interesting clues to CF pathogenesis and a possible CF biomarker.
Collapse
Affiliation(s)
- Luka A Clarke
- BioFIG-Centre for Biodiversity, Functional and Integrative Genomics, FCUL-Faculty of Sciences, University of Lisboa, Lisboa 1749-016, Portugal.
| | | | | | | |
Collapse
|
31
|
Wang P, Wang X, Yang X, Liu Z, Wu M, Li G. Budesonide suppresses pulmonary antibacterial host defense by down-regulating cathelicidin-related antimicrobial peptide in allergic inflammation mice and in lung epithelial cells. BMC Immunol 2013; 14:7. [PMID: 23387852 PMCID: PMC3583690 DOI: 10.1186/1471-2172-14-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 02/04/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Glucocorticoids are widely regarded as the most effective treatment for asthma. However, the direct impact of glucocorticoids on the innate immune system and antibacterial host defense during asthma remain unclear. Understanding the mechanisms underlying this process is critical to the clinical application of glucocorticoids for asthma therapy. After sensitization and challenge with ovalbumin (OVA), BALB/c mice were treated with inhaled budesonide and infected with Pseudomonas aeruginosa (P. aeruginosa). The number of viable bacteria in enflamed lungs was evaluated, and levels of interleukin-4 (IL-4) and interferon-γ (IFN-γ) in serum were measured. A lung epithelial cell line was pretreated with budesonide. Levels of cathelicidin-related antimicrobial peptide (CRAMP) were measured by immunohistochemistry and western blot analysis. Intracellular bacteria were observed in lung epithelial cells. RESULTS Inhaled budesonide enhanced lung infection in allergic mice exposed to P. aeruginosa and increased the number of viable bacteria in lung tissue. Higher levels of IL-4 and lower levels of IFN-γ were observed in the serum. Budesonide decreased the expression of CRAMP, increased the number of internalized P. aeruginosa in OVA-challenged mice and in lung epithelial cell lines. These data indicate that inhaled budesonide can suppress pulmonary antibacterial host defense by down-regulating CRAMP in allergic inflammation mice and in cells in vitro. CONCLUSIONS Inhaled budesonide suppressed pulmonary antibacterial host defense in an asthmatic mouse model and in lung epithelium cells in vitro. This effect was dependent on the down-regulation of CRAMP.
Collapse
Affiliation(s)
- Peng Wang
- Inflammations & Allergic Diseases Research Unit, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, 646000, China
- Bao Ji Central Hospital, Bao Ji, Shan Xi, 721008, China
| | - Xiaoyun Wang
- Inflammations & Allergic Diseases Research Unit, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, 646000, China
| | - Xiaoqiong Yang
- Department of Respiratory Disease, Affiliated Hospital of Luzhou Medical College, Luzhou, 646000, China
| | - Zhigang Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, School of Medicine, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong, 518060, PR China
| | - Min Wu
- Department of Biochemistry and Molecular Biology, University of North Dakota, 501 N Columbia Rd, EJRF Building Room 2726, Grand Forks, North Dakota, 58203-9037, USA
| | - Guoping Li
- Inflammations & Allergic Diseases Research Unit, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan, 646000, China
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, School of Medicine, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong, 518060, PR China
| |
Collapse
|
32
|
Becker KA, Henry B, Ziobro R, Tümmler B, Gulbins E, Grassmé H. Role of CD95 in pulmonary inflammation and infection in cystic fibrosis. J Mol Med (Berl) 2013; 90:1011-23. [PMID: 22314624 DOI: 10.1007/s00109-012-0867-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 12/23/2011] [Accepted: 01/02/2012] [Indexed: 01/05/2023]
Abstract
Cystic fibrosis is caused by a defective expression of the cystic fibrosis transmembrane conductance regulator (Cftr) gene, which results in chronic pulmonary inflammation and infections. The pathophysiological mechanisms by which these changes are induced in the lungs of patients with cystic fibrosis require definition. This study found that Cftr deficiency in mice results in the upregulation and activation of CD95. CD95 activation is caused by increased ceramide concentrations in cystic fibrosis lungs, as revealed by genetic modifications that normalize pulmonary ceramide concentrations. The activation of CD95 in cystic fibrosis lungs further increases pulmonary ceramide levels and results in a vicious feedback cycle of CD95 activation and ceramide accumulation. Genetic studies reveal that CD95 is crucially involved in the induction of aseptic inflammation, an increase in the bronchial cell death rate, and an increased susceptibility to infection of Cftr-deficient mice. All of these pathologies are partially corrected by heterozygosity of CD95 in Cftr-deficient mice. These findings identify CD95 as an important regulator of lung functions in cystic fibrosis and suggest that CD95 may be a novel target for treating cystic fibrosis.
Collapse
Affiliation(s)
- Katrin Anne Becker
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) molecule; these mutations result in a defect in chloride secretion in epithelial cell layers. The disease is characterized by severe gastrointestinal and pulmonary symptoms, but it is the pulmonary symptoms that dominate the clinical course of the disease and determine patients' life expectancy. These pulmonary symptoms include reduced mucociliary clearance, chronic inflammation, and recurrent and chronic pulmonary infections with Pseudomonas aeruginosa, Staphylococcus aureus, Burkholderia cepacia, and Haemophilus influenzae. Recent studies have shown that sphingolipids, especially ceramide, play a crucial role in the pathogenesis of cystic fibrosis. These studies have demonstrated that ceramide accumulates in the lungs of cystic fibrosis patients and mice, causing inflammation and high susceptibility to bacterial infections. The results of initial clinical studies suggest that interfering with sphingolipids may be a novel treatment strategy for cystic fibrosis.
Collapse
Affiliation(s)
- Heike Grassmé
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | | | | |
Collapse
|
34
|
Guo Q, Shen N, Yuan K, Li J, Wu H, Zeng Y, Fox J, Bansal AK, Singh BB, Gao H, Wu M. Caveolin-1 plays a critical role in host immunity against Klebsiella pneumoniae by regulating STAT5 and Akt activity. Eur J Immunol 2012; 42:1500-11. [PMID: 22678904 DOI: 10.1002/eji.201142051] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Caveolin-1 (Cav1) is a structural protein of caveolae. Although Cav1 is associated with certain bacterial infections, it is unknown whether Cav1 is involved in host immunity against Klebsiella pneumoniae, the third most commonly isolated microorganism from bacterial sepsis patients. Here, we showed that cav1 knockout mice succumbed to K. pneumoniae infection with markedly decreased survival rates, increased bacterial burdens, intensified tissue injury, hyperactive proinflammatory cytokines, and systemic bacterial dissemination as compared with WT mice. Knocking down Cav1 by a dominant negative approach in lung epithelial MLE-12 cells resulted in similar outcomes (decreased bacterial clearance and increased proinflammatory cytokine production). Furthermore, we revealed that STAT5 influences the GSK3β-β-catenin-Akt pathway, which contributes to the intensive inflammatory response and rapid infection dissemination seen in Cav1 deficiency. Collectively, our findings indicate that Cav1 may offer resistance to K. pneumoniae infection, by affecting both systemic and local production of proinflammatory cytokines via the actions of STAT5 and the GSK3β-β-catenin-Akt pathway.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota 58203, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lemire P, Houde M, Segura M. Encapsulated group BStreptococcusmodulates dendritic cell functions via lipid rafts and clathrin-mediated endocytosis. Cell Microbiol 2012; 14:1707-19. [DOI: 10.1111/j.1462-5822.2012.01830.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 06/13/2012] [Accepted: 06/19/2012] [Indexed: 01/26/2023]
Affiliation(s)
- Paul Lemire
- Laboratory of Immunology; Faculty of Veterinary Medicine; Université de Montréal; St-Hyacinthe; Quebec; Canada
| | - Mathieu Houde
- Laboratory of Immunology; Faculty of Veterinary Medicine; Université de Montréal; St-Hyacinthe; Quebec; Canada
| | - Mariela Segura
- Laboratory of Immunology; Faculty of Veterinary Medicine; Université de Montréal; St-Hyacinthe; Quebec; Canada
| |
Collapse
|
36
|
Chaudhary N, Datta K, Askin FB, Staab JF, Marr KA. Cystic fibrosis transmembrane conductance regulator regulates epithelial cell response to Aspergillus and resultant pulmonary inflammation. Am J Respir Crit Care Med 2012; 185:301-10. [PMID: 22135344 PMCID: PMC5448574 DOI: 10.1164/rccm.201106-1027oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 11/09/2011] [Indexed: 12/22/2022] Open
Abstract
RATIONALE Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) alter epithelial cell (EC) interactions with multiple microbes, such that dysregulated inflammation and injury occur with airway colonization in people with cystic fibrosis (CF). Aspergillus fumigatus frequently colonizes CF airways, but it has been assumed to be an innocent saprophyte; its potential role as a cause of lung disease is controversial. OBJECTIVES To study the interactions between Aspergillus and EC, and the role of the fungus in evoking inflammatory responses. METHODS A. fumigatus expressing green fluorescent protein was developed for in vitro and in vivo models, which used cell lines and mouse tracheal EC. MEASUREMENTS AND MAIN RESULTS Fungal spores (conidia) are rapidly ingested by ECs derived from bronchial cell lines and murine tracheas, supporting a role for EC in early airway clearance. Bronchial ECs harboring CFTR mutations (ΔF508) or deletion demonstrate impaired uptake and killing of conidia, and ECs with CFTR mutation undergo more conidial-induced apoptosis. Germinated (hyphal) forms of the fungus evoke secretion of inflammatory mediators, with CFTR mutation resulting in increased airway levels of macrophage inflammatory protein 2 and KC, and higher lung monocyte chemotactic protein-1. After A. fumigatus inhalation, CFTR(-/-) mice develop exaggerated lymphocytic inflammation, mucin accumulation, and lung injury. CONCLUSIONS Data demonstrate a critical role for CFTR in mediating EC responses to A. fumigatus. Results suggest that the fungus elicits aberrant pulmonary inflammation in the setting of CFTR mutation, supporting the potential role of antifungals to halt progressive CF lung disease.
Collapse
Affiliation(s)
- Neelkamal Chaudhary
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
Despite the progress in medical treatment sepsis remains one of the major causes of death in pediatric and elderly patients. Understanding signaling pathways associated with sepsis may be of key significance for designing more efficient therapeutic approaches which could alleviate sepsis outcome. Earlier studies suggested that cholesteroland sphingolipid-rich lipid rafts and their morphologically distinct subset, caveolaecan be utilized by certain bacterial pathogens to enter and invade host cells. Moreover, there is also evidence that the expression levels of the major caveolar coat proteincaveolin-1 can be regulated by the major component of the outer membrane of Gram-negative bacteria,lipopolysaccharide (LPS) in various cell types involved in sepsis. In particular recent studies using caveolin-1 knockout mice and cells have revealed that caveolin-1 is directly involved in regulating numerous signalingpathways and functions in various cell types of the immune system and other cell types involved in sepsis. Moreover, the most recent report implies that in addition to extensively studied caveolin-1, caveolin-2 is also important in regulating LPS-induced sepsis and might possibly play an opposite role to caveolin-1 in regulating certain pro-inflammatory signaling pathways. The purpose of this review is to discuss these new exciting discoveries relatedto the specific role of caveolin-1 and the less studiedcaveolin-2in regulating signaling and outcome associated with sepsis induced by LPS and pathogenic bacteria at molecular, cellular and systemic levels.
Collapse
Affiliation(s)
- Grzegorz Sowa
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia,USA
| |
Collapse
|
38
|
Machado FS, Rodriguez NE, Adesse D, Garzoni LR, Esper L, Lisanti MP, Burk RD, Albanese C, Van Doorslaer K, Weiss LM, Nagajyothi F, Nosanchuk JD, Wilson ME, Tanowitz HB. Recent developments in the interactions between caveolin and pathogens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 729:65-82. [PMID: 22411314 DOI: 10.1007/978-1-4614-1222-9_5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The role of caveolin and caveolae in the pathogenesis of infection has only recently been appreciated. In this chapter, we have highlighted some important new data on the role of caveolin in infections due to bacteria, viruses and fungi but with particular emphasis on the protozoan parasites Leishmania spp., Trypanosoma cruzi and Toxoplasma gondii. This is a continuing area of research and the final chapter has not been written on this topic.
Collapse
Affiliation(s)
- Fabiana S Machado
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yuan K, Huang C, Fox J, Gaid M, Weaver A, Li G, Singh BB, Gao H, Wu M. Elevated inflammatory response in caveolin-1-deficient mice with Pseudomonas aeruginosa infection is mediated by STAT3 protein and nuclear factor kappaB (NF-kappaB). J Biol Chem 2011; 286:21814-25. [PMID: 21515682 DOI: 10.1074/jbc.m111.237628] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Caveolin-1 (Cav-1), an important composition protein within the flask-shaped membrane invaginations termed caveolae, may play a role in host defense against infections. However, the phenotype in Pseudomonas aeruginosa-infected cav1 knock-out (KO) mice is still unresolved, and the mechanism involved is almost entirely unknown. Using a respiratory infection model, we confirmed a crucial role played by Cav-1 in host defense against this pathogen because Cav-1 KO mice showed increased mortality, severe lung injury, and systemic dissemination as compared with wild-type (WT) littermates. In addition, cav1 KO mice exhibited elevated inflammatory cytokines (IL-6, TNF-α, and IL-12a), decreased phagocytic ability of macrophages, and increased superoxide release in the lung, liver, and kidney. We further studied relevant cellular signaling processes and found that STAT3 and NF-κB are markedly activated. Our data revealed that the Cav-1/STAT3/NF-κB axis is responsible for a dysregulated cytokine response, which contributes to increased mortality and disease progression. Moreover, down-regulating Cav-1 in cell culture with a dominant negative strategy demonstrated that STAT3 activation was essential for the translocation of NF-κB into the nucleus, confirming the observations from cav1 KO mice. Collectively, our studies indicate that Cav-1 is critical for inflammatory responses regulating the STAT3/NF-κB pathway and thereby impacting P. aeruginosa infection.
Collapse
Affiliation(s)
- Kefei Yuan
- State Key Laboratory for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wojewodka G, De Sanctis JB, Radzioch D. Ceramide in cystic fibrosis: a potential new target for therapeutic intervention. J Lipids 2010; 2011:674968. [PMID: 21490807 PMCID: PMC3066841 DOI: 10.1155/2011/674968] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/04/2010] [Accepted: 11/11/2010] [Indexed: 12/21/2022] Open
Abstract
Patients with cystic fibrosis (CF) are afflicted with many symptoms but the greatest challenge is the fight against chronic bacterial infections, leading to decreased lung function and ultimately death. Our group has recently found reduced levels of ceramides in CF patients and mice. Ceramides are sphingolipids involved in the structure of cell membranes but also participate in the inflammatory response, in cell signalling through membrane microdomains (lipid rafts), and in apoptosis. These characteristics of ceramides make them strong candidates for therapeutic intervention in CF. As more studies have come to evaluate the role of ceramide in CF, conflicting results have been described. This paper discusses various views regarding the potential role of ceramide in CF, summarizes methods of ceramide detection and their role in the regulation of cellular and molecular processes.
Collapse
Affiliation(s)
- Gabriella Wojewodka
- Human Genetics, McGill University Health Center Research Institute, 1650 Cedar Avenue L11-218, Montreal, QC, Canada H3G 1A4
| | - Juan B. De Sanctis
- Institute of Immunology, Central University of Venezuela, Apartado Postale 50109, Caracas 1050A, Venezuela
| | - Danuta Radzioch
- Departments of Medicine and Human Genetics, McGill University Health Center Research Institute, 1650 Cedar Avenue L11-218, Montreal, QC, Canada H3G 1A4
| |
Collapse
|
41
|
Jin Y, Lee SJ, Minshall RD, Choi AMK. Caveolin-1: a critical regulator of lung injury. Am J Physiol Lung Cell Mol Physiol 2010; 300:L151-60. [PMID: 21097526 DOI: 10.1152/ajplung.00170.2010] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Caveolin-1 (cav-1), a 22-kDa transmembrane scaffolding protein, is the principal structural component of caveolae. Cav-1 regulates critical cell functions including proliferation, apoptosis, cell differentiation, and transcytosis via diverse signaling pathways. Abundant in almost every cell type in the lung, including type I epithelial cells, endothelial cells, smooth muscle cells, fibroblasts, macrophages, and neutrophils, cav-1 plays a crucial role in the pathogenesis of acute lung injury (ALI). ALI and its severe form, acute respiratory distress syndrome (ARDS), are responsible for significant morbidity and mortality in intensive care units, despite improvement in ventilation strategies. The pathogenesis of ARDS is still poorly understood, and therapeutic options remain limited. In this article, we summarize recent data regarding the regulation and function of cav-1 in lung biology and pathology, in particular as it relates to ALI. We further discuss the potential molecular and cellular mechanisms by which cav-1 expression contributes to ALI. Investigating the cellular functions of cav-1 may provide new insights for understanding the pathogenesis of ALI and provide novel targets for therapeutic interventions in the future.
Collapse
Affiliation(s)
- Yang Jin
- Division of Pulmonary and Critical Care Medicine, Dept. of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
42
|
Feng H, Guo L, Song Z, Gao H, Wang D, Fu W, Han J, Li Z, Huang B, Li XA. Caveolin-1 protects against sepsis by modulating inflammatory response, alleviating bacterial burden, and suppressing thymocyte apoptosis. J Biol Chem 2010; 285:25154-60. [PMID: 20534584 DOI: 10.1074/jbc.m110.116897] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sepsis is a leading cause of death, which is characterized by uncontrolled inflammatory response. In this study, we report that caveolin-1, a major component of caveolae, is a critical survival factor of sepsis. We induced sepsis using a well established sepsis animal model, cecal ligation and puncture (CLP). CLP induced 67% fatality in caveolin-1 null mice, but only 27% fatality in wild type littermates (p = 0.015). Further studies revealed that mice deficient in caveolin-1 exhibited marked increase in tumor necrosis factor-alpha and interleukin-6 production 20 h following CLP treatment, indicating uncontrolled inflammatory responses in the absence of caveolin-1. Caveolin-1 null mice also had a significant increase in bacteria number recovered from liver and spleen, indicating elevated bacterial burdens. In addition, caveolin-1 null mice had a 2-fold increase in thymocyte apoptosis compared with wild type littermates, indicating caveolin-1 as a critical modulator of thymocyte apoptosis during sepsis. In conclusion, our findings demonstrate that caveolin-1 is a critical protective modulator of sepsis in mice. Caveolin-1 exerts its protective function likely through its roles in modulating inflammatory response, alleviating bacterial burdens, and suppressing thymocyte apoptosis.
Collapse
Affiliation(s)
- Hong Feng
- Department of Pediatrics, University of Kentucky Medical School, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|