1
|
Kim K, Khazan N, McDowell JL, Snyder CWA, Miller JP, Singh RK, Whittum ME, Turner R, Moore RG. The NF-κB-HE4 axis: A novel regulator of HE4 secretion in ovarian cancer. PLoS One 2024; 19:e0314564. [PMID: 39621651 PMCID: PMC11611113 DOI: 10.1371/journal.pone.0314564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/12/2024] [Indexed: 12/09/2024] Open
Abstract
Ovarian cancer is the leading cause of death among gynecologic malignancies. Despite recent advancements in targeted therapies such as PARP inhibitors, recurrence is common and frequently resistant to existing therapies. A powerful diagnostic tool, coupled with a comprehensive understanding of its implications, is crucial. HE4, a clinical serum biomarker for ovarian cancer, has shown efficacy in monitoring malignant phenotypes, yet little is known about its biological role and regulatory mechanisms. Our research demonstrates that HE4 expression in ovarian cancer can be regulated by the NF-κB signaling pathway. We found that the activation of NF-κB signaling by tumor necrosis factor (TNF)-α, a cytokine found in ovarian cancer tumors and ascites, enhanced the secretion of HE4 while its inhibition suppressed HE4 levels. Nuclear translocation of the NF-κB component p65 was found to be critical for HE4 expression; induced NF-κB activation through p65 expression or constitutive IKK2 activity elevated HE4 expression, while p65 knockdown had the opposite effect. Furthermore, we observed that NF-κB mediated HE4 expression at the transcriptional level. Our data also suggests that there is a regulatory role for HE4 in the expression of α5-Integrin, a crucial adhesion molecule in ovarian cancer metastasis; HE4 knockdown corresponded with reduced α5-Integrin expression, cell migration and cell adhesion to fibronectin.
Collapse
Affiliation(s)
- Kyukwang Kim
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Negar Khazan
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Jamie L. McDowell
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Cameron W. A. Snyder
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - John P. Miller
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States of America
| | - Rakesh K. Singh
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Michelle E. Whittum
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Rachael Turner
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Richard G. Moore
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States of America
| |
Collapse
|
2
|
D'Onofrio V, Sékaly RP. The immune-endocrine interplay in sex differential responses to viral infection and COVID-19. Trends Immunol 2024; 45:943-958. [PMID: 39562265 DOI: 10.1016/j.it.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/21/2024]
Abstract
Men are at higher risk for developing severe COVID-19 than women, while women are at higher risk for developing post-acute sequelae of COVID-19 (PASC). This highlights the impact of sex differences on immune responses and clinical outcomes of acute COVID-19 or PASC. A dynamic immune-endocrine interface plays an important role in the development of effective immune responses impacting the control of viral infections. In this opinion article we discuss mechanisms underlying the transcriptional and epigenetic regulation of immune responses by sex hormones during viral infections. We propose that disruption of this delicate immune-endocrine interplay can result in worsened outcomes of viral disease. We also posit that insights into these immune mechanisms can propel the development of novel immunomodulatory interventions that leverage immune-endocrine pathways to treat viral infections.
Collapse
Affiliation(s)
- Valentino D'Onofrio
- Center for Vaccinology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Rafick Pierre Sékaly
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
3
|
Ciebiera M, Kociuba J, Ali M, Madueke-Laveaux OS, Yang Q, Bączkowska M, Włodarczyk M, Żeber-Lubecka N, Zarychta E, Corachán A, Alkhrait S, Somayeh V, Malasevskaia I, Łoziński T, Laudański P, Spaczynski R, Jakiel G, Al-Hendy A. Uterine fibroids: current research on novel drug targets and innovative therapeutic strategies. Expert Opin Ther Targets 2024; 28:669-687. [PMID: 39136530 DOI: 10.1080/14728222.2024.2390094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION Uterine fibroids, the most common nonmalignant tumors affecting the female genital tract, are a significant medical challenge. This article focuses on the most recent studies that attempted to identify novel non-hormonal therapeutic targets and strategies in UF therapy. AREAS COVERED This review covers the analysis of the pharmacological and biological mechanisms of the action of natural substances and the role of the microbiome in reference to UFs. This study aimed to determine the potential role of these compounds in UF prevention and therapy. EXPERT OPINION While there are numerous approaches for treating UFs, available drug therapies for disease control have not been optimized yet. This review highlights the biological potential of vitamin D, EGCG and other natural compounds, as well as the microbiome, as promising alternatives in UF management and prevention. Although these substances have been quite well analyzed in this area, we still recommend conducting further studies, particularly randomized ones, in the field of therapy with these compounds or probiotics. Alternatively, as the quality of data continues to improve, we propose the consideration of their integration into clinical practice, in alignment with the patient's preferences and consent.
Collapse
Affiliation(s)
- Michal Ciebiera
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
- Warsaw Institute of Women's Health, Warsaw, Poland
- Development and Research Center of Non-Invasive Therapies, Pro-Familia Hospital, Rzeszow, Poland
| | - Jakub Kociuba
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
- Warsaw Institute of Women's Health, Warsaw, Poland
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | | | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - Monika Bączkowska
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Marta Włodarczyk
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Center of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Elżbieta Zarychta
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Ana Corachán
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - Samar Alkhrait
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - Vafaei Somayeh
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | | | - Tomasz Łoziński
- Development and Research Center of Non-Invasive Therapies, Pro-Familia Hospital, Rzeszow, Poland
- Department of Obstetrics and Gynecology, Pro-Familia Hospital, Rzeszow, Poland
- Department of Gynecology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Piotr Laudański
- Department of Obstetrics, Gynecology and Gynecological Oncology, Medical University of Warsaw, Warsaw, Poland
- Women's Health Research Institute, Calisia University, Kalisz, Poland
- OVIklinika Infertility Center, Warsaw, Poland
| | - Robert Spaczynski
- Center for Gynecology, Obstetrics and Infertility Treatment, Poznan, Poland
- Collegium Medicum, University of Zielona Gora, Zielona Gora, Poland
| | - Grzegorz Jakiel
- First Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Jinagal S, Dutt R, Sharma M, Punetha M, Saini S, Thakur S, Chaudhary S, Kumar P, Yadav PS, Datta TK, Kumar D. LPS-Induced Mitochondrial Dysfunction Reduces Oocyte Maturation and Developmental Competence of Buffalo Embryos via ROS Mediated TLR4 Signalling. Am J Reprod Immunol 2024; 92:e13902. [PMID: 39042556 DOI: 10.1111/aji.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/23/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
PROBLEM Lipopolysaccharide (LPS) from gram-negative bacteria has reportedly been associated with infectious diseases like metritis, which has a substantial adverse effect on animal reproductive performance and causes serious financial losses for the dairy sector. The current work aimed to establish the impact of LPS on in vitro oocyte maturation and subsequent in vitro developmental competence of oocytes, as well as to investigate the explanatory molecular mechanism underlying this effect. METHOD OF STUDY Buffalo cumulus-oocyte complexes (COCs) were challenged with 0, 5, 10 and 20 µg/mL LPS during IVM followed by IVF and IVC. Cytoplasmic and nuclear maturation, cleavage and blastocyst rate, intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP, ΔΨm) and transcript abundance of genes related to inflammation, antioxidation and apoptosis were evaluated. RESULTS The maturation and subsequent embryonic development competency were found to be significantly (p ≤ 0.05) reduced with the addition of 10 and 20 µg/mL LPS to IVM media. ROS production accompanied by a decreased ΔΨm was recorded in LPS-treated oocytes in comparison to the control group (p ≤ 0.05). Our results were further supported by the transcriptional expression of proinflammatory (TLR4, CD14 and RPS27A) and apoptotic gene (Caspase 3) which were found to be significantly increased while antioxidant genes (SOD2 and GPX1) were decreased significantly in matured oocytes and blastocyst after LPS exposure. CONCLUSIONS The deleterious effects of LPS are mediated through ROS generation, which triggers inflammatory processes via the TLR4 pathway and impairs oocyte maturation and subsequent embryonic development.
Collapse
Affiliation(s)
- Sujata Jinagal
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
- Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Ravi Dutt
- Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Maninder Sharma
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Meeti Punetha
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Sheetal Saini
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Swati Thakur
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Suman Chaudhary
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Pradeep Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Prem Singh Yadav
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Tirth Kumar Datta
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| |
Collapse
|
5
|
McGuinness C, Britt KL. Estrogen receptor regulation of the immune microenvironment in breast cancer. J Steroid Biochem Mol Biol 2024; 240:106517. [PMID: 38555985 DOI: 10.1016/j.jsbmb.2024.106517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/07/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Breast cancer (BCa) is the most common cancer in women and the estrogen receptor (ER)+ subtype is increasing in incidence. There are numerous therapy options available for patients that target the ER, however issues such as innate and acquired treatment resistance, and treatment related side effects justify research into alternative therapeutic options for these patients. Patients of many solid tumour types have benefitted from immunotherapy, however response rates have been generally low in ER+ BCa. We summarise the recent work assessing CDK4/6 inhibitors for ER+ BCa and how they have been shown to prime anti-tumour immune cells and achieve impressive results in preclinical models. A great example of how the immune system might be activated against ER+ BCa. We review the role of estrogen signalling in immune cells, and explore recent data highlighting the hormonal regulation of the immune microenvironment of normal breast, BCa and immune disorders. As recent data has indicated that macrophages are particularly susceptible to estrogen signalling, we highlight macrophage phagocytosis as a key potential target for priming the tumour immune microenvironment. We challenge the generally accepted paradigm that ER+ BCa are "immune-cold" - advocating instead for research into therapies that could be used in combination with targeted therapies and/or immune checkpoint blockade to achieve durable antitumour responses in ER+ BCa.
Collapse
Affiliation(s)
- Conor McGuinness
- Breast Cancer Risk and Prevention Lab, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Kara L Britt
- Breast Cancer Risk and Prevention Lab, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
6
|
Shi R, Gao S, Huang H, Jiang K, Wang D. Integrating network pharmacology with microRNA microarray analysis to identify the role of miRNAs in thrombosis treated by the Dahuang Zhechong pill. Comput Biol Med 2024; 173:108338. [PMID: 38531252 DOI: 10.1016/j.compbiomed.2024.108338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Thrombotic diseases are the leading causes of death worldwide, urging for improvements in treatment strategies. Dahuang Zhechong pill (DHZCP) is a traditional Chinese medicine widely used for treating thrombotic diseases; however, the underlying mechanisms remain unclear. This study aimed to explore the potential mechanisms of DHZCP in treating thrombosis with a focus on bioinformatics and miRNAs. METHODS We used network pharmacology to explore the targets of thrombosis treated with DHZCP and performed microarray analysis to acquire miRNA profiles and predict the target genes in thrombin-stimulated MEG-01 cells treated with DHZCP. Based on the overlapping of targets, we carried out a component-target-miRNA network and enrichment analysis and validated the selected miRNAs and mRNAs using quantitative reverse transcription-polymerase chain reaction. RESULTS Our data showed 850 targets of 230 active ingredients of DHZCP and 1214 thrombosis-related genes; 235 targets were common. We identified 32 miRNAs that were regulated by thrombin stimulation but regulated reversely by DHZCP treatment in MEG-01 cells, and predicted 1846 targets with function annotation. We analyzed conjointly 23 integrating targets from network pharmacology and microarray. HIF1A, PIK3CA, MAPK1 and BCL2L1 emerged as key nodes in the network diagrams. We confirmed the differential expression of seven miRNAs, one mRNA (BCL2L1) and platelet surface protein. CONCLUSIONS This study showed that miRNAs and their targets, such as BCL2L1, played crucial roles in platelet activation during DHZCP intervention in thrombosis, highlighting their potential to alleviate platelet activation and increase cell apoptosis. The study's findings could help develop new strategies for improving thrombosis treatment.
Collapse
Affiliation(s)
- Rui Shi
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, 410008, China.
| | - Shan Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, 410008, China
| | - Huichao Huang
- Department of Infectious Disease, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ke Jiang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, 410008, China
| | - Dongsheng Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China; Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Central South University, Changsha, 410008, China.
| |
Collapse
|
7
|
Li F, Yu H, Qi A, Zhang T, Huo Y, Tu Q, Qi C, Wu H, Wang X, Zhou J, Hu L, Ouyang H, Pang D, Xie Z. Regulatory Non-Coding RNAs during Porcine Viral Infections: Potential Targets for Antiviral Therapy. Viruses 2024; 16:118. [PMID: 38257818 PMCID: PMC10818342 DOI: 10.3390/v16010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Pigs play important roles in agriculture and bio-medicine; however, porcine viral infections have caused huge losses to the pig industry and severely affected the animal welfare and social public safety. During viral infections, many non-coding RNAs are induced or repressed by viruses and regulate viral infection. Many viruses have, therefore, developed a number of mechanisms that use ncRNAs to evade the host immune system. Understanding how ncRNAs regulate host immunity during porcine viral infections is critical for the development of antiviral therapies. In this review, we provide a summary of the classification, production and function of ncRNAs involved in regulating porcine viral infections. Additionally, we outline pathways and modes of action by which ncRNAs regulate viral infections and highlight the therapeutic potential of artificial microRNA. Our hope is that this information will aid in the development of antiviral therapies based on ncRNAs for the pig industry.
Collapse
Affiliation(s)
- Feng Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Hao Yu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Aosi Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Tianyi Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Yuran Huo
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Qiuse Tu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Chunyun Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Heyong Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Lanxin Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| | - Zicong Xie
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (F.L.); (H.Y.); (A.Q.); (T.Z.); (Y.H.); (Q.T.); (C.Q.); (H.W.); (X.W.); (J.Z.); (L.H.); (H.O.)
- Chongqing Research Institute, Jilin University, Chongqing 401120, China
- Chongqing Jitang Biotechnology Research Institute Co., Ltd., Chongqing 401120, China
| |
Collapse
|
8
|
Willoughby DS, Florez C, Davis J, Keratsopoulos N, Bisher M, Parra M, Taylor L. Decreased Neuromuscular Function and Muscle Quality along with Increased Systemic Inflammation and Muscle Proteolysis Occurring in the Presence of Decreased Estradiol and Protein Intake in Early to Intermediate Post-Menopausal Women. Nutrients 2024; 16:197. [PMID: 38257090 PMCID: PMC10819584 DOI: 10.3390/nu16020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Menopause causes a reduction in estradiol (E2) and may be associated with neuromuscular degeneration. Compared to pre-menopausal (PRE-M) women, this study sought to determine dietary protein intake and whether lower levels of circulating E2 in post-menopausal women (POST-M) were occurring alongside increased levels of biomarkers of axonal and neuromuscular junction degeneration (NMJ), inflammation, muscle protein degradation, and reduced indices of muscle quality and performance. Employing a cross-sectional design, PRE-M (n = 6) and POST-M (n = 6) dietary analysis data were collected and participants then donated a blood and urine sample followed by assessments for body composition, motor unit activation, and muscle performance. Independent group t-tests were performed to determine differences between groups (p ≤ 0.05). In POST-M women, E2, motor unit activity, muscle quality, and muscle performance were significantly less than those for PRE-M women; however, the levels of c-terminal fragment of agrin, tumor necrosis factor-α, and urinary titin were significantly greater (p < 0.05). POST-M women were also shown to be ingesting fewer total calories and less protein than PRE-M (p < 0.05). Reduced E2 and dietary protein intake in POST-M women occurs in conjunction with increased levels of biomarkers of NMJ degradation, inflammation, and muscle proteolysis, which may be associated with reduced motor unit activation and muscle quality.
Collapse
Affiliation(s)
- Darryn S. Willoughby
- School of Health Professions, University of Mary Hardin-Baylor, Belton, TX 76513, USA
| | - Christine Florez
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX 76513, USA; (C.F.)
| | - Jaci Davis
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX 76513, USA; (C.F.)
| | - Nikolas Keratsopoulos
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX 76513, USA; (C.F.)
| | - Morgan Bisher
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX 76513, USA; (C.F.)
| | - Mandy Parra
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX 76513, USA; (C.F.)
| | - Lemuel Taylor
- School of Health Professions, University of Mary Hardin-Baylor, Belton, TX 76513, USA
| |
Collapse
|
9
|
Akbari A, Zarifian A, Hadizadeh A, Hajmolarezaei E. Incidence and Outcomes Associated with Menopausal Status in COVID-19 Patients: A Systematic Review and Meta-analysis. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2023; 45:e796-e807. [PMID: 38141601 DOI: 10.1055/s-0043-1772595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2023] Open
Abstract
OBJECTIVE Menopause causes several changes in the body that may affect the response to COVID -19. We aimed to investigate the possible association between menopausal status and incidence and outcomes in COVID-19 patients. METHODS Combinations of keywordsCOVID-19, menopause, and estrogen were used to search the PubMed, Embase, Web-of-Science, and Scopus databases for articles reporting the incidence and outcomes of COVID-19 (discharge, length-of-admission, intensive care, or mortality) in premenopausal women, available through December 29, 2022. Data from studies comparing the incidence of COVID-19 infection with the age-matched male population were pooled and meta-analyzed using a random-effects model. RESULTS Overall, 1,564 studies were retrieved, of which 12 were finally included in the systematic review to compare disease outcomes, and 6 were meta-analyzed for the incidence of COVID-19 in premenopausal and postmenopausal women. All studies reported better COVID-19-associated outcomes in premenopausal women compared with postmenopausal women. After adjusting for confounding factors, three studies found better outcomes in postmenopausal women, and two found no association between menopausal status and COVID-19 outcomes. Our meta-analysis found a higher incidence of COVID-19 infection among premenopausal women than postmenopausal women, when compared with age-matched men (odds ratio = 1.270; 95% confidence interval: 1.086-1.486; p = 0.003). CONCLUSION The incidence of COVID-19 was significantly higher in premenopausal women than in postmenopausal women when compared with age-matched men. Although premenopausal women may have more favorable COVID-19-associated outcomes, the presumed preventive effect of estrogens on the incidence and related outcomes of COVID-19 in premenopausal women cannot be proven at present. Further longitudinal studies comparing pre- and post-menopausal women are required to provide further insight into this matter.
Collapse
Affiliation(s)
| | - Ahmadreza Zarifian
- Mashhad University of Medical Sciences, Mashhad, Iran
- University Hospital Lewisham, King's College London, London, United Kingdom
| | | | | |
Collapse
|
10
|
Ismail NH, Mussa A, Al-Khreisat MJ, Mohamed Yusoff S, Husin A, Al-Jamal HAN, Johan MF, Islam MA. Dysregulation of Non-Coding RNAs: Roles of miRNAs and lncRNAs in the Pathogenesis of Multiple Myeloma. Noncoding RNA 2023; 9:68. [PMID: 37987364 PMCID: PMC10660696 DOI: 10.3390/ncrna9060068] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
The dysregulation of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), leads to the development and advancement of multiple myeloma (MM). miRNAs, in particular, are paramount in post-transcriptional gene regulation, promoting mRNA degradation and translational inhibition. As a result, miRNAs can serve as oncogenes or tumor suppressors depending on the target genes. In MM, miRNA disruption could result in abnormal gene expression responsible for cell growth, apoptosis, and other biological processes pertinent to cancer development. The dysregulated miRNAs inhibit the activity of tumor suppressor genes, contributing to disease progression. Nonetheless, several miRNAs are downregulated in MM and have been identified as gene regulators implicated in extracellular matrix remodeling and cell adhesion. miRNA depletion potentially facilitates the tumor advancement and resistance of therapeutic drugs. Additionally, lncRNAs are key regulators of numerous cellular processes, such as gene expression, chromatin remodeling, protein trafficking, and recently linked MM development. The lncRNAs are uniquely expressed and influence gene expression that supports MM growth, in addition to facilitating cellular proliferation and viability via multiple molecular pathways. miRNA and lncRNA alterations potentially result in anomalous gene expression and interfere with the regular functioning of MM. Thus, this review aims to highlight the dysregulation of these ncRNAs, which engender novel therapeutic modalities for the treatment of MM.
Collapse
Affiliation(s)
- Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman 11111, Sudan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Shafini Mohamed Yusoff
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Azlan Husin
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Hamid Ali Nagi Al-Jamal
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin (UniSZA), Kuala Nerus 21300, Terengganu, Malaysia
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Md Asiful Islam
- WHO Collaborating Centre for Global Women’s Health, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
11
|
Khayati S, Dehnavi S, Sadeghi M, Tavakol Afshari J, Esmaeili SA, Mohammadi M. The potential role of miRNA in regulating macrophage polarization. Heliyon 2023; 9:e21615. [PMID: 38027572 PMCID: PMC10665754 DOI: 10.1016/j.heliyon.2023.e21615] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Macrophage polarization is a dynamic process determining the outcome of various physiological and pathological situations through inducing pro-inflammatory responses or resolving inflammation via exerting anti-inflammatory effects. The miRNAs are epigenetic regulators of different biologic pathways that target transcription factors and signaling molecules to promote macrophage phenotype transition and regulate immune responses. Modulating the macrophage activation, differentiation, and polarization by miRNAs is crucial for immune responses in response to microenvironmental signals and under various physiological and pathological conditions. In term of clinical significance, regulating macrophage polarization via miRNAs could be utilized for inflammation control. Also, understanding the role of miRNAs in macrophage polarization can provide insights into diagnostic strategies associated with dysregulated miRNAs and for developing macrophage-centered therapeutic methods. In this case, targeting miRNAs to further regulate of macrophage polarization may become an efficient strategy for treating immune-associated disorders. The current review investigated and categorized various miRNAs directly or indirectly involved in macrophage polarization by targeting different transcription factors and signaling pathways. In addition, prospects for regulating macrophage polarization via miRNA as a therapeutic choice that could be implicated in various pathological conditions, including cancer or inflammation-mediated injuries, were discussed.
Collapse
Affiliation(s)
- Shaho Khayati
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Antal D, Pór Á, Kovács I, Dull K, Póliska S, Ujlaki G, Demény MÁ, Szöllősi AG, Kiss B, Szegedi A, Bai P, Szántó M. PARP2 promotes inflammation in psoriasis by modulating estradiol biosynthesis in keratinocytes. J Mol Med (Berl) 2023; 101:987-999. [PMID: 37351597 PMCID: PMC10400701 DOI: 10.1007/s00109-023-02338-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/09/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Poly(ADP-ribose) polymerase 2 (PARP2) alongside PARP1 are responsible for the bulk of cellular PARP activity, and they were first described as DNA repair factors. However, research in past decades implicated PARPs in biological functions as diverse as the regulation of cellular energetics, lipid homeostasis, cell death, and inflammation. PARP activation was described in Th2-mediated inflammatory processes, but studies focused on the role of PARP1, while we have little information on PARP2 in inflammatory regulation. In this study, we assessed the role of PARP2 in a Th17-mediated inflammatory skin condition, psoriasis. We found that PARP2 mRNA expression is increased in human psoriatic lesions. Therefore, we studied the functional consequence of decreased PARP2 expression in murine and cellular human models of psoriasis. We observed that the deletion of PARP2 attenuated the imiquimod-induced psoriasis-like dermatitis in mice. Silencing of PARP2 in human keratinocytes prevented their hyperproliferation, maintained their terminal differentiation, and reduced their production of inflammatory mediators after treatment with psoriasis-mimicking cytokines IL17A and TNFα. Underlying these observations, we found that aromatase was induced in the epidermis of PARP2 knock-out mice and in PARP2-deficient human keratinocytes, and the resulting higher estradiol production suppressed NF-κB activation, and hence, inflammation in keratinocytes. Steroidogenic alterations have previously been described in psoriasis, and we extend these observations by showing that aromatase expression is reduced in psoriatic lesions. Collectively, our data identify PARP2 as a modulator of estrogen biosynthesis by epidermal keratinocytes that may be relevant in Th17 type inflammation. KEY MESSAGES : PARP2 mRNA expression is increased in lesional skin of psoriasis patients. PARP2 deletion in mice attenuated IMQ-induced psoriasis-like dermatitis. NF-κB activation is suppressed in PARP2-deficient human keratinocytes. Higher estradiol in PARP2-deficient keratinocytes conveys anti-inflammatory effect.
Collapse
Affiliation(s)
- Dóra Antal
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., Elettudomanyi Epulet, H-4032, Debrecen, Hungary
- The Hungarian Academy of Sciences, Center of Excellence, Budapest, Hungary
| | - Ágnes Pór
- Department of Pathology, Gyula Kenézy Campus, Clinical Centre, University of Debrecen, Debrecen, Hungary
| | - Ilona Kovács
- Department of Pathology, Gyula Kenézy Campus, Clinical Centre, University of Debrecen, Debrecen, Hungary
| | - Katalin Dull
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., Elettudomanyi Epulet, H-4032, Debrecen, Hungary
- The Hungarian Academy of Sciences, Center of Excellence, Budapest, Hungary
| | - Máté Ágoston Demény
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., Elettudomanyi Epulet, H-4032, Debrecen, Hungary
- The Hungarian Academy of Sciences, Center of Excellence, Budapest, Hungary
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Borbála Kiss
- Department of Oncology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Szegedi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- ELKH-DE Allergology Research Group, University of Debrecen, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., Elettudomanyi Epulet, H-4032, Debrecen, Hungary
- The Hungarian Academy of Sciences, Center of Excellence, Budapest, Hungary
- NKFIH-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group ELKH, Debrecen, Hungary
| | - Magdolna Szántó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., Elettudomanyi Epulet, H-4032, Debrecen, Hungary.
- The Hungarian Academy of Sciences, Center of Excellence, Budapest, Hungary.
| |
Collapse
|
13
|
Sanchez K, Wu SL, Kakkar R, Darling JS, Harper CS, Fonken LK. Ovariectomy in mice primes hippocampal microglia to exacerbate behavioral sickness responses. Brain Behav Immun Health 2023; 30:100638. [PMID: 37256192 PMCID: PMC10225896 DOI: 10.1016/j.bbih.2023.100638] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/14/2023] [Accepted: 05/07/2023] [Indexed: 06/01/2023] Open
Abstract
Estrogens are a group of steroid hormones that promote the development and maintenance of the female reproductive system and secondary sex characteristics. Estrogens also modulate immune responses; estrogen loss at menopause increases the risk of inflammatory disorders. Elevated inflammatory responses in the brain can lead to affective behavioral changes, which are characteristic of menopause. Thus, here we examined whether loss of estrogens sensitizes microglia, the primary innate immune cell of the brain, leading to changes in affective behaviors. To test this question, adult C57BL/6 mice underwent an ovariectomy to remove endogenous estrogens and then received estradiol hormone replacement or vehicle. After a one-month recovery, mice received an immune challenge with lipopolysaccharide (LPS) or vehicle control treatment and underwent behavioral testing. Ovariectomized, saline-treated mice exhibited reduced social investigation compared to sham-operated mice. Furthermore, ovariectomized mice that received LPS exhibited an exacerbated decrease in sucrose preference, which was ameliorated by estradiol replacement. These results indicate that ovariectomy modulates affective behaviors at baseline and in response to an inflammatory challenge. Ovariectomy-related behavioral changes were associated with downregulation of Cx3cr1, a microglial receptor that limits activation, suggesting that estrogen loss can disinhibit microglia to immune stimuli. Indeed, estradiol treatment reduced ovariectomy-induced increases in Il1b and Il6 expression after an immune challenge. Changes in microglial reactivity following ovariectomy are likely subtle, as overt changes in microglial morphology (e.g., soma size and branching) were limited. Collectively, these results suggest that a lack of estrogens may allow microglia to confer exaggerated neuroimmune responses, thereby raising vulnerability to adverse affective- and sickness-related behavioral changes.
Collapse
Affiliation(s)
- Kevin Sanchez
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sienna L. Wu
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Reha Kakkar
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jeffrey S. Darling
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Claire S. Harper
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Laura K. Fonken
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
14
|
Jana A, Thomas J, Ghosh P. Expression of Oestrogen Receptor Alpha (ERα) in Oral Lichen Planus - A Precancerous Inflammatory Disease in Middle-Aged Females. Indian J Dermatol 2023; 68:405-409. [PMID: 37822373 PMCID: PMC10564195 DOI: 10.4103/ijd.ijd_122_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Background Oral lichen planus (OLP) is an autoimmune disease primarily affecting the middle-aged females. The present study aims to determine the relation of the oestrogen receptor alpha (ERα) with OLP pathogenesis, correlating it with the possible cause of its higher prevalence among females. Materials and Methods Clinically and histologically identified fifteen of each pre-menopausal and peri-menopausal OLP female patients were chosen for this study. The expression of ERα was analysed from the collected lesion tissue samples by using two-step semi-quantitative reverse transcriptase polymerase chain reaction (SqRT-PCR) and enzyme-linked immunosorbent assay (ELISA). Results mRNA and protein expression of ERα were significantly higher in both groups of OLP female patients when compared with the control. The perimenopausal OLP patients showed significantly elevated expression of ERα compared to premenopausal patients. Conclusion Higher expression of ERα in pre- and peri-menopausal females may be a causative factor for the higher prevalence of OLP among females.
Collapse
Affiliation(s)
- Abhishek Jana
- From the Department of Allied Health Sciences, Brainware University, Kolkata, West Bengal, India
| | - Jincy Thomas
- Department of Oral Medicine and Radiology, PMS College of Dental Sciences and Research, Trivandrum, Kerala, India
| | - Pratiti Ghosh
- Department of Physiology, West Bengal State University, Kolkata, West Bengal, India
| |
Collapse
|
15
|
Blumer J. Arthralgia of menopause - A retrospective review. Post Reprod Health 2023:20533691231172565. [PMID: 37127408 DOI: 10.1177/20533691231172565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Arthralgia is a common complaint around the time of menopause in many women. It is estimated that over 50% of women experience arthralgia or arthritis at the time of menopause. The complex of symptoms has been linked to the joint and tendon response to the decline in sex hormones as well as sarcopenia, or loss of muscle volume associated with aging. The diagnosis of "arthritis of menopause" has been identified since 1925, but treatments have been symptomatic at best.1,2 Joint synovium and cartilage interaction with estrogen is well documented. This article reviews the literature regarding the current approaches to treatment of arthralgia menopause.
Collapse
Affiliation(s)
- Janice Blumer
- Western University of Health Sciences, Lebanon, OR, USA
| |
Collapse
|
16
|
Zhong X, Sun Y, Lu Y, Xu L. Immunomodulatory role of estrogen in ischemic stroke: neuroinflammation and effect of sex. Front Immunol 2023; 14:1164258. [PMID: 37180115 PMCID: PMC10167039 DOI: 10.3389/fimmu.2023.1164258] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
Although estrogen is predominantly related to the maintenance of reproductive functioning in females, it mediates various physiological effects in nearly all tissues, especially the central nervous system. Clinical trials have revealed that estrogen, especially 17β-estradiol, can attenuate cerebral damage caused by an ischemic stroke. One mechanism underlying this effect of 17β-estradiol is by modulating the responses of immune cells, indicating its utility as a novel therapeutic strategy for ischemic stroke. The present review summarizes the effect of sex on ischemic stroke progression, the role of estrogen as an immunomodulator in immune reactions, and the potential clinical value of estrogen replacement therapy. The data presented here will help better understand the immunomodulatory function of estrogen and may provide a basis for its novel therapeutic use in ischemic stroke.
Collapse
Affiliation(s)
- Xiaojun Zhong
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Yulin Sun
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Yajun Lu
- Department of Internal Medicine, Sunto Women & Children’s Hospital, Jiaxing, China
| | - Lei Xu
- Department of Neurology, Zhejiang Rongjun Hospital, Jiaxing, China
| |
Collapse
|
17
|
Tan X, Xiao GY, Wang S, Shi L, Zhao Y, Liu X, Yu J, Russell WK, Creighton CJ, Kurie JM. EMT-activated secretory and endocytic vesicular trafficking programs underlie a vulnerability to PI4K2A antagonism in lung cancer. J Clin Invest 2023; 133:e165863. [PMID: 36757799 PMCID: PMC10065074 DOI: 10.1172/jci165863] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Hypersecretory malignant cells underlie therapeutic resistance, metastasis, and poor clinical outcomes. However, the molecular basis for malignant hypersecretion remains obscure. Here, we showed that epithelial-mesenchymal transition (EMT) initiates exocytic and endocytic vesicular trafficking programs in lung cancer. The EMT-activating transcription factor zinc finger E-box-binding homeobox 1 (ZEB1) executed a PI4KIIIβ-to-PI4KIIα (PI4K2A) dependency switch that drove PI4P synthesis in the Golgi and endosomes. EMT enhanced the vulnerability of lung cancer cells to PI4K2A small-molecule antagonists. PI4K2A formed a MYOIIA-containing protein complex that facilitated secretory vesicle biogenesis in the Golgi, thereby establishing a hypersecretory state involving osteopontin (SPP1) and other prometastatic ligands. In the endosomal compartment, PI4K2A accelerated recycling of SPP1 receptors to complete an SPP1-dependent autocrine loop and interacted with HSP90 to prevent lysosomal degradation of AXL receptor tyrosine kinase, a driver of cell migration. These results show that EMT coordinates exocytic and endocytic vesicular trafficking to establish a therapeutically actionable hypersecretory state that drives lung cancer progression.
Collapse
Affiliation(s)
- Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Guan-Yu Xiao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Shike Wang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Lei Shi
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Yanbin Zhao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Xin Liu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Jiang Yu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Chad J. Creighton
- Department of Medicine and Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Bioinformatics and Computational Biology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan M. Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas–MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
18
|
Dos Santos DC, de Souza Bittencout R, Arêas ID, Pena LSC, Almeida CF, de Brito Guimarães BC, Dórea RSDM, Correia TML, Júnior MNS, Morbeck LLB, Dos Santos TC, Souza CLS, de Souza SI, de Jesus Soares T, Yatsuda R, Campos GB, Marques LM. Effects of 5α-dihydrotestosterone on the modulation of monocyte/macrophage response to Staphylococcus aureus: an in vitro study. Biol Sex Differ 2023; 14:15. [PMID: 37004108 PMCID: PMC10065996 DOI: 10.1186/s13293-023-00501-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) is a pathogen responsible for a wide range of clinical manifestations and potentially fatal conditions. There is a paucity of information on the influence of androgens in the immune response to S. aureus infection. In this study, we evaluated the influence of the hormone 5α-dihydrotestosterone (DHT) on mouse peritoneal macrophages (MPMs) and human peripheral blood monocytes (HPBMs) induced by S. aureus. METHODS An in vitro model of MPMs from BALB/c sham males, orchiectomised (OQX) males, and females was used. Cells were inoculated with 10 μL of S. aureus, phage-type 80 or sterile saline (control) for 6 h. The MPMs of OQX males and females were pre-treated with 100 μL of 10-2 M DHT for 24 h before inoculation with S. aureus. The concentration of the cytokines TNF-α, IL-1α, IL-6, IL-8, and IL-10; total nitrites (NO-2); and hydrogen peroxide (H2O2) were measured in the supernatant of MPM cultures. In addition, the toll-like receptor 2 (TLR2) and nuclear factor kappa B (NF-kB) genes that are involved in immune responses were analysed. For the in vitro model of HPBMs, nine men and nine women of childbearing age were selected and HPBMs were isolated from samples of the volunteers' peripheral blood. In women, blood was collected during the periovulatory period. The HPBMs were inoculated with S. aureus for 6 h and the supernatant was collected for the analysis of cytokines TNF-α, IL-6, IL-12; and GM-CSF, NO-2, and H2O2. The HPBMs were then removed for the analysis of 84 genes involved in the host's response to bacterial infections by RT-PCR array. GraphPad was used for statistical analysis with a p value < 0.05. RESULTS Our data demonstrated that MPMs from sham males inoculated with S. aureus displayed higher concentrations of inflammatory cytokines and lower concentrations of IL-10, NO-2, and H2O2 when compared with MPMs from OQX males and females. A similar result was observed in the HPBMs of men when compared with those of women. Previous treatment with DHT in women HPBMs increased the production of pro-inflammatory cytokines and decreased the levels of IL-10, NO-2, and H2O2. The analysis of gene expression showed that DHT increased the activity of the TLR2 and NF-kB pathways in both MPMs and HPBMs. CONCLUSIONS We found that DHT acts as an inflammatory modulator in the monocyte/macrophage response induced by S. aureus and females exhibit a better immune defence response against this pathogen.
Collapse
Affiliation(s)
- Déborah Cruz Dos Santos
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Rafaela de Souza Bittencout
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Iago Dórea Arêas
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Larissa Silva C Pena
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Carolline Florentino Almeida
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Bruna Carolina de Brito Guimarães
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Rafael Santos Dantas Miranda Dórea
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Thiago Macêdo Lopes Correia
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | | | - Lorena Lôbo Brito Morbeck
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Talita Costa Dos Santos
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Clarissa Leal S Souza
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | | | - Telma de Jesus Soares
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Regiane Yatsuda
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Guilherme Barreto Campos
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
- University of Santa Cruz (UESC), Campus Soane Nazaré de Andrade, Ilhéus, Brazil
| | - Lucas Miranda Marques
- Multidisciplinary Institute of Health, Federal University of Bahia (UFBA), Rua Hormindo Barros, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil.
- University of Santa Cruz (UESC), Campus Soane Nazaré de Andrade, Ilhéus, Brazil.
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
19
|
Zhou K, Xiao J, Wang H, Ni B, Huang J, Long X. Estradiol regulates oxidative stress and angiogenesis of myocardial microvascular endothelial cells via the CDK1/CDK2 pathway. Heliyon 2023; 9:e14305. [PMID: 36942258 PMCID: PMC10023923 DOI: 10.1016/j.heliyon.2023.e14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
Cardiovascular diseases remain the leading cause of death, morbidity, and disability. Recently, it has been reported that gonadal hormones such as estradiol can act on membrane receptors and activate intracellular signaling mechanisms, thereby altering cellular function. This study aims to explore the function and molecular mechanism of estradiol on cardiac microvascular endothelial cells (CMVECs). Estradiol had low toxicity to CMVECs. Hypoxia/reoxygenation (H/R) stimulation inhibited the proliferation and migration of CMVECs, while estradiol significantly promoted proliferation and migration. Estradiol inhibited il-1, IL6, and TNF-α secretion levels after H/R stimulation. Meanwhile, estradiol inhibits oxidative stress and promotes angiogenesis. Further, estradiol upregulated the gene and protein levels of cyclin-dependent kinases 1 (CDK1) and CDK2 after H/R stimulation. When knocking down CDK1 and CDK2 of CMVECs, estradiol did not affect the protein expression of Cyclin E1 and Cyclin D1. Meanwhile, the regulatory effect of estradiol on oxidative stress, angiogenesis, and inflammatory response was significantly weakened or even disappeared. In conclusion, estradiol mediates oxidative stress and angiogenesis of myocardial microvascular endothelial cells by regulating the CDK/cyclin signaling pathway.
Collapse
Affiliation(s)
- Ke Zhou
- Vasculocardiology Department, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Jun Xiao
- Vasculocardiology Department, Chongqing University Central Hospital, Chongqing, 400014, China
- Corresponding author.
| | - Hao Wang
- Vasculocardiology Department, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Bing Ni
- Institute of Immunology of Army Medical University, Chongqing, 400014, China
| | - Jietao Huang
- Vasculocardiology Department, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Xueyuan Long
- Vasculocardiology Department, Chongqing University Central Hospital, Chongqing, 400014, China
| |
Collapse
|
20
|
Cai D, Sun C, Murashita T, Que X, Chen SY. ADAR1 Non-Editing Function in Macrophage Activation and Abdominal Aortic Aneurysm. Circ Res 2023; 132:e78-e93. [PMID: 36688311 PMCID: PMC10316962 DOI: 10.1161/circresaha.122.321722] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023]
Abstract
BACKGROUND Macrophage activation plays a critical role in abdominal aortic aneurysm (AAA) development. However, molecular mechanisms controlling macrophage activation and vascular inflammation in AAA remain largely unknown. The objective of the study was to identify novel mechanisms underlying adenosine deaminase acting on RNA (ADAR1) function in macrophage activation and AAA formation. METHODS Aortic transplantation was conducted to determine the importance of nonvascular ADAR1 in AAA development/dissection. Ang II (Angiotensin II) infusion of ApoE-/- mouse model combined with macrophage-specific knockout of ADAR1 was used to study ADAR1 macrophage-specific role in AAA formation/dissection. The relevance of macrophage ADAR1 to human AAA was examined using human aneurysm specimens. Moreover, a novel humanized AAA model was established to test the role of human macrophages in aneurysm formation in human arteries. RESULTS Allograft transplantation of wild-type abdominal aortas to ADAR1+/- recipient mice significantly attenuated AAA formation, suggesting that nonvascular ADAR1 is essential for AAA development. ADAR1 deficiency in hematopoietic cells decreased the prevalence and severity of AAA while inhibited macrophage infiltration and aorta wall inflammation. ADAR1 deletion blocked the classic macrophage activation, diminished NF-κB (nuclear factor kappa B) signaling, and enhanced the expression of a number of anti-inflammatory microRNAs. Mechanistically, ADAR1 interacted with Drosha to promote its degradation, which attenuated Drosha-DGCR8 (DiGeorge syndrome critical region 8) interaction, and consequently inhibited pri- to pre-microRNA processing of microRNAs targeting IKKβ, resulting in an increased IKKβ (inhibitor of nuclear factor kappa-B) expression and enhanced NF-κB signaling. Significantly, ADAR1 was induced in macrophages and interacted with Drosha in human AAA lesions. Reconstitution of ADAR1-deficient, but not the wild type, human monocytes to immunodeficient mice blocked the aneurysm formation in transplanted human arteries. CONCLUSIONS Macrophage ADAR1 promotes aneurysm formation in both mouse and human arteries through a novel mechanism, that is, Drosha protein degradation, which inhibits the processing of microRNAs targeting NF-kB signaling and thus elicits macrophage-mediated vascular inflammation in AAA.
Collapse
Affiliation(s)
- Dunpeng Cai
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Chenming Sun
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA
| | - Takashi Murashita
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Xingyi Que
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Shi-You Chen
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO
- Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA
| |
Collapse
|
21
|
Zhu X, He L, Li X, Pei W, Yang H, Zhong M, Zhang M, Lv K, Zhang Y. LncRNA AK089514/miR-125b-5p/TRAF6 axis mediates macrophage polarization in allergic asthma. BMC Pulm Med 2023; 23:45. [PMID: 36717790 PMCID: PMC9887860 DOI: 10.1186/s12890-023-02339-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Micro RNA (miRNA) plays important roles in macrophage polarization. However, the manner in which miRNA regulate macrophage polarization in response to dermatophagoides farinae protein 1(Der f1)-induced asthma has not been defined. This study aims to explore the role of miRNAs in regulating macrophages in asthma. METHODS The microRNAs which may regulate asthma were selectd by Microarrays. The function of miR-125b-5p in macrophage and Der f1-induced asthma were detected in vivo experiment. The long non coding RNA (lncRNA) AK089514/miR-125b-5p/TRAF6 axis was predicted by bioinformatics and confirmed by dual luciferase reporter assay. RESULTS In this study, we found that miR-125b-5p is highly expressed in M2 macrophages and bronchoalveolar lavage fluid (BALF) cells with Der f1-induced asthma. In response to the challenge of Der f1, miR-125b-5p KD attenuated allergic airway inflammation of mice by preventing M2 macrophages polarization. Mechanistic studies indicated that lncRNA AK089514 functioned as a competing endogenous RNA for miR-125b-5p, thereby leading to the depression of its endogenous target TNF receptor associated factor 6 (TRAF6). CONCLUSIONS miR-125b-5p is significantly over-expressed in asthma, and AK089514-miR-125b-5p-TRAF6 axis play critical role in asthma by modulating macrophage polarization. Our findings may provide a potential new target for potential therapeutic and diagnostic target in asthma.
Collapse
Affiliation(s)
- Xiaolong Zhu
- grid.452929.10000 0004 8513 0241Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), 2 Zheshan Western Road, Wuhu, 241001 People’s Republic of China ,grid.443626.10000 0004 1798 4069Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, 241001 People’s Republic of China ,grid.443626.10000 0004 1798 4069Non-Coding RNA Research Center of Wannan Medical College, Wuhu, 241001 China ,Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu, 241001 China
| | - Ling He
- grid.452929.10000 0004 8513 0241Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), 2 Zheshan Western Road, Wuhu, 241001 People’s Republic of China ,grid.443626.10000 0004 1798 4069Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, 241001 People’s Republic of China ,grid.443626.10000 0004 1798 4069Non-Coding RNA Research Center of Wannan Medical College, Wuhu, 241001 China ,grid.452929.10000 0004 8513 0241Department of Blood Transfusion of Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001 Anhui China
| | - Xueqin Li
- grid.452929.10000 0004 8513 0241Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), 2 Zheshan Western Road, Wuhu, 241001 People’s Republic of China ,grid.443626.10000 0004 1798 4069Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, 241001 People’s Republic of China ,grid.443626.10000 0004 1798 4069Non-Coding RNA Research Center of Wannan Medical College, Wuhu, 241001 China
| | - Weiya Pei
- grid.452929.10000 0004 8513 0241Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), 2 Zheshan Western Road, Wuhu, 241001 People’s Republic of China ,grid.443626.10000 0004 1798 4069Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, 241001 People’s Republic of China ,grid.443626.10000 0004 1798 4069Non-Coding RNA Research Center of Wannan Medical College, Wuhu, 241001 China ,Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu, 241001 China
| | - Hui Yang
- grid.452929.10000 0004 8513 0241Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), 2 Zheshan Western Road, Wuhu, 241001 People’s Republic of China ,grid.443626.10000 0004 1798 4069Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, 241001 People’s Republic of China ,grid.443626.10000 0004 1798 4069Non-Coding RNA Research Center of Wannan Medical College, Wuhu, 241001 China
| | - Min Zhong
- grid.452929.10000 0004 8513 0241Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), 2 Zheshan Western Road, Wuhu, 241001 People’s Republic of China ,grid.443626.10000 0004 1798 4069Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, 241001 People’s Republic of China ,grid.443626.10000 0004 1798 4069Non-Coding RNA Research Center of Wannan Medical College, Wuhu, 241001 China
| | - Mengying Zhang
- grid.452929.10000 0004 8513 0241Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), 2 Zheshan Western Road, Wuhu, 241001 People’s Republic of China ,grid.443626.10000 0004 1798 4069Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, 241001 People’s Republic of China ,grid.443626.10000 0004 1798 4069Non-Coding RNA Research Center of Wannan Medical College, Wuhu, 241001 China
| | - Kun Lv
- grid.452929.10000 0004 8513 0241Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), 2 Zheshan Western Road, Wuhu, 241001 People’s Republic of China ,grid.443626.10000 0004 1798 4069Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, 241001 People’s Republic of China ,grid.443626.10000 0004 1798 4069Non-Coding RNA Research Center of Wannan Medical College, Wuhu, 241001 China ,Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wuhu, 241001 China
| | - Yingying Zhang
- grid.452929.10000 0004 8513 0241Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), 2 Zheshan Western Road, Wuhu, 241001 People’s Republic of China ,grid.443626.10000 0004 1798 4069Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes (Wannan Medical College), Wuhu, 241001 People’s Republic of China ,grid.443626.10000 0004 1798 4069Department of Laboratory Medicine (Wannan Medical College), Wuhu, 241001 China
| |
Collapse
|
22
|
Chakraborty B, Byemerwa J, Krebs T, Lim F, Chang CY, McDonnell DP. Estrogen Receptor Signaling in the Immune System. Endocr Rev 2023; 44:117-141. [PMID: 35709009 DOI: 10.1210/endrev/bnac017] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 01/14/2023]
Abstract
The immune system functions in a sexually dimorphic manner, with females exhibiting more robust immune responses than males. However, how female sex hormones affect immune function in normal homeostasis and in autoimmunity is poorly understood. In this review, we discuss how estrogens affect innate and adaptive immune cell activity and how dysregulation of estrogen signaling underlies the pathobiology of some autoimmune diseases and cancers. The potential roles of the major circulating estrogens, and each of the 3 estrogen receptors (ERα, ERβ, and G-protein coupled receptor) in the regulation of the activity of different immune cells are considered. This provides the framework for a discussion of the impact of ER modulators (aromatase inhibitors, selective estrogen receptor modulators, and selective estrogen receptor downregulators) on immunity. Synthesis of this information is timely given the considerable interest of late in defining the mechanistic basis of sex-biased responses/outcomes in patients with different cancers treated with immune checkpoint blockade. It will also be instructive with respect to the further development of ER modulators that modulate immunity in a therapeutically useful manner.
Collapse
Affiliation(s)
- Binita Chakraborty
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jovita Byemerwa
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Taylor Krebs
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.,Known Medicine, Salt Lake City, UT 84108, USA
| | - Felicia Lim
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
23
|
Mitra S, Dash R, Sohel M, Chowdhury A, Munni YA, Ali C, Hannan MA, Islam T, Moon IS. Targeting Estrogen Signaling in the Radiation-induced Neurodegeneration: A Possible Role of Phytoestrogens. Curr Neuropharmacol 2023; 21:353-379. [PMID: 35272592 PMCID: PMC10190149 DOI: 10.2174/1570159x20666220310115004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022] Open
Abstract
Radiation for medical use is a well-established therapeutic method with an excellent prognosis rate for various cancer treatments. Unfortunately, a high dose of radiation therapy comes with its own share of side effects, causing radiation-induced non-specific cellular toxicity; consequently, a large percentage of treated patients suffer from chronic effects during the treatment and even after the post-treatment. Accumulating data evidenced that radiation exposure to the brain can alter the diverse cognitive-related signaling and cause progressive neurodegeneration in patients because of elevated oxidative stress, neuroinflammation, and loss of neurogenesis. Epidemiological studies suggested the beneficial effect of hormonal therapy using estrogen in slowing down the progression of various neuropathologies. Despite its primary function as a sex hormone, estrogen is also renowned for its neuroprotective activity and could manage radiation-induced side effects as it regulates many hallmarks of neurodegenerations. Thus, treatment with estrogen and estrogen-like molecules or modulators, including phytoestrogens, might be a potential approach capable of neuroprotection in radiation-induced brain degeneration. This review summarized the molecular mechanisms of radiation effects and estrogen signaling in the manifestation of neurodegeneration and highlighted the current evidence on the phytoestrogen mediated protective effect against radiationinduced brain injury. This existing knowledge points towards a new area to expand to identify the possible alternative therapy that can be taken with radiation therapy as adjuvants to improve patients' quality of life with compromised cognitive function.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Md. Sohel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Apusi Chowdhury
- Department of Pharmaceutical Science, North-South University, Dhaka-12 29, Bangladesh
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Chayan Ali
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE-751 08, Sweden
| | - Md. Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| |
Collapse
|
24
|
Niu P, Li L, Zhang Y, Su Z, Wang B, Liu H, Zhang S, Qiu S, Li Y. Immune regulation based on sex differences in ischemic stroke pathology. Front Immunol 2023; 14:1087815. [PMID: 36793730 PMCID: PMC9923235 DOI: 10.3389/fimmu.2023.1087815] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/02/2023] [Indexed: 01/31/2023] Open
Abstract
Ischemic stroke is one of the world's leading causes of death and disability. It has been established that gender differences in stroke outcomes prevail, and the immune response after stroke is an important factor affecting patient outcomes. However, gender disparities lead to different immune metabolic tendencies closely related to immune regulation after stroke. The present review provides a comprehensive overview of the role and mechanism of immune regulation based on sex differences in ischemic stroke pathology.
Collapse
Affiliation(s)
- Pingping Niu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Liqin Li
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Yonggang Zhang
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Zhongzhou Su
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Binghao Wang
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - He Liu
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Shehong Zhang
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Sheng Qiu
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| | - Yuntao Li
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.,Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuro Modulation, Huzhou, China
| |
Collapse
|
25
|
Han Y, Gu S, Li Y, Qian X, Wang F, Huang JH. Neuroendocrine pathogenesis of perimenopausal depression. Front Psychiatry 2023; 14:1162501. [PMID: 37065890 PMCID: PMC10098367 DOI: 10.3389/fpsyt.2023.1162501] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
With the development of social economics and the increase of working pressure, more and more women are suffering from long-term serious stress and showing symptoms of perimenopausal depression (PMD). The incidence rate of PMD is increasing, and the physical and mental health are seriously affected. However, due to the lack of accurate knowledge of pathophysiology, its diagnosis and treatment cannot be accurately executed. By consulting the relevant literature in recent years, this paper elaborates the neuroendocrine mechanism of perimenopausal depression from the aspects of epigenetic changes, monoamine neurotransmitter and receptor hypothesis, glial cell-induced neuroinflammation, estrogen receptor, interaction between HPA axis and HPG axis, and micro-organism-brain gut axis. The purpose is to probe into new ways of treatment of PMD by providing new knowledge about the neuroendocrine mechanism and treatment of PMD.
Collapse
Affiliation(s)
- Yuping Han
- Department of Psychology, Medical School, Jiangsu University, Zhenjiang, China
| | - Simeng Gu
- Department of Psychology, Medical School, Jiangsu University, Zhenjiang, China
- *Correspondence: Simeng Gu,
| | - Yumeng Li
- Department of Psychology, Medical School, Jiangsu University, Zhenjiang, China
| | - Xin Qian
- Department of Psychology, Medical School, Jiangsu University, Zhenjiang, China
| | - Fushun Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, Sichuan, China
| | - Jason H. Huang
- Department of Neurosurgery, Baylor Scott and White Health, Temple, TX, United States
- Department of Surgery, Texas A&M University, Temple, TX, United States
| |
Collapse
|
26
|
Jin Q, Li W, Yu W, Zeng M, Liu J, Xu P. Analysis and identification of potential type II helper T cell (Th2)-Related key genes and therapeutic agents for COVID-19. Comput Biol Med 2022; 150:106134. [PMID: 36201886 PMCID: PMC9528635 DOI: 10.1016/j.compbiomed.2022.106134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/30/2022] [Accepted: 09/18/2022] [Indexed: 11/19/2022]
Abstract
COVID-19 pandemic poses a severe threat to public health. However, so far, there are no effective drugs for COVID-19. Transcriptomic changes and key genes related to Th2 cells in COVID-19 have not been reported. These genes play an important role in host interactions with SARS-COV-2 and may be used as promising target. We analyzed five COVID-19-associated GEO datasets (GSE157103, GSE152641, GSE171110, GSE152418, and GSE179627) using the xCell algorithm and weighted gene co-expression network analysis (WGCNA). Results showed that 5 closely correlated modular genes to COVID-19 and Th2 cell enrichment levels, including purple, blue, pink, tan and turquoise, were intersected with differentially expressed genes (DEGs) and 648 shared genes were obtained. GO and KEGG pathway enrichment analyses revealed that they were enriched in cell proliferation, differentiation, and immune responses after virus infection. The most significantly enriched pathway involved the regulation of viral life cycle. Three key genes, namely CCNB1, BUB1, and UBE2C, may clarify the pathogenesis of COVID-19 associated with Th2 cells. 11 drug candidates were identified that could down-regulate three key genes using the cMAP database and demonstrated strong drugs binding energies aganist the three keygenes using molecular docking methods. BUB1, CCNB1 and UBE2C were identified key genes for COVID-19 and could be promising therapeutic targets.
Collapse
Affiliation(s)
- Qiying Jin
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Wanxi Li
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Wendi Yu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Maosen Zeng
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Jinyuan Liu
- Basic Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Peiping Xu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
27
|
Wang L, Xiong Y, Fu B, Guo D, Zaky MY, Lin X, Wu H. MicroRNAs as immune regulators and biomarkers in tuberculosis. Front Immunol 2022; 13:1027472. [PMID: 36389769 PMCID: PMC9647078 DOI: 10.3389/fimmu.2022.1027472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 07/26/2023] Open
Abstract
Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), is one of the most lethal infectious disease worldwide, and it greatly affects human health. Some diagnostic and therapeutic methods are available to effectively prevent and treat TB; however, only a few systematic studies have described the roles of microRNAs (miRNAs) in TB. Combining multiple clinical datasets and previous studies on Mtb and miRNAs, we state that pathogens can exploit interactions between miRNAs and other biomolecules to avoid host mechanisms of immune-mediated clearance and survive in host cells for a long time. During the interaction between Mtb and host cells, miRNA expression levels are altered, resulting in the changes in the miRNA-mediated regulation of host cell metabolism, inflammatory responses, apoptosis, and autophagy. In addition, differential miRNA expression can be used to distinguish healthy individuals, patients with TB, and patients with latent TB. This review summarizes the roles of miRNAs in immune regulation and their application as biomarkers in TB. These findings could provide new opportunities for the diagnosis and treatment of TB.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Yan Xiong
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Beibei Fu
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Dong Guo
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Mohamed Y. Zaky
- Department of Zoology, Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Xiaoyuan Lin
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Haibo Wu
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
28
|
Clarkson BDS, Grund E, David K, Johnson RK, Howe CL. ISGylation is induced in neurons by demyelination driving ISG15-dependent microglial activation. J Neuroinflammation 2022; 19:258. [PMID: 36261842 PMCID: PMC9583544 DOI: 10.1186/s12974-022-02618-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/07/2022] [Indexed: 11/22/2022] Open
Abstract
The causes of grey matter pathology and diffuse neuron injury in MS remain incompletely understood. Axonal stress signals arising from white matter lesions has been suggested to play a role in initiating this diffuse grey matter pathology. Therefore, to identify the most upstream transcriptional responses in neurons arising from demyelinated axons, we analyzed the transcriptome of actively translating neuronal transcripts in mouse models of demyelinating disease. Among the most upregulated genes, we identified transcripts associated with the ISGylation pathway. ISGylation refers to the covalent attachment of the ubiquitin-like molecule interferon stimulated gene (ISG) 15 to lysine residues on substrates targeted by E1 ISG15-activating enzyme, E2 ISG15-conjugating enzymes and E3 ISG15-protein ligases. We further confirmed that ISG15 expression is increased in MS cortical and deep gray matter. Upon investigating the functional impact of neuronal ISG15 upregulation, we noted that ISG15 expression was associated changes in neuronal extracellular vesicle protein and miRNA cargo. Specifically, extracellular vesicle-associated miRNAs were skewed toward increased frequency of proinflammatory and neurotoxic miRNAs and decreased frequency of anti-inflammatory and neuroprotective miRNAs. Furthermore, we found that ISG15 directly activated microglia in a CD11b-dependent manner and that microglial activation was potentiated by treatment with EVs from neurons expressing ISG15. Further study of the role of ISG15 and ISGylation in neurons in MS and neurodegenerative diseases is warranted.
Collapse
Affiliation(s)
- Benjamin D. S. Clarkson
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Guggenheim 1521C, 200 First Street SW, Rochester, MN 55905 USA
| | - Ethan Grund
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XMayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine and Mayo Clinic Medical Scientist Training Program, MN 55905 Rochester, USA
| | - Kenneth David
- grid.418935.20000 0004 0436 053XConcordia College, Moorhead, MN USA
| | - Renee K. Johnson
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Charles L. Howe
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XDivision of Experimental Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XCenter for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
29
|
Nascimento DDQ, da Silva IIFG, Lima CAD, Cavalcanti ADS, Roberti LR, Queiroz RGDP, Ferriani VPL, Crovella S, Carvalho LMD, Sandrin-Garcia P. Expression of the miR-9-5p, miR-125b-5p and its target gene NFKB1 and TRAF6 in childhood-onset systemic lupus erythematosus (cSLE). Autoimmunity 2022; 55:515-519. [PMID: 36177494 DOI: 10.1080/08916934.2022.2128781] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Childhood- onset systemic lupus erythematosus (cSLE) is a multisystem inflammatory disease that can lead to severe clinical conditions resulting in early comorbidities. Several genetic, environmental, and immunological factors are known to influence the onset of the disease. MiRNAs have been already considered as potential actors involved in the development and activity of the SLE. Thus, understanding the behavior of these regulators can contribute to clarify the inflammatory process affecting SLE patients. Among miRNAs, miR-125b-5p and miR-9-5p targeting NFKB1 and TRAF6 genes can be involved in the etio-pathogenesis of the disease by modulating inflammation. In this study we evaluated miR-9-5p and miR-125b-5p expression and its target genes NFKB1 and TRAF6 in peripheral blood samples (PBMC) from the 35 cSLE patients and 35 healthy controls. MiRNAs and gene target expression have been evaluated by using RT-PCR with specific TaqMan® probes. Both miR-9-5p [Fold Change (FC) = -2.21; p = 0.002] and miR-125b-5p (FC= -3.30; p < 0.0001) and NFKB1 (FC = -1.84; p < 0.001) were downregulated in cSLE patients, while TRAF6 was upregulated (FC = 1.80; p = 0.006) in cSLE patients when compared to controls. A significant correlation was found between miR-125b-5p and its target gene NFKB1 [Spearman (r) = 0.47; p = 0.023]. Our results showed miR-125b-5p and miR-9-5p differential expression in cSLE patients, possibly contributing to better understanding the role of these regulators in cSLE development and disease pathogenesis.
Collapse
Affiliation(s)
- Denise de Queiroga Nascimento
- Department of genetics, PostGraduate Program in Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil.,Laboratory of Immunopathology Keizo Asami, Recife, Pernambuco, Brazil
| | - Isaura Isabelle Fonseca Gomes da Silva
- Department of genetics, PostGraduate Program in Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil.,Laboratory of Immunopathology Keizo Asami, Recife, Pernambuco, Brazil
| | - Camilla Albertina Dantas Lima
- Laboratory of Immunopathology Keizo Asami, Recife, Pernambuco, Brazil.,Department of Oceanography, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - André de Souza Cavalcanti
- Division of Pediatric Rheumatology, Clinical Hospital of Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Luciana Rodrigues Roberti
- Division of Pediatric Rheumatology, Clinic Hospital of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rosane Gomes de Paula Queiroz
- Division of Pediatric Rheumatology, Clinic Hospital of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Virginia Paes Leme Ferriani
- Division of Pediatric Rheumatology, Clinic Hospital of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sergio Crovella
- Department of Biological and Environmental Sciences, Biological Sciences Program, College of Arts and Sciences, Qatar University, Doha, State of Qatar
| | - Luciana Martins de Carvalho
- Division of Pediatric Rheumatology, Clinic Hospital of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Paula Sandrin-Garcia
- Department of genetics, PostGraduate Program in Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil.,Laboratory of Immunopathology Keizo Asami, Recife, Pernambuco, Brazil
| |
Collapse
|
30
|
Micro-Players of Great Significance-Host microRNA Signature in Viral Infections in Humans and Animals. Int J Mol Sci 2022; 23:ijms231810536. [PMID: 36142450 PMCID: PMC9504570 DOI: 10.3390/ijms231810536] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Over time, more and more is becoming known about micro-players of great significance. This is particularly the case for microRNAs (miRNAs; miR), which have been found to participate in the regulation of many physiological and pathological processes in both humans and animals. One such process is viral infection in humans and animals, in which the host miRNAs—alone or in conjunction with the virus—interact on two levels: viruses may regulate the host’s miRNAs to evade its immune system, while the host miRNAs can play anti- or pro-viral roles. The purpose of this comprehensive review is to present the key miRNAs involved in viral infections in humans and animals. We summarize the data in the available literature, indicating that the signature miRNAs in human viral infections mainly include 12 miRNAs (i.e., miR-155, miR-223, miR-146a, miR-122, miR-125b, miR-132, miR-34a, miR -21, miR-16, miR-181 family, let-7 family, and miR-10a), while 10 miRNAs are commonly found in animals (i.e., miR-155, miR-223, miR-146a, miR-145, miR-21, miR-15a/miR-16 cluster, miR-181 family, let-7 family, and miR-122) in this context. Knowledge of which miRNAs are involved in different viral infections and the biological functions that they play can help in understanding the pathogenesis of viral diseases, facilitating the future development of therapeutic agents for both humans and animals.
Collapse
|
31
|
Bai C, Yang H, Zhao L, Liu L, Guo W, Yu J, Li M, Liu M, Lai X, Zhang X, Zhu R, Yang L. The mediating role of plasma microRNAs in the association of phthalates exposure with arterial stiffness: A panel study. ENVIRONMENTAL RESEARCH 2022; 212:113469. [PMID: 35588772 DOI: 10.1016/j.envres.2022.113469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Phthalates exposure has been reported to be linked with arterial stiffness. However, the biological mechanisms underlying this association remain unclear. We conducted a panel study using 338 paired urine-blood samples by repeated measurements of 123 adults across 3 seasons to assess the potential mediating role of plasma microRNAs (miRNAs) in the association of phthalates exposure with arterial stiffness. We measured 10 urinary phthalate metabolites by gas chromatography-tandem mass spectrometry (GC-MS/MS) and 5 candidate arterial stiffness-related miRNAs (miR-146a, miR-222, miR-125b, miR-126, and miR-21) in plasma by real-time PCR. Arterial stiffness parameters including brachial-ankle pulse wave velocity (baPWV) and ankle-brachial index (ABI) were determined in health examinations during each visit. Linear mixed-effect (LME) models revealed that mono-methyl phthalate (MMP), mono-iso-butyl phthalate (MiBP), mono-n-butyl phthalate (MBP), mono-n-octyl phthalate (MOP), and mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP) were significantly associated with one or more of the 5 plasma miRNAs (all PFDR < 0.05). Based on weighted quantile sum (WQS) regression, we found positive associations of phthalate metabolites mixture with miR-146a, miR-125b, and miR-222, and individual MMP and MBP were the major contributors. Additionally, miR-146a was inversely related to ABI. Mediation analysis further indicated that miR-146a mediated 31.6% and 21.3% of the relationships of MMP and MiBP with ABI, respectively. Our findings suggested that certain phthalates exposure was related to plasma miRNAs alterations in a dose-response manner and miR-146a might partly mediate phthalate-associated ABI reduction.
Collapse
Affiliation(s)
- Conghua Bai
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huihua Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Zhao
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linlin Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Yu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Miao Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Zhu
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Liangle Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
32
|
MicroRNAs in non-alcoholic fatty liver disease: Progress and perspectives. Mol Metab 2022; 65:101581. [PMID: 36028120 PMCID: PMC9464960 DOI: 10.1016/j.molmet.2022.101581] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a spectrum of disease ranging from simple hepatic steatosis (NAFL) to non-alcoholic steatohepatitis (NASH) which may progress to cirrhosis and liver cancer. NAFLD is rapidly becoming a global health challenge, and there is a need for improved diagnostic- and prognostic tools and for effective pharmacotherapies to treat NASH. The molecular mechanisms of NAFLD development and progression remain incompletely understood, though ample evidence supports a role of microRNAs (miRNAs) - small non-coding RNAs regulating gene expression - in the progression of metabolic liver disease. SCOPE OF REVIEW In this review, we summarise the currently available liver miRNA profiling studies in people with various stages of NAFLD. We further describe the mechanistic role of three of the most extensively studied miRNA species, miR-34a, miR-122 and miR-21, and highlight selected findings on novel NAFLD-linked miRNAs. We also examine the literature on exosomal microRNAs (exomiRs) as inter-hepatocellular or -organ messengers in NAFLD. Furthermore, we address the status for utilizing circulating NAFLD-associated miRNAs as minimally invasive tools for disease diagnosis, staging and prognosis as well as their potential use as NASH pharmacotherapeutic targets. Finally, we reflect on future directions for research in the miRNA field. MAJOR CONCLUSIONS NAFLD is associated with changes in hepatic miRNA expression patterns at early, intermediate and late stages, and specific miRNA species appear to be involved in steatosis development and NAFL progression to NASH and cirrhosis. These miRNAs act either within or between hepatocytes and other liver cell types such as hepatic stellate cells and Kupffer cells or as circulating inter-organ messengers carrying signals between the liver and extra-hepatic metabolic tissues, including the adipose tissues and the cardiovascular system. Among circulating miRNAs linked to NAFLD, miR-34a, miR-122 and miR-192 are the best candidates as biomarkers for NAFLD diagnosis and staging. To date, no miRNA-targeting pharmacotherapy has been approved for the treatment of NASH, and no such therapy is currently under clinical development. Further research should be conducted to translate the contribution of miRNAs in NAFLD into innovative therapeutic strategies.
Collapse
|
33
|
Averyanova M, Vishnyakova P, Yureneva S, Yakushevskaya O, Fatkhudinov T, Elchaninov A, Sukhikh G. Sex hormones and immune system: Menopausal hormone therapy in the context of COVID-19 pandemic. Front Immunol 2022; 13:928171. [PMID: 35983046 PMCID: PMC9379861 DOI: 10.3389/fimmu.2022.928171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
The fatal outcomes of COVID-19 are related to the high reactivity of the innate wing of immunity. Estrogens could exert anti-inflammatory effects during SARS-CoV-2 infection at different stages: from increasing the antiviral resistance of individual cells to counteracting the pro-inflammatory cytokine production. A complex relationship between sex hormones and immune system implies that menopausal hormone therapy (MHT) has pleiotropic effects on immunity in peri- and postmenopausal patients. The definite immunological benefits of perimenopausal MHT confirm the important role of estrogens in regulation of immune functionalities. In this review, we attempt to explore how sex hormones and MHT affect immunological parameters of the organism at different level (in vitro, in vivo) and what mechanisms are involved in their protective response to the new coronavirus infection. The correlation of sex steroid levels with severity and lethality of the disease indicates the potential of using hormone therapy to modulate the immune response and increase the resilience to adverse outcomes. The overall success of MHT is based on decades of experience in clinical trials. According to the current standards, MHT should not be discontinued in COVID-19 with the exception of critical cases.
Collapse
Affiliation(s)
- Marina Averyanova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Peoples’ Friendship University of Russia, Medical Institute, Moscow, Russia
- *Correspondence: Polina Vishnyakova,
| | - Svetlana Yureneva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Oksana Yakushevskaya
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Timur Fatkhudinov
- Peoples’ Friendship University of Russia, Medical Institute, Moscow, Russia
- A. P. Avtsyn Research Institute of Human Morphology, Laboratory of Growth and Development, Moscow, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
34
|
Tang G, Yu C, Xiang K, Gao M, Liu Z, Yang B, Yang M, Zhao S. Inhibition of ANXA2 regulated by SRF attenuates the development of severe acute pancreatitis by inhibiting the NF-κB signaling pathway. Inflamm Res 2022; 71:1067-1078. [PMID: 35900381 DOI: 10.1007/s00011-022-01609-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is an inflammatory process of the pancreas resulting from biliary obstruction or alcohol consumption. Approximately, 10-20% of AP can evolve into severe AP (SAP). In this study, we sought to explore the physiological roles of the transcription factor serum response factor (SRF), annexin A2 (ANXA2), and nuclear factor-kappaB (NF-κB) in SAP. METHODS C57BL/6 mice and rat pancreatic acinar cells (AR42J) were used to establish an AP model in vivo and in vitro by cerulein with or without lipopolysaccharide (LPS). Production of pro-inflammatory cytokines (IL-1β and TNF-α) were examined by ELISA and immunoblotting analysis. Hematoxylin and eosin (HE) staining and TUNEL staining were performed to evaluate pathological changes in the course of AP. Apoptosis was examined by flow cytometric and immunoblotting analysis. Molecular interactions were tested by dual luciferase reporter, ChIP, and Co-IP assays. RESULTS ANXA2 was overexpressed in AP and correlated to the severity of AP. ANXA2 knockdown rescued pancreatic acinar cells against inflammation and apoptosis induced by cerulein with or without LPS. Mechanistic investigations revealed that SRF bound with the ANXA2 promoter region and repressed its expression. ANXA2 could activate the NF-κB signaling pathway by inducing the nuclear translocation of p50. SRF-mediated transcriptional repression of ANXA2-protected pancreatic acinar cells against AP-like injury through repressing the NF-κB signaling pathway. CONCLUSION Our study highlighted a regulatory network consisting of SRF, ANXA2, and NF-κB that was involved in AP progression, possibly providing some novel targets for treating SAP.
Collapse
Affiliation(s)
- Guanxiu Tang
- The Department of Gerontology, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Can Yu
- The Department of Intensive Care Unit (ICU), The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Kaimin Xiang
- The Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Min Gao
- The Department of Intensive Care Unit (ICU), The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Zuoliang Liu
- The Department of Intensive Care Unit (ICU), The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Bingchang Yang
- The Department of Intensive Care Unit (ICU), The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Mingshi Yang
- The Department of Intensive Care Unit (ICU), The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Shangping Zhao
- The Department of Intensive Care Unit (ICU), The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China.
| |
Collapse
|
35
|
Mori K, Mizokami A, Sano T, Mukai S, Hiura F, Ayukawa Y, Koyano K, Kanematsu T, Jimi E. RANKL elevation activates the NIK/NF-κB pathway, inducing obesity in ovariectomized mice. J Endocrinol 2022; 254:27-36. [PMID: 35638559 DOI: 10.1530/joe-21-0424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 11/08/2022]
Abstract
Menopausal women are susceptible to visceral obesity, which increases the risk of metabolic disorders. However, the mechanisms of menopause-induced visceral fat accumulation are not fully understood. Circulating levels of receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL) are elevated in an animal model of menopause. RANKL, a multifunctional cytokine, activates the NF-κB pathway, which serves as a pivotal mediator of inflammatory responses. Here, we investigated whether RANKL-induced non-canonical NF-κB pathway activation induces inflammation and lipid accumulation in adipose tissues. RANKL induced Tnfa expression via the non-canonical NF-κB pathway in bone marrow cells. We therefore analyzed aly/aly mice, in which the non-canonical NF-κB pathway is not activated, owing to an inactive form of NF-κB-inducing kinase. A postmenopausal obesity model was generated by ovariectomy and subsequent high-fat and high-sucrose diet feeding. In aly/aly mice with postmenopausal obesity, serum RANKL levels were elevated, and hepatic lipid accumulation and adipocyte hypertrophy were suppressed, resulting in reduced macrophage infiltration and inflammatory cytokine mRNA expression in visceral adipose tissue. Furthermore, aly/aly mice showed protection from glucose intolerance and insulin resistance, which were observed in ovariectomized WT obese mice. These findings indicate that non-canonical NF-κB pathway activation via serum RANKL elevation contributes to postmenopausal obesity.
Collapse
Affiliation(s)
- Kayo Mori
- K Mori, Laboratory of Molecular and Cellular Biochemistry, Kyushu University, Fukuoka, Japan
| | - Akiko Mizokami
- A Mizokami, Oral Health/Brain Health/Total Health Research Center, Kyushu University, Fukuoka, Japan
| | - Tomomi Sano
- T Sano, Department of Cell Biology, Aging Science, and Pharmacology, Kyushu University, Fukuoka, Japan
| | - Satoru Mukai
- S Mukai, Department of Health and Nutrition Care, University of East Asia, Shimonoseki, Japan
| | - Fumitaka Hiura
- F Hiura, Laboratory of Molecular and Cellular Biochemistry, Kyushu University, Fukuoka, Japan
| | - Yasunori Ayukawa
- Y Ayukawa, Section of Implant and Rehabilitative Dentistr, Kyushu University, Fukuoka, Japan
| | - Kiyoshi Koyano
- K Koyano, Division of Advanced Dental Devices and Therapeutics, Kyushu University, Fukuoka, Japan
| | - Takashi Kanematsu
- T Kanematsu, Department of Cell Biology, Aging Science, and Pharmacology, Kyushu University, Fukuoka, 819-0395, Japan
| | - Eijiro Jimi
- E Jimi, Oral Health/Brain Health/Total Health Research Center, Kyushu University, Fukuoka, Japan
| |
Collapse
|
36
|
Changes in IL-16 Expression in the Ovary during Aging and Its Potential Consequences to Ovarian Pathology. J Immunol Res 2022; 2022:2870389. [PMID: 35497879 PMCID: PMC9053759 DOI: 10.1155/2022/2870389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/07/2022] [Accepted: 04/04/2022] [Indexed: 02/08/2023] Open
Abstract
Aging in females is not only associated with the changes in hormonal status but is also responsible for dysregulation of immune functions in various organs including ovaries. The goal of this study was to determine whether the expression of interleukin 16 (IL-16), a proinflammatory and chemoattractant cytokine, changes during ovarian aging, to determine factors involved in such changes in IL-16 expression, and to examine if changes in IL-16 expression during aging predisposes the ovary to pathologies. Ovarian tissues from premenopausal women (30-50 years old), women at early menopause (55-59 years old), and late menopause (60-85 years old) were used. In addition, tumor tissues from patients with ovarian high-grade serous carcinoma at early stage (n = 5) were also used as reference tissue for comparing the expression of several selected markers in aging ovaries. The expression of IL-16, frequency of macrophages (a source of IL-16) and expression of microRNA (miR) 125a-5p (a regulator of IL-16 gene) were performed by immunohistochemistry, immunoblotting, and gene expression assays. In addition, we examined changes in nuclear expression of IL-16 expression with regards to exposure to follicle-stimulating hormone (FSH) by in vitro cell culture assays with human ovarian cancer cells. The frequencies of IL-16 expressing cells were significantly higher in ovarian stroma in women at early and late menopause as compared with premenopausal women (P < 0.0001). Similar patterns were also observed for macrophages. Expression of miR-125a-5p decreased significantly (P < 0.001) with the increase in IL-16 expression during aging. Furthermore, expression of nuclear IL-16 increased remarkably upon exposure to FSH. Consequently, ovarian aging is associated with increased expression of IL-16 including its nuclear fraction. Therefore, persistent high levels of FSH in postmenopausal women may be a factor for enhanced expression of IL-16. Effects of increased nuclear fraction of IL-16 need to be examined.
Collapse
|
37
|
Target-Dependent Coordinated Biogenesis of Secondary MicroRNAs by miR-146a Balances Macrophage Activation Processes. Mol Cell Biol 2022; 42:e0045221. [PMID: 35311564 PMCID: PMC9022539 DOI: 10.1128/mcb.00452-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
MicroRNAs (miRNAs) repress protein expression by binding to the target mRNAs. Exploring whether the expression of one miRNA can regulate the abundance and activity of other miRNAs, we noted the coordinated biogenesis of miRNAs in activated macrophages. miRNAs with higher numbers of binding sites (the “primary” miRNAs) induce expression of other miRNAs (“secondary” miRNAs) having binding sites on the 3′ untranslated region (UTR) of common target mRNAs. miR-146a-5p, in activated macrophages, acts as a “primary” miRNA that coordinates biogenesis of “secondary” miR-125b, miR-21, or miR-142-3p to target new sets of mRNAs to balance the immune responses. During coordinated biogenesis, primary miRNA drives the biogenesis of secondary miRNA in a target mRNA- and Dicer1 activity-dependent manner. The coordinated biogenesis of miRNAs was observed across different cell types. The target-dependent coordinated miRNA biogenesis also ensures a cumulative mode of action of primary and secondary miRNAs on the secondary target mRNAs. Interestingly, using the “primary” miR-146a-5p-specific inhibitor, we could inhibit the target-dependent biogenesis of secondary miRNAs that can stop the miRNA-mediated buffering of cytokine expression and inflammatory response occurring in activated macrophages. Computational analysis suggests the prevalence of coordinated biogenesis of miRNAs also in other contexts in human and in mouse.
Collapse
|
38
|
Bowdridge EC, DeVallance E, Garner KL, Griffith JA, Schafner K, Seaman M, Engels KJ, Wix K, Batchelor TP, Goldsmith WT, Hussain S, Nurkiewicz TR. Nano-titanium dioxide inhalation exposure during gestation drives redox dysregulation and vascular dysfunction across generations. Part Fibre Toxicol 2022; 19:18. [PMID: 35260159 PMCID: PMC8905816 DOI: 10.1186/s12989-022-00457-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Pregnancy is associated with many rapid biological adaptations that support healthy development of the growing fetus. One of which is critical to fetal health and development is the coordination between maternal liver derived substrates and vascular delivery. This crucial adaptation can be potentially derailed by inhalation of toxicants. Engineered nanomaterials (ENM) are commonly used in household and industrial products as well as in medicinal applications. As such, the potential risk of exposure remains a concern, especially during pregnancy. We have previously reported that ENM inhalation leads to upregulation in the production of oxidative species. Therefore, we aimed to determine if F0 dam maternal nano-TiO2 inhalation exposure (exclusively) resulted in altered H2O2 production capacity and changes in downstream redox pathways in the F0 dams and subsequent F1 pups. Additionally, we investigated whether this persisted into adulthood within the F1 generation and how this impacted F1 gestational outcomes and F2 fetal health and development. We hypothesized that maternal nano-TiO2 inhalation exposure during gestation in the F0 dams would result in upregulated H2O2 production in the F0 dams as well as her F1 offspring. Additionally, this toxicological insult would result in gestational vascular dysfunction in the F1 dams yielding smaller F2 generation pups. RESULTS Our results indicate upregulation of hepatic H2O2 production capacity in F0 dams, F1 offspring at 8 weeks and F1 females at gestational day 20. H2O2 production capacity was accompanied by a twofold increase in phosphorylation of the redox sensitive transcription factor NF-κB. In cell culture, naïve hepatocytes exposed to F1-nano-TiO2 plasma increased H2O2 production. Overnight exposure of these hepatocytes to F1 plasma increased H2O2 production capacity in a partially NF-κB dependent manner. Pregnant F1- nano-TiO2 females exhibited estrogen disruption (12.12 ± 3.1 pg/ml vs. 29.81 ± 8.8 pg/ml sham-control) and vascular dysfunction similar to their directly exposed mothers. F1-nano-TiO2 uterine artery H2O2 production capacity was also elevated twofold. Dysfunctional gestational outcomes in the F1-nano-TiO2 dams resulted in smaller F1 (10.22 ± 0.6 pups vs. sham-controls 12.71 ± 0.96 pups) and F2 pups (4.93 ± 0.47 g vs. 5.78 ± 0.09 g sham-control pups), and fewer F1 male pups (4.38 ± 0.3 pups vs. 6.83 ± 0.84 sham-control pups). CONCLUSION In conclusion, this manuscript provides critical evidence of redox dysregulation across generations following maternal ENM inhalation. Furthermore, dysfunctional gestational outcomes are observed in the F1-nano-TiO2 generation and impact the development of F2 offspring. In total, this data provides strong initial evidence that maternal ENM exposure has robust biological impacts that persists in at least two generations.
Collapse
Affiliation(s)
- Elizabeth C. Bowdridge
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Evan DeVallance
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Krista L. Garner
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Julie A. Griffith
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Kallie Schafner
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Madison Seaman
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA
| | - Kevin J. Engels
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA
| | - Kimberley Wix
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA
| | - Thomas P. Batchelor
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - William T. Goldsmith
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Salik Hussain
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Timothy R. Nurkiewicz
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| |
Collapse
|
39
|
Rani A, Barter J, Kumar A, Stortz JA, Hollen M, Nacionales D, Moldawer LL, Efron PA, Foster TC. Influence of age and sex on microRNA response and recovery in the hippocampus following sepsis. Aging (Albany NY) 2022; 14:728-746. [PMID: 35094981 PMCID: PMC8833110 DOI: 10.18632/aging.203868] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
Abstract
Sepsis, defined as a dysregulated host immune response to infection, is a common and dangerous clinical syndrome. The excessive host inflammatory response can induce immediate and persistent cognitive decline, which can be worse in older individuals. Sex-specific differences in the outcome of infectious diseases and sepsis appear to favor females. We employed a murine model to examine the influence of age and sex on the brain's microRNA (miR) response following sepsis. Young and old mice of both sexes underwent cecal ligation and puncture (CLP) with daily restraint stress. Expression of hippocampal miR was examined in age- and sex-matched controls at 1 and 4 days post-CLP. Few miR were modified in a similar manner across age or sex and these few miR were generally associated with neuroprotection against inflammation. Similar to previous work examining transcription, young females exhibited a better recovery of the miR profile from day 1 to day 4, relative to young males and old females. For young males and all female groups, the initial response mainly involved a decrease in miR expression. In contrast, old males exhibited only upregulated miR on day 1 and day 4 and many of the miR upregulated on day 1 and day 4 were linked to neurodegeneration, increased neuroinflammation, and cognitive impairment. The results emphasize age and sex differences in epigenetic mechanisms that likely contribute to susceptibility or resilience to cognitive impairment due to sepsis.
Collapse
Affiliation(s)
- Asha Rani
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Jolie Barter
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Julie A Stortz
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - McKenzie Hollen
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Dina Nacionales
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Lyle L Moldawer
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Philip A Efron
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.,Genetics and Genomics Program, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
40
|
Ramírez-de-Arellano A, Gutiérrez-Franco J, Sierra-Diaz E, Pereira-Suárez AL. The role of estradiol in the immune response against COVID-19. Hormones (Athens) 2021; 20:657-667. [PMID: 34142358 PMCID: PMC8210971 DOI: 10.1007/s42000-021-00300-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the pathogen agent causing coronavirus disease (COVID)-19, which was declared a global pandemic in 2020. The spike protein of this virus and the angiotensin-converter enzyme (ACE)-2 in host cells in humans play a vital role in infection and in COVID-19 pathogenesis. Estradiol is known to modulate the actions of immune cells, and, therefore, the antiviral mechanisms of these cells could also be modified by this hormone stimulus. Even though estradiol is not considered a protective factor, evidence shows that women with high levels of this hormone have a lower risk of developing severe symptoms and an even a lower incidence of death. Understanding the mechanism of action of estradiol with regard to viral infections and COVID-19 is essential for the improvement of therapeutic strategies. This review aims to describe the effects that estradiol exerts on immune cells during viral infections and COVID-19.
Collapse
Affiliation(s)
- Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44 340, México
| | - Jorge Gutiérrez-Franco
- Unidad Académica de Ciencias Químico Biológicas Y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Nayarit, 63 000, México
| | - Erick Sierra-Diaz
- Departamento de Salud Pública, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, División de Epidemiología, Unidad Medica de Alta Especialidad, Hospital de Especialidades, Centro Médico Nacional de Occidente, Guadalajara, Jalisco, 44340, México
| | - Ana Laura Pereira-Suárez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44 340, México.
- Departamento de Microbiología Y Patología, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP, 44340, Guadalajara, Jalisco, México.
| |
Collapse
|
41
|
Chen D, Yang X, Liu M, Zhang Z, Xing E. Roles of miRNA dysregulation in the pathogenesis of multiple myeloma. Cancer Gene Ther 2021; 28:1256-1268. [PMID: 33402729 PMCID: PMC8636266 DOI: 10.1038/s41417-020-00291-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Multiple myeloma (MM) is a malignant disease of plasma cells with complex pathology, causing significant morbidity due to its end-organ destruction. The outcomes of patients with myeloma have significantly improved in the past couple of decades with the introduction of novel agents, such as proteasome inhibitors, immunomodulators, and monoclonal antibodies. However, MM remains incurable and presents considerable individual heterogeneity. MicroRNAs (miRNAs) are short, endogenous noncoding RNAs of 19-22 nucleotides that regulate gene expression at the posttranscriptional level. Numerous studies have shown that miRNA deregulation is closely related to MM pathology, including tumor initiation, progression, metastasis, prognosis, and drug response, which make the complicated miRNA network an attractive and marvelous area of investigation for novel anti-MM therapeutic approaches. Herein, we mainly summarized the current knowledge on the roles of miRNAs, which are of great significance in regulating pathological factors involved in MM progressions, such as bone marrow microenvironment, methylation, immune regulation, genomic instability, and drug resistance. Meanwhile, their potential as novel prognostic biomarkers and therapeutic targets was also discussed.
Collapse
Affiliation(s)
- Dan Chen
- Department of Central Laboratory, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Xinhong Yang
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Min Liu
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China
| | - Zhihua Zhang
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China.
| | - Enhong Xing
- Department of Central Laboratory, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei, China.
| |
Collapse
|
42
|
Januário AP, Félix R, Félix C, Reboleira J, Valentão P, Lemos MFL. Red Seaweed-Derived Compounds as a Potential New Approach for Acne Vulgaris Care. Pharmaceutics 2021; 13:pharmaceutics13111930. [PMID: 34834345 PMCID: PMC8623078 DOI: 10.3390/pharmaceutics13111930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Acne vulgaris (AV) is a chronic skin disease of the pilosebaceous unit affecting both adolescents and adults. Its pathophysiology includes processes of inflammation, increased keratinization, sebum production, hormonal dysregulation, and bacterial Cutibacterium acnes proliferation. Common AV has been treated with antibiotics since the 1960s, but strain resistance has emerged and is of paramount concern. Macroalgae are known producers of substances with bioactive properties, including anti-viral, antibacterial, antioxidant, and anti-inflammatory properties, among several others. In particular, red algae are rich in bioactive compounds such as polysaccharides, phenolic compounds, lipids, sterols, alkaloids, and terpenoids, conferring them antioxidant, antimicrobial, and anti-inflammatory activities, among others. Thus, the exploration of compounds from marine resources can be an appealing approach to discover new treatment options against AV. The aim of this work is to provide an overview of the current knowledge of the potentialities of red macroalgae in the treatment of AV by reviewing the main therapeutic targets of this disease, and then the existence of compounds or extracts with bioactive properties against them.
Collapse
Affiliation(s)
- Adriana P. Januário
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
- Correspondence: (A.P.J.); (M.F.L.L.)
| | - Rafael Félix
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Carina Félix
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
| | - João Reboleira
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Marco F. L. Lemos
- MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal; (R.F.); (C.F.); (J.R.)
- Correspondence: (A.P.J.); (M.F.L.L.)
| |
Collapse
|
43
|
Immuno-regenerative biomaterials for in situ cardiovascular tissue engineering - Do patient characteristics warrant precision engineering? Adv Drug Deliv Rev 2021; 178:113960. [PMID: 34481036 DOI: 10.1016/j.addr.2021.113960] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023]
Abstract
In situ tissue engineering using bioresorbable material implants - or scaffolds - that harness the patient's immune response while guiding neotissue formation at the site of implantation is emerging as a novel therapy to regenerate human tissues. For the cardiovascular system, the use of such implants, like blood vessels and heart valves, is gradually entering the stage of clinical translation. This opens up the question if and to what extent patient characteristics influence tissue outcomes, necessitating the precision engineering of scaffolds to guide patient-specific neo-tissue formation. Because of the current scarcity of human in vivo data, herein we review and evaluate in vitro and preclinical investigations to predict the potential role of patient-specific parameters like sex, age, ethnicity, hemodynamics, and a multifactorial disease profile, with special emphasis on their contribution to the inflammation-driven processes of in situ tissue engineering. We conclude that patient-specific conditions have a strong impact on key aspects of in situ cardiovascular tissue engineering, including inflammation, hemodynamic conditions, scaffold resorption, and tissue remodeling capacity, suggesting that a tailored approach may be required to engineer immuno-regenerative biomaterials for safe and predictive clinical applicability.
Collapse
|
44
|
Gevezova M, Sarafian V, Anderson G, Maes M. Inflammation and Mitochondrial Dysfunction in Autism Spectrum Disorder. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:320-333. [PMID: 32600237 DOI: 10.2174/1871527319666200628015039] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/30/2020] [Accepted: 05/01/2020] [Indexed: 12/11/2022]
Abstract
Autism Spectrum Disorders (ASD) is a severe childhood psychiatric condition with an array of cognitive, language and social impairments that can significantly impact family life. ASD is classically characterized by reduced communication skills and social interactions, with limitations imposed by repetitive patterns of behavior, interests, and activities. The pathophysiology of ASD is thought to arise from complex interactions between environmental and genetic factors within the context of individual development. A growing body of research has raised the possibility of identifying the aetiological causes of the disorder. This review highlights the roles of immune-inflammatory pathways, nitro-oxidative stress and mitochondrial dysfunctions in ASD pathogenesis and symptom severity. The role of NK-cells, T helper, T regulatory and B-cells, coupled with increased inflammatory cytokines, lowered levels of immune-regulatory cytokines, and increased autoantibodies and microglial activation is elucidated. It is proposed that alterations in mitochondrial activity and nitrooxidative stress are intimately associated with activated immune-inflammatory pathways. Future research should determine as to whether the mitochondria, immune-inflammatory activity and nitrooxidative stress changes in ASD affect the development of amygdala-frontal cortex interactions. A number of treatment implications may arise, including prevention-orientated prenatal interventions, treatment of pregnant women with vitamin D, and sodium butyrate. Treatments of ASD children and adults with probiotics, sodium butyrate and butyrate-inducing diets, antipurinergic therapy with suramin, melatonin, oxytocin and taurine are also discussed.
Collapse
Affiliation(s)
- Maria Gevezova
- Department of Medical Biology, Faculty of Medicine, Medical University-Plovdiv, Plovdiv, Bulgaria,Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Faculty of Medicine, Medical University-Plovdiv, Plovdiv, Bulgaria,Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | | | - Michael Maes
- Department of Medical Biology, Faculty of Medicine, Medical University-Plovdiv, Plovdiv, Bulgaria,Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,IMPACT Strategic Research Center, Deakin University, Geelong, Australia
| |
Collapse
|
45
|
Hansda AK, Goswami R. 17-β estradiol signalling affects cardiovascular and cancer pathogenesis by regulating the crosstalk between transcription factors and EC-miRNAs. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Silva-Lagos LA, Pillay J, van Meurs M, Smink A, van der Voort PHJ, de Vos P. DAMPening COVID-19 Severity by Attenuating Danger Signals. Front Immunol 2021; 12:720192. [PMID: 34456928 PMCID: PMC8397524 DOI: 10.3389/fimmu.2021.720192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
COVID-19 might lead to multi-organ failure and, in some cases, to death. The COVID-19 severity is associated with a “cytokine storm.” Danger-associated molecular patterns (DAMPs) are proinflammatory molecules that can activate pattern recognition receptors, such as toll-like receptors (TLRs). DAMPs and TLRs have not received much attention in COVID-19 but can explain some of the gender-, weight- and age-dependent effects. In females and males, TLRs are differentially expressed, likely contributing to higher COVID-19 severity in males. DAMPs and cytokines associated with COVID-19 mortality are elevated in obese and elderly individuals, which might explain the higher risk for severer COVID-19 in these groups. Adenosine signaling inhibits the TLR/NF-κB pathway and, through this, decreases inflammation and DAMPs’ effects. As vaccines will not be effective in all susceptible individuals and as new vaccine-resistant SARS-CoV-2 mutants might develop, it remains mandatory to find means to dampen COVID-19 disease severity, especially in high-risk groups. We propose that the regulation of DAMPs via adenosine signaling enhancement might be an effective way to lower the severity of COVID-19 and prevent multiple organ failure in the absence of severe side effects.
Collapse
Affiliation(s)
- Luis A Silva-Lagos
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Janesh Pillay
- Department of Intensive Care, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
| | - Matijs van Meurs
- Department of Intensive Care, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
| | - Alexandra Smink
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, Netherlands
| | - Peter H J van der Voort
- Department of Intensive Care, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
| | - Paul de Vos
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, Netherlands
| |
Collapse
|
47
|
Chen S, Zhu H, Sun J, Zhu L, Qin L, Wan J. Anti-inflammatory effects of miR-150 are associated with the downregulation of STAT1 in macrophages following lipopolysaccharide treatment. Exp Ther Med 2021; 22:1049. [PMID: 34434263 PMCID: PMC8353636 DOI: 10.3892/etm.2021.10483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/03/2020] [Indexed: 12/29/2022] Open
Abstract
Sepsis is a condition that is associated with high rates of mortality. It is characterized by serious systemic inflammatory responses induced by pathogenic invasion. Although microRNA-150 (miR-150) has been previously reported to be involved in the modulation of sepsis, the underlying molecular mechanism in sepsis remains poorly understood. In the present study, the human monocytic cell line THP-1 was treated with LPS to mimic sepsis in vitro, following which miR-150 and STAT1 expression were measured using reverse transcription-quantitative PCR or western blotting. Secretion of inflammatory cytokines interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) into the medium were measured by ELISA. The potential relationship between STAT1 and miR-150 was determined using dual-luciferase reporter and RNA immunoprecipitation assays. miR-150 expression was found to be was downregulated by LPS treatment in THP-1 cells in both dose- and time-dependent manners. LPS treatment also induced IL-1β, IL-6 and TNF-α secretion in a manner that could be inhibited by miR-150 overexpression and enhanced by transfection with the miR-150 inhibitor. miR-150 was revealed to directly target STAT1 by negatively regulating its expression. In addition, STAT1 expression was demonstrated to be upregulated by LPS treatment. STAT1 overexpression reversed the inhibitory effects of miR-150 overexpression on IL-1β, IL-6 and TNF-α secretion whilst STAT1 knockdown attenuated IL-1β, IL-6 and TNF-α secretion induced by miR-150 inhibitor transfection. In conclusion, the present study suggested that miR-150 regulates the inflammatory response in macrophages following LPS challenge by regulating the expression of STAT1.
Collapse
Affiliation(s)
- Song Chen
- Department of Emergency and Critical Care Medicine, The People's Hospital of Pudong New Area, Shanghai University of Health and Science, Shanghai 201200, P.R. China
| | - Haijun Zhu
- Department of Emergency and Critical Care Medicine, The People's Hospital of Pudong New Area, Shanghai University of Health and Science, Shanghai 201200, P.R. China
| | - Jie Sun
- Department of Emergency and Critical Care Medicine, The People's Hospital of Pudong New Area, Shanghai University of Health and Science, Shanghai 201200, P.R. China
| | - Lili Zhu
- Department of Emergency and Critical Care Medicine, The People's Hospital of Pudong New Area, Shanghai University of Health and Science, Shanghai 201200, P.R. China
| | - Long Qin
- Department of Emergency and Critical Care Medicine, The People's Hospital of Pudong New Area, Shanghai University of Health and Science, Shanghai 201200, P.R. China
| | - Jian Wan
- Department of Emergency and Critical Care Medicine, The People's Hospital of Pudong New Area, Shanghai University of Health and Science, Shanghai 201200, P.R. China
| |
Collapse
|
48
|
AlAshqar A, Reschke L, Kirschen GW, Borahay MA. Role of inflammation in benign gynecologic disorders: from pathogenesis to novel therapies†. Biol Reprod 2021; 105:7-31. [PMID: 33739368 PMCID: PMC8256101 DOI: 10.1093/biolre/ioab054] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Emerging evidence supports the notion that inflammation fosters the development of common benign gynecologic disorders, including uterine leiomyoma, endometriosis, and adenomyosis. Numerous cytokines, chemokines, and growth and transcription factors have indisputable roles in the establishment and maintenance of benign gynecologic disorders by initiating complex cascades that promote proliferation, angiogenesis, and lesion progression. The interaction between inflammation and benign gynecologic disorders is orchestrated by a plethora of factors, including sex steroids, genetics, epigenetics, extracellular matrix, stem cells, cardiometabolic risk factors, diet, vitamin D, and the immune system. The role of inflammation in these disorders is not limited to local pathobiology but also extends to involve clinical sequelae that range from those confined to the reproductive tract, such as infertility and gynecologic malignancies, to systemic complications such as cardiovascular disease. Enhanced understanding of the intricate mechanisms of this association will introduce us to unvisited pathophysiological perspectives and guide future diagnostic and therapeutic implications aimed at reducing the burden of these disorders. Utilization of inflammatory markers, microRNA, and molecular imaging as diagnostic adjuncts may be valuable, noninvasive techniques for prompt detection of benign gynecologic disorders. Further, use of novel as well as previously established therapeutics, such as immunomodulators, hormonal treatments, cardiometabolic medications, and cyclooxygenase-2 and NF-κB inhibitors, can target inflammatory pathways involved in their pathogenesis. In this comprehensive review, we aim to dissect the existing literature on the role of inflammation in benign gynecologic disorders, including the proposed underlying mechanisms and complex interactions, its contribution to clinical sequelae, and the clinical implications this role entails.
Collapse
Affiliation(s)
- Abdelrahman AlAshqar
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Kuwait University, Kuwait City, Kuwait
| | - Lauren Reschke
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Gregory W Kirschen
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
49
|
Reyes-García J, Montaño LM, Carbajal-García A, Wang YX. Sex Hormones and Lung Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:259-321. [PMID: 34019274 DOI: 10.1007/978-3-030-68748-9_15] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation is a characteristic marker in numerous lung disorders. Several immune cells, such as macrophages, dendritic cells, eosinophils, as well as T and B lymphocytes, synthetize and release cytokines involved in the inflammatory process. Gender differences in the incidence and severity of inflammatory lung ailments including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer (LC), and infectious related illnesses have been reported. Moreover, the effects of sex hormones on both androgens and estrogens, such as testosterone (TES) and 17β-estradiol (E2), driving characteristic inflammatory patterns in those lung inflammatory diseases have been investigated. In general, androgens seem to display anti-inflammatory actions, whereas estrogens produce pro-inflammatory effects. For instance, androgens regulate negatively inflammation in asthma by targeting type 2 innate lymphoid cells (ILC2s) and T-helper (Th)-2 cells to attenuate interleukin (IL)-17A-mediated responses and leukotriene (LT) biosynthesis pathway. Estrogens may promote neutrophilic inflammation in subjects with asthma and COPD. Moreover, the activation of estrogen receptors might induce tumorigenesis. In this chapter, we summarize the most recent advances in the functional roles and associated signaling pathways of inflammatory cellular responses in asthma, COPD, PF, LC, and newly occurring COVID-19 disease. We also meticulously deliberate the influence of sex steroids on the development and progress of these common and severe lung diseases.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico.,Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
50
|
Wehbe Z, Hammoud SH, Yassine HM, Fardoun M, El-Yazbi AF, Eid AH. Molecular and Biological Mechanisms Underlying Gender Differences in COVID-19 Severity and Mortality. Front Immunol 2021; 12:659339. [PMID: 34025658 PMCID: PMC8138433 DOI: 10.3389/fimmu.2021.659339] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Globally, over two million people have perished due to the recent pandemic caused by SARS-CoV-2. The available epidemiological global data for SARS-CoV-2 portrays a higher rate of severity and mortality in males. Analyzing gender differences in the host mechanisms involved in SARS-CoV-2 infection and progression may offer insight into the more detrimental disease prognosis and clinical outcome in males. Therefore, we outline sexual dimorphisms which exist in particular host factors and elaborate on how they may contribute to the pronounced severity in male COVID-19 patients. This includes disparities detected in comorbidities, the ACE2 receptor, renin-angiotensin system (RAS), signaling molecules involved in SARS-CoV-2 replication, proteases which prime viral S protein, the immune response, and behavioral considerations. Moreover, we discuss sexual disparities associated with other viruses and a possible gender-dependent response to SARS-CoV-2 vaccines. By specifically highlighting these immune-endocrine processes as well as behavioral factors that differentially exist between the genders, we aim to offer a better understanding in the variations of SARS-CoV-2 pathogenicity.
Collapse
Affiliation(s)
- Zena Wehbe
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Safaa Hisham Hammoud
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | | | - Manal Fardoun
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, Qatar University Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, Qatar University Health, Qatar University, Doha, Qatar
| |
Collapse
|