1
|
López-Cerdá S, Molinaro G, Tello RP, Correia A, Künig S, Steinberger P, Jeltsch M, Hirvonen JT, Barreto G, Stöckl J, Santos HA. Study of the Synergistic Immunomodulatory and Antifibrotic Effects of Dual-Loaded Budesonide and Serpine1 siRNA Lipid-Polymer Nanoparticles Targeting Macrophage Dysregulation in Tendinopathy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18643-18657. [PMID: 38564504 DOI: 10.1021/acsami.4c02363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Musculoskeletal diseases involving tissue injury comprise tendon, ligament, and muscle injury. Recently, macrophages have been identified as key players in the tendon repair process, but no therapeutic strategy involving dual drug delivery and gene delivery to macrophages has been developed for targeting the two main dysregulated aspects of macrophages in tendinopathy, i.e., inflammation and fibrosis. Herein, the anti-inflammatory and antifibrotic effects of dual-loaded budesonide and serpine1 siRNA lipid-polymer hybrid nanoparticles (LPNs) are evaluated in murine and human macrophage cells. The modulation of the gene and protein expression of factors associated with inflammation and fibrosis in tendinopathy is demonstrated by real time polymerase chain reaction and Western blot. Macrophage polarization to the M2 phenotype and a decrease in the production of pro-inflammatory cytokines are confirmed in macrophage cell lines and primary cells. The increase in the activity of a matrix metalloproteinase involved in tissue remodelling is proven, and studies evaluating the interactions of LPNs with T cells proved that dual-loaded LPNs act specifically on macrophages and do not induce any collateral effects on T cells. Overall, these dual-loaded LPNs are a promising combinatorial therapeutic strategy with immunomodulatory and antifibrotic effects in dysregulated macrophages in the context of tendinopathy.
Collapse
Affiliation(s)
- Sandra López-Cerdá
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
| | - Giuseppina Molinaro
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
| | - Rubén Pareja Tello
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
| | - Sarojinidevi Künig
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Steinberger
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Jeltsch
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
- Wihuri Research Institute, Helsinki FI-00014, Finland
- Helsinki One Health, University of Helsinki, Helsinki FI-00014, Finland
| | - Jouni T Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
| | - Goncalo Barreto
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland
- Orton Orthopedic Hospital, Tenholantie 10, Helsinki 00280, Finland
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo 02150, Finland
| | - Johannes Stöckl
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
2
|
Williams B, Zou L, Pittet JF, Chao W. Sepsis-Induced Coagulopathy: A Comprehensive Narrative Review of Pathophysiology, Clinical Presentation, Diagnosis, and Management Strategies. Anesth Analg 2024; 138:696-711. [PMID: 38324297 PMCID: PMC10916756 DOI: 10.1213/ane.0000000000006888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 02/08/2024]
Abstract
Physiological hemostasis is a balance between pro- and anticoagulant pathways, and in sepsis, this equilibrium is disturbed, resulting in systemic thrombin generation, impaired anticoagulant activity, and suppression of fibrinolysis, a condition termed sepsis-induced coagulopathy (SIC). SIC is a common complication, being present in 24% of patients with sepsis and 66% of patients with septic shock, and is often associated with poor clinical outcomes and high mortality. 1 , 2 Recent preclinical and clinical studies have generated new insights into the molecular pathogenesis of SIC. In this article, we analyze the complex pathophysiology of SIC with a focus on the role of procoagulant innate immune signaling in hemostatic activation--tissue factor production, thrombin generation, endotheliopathy, and impaired antithrombotic functions. We also review clinical presentations of SIC, the diagnostic scoring system and laboratory tests, the current standard of care, and clinical trials evaluating the efficacies of anticoagulant therapies.
Collapse
Affiliation(s)
- Brittney Williams
- From the Division of Cardiothoracic Anesthesia, Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
- Translational Research Program, Department of Anesthesiology & Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland
| | - Lin Zou
- Translational Research Program, Department of Anesthesiology & Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland
| | - Jean-Francois Pittet
- Division of Critical Care, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology & Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
3
|
Nie G, Zhang H, Xie D, Yan J, Li X. Liver cirrhosis and complications from the perspective of dysbiosis. Front Med (Lausanne) 2024; 10:1320015. [PMID: 38293307 PMCID: PMC10824916 DOI: 10.3389/fmed.2023.1320015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
The gut-liver axis refers to the intimate relationship and rigorous interaction between the gut and the liver. The intestinal barrier's integrity is critical for maintaining liver homeostasis. The liver operates as a second firewall in this interaction, limiting the movement of potentially dangerous compounds from the gut and, as a result, contributing in barrier management. An increasing amount of evidence shows that increased intestinal permeability and subsequent bacterial translocation play a role in liver damage development. The major pathogenic causes in cirrhotic individuals include poor intestinal permeability, nutrition, and intestinal flora dysbiosis. Portal hypertension promotes intestinal permeability and bacterial translocation in advanced liver disease, increasing liver damage. Bacterial dysbiosis is closely related to the development of cirrhosis and its related complications. This article describes the potential mechanisms of dysbiosis in liver cirrhosis and related complications, such as spontaneous bacterial peritonitis, hepatorenal syndrome, portal vein thrombosis, hepatic encephalopathy, and hepatocellular carcinoma, using dysbiosis of the intestinal flora as an entry point.
Collapse
Affiliation(s)
- Guole Nie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Honglong Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Danna Xie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Jun Yan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
- Cancer Prevention and Control Center of Lanzhou University Medical School, Lanzhou, China
- Gansu Institute of Hepatobiliary and Pancreatic Surgery, Lanzhou, China
- Gansu Clinical Medical Research Center of General Surgery, Lanzhou, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
- Cancer Prevention and Control Center of Lanzhou University Medical School, Lanzhou, China
- Gansu Institute of Hepatobiliary and Pancreatic Surgery, Lanzhou, China
- Gansu Clinical Medical Research Center of General Surgery, Lanzhou, China
| |
Collapse
|
4
|
Stierschneider A, Wiesner C. Shedding light on the molecular and regulatory mechanisms of TLR4 signaling in endothelial cells under physiological and inflamed conditions. Front Immunol 2023; 14:1264889. [PMID: 38077393 PMCID: PMC10704247 DOI: 10.3389/fimmu.2023.1264889] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Toll-like receptor 4 (TLR4) are part of the innate immune system. They are capable of recognizing pathogen-associated molecular patterns (PAMPS) of microbes, and damage-associated molecular patterns (DAMPs) of damaged tissues. Activation of TLR4 initiates downstream signaling pathways that trigger the secretion of cytokines, type I interferons, and other pro-inflammatory mediators that are necessary for an immediate immune response. However, the systemic release of pro-inflammatory proteins is a powerful driver of acute and chronic inflammatory responses. Over the past decades, immense progress has been made in clarifying the molecular and regulatory mechanisms of TLR4 signaling in inflammation. However, the most common strategies used to study TLR4 signaling rely on genetic manipulation of the TLR4 or the treatment with agonists such as lipopolysaccharide (LPS) derived from the outer membrane of Gram-negative bacteria, which are often associated with the generation of irreversible phenotypes in the target cells or unintended cytotoxicity and signaling crosstalk due to off-target or pleiotropic effects. Here, optogenetics offers an alternative strategy to control and monitor cellular signaling in an unprecedented spatiotemporally precise, dose-dependent, and non-invasive manner. This review provides an overview of the structure, function and signaling pathways of the TLR4 and its fundamental role in endothelial cells under physiological and inflammatory conditions, as well as the advances in TLR4 modulation strategies.
Collapse
Affiliation(s)
| | - Christoph Wiesner
- Department Science & Technology, Institute Biotechnology, IMC Krems University of Applied Sciences, Krems, Austria
| |
Collapse
|
5
|
Newman NK, Zhang Y, Padiadpu J, Miranda CL, Magana AA, Wong CP, Hioki KA, Pederson JW, Li Z, Gurung M, Bruce AM, Brown K, Bobe G, Sharpton TJ, Shulzhenko N, Maier CS, Stevens JF, Gombart AF, Morgun A. Reducing gut microbiome-driven adipose tissue inflammation alleviates metabolic syndrome. MICROBIOME 2023; 11:208. [PMID: 37735685 PMCID: PMC10512512 DOI: 10.1186/s40168-023-01637-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/01/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND The gut microbiota contributes to macrophage-mediated inflammation in adipose tissue with consumption of an obesogenic diet, thus driving the development of metabolic syndrome. There is a need to identify and develop interventions that abrogate this condition. The hops-derived prenylated flavonoid xanthohumol (XN) and its semi-synthetic derivative tetrahydroxanthohumol (TXN) attenuate high-fat diet-induced obesity, hepatosteatosis, and metabolic syndrome in C57Bl/6J mice. This coincides with a decrease in pro-inflammatory gene expression in the gut and adipose tissue, together with alterations in the gut microbiota and bile acid composition. RESULTS In this study, we integrated and interrogated multi-omics data from different organs with fecal 16S rRNA sequences and systemic metabolic phenotypic data using a Transkingdom Network Analysis. By incorporating cell type information from single-cell RNA-seq data, we discovered TXN attenuates macrophage inflammatory processes in adipose tissue. TXN treatment also reduced levels of inflammation-inducing microbes, such as Oscillibacter valericigenes, that lead to adverse metabolic phenotypes. Furthermore, in vitro validation in macrophage cell lines and in vivo mouse supplementation showed addition of O. valericigenes supernatant induced the expression of metabolic macrophage signature genes that are downregulated by TXN in vivo. CONCLUSIONS Our findings establish an important mechanism by which TXN mitigates adverse phenotypic outcomes of diet-induced obesity and metabolic syndrome. TXN primarily reduces the abundance of pro-inflammatory gut microbes that can otherwise promote macrophage-associated inflammation in white adipose tissue. Video Abstract.
Collapse
Affiliation(s)
- N K Newman
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Y Zhang
- School of Biological and Population Health Sciences, Nutrition Program, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- Present address: Oregon Health & Science University, Portland, OR, USA
| | - J Padiadpu
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - C L Miranda
- Department of Pharmaceutical Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - A A Magana
- Department of Chemistry, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - C P Wong
- School of Biological and Population Health Sciences, Nutrition Program, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - K A Hioki
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
- Present address: UMASS, Amherst, MA, USA
| | - J W Pederson
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Z Li
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - M Gurung
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
- Present address: Children Nutrition Center, USDA, Little Rock, AR, USA
| | - A M Bruce
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - K Brown
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
- Chemical, Biological & Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - G Bobe
- Department of Animal Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - T J Sharpton
- Department of Microbiology, Department of Statistics, Oregon State University, Corvallis, OR, USA
| | - N Shulzhenko
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA.
| | - C S Maier
- Department of Chemistry, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - J F Stevens
- Department of Pharmaceutical Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - A F Gombart
- Department of Biochemistry and Biophysics, Linus Pauling Institute, Corvallis, OR, USA.
| | - A Morgun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
6
|
Shimono K, Ito T, Kamikokuryo C, Niiyama S, Yamada S, Onishi H, Yoshihara H, Maruyama I, Kakihana Y. Damage-associated molecular patterns and fibrinolysis perturbation are associated with lethal outcomes in traumatic injury. Thromb J 2023; 21:91. [PMID: 37674235 PMCID: PMC10481518 DOI: 10.1186/s12959-023-00536-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Upon cellular injury, damage-associated molecular patterns (DAMPs) are released into the extracellular space and evoke proinflammatory and prothrombotic responses in animal models of sterile inflammation. However, in clinical settings, the dynamics of DAMP levels after trauma and links between DAMPs and trauma-associated coagulopathy remain largely undetermined. METHODS Thirty-one patients with severe trauma, who were transferred to Kagoshima City Hospital between June 2018 and December 2019, were consecutively enrolled in this study. Blood samples were taken at the time of delivery, and 6 and 12 h after the injury, and once daily thereafter. The time-dependent changes of coagulation/fibrinolysis markers, including thrombin-antithrombin complex, α2-plasmin inhibitor (α2-PI), plasmin-α2-PI complex, and plasminogen activator inhibitor-1 (PAI-1), and DAMPs, including high mobility group box 1 and histone H3, were analyzed. The relationship between coagulation/fibrinolysis markers, DAMPs, Injury Severity Score, in-hospital death, and amount of blood transfusion were analyzed. RESULTS The activation of coagulation/fibrinolysis pathways was evident at the time of delivery. In contrast, PAI-1 levels remained low at the time of delivery, and then were elevated at 6-12 h after traumatic injury. Histone H3 and high mobility group box 1 levels were elevated at admission, and gradually subsided over time. PAI-1 levels at 6 h were associated with serum histone H3 levels at admission. Increased histone H3 levels and plasmin-α2-PI complex levels were associated with in-hospital mortality. α2-PI levels at admission showed the strongest negative correlation with the amount of blood transfusion. CONCLUSION The elevation of histone H3 levels and fibrinolysis perturbation are associated with fatal outcomes in patients with traumatic injury. Patients with low α2-PI levels at admission tend to require blood transfusion.
Collapse
Affiliation(s)
- Kenshin Shimono
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takashi Ito
- Department of Biomedical Laboratory Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Kumamoto, 862-0976, Japan.
| | - Chinatsu Kamikokuryo
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shuhei Niiyama
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shingo Yamada
- Shino-Test Corporation, R&D Center, Sagamihara, Japan
| | - Hirokazu Onishi
- Emergency and Critical Care Center, Kagoshima City Hospital, Kagoshima, Japan
| | - Hideaki Yoshihara
- Emergency and Critical Care Center, Kagoshima City Hospital, Kagoshima, Japan
| | - Ikuro Maruyama
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yasuyuki Kakihana
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
7
|
Zhu S, Yu Y, Qu M, Qiu Z, Zhang H, Miao C, Guo K. Neutrophil extracellular traps contribute to immunothrombosis formation via the STING pathway in sepsis-associated lung injury. Cell Death Discov 2023; 9:315. [PMID: 37626060 PMCID: PMC10457383 DOI: 10.1038/s41420-023-01614-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are involved in the activation and dysfunction of multiple overlapping and interacting pathways, including the immune response to injury, inflammation, and coagulation, which contribute to the pathogenesis of sepsis-induced acute lung injury (SI-ALI). However, how NETs mediate the relationship between inflammation and coagulation has not been fully clarified. Here, we found that NETs, through stimulator of interferon genes (STING) activation, induced endothelial cell damage with abundant production of tissue factor (TF), which magnified the dysregulation between inflammatory and coagulant responses and resulted in poor prognosis of SI-ALI model mice. Disruption of NETs and inhibition of STING improved the outcomes of septic mice and reduced the inflammatory response and coagulation. Furthermore, Toll-like receptor 2 (TLR2) on the surface of endothelial cells was involved in the interaction between NETs and the STING pathway. Collectively, these findings demonstrate that NETs activate the coagulant cascade in endothelial cells in a STING-dependent manner in the development of SI-ALI.
Collapse
Affiliation(s)
- Shuainan Zhu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ying Yu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Mengdi Qu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Zhiyun Qiu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Kefang Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| |
Collapse
|
8
|
Azhar NA, Paul BT, Jesse FFA, Mohd-Lila MA, Chung ELT, Kamarulrizal MI. Pro-inflammatory cytokines and reproductive hormone responses in bucks post-challenge with Mannheimia haemolytica A2 and its outer membrane protein. Trop Anim Health Prod 2023; 55:291. [PMID: 37589856 DOI: 10.1007/s11250-023-03706-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
The lipopolysaccharide (LPS) endotoxin and outer membrane protein (OMP) are among the virulence factors of Gram-negative bacteria responsible for inducing pathogenicity in the infected host. OMP and LPS occur on the outer membrane of M. haemolytica A2, the primary aetiological agent of pneumonic mannheimiosis in small ruminants. While the LPS is known to mediate Gram-negative bacterial infection by activating downstream inflammatory pathways, the potential role of OMP during inflammatory responses remained unclear. Hence, this study determined the effect of the OMP of M. haemolytica A2 on the serum concentration of pro-inflammatory cytokines and the male reproductive hormones (testosterone and Luteinizing Hormone). We randomly assigned twelve bucks to three groups (n = 4 bucks each): Group 1 was challenged with 2 mL PBS buffer (pH 7.0) intranasally; Group 2 received 2 mL of 1.2 X 109 CFU/mL whole M. haemolytica A2 intranasally; and Group 3 received 2 mL of OMP extract obtained from 1.2 X 109 CFU/mL M. haemolytica A2 intramuscularly. Serum samples collected at pre-determined intervals were used for the quantitative determination of the pro-inflammatory cytokines (IL-1β, IL-6, and TNFα) and reproductive hormones (testosterone and LH) using commercial sandwich enzyme-linked immunosorbent assay (ELISA). The serum concentration of IL1β was initially increased within the first-hour post-challenge in Groups 2 and 3, followed by a significant decrease in concentration at 21d and 35d (p < 0.05) in Group 3. Only mild fluctuations in IL-6 occurred in group 2, as opposed to the 1.7-fold rapid increase in TNFα within 2 h post-challenge before decreasing at 6 h. An increase in pro-inflammatory cytokines was accompanied by an acute febrile response of 39.5 ± 0.38 °C (p < 0.05) at 2 h and 40.1 ± 0.29 °C (p < 0.05) at 4 h in Group 2 and Group 3, respectively. Serum testosterone decreased significantly (p < 0.05) in both treatment groups but remained significantly (p > 0.05) lower than in Group 1 throughout the study. There was a moderate negative association between testosterone and IL1β (r = -0.473; p > 0.05) or TNFα (r = -0.527; p < 0.05) in Group 2. Serum LH also showed moderate negative associations with TNFα in Group 2 (r = -0.63; p < 0.05) and Group 3 (r = -0.54; p > 0.05). The results of this study demonstrated that M. haemolytica A2 and its OMP produced marked alterations in serum levels of pro-inflammatory cytokines and male reproductive hormones. The negative correlations between serum testosterone and inflammatory cytokines would suggest the potential role of OMP in causing male infertility by mediating innate inflammatory responses to suppress testosterone production in bucks.
Collapse
Affiliation(s)
- Nur Amira Azhar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Bura Thlama Paul
- Department of Animal Science and Fisheries, Faculty of Agriculture and Forestry Science, Universiti Putra Malaysia Campus Bintulu Sarawak, 97003, Bintulu, Malaysia
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, University of Maiduguri, 600230, Maiduguri, Borno State, Nigeria
| | - Faez Firdaus Abdullah Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Mohd-Azmi Mohd-Lila
- Department of Veterinary Microbiology and Pathology, Faculty of Veterinary Medicine, 43400 UPM, Serdang, Selangor, Malaysia
| | - Eric Lim Teik Chung
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mat Isa Kamarulrizal
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
9
|
Tsounis EP, Triantos C, Konstantakis C, Marangos M, Assimakopoulos SF. Intestinal barrier dysfunction as a key driver of severe COVID-19. World J Virol 2023; 12:68-90. [PMID: 37033148 PMCID: PMC10075050 DOI: 10.5501/wjv.v12.i2.68] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 01/16/2023] [Indexed: 03/21/2023] Open
Abstract
The intestinal lumen harbors a diverse consortium of microorganisms that participate in reciprocal crosstalk with intestinal immune cells and with epithelial and endothelial cells, forming a multi-layered barrier that enables the efficient absorption of nutrients without an excessive influx of pathogens. Despite being a lung-centered disease, severe coronavirus disease 2019 (COVID-19) affects multiple systems, including the gastrointestinal tract and the pertinent gut barrier function. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can inflict either direct cytopathic injury to intestinal epithelial and endothelial cells or indirect immune-mediated damage. Alternatively, SARS-CoV-2 undermines the structural integrity of the barrier by modifying the expression of tight junction proteins. In addition, SARS-CoV-2 induces profound alterations to the intestinal microflora at phylogenetic and metabolomic levels (dysbiosis) that are accompanied by disruption of local immune responses. The ensuing dysregulation of the gut-lung axis impairs the ability of the respiratory immune system to elicit robust and timely responses to restrict viral infection. The intestinal vasculature is vulnerable to SARS-CoV-2-induced endothelial injury, which simultaneously triggers the activation of the innate immune and coagulation systems, a condition referred to as “immunothrombosis” that drives severe thrombotic complications. Finally, increased intestinal permeability allows an aberrant dissemination of bacteria, fungi, and endotoxin into the systemic circulation and contributes, to a certain degree, to the over-exuberant immune responses and hyper-inflammation that dictate the severe form of COVID-19. In this review, we aim to elucidate SARS-CoV-2-mediated effects on gut barrier homeostasis and their implications on the progression of the disease.
Collapse
Affiliation(s)
- Efthymios P Tsounis
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University Hospital of Patras, Patras 26504, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University Hospital of Patras, Patras 26504, Greece
| | - Christos Konstantakis
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University Hospital of Patras, Patras 26504, Greece
| | - Markos Marangos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Patras 26504, Greece
| | - Stelios F Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, University Hospital of Patras, Patras 26504, Greece
| |
Collapse
|
10
|
Capozzi A, Riitano G, Recalchi S, Manganelli V, Pulcinelli F, Garofalo T, Misasi R, Longo A, Sorice M. Effect of heparanase inhibitor on tissue factor overexpression in platelets and endothelial cells induced by anti-β2-GPI antibodies: Reply to comment from Mackman et al. J Thromb Haemost 2022; 20:261-262. [PMID: 34954878 DOI: 10.1111/jth.15558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Antonella Capozzi
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Gloria Riitano
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Serena Recalchi
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Valeria Manganelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Fabio Pulcinelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Agostina Longo
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
11
|
Song LT, Tada H, Nishioka T, Nemoto E, Imamura T, Potempa J, Li CY, Matsushita K, Sugawara S. Porphyromonas gingivalis Gingipains-Mediated Degradation of Plasminogen Activator Inhibitor-1 Leads to Delayed Wound Healing Responses in Human Endothelial Cells. J Innate Immun 2021; 14:306-319. [PMID: 34823251 PMCID: PMC9275039 DOI: 10.1159/000519737] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1), a serine protease inhibitor, is constitutively produced by endothelial cells and plays a vital role in maintaining vascular homeostasis. Chronic periodontitis is an inflammatory disease characterized by bleeding of periodontal tissues that support the tooth. In this study, we aimed to determine the role of PAI-1 produced by endothelial cells in response to infections caused by the primary periodontal pathogen Porphyromonas gingivalis. We demonstrated that P. gingivalis infection resulted in significantly reduced PAI-1 levels in human endothelial cells. This reduction in PAI-1 levels could be attributed to the proteolysis of PAI-1 by P. gingivalis proteinases, especially lysine-specific gingipain-K (Kgp). We demonstrated the roles of these degradative enzymes in the endothelial cells using a Kgp-specific inhibitor and P. gingivalis gingipain-null mutants, in which the lack of the proteinases resulted in the absence of PAI-1 degradation. The degradation of PAI-1 by P. gingivalis induced a delayed wound healing response in endothelial cell layers via the low-density lipoprotein receptor-related protein. Our results collectively suggested that the proteolysis of PAI-1 in endothelial cells by gingipains of P. gingivalis might lead to the deregulation of endothelial homeostasis, thereby contributing to the permeabilization and dysfunction of the vascular endothelial barrier.
Collapse
Affiliation(s)
- Li-Ting Song
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Hospital of Stomatology, School of Dentistry, Tianjin Medical University, Tianjin, China
| | - Hiroyuki Tada
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Takashi Nishioka
- Division of Oral Diagnosis, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Eiji Nemoto
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Takahisa Imamura
- Department of Nutritional Science, Faculty of Human Life Science, Shokei University, Kumamoto, Japan
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland.,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Chang-Yi Li
- Hospital of Stomatology, School of Dentistry, Tianjin Medical University, Tianjin, China
| | - Kenji Matsushita
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Shunji Sugawara
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
12
|
Ravindranath MH, El Hilali F, Filippone EJ. The Impact of Inflammation on the Immune Responses to Transplantation: Tolerance or Rejection? Front Immunol 2021; 12:667834. [PMID: 34880853 PMCID: PMC8647190 DOI: 10.3389/fimmu.2021.667834] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022] Open
Abstract
Transplantation (Tx) remains the optimal therapy for end-stage disease (ESD) of various solid organs. Although alloimmune events remain the leading cause of long-term allograft loss, many patients develop innate and adaptive immune responses leading to graft tolerance. The focus of this review is to provide an overview of selected aspects of the effects of inflammation on this delicate balance following solid organ transplantation. Initially, we discuss the inflammatory mediators detectable in an ESD patient. Then, the specific inflammatory mediators found post-Tx are elucidated. We examine the reciprocal relationship between donor-derived passenger leukocytes (PLs) and those of the recipient, with additional emphasis on extracellular vesicles, specifically exosomes, and we examine their role in determining the balance between tolerance and rejection. The concept of recipient antigen-presenting cell "cross-dressing" by donor exosomes is detailed. Immunological consequences of the changes undergone by cell surface antigens, including HLA molecules in donor and host immune cells activated by proinflammatory cytokines, are examined. Inflammation-mediated donor endothelial cell (EC) activation is discussed along with the effect of donor-recipient EC chimerism. Finally, as an example of a specific inflammatory mediator, a detailed analysis is provided on the dynamic role of Interleukin-6 (IL-6) and its receptor post-Tx, especially given the potential for therapeutic interdiction of this axis with monoclonal antibodies. We aim to provide a holistic as well as a reductionist perspective of the inflammation-impacted immune events that precede and follow Tx. The objective is to differentiate tolerogenic inflammation from that enhancing rejection, for potential therapeutic modifications. (Words 247).
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA, United States
- Terasaki Foundation Laboratory, Santa Monica, CA, United States
| | | | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
13
|
Chen F, Zou L, Williams B, Chao W. Targeting Toll-Like Receptors in Sepsis: From Bench to Clinical Trials. Antioxid Redox Signal 2021; 35:1324-1339. [PMID: 33588628 PMCID: PMC8817700 DOI: 10.1089/ars.2021.0005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Sepsis is a critical clinical syndrome with life-threatening organ dysfunction induced by a dysregulated host response to infection. Despite decades of intensive research, sepsis remains a leading cause of in-hospital mortality with few specific treatments. Recent Advances: Toll-like receptors (TLRs) are a part of the innate immune system and play an important role in host defense against invading pathogens such as bacteria, virus, and fungi. Using a combination of genetically modified animal models and pharmacological agents, numerous preclinical studies during the past two decades have demonstrated that dysregulated TLR signaling may contribute to sepsis pathogenesis. However, many clinical trials targeting inflammation and innate immunity such as TLR4 have yielded mixed results. Critical Issues: Here we review various TLRs and the specific molecules these TLRs sense-both the pathogen-associated and host-derived stress molecules, and their converging signaling pathways. We critically analyze preclinical investigations into the role of TLRs in animal sepsis, the complexity of targeting TLRs for sepsis intervention, and the disappointing clinical trials of the TLR4 antagonist eritoran. Future Directions: Future sepsis treatments will depend on better understanding the complex biological mechanisms of sepsis pathogenesis, the high heterogeneity of septic humans as defined by clinical presentations and unique immunological biomarkers, and improved stratifications for targeted interventions.
Collapse
Affiliation(s)
- Fengqian Chen
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lin Zou
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Brittney Williams
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Parra-Izquierdo I, Lakshmanan HHS, Melrose AR, Pang J, Zheng TJ, Jordan KR, Reitsma SE, McCarty OJT, Aslan JE. The Toll-Like Receptor 2 Ligand Pam2CSK4 Activates Platelet Nuclear Factor-κB and Bruton's Tyrosine Kinase Signaling to Promote Platelet-Endothelial Cell Interactions. Front Immunol 2021; 12:729951. [PMID: 34527000 PMCID: PMC8435771 DOI: 10.3389/fimmu.2021.729951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022] Open
Abstract
Circulating platelets establish a variety of immunological programs and orchestrate inflammatory responses at the endothelium. Platelets express the innate immunity family of Toll-like receptors (TLRs). While TLR2/TLR1 ligands are known to activate platelets, the effects of TLR2/TLR6 ligands on platelet function remain unclear. Here, we aim to determine whether the TLR2/TLR6 agonists Pam2CSK4 and FSL-1 activate human platelets. In addition, human umbilical vein endothelial cells (HUVECs) and platelets were co-cultured to analyze the role of platelet TLR2/TLR6 on inflammation and adhesion to endothelial cells. Pam2CSK4, but not FSL-1, induced platelet granule secretion and integrin αIIbβ3 activation in a concentration-dependent manner. Moreover, Pam2CSK4 promoted platelet aggregation and increased platelet adhesion to collagen-coated surfaces. Mechanistic studies with blocking antibodies and pharmacologic inhibitors demonstrated that the TLR2/Nuclear factor-κB axis, Bruton’s-tyrosine kinase, and a secondary ADP feedback loop are involved in Pam2CSK4-induced platelet functional responses. Interestingly, Pam2CSK4 showed cooperation with immunoreceptor tyrosine-based activation motif (ITAM)-mediated signaling to enhance platelet activation. Finally, the presence of platelets increased inflammatory responses in HUVECs treated with Pam2CSK4, and platelets challenged with Pam2CSK4 showed increased adhesion to HUVECs under static and physiologically relevant flow conditions. Herein, we define a functional role for platelet TLR2-mediated signaling, which may represent a druggable target to dampen excessive platelet activation in thrombo-inflammatory diseases.
Collapse
Affiliation(s)
- Iván Parra-Izquierdo
- Knight Cardiovascular Institute and Division of Cardiology, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Hari Hara Sudhan Lakshmanan
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Alexander R Melrose
- Knight Cardiovascular Institute and Division of Cardiology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Jiaqing Pang
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Tony J Zheng
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Kelley R Jordan
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Stéphanie E Reitsma
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Owen J T McCarty
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Division of Hematology and Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Joseph E Aslan
- Knight Cardiovascular Institute and Division of Cardiology, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
15
|
Oliva A, Cammisotto V, Cangemi R, Ferro D, Miele MC, De Angelis M, Cancelli F, Pignatelli P, Venditti M, Pugliese F, Mastroianni CM, Violi F. Low-Grade Endotoxemia and Thrombosis in COVID-19. Clin Transl Gastroenterol 2021; 12:e00348. [PMID: 34092777 PMCID: PMC8183715 DOI: 10.14309/ctg.0000000000000348] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/12/2021] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Patients with community-acquired pneumonia display enhanced levels of lipopolysaccharides (LPS) compared with controls, suggesting that low-grade endotoxemia may be implicated in vascular disturbances. It is unknown whether this occurs in patients with coronavirus 2019 (COVID-19) and its impact on thrombotic complications. METHODS We measured serum levels of zonulin, a marker of gut permeability, LPS, and D-dimer in 81 patients with COVID-19 and 81 healthy subjects; the occurrence of thrombotic events in COVID-19 during the intrahospital stay was registered. RESULTS Serum LPS and zonulin were higher in patients with COVID-19 than in control subjects and, in COVID-19, significantly correlated (R = 0.513; P < 0.001). Among the 81 patients with COVID-19, 11 (14%) experienced thrombotic events in the arterial (n = 5) and venous circulation (n = 6) during a median follow-up of 18 days (interquartile range 11-27 days). A logistic regression analysis showed that LPS (P = 0.024) and D-dimer (P = 0.041) independently predicted thrombotic events. DISCUSSION The study reports that low-grade endotoxemia is detectable in patients with COVID-19 and is associated with thrombotic events. The coexistence of low-grade endotoxemia with enhanced levels of zonulin may suggest enhanced gut permeability as an underlying mechanism.
Collapse
Affiliation(s)
- Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Vittoria Cammisotto
- Department of General Surgery and Surgical Speciality Paride Stefanini, Sapienza University of Rome, Rome, Italy
| | - Roberto Cangemi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Domenico Ferro
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Maria Claudia Miele
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Massimiliano De Angelis
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Francesca Cancelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Mario Venditti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Francesco Pugliese
- Department of General Surgery and Surgical Speciality Paride Stefanini, Sapienza University of Rome, Rome, Italy
| | | | - Francesco Violi
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Naples, Italy
| |
Collapse
|
16
|
Liu Q, Tian X, Maruyama D, Arjomandi M, Prakash A. Lung immune tone via gut-lung axis: gut-derived LPS and short-chain fatty acids' immunometabolic regulation of lung IL-1β, FFAR2, and FFAR3 expression. Am J Physiol Lung Cell Mol Physiol 2021; 321:L65-L78. [PMID: 33851870 DOI: 10.1152/ajplung.00421.2020] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microbial metabolites produced by the gut microbiome, e.g. short-chain fatty acids (SCFA), have been found to influence lung physiology and injury responses. However, how lung immune activity is regulated by SCFA is unknown. We examined fresh human lung tissue and observed the presence of SCFA with interindividual variability. In vitro, SCFA were capable of modifying the metabolic programming in LPS-exposed alveolar macrophages (AM). We hypothesized that lung immune tone could be defined by baseline detection of lung intracellular IL-1β. Therefore, we interrogated naïve mouse lungs with intact gut microbiota for IL-1β mRNA expression and localized its presence within alveolar spaces, specifically within AM subsets. We established that metabolically active gut microbiota, which produce SCFA, can transmit LPS and SCFA to the lung and thereby could create primed lung immunometabolic tone. To understand how murine lung cells sensed and upregulated IL-1β in response to gut microbiome-derived factors, we determined that, in vitro, AM and alveolar type II (AT2) cells expressed SCFA receptors, free fatty acid receptor 2 (FFAR2), free fatty acid receptor 3 (FFAR3), and IL-1β but with distinct expression patterns and different responses to LPS. Finally, we observed that IL-1β, FFAR2, and FFAR3 were expressed in isolated human AM and AT2 cells ex vivo, but in fresh human lung sections in situ, only AM expressed IL-1β at rest and after LPS challenge. Together, this translational study using mouse and human lung tissue and cells point to an important role for the gut microbiome and their SCFA in establishing and regulating lung immune tone.
Collapse
Affiliation(s)
- Qing Liu
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California.,Department of Anesthesiology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Tian
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California
| | - Daisuke Maruyama
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California
| | - Mehrdad Arjomandi
- Department of Medicine, University of California, San Francisco, California.,Medical Service, San Francisco VA Medical Center, San Francisco, California
| | - Arun Prakash
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California.,San Francisco General Hospital, San Francisco, California
| |
Collapse
|
17
|
Tanaka S, Gauthier JM, Terada Y, Takahashi T, Li W, Hashimoto K, Higashikubo R, Hachem RR, Bharat A, Ritter JH, Nava RG, Puri V, Krupnick AS, Gelman AE, Kreisel D. Bacterial products in donor airways prevent the induction of lung transplant tolerance. Am J Transplant 2021; 21:353-361. [PMID: 32786174 PMCID: PMC7775268 DOI: 10.1111/ajt.16256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/17/2020] [Accepted: 08/03/2020] [Indexed: 01/25/2023]
Abstract
Although postoperative bacterial infections can trigger rejection of pulmonary allografts, the impact of bacterial colonization of donor grafts on alloimmune responses to transplanted lungs remains unknown. Here, we tested the hypothesis that bacterial products present within donor grafts at the time of implantation promote lung allograft rejection. Administration of the toll-like receptor 2 (TLR2) agonist Pam3 Cys4 to Balb/c wild-type grafts triggered acute cellular rejection after transplantation into B6 wild-type recipients that received perioperative costimulatory blockade. Pam3 Cys4 -triggered rejection was associated with an expansion of CD8+ T lymphocytes and CD11c+ CD11bhi MHC (major histocompatibility complex) class II+ antigen-presenting cells within the transplanted lungs. Rejection was prevented when lungs were transplanted into TLR2-deficient recipients but not when MyD88-deficient donors were used. Adoptive transfer of B6 wild-type monocytes, but not T cells, following transplantation into B6 TLR2-deficient recipients restored the ability of Pam3 Cys4 to trigger acute cellular rejection. Thus, we have demonstrated that activation of TLR2 by a bacterial lipopeptide within the donor airways prevents the induction of lung allograft tolerance through a process mediated by recipient-derived monocytes. Our work suggests that donor lungs harboring bacteria may precipitate an inflammatory response that can facilitate allograft rejection.
Collapse
Affiliation(s)
- Satona Tanaka
- Department of Surgery, Washington University, Saint Louis, MO
| | | | - Yuriko Terada
- Department of Surgery, Washington University, Saint Louis, MO
| | | | - Wenjun Li
- Department of Surgery, Washington University, Saint Louis, MO
| | - Kohei Hashimoto
- Department of Surgery, Washington University, Saint Louis, MO
| | | | | | - Ankit Bharat
- Department of Surgery, Northwestern University, Chicago, IL
| | - Jon H. Ritter
- Department of Pathology & Immunology, Washington University, Saint Louis, MO
| | - Ruben G. Nava
- Department of Surgery, Washington University, Saint Louis, MO
| | - Varun Puri
- Department of Surgery, Washington University, Saint Louis, MO
| | | | - Andrew E. Gelman
- Department of Surgery, Washington University, Saint Louis, MO,Department of Pathology & Immunology, Washington University, Saint Louis, MO
| | - Daniel Kreisel
- Department of Surgery, Washington University, Saint Louis, MO,Department of Pathology & Immunology, Washington University, Saint Louis, MO
| |
Collapse
|
18
|
Mitsui Y, Hou L, Huang X, Odegard KC, Pereira LM, Yuki K. Volatile Anesthetic Sevoflurane Attenuates Toll-Like Receptor 1/2 Activation. Anesth Analg 2020; 131:631-639. [PMID: 32149756 DOI: 10.1213/ane.0000000000004741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Although immunomodulatory effects of anesthetics have been increasingly recognized, their underlying molecular mechanisms are not completely understood. Toll-like receptors (TLRs) are one of the major receptors to recognize invading pathogens and danger signals from damaged host tissues to initiate immune responses. Among the TLR family, TLR2 and TLR4 recognize a wide range of ligands and are considered to be important players in perioperative pathophysiology. Based on our recent finding that volatile anesthetics modulate TLR4 function, we tested our hypothesis that they would also modulate TLR2 function. METHODS The effect of anesthetics isoflurane, sevoflurane, propofol, and dexmedetomidine on TLR2 activation was examined by reporter assays. An anesthetic that affected the activation was subjected to in silico rigid docking simulation on TLR2. To test our prediction that sevoflurane and a TLR1/TLR2 ligand Pam3CSK4 would compete for the same pocket of TLR2, we performed Pam3CSK4 competitive binding assay to TLR2 using HEK cells stably transfected with TLR2 (HEK-TLR2) with or without sevoflurane. We examined the effect of different anesthetics on the functions of human neutrophils stimulated with TLR2 ligands. Kruskal-Wallis test and Mann-Whitney U test were used for statistical analysis. RESULTS We observed that the attenuation of TLR1/TLR2 activation was seen on sevoflurane exposure but not on isoflurane, propofol, or dexmedetomidine exposure. The attenuation of TLR2/TLR6 activation was not seen in any of the anesthetics tested. The rigid docking simulation predicted that sevoflurane and Pam3CSK4 bound to the same pocket of TLR1/TLR2 complex. The binding of Pam3CSK4 to HEK-TLR2 cells was impaired in the presence of sevoflurane, indicating that sevoflurane and Pam3CSK4 competed for the pocket, as predicted in silico. The stimulation of neutrophils with Pam3CSK4 induced L-selection shedding but did not affect phagocytosis and reactive oxygen species production. L-selectin shedding from neutrophils was attenuated only by sevoflurane, consistent with the result of our reporter assays. CONCLUSIONS We found that TLR1/TLR2 activation was attenuated by sevoflurane, but we found no evidence for attenuation by isoflurane, propofol, or dexmedetomidine at clinically relevant concentrations. Our structural analysis and competition assay supported that sevoflurane directly bound to TLR2 at the interphase of the TLR1/TLR2 complex. Sevoflurane attenuated neutrophil L-selectin shedding, an important step for neutrophil migration.
Collapse
Affiliation(s)
- Yusuke Mitsui
- From the Department of Anesthesia, Harvard Medical School.,Cardiac Anesthesia Division, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Anesthesiology and Intensive Care Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Lifei Hou
- From the Department of Anesthesia, Harvard Medical School.,Cardiac Anesthesia Division, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Xiayi Huang
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Kirsten C Odegard
- From the Department of Anesthesia, Harvard Medical School.,Cardiac Anesthesia Division, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Luis M Pereira
- From the Department of Anesthesia, Harvard Medical School.,Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Koichi Yuki
- From the Department of Anesthesia, Harvard Medical School.,Cardiac Anesthesia Division, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
19
|
Hasan RA, Koh AY, Zia A. The gut microbiome and thromboembolism. Thromb Res 2020; 189:77-87. [PMID: 32192995 DOI: 10.1016/j.thromres.2020.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/09/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023]
Abstract
The gut microbiome plays a critical role in various inflammatory conditions, and its modulation is a potential treatment option for these conditions. The role of the gut microbiome in the pathogenesis of thromboembolism has not been fully elucidated. In this review, we summarize the evidence linking the gut microbiome to the pathogenesis of arterial and venous thrombosis. In a human host, potentially pathogenic bacteria are normal residents of the human gut microbiome, but significantly outnumbered by commensal anaerobic bacteria. Several disease states with an increased risk of venous thromboembolism (VTE) are associated with an imbalance in the gut microbiome characterized by a decrease in commensal anaerobic bacteria and an increase in the abundance of pathogenic bacteria of which the most common is the gram-negative Enterobacteriaceae (ENTERO) family. Bacterial lipopolysaccharides (LPS), the glycolipids found on the outer membrane of gram-negative bacteria, is one of the links between the microbiome and hypercoagulability. LPS binds to toll-like receptors to activate endothelial cells and platelets, leading to activation of the coagulation cascade. Bacteria in the microbiome can also metabolite compounds in the diet to produce important metabolites like trimethylamine-N-oxide (TMAO). TMAO causes platelet hyperreactivity, promotes thrombus formation and is associated with cardiovascular disease. Modulating the gut microbiome to target LPS and TMAO levels may be an innovative approach for decreasing the risk of thrombosis.
Collapse
Affiliation(s)
- Rida Abid Hasan
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Andrew Y Koh
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America; Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Ayesha Zia
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America.
| |
Collapse
|
20
|
Judith Hellman, M.D., Recipient of the 2019 Excellence in Research Award. Anesthesiology 2019. [DOI: 10.1097/aln.0000000000002903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Williams B, Neder J, Cui P, Suen A, Tanaka K, Zou L, Chao W. Toll-like receptors 2 and 7 mediate coagulation activation and coagulopathy in murine sepsis. J Thromb Haemost 2019; 17:1683-1693. [PMID: 31211901 PMCID: PMC7197442 DOI: 10.1111/jth.14543] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/10/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Sepsis is a life-threatening condition often manifested as marked inflammation and severe coagulopathy. Toll-like receptors (TLRs) play a pivotal role in inflammation, organ dysfunction and mortality in animal sepsis. OBJECTIVES To investigate the role of TLR signaling in mediating sepsis-induced coagulopathy (SIC) in a mouse model. METHODS Polymicrobial sepsis was created by cecal ligation and puncture (CLP) or fecal slurry peritoneal injection. To quantify global clotting function, two viscoelastic assays were performed with rotational thromboelastometry, and the results were presented as maximum clot firmness (MCF): (a) EXTEM to test tissue factor (TF)-initiated clot formation; and (b) FIBTEM to test EXTEM in the presence of a platelet inhibitor, cytochalasin D. Plasma coagulation factors were quantified with ELISA. TF gene expression and protein expression were determined with real-time quantitative reverse transcription PCR and flow cytometry, respectively. RESULTS Between 4 and 24 hours after CLP surgery, wild-type mice showed significant MCF reduction in both EXTEM and FIBTEM tests. This was accompanied by marked thrombocytopenia and a significant increase in the levels of plasminogen activator inhibitor-1, plasma TF, and D-dimer. In comparison, TLR2-/- and TLR7-/- CLP mice showed preserved MCF and platelet counts, and near-normal plasma TF levels. Bone marrow-derived macrophages treated with a TLR2 agonist Pam3cys-Ser-(Lys)4 (Pam3cys) or a TLR7 agonist (R837) showed marked increases in TF gene expression and protein expression. MicroRNA-146a, a newly identified proinflammatory mediator that is upregulated during sepsis, induced TF production via a TLR7-dependent mechanism. CONCLUSIONS Murine sepsis leads to an increased procoagulant response, thrombocytopenia, and global coagulopathy. TLR2 and TLR7 play an important role in procoagulant production and in SIC.
Collapse
Affiliation(s)
- Brittney Williams
- Translational Research Program, Department of Anesthesiology & Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jessica Neder
- Translational Research Program, Department of Anesthesiology & Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ping Cui
- Translational Research Program, Department of Anesthesiology & Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrew Suen
- Translational Research Program, Department of Anesthesiology & Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kenichi Tanaka
- Translational Research Program, Department of Anesthesiology & Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lin Zou
- Translational Research Program, Department of Anesthesiology & Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology & Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
22
|
Mallick S, Das J, Verma J, Mathew S, Maiti TK, Ghosh AS. Role of Escherichia coli endopeptidases and dd-carboxypeptidases in infection and regulation of innate immune response. Microbes Infect 2019; 21:464-474. [PMID: 31085336 DOI: 10.1016/j.micinf.2019.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 01/13/2023]
Abstract
The low-molecular-mass penicillin-binding proteins, involved in peptidoglycan recycling can also produce peptidoglycan fragments capable of activating an innate immune response in host. To investigate how these proteins in Enterobacteriaceae play a role to elicit/evade innate immune responses during infections, we deleted certain endopeptidases and dd-carboxypeptidases from Escherichia coli CS109 and studied the viability of these mutants in macrophages. The ability of infected macrophages to exert oxidative killing, express surface activation markers TLR2, MHC class II and release TNFα, were assessed. Immune responses were elevated in macrophages infected with dd-carboxypeptidase mutants but reduced for endopeptidase mutants. However, the NFκB, iNOS, and TLR2 transcripts remained elevated in macrophages infected with both mutant types. Overall, we have shown, under normal conditions endopeptidases have a tendency to elicit the immune response but their effect is suppressed by the presence of dd-carboxypeptidases. Conversely, DD-carboxypeptidases, normally, tend to reduce immune responses, as their deletions enhanced the same in macrophages. Therefore, we conclude that the roles of endopeptidases and dd-carboxypeptidases are possibly counter-active in wild-type cells where either class of enzymes suppresses each other's immunogenic properties rendering overall maintenance of low immunogenicity that helps E. coli in evading the host immune responses.
Collapse
Affiliation(s)
- Sathi Mallick
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Joyjyoti Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Jyoti Verma
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Samatha Mathew
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Tapas K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Anindya S Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
23
|
Conway FM, Garner JL, Orton CM, Srikanthan K, Kemp SV, Shah PL. Contemporary Concise Review 2018: Lung cancer and pleural disease. Respirology 2019; 24:475-483. [PMID: 30772946 DOI: 10.1111/resp.13499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Francesca M Conway
- Department of Respiratory Medicine, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College, London, UK
| | - Justin L Garner
- Department of Respiratory Medicine, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College, London, UK
| | - Christopher M Orton
- Department of Respiratory Medicine, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College, London, UK
| | - Karthi Srikanthan
- Department of Respiratory Medicine, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College, London, UK
| | - Samuel V Kemp
- Department of Respiratory Medicine, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College, London, UK
| | - Pallav L Shah
- Department of Respiratory Medicine, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
24
|
Slit2/Robo4 signaling pathway modulates endothelial hyper-permeability in a two-event in vitro model of transfusion-related acute lung injury. Blood Cells Mol Dis 2018; 76:7-12. [PMID: 30846360 DOI: 10.1016/j.bcmd.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/10/2018] [Accepted: 11/11/2018] [Indexed: 11/20/2022]
Abstract
Transfusion-related acute lung injury (TRALI) remains the leading cause of transfusion-related mortality. Endothelium semipermeable barrier function plays a critical role in the pathophysiology of transfusion-related acute lung injury (TRALI). Recently, Roundabout protein 4 (Robo4), interaction with its ligand Slit 2, was appreciated as a modulator of endothelial permeability and integrity. However, not much is known about the role of Slit2/Robo4 signaling pathway in the pathophysiology of TRALI. In this study, the TRALI model was performed by the "two-event" model of polymorphonuclear neutrophils (PMN)-mediated pulmonary microvascular endothelial cells (PMVECs) damage. We investigated the expression of Slit2/Robo4 and VE-cadherin and examined the pulmonary endothelial hyper-permeability in TRALI model. We found that the expression of Slit2/Robo4 and VE-cadherin were significantly decreased in a time-dependent manner, whereas the PMVECs permeability was gradually increased over time in TRALI model. Moreover, the treatment with Slit2-N, an active fragment of Slit2, increased the expression of Slit2/Robo4 and VE-cadherin to protect PMVECs from PMN-mediated pulmonary endothelial hyper-permeability. These results indicate that targeting Slit2/Robo4 signaling pathway may modulate the permeability as well as protect the integrity of endothelial barrier. In addition, Slit2-N appears to be a promising candidate for developing novel therapies against TRALI.
Collapse
|
25
|
Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int Immunopharmacol 2018; 59:391-412. [PMID: 29730580 PMCID: PMC7106078 DOI: 10.1016/j.intimp.2018.03.002] [Citation(s) in RCA: 417] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 02/07/2023]
Abstract
The immune system is a very diverse system of the host that evolved during evolution to cope with various pathogens present in the vicinity of environmental surroundings inhabited by multicellular organisms ranging from achordates to chordates (including humans). For example, cells of immune system express various pattern recognition receptors (PRRs) that detect danger via recognizing specific pathogen-associated molecular patterns (PAMPs) and mount a specific immune response. Toll-like receptors (TLRs) are one of these PRRs expressed by various immune cells. However, they were first discovered in the Drosophila melanogaster (common fruit fly) as genes/proteins important in embryonic development and dorso-ventral body patterning/polarity. Till date, 13 different types of TLRs (TLR1-TLR13) have been discovered and described in mammals since the first discovery of TLR4 in humans in late 1997. This discovery of TLR4 in humans revolutionized the field of innate immunity and thus the immunology and host-pathogen interaction. Since then TLRs are found to be expressed on various immune cells and have been targeted for therapeutic drug development for various infectious and inflammatory diseases including cancer. Even, Single nucleotide polymorphisms (SNPs) among various TLR genes have been identified among the different human population and their association with susceptibility/resistance to certain infections and other inflammatory diseases. Thus, in the present review the current and future importance of TLRs in immunity, their pattern of expression among various immune cells along with TLR based therapeutic approach is reviewed. TLRs are first described PRRs that revolutionized the biology of host-pathogen interaction and immune response The discovery of different TLRs in humans proved milestone in the field of innate immunity and inflammation The pattern of expression of all the TLRs expressed by human immune cells An association of various TLR SNPs with different inflammatory diseases Currently available drugs or vaccines based on TLRs and their future in drug targeting along with the role in reproduction, and regeneration
Collapse
|
26
|
Cai S, Zhu G, Cen X, Bi J, Zhang J, Tang X, Chen K, Cheng K. Synthesis, structure-activity relationships and preliminary mechanism study of N-benzylideneaniline derivatives as potential TLR2 inhibitors. Bioorg Med Chem 2018. [PMID: 29534935 DOI: 10.1016/j.bmc.2018.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Toll-like receptor 2 (TLR2) can recognize pathogen-associated molecular patterns to defense against invading organisms and has been represents an attractive therapeutic target. Until today, none TLR2 small molecule antagonist have been developed in clinical trial. Herein, we designed and synthesized 50 N-benzylideneaniline compounds with the help of CADD. And subsequent in vitro studies leading to the optimized compound SMU-A0B13 with most potent inhibitory activity to TLR2 (IC50=18.21 ± 0.87 μM). Preliminary mechanism studies indicated that this TLR2 inhibitor can work through the NF-κB signaling pathway with high specificity and low toxicity, and can also efficiently downregulate inflammatory cytokines, such as SEAP, TNF-α and NO in HEK-Blue hTLR2, human PBMC and Raw 264.7 cell lines. Additionally, the docking situation also indicate SMU-A0B13 can well bind to the TLR2-TIR (PDB: 1FYW) active domain, which probably explains the bioactivity.
Collapse
Affiliation(s)
- Shaoyi Cai
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Gengzheng Zhu
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaohong Cen
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jingjie Bi
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jingru Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoshan Tang
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kun Chen
- The Joint Research Center of Guangzhou University and Keele Univeristy for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China.
| | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
27
|
Ihalin R, Eneslätt K, Asikainen S. Peptidoglycan-associated lipoprotein of Aggregatibacter actinomycetemcomitans induces apoptosis and production of proinflammatory cytokines via TLR2 in murine macrophages RAW 264.7 in vitro. J Oral Microbiol 2018; 10:1442079. [PMID: 29686780 PMCID: PMC5907638 DOI: 10.1080/20002297.2018.1442079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/14/2018] [Indexed: 11/25/2022] Open
Abstract
Peptidoglycan-associated lipoprotein (PAL) is a conserved pro-inflammatory outer membrane lipoprotein in Gram-negative bacteria. Compared to systemic pathogens, little is known about the virulence properties of PAL in Aggregatibacter actinomycetemcomitans (AaPAL). The aims of this study were to investigate the cytolethality of AaPAL and its ability to induce pro-inflammatory cytokine production in macrophages. Mouse macrophages were stimulated with AaPAL, and the production of IL-1β, IL-6, TNF-α, and MCP-1 was measured after 6, 24, and 48 h. To investigate which receptor AaPAL employs for its interaction with macrophages, anti-toll-like receptor (TLR)2 and anti-TLR4 antibodies were used to block respective TLRs on macrophages. Metabolic activity and apoptosis of the macrophages were investigated after stimulation with AaPAL. AaPAL induced the production of MCP-1, TNF-α, IL-6, and IL-1β from mouse macrophages in order of decreasing abundance. The pre-treatment of macrophages with an anti-TLR2 antibody significantly diminished cytokine production. Under AaPAL stimulation, the metabolic activity of macrophages decreased in a dose- and time-dependent manner. Furthermore, AaPAL induced apoptosis in 56% of macrophages after 48 h of incubation. Our data suggest that AaPAL can kill macrophages by apoptosis. The results also emphasize the role of AaPAL as a potent pro-inflammatory agent in A. actinomycetemcomitans-associated infections.
Collapse
Affiliation(s)
- Riikka Ihalin
- Department of Odontology, Oral Microbiology, Umeå University, Umeå, Sweden.,Department of Biochemistry, University of Turku, Turku, Finland
| | - Kjell Eneslätt
- Department of Odontology, Oral Microbiology, Umeå University, Umeå, Sweden
| | - Sirkka Asikainen
- Department of Odontology, Oral Microbiology, Umeå University, Umeå, Sweden
| |
Collapse
|
28
|
Gurses KM, Kocyigit D, Yalcin MU, Canpinar H, Evranos B, Canpolat U, Yorgun H, Sahiner L, Guc D, Aytemir K. Platelet Toll-like receptor and its ligand HMGB-1 expression is increased in the left atrium of atrial fibrillation patients. Cytokine 2018; 103:50-56. [PMID: 29324261 DOI: 10.1016/j.cyto.2017.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/03/2017] [Accepted: 12/05/2017] [Indexed: 12/13/2022]
|
29
|
Sessile Innate Immune Cells. DAMAGE-ASSOCIATED MOLECULAR PATTERNS IN HUMAN DISEASES 2018. [PMCID: PMC7123606 DOI: 10.1007/978-3-319-78655-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this chapter, sessile cells of the innate immune system are briefly introduced. Defined as cells equipped with diverse pattern recognition molecules capable of detecting MAMPs and DAMPs, they encompass cells such as epithelial cells, fibroblasts, vascular cells, chondrocytes, osteoblasts, and adipocytes. Located at the body surfaces, epithelial cells represent the first line of innate immune defense against invading microbial pathogens. They are significant contributors to innate mucosal immunity and generate various antimicrobial defense mechanisms. Also, epithelial cells critically contribute to tissue repair via the phenomenon of re-epithelialization. Fibroblasts operate as classical sentinel cells of the innate immune system dedicated to responding to MAMPs and DAMPs emitted upon any tissue injury. Typically, fibroblasts synthesize most of the extracellular matrix of connective tissues, thereby playing a crucial role in tissue repair processes. Vascular cells of the innate immune system represent an evolutionarily developed first-line defense against any inciting insult hitting the vessel walls from the luminal side including bacteria, viruses, microbial toxins, and chemical noxa such as nicotine. Upon such insults and following recognition of MAMPs and DAMPs, vascular cells react with an innate immune response to create an acute inflammatory milieu in the vessel wall aimed at curing the vascular injury concerned. Chondrocytes, osteoblasts, and osteoclasts represent other vital cells of the skeletal system acting as cells of the innate immune system in its wider sense. These cells mediate injury-promoted DAMP-induced inflammatory and regenerative processes specific for the skeletal systems. Finally, adipocytes are regarded as highly active cells of the innate immune system. As white, brown, and beige adipocytes, they operate as a dynamic metabolic organ that can secrete certain bioactive molecules which have endocrine, paracrine, and autocrine actions.
Collapse
|
30
|
Fan J, Yu L, Zhao J. Comparative transcriptome analysis reveals involvement of TLR-2 signaling in the pathogenesis of intracranial aneurysm. J Clin Neurosci 2017; 47:258-263. [PMID: 29066233 DOI: 10.1016/j.jocn.2017.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 05/01/2017] [Accepted: 07/11/2017] [Indexed: 01/18/2023]
Abstract
In this study, we collected and analyzed 15 aneurysmal and 17 superficial temporal artery (STA) specimens from 32 Chinese patients with intracranial aneurysm. Total RNA was extracted and reverse transcribed to cDNA, and genome-wide expression profiling was performed by using the Affymetrix Human Genome U133 Plus 2.0 Array which allows a total number of 38,500 genes to be analyzed at the same time. Real-time RT-PCR was performed to verify the expression level of 8 selected genes. We found significant up-regulation of the TLR-2 gene. This result suggests that TLR-2 plays a key role in the formation of intracranial aneurysm in a Chinese population. To our knowledge, this study is the first to use the Human Genome U133 Plus 2.0 Array to analyze the gene expression profiles in Chinese patients with intracranial aneurysm.
Collapse
Affiliation(s)
- Jinghan Fan
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, 6 Tiantan Xili, 100050 Beijing, China
| | - Lanbing Yu
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, 6 Tiantan Xili, 100050 Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, 6 Tiantan Xili, 100050 Beijing, China.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW The present review explores the mechanisms of superficial intimal erosion, a common cause of thrombotic complications of atherosclerosis. RECENT FINDINGS Human coronary artery atheroma that give rise to thrombosis because of erosion differ diametrically from those associated with fibrous cap rupture. Eroded lesions characteristically contain few inflammatory cells, abundant extracellular matrix, and neutrophil extracellular traps (NETs). Innate immune mechanisms such as engagement of Toll-like receptor 2 (TLR2) on cultured endothelial cells can impair their viability, attachment, and ability to recover a wound. Hyaluronan fragments may serve as endogenous TLR2 ligands. Mouse experiments demonstrate that flow disturbance in arteries with neointimas tailored to resemble features of human eroded plaques disturbs endothelial cell barrier function, impairs endothelial cell viability, recruits neutrophils, and provokes endothelial cells desquamation, NET formation, and thrombosis in a TLR2-dependent manner. SUMMARY Mechanisms of erosion have received much less attention than those that provoke plaque rupture. Intensive statin treatment changes the characteristic of plaques that render them less susceptible to rupture. Thus, erosion may contribute importantly to the current residual burden of risk. Understanding the mechanisms of erosion may inform the development and deployment of novel therapies to combat the remaining atherothrombotic risk in the statin era.
Collapse
Affiliation(s)
- Thibaut Quillard
- Department of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Grégory Franck
- Department of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Thomas Mawson
- Department of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Eduardo Folco
- Department of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Peter Libby
- Department of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
32
|
Lee KL, Chen WL, Chen RJ, Lai KS, Chung CL. Lipoteichoic acid upregulates plasminogen activator inhibitor-1 expression in parapneumonic effusions. Respirology 2017; 23:89-95. [PMID: 28836366 DOI: 10.1111/resp.13148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 06/18/2017] [Accepted: 06/18/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND OBJECTIVE Parapneumonic effusion (PPE) is commonly caused by Gram-positive bacteria (GPB) and often presents with pleural loculation, which is characterized by overproduction of plasminogen activator inhibitor (PAI)-1. Lipoteichoic acid (LTA), a surface adhesion molecule of GPB, binds to the pleural mesothelium and triggers inflammation. However, the effects of LTA on PAI-1 expression in PPE and underlying mechanisms remain unclear. METHODS Thirty consecutive patients with PPE were enrolled, including uncomplicated culture negative (CN, n = 11), Gram-negative bacteria (GNB, n = 7) and GPB (n = 12) groups stratified by pleural fluid characteristics and bacteriology, and the effusion PAI-1 levels were measured. In addition, human pleural mesothelial cells (PMC) were treated with LTA and the expression of PAI-1 and activation of signalling pathways were assayed. RESULTS The median levels of PAI-1 were significantly higher in GPB (160.5 ng/mL) and GNB (117.0 ng/mL) groups than in the uncomplicated CN (58.0 ng/mL) group. In human PMC, LTA markedly upregulated PAI-1 mRNA and protein expression and enhanced elaboration of Toll-like receptor 2 (TLR2). Furthermore, LTA increased c-Jun N-terminal kinase (JNK) phosphorylation, induced activating transcription factor 2 (ATF2)/c-Jun nuclear translocation and activated PAI-1 promoter activity. Pretreatment with TLR2 siRNA significantly inhibited LTA-induced JNK phosphorylation and PAI-1 protein expression. CONCLUSION Culture-positive PPE, especially that caused by GPB, has a significantly higher level of PAI-1 than uncomplicated CN PPE. LTA upregulates PAI-1 expression through activation of TLR2/JNK/activator protein 1 (AP-1) pathway in human PMC. Better understanding of the modulation of PAI-1 synthesis by LTA in PPE may provide potential therapies for infected pleural effusions.
Collapse
Affiliation(s)
- Kai-Ling Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wei-Lin Chen
- Department of Nursing, Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Kevin S Lai
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chi-Li Chung
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,Division of Thoracic Medicine, Department of Internal Medicine, School of Medicine and School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
33
|
Lawton SK, Xu F, Tran A, Wong E, Prakash A, Schumacher M, Hellman J, Wilhelmsen K. N-Arachidonoyl Dopamine Modulates Acute Systemic Inflammation via Nonhematopoietic TRPV1. THE JOURNAL OF IMMUNOLOGY 2017; 199:1465-1475. [PMID: 28701511 DOI: 10.4049/jimmunol.1602151] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/13/2017] [Indexed: 12/22/2022]
Abstract
N-Arachidonoyl dopamine (NADA) is an endogenous lipid that potently activates the transient receptor potential vanilloid 1 (TRPV1), which mediates pain and thermosensation. NADA is also an agonist of cannabinoid receptors 1 and 2. We have reported that NADA reduces the activation of cultured human endothelial cells by LPS and TNF-α. Thus far, in vivo studies using NADA have focused on its neurologic and behavioral roles. In this article, we show that NADA potently decreases in vivo systemic inflammatory responses and levels of the coagulation intermediary plasminogen activator inhibitor 1 in three mouse models of inflammation: LPS, bacterial lipopeptide, and polymicrobial intra-abdominal sepsis. We also found that the administration of NADA increases survival in endotoxemic mice. Additionally, NADA reduces blood levels of the neuropeptide calcitonin gene-related peptide but increases the neuropeptide substance P in LPS-treated mice. We demonstrate that the anti-inflammatory effects of NADA are mediated by TRPV1 expressed by nonhematopoietic cells and provide data suggesting that neuronal TRPV1 may mediate NADA's anti-inflammatory effects. These results indicate that NADA has novel TRPV1-dependent anti-inflammatory properties and suggest that the endovanilloid system might be targeted therapeutically in acute inflammation.
Collapse
Affiliation(s)
- Samira K Lawton
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143; and
| | - Fengyun Xu
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143; and
| | - Alphonso Tran
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143; and
| | - Erika Wong
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143; and
| | - Arun Prakash
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143; and
| | - Mark Schumacher
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143; and
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143; and .,Division of Critical Care Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Kevin Wilhelmsen
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143; and
| |
Collapse
|
34
|
Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2. Blood 2017; 130:542-553. [PMID: 28572286 DOI: 10.1182/blood-2016-11-754416] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/22/2017] [Indexed: 12/23/2022] Open
Abstract
The symbiotic gut microbiota play pivotal roles in host physiology and the development of cardiovascular diseases, but the microbiota-triggered pattern recognition signaling mechanisms that impact thrombosis are poorly defined. In this article, we show that germ-free (GF) and Toll-like receptor-2 (Tlr2)-deficient mice have reduced thrombus growth after carotid artery injury relative to conventionally raised controls. GF Tlr2-/- and wild-type (WT) mice were indistinguishable, but colonization with microbiota restored a significant difference in thrombus growth between the genotypes. We identify reduced plasma levels of von Willebrand factor (VWF) and reduced VWF synthesis, specifically in hepatic endothelial cells, as a critical factor that is regulated by gut microbiota and determines thrombus growth in Tlr2-/- mice. Static platelet aggregate formation on extracellular matrix was similarly reduced in GF WT, Tlr2-/- , and heterozygous Vwf+/- mice that are all characterized by a modest reduction in plasma VWF levels. Defective platelet matrix interaction can be restored by exposure to WT plasma or to purified VWF depending on the VWF integrin binding site. Moreover, administration of VWF rescues defective thrombus growth in Tlr2-/- mice in vivo. These experiments delineate an unexpected pathway in which microbiota-triggered TLR2 signaling alters the synthesis of proadhesive VWF by the liver endothelium and favors platelet integrin-dependent thrombus growth.
Collapse
|
35
|
Seidl SE, Pessolano LG, Bishop CA, Best M, Rich CB, Stone PJ, Schreiber BM. Toll-like receptor 2 activation and serum amyloid A regulate smooth muscle cell extracellular matrix. PLoS One 2017; 12:e0171711. [PMID: 28257481 PMCID: PMC5336220 DOI: 10.1371/journal.pone.0171711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/24/2017] [Indexed: 11/19/2022] Open
Abstract
Smooth muscle cells contribute to extracellular matrix remodeling during atherogenesis. De-differentiated, synthetic smooth muscle cells are involved in processes of migration, proliferation and changes in expression of extracellular matrix components, all of which contribute to loss of homeostasis accompanying atherogenesis. Elevated levels of acute phase proteins, including serum amyloid A (SAA), are associated with an increased risk for atherosclerosis. Although infection with periodontal and respiratory pathogens via activation of inflammatory cell Toll-like receptor (TLR)2 has been linked to vascular disease, little is known about smooth muscle cell TLR2 in atherosclerosis. This study addresses the role of SAA and TLR2 activation on smooth muscle cell matrix gene expression and insoluble elastin accumulation. Cultured rat aortic smooth muscle cells were treated with SAA or TLR2 agonists and the effect on expression of matrix metallopeptidase 9 (MMP9) and tropoelastin studied. SAA up-regulated MMP9 expression. Tropoelastin is an MMP9 substrate and decreased tropoelastin levels in SAA-treated cells supported the concept of extracellular matrix remodeling. Interestingly, SAA-induced down-regulation of tropoelastin was not only evident at the protein level but at the level of gene transcription as well. Contributions of proteasomes, nuclear factor κ B and CCAAT/enhancer binding protein β on regulation of MMP9 vs. tropoleastin expression were revealed. Effects on Mmp9 and Eln mRNA expression persisted with long-term SAA treatment, resulting in decreased insoluble elastin accumulation. Interestingly, the SAA effects were TLR2-dependent and TLR2 activation by bacterial ligands also induced MMP9 expression and decreased tropoelastin expression. These data reveal a novel mechanism whereby SAA and/or infection induce changes in vascular elastin consistent with atherosclerosis.
Collapse
Affiliation(s)
- Stephanie E. Seidl
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Lawrence G. Pessolano
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Christopher A. Bishop
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Michael Best
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Celeste B. Rich
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Phillip J. Stone
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Barbara M. Schreiber
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
36
|
Cervical Carcinogenesis and Immune Response Gene Polymorphisms: A Review. J Immunol Res 2017; 2017:8913860. [PMID: 28280748 PMCID: PMC5322437 DOI: 10.1155/2017/8913860] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/28/2016] [Accepted: 12/18/2016] [Indexed: 12/13/2022] Open
Abstract
The local immune response is considered a key determinant in cervical carcinogenesis after persistent infection with oncogenic, high-risk human papillomavirus (HPV) infections. Genetic variation in various immune response genes has been shown to influence risk of developing cervical cancer, as well as progression and survival among cervical cancer patients. We reviewed the literature on associations of immunogenetic single nucleotide polymorphism, allele, genotype, and haplotype distributions with risk and progression of cervical cancer. Studies on HLA and KIR gene polymorphisms were excluded due to the abundance on literature on that subject. We show that multiple genes and loci are associated with variation in risk of cervical cancer. Rather than one single gene being responsible for cervical carcinogenesis, we postulate that variations in the different immune response genes lead to subtle differences in the effectiveness of the antiviral and antitumour immune responses, ultimately leading to differences in risk of developing cervical cancer and progressive disease after HPV infection.
Collapse
|
37
|
Abstract
Endothelial cells are a constitutive part of the heart and vasculature and form a crucial link between the cardiovascular system and the immune system. Besides their commonly accepted roles in angiogenesis, hemostasis, and the regulation of vascular tone, they are an essential and active component of immune responses. Expression of a range of innate pattern recognition receptors allows them to respond to inflammatory stimulation, and they control immune cell recruitment and extravasation into target tissues throughout the body.In this chapter, I will therefore summarize classical endothelial cell properties and functions and their cross talk with the immune system as well as the operational immunological role of endothelial cells in facilitating immune responses.
Collapse
Affiliation(s)
- Caterina Sturtzel
- Innovative Cancer Models, Children's Cancer Research Institute, St. Anna Kinderkrebsforschung e.V, Vienna, Austria.
| |
Collapse
|
38
|
Chuma M, Makishima M, Imai T, Tochikura N, Sakaue T, Kikuchi N, Kinoshita K, Kaburaki M, Yoshida Y. Duration of Systemic Inflammatory Response Syndrome Influences Serum Vancomycin Concentration in Patients With Sepsis. Clin Ther 2016; 38:2598-2609. [PMID: 27836495 DOI: 10.1016/j.clinthera.2016.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/13/2016] [Accepted: 10/19/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE Vancomycin (VCM) is used in the treatment of methicillin-resistant Staphylococcus aureus infection. The dosage of VCM must be adjusted by using therapeutic drug monitoring because of the drug's narrow therapeutic concentration window. Although optimal administration based on population pharmacokinetic (PPK) analysis and/or a Bayesian method has improved prediction accuracy, serum concentrations of VCM in patients with sepsis often deviate significantly from predicted values. We investigated factors influencing prediction errors with PPK analysis in VCM dosing. METHODS This retrospective cohort study included patients treated with VCM. Their clinical data were recorded, and there were 27 nonseptic patients and 68 septic patients. VCM concentrations were predicted by using PPK analysis and data compared with observed concentrations. FINDINGS Patients with sepsis had a higher mean absolute error than nonseptic patients, indicating a deviation of VCM concentrations from predicted values in the septic patients. To determine factors influencing prediction errors, we classified patients with sepsis into 3 subgroups according to the mean absolute error value (2.17) for the nonseptic patients: "lower" group (prediction errors, below -2.17), "upper" group (>2.17), and "no change" group (-2.17 to 2.17). In a comparison of clinical characteristics of the 3 groups, significant differences were found in the duration of systemic inflammatory response syndrome (SIRS), SIRS score, disseminated intravascular coagulation score, and levels of creatinine clearance (CrCl), hemoglobin, and diastolic blood pressure. Multiple logistic regression analysis identified SIRS duration and CrCl as factors associated with VCM concentrations in the lower and/or upper groups of septic patients. Shorter and longer SIRS duration were associated with VCM concentrations in the lower group and the upper group, respectively, compared with predicted values in patients with sepsis. According to receiver-operating characteristic curve analysis, the optimal cutoff value of SIRS duration for the lower group was 2 days; for the upper group, it was 6 days. VCM clearance in patients with an SIRS duration <2 days was higher than that for patients with an SIRS duration ≥6 days. IMPLICATIONS SIRS duration was identified as influencing VCM concentration in patients with sepsis. This study has 2 limitations. First, we performed blood sampling only for trough concentrations. Repeated blood sampling for both peak and trough concentrations should be performed for more accurate pharmacokinetic evaluation in critically ill patients. Second, we determined CrCl by using the Cockcroft-Gault formula, which may not be accurate in critically ill patients. Modifying VCM dosing according to SIRS duration will improve prediction accuracy of VCM concentration based on therapeutic drug monitoring.
Collapse
Affiliation(s)
- Masayuki Chuma
- Department of Pharmacy, Nihon University Itabashi Hospital, Tokyo, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan.
| | - Toru Imai
- Department of Pharmacy, Nihon University Itabashi Hospital, Tokyo, Japan
| | - Naohiro Tochikura
- Department of Pharmacy, Nihon University Itabashi Hospital, Tokyo, Japan
| | - Takako Sakaue
- Department of Pharmacy, Kanagawa Prefectural Keiyukai Keiyu Hospital, Yokohama, Japan
| | | | - Kosaku Kinoshita
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Morio Kaburaki
- Department of Pharmacy, Nihon University Hospital, Tokyo, Japan
| | - Yoshikazu Yoshida
- Department of Pharmacy, Nihon University Itabashi Hospital, Tokyo, Japan
| |
Collapse
|
39
|
Nagata E, Oho T. Invasive Streptococcus mutans induces inflammatory cytokine production in human aortic endothelial cells via regulation of intracellular toll-like receptor 2 and nucleotide-binding oligomerization domain 2. Mol Oral Microbiol 2016; 32:131-141. [PMID: 27004566 DOI: 10.1111/omi.12159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2016] [Indexed: 12/27/2022]
Abstract
Streptococcus mutans, the primary etiologic agent of dental caries, can gain access to the bloodstream and has been associated with cardiovascular disease. However, the roles of S. mutans in inflammation in cardiovascular disease remain unclear. The aim of this study was to examine cytokine production induced by S. mutans in human aortic endothelial cells (HAECs) and to evaluate the participation of toll-like receptors (TLRs) and cytoplasmic nucleotide-binding oligomerization domain (NOD) -like receptors in HAECs. Cytokine production by HAECs was determined using enzyme-linked immunosorbent assays, and the expression of TLRs and NOD-like receptors was evaluated by real-time polymerase chain reaction, flow cytometry and immunocytochemistry. The involvement of TLR2 and NOD2 in cytokine production by invaded HAECs was examined using RNA interference. The invasion efficiencies of S. mutans strains were evaluated by means of antibiotic protection assays. Five of six strains of S. mutans of various serotypes induced interleukin-6, interleukin-8 and monocyte chemoattractant protein-1 production by HAECs. All S. mutans strains upregulated TLR2 and NOD2 mRNA levels in HAECs. Streptococcus mutans Xc upregulated the intracellular TLR2 and NOD2 protein levels in HAECs. Silencing of the TLR2 and NOD2 genes in HAECs invaded by S. mutans Xc led to a reduction in interleukin-6, interleukin-8 and monocyte chemoattractant protein-1 production. Cytokine production induced by invasive S. mutans via intracellular TLR2 and NOD2 in HAECs may be associated with inflammation in cardiovascular disease.
Collapse
Affiliation(s)
- E Nagata
- Department of Preventive Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - T Oho
- Department of Preventive Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
40
|
Zeng MY, Cisalpino D, Varadarajan S, Hellman J, Warren HS, Cascalho M, Inohara N, Núñez G. Gut Microbiota-Induced Immunoglobulin G Controls Systemic Infection by Symbiotic Bacteria and Pathogens. Immunity 2016; 44:647-658. [PMID: 26944199 DOI: 10.1016/j.immuni.2016.02.006] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/10/2015] [Accepted: 12/07/2015] [Indexed: 12/21/2022]
Abstract
The gut microbiota is compartmentalized in the intestinal lumen and induces local immune responses, but it remains unknown whether the gut microbiota can induce systemic response and contribute to systemic immunity. We report that selective gut symbiotic gram-negative bacteria were able to disseminate systemically to induce immunoglobulin G (IgG) response, which primarily targeted gram-negative bacterial antigens and conferred protection against systemic infections by E. coli and Salmonella by directly coating bacteria to promote killing by phagocytes. T cells and Toll-like receptor 4 on B cells were important in the generation of microbiota-specific IgG. We identified murein lipoprotein (MLP), a highly conserved gram-negative outer membrane protein, as a major antigen that induced systemic IgG homeostatically in both mice and humans. Administration of anti-MLP IgG conferred crucial protection against systemic Salmonella infection. Thus, our findings reveal an important function for the gut microbiota in combating systemic infection through the induction of protective IgG.
Collapse
Affiliation(s)
- Melody Y Zeng
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Daniel Cisalpino
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Saranyaraajan Varadarajan
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, Division of Critical Care Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - H Shaw Warren
- Infectious Disease Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marilia Cascalho
- Transplantation Biology, Department of Surgery and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Naohiro Inohara
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
41
|
Khakpour S, Wilhelmsen K, Hellman J. Vascular endothelial cell Toll-like receptor pathways in sepsis. Innate Immun 2015; 21:827-46. [DOI: 10.1177/1753425915606525] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/11/2015] [Indexed: 12/20/2022] Open
Abstract
The endothelium forms a vast network that dynamically regulates vascular barrier function, coagulation pathways and vasomotor tone. Microvascular endothelial cells are uniquely situated to play key roles during infection and injury, owing to their widespread distribution throughout the body and their constant interaction with circulating blood. While not viewed as classical immune cells, endothelial cells express innate immune receptors, including the Toll-like receptors (TLRs), which activate intracellular inflammatory pathways mediated through NF-κB and the MAP kinases. TLR agonists, including LPS and bacterial lipopeptides, directly upregulate microvascular endothelial cell expression of inflammatory mediators. Intriguingly, TLR activation also modulates microvascular endothelial cell permeability and the expression of coagulation pathway intermediaries. Microvascular thrombi have been hypothesized to trap microorganisms thereby limiting the spread of infection. However, dysregulated activation of endothelial inflammatory pathways is also believed to lead to coagulopathy and increased vascular permeability, which together promote sepsis-induced organ failure. This article reviews vascular endothelial cell innate immune pathways mediated through the TLRs as they pertain to sepsis, highlighting links between TLRs and coagulation and permeability pathways, and their role in healthy and pathologic responses to infection and sepsis.
Collapse
Affiliation(s)
- Samira Khakpour
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
- Biomedical Sciences and Immunology Programs, University of California, San Francisco, CA, USA
| | - Kevin Wilhelmsen
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
- Biomedical Sciences and Immunology Programs, University of California, San Francisco, CA, USA
| |
Collapse
|
42
|
Wilhelmsen K, Xu F, Farrar K, Tran A, Khakpour S, Sundar S, Prakash A, Wang J, Gray NS, Hellman J. Extracellular signal-regulated kinase 5 promotes acute cellular and systemic inflammation. Sci Signal 2015; 8:ra86. [PMID: 26307013 DOI: 10.1126/scisignal.aaa3206] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inflammatory critical illness is a syndrome that is characterized by acute inflammation and organ injury, and it is triggered by infections and noninfectious tissue injury, both of which activate innate immune receptors and pathways. Although reports suggest an anti-inflammatory role for the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 5 (ERK5), we previously found that ERK5 mediates proinflammatory responses in primary human cells in response to stimulation of Toll-like receptor 2 (TLR2). We inhibited the kinase activities and reduced the abundances of ERK5 and MEK5, a MAPK kinase directly upstream of ERK5, in primary human vascular endothelial cells and monocytes, and found that ERK5 promoted inflammation induced by a broad range of microbial TLR agonists and by the proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Furthermore, we found that inhibitors of MEK5 or ERK5 reduced the plasma concentrations of proinflammatory cytokines in mice challenged with TLR ligands or heat-killed Staphylococcus aureus, as well as in mice that underwent sterile lung ischemia-reperfusion injury. Finally, we found that inhibition of ERK5 protected endotoxemic mice from death. Together, our studies support a proinflammatory role for ERK5 in primary human endothelial cells and monocytes, and suggest that ERK5 is a potential therapeutic target in diverse disorders that cause inflammatory critical illness.
Collapse
Affiliation(s)
- Kevin Wilhelmsen
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Fengyun Xu
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Katherine Farrar
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alphonso Tran
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Samira Khakpour
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shirin Sundar
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arun Prakash
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jinhua Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nathanael S Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA. Division of Critical Care Medicine and Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
43
|
Zhu JP, Wu K, Li JY, Guan Y, Sun YH, Ma WJ, Xie QM. Cryptoporus volvatus polysaccharides attenuate LPS-induced expression of pro-inflammatory factors via the TLR2 signaling pathway in human alveolar epithelial cells. PHARMACEUTICAL BIOLOGY 2015; 54:347-353. [PMID: 25963228 DOI: 10.3109/13880209.2015.1042981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Cryptoporus volvatus (Peck) Hubb grows wild in China, and its fruiting bodies have been used traditionally to treat asthma and bronchitis. OBJECTIVES This study evaluates the anti-inflammatory effect of Cryptoporus polysaccharides (CP) extracted from fruiting bodies of C. volvatus on lipopolysaccharide (LPS)-induced pro-inflammatory factors and the signaling pathways involved in human alveolar epithelial cells. MATERIALS AND METHODS To evaluate the effects of CP on LPS-induced pro-inflammatory factors, A549 cells were pre-incubated with CP 1, 10, and 100 μg/ml for 1 h and then stimulated with LPS 10 μg/ml for 24 h. The expression of pro-inflammatory factors monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), Toll-like receptor 2 (TLR2), and phosphorylation of ERK1/2, p38, and NF-κB p65 were measured by q-PCR, ELISA, and western blotting. RESULTS CP decreased LPS-induced mRNA expression of MCP-1, TNF-α, and IL-1β (IC50 = 83.3, 85.2, and 91.6 μg/ml, respectively) and their correspondent protein expression (IC50 = 88.6, 76.4, and 81.6 μg/ml, respectively). Investigation of potential mechanisms indicated that CP 100 μg/ml reduced LPS-induced expression of TLR2 mRNA (66.9%, p < 0.01) and protein (63.2%, p < 0.01) that was a result of the decreased pro-inflammatory factors. LPS induction increased the expression of TLR2 and the phosphorylation of p38 and ERK1/2, NF-kB p65 concomitantly. CP 100 μg/ml inhibited the LPS-induced phosphorylation of the signaling proteins (p < 0.05). CONCLUSIONS This suggests that CP pretreatment down-regulates LPS-mediated inflammation in lung epithelial cells. This study further confirmed that CP is a potential anti-inflammatory drug for the treatment of airway inflammatory diseases.
Collapse
Affiliation(s)
- Jian-Ping Zhu
- a Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou , China
| | - Kai Wu
- b Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine , Hangzhou , China , and
- c Animal Laboratoy Center of Zhejiang , Hangzhou , China
| | - Jin-You Li
- b Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine , Hangzhou , China , and
| | - Yan Guan
- a Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou , China
- b Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine , Hangzhou , China , and
| | - Yan-Hong Sun
- b Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine , Hangzhou , China , and
| | - Wen-Jiang Ma
- b Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine , Hangzhou , China , and
| | - Qiang-Min Xie
- b Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine , Hangzhou , China , and
- c Animal Laboratoy Center of Zhejiang , Hangzhou , China
| |
Collapse
|
44
|
Quillard T, Araújo HA, Franck G, Shvartz E, Sukhova G, Libby P. TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. Eur Heart J 2015; 36:1394-404. [PMID: 25755115 DOI: 10.1093/eurheartj/ehv044] [Citation(s) in RCA: 258] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/01/2015] [Indexed: 12/12/2022] Open
Abstract
AIMS Superficial erosion of atheromata causes many acute coronary syndromes, but arises from unknown mechanisms. This study tested the hypothesis that Toll-like receptor-2 (TLR2) activation contributes to endothelial apoptosis and denudation and thus contributes to the pathogenesis of superficial erosion. METHODS AND RESULTS Toll-like receptor-2 and neutrophils localized at sites of superficially eroded human plaques. In vitro, TLR2 ligands (including hyaluronan, a matrix macromolecule abundant in eroded lesions) induced endothelial stress, characterized by reactive oxygen species production, endoplasmic reticulum (ER) stress, and apoptosis. Co-incubation of neutrophils with endothelial cells (ECs) potentiated these effects and induced EC apoptosis and detachment. We then categorized human atherosclerotic plaques (n = 56) based on morphologic features associated with superficial erosion, 'stable' fibrotic, or 'vulnerable' lesions. Morphometric analyses of the human atheromata localized neutrophils and neutrophil extracellular traps (NETs) near clusters of apoptotic ECs in smooth muscle cell (SMC)-rich plaques. The number of luminal apoptotic ECs correlated with neutrophil accumulation, amount of NETs, and TLR2 staining in SMC-rich plaques, but not in 'vulnerable' atheromata. CONCLUSION These in vitro observations and analyses of human plaques indicate that TLR2 stimulation followed by neutrophil participation may render smooth muscle cell-rich plaques susceptible to superficial erosion and thrombotic complications by inducing ER stress, apoptosis, and favouring detachment of EC.
Collapse
Affiliation(s)
- Thibaut Quillard
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA INSERM, UMR957, Université de Nantes, Nantes Atlantique Universités, EA3822, 1 Rue Gaston Veil, Nantes 44035, France
| | - Haniel Alves Araújo
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gregory Franck
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eugenia Shvartz
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Galina Sukhova
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Peter Libby
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
45
|
Wang H, Guo J, West XZ, Bid HK, Lu L, Hong L, Jang GF, Zhang L, Crabb JW, Linetsky M, Salomon RG. Detection and biological activities of carboxyethylpyrrole ethanolamine phospholipids (CEP-EPs). Chem Res Toxicol 2014; 27:2015-22. [PMID: 25380349 PMCID: PMC4269404 DOI: 10.1021/tx500216a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Oxidation of docosahexaenoate phospholipids
produces 4-hydroxy-7-oxo-hept-5-eonyl
phospholipids (HOHA-PLs) that react with protein lysyl ε-amino
residues to generate 2-ω-carboxyethylpyrrole (CEP) derivatives,
endogenous factors that induce angiogenesis in the retina and tumors.
It seemed likely, but remained unproven, that HOHA-PLs react with
ethanolamine phospholipids (EPs) in vivo to generate
CEP-EPs. We now show that CEP-EPs are present in human blood at 4.6-fold
higher levels in age-related macular degeneration plasma than in normal
plasma. We also show that CEP-EPs are pro-angiogenic, inducing tube
formation by human umbilical vein endothelial cells by activating
Toll-like receptor 2. CEP-EP levels may be a useful biomarker for
clinical assessment of AMD risk and CEP-associated tumor progression
and a tool for monitoring the efficacy of therapeutic interventions.
Collapse
Affiliation(s)
- Hua Wang
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Voronin D, Guimarães AF, Molyneux GR, Johnston KL, Ford L, Taylor MJ. Wolbachia lipoproteins: abundance, localisation and serology of Wolbachia peptidoglycan associated lipoprotein and the Type IV Secretion System component, VirB6 from Brugia malayi and Aedes albopictus. Parasit Vectors 2014; 7:462. [PMID: 25287420 PMCID: PMC4197220 DOI: 10.1186/s13071-014-0462-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lipoproteins are the major agonists of Wolbachia-dependent inflammatory pathogenesis in filariasis and a validated target for drug discovery. Here we characterise the abundance, localisation and serology of the Wolbachia lipoproteins: Wolbachia peptidoglycan associated lipoprotein and the Type IV Secretion System component, VirB6. METHODS We used proteomics to confirm lipoprotein presence and relative abundance; fractionation, immunoblotting and confocal and electron immuno-microscopy for localisation and ELISA for serological analysis. RESULTS Proteomic analysis of Brugia malayi adult female protein extracts confirmed the presence of two lipoproteins, previously predicted through bioinformatics: Wolbachia peptidoglycan associated lipoprotein (wBmPAL) and the Type IV Secretion System component, VirB6 (wBmVirB6). wBmPAL was among the most abundant Wolbachia proteins present in an extract of adult female worms with wBmVirB6 only detected at a much lower abundance. This differential abundance was reflected in the immunogold-labelling, which showed wBmPAL localised at numerous sites within the bacterial membranes, whereas wBmVirB6 was present as a single cluster on each bacterial cell and also located within the bacterial membranes. Immunoblotting of fractionated extracts confirmed the localisation of wBmPAL to membranes and its absence from cytosolic fractions of C6/36 mosquito cells infected with wAlbB. In whole worm mounts, antibody labelling of both lipoproteins were associated with Wolbachia. Serological analysis showed that both proteins were immunogenic and raised antibody responses in the majority of individuals infected with Wuchereria bancrofti. CONCLUSIONS Two Wolbachia lipoproteins, wBmPAL and wBmVirB6, are present in extracts of Brugia malayi with wBmPAL among the most abundant of Wolbachia proteins. Both lipoproteins localised to bacterial membranes with wBmVirB6 present as a single cluster suggesting a single Type IV Secretory System on each Wolbachia cell.
Collapse
Affiliation(s)
- Denis Voronin
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Ana F Guimarães
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Gemma R Molyneux
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Kelly L Johnston
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Louise Ford
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Mark J Taylor
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
47
|
Zelaya H, Villena J, Lopez AG, Alvarez S, Agüero G. Modulation of the inflammation-coagulation interaction during pneumococcal pneumonia by immunobioticLactobacillus rhamnosusCRL1505: Role of Toll-like receptor 2. Microbiol Immunol 2014; 58:416-26. [DOI: 10.1111/1348-0421.12163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 05/26/2014] [Accepted: 05/30/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Hortensia Zelaya
- Immunobiotics Research Group; Tucuman
- Applied Biochemistry Institute, Faculty of Biochemistry, Chemistry and Pharmacy; Tucuman University
| | - Julio Villena
- Immunobiotics Research Group; Tucuman
- Laboratory of Immunobiotechnology; Reference Centre for Lactobacilli (CERELA-CONICET); Tucuman Argentina
| | - Andres Gramajo Lopez
- Immunobiotics Research Group; Tucuman
- Applied Biochemistry Institute, Faculty of Biochemistry, Chemistry and Pharmacy; Tucuman University
| | - Susana Alvarez
- Immunobiotics Research Group; Tucuman
- Applied Biochemistry Institute, Faculty of Biochemistry, Chemistry and Pharmacy; Tucuman University
- Laboratory of Immunobiotechnology; Reference Centre for Lactobacilli (CERELA-CONICET); Tucuman Argentina
| | - Graciela Agüero
- Immunobiotics Research Group; Tucuman
- Applied Biochemistry Institute, Faculty of Biochemistry, Chemistry and Pharmacy; Tucuman University
| |
Collapse
|
48
|
Wilhelmsen K, Khakpour S, Tran A, Sheehan K, Schumacher M, Xu F, Hellman J. The endocannabinoid/endovanilloid N-arachidonoyl dopamine (NADA) and synthetic cannabinoid WIN55,212-2 abate the inflammatory activation of human endothelial cells. J Biol Chem 2014; 289:13079-100. [PMID: 24644287 DOI: 10.1074/jbc.m113.536953] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although cannabinoids, such as Δ(9)-tetrahydrocannabinol, have been studied extensively for their psychoactive effects, it has become apparent that certain cannabinoids possess immunomodulatory activity. Endothelial cells (ECs) are centrally involved in the pathogenesis of organ injury in acute inflammatory disorders, such as sepsis, because they express cytokines and chemokines, which facilitate the trafficking of leukocytes to organs, and they modulate vascular barrier function. In this study, we find that primary human ECs from multiple organs express the cannabinoid receptors CB1R, GPR18, and GPR55, as well as the ion channel transient receptor potential cation channel vanilloid type 1. In contrast to leukocytes, CB2R is only minimally expressed in some EC populations. Furthermore, we show that ECs express all of the known endocannabinoid (eCB) metabolic enzymes. Examining a panel of cannabinoids, we demonstrate that the synthetic cannabinoid WIN55,212-2 and the eCB N-arachidonoyl dopamine (NADA), but neither anandamide nor 2-arachidonoylglycerol, reduce EC inflammatory responses induced by bacterial lipopeptide, LPS, and TNFα. We find that endothelial CB1R/CB2R are necessary for the effects of NADA, but not those of WIN55,212-2. Furthermore, transient receptor potential cation channel vanilloid type 1 appears to counter the anti-inflammatory properties of WIN55,212-2 and NADA, but conversely, in the absence of these cannabinoids, its inhibition exacerbates the inflammatory response in ECs activated with LPS. These data indicate that the eCB system can modulate inflammatory activation of the endothelium and may have important implications for a variety of acute inflammatory disorders that are characterized by EC activation.
Collapse
|
49
|
Wilhelmsen K, Farrar K, Hellman J. Quantitative in vitro assay to measure neutrophil adhesion to activated primary human microvascular endothelial cells under static conditions. J Vis Exp 2013:e50677. [PMID: 23995778 DOI: 10.3791/50677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The vascular endothelium plays an integral part in the inflammatory response. During the acute phase of inflammation, endothelial cells (ECs) are activated by host mediators or directly by conserved microbial components or host-derived danger molecules. Activated ECs express cytokines, chemokines and adhesion molecules that mobilize, activate and retain leukocytes at the site of infection or injury. Neutrophils are the first leukocytes to arrive, and adhere to the endothelium through a variety of adhesion molecules present on the surfaces of both cells. The main functions of neutrophils are to directly eliminate microbial threats, promote the recruitment of other leukocytes through the release of additional factors, and initiate wound repair. Therefore, their recruitment and attachment to the endothelium is a critical step in the initiation of the inflammatory response. In this report, we describe an in vitro neutrophil adhesion assay using calcein AM-labeled primary human neutrophils to quantitate the extent of microvascular endothelial cell activation under static conditions. This method has the additional advantage that the same samples quantitated by fluorescence spectrophotometry can also be visualized directly using fluorescence microscopy for a more qualitative assessment of neutrophil binding.
Collapse
Affiliation(s)
- Kevin Wilhelmsen
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.
| | | | | |
Collapse
|
50
|
Lakota K, Mrak-Poljsak K, Bozic B, Tomsic M, Sodin-Semrl S. Serum amyloid A activation of human coronary artery endothelial cells exhibits a neutrophil promoting molecular profile. Microvasc Res 2013; 90:55-63. [PMID: 23938271 DOI: 10.1016/j.mvr.2013.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Serum amyloid A (SAA) has been shown to be an active participant in atherosclerosis and cardiovascular diseases. SAA-stimulated human coronary artery endothelial cells (HCAEC) were reported to release pro-inflammatory cytokines, chemokines and adhesion molecules; however it remains unclear which putative SAA receptors are present in these cells and how they act. We investigated the effects of inflammatory stimuli on the expression of SAA receptors, signaling pathways and molecular profiles in HCAEC. METHODOLOGY/PRINCIPLE FINDINGS HCAEC were cultured in vitro and stimulated with SAA (1000nM) or IL-1β (1000pg/ml). Expression of mRNA was determined by qPCR, and expression and quantification of proteins were assessed by dot array blots and ELISA, respectively. Protein phosphorylation was determined by dot blot arrays and Western blots. We report that all potential SAA receptors tested (FPR2/ALX, RAGE, TANIS, TLR2, TLR4 and CLA-1/hSR-B1) are expressed in HCAEC. Importantly, IL-1β or SAA significantly increased solely the expression of the innate immune receptor TLR2. SAA upregulated the phosphorylation of ERK1/2, NF-κB (p65, p105) and JNK, as well as expression/release of IL-6, IL-8, G-CSF, GM-CSF, ICAM-1 and VCAM-1, all potent molecules involved in neutrophil-related activities. A TLR2-dependent positive feedback mechanism of SAA expression was found. CONCLUSION/SIGNIFICANCE SAA stimulated responses in HCAEC target neutrophil rather than monocyte/macrophage activation.
Collapse
Affiliation(s)
- Katja Lakota
- University Medical Centre, Department of Rheumatology, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|