1
|
Arab A, Kashani B, Cordova-Delgado M, Scott EN, Alemi K, Trueman J, Groeneweg G, Chang WC, Loucks CM, Ross CJD, Carleton BC, Ester M. Machine learning model identifies genetic predictors of cisplatin-induced ototoxicity in CERS6 and TLR4. Comput Biol Med 2024; 183:109324. [PMID: 39488053 DOI: 10.1016/j.compbiomed.2024.109324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Cisplatin-induced ototoxicity remains a significant concern in pediatric cancer treatment due to its permanent impact on quality of life. Previously, genetic association analyses have been performed to detect genetic variants associated with this adverse reaction. METHODS In this study, a combination of interpretable neural networks and Generative Adversarial Networks (GANs) was employed to identify genetic markers associated with cisplatin-induced ototoxicity. The applied method, BRI-Net, incorporates biological domain knowledge to define the network structure and employs adversarial training to learn an unbiased representation of the data, which is robust to known confounders. Leveraging genomic data from a cohort of 362 cisplatin-treated pediatric cancer patients recruited by the CPNDS (Canadian Pharmacogenomics Network for Drug Safety), this model revealed two statistically significant single nucleotide polymorphisms to be associated with cisplatin-induced ototoxicity. RESULTS Two markers within the CERS6 (rs13022792, p-value: 3 × 10-4) and TLR4 (rs10759932, p-value: 7 × 10-4) genes were associated with this cisplatin-induced adverse reaction. CERS6, a ceramide synthase, contributes to elevated ceramide levels, a known initiator of apoptotic signals in mouse models of inner ear hair cells. TLR4, a pattern-recognition protein, initiates inflammation in response to cisplatin, and reduced TLR4 expression has been shown in murine hair cells to confer protection from ototoxicity. CONCLUSION Overall, these findings provide a foundation for understanding the genetic landscape of cisplatin-induced ototoxicity, with implications for improving patient care and treatment outcomes.
Collapse
Affiliation(s)
- Ali Arab
- School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
| | - Bahareh Kashani
- Department of Experimental Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | | | - Erika N Scott
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kaveh Alemi
- School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
| | - Jessica Trueman
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gabriella Groeneweg
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada
| | - Wan-Chun Chang
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Catrina M Loucks
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Colin J D Ross
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Bruce C Carleton
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada; Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada.
| | - Martin Ester
- School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
2
|
Bai B, Ma Y, Liu D, Zhang Y, Zhang W, Shi R, Zhou Q. DNA damage caused by chemotherapy has duality, and traditional Chinese medicine may be a better choice to reduce its toxicity. Front Pharmacol 2024; 15:1483160. [PMID: 39502534 PMCID: PMC11534686 DOI: 10.3389/fphar.2024.1483160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Background DNA damage induced by chemotherapy has duality. It affects the efficacy of chemotherapy and constrains its application. An increasing number of studies have shown that traditional Chinese medicine (TCM) is highly effective in reducing side-effects induced by chemotherapy due to its natural, non-toxic and many sourced from food. Recent advancements have demonstrated survival rates are improved attributable to effective chemotherapy. DNA damage is the principal mechanism underlying chemotherapy. However, not all instances of DNA damage are beneficial. Chemotherapy induces DNA damage in normal cells, leading to side effects. It affects the efficacy of chemotherapy and constrains its application. Objectives This review aims to summarize the dual nature of DNA damage induced by chemotherapy and explore how TCM can mitigate chemotherapy-induced side effects. Results The review summarized the latest research progress in DNA damage caused by chemotherapy and the effect of alleviating side effects by TCM. It focused on advantages and disadvantages of chemotherapy, the mechanism of drugs and providing insights for rational and effective clinical treatment and serving as a basis for experiment. In this review, we described the mechanisms of DNA damage, associated chemotherapeutics, and their toxicity. Furthermore, we explored Chinese herb that can alleviate chemotherapy-induced side-effects. Conclusion We highlight key mechanisms of DNA damage caused by chemotherapeutics and discuss specific TCM herbs that have shown potential in reducing these side effects. It can provide reference for clinical and basic research.
Collapse
Affiliation(s)
- Bufan Bai
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingrui Ma
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Deng Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Zhang
- Department of Intensive Care Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weihong Zhang
- Breast Surgery Department, Baoshan Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Shi
- Department of Intensive Care Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qianmei Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Dongfang Hospital Affiliated to Shanghai Tongji University, Shanghai, China
| |
Collapse
|
3
|
Guo Z, Wu Y, Chen B, Kong M, Xie P, Li Y, Liu D, Chai R, Gu N. Superparamagnetic iron oxide nanoparticle regulates microbiota-gut-inner ear axis for hearing protection. Natl Sci Rev 2024; 11:nwae100. [PMID: 38707203 PMCID: PMC11067960 DOI: 10.1093/nsr/nwae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 05/07/2024] Open
Abstract
Noise-induced hearing loss (NIHL) is a highly prevalent form of sensorineural hearing damage that has significant negative effects on individuals of all ages and there are no effective drugs approved by the US Food and Drug Administration. In this study, we unveil the potential of superparamagnetic iron oxide nanoparticle assembly (SPIOCA) to reshape the dysbiosis of gut microbiota for treating NIHL. This modulation inhibits intestinal inflammation and oxidative stress responses, protecting the integrity of the intestinal barrier. Consequently, it reduces the transportation of pathogens and inflammatory factors from the bloodstream to the cochlea. Additionally, gut microbiota-modulated SPIOCA-induced metabolic reprogramming in the gut-inner ear axis mainly depends on the regulation of the sphingolipid metabolic pathway, which further contributes to the restoration of hearing function. Our study confirms the role of the microbiota-gut-inner ear axis in NIHL and provides a novel alternative for the treatment of NIHL and other microbiota dysbiosis-related diseases.
Collapse
Affiliation(s)
- Zhanhang Guo
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Yunhao Wu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Bo Chen
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mengdie Kong
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Peng Xie
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Yan Li
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Dongfang Liu
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology & Vascular Surgery, Department of Radiology, Medical School, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- School of Medical Technology, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Southeast university Shenzhen research institute, Shenzhen 518063, China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
- Cardiovascular Disease Research Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Medical School, Nanjing University, Nanjing 210093, China
| |
Collapse
|
4
|
Liu W, Li H, Kämpfe Nordström C, Danckwardt-Lillieström N, Agrawal S, Ladak HM, Rask-Andersen H. Immuno-surveillance and protection of the human cochlea. Front Neurol 2024; 15:1355785. [PMID: 38817543 PMCID: PMC11137295 DOI: 10.3389/fneur.2024.1355785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/21/2024] [Indexed: 06/01/2024] Open
Abstract
Background Despite its location near infection-prone areas, the human inner ear demonstrates remarkable resilience. This suggests that there are inherent instruments deterring the invasion and spread of pathogens into the inner ear. Here, we combined high-resolution light microscopy, super-resolution immunohistochemistry (SR-SIM) and synchrotron phase contrast imaging (SR-PCI) to identify the protection and barrier systems in the various parts of the human inner ear, focusing on the lateral wall, spiral ganglion, and endolymphatic sac. Materials and methods Light microscopy was conducted on mid-modiolar, semi-thin sections, after direct glutaraldehyde/osmium tetroxide fixation. The tonotopic locations were estimated using SR-PCI and 3D reconstruction in cadaveric specimens. The sections were analyzed for leucocyte and macrophage activity, and the results were correlated with immunohistochemistry using confocal microscopy and SR-SIM. Results Light microscopy revealed unprecedented preservation of cell anatomy and several macrophage-like cells that were localized in the cochlea. Immunohistochemistry demonstrated IBA1 cells frequently co-expressing MHC II in the spiral ganglion, nerve fibers, lateral wall, spiral limbus, and tympanic covering layer at all cochlear turns as well as in the endolymphatic sac. RNAscope assays revealed extensive expression of fractalkine gene transcripts in type I spiral ganglion cells. CD4 and CD8 cells occasionally surrounded blood vessels in the modiolus and lateral wall. TMEM119 and P2Y12 were not expressed, indicating that the cells labeled with IBA1 were not microglia. The round window niche, compact basilar membrane, and secondary spiral lamina may form protective shields in the cochlear base. Discussion The results suggest that the human cochlea is surveilled by dwelling and circulating immune cells. Resident and blood-borne macrophages may initiate protective immune responses via chemokine signaling in the lateral wall, spiral lamina, and spiral ganglion at different frequency locations. Synchrotron imaging revealed intriguing protective barriers in the base of the cochlea. The role of the endolymphatic sac in human inner ear innate and adaptive immunity is discussed.
Collapse
Affiliation(s)
- Wei Liu
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Hao Li
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Charlotta Kämpfe Nordström
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | | | - Sumit Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Department of Electrical and Computer Engineering, Western University, London, ON, Canada
| | - Hanif M. Ladak
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Department of Electrical and Computer Engineering, Western University, London, ON, Canada
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Hsieh CY, Tsai CY, Chou YF, Hsu CJ, Wu HP, Wu CC. Otoprotection against aminoglycoside- and cisplatin-induced ototoxicity focusing on the upstream drug uptake pathway. J Chin Med Assoc 2024; 87:17-24. [PMID: 37962398 DOI: 10.1097/jcma.0000000000001023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
Aminoglycoside- and cisplatin-induced ototoxicity, which is a significant issue owing to the widespread use of these drugs in clinical practice, involves the entry of aminoglycosides and cisplatin into the endolymph and hair cells via specific channels or transporters, followed by reactive oxygen species (ROS) generation and hair cells apoptosis. Current strategies focalize primarily on interference with downstream ROS effects; however, recent evidence has demonstrated that inhibiting the uptake of aminoglycosides and cisplatin by hair cells is another promising strategy for tackling the upstream drug uptake pathway. With advances in structural biology, the conformations of certain aminoglycoside and cisplatin channels and transporters, such as the mechanoelectrical transduction channel and organic cation transporter-2, have been largely elucidated. These channels and transporters may become potential targets for the introduction of new otoprotective strategies. This review focuses on the strategies for inhibiting ototoxic drugs uptake by auditory hair cells and provides potential targets for recent developments in the field of otoprotection. Molecular dynamics (MD) simulations of these proteins could help identify the molecules that inhibit the uptake of aminoglycosides and cisplatin by hair cells. Integrating upstream drug uptake pathway targets and MD simulations may help dissect molecular mechanisms and develop novel otoprotective strategies for aminoglycoside- and cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Cheng-Yu Hsieh
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Cheng-Yu Tsai
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yi-Fan Chou
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Chuan-Jen Hsu
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Hung-Pin Wu
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan, ROC
| |
Collapse
|
6
|
Domingo IK, Groenendyk J, Michalak M, Bhavsar AP. Cisplatin Toxicity Is Mediated by Direct Binding to Toll-Like Receptor 4 through a Mechanism That Is Distinct from Metal Allergens. Mol Pharmacol 2023; 103:158-165. [PMID: 36460345 DOI: 10.1124/molpharm.122.000595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/20/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Cisplatin is an effective chemotherapeutic agent, yet its use is limited by several adverse drug reactions, known as cisplatin-induced toxicities (CITs). We recently demonstrated that cisplatin could elicit proinflammatory responses associated with CITs through Toll-like receptor 4 (TLR4). TLR4 is best recognized for binding bacterial lipopolysaccharide (LPS) via its coreceptor, MD-2. TLR4 is also proposed to directly bind transition metals, such as nickel. Little is known about the nature of the cisplatin-TLR4 interaction. Here, we show that soluble TLR4 was capable of blocking cisplatin-induced, but not LPS-induced, TLR4 activation. Cisplatin and nickel, but not LPS, were able to directly bind soluble TLR4 in a microscale thermophoresis binding assay. Interestingly, TLR4 histidine variants that abolish nickel binding reduced, but did not eliminate, cisplatin-induced TLR4 activation. This was corroborated by binding data that showed cisplatin, but not nickel, could directly bind mouse TLR4 that lacks these histidine residues. Altogether, our findings suggest that TLR4 can directly bind cisplatin in a manner that is enhanced by, but not dependent on, histidine residues that facilitate binding to transition metals. SIGNIFICANCE STATEMENT: This work describes how the xenobiotic cisplatin interacts with Toll-like receptor 4 (TLR4) to initiate proinflammatory signaling that underlies cisplatin toxicities, which are severe adverse outcomes in cisplatin treatment. Here, this study provides a mechanistic bridge between cisplatin extracellular interactions with TLR4 and previous observations that genetic and chemical inhibition of TLR4 mitigates cisplatin-induced toxicity.
Collapse
Affiliation(s)
- Ivan K Domingo
- Departments of Medical Microbiology & Immunology (I.K.D., A.P.B.) and Biochemistry (J.G., M.M.), Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jody Groenendyk
- Departments of Medical Microbiology & Immunology (I.K.D., A.P.B.) and Biochemistry (J.G., M.M.), Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Marek Michalak
- Departments of Medical Microbiology & Immunology (I.K.D., A.P.B.) and Biochemistry (J.G., M.M.), Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Amit P Bhavsar
- Departments of Medical Microbiology & Immunology (I.K.D., A.P.B.) and Biochemistry (J.G., M.M.), Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Coffin AB, Dale E, Doppenberg E, Fearington F, Hayward T, Hill J, Molano O. Putative COVID-19 therapies imatinib, lopinavir, ritonavir, and ivermectin cause hair cell damage: A targeted screen in the zebrafish lateral line. Front Cell Neurosci 2022; 16:941031. [PMID: 36090793 PMCID: PMC9448854 DOI: 10.3389/fncel.2022.941031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
The biomedical community is rapidly developing COVID-19 drugs to bring much-need therapies to market, with over 900 drugs and drug combinations currently in clinical trials. While this pace of drug development is necessary, the risk of producing therapies with significant side-effects is also increased. One likely side-effect of some COVID-19 drugs is hearing loss, yet hearing is not assessed during preclinical development or clinical trials. We used the zebrafish lateral line, an established model for drug-induced sensory hair cell damage, to assess the ototoxic potential of seven drugs in clinical trials for treatment of COVID-19. We found that ivermectin, lopinavir, imatinib, and ritonavir were significantly toxic to lateral line hair cells. By contrast, the approved COVID-19 therapies dexamethasone and remdesivir did not cause damage. We also did not observe damage from the antibiotic azithromycin. Neither lopinavir nor ritonavir altered the number of pre-synaptic ribbons per surviving hair cell, while there was an increase in ribbons following imatinib or ivermectin exposure. Damage from lopinavir, imatinib, and ivermectin was specific to hair cells, with no overall cytotoxicity noted following TUNEL labeling. Ritonavir may be generally cytotoxic, as determined by an increase in the number of TUNEL-positive non-hair cells following ritonavir exposure. Pharmacological inhibition of the mechanotransduction (MET) channel attenuated damage caused by lopinavir and ritonavir but did not alter imatinib or ivermectin toxicity. These results suggest that lopinavir and ritonavir may enter hair cells through the MET channel, similar to known ototoxins such as aminoglycoside antibiotics. Finally, we asked if ivermectin was ototoxic to rats in vivo. While ivermectin is not recommended by the FDA for treating COVID-19, many people have chosen to take ivermectin without a doctor's guidance, often with serious side-effects. Rats received daily subcutaneous injections for 10 days with a clinically relevant ivermectin dose (0.2 mg/kg). In contrast to our zebrafish assays, ivermectin did not cause ototoxicity in rats. Our research suggests that some drugs in clinical trials for COVID-19 may be ototoxic. This work can help identify drugs with the fewest side-effects and determine which therapies warrant audiometric monitoring.
Collapse
Affiliation(s)
- Allison B. Coffin
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, United States
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Emily Dale
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Emilee Doppenberg
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Forrest Fearington
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Tamasen Hayward
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Jordan Hill
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Olivia Molano
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| |
Collapse
|
8
|
Lin WH, Jiang WP, Chen CC, Lee LY, Tsai YS, Chien LH, Chou YN, Deng JS, Huang GJ. Renoprotective Effect of Pediococcus acidilactici GKA4 on Cisplatin-Induced Acute Kidney Injury by Mitigating Inflammation and Oxidative Stress and Regulating the MAPK, AMPK/SIRT1/NF-κB, and PI3K/AKT Pathways. Nutrients 2022; 14:2877. [PMID: 35889833 PMCID: PMC9323173 DOI: 10.3390/nu14142877] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Acute kidney injury (AKI) describes a sudden loss of kidney function and is associated with a high mortality. Pediococcus acidilactici is a potent producer of bacteriocin and inhibits the growth of pathogens during fermentation and food storage; it has been used in the food industry for many years. In this study, the potential of P. acidilactici GKA4 (GKA4) to ameliorate AKI was investigated using a cisplatin-induced animal model. First, mice were given oral GKA4 for ten days and intraperitoneally injected with cisplatin on the seventh day to create an AKI mode. GKA4 attenuated renal histopathological alterations, serum biomarkers, the levels of inflammatory mediators, and lipid oxidation in cisplatin-induced nephrotoxicity. Moreover, GKA4 significantly decreased the expression of inflammation-related proteins and mitogen-activated protein kinase (MAPK) in kidney tissues. Eventually, GKA4 also increased the levels of related antioxidant enzymes and pathways. Consistently, sirtuin 1 (SIRT1) upregulated the level of autophagy-related proteins (LC3B, p62, and Beclin1). Further studies are needed to check our results and advance our knowledge of the mechanism whereby PI3K inhibition (wortmannin) reverses the effect of GKA4 on cisplatin-treated AKI. Taken together, GKA4 provides a therapeutic target with promising clinical potential after cisplatin treatment by reducing oxidative stress and inflammation via the MAPK, AMP-activated protein kinase (AMPK)/SIRT1/nuclear factor kappa B (NF-κB), and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) axes.
Collapse
Affiliation(s)
- Wen-Hsin Lin
- College of Pharmacy, China Medical University, Taichung 404, Taiwan;
| | - Wen-Ping Jiang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 330, Taiwan; (C.-C.C.); (L.-Y.L.); (Y.-S.T.)
| | - Li-Ya Lee
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 330, Taiwan; (C.-C.C.); (L.-Y.L.); (Y.-S.T.)
| | - You-Shan Tsai
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan 330, Taiwan; (C.-C.C.); (L.-Y.L.); (Y.-S.T.)
| | - Liang-Hsuan Chien
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; (L.-H.C.); (Y.-N.C.)
| | - Ya-Ni Chou
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; (L.-H.C.); (Y.-N.C.)
| | - Jeng-Shyan Deng
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan; (L.-H.C.); (Y.-N.C.)
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
9
|
Domingo IK, Latif A, Bhavsar AP. Pro-Inflammatory Signalling PRRopels Cisplatin-Induced Toxicity. Int J Mol Sci 2022; 23:7227. [PMID: 35806229 PMCID: PMC9266867 DOI: 10.3390/ijms23137227] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Cisplatin is a platinum-based chemotherapeutic that has long since been effective against a variety of solid-cancers, substantially improving the five-year survival rates for cancer patients. Its use has also historically been limited by its adverse drug reactions, or cisplatin-induced toxicities (CITs). Of these reactions, cisplatin-induced nephrotoxicity (CIN), cisplatin-induced peripheral neuropathy (CIPN), and cisplatin-induced ototoxicity (CIO) are the three most common of several CITs recognised thus far. While the anti-cancer activity of cisplatin is well understood, the mechanisms driving its toxicities have only begun to be defined. Most of the literature pertains to damage caused by oxidative stress that occurs downstream of cisplatin treatment, but recent evidence suggests that the instigator of CIT development is inflammation. Cisplatin has been shown to induce pro-inflammatory signalling in CIN, CIPN, and CIO, all of which are associated with persisting markers of inflammation, particularly from the innate immune system. This review covered the hallmarks of inflammation common and distinct between different CITs, the role of innate immune components in development of CITs, as well as current treatments targeting pro-inflammatory signalling pathways to conserve the use of cisplatin in chemotherapy and improve long-term health outcomes of cancer patients.
Collapse
Affiliation(s)
| | | | - Amit P. Bhavsar
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (I.K.D.); (A.L.)
| |
Collapse
|
10
|
Lee SY, Kim S, Han K, Woong Choi J, Byung Chae H, Yeon Choi D, Min Lee S, Kyun Park M, Mun S, Koo JW. Microarray analysis of lipopolysaccharide-induced endotoxemia in the cochlea. Gene 2022; 823:146347. [PMID: 35227853 DOI: 10.1016/j.gene.2022.146347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 11/24/2022]
Abstract
Lipopolysaccharide (LPS)-induced endotoxemia alters intracochlear homeostasis and potentiates aminoglycoside-induced ototoxicity. However, the pathological mechanisms in the cochlea following systemic LPS-induced inflammation are unclear. In this study, three groups of mice received intraperitoneal injections [group A, saline control (n = 10); group B, 1 mg/kg LPS (n = 10); group C, 10 mg/kg LPS (n = 10)]. After 24 h, gene expression in cochlea samples was analyzed using DNA microarrays covering 28,853 genes in a duplicate manner. A total of 505 differentially expressed genes (DEGs) (≥2.0-fold change; p < 0.05) were identified. Interferon- and chemotaxis-related genes, including gbp2, gbp5, cxcl10, and Rnf125, were dose-dependently upregulated by LPS-induced endotoxemia. These results were verified by RT-qPCR. Upregulated DEGs were associated with inflammation, positive regulation of immune responses, and regulation of cell adhesion, while downregulated ones were associated with chemical synaptic transmission and the synaptic vesicle cycle. Protein-protein interaction included four functional clusters associated with interleukin-4, -10, and -13 and G protein-coupled receptor (GPCR) ligand binding; activation of matrix metalloproteinases and collagen degradation; recruitment of amyloid A proteins; and neutrophil degranulation. The findings of this study provide an additional basis on changes in the expression of genes in the cochlea in response to LPS-induced endotoxemia.
Collapse
Affiliation(s)
- Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, South Korea
| | - Songmi Kim
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, South Korea; Department of Microbiology, College of Science and Technology, Dankook University, Cheonan 31116, South Korea
| | - Kyudong Han
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, South Korea; Department of Microbiology, College of Science and Technology, Dankook University, Cheonan 31116, South Korea
| | - Jin Woong Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungnam National University, College of Medicine, Daejeon, South Korea
| | - Ho Byung Chae
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Da Yeon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - So Min Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Seyoung Mun
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, South Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea.
| | - Ja-Won Koo
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, South Korea.
| |
Collapse
|
11
|
Chan J, Telang R, Kociszewska D, Thorne PR, Vlajkovic SM. A High-Fat Diet Induces Low-Grade Cochlear Inflammation in CD-1 Mice. Int J Mol Sci 2022; 23:5179. [PMID: 35563572 PMCID: PMC9101486 DOI: 10.3390/ijms23095179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
There is growing evidence for a relationship between gut dysbiosis and hearing loss. Inflammatory bowel disease, diet-induced obesity (DIO), and type 2 diabetes have all been linked to hearing loss. Here, we investigated the effect of a chronic high-fat diet (HFD) on the development of inner ear inflammation using a rodent model. Three-week-old CD-1 (Swiss) mice were fed an HFD or a control diet for ten weeks. After ten weeks, mouse cochleae were harvested, and markers of cochlear inflammation were assessed at the protein level using immunohistochemistry and at the gene expression level using quantitative real-time RT-PCR. We identified increased immunoexpression of pro-inflammatory biomarkers in animals on an HFD, including intracellular adhesion molecule 1 (ICAM1), interleukin 6 receptor α (IL6Rα), and toll-like-receptor 2 (TLR2). In addition, increased numbers of ionized calcium-binding adapter molecule 1 (Iba1) positive macrophages were found in the cochlear lateral wall in mice on an HFD. In contrast, gene expression levels of inflammatory markers were not affected by an HFD. The recruitment of macrophages to the cochlea and increased immunoexpression of inflammatory markers in mice fed an HFD provide direct evidence for the association between HFD and cochlear inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Srdjan M. Vlajkovic
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (J.C.); (R.T.); (D.K.); (P.R.T.)
| |
Collapse
|
12
|
Keithley EM. Inner ear immunity. Hear Res 2022; 419:108518. [DOI: 10.1016/j.heares.2022.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
|
13
|
Abstract
Ototoxicity refers to damage to the inner ear that leads to functional hearing loss or vestibular disorders by selected pharmacotherapeutics as well as a variety of environmental exposures (eg, lead, cadmium, solvents). This article reviews the fundamental mechanisms underlying ototoxicity by clinically relevant, hospital-prescribed medications (ie, aminoglycoside antibiotics or cisplatin, as illustrative examples). Also reviewed are current strategies to prevent prescribed medication-induced ototoxicity, with several clinical or candidate interventional strategies being discussed.
Collapse
Affiliation(s)
- Peter S Steyger
- Translational Hearing Center, Biomedical Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| |
Collapse
|
14
|
Zhu W, She W, Gao Z, Ma Y, Jin X. Inhibition of macrophage migration inhibitory factor alleviates LPS-induced inflammation response of HEI-OC1 cells via suppressing NF-κB signaling. Cytokine 2021; 150:155776. [PMID: 34864396 DOI: 10.1016/j.cyto.2021.155776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/12/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Sudden sensorineural hearing loss (SSNHL) is acute and unexplained. Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine in several inflammatory diseases. However, its role in SSNHL remains elusive. METHODS Lipopolysaccharide (LPS) was used to induce the inflammatory response of murine auditory cells, HEI-OC1. Silencing of MIF in HEI-OC1 cells was achieved by transfection of short hairpin RNA against MIF. 740Y-P and IMD0354 were used to stimulate the PI3K pathway and suppress the NF-κB pathway, respectively. RT-qPCR and western blotting were used to examine MIF and cyclooxygenase 2 (COX2) expression in LPS-treated HEI-OC1 cells. ELISA was employed to assess prostaglandin E2 (PGE2) concentrations. RESULTS MIF was upregulated in LPS-treated HEI-OC1 cells. MIF knockdown reduced PGE2 synthesis and COX2 expression in LPS-treated HEI-OC1 cells. Moreover, MIF knockdown suppressed activation of the PI3K/AKT and NF-κB pathway in LPS-treated HEI-OC1 cells. Additionally, inhibition of MIF decreased PGE2 production and COX2 expression via inactivation of the NF-κB pathway. CONCLUSION Inhibition of MIF alleviated LPS-induced inflammation in HEI-OC1 cells via inactivating the NF-κB signaling, which might provide a better understanding for SSNHL development.
Collapse
Affiliation(s)
- Wenyan Zhu
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu 223300, China.
| | - Wandong She
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Ziwen Gao
- Department of Otorhinolaryngology, Head and Neck Surgery, Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Yongchi Ma
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu 223300, China
| | - Xin Jin
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu 223300, China
| |
Collapse
|
15
|
Yang CH, Hwang CF, Chuang JH, Lian WS, Wang FS, Yang MY. Systemic toll-like receptor 9 agonist CpG oligodeoxynucleotides exacerbates aminoglycoside ototoxicity. Hear Res 2021; 411:108368. [PMID: 34678647 DOI: 10.1016/j.heares.2021.108368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 02/08/2023]
Abstract
The Toll-like receptor (TLR) signaling pathway is the key regulator of the innate immune system in response to systemic infection. Several studies have reported that the systemic TLR4 agonist lipopolysaccharide exacerbates aminoglycoside ototoxicity, but the influence of virus-associated TLR7 and TLR9 signaling cascades on the cochlea is unclear. The present study aimed to investigate the auditory effects of systemic TLR7 and TLR9 agonists during chronic kanamycin treatment. CBA/CaJ mice received the TLR7 agonist gardiquimod or TLR9 agonist CpG oligodeoxynucleotides (ODN) one day before kanamycin injection and on the 5th and 10th days during a 14-day course of kanamycin treatment. We observed that systemic gardiquimod or CpG ODN alone did not affect the baseline auditory brainstem response (ABR) threshold. Three weeks after kanamycin treatment, gardiquimod did not significantly change ABR threshold shifts, whereas CpG ODN significantly increased kanamycin-induced ABR threshold shifts. Furthermore, outer hair cell (OHC) evaluation revealed that CpG ODN reduced distortion product otoacoustic emission amplitudes and increased kanamycin-induced OHC loss. CpG ODN significantly elevated cochlear Irf-7, Tnf-α, Il-1, and Il-6 transcript levels. In addition, an increased number of Iba-1+ cells, which represented activated macrophages, was observed in the cochlea treated with CpG ODN. Our results indicated that systemic CpG ODN exacerbated kanamycin-induced ototoxicity and increased cochlear inflammation. This study implies that patients with underlying virus infection may experience more severe aminoglycoside-induced hearing loss if it occurs.
Collapse
Affiliation(s)
- Chao-Hui Yang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chung-Feng Hwang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Jiin-Haur Chuang
- Division of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Wei-Shiung Lian
- Core Laboratory for Phenomics & Diagnostics, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Feng-Sheng Wang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan; Core Laboratory for Phenomics & Diagnostics, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Ming-Yu Yang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan.
| |
Collapse
|
16
|
Steyger PS. Mechanisms of Aminoglycoside- and Cisplatin-Induced Ototoxicity. Am J Audiol 2021; 30:887-900. [PMID: 34415784 PMCID: PMC9126111 DOI: 10.1044/2021_aja-21-00006] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose This review article summarizes our current understanding of the mechanisms underlying acquired hearing loss from hospital-prescribed medications that affects as many as 1 million people each year in Western Europe and North America. Yet, there are currently no federally approved drugs to prevent or treat the debilitating and permanent hearing loss caused by the life-saving platinum-based anticancer drugs or the bactericidal aminoglycoside antibiotics. Hearing loss has long-term impacts on quality-of-life measures, especially in young children and older adults. This review article also highlights some of the current knowledge gaps regarding iatrogenic causes of hearing loss. Conclusion Further research is urgently needed to further refine clinical practice and better ameliorate iatrogenic drug-induced hearing loss.
Collapse
Affiliation(s)
- Peter S. Steyger
- Translational Hearing Center, Creighton University, Omaha, NE
- National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
| |
Collapse
|
17
|
Zhang Y, Li Y, Fu X, Wang P, Wang Q, Meng W, Wang T, Yang J, Chai R. The Detrimental and Beneficial Functions of Macrophages After Cochlear Injury. Front Cell Dev Biol 2021; 9:631904. [PMID: 34458249 PMCID: PMC8385413 DOI: 10.3389/fcell.2021.631904] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
Macrophages are the main intrinsic immune cells in the cochlea; they can be activated and play a complicated role after cochlear injury. Many studies have shown that the number of macrophages and their morphological characteristics within the major cochlear partitions undergo significant changes under various pathological conditions including acoustic trauma, ototoxic drug treatment, age-related cochlear degeneration, selective hair cell (HC) and spiral ganglion neuron (SGN) elimination, and surgery. However, the exact role of these macrophages after cochlear injury is still unclear. Regulating the migration and activity of macrophages may be a therapeutic approach to reduce the risk or magnitude of trauma-induced hearing loss, and this review highlights the role of macrophages on the peripheral auditory structures of the cochlea and elucidate the mechanisms of macrophage injury and the strategies to reduce the injury by regulating macrophage.
Collapse
Affiliation(s)
- Yuan Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China.,Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yiyuan Li
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Xiaolong Fu
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Pengjun Wang
- Department of Otorhinolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiao Tong University, Shanghai, China
| | - Qin Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Meng
- Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Tian Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianming Yang
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Renjie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Coffin AB, Boney R, Hill J, Tian C, Steyger PS. Detecting Novel Ototoxins and Potentiation of Ototoxicity by Disease Settings. Front Neurol 2021; 12:725566. [PMID: 34489859 PMCID: PMC8418111 DOI: 10.3389/fneur.2021.725566] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Over 100 drugs and chemicals are associated with permanent hearing loss, tinnitus, and vestibular deficits, collectively known as ototoxicity. The ototoxic potential of drugs is rarely assessed in pre-clinical drug development or during clinical trials, so this debilitating side-effect is often discovered as patients begin to report hearing loss. Furthermore, drug-induced ototoxicity in adults, and particularly in elderly patients, may go unrecognized due to hearing loss from a variety of etiologies because of a lack of baseline assessments immediately prior to novel therapeutic treatment. During the current pandemic, there is an intense effort to identify new drugs or repurpose FDA-approved drugs to treat COVID-19. Several potential COVID-19 therapeutics are known ototoxins, including chloroquine (CQ) and lopinavir-ritonavir, demonstrating the necessity to identify ototoxic potential in existing and novel medicines. Furthermore, several factors are emerging as potentiators of ototoxicity, such as inflammation (a hallmark of COVID-19), genetic polymorphisms, and ototoxic synergy with co-therapeutics, increasing the necessity to evaluate a drug's potential to induce ototoxicity under varying conditions. Here, we review the potential of COVID-19 therapies to induce ototoxicity and factors that may compound their ototoxic effects. We then discuss two models for rapidly detecting the potential for ototoxicity: mammalian auditory cell lines and the larval zebrafish lateral line. These models offer considerable value for pre-clinical drug development, including development of COVID-19 therapies. Finally, we show the validity of in silico screening for ototoxic potential using a computational model that compares structural similarity of compounds of interest with a database of known ototoxins and non-ototoxins. Preclinical screening at in silico, in vitro, and in vivo levels can provide an earlier indication of the potential for ototoxicity and identify the subset of candidate therapeutics for treating COVID-19 that need to be monitored for ototoxicity as for other widely-used clinical therapeutics, like aminoglycosides and cisplatin.
Collapse
Affiliation(s)
| | | | - Jordan Hill
- Washington State University Vancouver, Vancouver, WA, United States
| | - Cong Tian
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Peter S. Steyger
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
- National Center for Rehabilitative Auditory Research, Portland, OR, United States
| |
Collapse
|
19
|
Chen X, Zhang Q, Yang C, Liu Y, Li L. GRβ Regulates Glucocorticoid Resistance in Sudden Sensorineural Hearing Loss. Curr Pharm Biotechnol 2021; 22:1206-1215. [PMID: 33032506 DOI: 10.2174/1389201021666201008163534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In recent years, the incidence of sudden deafness has gradually increased, with a very limited understanding of its etiology and pathogenesis. Glucocorticoids are the first choice of the treatment, but some hormone-resistant patients are not sensitive to glucocorticoid therapy. The pathogenesis is not yet known. In this study, we aim to construct the HEI-OC1 cell line stably overexpressing Glucocorticoid Receptor Beta (GRβ), and identify its exact role in the cases of glucocorticoidresistant sudden deafness. METHODS We used the endotoxin lipopolysaccharide-stimulated cochlear hair cells (HEI-OC1) to investigate the relationship of inflammation factor IL-2, TNF alpha, and SRp30c with the high expression GRβ. We built a stable GRβ high expression HEI-OC1 cell line and clarified its effects on the therapeutic effect of dexamethasone. MTT assay, colony formation assay, CCK-8 assay, Western blot, and RT-qPCR were utilized for characterizations. RESULTS Dexamethasone reduced the LPS-induced inflammatory response from HEI-OC1 cells (p<0.05), detected by MTT assay. Dexamethasone could protect HEI-OC1 cells, but its protective effect was weakened due to the transfection of SRp30c over-expression plasmid (p<0.05). The transfection of SRp30c over-expression plasmid in HEI-OC1 cells could elevate the expressions of GRβ (p<0.05). CONCLUSION We clarified the mechanisms of high expression of GRβ in glucocorticoid-resistant sudden sensorineural hearing loss, and proved that the inhibition of SRp30c may act as a new treatment way of glucocorticoid-resistant sudden sensorineural hearing loss.
Collapse
Affiliation(s)
- Xubo Chen
- Department of Otolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Qi Zhang
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese medicine, Nanchang, Jiangxi, 330004, China
| | - Chunping Yang
- Department of Otolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Yuehui Liu
- Department of Otolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Lihua Li
- Department of Otolaryngology, Head and Neck Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
20
|
Babolmorad G, Latif A, Domingo IK, Pollock NM, Delyea C, Rieger AM, Allison WT, Bhavsar AP. Toll-like receptor 4 is activated by platinum and contributes to cisplatin-induced ototoxicity. EMBO Rep 2021; 22:e51280. [PMID: 33733573 PMCID: PMC8097357 DOI: 10.15252/embr.202051280] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptor 4 (TLR4) recognizes bacterial lipopolysaccharide (LPS) and can also be activated by some Group 9/10 transition metals, which is believed to mediate immune hypersensitivity reactions. In this work, we test whether TLR4 can be activated by the Group 10 metal platinum and the platinum-based chemotherapeutic cisplatin. Cisplatin is invaluable in childhood cancer treatment but its use is limited due to a permanent hearing loss (cisplatin-induced ototoxicity, CIO) adverse effect. We demonstrate that platinum and cisplatin activate pathways downstream of TLR4 to a similar extent as the known TLR4 agonists LPS and nickel. We further show that TLR4 is required for cisplatin-induced inflammatory, oxidative, and cell death responses in hair cells in vitro and for hair cell damage in vivo. Finally, we identify a TLR4 small molecule inhibitor able to curtail cisplatin toxicity in vitro. Thus, our findings indicate that TLR4 is a promising therapeutic target to mitigate CIO.
Collapse
Affiliation(s)
- Ghazal Babolmorad
- Department of Medical Microbiology and ImmunologyFaculty of Medicine & DentistryUniversity of AlbertaEdmontonABCanada
| | - Asna Latif
- Department of Medical Microbiology and ImmunologyFaculty of Medicine & DentistryUniversity of AlbertaEdmontonABCanada
| | - Ivan K Domingo
- Department of Medical Microbiology and ImmunologyFaculty of Medicine & DentistryUniversity of AlbertaEdmontonABCanada
| | - Niall M Pollock
- Department of Biological SciencesFaculty of ScienceUniversity of AlbertaEdmontonABCanada
| | - Cole Delyea
- Department of Medical Microbiology and ImmunologyFaculty of Medicine & DentistryUniversity of AlbertaEdmontonABCanada
| | - Aja M Rieger
- Department of Medical Microbiology and ImmunologyFaculty of Medicine & DentistryUniversity of AlbertaEdmontonABCanada
| | - W Ted Allison
- Department of Biological SciencesFaculty of ScienceUniversity of AlbertaEdmontonABCanada
- Department of Medical GeneticsFaculty of Medicine & DentistryUniversity of AlbertaEdmontonABCanada
| | - Amit P Bhavsar
- Department of Medical Microbiology and ImmunologyFaculty of Medicine & DentistryUniversity of AlbertaEdmontonABCanada
- Department of Medical GeneticsFaculty of Medicine & DentistryUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
21
|
Shih CP, Kuo CY, Lin YY, Lin YC, Chen HK, Wang H, Chen HC, Wang CH. Inhibition of Cochlear HMGB1 Expression Attenuates Oxidative Stress and Inflammation in an Experimental Murine Model of Noise-Induced Hearing Loss. Cells 2021; 10:810. [PMID: 33916471 PMCID: PMC8066810 DOI: 10.3390/cells10040810] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Noise-induced hearing loss (NIHL) is a common inner ear disease but has complex pathological mechanisms, one of which is increased oxidative stress in the cochlea. The high-mobility group box 1 (HMGB1) protein acts as an inflammatory mediator and shows different activities with redox modifications linked to the generation of reactive oxygen species (ROS). We aimed to investigate whether manipulation of cochlear HMGB1 during noise exposure could prevent noise-induced oxidative stress and hearing loss. Sixty CBA/CaJ mice were divided into two groups. An intraperitoneal injection of anti-HMGB1 antibodies was administered to the experimental group; the control group was injected with saline. Thirty minutes later, all mice were subjected to white noise exposure. Subsequent cochlear damage, including auditory threshold shifts, hair cell loss, expression of cochlear HMGB1, and free radical activity, was then evaluated. The levels of HMGB1 and 4-hydroxynonenal (4-HNE), as respective markers of reactive nitrogen species (RNS) and ROS formation, showed slight increases on post-exposure day 1 and achieved their highest levels on post-exposure day 4. After noise exposure, the antibody-treated mice showed markedly less ROS formation and lower expression of NADPH oxidase 4 (NOX4), nitrotyrosine, inducible nitric oxide synthase (iNOS), and intercellular adhesion molecule-1 (ICAM-1) than the saline-treated control mice. A significant amelioration was also observed in the threshold shifts of the auditory brainstem response and the loss of outer hair cells in the antibody-treated versus the saline-treated mice. Our results suggest that inhibition of HMGB1 by neutralization with anti-HMGB1 antibodies prior to noise exposure effectively attenuated oxidative stress and subsequent inflammation. This procedure could therefore have potential as a therapy for NIHL.
Collapse
Affiliation(s)
- Cheng-Ping Shih
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical Center, Tri-Service General Hospital, Taipei 11490, Taiwan; (C.-P.S.); (C.-Y.K.); (Y.-Y.L.); (H.-K.C.); (H.W.)
| | - Chao-Yin Kuo
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical Center, Tri-Service General Hospital, Taipei 11490, Taiwan; (C.-P.S.); (C.-Y.K.); (Y.-Y.L.); (H.-K.C.); (H.W.)
| | - Yuan-Yung Lin
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical Center, Tri-Service General Hospital, Taipei 11490, Taiwan; (C.-P.S.); (C.-Y.K.); (Y.-Y.L.); (H.-K.C.); (H.W.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Yi-Chun Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Hang-Kang Chen
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical Center, Tri-Service General Hospital, Taipei 11490, Taiwan; (C.-P.S.); (C.-Y.K.); (Y.-Y.L.); (H.-K.C.); (H.W.)
- Taichung Armed Forces General Hospital, Taichung 41168, Taiwan
| | - Hao Wang
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical Center, Tri-Service General Hospital, Taipei 11490, Taiwan; (C.-P.S.); (C.-Y.K.); (Y.-Y.L.); (H.-K.C.); (H.W.)
| | - Hsin-Chien Chen
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical Center, Tri-Service General Hospital, Taipei 11490, Taiwan; (C.-P.S.); (C.-Y.K.); (Y.-Y.L.); (H.-K.C.); (H.W.)
| | - Chih-Hung Wang
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical Center, Tri-Service General Hospital, Taipei 11490, Taiwan; (C.-P.S.); (C.-Y.K.); (Y.-Y.L.); (H.-K.C.); (H.W.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan;
- Taichung Armed Forces General Hospital, Taichung 41168, Taiwan
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
22
|
Perin P, Marino F, Varela-Nieto I, Szczepek AJ. Editorial: Neuroimmunology of the Inner Ear. Front Neurol 2021; 12:635359. [PMID: 33633679 PMCID: PMC7899967 DOI: 10.3389/fneur.2021.635359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/07/2021] [Indexed: 12/20/2022] Open
Affiliation(s)
- Paola Perin
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Franca Marino
- Center of Research in Medical Pharmacology University of Insubria, Varese, Italy
| | - Isabel Varela-Nieto
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Rare Diseases Networking Biomedical Research Centre, Centro de Investigación Biomédica en Red, Carlos III Institute of Health, Madrid, Spain.,La Paz Hospital Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Agnieszka J Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Faculty of Medicine and Health Sciences, University of Zielona Gora, Zielona Gora, Poland
| |
Collapse
|
23
|
Baumgartner JE, Baumgartner LS, Baumgartner ME, Moore EJ, Messina SA, Seidman MD, Shook DR. Progenitor cell therapy for acquired pediatric nervous system injury: Traumatic brain injury and acquired sensorineural hearing loss. Stem Cells Transl Med 2021; 10:164-180. [PMID: 33034162 PMCID: PMC7848325 DOI: 10.1002/sctm.20-0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
While cell therapies hold remarkable promise for replacing injured cells and repairing damaged tissues, cell replacement is not the only means by which these therapies can achieve therapeutic effect. For example, recent publications show that treatment with varieties of adult, multipotent stem cells can improve outcomes in patients with neurological conditions such as traumatic brain injury and hearing loss without directly replacing damaged or lost cells. As the immune system plays a central role in injury response and tissue repair, we here suggest that multipotent stem cell therapies achieve therapeutic effect by altering the immune response to injury, thereby limiting damage due to inflammation and possibly promoting repair. These findings argue for a broader understanding of the mechanisms by which cell therapies can benefit patients.
Collapse
Affiliation(s)
- James E. Baumgartner
- Advent Health for ChildrenOrlandoFloridaUSA
- Department of Neurological SurgeryUniversity of Central Florida College of MedicineOrlandoFloridaUSA
| | | | | | - Ernest J. Moore
- Department of Audiology and Speech Language PathologyUniversity of North TexasDentonTexasUSA
| | | | - Michael D. Seidman
- Advent Health CelebrationCelebrationFloridaUSA
- Department of OtorhinolaryngologyUniversity of Central FloridaOrlandoFloridaUSA
| | | |
Collapse
|
24
|
Abstract
The delivery of therapies to the cochlea is notoriously challenging. It is an organ protected by a number of barriers that need to be overcome in the drug delivery process. Additionally, there are multiple sites of possible damage within the cochlea. Despite the many potential sites of damage, acquired otologic insults preferentially damage a single location. While progress has been made in techniques for inner ear drug delivery, the current techniques remain non-specific and our ability to deliver therapies in a cell-specific manner are limited. Fortunately, there are proteins specific to various cell-types within the cochlea (e.g., hair cells, spiral ganglion cells, stria vascularis) that function as biomarkers of site-specific damage. These protein biomarkers have potential to serve as targets for cell-specific inner ear drug delivery. In this manuscript, we review the concept of biomarkers and targeted- inner ear drug delivery and the well-characterized protein biomarkers within each of the locations of interest within the cochlea. Our review will focus on targeted drug delivery in the setting of acquired otologic insults (e.g., ototoxicity, noise-induce hearing loss). The goal is not to discuss therapies to treat acquired otologic insults, rather, to establish potential concepts of how to deliver therapies in a targeted, cell-specific manner. Based on our review, it is clear that future of inner ear drug delivery is a discipline filled with potential that will require collaborative efforts among clinicians and scientists to optimize treatment of otologic insults. Graphical Abstract ![]()
Collapse
|
25
|
Sekulic-Jablanovic M, Wright MB, Petkovic V, Bodmer D. Pioglitazone Ameliorates Gentamicin Ototoxicity by Affecting the TLR and STAT Pathways in the Early Postnatal Organ of Corti. Front Cell Neurosci 2020; 14:566148. [PMID: 33192313 PMCID: PMC7658481 DOI: 10.3389/fncel.2020.566148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022] Open
Abstract
Noise trauma, infection, and ototoxic drugs are frequent external causes of hearing loss. With no pharmacological treatments currently available, understanding the mechanisms and pathways leading to auditory hair cell (HC) damage and repair is crucial for identifying potential pharmacological targets. Prior research has implicated increased reactive oxygen species (ROS) and inflammation as general mechanisms of hearing loss common to diverse causes. Novel targets of these two key mechanisms of auditory damage may provide new paths toward the prevention and treatment of hearing loss. Pioglitazone, an oral antidiabetic drug from the class of thiazolidinediones, acts as an agonist of the peroxisome proliferator-activated receptor-gamma (PPAR-γ) and is involved in the regulation of lipid and glucose metabolism. PPAR-γ is an important player in repressing the expression of inflammatory cytokines and signaling molecules. We evaluated the effects of pioglitazone in the mouse Organ of Corti (OC) explants to characterize its influence on signaling pathways involved in auditory HC damage. The OC explants was cultured with pioglitazone, gentamicin, or a combination of both agents. Pioglitazone treatment resulted in significant repression of interferon (IFN)-α and -gamma pathways and downstream cytokines, as assessed by RNA sequencing and quantitative PCR gene expression assays. More detailed investigation at the single gene and protein level showed that pioglitazone mediated its anti-inflammatory effects through alterations of the Toll-like receptor (TLR) and STAT pathways. Together, these results indicate that pioglitazone significantly represses IFN and TLR in the cochlea, dampening the activity of gentamicin-induced pathways. These data support our previous results demonstrating significant protection of auditory HCs in the OC explants exposed to pioglitazone and other PPAR-targeted agents.
Collapse
Affiliation(s)
| | | | - Vesna Petkovic
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Daniel Bodmer
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Clinic for Otolaryngology, Head and Neck Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
26
|
Szepesy J, Miklós G, Farkas J, Kucsera D, Giricz Z, Gáborján A, Polony G, Szirmai Á, Tamás L, Köles L, Varga ZV, Zelles T. Anti-PD-1 Therapy Does Not Influence Hearing Ability in the Most Sensitive Frequency Range, but Mitigates Outer Hair Cell Loss in the Basal Cochlear Region. Int J Mol Sci 2020; 21:ijms21186701. [PMID: 32933159 PMCID: PMC7555949 DOI: 10.3390/ijms21186701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/29/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
The administration of immune checkpoint inhibitors (ICIs) often leads to immune-related adverse events. However, their effect on auditory function is largely unexplored. Thorough preclinical studies have not been published yet, only sporadic cases and pharmacovigilance reports suggest their significance. Here we investigated the effect of anti-PD-1 antibody treatment (4 weeks, intraperitoneally, 200 μg/mouse, 3 times/week) on hearing function and cochlear morphology in C57BL/6J mice. ICI treatment did not influence the hearing thresholds in click or tone burst stimuli at 4–32 kHz frequencies measured by auditory brainstem response. The number and morphology of spiral ganglion neurons were unaltered in all cochlear turns. The apical-middle turns (<32 kHz) showed preservation of the inner and outer hair cells (OHCs), whilst ICI treatment mitigated the age-related loss of OHCs in the basal turn (>32 kHz). The number of Iba1-positive macrophages has also increased moderately in this high frequency region. We conclude that a 4-week long ICI treatment does not affect functional and morphological integrity of the inner ear in the most relevant hearing range (4–32 kHz; apical-middle turns), but a noticeable preservation of OHCs and an increase in macrophage activity appeared in the >32 kHz basal part of the cochlea.
Collapse
Affiliation(s)
- Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - Gabriella Miklós
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
| | - János Farkas
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
| | - Dániel Kucsera
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, H-1089 Budapest, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
- Pharmahungary Group, H-6722 Szeged, Hungary
| | - Anita Gáborján
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - Gábor Polony
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - Ágnes Szirmai
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - László Tamás
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
| | - Zoltán V. Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, H-1089 Budapest, Hungary
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
- Department of Pharmacology, Institute of Experimental Medicine, H-1083 Budapest, Hungary
- Correspondence: ; Tel.: +36-1-210-4416/56297; Fax: +36-1-210-4412
| |
Collapse
|
27
|
Toll-like Receptor 4 Signaling and Downstream Neutrophilic Inflammation Mediate Endotoxemia-Enhanced Blood-Labyrinth Barrier Trafficking. Otol Neurotol 2020; 41:123-132. [PMID: 31568132 DOI: 10.1097/mao.0000000000002447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
HYPOTHESIS Both toll-like receptor 4 (TLR4) and downstream neutrophil activity are required for endotoxemia-enhanced blood-labyrinth barrier (BLB) trafficking. BACKGROUND Aminoglycoside and cisplatin are valuable clinical therapies; however, these drugs often cause life-long hearing loss. Endotoxemia enhances the ototoxicity of aminoglycosides and cisplatin in a TLR4 dependent mechanism for which downstream proinflammatory signaling orchestrates effector immune cells including neutrophils. Neutrophil-mediated vascular injury (NMVI) can enhance molecular trafficking across endothelial barriers and may contribute to endotoxemia-enhanced drug-induced ototoxicity. METHODS Lipopolysaccharide (LPS) hypo-responsive TLR4-KO mice and congenitally neutropenic granulocyte colony-stimulating factor (GCSF) GCSF-KO mice were studied to investigate the relative contributions of TLR4 signaling and downstream neutrophil activity to endotoxemia-enhanced BLB trafficking. C57Bl/6 wild-type mice were used as a positive control. Mice were treated with LPS and 24 hours later cochleae were analyzed for gene transcription of innate inflammatory cytokine/chemokine signaling molecules, neutrophil recruitment, and vascular trafficking of the paracellular tracer biocytin-TMR. RESULTS Cochlear transcription of innate proinflammatory cytokines/chemokines was increased in endotoxemic C57Bl/6 and GCSF-KO, but not in TLR4-KO mice. More neutrophils were recruited to endotoxemic C57Bl/6 cochleae compared with both TLR4 and GCSF-KO cochleae. Endotoxemia enhanced BLB trafficking of biocytin-TMR in endotoxemic C57Bl/6 cochleae and this was attenuated in both TLR4 and GCSF-KO mice. CONCLUSION Together these results suggest that TLR4-mediated innate immunity cytokine/chemokine signaling alone is not sufficient for endotoxemia-enhanced trafficking of biocytin-TMR and that downstream neutrophil activity is required to enhance BLB trafficking. Clinically, targeting neutrophilic inflammation could protect hearing during aminoglycoside, cisplatin, or other ototoxic drug therapies.
Collapse
|
28
|
Chen D, Wang Z, Jia G, Mao H, Ni Y. The Role of Anti-Endothelial Cell Autoantibodies and Immune Response in Acute Low-Tone Hearing Loss. EAR, NOSE & THROAT JOURNAL 2020; 100:292S-300S. [PMID: 32865463 DOI: 10.1177/0145561320952501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Immunity is associated with acute low tone hearing loss. However, the exact pathophysiology of immunity-mediated acute low tone hearing loss remains unknown. In this study, we evaluated the presence, therapeutic effectiveness, and immunopathological mechanisms of anti-endothelial cell autoantibodies (AECEs) in patients with acute low-frequency hearing loss. MATERIAL AND METHODS Forty-nine patients who were treated as inpatients having acute low-frequency hearing loss and additional symptoms, such as ear fullness, tinnitus, dizziness, or hyperacusis, were enrolled in this study. Serum samples from these patients were collected for laboratory serum autoimmunity detection, including AECAs, antinuclear antibodies, immunoglobulin, and circular immune complex. Therapeutic responses to combination therapy in short-term outcome and serum cytokine levels were compared between AECA-positive and AECA-negative patients. RESULTS Anti-endothelial cell autoantibodies-positive patients tended to show significantly less response to standard therapy compared with AECAs controls (P < .05). Moreover, some serum cytokine levels elevated in both AECAs- and AECAs+ groups. Positive ratio of interleukin-8 and concentrations of macrophage inflammatory protein-1α were found higher in AECAs+ groups (P < .05). CONCLUSION The results supported that AECAs might wield influence on the short-term outcome of acute low-tone hearing loss (ALHL) treatment. Furthermore, AECA-mediated acute low-frequency hearing loss possibly involved dysregulation of inflammation process and release of cytokines.
Collapse
Affiliation(s)
- Diyan Chen
- ENT institute and Otorhinolaryngology Department of Shanghai Medical School, 159395Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China.,NHC Key Laboratory of Hearing Medicine, 12478Fudan University, Shanghai, People's Republic of China
| | - Zhujian Wang
- 159395Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China
| | - Gaogan Jia
- ENT institute and Otorhinolaryngology Department of Shanghai Medical School, 159395Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China.,NHC Key Laboratory of Hearing Medicine, 12478Fudan University, Shanghai, People's Republic of China
| | - Huanyu Mao
- ENT institute and Otorhinolaryngology Department of Shanghai Medical School, 159395Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China.,NHC Key Laboratory of Hearing Medicine, 12478Fudan University, Shanghai, People's Republic of China
| | - Yusu Ni
- ENT institute and Otorhinolaryngology Department of Shanghai Medical School, 159395Eye & ENT Hospital of Fudan University, Shanghai, People's Republic of China.,NHC Key Laboratory of Hearing Medicine, 12478Fudan University, Shanghai, People's Republic of China.,Otology and Skull Base Surgery Department, ENT Institute of Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
29
|
Khedr LH, Rahmo RM, Farag DB, Schaalan MF, El Magdoub HM. Crocin attenuates cisplatin-induced hepatotoxicity via TLR4/NF-κBp50 signaling and BAMBI modulation of TGF-β activity: Involvement of miRNA-9 and miRNA-29. Food Chem Toxicol 2020; 140:111307. [PMID: 32259551 DOI: 10.1016/j.fct.2020.111307] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 01/22/2023]
Abstract
TLR4-induced mitigation of the BMP down-regulation and activin membrane bound inhibitor (BAMBI) and the consequent enhancement of the transforming growth factor-beta (TGF-β) profibrogenic signaling has not yet been studied in cisplatin (CIS)-induced hepatotoxicity. miRNA-9 and29 have been previously reported to modulate TLR4 signaling via either tempering the expression of nuclear factor kappa-B p50 (NF-κB p50) or downregulation of extracellular matrix genes respectively. Hence we aimed to investigate the involvement of TLR4-induced modulation of TGF-β receptor 1 (TGF-βR1) signaling as well as the implication of miRNA-9 and 29 in CIS-induced hepatotoxicity. Moreover, we examined the ability of the phytochemical; crocin (CROC); to interact with either TLR4 or TGF-βR1 through a molecular docking study and subsequently explore its capability to attenuate CIS-induced hepatotoxicity. CROC pretreatment ameliorated the CIS-induced enhancement of TLR4 and TGF-β signaling and enhanced the expression of BAMBI, miRNA-9 and 29. Accordingly, it may be assumed that the protective effect of CROC against CIS-induce hepatotoxicity is mediated via the crosstalk of TLR4/NF-κBp50 signaling and BAMBI modulation of TGF-β1 activity in addition to the up-regulation of miRNA-9 and 29. These findings came in alignment with our molecular docking results; emphasizing the molecular antagonistic activity of CROC in both TLR4 and TGF-βR1.
Collapse
Affiliation(s)
- L H Khedr
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Rania M Rahmo
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Doaa Boshra Farag
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Mona F Schaalan
- Pharmacy Practice & Clinical Pharmacy Department, Faculty of Pharmacy, Translational and Clinical Research Unit, Misr International University (MIU), Cairo, Egypt
| | - Hekmat M El Magdoub
- Biochemistry Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| |
Collapse
|
30
|
Kros CJ, Steyger PS. Aminoglycoside- and Cisplatin-Induced Ototoxicity: Mechanisms and Otoprotective Strategies. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033548. [PMID: 30559254 DOI: 10.1101/cshperspect.a033548] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ototoxicity refers to damage of inner ear structures (i.e., the cochlea and vestibule) and their function (hearing and balance) following exposure to specific in-hospital medications (i.e., aminoglycoside antibiotics, platinum-based drugs), as well as a variety of environmental or occupational exposures (e.g., metals and solvents). This review provides a narrative derived from relevant papers describing factors contributing to (or increasing the risk of) aminoglycoside and cisplatin-induced ototoxicity. We also review current strategies to protect against ototoxicity induced by these indispensable pharmacotherapeutic treatments for life-threatening infections and solid tumors. We end by highlighting several interventional strategies that are currently in development, as well as the diverse challenges that still need to be overcome to prevent drug-induced hearing loss.
Collapse
Affiliation(s)
- Corné J Kros
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon 97239.,National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, Oregon 97239
| |
Collapse
|
31
|
Lim JO, Ko JW, Shin NR, Jung TY, Moon C, Kim HC, Shin IS, Kim JC. Cisplatin-induced ototoxicity involves interaction of PRMT3 and cannabinoid system. Arch Toxicol 2019; 93:2335-2346. [PMID: 31256211 DOI: 10.1007/s00204-019-02507-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/26/2019] [Indexed: 01/14/2023]
Abstract
This study investigated whether protein arginine methyltransferase (PRMT) and the cannabinoid system are involved in cisplatin-induced ototoxicity. Cisplatin increased cytosine-cytosine-adenosine-adenosine-thymidine-enhancer-binding protein homologous protein expression. This effect is indicative of an increase in endoplasmic reticulum (ER) stress, and apoptosis signaling including cleavage of caspase-3, caspase-9, poly-adenosine diphosphate-ribose polymerase, and phospho-p53, as well as expression of PRMT3, PRMT4 and fatty acid amide hydrolase (FAAH)1 in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells. In addition, overexpression of PRMT3 or PRMT4 increased the expression of FAAH1 expression, apoptosis, and ER stress signaling in HEI-OC1 cells, whereas PRMT3 or PRMT4 knockdown had the opposite effect. Furthermore, overexpression of FAAH1 increased apoptosis and ER stress, but expression of the PRMTs was unchanged. In addition, a cannabinoid 1 receptor agonist and FAAH inhibitor attenuated apoptosis and ER stress, while cisplatin increased the binding of PRMT3 with FAAH1. In the in vivo experiments, cisplatin was injected intraperitoneally at 6 mg/kg/day into C57BL/6 mice, and 7 days later, this study confirmed that PRMT3 and PRMT4 were upregulated in the organ of Corti of the mice. These results indicate that cisplatin-induced ototoxicity was correlated with PRMT3, PRMT4 and the cannabinoid system, and PRMT3 binding with FAAH1 was increased by cisplatin in HEI-OC1 cells. Therefore, this study suggests that PRMT3 mediates cisplatin-induced ototoxicity via interaction with FAAH1 in vitro and in vivo.
Collapse
Affiliation(s)
- Je-Oh Lim
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Je-Won Ko
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Na-Rae Shin
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Tae-Yang Jung
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Changjong Moon
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyoung-Chin Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - In-Sik Shin
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Jong-Choon Kim
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
32
|
Köles L, Szepesy J, Berekméri E, Zelles T. Purinergic Signaling and Cochlear Injury-Targeting the Immune System? Int J Mol Sci 2019; 20:ijms20122979. [PMID: 31216722 PMCID: PMC6627352 DOI: 10.3390/ijms20122979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023] Open
Abstract
Hearing impairment is the most common sensory deficit, affecting more than 400 million people worldwide. Sensorineural hearing losses currently lack any specific or efficient pharmacotherapy largely due to the insufficient knowledge of the pathomechanism. Purinergic signaling plays a substantial role in cochlear (patho)physiology. P2 (ionotropic P2X and the metabotropic P2Y) as well as adenosine receptors expressed on cochlear sensory and non-sensory cells are involved mostly in protective mechanisms of the cochlea. They are implicated in the sensitivity adjustment of the receptor cells by a K+ shunt and can attenuate the cochlear amplification by modifying cochlear micromechanics. Cochlear blood flow is also regulated by purines. Here, we propose to comprehend this field with the purine-immune interactions in the cochlea. The role of harmful immune mechanisms in sensorineural hearing losses has been emerging in the horizon of cochlear pathologies. In addition to decreasing hearing sensitivity and increasing cochlear blood supply, influencing the immune system can be the additional avenue for pharmacological targeting of purinergic signaling in the cochlea. Elucidating this complexity of purinergic effects on cochlear functions is necessary and it can result in development of new therapeutic approaches in hearing disabilities, especially in the noise-induced ones.
Collapse
Affiliation(s)
- László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
| | - Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
| | - Eszter Berekméri
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
- Department of Ecology, University of Veterinary Medicine, H-1078 Budapest, Hungary.
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary.
| |
Collapse
|
33
|
Kwon JO, Jin WJ, Kim B, Ha H, Kim HH, Lee ZH. Haptoglobin Acts as a TLR4 Ligand to Suppress Osteoclastogenesis via the TLR4-IFN-β Axis. THE JOURNAL OF IMMUNOLOGY 2019; 202:3359-3369. [PMID: 31076532 DOI: 10.4049/jimmunol.1800661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 04/12/2019] [Indexed: 01/18/2023]
Abstract
Haptoglobin (Hp), a type of acute-phase protein, is known to have a systemic anti-inflammatory function and to modulate inflammation by directly affecting immune cells, such as T cells, dendritic cells, and macrophages. However, the effects of Hp on osteoclast differentiation are not well studied, even though osteoclast precursor cells belong to a macrophage-monocyte lineage. In this study, we found that the bone volume was reduced, and the number of osteoclasts was increased in Hp-deficient mice compared with wild-type mice. Moreover, our in vitro studies showed that Hp inhibits osteoclastogenesis by reducing the protein level of c-Fos at the early phase of osteoclast differentiation. We revealed that Hp-induced suppression of c-Fos was mediated by increased IFN-β levels. Furthermore, Hp stimulated IFN-β via a TLR4-dependent mechanism. These results demonstrate that Hp plays a protective role against excessive osteoclastogenesis via the Hp-TLR4-IFN-β axis.
Collapse
Affiliation(s)
- Jun-Oh Kwon
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Won Jong Jin
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705; and
| | - Bongjun Kim
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Hyunil Ha
- Clinical Research Division, Korea Institute of Oriental Medicine, 483 Expo-Ro, Yuseong-Gu, Daejeon 305-811, Republic of Korea
| | - Hong-Hee Kim
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea;
| | - Zang Hee Lee
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea;
| |
Collapse
|
34
|
Abd El Raouf HHH, Galhom RA, Ali MHM, Nasr El-Din WA. Harderian gland-derived stem cells as a cytotherapy in a guinea pig model of carboplatin-induced hearing loss. J Chem Neuroanat 2019; 98:139-152. [PMID: 31047945 DOI: 10.1016/j.jchemneu.2019.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/09/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Stem cells therapy of hearing loss is a challenging field due to lacking self-regenerative capacity of cochlea. Harderian gland of guinea pigs was thought to harbour a unique type of progenitors which could restore the damaged cochlear tissues. THE AIM of this study was to isolate Harderian gland derived stem cells (HG-SCs) and investigate their efficacy in restoring the damaged cochlear tissue in carboplatin-induced hearing loss. METHODOLOGY Sixty female and 10 male pigmented guinea pigs were used; the male animals were HG-SCs donors, while the females were assigned into 3 groups; control, hearing loss (HL) and HG-SC-treated groups. Auditory reflexes were assessed throughout the study. The animals were euthanized 35 days after HG-SCs transplantation, the cochleae were extracted and processed for assessment by light microscope and scanning electron microscope. Morphometric assessment of stria vascularis thickness, hair cells and spiral ganglia neuronal number and optical density of TLR4 expression were done. RESULTS The isolated HG-SCs had the same morphological and phenotypical character as mesenchymal stem cells. HL group revealed destruction of organ of Corti, stria vascularis and spiral ganglion with decreased morphometric parameters. Restoration of both cochlear structure and function was observed in HG-SC-treated group along with a significant increase in IHCs, OHCs numbers, stria vascularis thickness and spiral ganglionic cell count to be close to the values of control group. CONCLUSION The isolated HG-SCs were proved to restore structure and function of cochlea in guinea pig model of hearing loss.
Collapse
Affiliation(s)
| | - Rania A Galhom
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Mona H Mohammed Ali
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Wael Amin Nasr El-Din
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt; Anatomy Department, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| |
Collapse
|
35
|
Benkafadar N, François F, Affortit C, Casas F, Ceccato JC, Menardo J, Venail F, Malfroy-Camine B, Puel JL, Wang J. ROS-Induced Activation of DNA Damage Responses Drives Senescence-Like State in Postmitotic Cochlear Cells: Implication for Hearing Preservation. Mol Neurobiol 2019; 56:5950-5969. [PMID: 30693443 PMCID: PMC6614136 DOI: 10.1007/s12035-019-1493-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022]
Abstract
In our aging society, age-related hearing loss (ARHL) has become a major socioeconomic issue. Reactive oxygen species (ROS) may be one of the main causal factors of age-related cochlear cell degeneration. We examined whether ROS-induced DNA damage response drives cochlear cell senescence and contributes to ARHL from the cellular up to the system level. Our results revealed that sublethal concentrations of hydrogen peroxide (H2O2) exposure initiated a DNA damage response illustrated by increased γH2AX and 53BP1 expression and foci formation mainly in sensory hair cells, together with increased levels of p-Chk2 and p53. Interestingly, postmitotic cochlear cells exposed to H2O2 displayed key hallmarks of senescent cells, including dramatically increased levels of p21, p38, and p-p38 expression, concomitant with decreased p19 and BubR1 expression and positive senescence-associated β-galactosidase labeling. Importantly, the synthetic superoxide dismutase/catalase mimetic EUK-207 attenuated H2O2-induced DNA damage and senescence phenotypes in cochlear cells in vitro. Furthermore, systemic administration of EUK-207 reduced age-related loss of hearing and hair cell degeneration in senescence-accelerated mouse-prone 8 (SAMP8) mice. Altogether, these findings highlight that ROS-induced DNA damage responses drive cochlear cell senescence and contribute to accelerated ARHL. EUK-207 and likely other antioxidants with similar mechanisms of action could potentially postpone cochlear aging and prevent ARHL in humans.
Collapse
Affiliation(s)
- Nesrine Benkafadar
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université Montpellier, 34295, Montpellier, France
| | - Florence François
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université Montpellier, 34295, Montpellier, France
| | - Corentin Affortit
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université Montpellier, 34295, Montpellier, France
| | - François Casas
- INRA, UMR 866 Différenciation Cellulaire et Croissance, 34060, Montpellier, France
| | - Jean-Charles Ceccato
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université Montpellier, 34295, Montpellier, France
| | - Julien Menardo
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université Montpellier, 34295, Montpellier, France
| | - Frederic Venail
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université Montpellier, 34295, Montpellier, France
| | | | - Jean-Luc Puel
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France
- Université Montpellier, 34295, Montpellier, France
| | - Jing Wang
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, 80 rue Augustin Fliche, 34295, Montpellier, France.
- Université Montpellier, 34295, Montpellier, France.
| |
Collapse
|
36
|
Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2018; 119:1519-1624. [DOI: 10.1021/acs.chemrev.8b00396] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alessio Terenzi
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
37
|
Schiavon E, Smalley JL, Newton S, Greig NH, Forsythe ID. Neuroinflammation and ER-stress are key mechanisms of acute bilirubin toxicity and hearing loss in a mouse model. PLoS One 2018; 13:e0201022. [PMID: 30106954 PMCID: PMC6091913 DOI: 10.1371/journal.pone.0201022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/07/2018] [Indexed: 12/01/2022] Open
Abstract
Hyperbilirubinemia (jaundice) is caused by raised levels of unconjugated bilirubin in the blood. When severe, susceptible brain regions including the cerebellum and auditory brainstem are damaged causing neurological sequelae such as ataxia, hearing loss and kernicterus. The mechanism(s) by which bilirubin exerts its toxic effect have not been completely understood to date. In this study we investigated the acute mechanisms by which bilirubin causes the neurotoxicity that contributes to hearing loss. We developed a novel mouse model that exhibits the neurological features seen in human Bilirubin-Induced Neurological Dysfunction (BIND) syndrome that we assessed with a behavioural score and auditory brainstem responses (ABR). Guided by initial experiments applying bilirubin to cultured cells in vitro, we performed whole genome gene expression measurements on mouse brain tissue (cerebellum and auditory brainstem) following bilirubin exposure to gain mechanistic insights into biochemical processes affected, and investigated further using immunoblotting. We then compared the gene changes induced by bilirubin to bacterial lipopolysaccharide (LPS), a well characterized inducer of neuroinflammation, to assess the degree of similarity between them. Finally, we examined the extent to which genetic perturbation of inflammation and both known and novel anti-inflammatory drugs could protect hearing from bilirubin-induced toxicity. The in vitro results indicated that bilirubin induces changes in gene expression consistent with endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR). These gene changes were similar to the gene expression signature of thapsigargin–a known ER stress inducer. It also induced gene expression changes associated with inflammation and NF-κB activation. The in vivo model showed behavioural impairment and a raised auditory threshold. Whole genome gene expression analysis confirmed inflammation as a key mechanism of bilirubin neurotoxicity in the auditory pathway and shared gene expression hallmarks induced by exposure to bacterial lipopolysaccharide (LPS) a well-characterized inducer of neuroinflammation. Interestingly, bilirubin caused more severe damage to the auditory system than LPS in this model, but consistent with our hypothesis of neuroinflammation being a primary part of bilirubin toxicity, the hearing loss was protected by perturbing the inflammatory response. This was carried out genetically using lipocalin-2 (LCN2)-null mice, which is an inflammatory cytokine highly upregulated in response to bilirubin. Finally, we tested known and novel anti-inflammatory compounds (interfering with NF-κB and TNFα signalling), and also demonstrated protection of the auditory system from bilirubin toxicity. We have developed a novel, reversible, model for jaundice that shows movement impairment and auditory loss consistent with human symptoms. We used this model to establish ER-stress and inflammation as major contributors to bilirubin toxicity. Because of the rapid and reversible onset of toxicity in this novel model it represents a system to screen therapeutic compounds. We have demonstrated this by targeting inflammation genetically and with anti-inflammatory small molecules that offered protection against bilirubin toxicity. This also suggests that anti-inflammatory drugs could be of therapeutic use in hyperbilirubinemia.
Collapse
Affiliation(s)
- Emanuele Schiavon
- Department Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, Leicestershire, United Kingdom
| | - Joshua L. Smalley
- Department Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, Leicestershire, United Kingdom
| | - Sherylanne Newton
- Department Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, Leicestershire, United Kingdom
| | - Nigel H. Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD, United States of America
| | - Ian D. Forsythe
- Department Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, Leicestershire, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Hu BH, Zhang C, Frye MD. Immune cells and non-immune cells with immune function in mammalian cochleae. Hear Res 2018; 362:14-24. [PMID: 29310977 PMCID: PMC5911222 DOI: 10.1016/j.heares.2017.12.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/21/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023]
Abstract
The cochlea has an immune environment dominated by macrophages under resting conditions. When stressed, circulating monocytes enter the cochlea. These immune mediators, along with cochlear resident cells, organize a complex defense response against pathological challenges. Since the cochlea has minimal exposure to pathogens, most inflammatory conditions in the cochlea are sterile. Although the immune response is initiated for the protection of the cochlea, off-target effects can cause collateral damage to cochlear cells. A better understanding of cochlear immune capacity and regulation would therefore lead to development of new therapeutic treatments. Over the past decade, there have been many advances in our understanding of cochlear immune capacity. In this review, we provide an update and overview of the cellular components of cochlear immune capacity with a focus on macrophages in mammalian cochleae. We describe the composition and distribution of immune cells in the cochlea and suggest that phenotypic and functional characteristics of macrophages have site-specific diversity. We also highlight the response of immune cells to acute and chronic stresses and comment on the potential function of immune cells in cochlear homeostasis and disease development. Finally, we briefly review potential roles for cochlear resident cells in immune activities of the cochlea.
Collapse
Affiliation(s)
- Bo Hua Hu
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Celia Zhang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Mitchell D Frye
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| |
Collapse
|
39
|
Jiang M, Taghizadeh F, Steyger PS. Potential Mechanisms Underlying Inflammation-Enhanced Aminoglycoside-Induced Cochleotoxicity. Front Cell Neurosci 2017; 11:362. [PMID: 29209174 PMCID: PMC5702304 DOI: 10.3389/fncel.2017.00362] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022] Open
Abstract
Aminoglycoside antibiotics remain widely used for urgent clinical treatment of life-threatening infections, despite the well-recognized risk of permanent hearing loss, i.e., cochleotoxicity. Recent studies show that aminoglycoside-induced cochleotoxicity is exacerbated by bacteriogenic-induced inflammation. This implies that those with severe bacterial infections (that induce systemic inflammation), and are treated with bactericidal aminoglycosides are at greater risk of drug-induced hearing loss than previously recognized. Incorporating this novel comorbid factor into cochleotoxicity risk prediction models will better predict which individuals are more predisposed to drug-induced hearing loss. Here, we review the cellular and/or signaling mechanisms by which host-mediated inflammatory responses to infection could enhance the trafficking of systemically administered aminoglycosides into the cochlea to enhance the degree of cochleotoxicity over that in healthy preclinical models. Once verified, these mechanisms will be potential targets for novel pharmacotherapeutics that reduce the risk of drug-induced hearing loss (and acute kidney damage) without compromising the life-saving bactericidal efficacy of aminoglycosides.
Collapse
Affiliation(s)
- Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Farshid Taghizadeh
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States.,National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
40
|
Jiang M, Karasawa T, Steyger PS. Aminoglycoside-Induced Cochleotoxicity: A Review. Front Cell Neurosci 2017; 11:308. [PMID: 29062271 PMCID: PMC5640705 DOI: 10.3389/fncel.2017.00308] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022] Open
Abstract
Aminoglycoside antibiotics are used as prophylaxis, or urgent treatment, for many life-threatening bacterial infections, including tuberculosis, sepsis, respiratory infections in cystic fibrosis, complex urinary tract infections and endocarditis. Although aminoglycosides are clinically-essential antibiotics, the mechanisms underlying their selective toxicity to the kidney and inner ear continue to be unraveled despite more than 70 years of investigation. The following mechanisms each contribute to aminoglycoside-induced toxicity after systemic administration: (1) drug trafficking across endothelial and epithelial barrier layers; (2) sensory cell uptake of these drugs; and (3) disruption of intracellular physiological pathways. Specific factors can increase the risk of drug-induced toxicity, including sustained exposure to higher levels of ambient sound, and selected therapeutic agents such as loop diuretics and glycopeptides. Serious bacterial infections (requiring life-saving aminoglycoside treatment) induce systemic inflammatory responses that also potentiate the degree of ototoxicity and permanent hearing loss. We discuss prospective clinical strategies to protect auditory and vestibular function from aminoglycoside ototoxicity, including reduced cochlear or sensory cell uptake of aminoglycosides, and otoprotection by ameliorating intracellular cytotoxicity.
Collapse
Affiliation(s)
- Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States.,National Center for Rehabilitative Auditory Research, Portland VA Medical Center (VHA), Portland, OR, United States
| |
Collapse
|
41
|
Mwangi M, Kil SH, Phak D, Park HY, Lim DJ, Park R, Moon SK. Interleukin-10 Attenuates Hypochlorous Acid-Mediated Cytotoxicity to HEI-OC1 Cochlear Cells. Front Cell Neurosci 2017; 11:314. [PMID: 29056901 PMCID: PMC5635053 DOI: 10.3389/fncel.2017.00314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/22/2017] [Indexed: 12/20/2022] Open
Abstract
Inflammatory reaction plays a crucial role in the pathophysiology of acquired hearing loss such as ototoxicity and labyrinthitis. In our earlier work, we showed the pivotal role of otic fibrocytes in cochlear inflammation and the critical involvement of proinflammatory cytokines in cisplatin ototoxicity. We also demonstrated that otic fibrocytes inhibit monocyte chemoattractant protein 1 (CCL2) upregulation in response to interleukin-10 (IL-10) via heme oxygenase 1 (HMOX1) signaling, resulting in suppression of cochlear inflammation. However, it is still unclear how IL-10 affects inflammation-mediated cochlear injury. Here we aim to determine how hypochlorous acid, a model inflammation mediator affects cochlear cell viability and how IL-10 affects hypochlorous acid-mediated cochlear cell injury. NaOCl, a sodium salt of hypochlorous acid (HOCl) was found to induce cytotoxicity of HEI-OC1 cells in a dose-dependent manner. Combination of hydrogen peroxide and myeloperoxidase augmented cisplatin cytotoxicity, and this synergism was inhibited by N-Acetyl-L-cysteine and ML-171. The rat spiral ligament cell line (RSL) appeared to upregulate the antioxidant response element (ARE) activities upon exposure to IL-10. RSL cells upregulated the expression of NRF2 (an ARE ligand) and NR0B2 in response to CoPP (a HMOX1 inducer), but not to ZnPP (a HMOX1 inhibitor). Adenovirus-mediated overexpression of NR0B2 was found to suppress CCL2 upregulation. IL-10-positive cells appeared in the mouse stria vascularis 1 day after intraperitoneal injection of lipopolysaccharide (LPS). Five days after injection, IL-10-positive cells were observed in the spiral ligament, spiral limbus, spiral ganglia, and suprastrial area, but not in the stria vascularis. IL-10R1 appeared to be expressed in the mouse organ of Corti as well as HEI-OC1 cells. HEI-OC1 cells upregulated Bcl-xL expression in response to IL-10, and IL-10 was shown to attenuate NaOCl-induced cytotoxicity. In addition, HEI-OC1 cells upregulated IL-22RA upon exposure to cisplatin, and NaOCl cytotoxicity was inhibited by IL-22. Taken together, our findings suggest that hypochlorous acid is involved in cochlear injury and that IL-10 potentially reduces cochlear injury through not only inhibition of inflammation but also enhancement of cochlear cell viability. Further studies are needed to determine immunological characteristics of intracochlear IL-10-positive cells and elucidate molecular mechanisms involved in the otoprotective activity of IL-10.
Collapse
Affiliation(s)
- Martin Mwangi
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sung-Hee Kil
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - David Phak
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hun Yi Park
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, South Korea
| | - David J Lim
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Raekil Park
- Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Sung K Moon
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
42
|
Benkafadar N, Menardo J, Bourien J, Nouvian R, François F, Decaudin D, Maiorano D, Puel JL, Wang J. Reversible p53 inhibition prevents cisplatin ototoxicity without blocking chemotherapeutic efficacy. EMBO Mol Med 2017; 9:7-26. [PMID: 27794029 PMCID: PMC5210089 DOI: 10.15252/emmm.201606230] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cisplatin is a widely used chemotherapy drug, despite its significant ototoxic side effects. To date, the mechanism of cisplatin‐induced ototoxicity remains unclear, and hearing preservation during cisplatin‐based chemotherapy in patients is lacking. We found activation of the ATM‐Chk2‐p53 pathway to be a major determinant of cisplatin ototoxicity. However, prevention of cisplatin‐induced ototoxicity is hampered by opposite effects of ATM activation upon sensory hair cells: promoting both outer hair cell death and inner hair cell survival. Encouragingly, however, genetic or pharmacological ablation of p53 substantially attenuated cochlear cell apoptosis, thus preserving hearing. Importantly, systemic administration of a p53 inhibitor in mice bearing patient‐derived triple‐negative breast cancer protected auditory function, without compromising the anti‐tumor efficacy of cisplatin. Altogether, these findings highlight a novel and effective strategy for hearing protection in cisplatin‐based chemotherapy.
Collapse
Affiliation(s)
- Nesrine Benkafadar
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Julien Menardo
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Jérôme Bourien
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Régis Nouvian
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Florence François
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Didier Decaudin
- Laboratoire d'Investigation Pré -Clinique/Service d'Hématologie Clinique, Institut Curie, Paris, France
| | | | - Jean-Luc Puel
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Jing Wang
- INSERM - UMR 1051, Institut des Neurosciences de Montpellier, Montpellier, France .,Université de Montpellier, Montpellier, France
| |
Collapse
|
43
|
Kalinec GM, Lomberk G, Urrutia RA, Kalinec F. Resolution of Cochlear Inflammation: Novel Target for Preventing or Ameliorating Drug-, Noise- and Age-related Hearing Loss. Front Cell Neurosci 2017; 11:192. [PMID: 28736517 PMCID: PMC5500902 DOI: 10.3389/fncel.2017.00192] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 06/20/2017] [Indexed: 12/11/2022] Open
Abstract
A significant number of studies support the idea that inflammatory responses are intimately associated with drug-, noise- and age-related hearing loss (DRHL, NRHL and ARHL). Consequently, several clinical strategies aimed at reducing auditory dysfunction by preventing inflammation are currently under intense scrutiny. Inflammation, however, is a normal adaptive response aimed at restoring tissue functionality and homeostasis after infection, tissue injury and even stress under sterile conditions, and suppressing it could have unintended negative consequences. Therefore, an appropriate approach to prevent or ameliorate DRHL, NRHL and ARHL should involve improving the resolution of the inflammatory process in the cochlea rather than inhibiting this phenomenon. The resolution of inflammation is not a passive response but rather an active, highly controlled and coordinated process. Inflammation by itself produces specialized pro-resolving mediators with critical functions, including essential fatty acid derivatives (lipoxins, resolvins, protectins and maresins), proteins and peptides such as annexin A1 and galectins, purines (adenosine), gaseous mediators (NO, H2S and CO), as well as neuromodulators like acetylcholine and netrin-1. In this review article, we describe recent advances in the understanding of the resolution phase of inflammation and highlight therapeutic strategies that might be useful in preventing inflammation-induced cochlear damage. In particular, we emphasize beneficial approaches that have been tested in pre-clinical models of inflammatory responses induced by recognized ototoxic drugs such as cisplatin and aminoglycoside antibiotics. Since these studies suggest that improving the resolution process could be useful for the prevention of inflammation-associated diseases in humans, we discuss the potential application of similar strategies to prevent or mitigate DRHL, NRHL and ARHL.
Collapse
Affiliation(s)
- Gilda M Kalinec
- Laboratory of Auditory Cell Biology, Department of Head and Neck Surgery, David Geffen School of Medicine, University of CaliforniaLos Angeles, Los Angeles, CA, United States
| | - Gwen Lomberk
- Epigenetics and Chromatin Dynamics Laboratory, Translational Epigenomic Program, Center for Individualized Medicine (CIM) Mayo ClinicRochester, MN, United States
| | - Raul A Urrutia
- Epigenetics and Chromatin Dynamics Laboratory, Translational Epigenomic Program, Center for Individualized Medicine (CIM) Mayo ClinicRochester, MN, United States
| | - Federico Kalinec
- Laboratory of Auditory Cell Biology, Department of Head and Neck Surgery, David Geffen School of Medicine, University of CaliforniaLos Angeles, Los Angeles, CA, United States
| |
Collapse
|
44
|
El-Shitany NA, Eid B. Proanthocyanidin protects against cisplatin-induced oxidative liver damage through inhibition of inflammation and NF-κβ/TLR-4 pathway. ENVIRONMENTAL TOXICOLOGY 2017; 32:1952-1963. [PMID: 28371137 DOI: 10.1002/tox.22418] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/02/2017] [Accepted: 03/05/2017] [Indexed: 06/07/2023]
Abstract
Although cisplatin (CIS) is a highly effective anticancer drug, hepatotoxicity is one of the most common adverse effects associated with its use. Recently, reactive oxygen species (ROS) and inflammation are suggested to be key factors in the pathophysiology of CIS-induced acute liver damage. The aim of this study is to investigate the possible protective effect of proanthocyanidin (PRO) against CIS-induced acute hepatotoxicity. Rats were divided into four groups: 1, Control; 2, PRO; 3, CIS; and 4, PRO + CIS. Biochemical studies and histopathology were used to assess liver damage. ROS, inflammatory cytokines, nuclear factor kappa beta (NF-κβ), inducible cyclooxygenase enzyme (COX-2), inducible nitric oxide synthase (iNOS), toll-like receptor-4 (TLR-4) gene expression, and apoptotic markers were also assessed. PRO pretreatment protected the liver against CIS-induced toxicity as indicated by decreased plasma levels of liver function enzymes and the normal liver histopathology observed in the PRO + CIS group. PRO pretreatment also diminished indicators of oxidative stress in the liver, including nitric oxide (NO) and malondialdehyde (MDA). It also increased the antioxidants, reduced glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) in the liver. Plasma interleukin-1 beta (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α) were all reduced. Liver gene expression of NF-κβ, COX-2, iNOS, and TLR-4 were all downregulated. Furthermore, PRO administration downregulated the liver expression of the apoptotic marker, Bax, while upregulated the antiapoptotic marker, Bcl2. In conclusion, our results revealed that PRO may protect against CIS-induced acute liver damage mainly through inhibition of ROS, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Nagla A El-Shitany
- Department of Pharmacology and Toxicolog, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Basma Eid
- Department of Pharmacology and Toxicolog, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
45
|
Garinis AC, Kemph A, Tharpe AM, Weitkamp JH, McEvoy C, Steyger PS. Monitoring neonates for ototoxicity. Int J Audiol 2017; 57:S41-S48. [PMID: 28949262 DOI: 10.1080/14992027.2017.1339130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Neonates admitted to the neonatal intensive care unit (NICU) are at greater risk of permanent hearing loss compared to infants in well mother and baby units. Several factors have been associated with this increased prevalence of hearing loss, including congenital infections (e.g. cytomegalovirus or syphilis), ototoxic drugs (such as aminoglycoside or glycopeptide antibiotics), low birth weight, hypoxia and length of stay. The aetiology of this increased prevalence of hearing loss remains poorly understood. DESIGN Here we review current practice and discuss the feasibility of designing improved ototoxicity screening and monitoring protocols to better identify acquired, drug-induced hearing loss in NICU neonates. STUDY SAMPLE A review of published literature. CONCLUSIONS We conclude that current audiological screening or monitoring protocols for neonates are not designed to adequately detect early onset of ototoxicity. This paper offers a detailed review of evidence-based research, and offers recommendations for developing and implementing an ototoxicity monitoring protocol for young infants, before and after discharge from the hospital.
Collapse
Affiliation(s)
- Angela C Garinis
- a Oregon Hearing Research Center, Otolaryngology , Oregon Health & Science University , Portland , OR , USA.,b National Center for Rehabilitative Auditory Research , VA Portland Health Care System , Portland , OR , USA
| | - Alison Kemph
- c Hearing and Speech Sciences , Vanderbilt University School of Medicine , Nashville , TN , USA
| | - Anne Marie Tharpe
- c Hearing and Speech Sciences , Vanderbilt University School of Medicine , Nashville , TN , USA
| | | | - Cynthia McEvoy
- e Neonatology, Pediatrics , Oregon Health & Science University , Portland , OR , USA
| | - Peter S Steyger
- a Oregon Hearing Research Center, Otolaryngology , Oregon Health & Science University , Portland , OR , USA.,b National Center for Rehabilitative Auditory Research , VA Portland Health Care System , Portland , OR , USA
| |
Collapse
|
46
|
Bhavsar AP, Gunaretnam EP, Li Y, Hasbullah JS, Carleton BC, Ross CJD. Pharmacogenetic variants in TPMT alter cellular responses to cisplatin in inner ear cell lines. PLoS One 2017; 12:e0175711. [PMID: 28406961 PMCID: PMC5391095 DOI: 10.1371/journal.pone.0175711] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/30/2017] [Indexed: 11/19/2022] Open
Abstract
Cisplatin is a highly-effective and widely-used chemotherapeutic agent that causes ototoxicity in many patients. Pharmacogenomic studies of key genes controlling drug biotransformation identified variants in thiopurine methyltransferase (TPMT) as predictors of cisplatin-induced ototoxicity, although the mechanistic basis of this interaction has not been reported. Expression constructs of TPMT*3A, *3B and *3C variants were generated and monitored in cultured cells. Cellular TPMT*3A levels were detected at >20-fold lower amounts than the wild type confirming the unstable nature of this variant. The expression of wild type TPMT (TPMT*1) in two murine ear cell lines, HEI-OC1 and UB/OC-1, significantly mitigated their susceptibility to cisplatin toxicity. Cisplatin treatment induced Tlr4 gene expression in HEI-OC1 cells and this response was blunted by the expression of wild type TPMT but not TPMT*3A. In line with the significant mitigation of TPMT*1-expressing cells to cisplatin cytotoxicity, these findings demonstrate a drug-gene interaction between increased TPMT activity and decreased susceptibility to cisplatin-induced toxicity of inner ear cells.
Collapse
Affiliation(s)
- Amit P. Bhavsar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Erandika P. Gunaretnam
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuling Li
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jafar S. Hasbullah
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce C. Carleton
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin J. D. Ross
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
47
|
Wood MB, Zuo J. The Contribution of Immune Infiltrates to Ototoxicity and Cochlear Hair Cell Loss. Front Cell Neurosci 2017; 11:106. [PMID: 28446866 PMCID: PMC5388681 DOI: 10.3389/fncel.2017.00106] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/29/2017] [Indexed: 12/20/2022] Open
Abstract
Cells of the immune system have been shown to infiltrate the cochlea after acoustic trauma or ototoxic drug treatment; however, the contribution of the immune system to hair cell loss in the inner ear is incompletely understood. Most studies have concentrated on the immediate innate response to hair cell damage using CD45 as a broad marker for all immune cells. More recent studies have used RNA sequencing, GeneChip arrays and quantitative PCR to analyze gene expression in the entire cochlea after auditory trauma, leading to a better understanding of the chemokines and cytokines that attract immune cells to the cochlea. Immune suppression by blocking cytokines or immune receptors has been proven to suppress hair cell damage. However, it is now understood that not all immune cells are detrimental to the cochlea. CX3CR1+ resident macrophages protect hair cells from damage mediated by infiltrating immune cells. Systemically, the immune response is associated with both protection and pathology, and it has been implicated in the regeneration of certain tissues after injury. This review focuses on the studies of immune cells in various models of hearing loss and highlights the steps that can be taken to elucidate the connection between the immune response and hearing loss. The interplay between the immune system and tissues that were previously thought to be immune privileged, such as the cochlea, is an emerging research field, to which additional studies of the immune component of the cochlear response to injury will make an important contribution.
Collapse
Affiliation(s)
- Megan B Wood
- Department of Developmental Neurobiology, St. Jude Children's Research HospitalMemphis, TN, USA
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children's Research HospitalMemphis, TN, USA
| |
Collapse
|
48
|
Yamada T, Ogi K, Sakashita M, Kanno M, Kubo S, Ito Y, Imoto Y, Tokunaga T, Okamoto M, Narita N, Fujieda S. Toll-like receptor ligands induce cytokine and chemokine production in human inner ear endolymphatic sac fibroblasts. Auris Nasus Larynx 2016; 44:398-403. [PMID: 27884591 DOI: 10.1016/j.anl.2016.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/07/2016] [Accepted: 10/19/2016] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Against recent reports concerning cytokine or chemokine in mouse or rat inner ear cells, it is almost unknown whether human inner ear cells would produce cytokine or chemokine. We have for the first time established the human inner-ear-derived fibroblasts from endolymphatic sac. METHODS The expression levels of Toll-like receptors (TLRs) in human endolymphatic sac fibroblasts, and the effect on cytokine or chemokine production of the TLR ligands have been examined. To demonstrate the intracellular pathways involved in the regulation of cytokine-production, we used specific inhibitors of c-Jun N-terminal kinase (JNK), extracellular signal-related kinase (ERK), p38 mitogen-activated protein kinase (p38 MAPK)-signaling and N-acetyl-l-cysteine (NAC). RESULTS TLR 2, 3, 4 and 9 were highly expressed in human endolymphatic sac fibroblasts. The TLR 3 ligand, polyinosinic-polycytidylic acid (poly(I:C)) significantly enhanced the secretion of thymic stromal lymphopoietin (TSLP), B lymphocyte stimulator (BLyS), IFNγ-inducible protein 10 (IP-10), and macrophage inflammatory protein 1 alpha (MIP-1α) from the cells. The inhibitor of JNK strongly reduced the poly(I:C)-induced TSLP-production. The antioxidant drug, NAC also reduced the TSLP-production in fibroblasts stimulated with poly(I:C). CONCLUSION Our findings suggest human inner-ear-endolymphatic sac derived fibroblasts can produce the cytokine and chemokine in response to TLR ligands and play a certain role during the initiation of an immune response.
Collapse
Affiliation(s)
- Takechiyo Yamada
- Department of Otorhinolaryngology, University of Fukui, Fukui 910-1193, Japan; Department of Otorhinolaryngology, Akita University Graduate School of Medicine, Akita 010-8543, Japan.
| | - Kazuhiro Ogi
- Department of Otorhinolaryngology, University of Fukui, Fukui 910-1193, Japan
| | - Masafumi Sakashita
- Department of Otorhinolaryngology, University of Fukui, Fukui 910-1193, Japan
| | - Masafumi Kanno
- Department of Otorhinolaryngology, University of Fukui, Fukui 910-1193, Japan
| | - Seita Kubo
- Department of Otorhinolaryngology, University of Fukui, Fukui 910-1193, Japan
| | - Yumi Ito
- Department of Otorhinolaryngology, University of Fukui, Fukui 910-1193, Japan
| | - Yoshimasa Imoto
- Department of Otorhinolaryngology, University of Fukui, Fukui 910-1193, Japan
| | - Takahiro Tokunaga
- Department of Otorhinolaryngology, University of Fukui, Fukui 910-1193, Japan
| | - Masayuki Okamoto
- Department of Otorhinolaryngology, University of Fukui, Fukui 910-1193, Japan
| | - Norihiko Narita
- Department of Otorhinolaryngology, University of Fukui, Fukui 910-1193, Japan
| | - Shigeharu Fujieda
- Department of Otorhinolaryngology, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
49
|
Koo JW, Quintanilla-Dieck L, Jiang M, Liu J, Urdang ZD, Allensworth JJ, Cross CP, Li H, Steyger PS. Endotoxemia-mediated inflammation potentiates aminoglycoside-induced ototoxicity. Sci Transl Med 2016. [PMID: 26223301 DOI: 10.1126/scitranslmed.aac5546] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The ototoxic aminoglycoside antibiotics are essential to treat severe bacterial infections, particularly in neonatal intensive care units. Using a bacterial lipopolysaccharide (LPS) experimental model of sepsis, we tested whether LPS-mediated inflammation potentiates cochlear uptake of aminoglycosides and permanent hearing loss in mice. Using confocal microscopy and enzyme-linked immunosorbent assays, we found that low-dose LPS (endotoxemia) greatly increased cochlear concentrations of aminoglycosides and resulted in vasodilation of cochlear capillaries without inducing paracellular flux across the blood-labyrinth barrier (BLB) or elevating serum concentrations of the drug. Additionally, endotoxemia increased expression of both serum and cochlear inflammatory markers. These LPS-induced changes, classically mediated by Toll-like receptor 4 (TLR4), were attenuated in TLR4-hyporesponsive mice. Multiday dosing with aminoglycosides during chronic endotoxemia induced greater hearing threshold shifts and sensory cell loss compared to mice without endotoxemia. Thus, endotoxemia-mediated inflammation enhanced aminoglycoside trafficking across the BLB and potentiated aminoglycoside-induced ototoxicity. These data indicate that patients with severe infections are at greater risk of aminoglycoside-induced hearing loss than previously recognized.
Collapse
Affiliation(s)
- Ja-Won Koo
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA. Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 173-82 Kumiro, Bundang-gu, Seongnam 463-707, Republic of Korea
| | - Lourdes Quintanilla-Dieck
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Meiyan Jiang
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Jianping Liu
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA. Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai 200031, China
| | - Zachary D Urdang
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Jordan J Allensworth
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Campbell P Cross
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Hongzhe Li
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Peter S Steyger
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
50
|
Characterisation of cochlear inflammation in mice following acute and chronic noise exposure. Histochem Cell Biol 2016; 146:219-30. [PMID: 27109494 DOI: 10.1007/s00418-016-1436-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2016] [Indexed: 12/17/2022]
Abstract
Oxidative stress has been established as the key mechanism of the cochlear damage underlying noise-induced hearing loss, however, emerging evidence suggests that cochlear inflammation may also be a major contributor. This study aimed to improve our understanding of the cochlear inflammatory response associated with acute and chronic noise exposure. C57BL/6 mice were exposed to acute traumatic noise (100 dBSPL, 8-16 kHz for 24 h) and their cochleae collected at various intervals thereafter, up to 7 days. Using quantitative RT-PCR and immunohistochemistry, changes in expression levels of proinflammatory cytokines (TNF-α, IL-1β), chemokines (CCL2) and cell adhesion molecules (ICAM-1) were studied. All gene transcripts displayed similar dynamics of expression, with an early upregulation at 6 h post-exposure, followed by a second peak at 7 days. ICAM-1 immunoexpression increased significantly in the inferior region of the spiral ligament, peaking 24 h post-exposure. The early expression of proinflammatory mediators likely mediates the recruitment and extravasation of inflammatory cells into the noise-exposed cochlea. The occurrence of the latter expression peak is not clear, but it may be associated with reparative processes initiated in response to cochlear damage. Chronic exposure to moderate noise (90 dBSPL, 8-16 kHz, 2 h/day, up to 4 weeks) also elicited an inflammatory response, reaching a maximum after 2 weeks, suggesting that cochlear damage and hearing loss associated with chronic environmental noise exposure may be linked to inflammatory processes in the cochlea. This study thus provides further insight into the dynamics of the cochlear inflammatory response induced by exposure to acute and chronic noise.
Collapse
|