1
|
Ma S, Zhu F, Wen H, Rao M, Zhang P, Peng W, Cui Y, Yang H, Tan C, Chen J, Pan P. Development of a novel multi-epitope vaccine based on capsid and envelope protein against Chikungunya virus. J Biomol Struct Dyn 2024; 42:7024-7036. [PMID: 37526203 DOI: 10.1080/07391102.2023.2240059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
Chikungunya virus (CHIKV), a type A virus borne by mosquitoes that can cause major clinical manifestations including rash, fever and debilitating arthritis, grown into a reemerging serious public health issue. Currently, there is no licensed therapy or vaccine available for CHIKV, although the most promising form of treatment appears to be immunotherapy. Neutralizing antibodies for CHIKV can provide high protection for all CHIKV strains, as well as other alphaviruses. Development of a protective vaccine may be an effective strategy to prevent the outbreak of CHIKV and provide protection for travelers. In this study, we designed a multi-epitope vaccine with a 543-amino-acid structure based on the E1, E2 and capsid proteins of CHIKV, including 6 CTL epitopes, 6 HTL epitopes, 12 linear B epitopes, along with the adjuvant β-defensin III. All T-cell epitopes were docked with their corresponding MHC alleles to validate their effect on inducing immune responses, and the vaccine's sequence was proven to have acceptable physicochemical properties. Further, the developed vaccine was docked with TLR3 and TLR8, both of which play an important role in recognizing RNA viruses. Basic analyses of the docked complexes and molecular dynamic simulations revealed that the vaccine interacted strongly with TLRs. Immunological simulations indicated that the vaccine could induce both cellular and humoral immunity. Hopefully, this proposed vaccine structure can serve as a viable candidate against CHIKV infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shiyang Ma
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fei Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haicheng Wen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingjun Rao
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peipei Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenzhong Peng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanhui Cui
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hang Yang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Caixia Tan
- Department of Infection Control Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Wang M, Wang L, Leng P, Guo J, Zhou H. Drugs targeting structural and nonstructural proteins of the chikungunya virus: A review. Int J Biol Macromol 2024; 262:129949. [PMID: 38311132 DOI: 10.1016/j.ijbiomac.2024.129949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
Chikungunya virus (CHIKV) is a single positive-stranded RNA virus of the Togaviridae family and Alphavirus genus, with a typical lipid bilayer envelope structure, and is the causative agent of human chikungunya fever (CHIKF). The U.S. Food and Drug Administration has recently approved the first chikungunya vaccine, Ixchiq; however, vaccination rates are low, and CHIKF is prevalent owing to its periodic outbreaks. Thus, developing effective anti-CHIKV drugs in clinical settings is imperative. Viral proteins encoded by the CHIKV genome play vital roles in all stages of infection, and developing therapeutic agents that target these CHIKV proteins is an effective strategy to improve CHIKF treatment efficacy and reduce mortality rates. Therefore, in the present review article, we aimed to investigate the basic structure, function, and replication cycle of CHIKV and comprehensively outline the current status and future advancements in anti-CHIKV drug development, specifically targeting nonstructural (ns) proteins, including nsP1, nsP2, nsP3, and nsP4 and structural proteins such as capsid (C), E3, E2, 6K, and E1.
Collapse
Affiliation(s)
- Mengke Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lidong Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Leng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinlin Guo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400016, China.
| |
Collapse
|
3
|
Peinado RDS, Martins LG, Pacca CC, Saivish MV, Borsatto KC, Nogueira ML, Tasic L, Arni RK, Eberle RJ, Coronado MA. HR-MAS NMR Metabolomics Profile of Vero Cells under the Influence of Virus Infection and nsP2 Inhibitor: A Chikungunya Case Study. Int J Mol Sci 2024; 25:1414. [PMID: 38338694 PMCID: PMC10855909 DOI: 10.3390/ijms25031414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
The arbovirus Chikungunya (CHIKV) is transmitted by Aedes mosquitoes in urban environments, and in humans, it triggers debilitating symptoms involving long-term complications, including arthritis and Guillain-Barré syndrome. The development of antiviral therapies is relevant, as no efficacious vaccine or drug has yet been approved for clinical application. As a detailed map of molecules underlying the viral infection can be obtained from the metabolome, we validated the metabolic signatures of Vero E6 cells prior to infection (CC), following CHIKV infection (CV) and also upon the inclusion of the nsP2 protease inhibitor wedelolactone (CWV), a coumestan which inhibits viral replication processes. The metabolome groups evidenced significant changes in the levels of lactate, myo-inositol, phosphocholine, glucose, betaine and a few specific amino acids. This study forms a preliminary basis for identifying metabolites through HR-MAS NMR (High Resolution Magic Angle Spinning Nuclear Magnetic Ressonance Spectroscopy) and proposing the affected metabolic pathways of cells following viral infection and upon incorporation of putative antiviral molecules.
Collapse
Affiliation(s)
- Rafaela dos S. Peinado
- Multiuser Center for Biomolecular Innovation, Department of Physics, Institute of Biosciences, Languages and Exact Sciences (Ibilce—UNESP), Sao Jose do Rio Preto, Sao Paulo 15054000, Brazil; (R.d.S.P.); (K.C.B.); (R.K.A.)
| | - Lucas G. Martins
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083862, Brazil; (L.G.M.); (L.T.)
| | - Carolina C. Pacca
- Virology Research Laboratory, Medical School of Sao Jose do Rio Preto (FAMERP), Sao Paulo 15090000, Brazil; (C.C.P.); (M.V.S.); (M.L.N.)
| | - Marielena V. Saivish
- Virology Research Laboratory, Medical School of Sao Jose do Rio Preto (FAMERP), Sao Paulo 15090000, Brazil; (C.C.P.); (M.V.S.); (M.L.N.)
| | - Kelly C. Borsatto
- Multiuser Center for Biomolecular Innovation, Department of Physics, Institute of Biosciences, Languages and Exact Sciences (Ibilce—UNESP), Sao Jose do Rio Preto, Sao Paulo 15054000, Brazil; (R.d.S.P.); (K.C.B.); (R.K.A.)
| | - Maurício L. Nogueira
- Virology Research Laboratory, Medical School of Sao Jose do Rio Preto (FAMERP), Sao Paulo 15090000, Brazil; (C.C.P.); (M.V.S.); (M.L.N.)
| | - Ljubica Tasic
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083862, Brazil; (L.G.M.); (L.T.)
| | - Raghuvir K. Arni
- Multiuser Center for Biomolecular Innovation, Department of Physics, Institute of Biosciences, Languages and Exact Sciences (Ibilce—UNESP), Sao Jose do Rio Preto, Sao Paulo 15054000, Brazil; (R.d.S.P.); (K.C.B.); (R.K.A.)
| | - Raphael J. Eberle
- Institute of Biological Information Processing IBI-7: Structural Biochemistry, Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Mônika A. Coronado
- Institute of Biological Information Processing IBI-7: Structural Biochemistry, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
4
|
Kim AS, Diamond MS. A molecular understanding of alphavirus entry and antibody protection. Nat Rev Microbiol 2023; 21:396-407. [PMID: 36474012 PMCID: PMC9734810 DOI: 10.1038/s41579-022-00825-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Alphaviruses are arthropod-transmitted RNA viruses that cause epidemics of human infection and disease on a global scale. These viruses are classified as either arthritogenic or encephalitic based on their genetic relatedness and the clinical syndromes they cause. Although there are currently no approved therapeutics or vaccines against alphaviruses, passive transfer of monoclonal antibodies confers protection in animal models. This Review highlights recent advances in our understanding of the host factors required for alphavirus entry, the mechanisms of action by which protective antibodies inhibit different steps in the alphavirus infection cycle and candidate alphavirus vaccines currently under clinical evaluation that focus on humoral immunity. A comprehensive understanding of alphavirus entry and antibody-mediated protection may inform the development of new classes of countermeasures for these emerging viruses.
Collapse
Affiliation(s)
- Arthur S Kim
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
5
|
Raju S, Adams LJ, Earnest JT, Warfield K, Vang L, Crowe JE, Fremont DH, Diamond MS. A chikungunya virus-like particle vaccine induces broadly neutralizing and protective antibodies against alphaviruses in humans. Sci Transl Med 2023; 15:eade8273. [PMID: 37196061 PMCID: PMC10562830 DOI: 10.1126/scitranslmed.ade8273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 04/27/2023] [Indexed: 05/19/2023]
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes epidemics of acute and chronic musculoskeletal disease. Here, we analyzed the human B cell response to a CHIKV-like particle-adjuvanted vaccine (PXVX0317) from samples obtained from a phase 2 clinical trial in humans (NCT03483961). Immunization with PXVX0317 induced high levels of neutralizing antibody in serum against CHIKV and circulating antigen-specific B cells up to 6 months after immunization. Monoclonal antibodies (mAbs) generated from peripheral blood B cells of three PXVX0317-vaccinated individuals on day 57 after immunization potently neutralized CHIKV infection, and a subset of these inhibited multiple related arthritogenic alphaviruses. Epitope mapping and cryo-electron microscopy defined two broadly neutralizing mAbs that uniquely bind to the apex of the B domain of the E2 glycoprotein. These results demonstrate the inhibitory breadth and activity of the human B cell response induced by the PXVX0317 vaccine against CHIKV and potentially other related alphaviruses.
Collapse
Affiliation(s)
- Saravanan Raju
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lucas J. Adams
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James T. Earnest
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Lo Vang
- Emergent BioSolutions, Gaithersburg, MD 20879, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Daved H. Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S. Diamond
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
6
|
Chikungunya Virus and Its Envelope Protein E2 Induce Hyperalgesia in Mice: Inhibition by Anti-E2 Monoclonal Antibodies and by Targeting TRPV1. Cells 2023; 12:cells12040556. [PMID: 36831223 PMCID: PMC9954636 DOI: 10.3390/cells12040556] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/20/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Chikungunya virus is an arthropod-borne infectious agent that causes Chikungunya fever disease. About 90% of the infected patients experience intense polyarthralgia, affecting mainly the extremities but also the large joints such as the knees. Chronic disease symptoms persist for months, even after clearance of the virus from the blood. Envelope proteins stimulate the immune response against the Chikungunya virus, becoming an important therapeutic target. We inactivated the Chikungunya virus (iCHIKV) and produced recombinant E2 (rE2) protein and three different types of anti-rE2 monoclonal antibodies. Using these tools, we observed that iCHIKV and rE2 protein induced mechanical hyperalgesia (electronic aesthesiometer test) and thermal hyperalgesia (Hargreaves test) in mice. These behavioral results were accompanied by the activation of dorsal root ganglia (DRG) neurons in mice, as observed by calcium influx. Treatment with three different types of anti-rE2 monoclonal antibodies and absence or blockade (AMG-9810 treatment) of transient receptor potential vanilloid 1 (TRPV1) channel diminished mechanical and thermal hyperalgesia in mice. iCHIKV and rE2 activated TRPV1+ mouse DRG neurons in vitro, demonstrating their ability to activate nociceptor sensory neurons directly. Therefore, our mouse data demonstrate that targeting E2 CHIKV protein with monoclonal antibodies and inhibiting TRPV1 channels are reasonable strategies to control CHIKV pain.
Collapse
|
7
|
Ramjag A, Cutrone S, Lu K, Crasto C, Jin J, Bakkour S, Carrington CVF, Simmons G. A high-throughput screening assay to identify inhibitory antibodies targeting alphavirus release. Virol J 2022; 19:170. [PMID: 36309730 PMCID: PMC9617529 DOI: 10.1186/s12985-022-01906-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Several studies have demonstrated neutralizing antibodies to be highly effective against alphavirus infection in animal models, both prophylactically and remedially. In most studies, neutralizing antibodies have been evaluated for their ability to block viral entry in vitro but recent evidence suggests that antibody inhibition through other mechanisms, including viral budding/release, significantly contributes to viral control in vivo for a number of alphaviruses. RESULTS We describe a BSL-2, cell-based, high-throughput screening system that specifically screens for inhibitors of alphavirus egress using chikungunya virus (CHIKV) and Mayaro virus (MAYV) novel replication competent nano-luciferase (nLuc) reporter viruses. Screening of both polyclonal sera and memory B-cell clones from CHIKV immune individuals using the optimized assay detected several antibodies that display potent anti-budding activity. CONCLUSIONS We describe an "anti-budding assay" to specifically screen for inhibitors of viral egress using novel CHIKV and MAYV nLuc reporter viruses. This BSL-2 safe, high-throughput system can be utilized to explore neutralizing "anti-budding" antibodies to yield potent candidates for CHIKV and MAYV therapeutics and prophylaxis.
Collapse
Affiliation(s)
- Anushka Ramjag
- Department of Preclinical Sciences, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Sergej Cutrone
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA, 94118, USA
- University of California San Francisco, San Francisco, CA, 94143, USA
| | - Kai Lu
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA, 94118, USA
| | - Christine Crasto
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA, 94118, USA
| | - Jing Jin
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA, 94118, USA
- University of California San Francisco, San Francisco, CA, 94143, USA
| | - Sonia Bakkour
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA, 94118, USA
- University of California San Francisco, San Francisco, CA, 94143, USA
| | - Christine V F Carrington
- Department of Preclinical Sciences, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Graham Simmons
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA, 94118, USA.
- University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
8
|
A Chikungunya Virus Multiepitope Recombinant Protein Expressed from the Binary System Insect Cell/Recombinant Baculovirus Is Useful for Laboratorial Diagnosis of Chikungunya. Microorganisms 2022; 10:microorganisms10071451. [PMID: 35889170 PMCID: PMC9316945 DOI: 10.3390/microorganisms10071451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Chikungunya virus (CHIKV) is an arbovirus currently distributed worldwide, causing a disease that shares clinical signs and symptoms with other illnesses, such as dengue and Zika and leading to a challenging clinical differential diagnosis. In Brazil, CHIKV emerged in 2014 with the simultaneous introduction of both Asian and East/Central/South African (ECSA) genotypes. Laboratorial diagnosis of CHIKV is mainly performed by molecular and serological assays, with the latter more widely used. Although many commercial kits are available, their costs are still high for many underdeveloped and developing countries where the virus circulates. Here we described the development and evaluation of a multi-epitope recombinant protein-based IgG-ELISA (MULTREC IgG-ELISA) test for the specific detection of anti-CHIKV antibodies in clinical samples, as an alternative approach for laboratorial diagnosis. The MULTREC IgG-ELISA showed 86.36% of sensitivity and 100% of specificity, and no cross-reactivity with other exanthematic diseases was observed. The recombinant protein was expressed from the binary system insect cell/baculovirus using the crystal-forming baculoviral protein polyhedrin as a carrier of the target recombinant protein to facilitate recovery. The crystals were at least 10 times smaller in size and had an amorphous shape when compared to the polyhedrin wild-type crystal. The assay uses a multi-epitope antigen, representing two replicates of 18 amino acid sequences from the E2 region and a sequence of 17 amino acids from the nsP3 region of CHIKV. The recombinant protein was highly expressed, easy to purify and has demonstrated its usefulness in confirming chikungunya exposure, indeed showing a good potential tool for epidemiological surveillance.
Collapse
|
9
|
Lin WN, Tay MZ, Wong JXE, Lee CY, Fong SW, Wang CI, Ng LFP, Renia L, Chen CH, Cheow LF. Rapid microfluidic platform for screening and enrichment of cells secreting virus neutralizing antibodies. LAB ON A CHIP 2022; 22:2578-2589. [PMID: 35694804 DOI: 10.1039/d2lc00018k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As part of the body's immune response, antibodies (Abs) have the ability to neutralize pathogenic viruses to prevent infection. To screen for neutralizing Abs (nAbs) from the immune repertoire, multiple screening techniques have been developed. However, conventional methods have a trade-off between screening throughput and the ability to screen for nAbs via their functional efficacy. Although droplet microfluidic platforms have the ability to bridge this disparity, the majority of such reported platforms still rely on Ab-binding assays as a proxy for function, which results in irrelevant hits. Herein, we report the multi-module Droplet-based Platform for Effective Antibody RetrievaL (DROP-PEARL) platform, which can achieve high-throughput enrichment of Ab-secreting cells (ASCs) based on the neutralizing activity of secreted nAbs against the a target virus. In this study, in-droplet Chikungunya virus (CHIKV) infection of host cells and neutralization was demonstrated via sequential delivery of viruses and host cells via picoinjection. In addition, we demonstrate the ability of the sorting system to accurately discriminate and isolate uninfected droplets from a mixed population of droplets at a rate of 150 000 cells per hour. As a proof of concept, a single-cell neutralization assay was performed on two populations of cells (nAb-producing and non-Ab producing cells), and up to 2.75-fold enrichment of ASCs was demonstrated. Finally, we demonstrated that DROP-PEARL is able to achieve similar enrichment for low frequency (∼2%) functional nAb-producing cells in a background of excess cells secreting irrelevant antibodies, highlighting its potential prospect as a first round enrichment platform for functional ASCs. We envision that the DROP-PEARL platform could potentially be used to accelerate the discovery of nAbs against other pathogenic viral targets, and we believe it will be a useful in the ongoing fight against biological threats.
Collapse
Affiliation(s)
- Weikang Nicholas Lin
- Department of Biomedical Engineering, National University of Singapore, Singapore.
| | - Matthew Zirui Tay
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Joel Xu En Wong
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Siew-Wai Fong
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Lisa Fong Poh Ng
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Laurent Renia
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Chia-Hung Chen
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Lih Feng Cheow
- Department of Biomedical Engineering, National University of Singapore, Singapore.
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong
- Institute for Health Innovation & Technology (iHealthtech), Singapore
| |
Collapse
|
10
|
Pedraza-Escalona M, Guzmán-Bringas O, Arrieta-Oliva HI, Gómez-Castellano K, Salinas-Trujano J, Torres-Flores J, Muñoz-Herrera JC, Camacho-Sandoval R, Contreras-Pineda P, Chacón-Salinas R, Pérez-Tapia SM, Almagro JC. Isolation and characterization of high affinity and highly stable anti-Chikungunya virus antibodies using ALTHEA Gold Libraries™. BMC Infect Dis 2021; 21:1121. [PMID: 34717584 PMCID: PMC8556770 DOI: 10.1186/s12879-021-06717-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/22/2021] [Indexed: 09/08/2024] Open
Abstract
BACKGROUND More than 3 million infections were attributed to Chikungunya virus (CHIKV) in the 2014-2016 outbreak in Mexico, Central and South America, with over 500 deaths directly or indirectly related to this viral disease. CHIKV outbreaks are recurrent and no vaccine nor approved therapeutics exist to prevent or treat CHIKV infection. Reliable and robust diagnostic methods are thus critical to control future CHIKV outbreaks. Direct CHIKV detection in serum samples via highly specific and high affinity anti-CHIKV antibodies has shown to be an early and effective clinical diagnosis. METHODS To isolate highly specific and high affinity anti-CHIKV, Chikungunya virions were isolated from serum of a patient in Veracruz, México. After purification and characterization via electron microscopy, SDS-PAGE and binding to well-characterized anti-CHIKV antibodies, UV-inactivated particles were utilized as selector in a solid-phase panning in combination with ALTHEA Gold Libraries™, as source of antibodies. The screening was based on ELISA and Next-Generation Sequencing. RESULTS The CHIKV isolate showed the typical morphology of the virus. Protein bands in the SDS-PAGE were consistent with the size of CHIKV capsid proteins. UV-inactivated CHIKV particles bound tightly the control antibodies. The lead antibodies here obtained, on the other hand, showed high expression yield, > 95% monomeric content after a single-step Protein A purification, and importantly, had a thermal stability above 75 °C. Most of the antibodies recognized linear epitopes on E2, including the highest affinity antibody called C7. A sandwich ELISA implemented with C7 and a potent neutralizing antibody isolated elsewhere, also specific for E2 but recognizing a discontinuous epitope, showed a dynamic range of 0.2-40.0 mg/mL of UV-inactivated CHIKV purified preparation. The number of CHIKV particles estimated based on the concentration of E2 in the extract suggested that the assay could detect clinically meaningful amounts of CHIKV in serum. CONCLUSIONS The newly discovered antibodies offer valuable tools for characterization of CHIKV isolates. Therefore, the strategy here followed using whole viral particles and ALTHEA Gold Libraries™ could expedite the discovery and development of antibodies for detection and control of emergent and quickly spreading viral outbreaks.
Collapse
Affiliation(s)
- M Pedraza-Escalona
- CONACyT-Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México
| | - O Guzmán-Bringas
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México
| | - H I Arrieta-Oliva
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México
| | - K Gómez-Castellano
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México
| | - J Salinas-Trujano
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México
| | - J Torres-Flores
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México
| | - J C Muñoz-Herrera
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México
| | - R Camacho-Sandoval
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México
| | - P Contreras-Pineda
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México
| | - R Chacón-Salinas
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México.,Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), México City, México
| | - S M Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México.,Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), México City, México
| | - J C Almagro
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México. .,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Mexico City, México. .,GlobalBio, Inc, 320 Concord Ave., 02138, Cambridge, MA, USA.
| |
Collapse
|
11
|
Chikungunya and arthritis: An overview. Travel Med Infect Dis 2021; 44:102168. [PMID: 34563686 DOI: 10.1016/j.tmaid.2021.102168] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022]
Abstract
Chikungunya is caused by CHIKV (chikungunya virus), an emerging and re-emerging arthropod-vectored viral infection that causes a febrile disease with primarily long term sequelae of arthralgia and myalgia and is fatal in a small fraction of infected patients. Sporadic outbreaks have been reported from different parts of the world chiefly Africa, Asia, the Indian and Pacific ocean regions, Europe and lately even in the Americas. Currently, treatment is primarily symptomatic as no vaccine, antibody-mediated immunotherapy or antivirals are available. Chikungunya belongs to a family of arthritogenic alphaviruses which have many pathophysiological similarities. Chikungunya arthritis has similarities and differences with rheumatoid arthritis. Although research into arthritis caused by these alphaviruses have been ongoing for decades and significant progress has been made, the mechanisms underlying viral infection and arthritis are not well understood. In this review, we give a background to chikungunya and the causative virus, outline the history of alphavirus arthritis research and then give an overview of findings on arthritis caused by CHIKV. We also discuss treatment options and the research done so far on various therapeutic intervention strategies.
Collapse
|
12
|
Hapuarachchi HC, Wong WY, Koo C, Tien WP, Yeo G, Rajarethinam J, Tan E, Chiang S, Chong CS, Tan CH, Tan LK, Ng LC. Transient transmission of Chikungunya virus in Singapore exemplifies successful mitigation of severe epidemics in a vulnerable population. Int J Infect Dis 2021; 110:417-425. [PMID: 34380087 DOI: 10.1016/j.ijid.2021.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Singapore experienced two major outbreaks of chikungunya in 2008-09 and 2013-14. Despite repeated virus introductions, fresh local outbreaks have not emerged after 2014. The present study reviews the success of chikungunya control in Singapore, despite repeated introduction of virus strains, presence of competent vectors and an immunologically naïve population. METHODS Chikungunya virus (CHIKV) sequences (421 envelope 1 genes and 56 polyproteins) were analysed to distinguish the indigenous virus groups from 2008 to 2020. Vector surveillance data was used to incriminate the vector/s associated with local outbreaks. The population exposure to CHIKV was determined by assessing the seroprevalence status in three cohorts of sera collected in 2009 (n=2,008), 2013 (n=2,000) and 2017 (n=3,615). RESULTS Four distinct groups of CHIKV of East, Central and South African genotype have mainly circulated since 2008, transmitted primarily by Aedes albopictus. The age weighted CHIKV IgG prevalence rates were low (1-5%) and showed a non-significant increase from 2009 to 2013, but a significant decrease in 2017. In contrast, the prevalence of CHIKV neutralising antibodies in the population increased significantly from 2009 to 2013, with no significant change in 2017, but the levels remained below 2%. CONCLUSIONS The evidence suggested that surveillance and vector control strategies implemented were robust to avert severe epidemics, despite repeated introduction of virus strains, presence of competent vectors and an immunologically naïve population.
Collapse
Affiliation(s)
| | - Wing-Yan Wong
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Carmen Koo
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Wei-Ping Tien
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Gladys Yeo
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Jayanthi Rajarethinam
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Eugene Tan
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Suzanna Chiang
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Chee-Seng Chong
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Cheong-Huat Tan
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Li-Kiang Tan
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Lee-Ching Ng
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
13
|
Ali MG, Zhang Z, Gao Q, Pan M, Rowan EG, Zhang J. Recent advances in therapeutic applications of neutralizing antibodies for virus infections: an overview. Immunol Res 2020; 68:325-339. [PMID: 33161557 PMCID: PMC7648849 DOI: 10.1007/s12026-020-09159-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022]
Abstract
Antibodies are considered as an excellent foundation to neutralize pathogens and as highly specific therapeutic agents. Antibodies are generated in response to a vaccine but little use as immunotherapy to combat virus infections. A new generation of broadly cross-reactive and highly potent antibodies has led to a unique chance for them to be used as a medical intervention. Neutralizing antibodies (monoclonal and polyclonal antibodies) are desirable for pharmaceutical products because of their ability to target specific epitopes with their variable domains by precise neutralization mechanisms. The isolation of neutralizing antiviral antibodies has been achieved by Phage displayed antibody libraries, transgenic mice, B cell approaches, and hybridoma technology. Antibody engineering technologies have led to efficacy improvements, to further boost antibody in vivo activities. "Although neutralizing antiviral antibodies have some limitations that hinder their full development as therapeutic agents, the potential for prevention and treatment of infections, including a range of viruses (HIV, Ebola, MERS-COV, CHIKV, SARS-CoV, and SARS-CoV2), are being actively pursued in human clinical trials."
Collapse
Affiliation(s)
- Manasik Gumah Ali
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Zhening Zhang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Qi Gao
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Mingzhu Pan
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Edward G Rowan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University Strathclyde, Glasgow, UK
| | - Juan Zhang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
14
|
Abstract
Introduction: Chikungunya virus (CHIKV), a reemerging human arthropod borne virus, can causes global epidemic outbreaks and has become a serious health concern due to the unavailability of any antiviral therapy/vaccine. Extensive research has been conducted to target different proteins from CHIKV to curtail the spread of virus.Areas covered: This review provides an overview of the granted patents including the current status of antiviral strategies targeting CHIKV.Expert opinion: Under the current scenario, potential molecules and different approaches have been utilized to suppress CHIKV infection. MV-CHIKV and VRC-CHKVLP059-00-VP vaccine candidates have successfully completed phase I clinical trials and ribavirin (inhibitor) has shown significant inhibition of CHIKV replication and could be the most promising candidates. The drug resistance and toxicity can be modulated by using the inhibitors/drugs in combination. Moreover, nanoparticle formulations can improve the efficacy and bioavailability of drugs.
Collapse
Affiliation(s)
- Ritu Ghildiyal
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, U P, India
| | - Reema Gabrani
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, U P, India
| |
Collapse
|
15
|
Kumar R, Shrivastava T, Samal S, Ahmed S, Parray HA. Antibody-based therapeutic interventions: possible strategy to counter chikungunya viral infection. Appl Microbiol Biotechnol 2020; 104:3209-3228. [PMID: 32076776 PMCID: PMC7223553 DOI: 10.1007/s00253-020-10437-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Chikungunya virus (CHIKV), a mosquito-transmitted disease that belongs to the genus Alphaviruses, has been emerged as an epidemic threat over the last two decades, and the recent co-emergence of this virus along with other circulating arboviruses and comorbidities has influenced atypical mortality rate up to 10%. Genetic variation in the virus has resulted in its adaptability towards the new vector Aedes albopictus other than Aedes aegypti, which has widen the horizon of distribution towards non-tropical and non-endemic areas. As of now, no licensed vaccines or therapies are available against CHIKV; the treatment regimens for CHIKV are mostly symptomatic, based on the clinical manifestations. Development of small molecule drugs and neutralizing antibodies are potential alternatives of worth investigating until an efficient or safe vaccine is approved. Neutralizing antibodies play an important role in antiviral immunity, and their presence is a hallmark of viral infection. In this review, we describe prospects for effective vaccines and highlight importance of neutralizing antibody-based therapeutic and prophylactic applications to combat CHIKV infections. We further discuss about the progress made towards CHIKV therapeutic interventions as well as challenges and limitation associated with the vaccine development. Furthermore this review describes the lesson learned from chikungunya natural infection, which could help in better understanding for future development of antibody-based therapeutic measures.
Collapse
Affiliation(s)
- Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India.
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Hilal Ahmad Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| |
Collapse
|
16
|
Duplantier AJ, Shurtleff AC, Miller C, Chiang CY, Panchal RG, Sunay M. Combating biothreat pathogens: ongoing efforts for countermeasure development and unique challenges. DRUG DISCOVERY TARGETING DRUG-RESISTANT BACTERIA 2020. [PMCID: PMC7258707 DOI: 10.1016/b978-0-12-818480-6.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Research to discover and develop antibacterial and antiviral drugs with potent activity against pathogens of biothreat concern presents unique methodological and process-driven challenges. Herein, we review laboratory approaches for finding new antibodies, antibiotics, and antiviral molecules for pathogens of biothreat concern. Using high-throughput screening techniques, molecules that directly inhibit a pathogen’s entry, replication, or growth can be identified. Alternatively, molecules that target host proteins can be interesting targets for development when countering biothreat pathogens, due to the modulation of the host immune response or targeting proteins that interfere with the pathways required by the pathogen for replication. Monoclonal and cocktail antibody therapies approved by the Food and Drug Administration for countering anthrax and under development for treatment of Ebola virus infection are discussed. A comprehensive tabular review of current in vitro, in vivo, pharmacokinetic and efficacy datasets has been presented for biothreat pathogens of greatest concern. Finally, clinical trials and animal rule or traditional drug approval pathways are also reviewed. Opinions; interpretations; conclusions; and recommendations are those of the authors and are not necessarily endorsed by the US Army.
Collapse
|
17
|
Kim J, Yang J, Kim YB, Lee HJ, Kim S, Poo H. Development of a Specific CHIKV-E2 Monoclonal Antibody for Chikungunya Diagnosis. Virol Sin 2019; 34:563-571. [PMID: 31214999 DOI: 10.1007/s12250-019-00135-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/26/2019] [Indexed: 01/18/2023] Open
Abstract
Chikungunya fever is a vector-borne viral disease transmitted to humans by chikungunya virus (CHIKV)-infected mosquitoes. There have been many outbreaks of CHIKV infection worldwide, and the virus poses ongoing risks to global health. To prevent and control CHIKV infection, it is important to improve the current CHIKV diagnostic approaches to allow for the detection of low CHIKV concentrations and to correctly distinguish CHIKV infections from those due to other mosquito-transmitted viruses, including dengue virus (DENV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV). Here, we produced monoclonal antibodies (mAbs) against the CHIKV envelope 2 protein (CHIKV-E2) and compared their sensitivity and specificity with commercially available mAbs using enzyme-linked immunosorbent assays (ELISA). Two anti-CHIKV-E2 mAbs, 19-1 and 21-1, showed higher binding affinities to CHIKV-E2 protein than the commercial mAbs did. In particular, the 19-1 mAb had the strongest binding affinity to inactivated CHIKV. Moreover, the 19-1 mAb had very little cross-reactivity with other mosquito-borne viruses, such as ZIKV, JEV, and DENV. These results suggest that the newly produced anti-CHIKV-E2 mAb, 19-1, could be used for CHIKV diagnostic approaches.
Collapse
Affiliation(s)
- Jaemoo Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Department of Biosystems and Bioengineering, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jihyun Yang
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Young Bong Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea.,Department of Bio-Industrial Technologies, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hee-Jung Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sehyun Kim
- Department of Bio-Industrial Technologies, Konkuk University, Seoul, 05029, Republic of Korea
| | - Haryoung Poo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Department of Biosystems and Bioengineering, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
18
|
Jin J, Simmons G. Antiviral Functions of Monoclonal Antibodies against Chikungunya Virus. Viruses 2019; 11:v11040305. [PMID: 30925717 PMCID: PMC6520934 DOI: 10.3390/v11040305] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/24/2022] Open
Abstract
Chikungunya virus (CHIKV) is the most common alphavirus infecting humans worldwide. Antibodies play pivotal roles in the immune response to infection. Increasingly, therapeutic antibodies are becoming important for protection from pathogen infection for which neither vaccine nor treatment is available, such as CHIKV infection. The new generation of ultra-potent and/or broadly cross-reactive monoclonal antibodies (mAbs) provides new opportunities for intervention. In the past decade, several potent human and mouse anti-CHIKV mAbs were isolated and demonstrated to be protective in vivo. Mechanistic studies of these mAbs suggest that mAbs exert multiple modes of action cooperatively. Better understanding of these antiviral mechanisms for mAbs will help to optimize mAb therapies.
Collapse
Affiliation(s)
- Jing Jin
- Vitalant Research Institute, San Francisco, CA 94118, USA.
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA 94143, USA.
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, CA 94118, USA.
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
19
|
Bhat SM, Mudgal PP, N S, Arunkumar G. Spectrum of candidate molecules against Chikungunya virus - an insight into the antiviral screening platforms. Expert Rev Anti Infect Ther 2019; 17:243-264. [PMID: 30889372 DOI: 10.1080/14787210.2019.1595591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Chikungunya disease has undergone a phenomenal transition in its status from being recognized as a sporadic infection to acquiring a global prominence over the last couple of decades. The causative agent behind the explosive epidemics worldwide is the re-emerging pathogen, Chikungunya virus (CHIKV). Areas covered: The current review discusses all the possible avenues of antiviral research towards combating CHIKV infection. Aspects of antiviral drug discovery such as antiviral targets, candidate molecules screened, and the various criteria to be a potential inhibitor are all discussed at length. Existing antiviral drug screening tools for CHIKV and their applications are thoroughly described. Clinical trial status of agents with therapeutic potential has been updated with special mention of candidate molecules under patent approval. Databases such as PubMed, Google Scholar, ScienceDirect, Google Patent, and Clinical Trial Registry platforms were referred. Expert opinion: The massive outbreaks of Chikungunya viral disease in the recent past and the serious health concerns imposed thereby, have driven the search for effective therapeutics. The greatest challenge being the non-availability of robust, reproducible, cost-effective and biologically accurate assay models. Nevertheless, there is a need to identify good models mimicking the appropriate microenvironment of an infectious setting.
Collapse
Affiliation(s)
- Shree Madhu Bhat
- a Manipal Centre for Virus Research , Manipal Academy of Higher Education (Deemed to be University) , Manipal , Karnataka , India
| | - Piya Paul Mudgal
- a Manipal Centre for Virus Research , Manipal Academy of Higher Education (Deemed to be University) , Manipal , Karnataka , India
| | - Sudheesh N
- a Manipal Centre for Virus Research , Manipal Academy of Higher Education (Deemed to be University) , Manipal , Karnataka , India
| | - Govindakarnavar Arunkumar
- a Manipal Centre for Virus Research , Manipal Academy of Higher Education (Deemed to be University) , Manipal , Karnataka , India
| |
Collapse
|
20
|
Shah HB, Smith K, Wren JD, Webb CF, Ballard JD, Bourn RL, James JA, Lang ML. Insights From Analysis of Human Antigen-Specific Memory B Cell Repertoires. Front Immunol 2019; 9:3064. [PMID: 30697210 PMCID: PMC6340933 DOI: 10.3389/fimmu.2018.03064] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022] Open
Abstract
Memory B cells that are generated during an infection or following vaccination act as sentinels to guard against future infections. Upon repeat antigen exposure memory B cells differentiate into new antibody-secreting plasma cells to provide rapid and sustained protection. Some pathogens evade or suppress the humoral immune system, or induce memory B cells with a diminished ability to differentiate into new plasma cells. This leaves the host vulnerable to chronic or recurrent infections. Single cell approaches coupled with next generation antibody gene sequencing facilitate a detailed analysis of the pathogen-specific memory B cell repertoire. Monoclonal antibodies that are generated from antibody gene sequences allow a functional analysis of the repertoire. This review discusses what has been learned thus far from analysis of diverse pathogen-specific memory B cell compartments and describes major differences in their repertoires. Such information may illuminate ways to advance the goal of improving vaccine and therapeutic antibody design.
Collapse
Affiliation(s)
- Hemangi B Shah
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kenneth Smith
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Jonathan D Wren
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Biochemistry and Molecular Biology and Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Carol F Webb
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Division of Rheumatology, Immunology and Allergy, Department of Cell Biology and Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jimmy D Ballard
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rebecka L Bourn
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Judith A James
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Mark L Lang
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
21
|
Tuekprakhon A, Puiprom O, Sasaki T, Michiels J, Bartholomeeusen K, Nakayama EE, Meno MK, Phadungsombat J, Huits R, Ariën KK, Luplertlop N, Shioda T, Leaungwutiwong P. Broad-spectrum monoclonal antibodies against chikungunya virus structural proteins: Promising candidates for antibody-based rapid diagnostic test development. PLoS One 2018; 13:e0208851. [PMID: 30557365 PMCID: PMC6296674 DOI: 10.1371/journal.pone.0208851] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 11/23/2018] [Indexed: 11/19/2022] Open
Abstract
In response to the aggressive global spread of the mosquito-borne chikungunya virus (CHIKV), an accurate and accessible diagnostic tool is of high importance. CHIKV, an arthritogenic alphavirus, comprises three genotypes: East/Central/South African (ECSA), West African (WA), and Asian. A previous rapid immunochromatographic (IC) test detecting CHIKV E1 protein showed promising performance for detection of the ECSA genotype. Unfortunately, this kit exhibited lower capacity for detection of the Asian genotype, currently in circulation in the Americas, reflecting the low avidity of one of the monoclonal antibodies (mAbs) in this IC kit for the E1 protein of the Asian-genotype because of a variant amino acid sequence. To address this shortcoming, we set out to generate a new panel of broad-spectrum mouse anti-CHIKV mAbs using hybridoma technology. We report here the successful generation of mouse anti-CHIKV mAbs targeting CHIKV E1 and capsid proteins. These mAbs possessed broad reactivity to all three CHIKV genotypes, while most of the mAbs lacked cross-reactivity towards Sindbis, dengue, and Zika viruses. Two of the mAbs also lacked cross-reactivity towards other alphaviruses, including O'nyong-nyong, Ross River, Mayaro, Western Equine Encephalitis, Eastern Equine Encephalitis, and Venezuelan Equine Encephalitis viruses. In addition, another two mAbs cross-reacted weakly only with most closely related O'nyong-nyong virus. Effective diagnosis is one of the keys to disease control but to date, no antibody-based rapid IC platform for CHIKV is commercially available. Thus, the application of the mAbs characterized here in the rapid diagnostic IC kit for CHIKV detection is expected to be of great value for clinical diagnosis and surveillance purposes.
Collapse
Affiliation(s)
- Aekkachai Tuekprakhon
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Orapim Puiprom
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tadahiro Sasaki
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Johan Michiels
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Koen Bartholomeeusen
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Emi E. Nakayama
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
| | - Michael K. Meno
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Juthamas Phadungsombat
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ralph Huits
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Kevin K. Ariën
- Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Natthanej Luplertlop
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tatsuo Shioda
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka, Japan
- * E-mail: (TS); (PL)
| | - Pornsawan Leaungwutiwong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- * E-mail: (TS); (PL)
| |
Collapse
|
22
|
Selection and characterization of protective anti-chikungunya virus single domain antibodies. Mol Immunol 2018; 105:190-197. [PMID: 30550981 DOI: 10.1016/j.molimm.2018.11.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/21/2018] [Accepted: 11/30/2018] [Indexed: 01/30/2023]
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes an arthralgia febrile illness that has affected millions of people on three continents. Previously, neutralizing monoclonal antibodies that have prophylactic and therapeutic activity were found to remove virus in joint tissues, thereby reducing the severity of symptoms in mice and non-human primates. In this study, we sought to develop thermostable small recombinant antibodies against CHIKV for future diagnostic, prophylactic and therapeutic applications. To develop these single domain antibodies (sdAb) a CHIKV immune library was constructed by displaying the consortium of variable heavy domains (VHH) amplified from peripheral white blood cells isolated from llamas immunized with CHIKV virus-like particles (VLPs). Five anti-CHIKV sdAb isolated using bio-panning were evaluated for their affinity and thermal stability. Their ability to detect CHIKV VLPs was demonstrated in both MagPlex- and ELISA- based assays. Finally, the ability of two sdAb, CC3 and CA6, to inhibit CHIKV infection were tested using a plaque reduction and neutralization test (PRNT), yielding PRNT50 values of 0.6 and 45.6 nM, respectively.
Collapse
|
23
|
Milligan GN, Schnierle BS, McAuley AJ, Beasley DWC. Defining a correlate of protection for chikungunya virus vaccines. Vaccine 2018; 37:7427-7436. [PMID: 30448337 DOI: 10.1016/j.vaccine.2018.10.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022]
Abstract
Chikungunya virus infection causes a debilitating febrile illness that in many affected individuals is associated with long-term sequelae that can persist for months or years. Over the past decade a large number of candidate vaccines have been developed, several of which have now entered clinical trials. The rapid and sporadic nature of chikungunya outbreaks poses challenges for planning of large clinical efficacy trials suggesting that licensure of chikungunya vaccines may utilize non-traditional approval pathways based on identification of immunological endpoint(s) predictive of clinical benefit. This report reviews the current status of nonclinical and clinical testing and potential challenges for defining a suitable surrogate or correlate of protection.
Collapse
Affiliation(s)
- Gregg N Milligan
- WHO Collaborating Center for Vaccine Research, Evaluation and Training on Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Barbara S Schnierle
- WHO Collaborating Center for Standardization and Evaluation of Vaccines, Paul Ehrlich Institut, Langen, Germany; Section AIDS, New and Emerging Pathogens, Virology Division, Paul Ehrlich Institut, Langen, Germany
| | - Alexander J McAuley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - David W C Beasley
- WHO Collaborating Center for Vaccine Research, Evaluation and Training on Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
24
|
Micafungin is a novel anti-viral agent of chikungunya virus through multiple mechanisms. Antiviral Res 2018; 159:134-142. [DOI: 10.1016/j.antiviral.2018.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/23/2018] [Accepted: 10/05/2018] [Indexed: 12/31/2022]
|
25
|
Fumagalli MJ, de Souza WM, Espósito DLA, Silva A, Romeiro MF, Martinez EZ, da Fonseca BAL, Figueiredo LTM. Enzyme-linked immunosorbent assay using recombinant envelope protein 2 antigen for diagnosis of Chikungunya virus. Virol J 2018; 15:112. [PMID: 30041676 PMCID: PMC6056935 DOI: 10.1186/s12985-018-1028-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022] Open
Abstract
Background Chikungunya (CHIKV) virus is an important mosquito-borne virus causing outbreaks of acute febrile illness with arthropathy. The detection of specific antibodies against CHIKV is used for diagnosis after the acute viremic phase of the disease. However, a major challenge for serologic diagnosis of CHIKV and other alphaviruses is the cross-reactivity of antibodies to common antigens among these viruses. In the present study, we have developed an enzyme-linked immunosorbend assay using a recombinant envelope protein 2 of CHIKV produced in Escherichia coli system, as a capture antigen. Results High titers (1600 to 12,800) of anti-CHIKV antibodies were detected in human sera analyzed by the CHIKV assay, suggesting it may detect low levels of the antibodies presence. On the other side, cross-reactivity was not observed in mouse hyperimmune sera to Mayaro virus and other alphaviruses analyzed by the CHIKV immunosorbend assay, suggesting it is a CHIKV-specific test. Fifty-nine human serum samples of CHIKV infection suspected cases were tested for immunoglobulin G (IgG) and M (IgM) antibodies detection using the CHIKV immunosorbend assay. A total of 44% (26/59) of samples were positive for IgG to CHIKV, determining 89.66% sensitivity and 100% specificity when the assay is compared to a CHIKV-specific neutralization assay. In addition, 40.6% (24/59) of samples were positive for IgM, determining 92.48% sensitivity and 79.04% specificity by a Bayesian method in the absence of a gold standard. Moreover, CHIKV immunosorbend assay showed similar sensibilities to a commercial immunochromatography assay (Lumiquick, USA) for CHIKV IgG and IgM detection. Conclusion In short, we have developed a rapid, simple, specific and sensitive CHIKV immunosorbend assay for IgG and IgM detection and our results showed potential applicability on the diagnosis of infections by this virus. Electronic supplementary material The online version of this article (10.1186/s12985-018-1028-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcílio Jorge Fumagalli
- Virology Research Center, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - William Marciel de Souza
- Virology Research Center, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Danillo Lucas Alves Espósito
- Virology Research Center, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Angélica Silva
- Virology Research Center, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marilia Farignoli Romeiro
- Virology Research Center, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Edson Zangiacomi Martinez
- Social Medicine, Ribeirão Preto Medical School of University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | | | - Luiz Tadeu Moraes Figueiredo
- Virology Research Center, Ribeirão Preto Medical School of University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
26
|
Schwameis M, Buchtele N, Wadowski PP, Schoergenhofer C, Jilma B. Chikungunya vaccines in development. Hum Vaccin Immunother 2017; 12:716-31. [PMID: 26554522 PMCID: PMC4964651 DOI: 10.1080/21645515.2015.1101197] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chikungunya virus has become a global health threat, spreading to the industrial world of Europe and the Americas; no treatment or prophylactic vaccine is available. Since the late 1960s much effort has been put into the development of a vaccine, and several heterogeneous strategies have already been explored. Only two candidates have recently qualified to enter clinical phase II trials, a chikungunya virus-like particle-based vaccine and a recombinant live attenuated measles virus-vectored vaccine. This review focuses on the current status of vaccine development against chikungunya virus in humans and discusses the diversity of immunization strategies, results of recent human trials and promising vaccine candidates.
Collapse
Affiliation(s)
- Michael Schwameis
- a Departments of Clinical Pharmacology and Internal Medicine I , Medical University of Vienna , Vienna , Austria
| | - Nina Buchtele
- a Departments of Clinical Pharmacology and Internal Medicine I , Medical University of Vienna , Vienna , Austria
| | - Patricia Pia Wadowski
- a Departments of Clinical Pharmacology and Internal Medicine I , Medical University of Vienna , Vienna , Austria
| | | | - Bernd Jilma
- a Departments of Clinical Pharmacology and Internal Medicine I , Medical University of Vienna , Vienna , Austria
| |
Collapse
|
27
|
Synergistic effects of combination treatment using EGCG and suramin against the chikungunya virus. Biochem Biophys Res Commun 2017; 491:595-602. [PMID: 28760340 DOI: 10.1016/j.bbrc.2017.07.157] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 07/28/2017] [Indexed: 01/21/2023]
Abstract
Chikungunya is a severe disease that results from infection with the chikungunya virus (CHIKV), an arbovirus. Thus, we (1) explored a new approach to combining previously researched drugs that have shown the potential to inhibit CHIKV infection; and (2) demonstrated the antiviral effects of (-)-Epigallocatechin-3-gallate (EGCG) and the underlying mechanisms. Specifically, we used U2OS cells infected with CHIVK to assess the synergistic antiviral activities of EGCG and suramin. EGCG presented the ability to inhibit the viral RNA, progeny yield, and cytopathic effect (CPE) of CHIKV and also demonstrated the ability to protect against virus entry, replication, and release. Moreover, the results confirmed that EGCG and suramin can have synergistic effects against CHIKV strain S27 infection and two other clinical isolates of CHIKV. Our findings suggest that treatment with a combination of EGCG and suramin could provide a basis for the development of novel stretages against CHIKV infection.
Collapse
|
28
|
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus in the family Togaviridae that causes outbreaks of debilitating acute and chronic arthralgia in humans. Although historically associated with localized outbreaks in Africa and Asia, recent epidemics in the Indian Ocean region and the Americas have led to the recognition that CHIKV is capable of moving into previously unaffected areas and causing significant levels of human suffering. The severity of CHIKV rheumatic disease, which can severely impact life quality of infected individuals for weeks, months, or even years, combined with the explosive nature of CHIKV outbreaks and its demonstrated ability to quickly spread into new regions, has led to renewed interest in developing strategies for the prevention or treatment of CHIKV-induced disease. Therefore, this chapter briefly discusses the biology of CHIKV and the factors contributing to CHIKV dissemination, while also discussing the pathogenesis of CHIKV-induced disease and summarizing the status of efforts to develop safe and effective therapies and vaccines against CHIKV and related viruses.
Collapse
|
29
|
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne alphavirus that causes acute and chronic arthritis. The virus reemerged in the Indian Ocean islands in 2005-2006 and is responsible for outbreaks in the Caribbean islands and the Americas since late 2013. Despite the wealth of research over the past 10 years, there are no commercially available antiviral drugs or vaccines. Treatment usually involves analgesics, anti-inflammatory drugs, and supportive care. Most studies have been focused on understanding the pathogenesis of CHIKV infection through clinical observation and with animal models. In this review, the clinical manifestations of CHIKV that define the disease and the use of relevant animal models, from mice to nonhuman primates, are discussed. Understanding key cellular factors in CHIKV infection and the interplay with the immune system will aid in the development of preventive and therapeutic approaches to combat this painful viral disease in humans.
Collapse
Affiliation(s)
- Lisa F P Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648; .,Institute of Infection and Global Health, University of Liverpool, Liverpool L69 3BX, United Kingdom
| |
Collapse
|
30
|
Clayton AM. Monoclonal Antibodies as Prophylactic and Therapeutic Agents Against Chikungunya Virus. J Infect Dis 2017; 214:S506-S509. [PMID: 27920182 DOI: 10.1093/infdis/jiw324] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is responsible for considerable epidemics worldwide and recently emerged in the Americas in 2013. CHIKV may cause long-lasting arthralgia after acute infection. With currently no licensed vaccines or antivirals, the design of effective therapies to prevent or treat CHIKV infection is of utmost importance and will be facilitated by increased understanding of the dynamics of chikungunya. In this article, monoclonal antibodies against CHIKV as viable prophylactic and therapeutic agents will be discussed.
Collapse
Affiliation(s)
- April M Clayton
- Office of Global Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
31
|
Silva LA, Dermody TS. Chikungunya virus: epidemiology, replication, disease mechanisms, and prospective intervention strategies. J Clin Invest 2017; 127:737-749. [PMID: 28248203 PMCID: PMC5330729 DOI: 10.1172/jci84417] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chikungunya virus (CHIKV), a reemerging arbovirus, causes a crippling musculoskeletal inflammatory disease in humans characterized by fever, polyarthralgia, myalgia, rash, and headache. CHIKV is transmitted by Aedes species of mosquitoes and is capable of an epidemic, urban transmission cycle with high rates of infection. Since 2004, CHIKV has spread to new areas, causing disease on a global scale, and the potential for CHIKV epidemics remains high. Although CHIKV has caused millions of cases of disease and significant economic burden in affected areas, no licensed vaccines or antiviral therapies are available. In this Review, we describe CHIKV epidemiology, replication cycle, pathogenesis and host immune responses, and prospects for effective vaccines and highlight important questions for future research.
Collapse
|
32
|
Chua CL, Sam IC, Merits A, Chan YF. Antigenic Variation of East/Central/South African and Asian Chikungunya Virus Genotypes in Neutralization by Immune Sera. PLoS Negl Trop Dis 2016; 10:e0004960. [PMID: 27571254 PMCID: PMC5003353 DOI: 10.1371/journal.pntd.0004960] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/08/2016] [Indexed: 11/24/2022] Open
Abstract
Background Chikungunya virus (CHIKV) is a re-emerging mosquito-borne virus which causes epidemics of fever, severe joint pain and rash. Between 2005 and 2010, the East/Central/South African (ECSA) genotype was responsible for global explosive outbreaks across India, the Indian Ocean and Southeast Asia. From late 2013, Asian genotype CHIKV has caused outbreaks in the Americas. The characteristics of cross-antibody efficacy and epitopes are poorly understood. Methodology/Principal Findings We characterized human immune sera collected during two independent outbreaks in Malaysia of the Asian genotype in 2006 and the ECSA genotype in 2008–2010. Neutralizing capacity was analyzed against representative clinical isolates as well as viruses rescued from infectious clones of ECSA and Asian CHIKV. Using whole virus antigen and recombinant E1 and E2 envelope glycoproteins, we further investigated antibody binding sites, epitopes, and antibody titers. Both ECSA and Asian sera demonstrated stronger neutralizing capacity against the ECSA genotype, which corresponded to strong epitope-antibody interaction. ECSA serum targeted conformational epitope sites in the E1-E2 glycoprotein, and E1-E211K, E2-I2T, E2-H5N, E2-G118S and E2-S194G are key amino acids that enhance cross-neutralizing efficacy. As for Asian serum, the antibodies targeting E2 glycoprotein correlated with neutralizing efficacy, and I2T, H5N, G118S and S194G altered and improved the neutralization profile. Rabbit polyclonal antibody against the N-terminal linear neutralizing epitope from the ECSA sequence has reduced binding capacity and neutralization efficacy against Asian CHIKV. These findings imply that the choice of vaccine strain may impact cross-protection against different genotypes. Conclusion/Significance Immune serum from humans infected with CHIKV of either ECSA or Asian genotypes showed differences in binding and neutralization characteristics. These findings have implications for the continued outbreaks of co-circulating CHIKV genotypes and effective design of vaccines and diagnostic serological assays. Chikungunya virus (CHIKV) has caused large epidemics of fever, rash, and joint pain around the world in recent years. Three different CHIKV genotypes exist. Infection with one genotype is likely to lead to immune protection (or cross-protection) against future infections with a different genotype. However, little is known about the nature of this cross-protection. In this study, we used serum from Malaysian patients infected with CHIKV of either Asian or East/Central/South African (ECSA) genotypes. We compared the ability of the serum antibodies to bind to and neutralize two different viruses, from either Asian or ECSA genotypes. We found that both Asian and ECSA serum were more effective in binding and neutralizing ECSA virus. We identified the key amino acids/epitopes within the E1-E2 surface glycoprotein, and showed that variation of these impacts the efficacy of antiserum in cross-neutralizing different genotypes of CHIKV. We showed how sequence variation of a known linear neutralizing epitope could alter the cross-neutralization efficacy. This study aids understanding of the importance of different circulating genotypes within a country and has implications for the design of vaccines and diagnostic antibody tests.
Collapse
Affiliation(s)
- Chong-Long Chua
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail: (ICS); (YFC)
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Yoke-Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail: (ICS); (YFC)
| |
Collapse
|
33
|
Sam IC, Kümmerer BM, Chan YF, Roques P, Drosten C, AbuBakar S. Updates on chikungunya epidemiology, clinical disease, and diagnostics. Vector Borne Zoonotic Dis 2016; 15:223-30. [PMID: 25897809 DOI: 10.1089/vbz.2014.1680] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chikungunya virus (CHIKV) is an Aedes-borne alphavirus, historically found in Africa and Asia, where it caused sporadic outbreaks. In 2004, CHIKV reemerged in East Africa and spread globally to cause epidemics, including, for the first time, autochthonous transmission in Europe, the Middle East, and Oceania. The epidemic strains were of the East/Central/South African genotype. Strains of the Asian genotype of CHIKV continued to cause outbreaks in Asia and spread to Oceania and, in 2013, to the Americas. Acute disease, mainly comprising fever, rash, and arthralgia, was previously regarded as self-limiting; however, there is growing evidence of severe but rare manifestations, such as neurological disease. Furthermore, CHIKV appears to cause a significant burden of long-term morbidity due to persistent arthralgia. Diagnostic assays have advanced greatly in recent years, although there remains a need for simple, accurate, and affordable tests for the developing countries where CHIKV is most prevalent. This review focuses on recent important work on the epidemiology, clinical disease and diagnostics of CHIKV.
Collapse
Affiliation(s)
- I-Ching Sam
- 1 Department of Medical Microbiology, Faculty of Medicine, University Malaya , Kuala Lumpur, Malaysia
| | | | | | | | | | | |
Collapse
|
34
|
Muthumani K, Block P, Flingai S, Muruganantham N, Chaaithanya IK, Tingey C, Wise M, Reuschel EL, Chung C, Muthumani A, Sarangan G, Srikanth P, Khan AS, Vijayachari P, Sardesai NY, Kim JJ, Ugen KE, Weiner DB. Rapid and Long-Term Immunity Elicited by DNA-Encoded Antibody Prophylaxis and DNA Vaccination Against Chikungunya Virus. J Infect Dis 2016; 214:369-78. [PMID: 27001960 PMCID: PMC4936642 DOI: 10.1093/infdis/jiw111] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 03/11/2016] [Indexed: 12/14/2022] Open
Abstract
Background. Vaccination and passive antibody therapies are critical for controlling infectious diseases. Passive antibody administration has limitations, including the necessity for purification and multiple injections for efficacy. Vaccination is associated with a lag phase before generation of immunity. Novel approaches reported here utilize the benefits of both methods for the rapid generation of effective immunity. Methods. A novel antibody-based prophylaxis/therapy entailing the electroporation-mediated delivery of synthetic DNA plasmids encoding biologically active anti–chikungunya virus (CHIKV) envelope monoclonal antibody (dMAb) was designed and evaluated for antiviral efficacy, as well as for the ability to overcome shortcomings inherent with conventional active vaccination and passive immunotherapy. Results. One intramuscular injection of dMAb produced antibodies in vivo more rapidly than active vaccination with an anti-CHIKV DNA vaccine. This dMAb neutralized diverse CHIKV clinical isolates and protected mice from viral challenge. Combination of dMAb and the CHIKV DNA vaccine afforded rapid and long-lived protection. Conclusions. A DNA-based dMAb strategy induced rapid protection against an emerging viral infection. This method can be combined with DNA vaccination as a novel strategy to provide both short- and long-term protection against this emerging infectious disease. These studies have implications for pathogen treatment and control strategies.
Collapse
Affiliation(s)
- Karuppiah Muthumani
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania The Wistar Institute, Philadelphia, Pennsylvania
| | - Peter Block
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania
| | - Seleeke Flingai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania The Wistar Institute, Philadelphia, Pennsylvania
| | - Nagarajan Muruganantham
- Regional Medical Research Centers, Indian Council of Medical Research, Port Blair, Andaman & Nicobar Islands
| | - Itta Krishna Chaaithanya
- Regional Medical Research Centers, Indian Council of Medical Research, Port Blair, Andaman & Nicobar Islands
| | - Colleen Tingey
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania
| | - Megan Wise
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania The Wistar Institute, Philadelphia, Pennsylvania
| | - Emma L Reuschel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania The Wistar Institute, Philadelphia, Pennsylvania
| | - Christopher Chung
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania The Wistar Institute, Philadelphia, Pennsylvania
| | - Abirami Muthumani
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania
| | - Gopalsamy Sarangan
- Department of Microbiology, Sri Ramachandra Medical College & Research Institute, Chennai, India
| | - Padma Srikanth
- Department of Microbiology, Sri Ramachandra Medical College & Research Institute, Chennai, India
| | - Amir S Khan
- Inovio Pharmaceutics Inc., Plymouth Meeting, Pennsylvania
| | - Paluru Vijayachari
- Regional Medical Research Centers, Indian Council of Medical Research, Port Blair, Andaman & Nicobar Islands
| | | | - J Joseph Kim
- Inovio Pharmaceutics Inc., Plymouth Meeting, Pennsylvania
| | - Kenneth E Ugen
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa
| | - David B Weiner
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania The Wistar Institute, Philadelphia, Pennsylvania
| |
Collapse
|
35
|
Zhang X, Xin L, Li S, Fang M, Zhang J, Xia N, Zhao Q. Lessons learned from successful human vaccines: Delineating key epitopes by dissecting the capsid proteins. Hum Vaccin Immunother 2016; 11:1277-92. [PMID: 25751641 DOI: 10.1080/21645515.2015.1016675] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recombinant VLP-based vaccines have been successfully used against 3 diseases caused by viral infections: Hepatitis B, cervical cancer and hepatitis E. The VLP approach is attracting increasing attention in vaccine design and development for human and veterinary use. This review summarizes the clinically relevant epitopes on the VLP antigens in successful human vaccines. These virion-like epitopes, which can be delineated with molecular biology, cryo-electron microscopy and x-ray crystallographic methods, are the prerequisites for these efficacious vaccines to elicit functional antibodies. The critical epitopes and key factors influencing these epitopes are discussed for the HEV, HPV and HBV vaccines. A pentamer (for HPV) or a dimer (for HEV and HBV), rather than a monomer, is the basic building block harboring critical epitopes for the assembly of VLP antigen. The processing and formulation of VLP-based vaccines need to be developed to promote the formation and stabilization of these epitopes in the recombinant antigens. Delineating the critical epitopes is essential for antigen design in the early phase of vaccine development and for critical quality attribute analysis in the commercial phase of vaccine manufacturing.
Collapse
Affiliation(s)
- Xiao Zhang
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases; Xiamen University ; Xiamen , Fujian , PR China
| | | | | | | | | | | | | |
Collapse
|
36
|
Deeba F, Islam A, Kazim SN, Naqvi IH, Broor S, Ahmed A, Parveen S. Chikungunya virus: recent advances in epidemiology, host pathogen interaction and vaccine strategies. Pathog Dis 2015; 74:ftv119. [PMID: 26657109 DOI: 10.1093/femspd/ftv119] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2015] [Indexed: 12/22/2022] Open
Abstract
The Chikungunya virus is a re-emerging alphavirus that belongs to the family Togaviridae. The symptoms include fever, rashes, nausea and joint pain that may last for months. The laboratory diagnosis of the infection is based on the serologic assays, virus isolation and molecular methods. The pathogenesis of the Chikungunya viral infection is not completely understood. Some of the recent investigations have provided information on replication of the virus in various cells and organs. In addition, some recent reports have indicated that the severity of the disease is correlated with the viral load and cytokines. The Chikungunya virus infection re-emerged as an explosive epidemic during 2004-09 affecting millions of people in the Indian Ocean. Subsequent global attention was given to research on this viral pathogen due to its broad area of geographical distribution during this epidemic. Chikungunya viral infection has become a challenge for the public health system because of the absence of a vaccine as well as antiviral drugs. A number of potential vaccine candidates have been tested on humans and animal models during clinical and preclinical trials. In this review, we mainly discuss the host-pathogen relationship, epidemiology and recent advances in the development of drugs and vaccines for the Chikungunya viral infection.
Collapse
Affiliation(s)
- Farah Deeba
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | | | - Shobha Broor
- Department of Microbiology, SGT University, Gurgaon 122001, Haryana, India
| | - Anwar Ahmed
- Protein Research Chair, Department of Biochemistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
37
|
Long F, Fong RH, Austin SK, Chen Z, Klose T, Fokine A, Liu Y, Porta J, Sapparapu G, Akahata W, Doranz BJ, Crowe JE, Diamond MS, Rossmann MG. Cryo-EM structures elucidate neutralizing mechanisms of anti-chikungunya human monoclonal antibodies with therapeutic activity. Proc Natl Acad Sci U S A 2015; 112:13898-903. [PMID: 26504196 PMCID: PMC4653152 DOI: 10.1073/pnas.1515558112] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes severe acute and chronic disease in humans. Although highly inhibitory murine and human monoclonal antibodies (mAbs) have been generated, the structural basis of their neutralizing activity remains poorly characterized. Here, we determined the cryo-EM structures of chikungunya virus-like particles complexed with antibody fragments (Fab) of two highly protective human mAbs, 4J21 and 5M16, that block virus fusion with host membranes. Both mAbs bind primarily to sites within the A and B domains, as well as to the B domain's β-ribbon connector of the viral glycoprotein E2. The footprints of these antibodies on the viral surface were consistent with results from loss-of-binding studies using an alanine scanning mutagenesis-based epitope mapping approach. The Fab fragments stabilized the position of the B domain relative to the virus, particularly for the complex with 5M16. This finding is consistent with a mechanism of neutralization in which anti-CHIKV mAbs that bridge the A and B domains impede movement of the B domain away from the underlying fusion loop on the E1 glycoprotein and therefore block the requisite pH-dependent fusion of viral and host membranes.
Collapse
Affiliation(s)
- Feng Long
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | | | - Stephen K Austin
- Departments of Medicine, Molecular Microbiology, Pathology, and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Zhenguo Chen
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Yue Liu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Jason Porta
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
| | - Gopal Sapparapu
- Department of Pediatrics, Vanderbilt University, Nashville, TN 37232
| | | | | | - James E Crowe
- Department of Pediatrics, Vanderbilt University, Nashville, TN 37232; Departments of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology, and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907;
| |
Collapse
|
38
|
Structural Studies of Chikungunya Virus-Like Particles Complexed with Human Antibodies: Neutralization and Cell-to-Cell Transmission. J Virol 2015; 90:1169-77. [PMID: 26537684 DOI: 10.1128/jvi.02364-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/30/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Chikungunya virus is a positive-stranded RNA alphavirus. Structures of chikungunya virus-like particles in complex with strongly neutralizing antibody Fab fragments (8B10 and 5F10) were determined using cryo-electron microscopy and X-ray crystallography. By fitting the crystallographically determined structures of these Fab fragments into the cryo-electron density maps, we show that Fab fragments of antibody 8B10 extend radially from the viral surface and block receptor binding on the E2 glycoprotein. In contrast, Fab fragments of antibody 5F10 bind the tip of the E2 B domain and lie tangentially on the viral surface. Fab 5F10 fixes the B domain rigidly to the surface of the virus, blocking exposure of the fusion loop on glycoprotein E1 and therefore preventing the virus from becoming fusogenic. Although Fab 5F10 can neutralize the wild-type virus, it can also bind to a mutant virus without inhibiting fusion or attachment. Although the mutant virus is no longer able to propagate by extracellular budding, it can, however, enter the next cell by traveling through junctional complexes without being intercepted by a neutralizing antibody to the wild-type virus, thus clarifying how cell-to-cell transmission can occur. IMPORTANCE Alphaviral infections are transmitted mainly by mosquitoes. Chikungunya virus (CHIKV), which belongs to the Alphavirus genus, has a wide distribution in the Old World that has expanded in recent years into the Americas. There are currently no vaccines or drugs against alphaviral infections. Therefore, a better understanding of CHIKV and its associated neutralizing antibodies will aid in the development of effective treatments.
Collapse
|
39
|
Abdelnabi R, Neyts J, Delang L. Towards antivirals against chikungunya virus. Antiviral Res 2015; 121:59-68. [PMID: 26119058 PMCID: PMC7113767 DOI: 10.1016/j.antiviral.2015.06.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 12/25/2022]
Abstract
Chikungunya virus (CHIKV) has re-emerged in recent decades, causing major outbreaks of chikungunya fever in many parts of Africa and Asia, and since the end of 2013 also in Central and South America. Infections are usually associated with a low mortality rate, but can proceed into a painful chronic stage, during which patients may suffer from polyarthralgia and joint stiffness for weeks and even several years. There are no vaccines or antiviral drugs available for the prevention or treatment of CHIKV infections. Current therapy therefore consists solely of the administration of analgesics, antipyretics and anti-inflammatory agents to relieve symptoms. We here review molecules that have been reported to inhibit CHIKV replication, either as direct-acting antivirals, host-targeting drugs or those that act via a yet unknown mechanism. This article forms part of a symposium in Antiviral Research on "Chikungunya discovers the New World."
Collapse
Affiliation(s)
- Rana Abdelnabi
- Rega Institute for Medical Research, University of Leuven, Belgium
| | - Johan Neyts
- Rega Institute for Medical Research, University of Leuven, Belgium.
| | - Leen Delang
- Rega Institute for Medical Research, University of Leuven, Belgium
| |
Collapse
|
40
|
Lam S, Nyo M, Phuektes P, Yew CW, Tan YJ, Chu JJH. A potent neutralizing IgM mAb targeting the N218 epitope on E2 protein protects against Chikungunya virus pathogenesis. MAbs 2015; 7:1178-94. [PMID: 26305993 DOI: 10.1080/19420862.2015.1083664] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Chikungunya virus (CHIKV) is a medically important human viral pathogen that causes Chikungunya fever accompanied with debilitating and persistent joint pain. Host-elicited or passively-transferred monoclonal antibodies (mAb) are essential mediators of CHIKV clearance. Therefore, this study aimed to generate and characterize a panel of mAbs for their neutralization efficacy against CHIKV infection in a cell-based and murine model. To evaluate their antigenicity and neutralization profile, indirect enzyme-linked immunosorbent assay (ELISA), an immunofluorescence assay (IFA) and a plaque reduction neutralization test were performed on mAbs of IgM isotype. CHIKV escape mutants against mAb 3E7b neutralization were generated, and reverse genetics techniques were then used to create an infectious CHIKV clone with a single mutation. 3E7b was also administered to neonate mice prior or after CHIKV infection. The survival rate, CHIKV burden in tissues and histopathology of the limb muscles were evaluated. Both IgM 3E7b and 8A2c bind strongly to native CHIKV surface and potently neutralize CHIKV replication. Further analyses of 3E7b binding and neutralization of CHIKV single-mutant clones revealed that N218 of CHIKV E2 protein is a potent neutralizing epitope. In a pre-binding neutralization assay, 3E7b blocks CHIKV attachment to permissive cells, possibly by binding to the surface-accessible E2-N218 residue. Prophylactic administration of 3E7b to neonate mice markedly reduced viremia and protected against CHIKV pathogenesis in various mice tissues. Given therapeutically at 4 h post-infection, 3E7b conferred 100% survival rate and similarly reduced CHIKV load in most mice tissues except the limb muscles. Collectively, these findings highlight the usefulness of 3E7b for future prophylactic or epitope-based vaccine design.
Collapse
Affiliation(s)
- Shirley Lam
- a Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology; Yong Loo Lin School of Medicine, National University Health System, National University of Singapore ; Singapore
| | - Min Nyo
- a Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology; Yong Loo Lin School of Medicine, National University Health System, National University of Singapore ; Singapore
| | - Patchara Phuektes
- a Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology; Yong Loo Lin School of Medicine, National University Health System, National University of Singapore ; Singapore
| | - Chow Wenn Yew
- b Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research) ; Singapore
| | - Yee Joo Tan
- b Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research) ; Singapore.,c Hepatitis Viruses and Newly Emerging Viruses; Department of Microbiology; Yong Loo Lin School of Medicine, National University Health System, National University of Singapore ; Singapore
| | - Justin Jang Hann Chu
- a Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology; Yong Loo Lin School of Medicine, National University Health System, National University of Singapore ; Singapore.,b Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research) ; Singapore
| |
Collapse
|
41
|
Lum FM, Ng LF. Cellular and molecular mechanisms of chikungunya pathogenesis. Antiviral Res 2015; 120:165-74. [DOI: 10.1016/j.antiviral.2015.06.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 05/27/2015] [Accepted: 06/16/2015] [Indexed: 12/15/2022]
|
42
|
Smith SA, Silva LA, Fox JM, Flyak AI, Kose N, Sapparapu G, Khomandiak S, Khomadiak S, Ashbrook AW, Kahle KM, Fong RH, Swayne S, Doranz BJ, McGee CE, Heise MT, Pal P, Brien JD, Austin SK, Diamond MS, Dermody TS, Crowe JE. Isolation and Characterization of Broad and Ultrapotent Human Monoclonal Antibodies with Therapeutic Activity against Chikungunya Virus. Cell Host Microbe 2015; 18:86-95. [PMID: 26159721 PMCID: PMC4501771 DOI: 10.1016/j.chom.2015.06.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/27/2015] [Accepted: 06/22/2015] [Indexed: 11/25/2022]
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted RNA virus that causes acute febrile infection associated with polyarthralgia in humans. Mechanisms of protective immunity against CHIKV are poorly understood, and no effective therapeutics or vaccines are available. We isolated and characterized human monoclonal antibodies (mAbs) that neutralize CHIKV infectivity. Among the 30 mAbs isolated, 13 had broad and ultrapotent neutralizing activity (IC50 < 10 ng/ml), and all of these mapped to domain A of the E2 envelope protein. Potent inhibitory mAbs blocked post-attachment steps required for CHIKV membrane fusion, and several were protective in a lethal challenge model in immunocompromised mice, even when administered at late time points after infection. These highly protective mAbs could be considered for prevention or treatment of CHIKV infection, and their epitope location in domain A of E2 could be targeted for rational structure-based vaccine development.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/isolation & purification
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/immunology
- Antibodies, Viral/isolation & purification
- Antibodies, Viral/therapeutic use
- Chemoprevention/methods
- Chikungunya Fever/therapy
- Chikungunya virus/immunology
- Chikungunya virus/physiology
- Disease Models, Animal
- Humans
- Immunization, Passive/methods
- Inhibitory Concentration 50
- Mice
- Protein Binding
- Survival Analysis
- Treatment Outcome
- Viral Envelope Proteins/immunology
- Virus Internalization/drug effects
Collapse
Affiliation(s)
- Scott A Smith
- Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Laurie A Silva
- Department of Pediatrics, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA; Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Julie M Fox
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew I Flyak
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Gopal Sapparapu
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Solomiia Khomadiak
- Department of Pediatrics, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA; Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Alison W Ashbrook
- Department of Pediatrics, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA; Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | - Charles E McGee
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Mark T Heise
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Pankaj Pal
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James D Brien
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - S Kyle Austin
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Terence S Dermody
- Department of Pediatrics, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA; Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - James E Crowe
- Department of Pediatrics, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
43
|
Aubry M, Finke J, Teissier A, Roche C, Broult J, Paulous S, Desprès P, Cao-Lormeau VM, Musso D. Silent Circulation of Ross River Virus in French Polynesia. Int J Infect Dis 2015; 37:19-24. [PMID: 26086687 DOI: 10.1016/j.ijid.2015.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/06/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVES Ross River is an emerging mosquito-borne disease in the Western Pacific. Ross River virus (RRV) circulation has been sporadically reported in some Pacific Island Countries and Territories but never in French Polynesia. To determine if RRV has circulated locally among the French Polynesian population, we conducted a seroprevalence study on blood donors. METHODS Sera of 593 blood donors were collected from July 2011 to October 2013 and tested by ELISA for the presence of RRV-specific Immunoglobulin G (IgG) antibodies. RESULTS A total of 204 (34.40%) blood donors were found seropositive for RRV. Among the 132 blood donors that were born in French Polynesia and had never travelled abroad, 56 (42.42%) had RRV-specific IgGs. DISCUSSION Our results support the existence of autochthonous RRV transmission and suggest that this pathogen has silently circulated in French Polynesia. These findings raise the question of possible undetected circulation of RRV in other Pacific Island Countries and Territories.
Collapse
Affiliation(s)
- Maite Aubry
- Unit of Emerging Infectious Diseases, Institut Louis Malardé, PO BOX 30, 98713 Papeete, Tahiti, French Polynesia.
| | - Jérôme Finke
- Hochschule Emden/Leer, Constantiaplatz 4, D-26723 Emden, Germany
| | - Anita Teissier
- Unit of Emerging Infectious Diseases, Institut Louis Malardé, PO BOX 30, 98713 Papeete, Tahiti, French Polynesia
| | - Claudine Roche
- Unit of Emerging Infectious Diseases, Institut Louis Malardé, PO BOX 30, 98713 Papeete, Tahiti, French Polynesia
| | - Julien Broult
- Centre de Transfusion Sanguine de la Polynésie française, Hôpital du Taaone, PO BOX 4530, 98713 Papeete, Tahiti, French Polynesia
| | - Sylvie Paulous
- Departement Infections and Epidemiology, Institut Pasteur, 75724 Paris, France
| | - Philippe Desprès
- Departement Infections and Epidemiology, Institut Pasteur, 75724 Paris, France; UMR PIMIT (12T) Université de La Réunion, INSERM U1187, CNRS 9192, IRD 249, GIP-CYROI, 97491 Sainte-Clotilde, France
| | - Van-Mai Cao-Lormeau
- Unit of Emerging Infectious Diseases, Institut Louis Malardé, PO BOX 30, 98713 Papeete, Tahiti, French Polynesia
| | - Didier Musso
- Unit of Emerging Infectious Diseases, Institut Louis Malardé, PO BOX 30, 98713 Papeete, Tahiti, French Polynesia
| |
Collapse
|
44
|
Petitdemange C, Wauquier N, Vieillard V. Control of immunopathology during chikungunya virus infection. J Allergy Clin Immunol 2015; 135:846-855. [PMID: 25843597 DOI: 10.1016/j.jaci.2015.01.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/20/2015] [Accepted: 01/28/2015] [Indexed: 10/23/2022]
Abstract
After several decades of epidemiologic silence, chikungunya virus (CHIKV) has recently re-emerged, causing explosive outbreaks and reaching the 5 continents. Transmitted through the bite of Aedes species mosquitoes, CHIKV is responsible for an acute febrile illness accompanied by several characteristic symptoms, including cutaneous rash, myalgia, and arthralgia, with the latter sometimes persisting for months or years. Although CHIKV has previously been known as a relatively benign disease, more recent epidemic events have brought waves of increased morbidity and fatality, leading it to become a serious public health problem. The host's immune response plays a crucial role in controlling the infection, but it might also contribute to the promotion of viral spread and immunopathology. This review focuses on the immune responses to CHIKV in human subjects with an emphasis on early antiviral immune responses. We assess recent developments in the understanding of their possible Janus-faced effects in the control of viral infection and pathogenesis. Although preventive vaccination and specific therapies are yet to be developed, exploring this interesting model of virus-host interactions might have a strong effect on the design of novel therapeutic options to minimize immunopathology without impairing beneficial host defenses.
Collapse
Affiliation(s)
| | - Nadia Wauquier
- Sorbonne Universités, UPMC, University of Paris 06, CR7, CIMI-Paris, Paris, France; Metabiota, San Francisco, Calif
| | - Vincent Vieillard
- Sorbonne Universités, UPMC, University of Paris 06, CR7, CIMI-Paris, Paris, France; INSERM, U1135, CIMI-Paris, Paris, France; CNRS, ERL 8255, CIMI-Paris, Paris, France.
| |
Collapse
|
45
|
Bhatnagar S, Kumar P, Mohan T, Verma P, Parida M, Hoti S, Rao D. Evaluation of Multiple Antigenic Peptides Based on the Chikungunya E2 Protein for Improved Serological Diagnosis of Infection. Viral Immunol 2015; 28:107-12. [DOI: 10.1089/vim.2014.0031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Santwana Bhatnagar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Pradeep Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Teena Mohan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Priyanka Verma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - M.M. Parida
- Virology Department, Defence Research & Development Establishment (DRDE), Gwalior, India
| | - S.L. Hoti
- Vector Control Research Centre, Pondicherry, India
| | - D.N. Rao
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
46
|
Burrack KS, Montgomery SA, Homann D, Morrison TE. CD8+ T cells control Ross River virus infection in musculoskeletal tissues of infected mice. THE JOURNAL OF IMMUNOLOGY 2014; 194:678-89. [PMID: 25488988 DOI: 10.4049/jimmunol.1401833] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Ross River virus (RRV), chikungunya virus, and related alphaviruses cause debilitating polyarthralgia and myalgia. Mouse models of RRV and chikungunya virus have demonstrated a role for the adaptive immune response in the control of these infections. However, questions remain regarding the role for T cells in viral control, including the magnitude, location, and dynamics of CD8(+) T cell responses. To address these questions, we generated a recombinant RRV expressing the H-2(b)-restricted glycoprotein 33 (gp33) determinant derived from the glycoprotein of lymphocytic choriomeningitis virus. Using tetramers, we tracked gp33-specific CD8(+) T cells during RRV-lymphocytic choriomeningitis virus infection. We found that acute RRV infection induces activation of CD8(+) T cell responses in lymphoid and musculoskeletal tissues that peak from 10-14 d postinoculation, suggesting that CD8(+) T cells contribute to control of acute RRV infection. Mice genetically deficient for CD8(+) T cells or wild-type mice depleted of CD8(+) T cells had elevated RRV loads in skeletal muscle tissue, but not joint-associated tissues, at 14 d postinoculation, suggesting that the ability of CD8(+) T cells to control RRV infection is tissue dependent. Finally, adoptively transferred T cells were capable of reducing RRV loads in skeletal muscle tissue of Rag1(-/-) mice, indicating that T cells can contribute to the control of RRV infection in the absence of B cells and Ab. Collectively, these data demonstrate a role for T cells in the control of RRV infection and suggest that the antiviral capacity of T cells is controlled in a tissue-specific manner.
Collapse
Affiliation(s)
- Kristina S Burrack
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Stephanie A Montgomery
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Dirk Homann
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045; Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045; Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045;
| |
Collapse
|
47
|
Exposure of epitope residues on the outer face of the chikungunya virus envelope trimer determines antibody neutralizing efficacy. J Virol 2014; 88:14364-79. [PMID: 25275138 DOI: 10.1128/jvi.01943-14] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Chikungunya virus (CHIKV) is a reemerging alphavirus that causes a debilitating arthritic disease and infects millions of people and for which no specific treatment is available. Like many alphaviruses, the structural targets on CHIKV that elicit a protective humoral immune response in humans are poorly defined. Here we used phage display against virus-like particles (VLPs) to isolate seven human monoclonal antibodies (MAbs) against the CHIKV envelope glycoproteins E2 and E1. One MAb, IM-CKV063, was highly neutralizing (50% inhibitory concentration, 7.4 ng/ml), demonstrated high-affinity binding (320 pM), and was capable of therapeutic and prophylactic protection in multiple animal models up to 24 h postexposure. Epitope mapping using a comprehensive shotgun mutagenesis library of 910 mutants with E2/E1 alanine mutations demonstrated that IM-CKV063 binds to an intersubunit conformational epitope on domain A, a functionally important region of E2. MAbs against the highly conserved fusion loop have not previously been reported but were also isolated in our studies. Fusion loop MAbs were broadly cross-reactive against diverse alphaviruses but were nonneutralizing. Fusion loop MAb reactivity was affected by temperature and reactivity conditions, suggesting that the fusion loop is hidden in infectious virions. Visualization of the binding sites of 15 different MAbs on the structure of E2/E1 revealed that all epitopes are located at the membrane-distal region of the E2/E1 spike. Interestingly, epitopes on the exposed topmost and outer surfaces of the E2/E1 trimer structure were neutralizing, whereas epitopes facing the interior of the trimer were not, providing a rationale for vaccine design and therapeutic MAb development using the intact CHIKV E2/E1 trimer. IMPORTANCE CHIKV is the most important alphavirus affecting humans, resulting in a chronic arthritic condition that can persist for months or years. In recent years, millions of people have been infected globally, and the spread of CHIKV to the Americas is now beginning, with over 100,000 cases occurring in the Caribbean within 6 months of its arrival. Our study reports on seven human MAbs against the CHIKV envelope, including a highly protective MAb and rarely isolated fusion loop MAbs. Epitope mapping of these MAbs demonstrates how some E2/E1 epitopes are exposed or hidden from the human immune system and suggests a structural mechanism by which these MAbs protect (or fail to protect) against CHIKV infection. Our results suggest that the membrane-distal end of CHIKV E2/E1 is the primary target for the humoral immune response to CHIKV, and antibodies targeting the exposed topmost and outer surfaces of the E2/E1 trimer determine the neutralizing efficacy of this response.
Collapse
|
48
|
Noranate N, Takeda N, Chetanachan P, Sittisaman P, A-nuegoonpipat A, Anantapreecha S. Characterization of chikungunya virus-like particles. PLoS One 2014; 9:e108169. [PMID: 25265335 PMCID: PMC4180278 DOI: 10.1371/journal.pone.0108169] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/19/2014] [Indexed: 12/19/2022] Open
Abstract
Chikungunya virus (CHIKV) is becoming a global concern due to the increasing number of outbreaks throughout the world and the absence of any CHIKV-specific vaccine or treatment. Virus-like particles (VLPs) are multistructured proteins that mimic the organization and conformation of native viruses but lack the viral genome. They are noninfectious and potentially safer vaccine candidates. Recent studies demonstrated that the yield of CHIKV VLPs varies depending on the strains, despite the 95% amino acid similarity of the strains. This might be due to the codon usage, since protein expression is differently controlled by different organisms. We optimized the region encoding CHIKV structural proteins, C-E3-E2-6k-E1, inserted it into a mammalian expression vector, and used the resulting construct to transfect 293 cells. We detected 50-kDa proteins corresponding to E1 and/or E2 in the cell lysate and the supernatant. Transmission electron microscopy revealed spherical particles with a 50- to 60-nm diameter in the supernatant that resembled the native CHIKV virions. The buoyant density of the VLPs was 1.23 g/mL, and the yield was 20 µg purified VLPs per 108 cells. The VLPs aggregated when mixed with convalescent sera from chikungunya patients, indicating that their antigenicity is similar to that of native CHIKV. Antibodies elicited with the VLPs were capable of detecting native CHIKV, demonstrating that the VLPs retain immunogenicity similar to that of the native virion. These results indicated that CHIKV VLPs are morphologically, antigenically, and immunologically similar to the native CHIKV, suggesting that they have potential for use in chikungunya vaccines.
Collapse
Affiliation(s)
- Nitchakarn Noranate
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi, Thailand
- * E-mail:
| | - Naokazu Takeda
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi, Thailand
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Prukswan Chetanachan
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Pathompong Sittisaman
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Atchareeya A-nuegoonpipat
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Surapee Anantapreecha
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| |
Collapse
|
49
|
van den Doel P, Volz A, Roose JM, Sewbalaksing VD, Pijlman GP, van Middelkoop I, Duiverman V, van de Wetering E, Sutter G, Osterhaus ADME, Martina BEE. Recombinant modified vaccinia virus Ankara expressing glycoprotein E2 of Chikungunya virus protects AG129 mice against lethal challenge. PLoS Negl Trop Dis 2014; 8:e3101. [PMID: 25188230 PMCID: PMC4154657 DOI: 10.1371/journal.pntd.0003101] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 07/07/2014] [Indexed: 01/04/2023] Open
Abstract
Chikungunya virus (CHIKV) infection is characterized by rash, acute high fever, chills, headache, nausea, photophobia, vomiting, and severe polyarthralgia. There is evidence that arthralgia can persist for years and result in long-term discomfort. Neurologic disease with fatal outcome has been documented, although at low incidences. The CHIKV RNA genome encodes five structural proteins (C, E1, E2, E3 and 6K). The E1 spike protein drives the fusion process within the cytoplasm, while the E2 protein is believed to interact with cellular receptors and therefore most probably constitutes the target of neutralizing antibodies. We have constructed recombinant Modified Vaccinia Ankara (MVA) expressing E3E2, 6KE1, or the entire CHIKV envelope polyprotein cassette E3E26KE1. MVA is an appropriate platform because of its demonstrated clinical safety and its suitability for expression of various heterologous proteins. After completing the immunization scheme, animals were challenged with CHIV-S27. Immunization of AG129 mice with MVAs expressing E2 or E3E26KE1 elicited neutralizing antibodies in all animals and provided 100% protection against lethal disease. In contrast, 75% of the animals immunized with 6KE1 were protected against lethal infection. In conclusion, MVA expressing the glycoprotein E2 of CHIKV represents as an immunogenic and effective candidate vaccine against CHIKV infections.
Collapse
Affiliation(s)
- Petra van den Doel
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Asisa Volz
- Institute for Infectious Diseases and Zoonoses, University of Munich LMU, Munich, Germany
| | - Jouke M. Roose
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | | | - Vincent Duiverman
- Erasmus Medical Center Laboratory Animal Science Center (EDC), Rotterdam, The Netherlands
| | - Eva van de Wetering
- Erasmus Medical Center Laboratory Animal Science Center (EDC), Rotterdam, The Netherlands
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, University of Munich LMU, Munich, Germany
| | - Albert D. M. E. Osterhaus
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- Artemis One Health, Utrecht, The Netherlands
| | - Byron E. E. Martina
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- Artemis One Health, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
50
|
Masrinoul P, Puiprom O, Tanaka A, Kuwahara M, Chaichana P, Ikuta K, Ramasoota P, Okabayashi T. Monoclonal antibody targeting chikungunya virus envelope 1 protein inhibits virus release. Virology 2014; 464-465:111-117. [PMID: 25063884 DOI: 10.1016/j.virol.2014.05.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/28/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
Abstract
Chikungunya virus (CHIKV) causes an acute clinical illness characterized by sudden high fever, intense joint pain, and skin rash. Recent outbreaks of chikungunya disease in Africa and Asia are a major public health concern; however, there is currently no effective licensed vaccine or specific treatment. This study reported the development of a mouse monoclonal antibody (MAb), CK47, which recognizes domain III within the viral envelope 1 protein and inhibited the viral release process, thereby preventing the production of progeny virus. The MAb had no effect on virus entry and replication processes. Thus, CK47 may be a useful tool for studying the mechanisms underlying CHIKV release and may show potential as a therapeutic agent.
Collapse
Affiliation(s)
- Promsin Masrinoul
- Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Orapim Puiprom
- Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Atsushi Tanaka
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Miwa Kuwahara
- Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand; Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Panjaporn Chaichana
- Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Kazuyoshi Ikuta
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Pongrama Ramasoota
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Tamaki Okabayashi
- Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand; Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|