1
|
Grujcic M, Milovanovic M, Nedeljkovic J, Jovanovic D, Arsenijevic D, Solovjova N, Stankovic V, Tanaskovic I, Arsenijevic A, Milovanovic J. The Possible Effects of Galectin-3 on Mechanisms of Renal and Hepatocellular Injury Induced by Intravascular Hemolysis. Int J Mol Sci 2024; 25:8129. [PMID: 39125698 PMCID: PMC11311984 DOI: 10.3390/ijms25158129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Intravascular hemolysis is a central feature of congenital and acquired hemolytic anemias, complement disorders, infectious diseases, and toxemias. Massive and/or chronic hemolysis is followed by the induction of inflammation, very often with severe damage of organs, which enhances the morbidity and mortality of hemolytic diseases. Galectin-3 (Gal-3) is a β-galactoside-binding lectin that modulates the functions of many immune cells, thus affecting inflammatory processes. Gal-3 is also one of the main regulators of fibrosis. The role of Gal-3 in the development of different kidney and liver diseases and the potential of therapeutic Gal-3 inhibition have been demonstrated. Therefore, the objective of this review is to discuss the possible effects of Gal-3 on the process of kidney and liver damage induced by intravascular hemolysis, as well as to shed light on the potential therapeutic targeting of Gal-3 in intravascular hemolysis.
Collapse
Affiliation(s)
- Mirjana Grujcic
- Institute for Transfusiology and Hemobiology of Military Medical Academy, 11000 Belgrade, Serbia;
| | - Marija Milovanovic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.M.); (D.A.); (V.S.); (A.A.)
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Jelena Nedeljkovic
- Department of Medical Statistics and Informatics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Danijela Jovanovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Dragana Arsenijevic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.M.); (D.A.); (V.S.); (A.A.)
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Natalija Solovjova
- Academy of Applied Studies Belgrade, The College of Health Science, Cara Dušana 254, 11080 Belgrade, Serbia;
| | - Vesna Stankovic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.M.); (D.A.); (V.S.); (A.A.)
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Irena Tanaskovic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.M.); (D.A.); (V.S.); (A.A.)
- Department of Histology and Embriology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.M.); (D.A.); (V.S.); (A.A.)
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.M.); (D.A.); (V.S.); (A.A.)
- Department of Histology and Embriology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
2
|
Niksirat H, Siino V, Steinbach C, Levander F. The quantification of zebrafish ocular-associated proteins provides hints for sex-biased visual impairments and perception. Heliyon 2024; 10:e33057. [PMID: 38994070 PMCID: PMC11238053 DOI: 10.1016/j.heliyon.2024.e33057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Biochemical differences between sexes can also be seen in non-sexual organs and may affect organ functions and susceptibility to diseases. It has been shown that there are sex-biased visual perceptions and impairments. Abundance differences of eye proteins could provide explanations for some of these. Exploration of the ocular proteome was performed to find sex-based protein abundance differences in zebrafish Danio rerio. A label-free protein quantification workflow using high-resolution mass spectrometry was employed to find proteins with significant differences between the sexes. In total, 3740 unique master proteins were identified and quantified, and 49 proteins showed significant abundance differences between the eyes of male and female zebrafish. Those proteins belong to lipoproteins, immune system, blood coagulation, antioxidants, iron and heme-binding proteins, ion channels, pumps and exchangers, neuronal and photoreceptor proteins, and the cytoskeleton. An extensive literature review provided clues for the possible links between the sex-biased level of proteins and visual perception and impairments. In conclusion, sexual dimorphism at the protein level was discovered for the first time in the eye of zebrafish and should be accounted for in ophthalmological studies. Data are available via ProteomeXchange with identifier PXD033338.
Collapse
Affiliation(s)
- Hamid Niksirat
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Christoph Steinbach
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Schaaf KR, Landstreet SR, Pugazenthi S, Qian EY, Putz ND, Siderova T, Owen AM, Bohannon JK, Ware LB, Bastarache JA, Shaver CM. Cell-free hemoglobin triggers macrophage cytokine production via TLR4 and MyD88. Am J Physiol Lung Cell Mol Physiol 2024; 326:L29-L38. [PMID: 37991487 PMCID: PMC11279742 DOI: 10.1152/ajplung.00123.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
Cell-free hemoglobin (CFH) is elevated in the airspace of patients with acute respiratory distress syndrome (ARDS) and is sufficient to cause acute lung injury in a murine model. However, the pathways through which CFH causes lung injury are not well understood. Toll-like receptor 4 (TLR4) is a mediator of inflammation after detection of damage- and pathogen-associated molecular patterns. We hypothesized that TLR4 signaling mediates the proinflammatory effects of CFH in the airspace. After intratracheal CFH, BALBc mice deficient in TLR4 had reduced inflammatory cell influx into the airspace [bronchoalveolar lavage (BAL) cell counts, median TLR4 knockout (KO): 0.8 × 104/mL [IQR 0.4-1.2 × 104/mL], wild-type (WT): 3.0 × 104/mL [2.2-4.0 × 104/mL], P < 0.001] and attenuated lung permeability (BAL protein, TLR4KO: 289 µg/mL [236-320], WT: 488 µg/mL [422-536], P < 0.001). These mice also had attenuated production of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in the airspace. C57Bl/6 mice lacking TLR4 on myeloid cells only (LysM.Cre+/-TLR4fl/fl) had reduced cytokine production in the airspace after CFH, without attenuation of lung permeability. In vitro studies confirm that WT primary murine alveolar macrophages exposed to CFH (0.01-1 mg/mL) had dose-dependent increases in IL-6, IL-1 β, CXC motif chemokine ligand 1 (CXCL-1), TNF-α, and IL-10 (P < 0.001). Murine MH-S alveolar-like macrophages show TLR4-dependent expression of IL-1β, IL-6, and CXCL-1 in response to CFH. Primary alveolar macrophages from mice lacking TLR4 adaptor proteins myeloid differentiation primary response 88 (MyD88) or TIR-domain-containing adapter-inducing interferon-β (TRIF) revealed that MyD88KO macrophages had 71-96% reduction in CFH-dependent proinflammatory cytokine production (P < 0.001), whereas macrophages from TRIFKO mice had variable changes in cytokine responses. These data demonstrate that myeloid TLR4 signaling through MyD88 is a key regulator of airspace inflammation in response to CFH.NEW & NOTEWORTHY Cell-free hemoglobin (CFH) is elevated in the airspace of most patients with acute respiratory distress syndrome and causes severe inflammation. Here, we identify that CFH contributes to macrophage-induced cytokine production via Toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) signaling. These data increase our knowledge of the mechanisms through which CFH contributes to lung injury and may inform development of targeted therapeutics to attenuate inflammation.
Collapse
Affiliation(s)
- Kaitlyn R Schaaf
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Stuart R Landstreet
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Sangami Pugazenthi
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Emily Y Qian
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Nathan D Putz
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Tatiana Siderova
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Allison M Owen
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Julia K Bohannon
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Julie A Bastarache
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Molecular Biology, Vanderbilt University, Nashville, Tennessee, United States
| | - Ciara M Shaver
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
4
|
Arnhold J. Inflammation-Associated Cytotoxic Agents in Tumorigenesis. Cancers (Basel) 2023; 16:81. [PMID: 38201509 PMCID: PMC10778456 DOI: 10.3390/cancers16010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic inflammatory processes are related to all stages of tumorigenesis. As inflammation is closely associated with the activation and release of different cytotoxic agents, the interplay between cytotoxic agents and antagonizing principles is highlighted in this review to address the question of how tumor cells overcome the enhanced values of cytotoxic agents in tumors. In tumor cells, the enhanced formation of mitochondrial-derived reactive species and elevated values of iron ions and free heme are antagonized by an overexpression of enzymes and proteins, contributing to the antioxidative defense and maintenance of redox homeostasis. Through these mechanisms, tumor cells can even survive additional stress caused by radio- and chemotherapy. Through the secretion of active agents from tumor cells, immune cells are suppressed in the tumor microenvironment and an enhanced formation of extracellular matrix components is induced. Different oxidant- and protease-based cytotoxic agents are involved in tumor-mediated immunosuppression, tumor growth, tumor cell invasion, and metastasis. Considering the special metabolic conditions in tumors, the main focus here was directed on the disturbed balance between the cytotoxic agents and protective mechanisms in late-stage tumors. This knowledge is mandatory for the implementation of novel anti-cancerous therapeutic approaches.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
5
|
Poulsen KM, Albright MC, Niemuth NJ, Tighe RM, Payne CK. Interaction of TiO 2 nanoparticles with lung fluid proteins and the resulting macrophage inflammatory response. ENVIRONMENTAL SCIENCE. NANO 2023; 10:2427-2436. [PMID: 38009084 PMCID: PMC10669912 DOI: 10.1039/d3en00179b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Inhalation is a major exposure route to nanoparticles. Following inhalation, nanoparticles first interact with the lung lining fluid, a complex mixture of proteins, lipids, and mucins. We measure the concentration and composition of lung fluid proteins adsorbed on the surface of titanium dioxide (TiO2) nanoparticles. Using proteomics, we find that lung fluid results in a unique protein corona on the surface of the TiO2 nanoparticles. We then measure the expression of three cytokines (interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and macrophage inflammatory protein 2 (MIP-2)) associated with lung inflammation. We find that the corona formed from lung fluid leads to elevated expression of these cytokines in comparison to bare TiO2 nanoparticles or coronas formed from serum or albumin. These experiments show that understanding the concentration and composition of the protein corona is essential for understanding the pulmonary response associated with human exposure to nanoparticles.
Collapse
Affiliation(s)
- Karsten M Poulsen
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA 27705
| | - Michaela C Albright
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA 27710
| | - Nicholas J Niemuth
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA 27705
- Present address: Department of Biomedical Engineering, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, 27599
| | - Robert M Tighe
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA 27710
| | - Christine K Payne
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA 27705
| |
Collapse
|
6
|
Van Avondt K, Schimmel M, Bulder I, van Mierlo G, Nur E, van Bruggen R, Biemond BJ, Luken BM, Zeerleder S. Circulating Iron in Patients with Sickle Cell Disease Mediates the Release of Neutrophil Extracellular Traps. Transfus Med Hemother 2023; 50:321-329. [PMID: 37767280 PMCID: PMC10521246 DOI: 10.1159/000526760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 08/24/2022] [Indexed: 09/29/2023] Open
Abstract
Introduction Neutrophils promote chronic inflammation and release neutrophil extracellular traps (NETs) that can drive inflammatory responses. Inflammation influences progression of sickle cell disease (SCD), and a role for NETs has been suggested in the onset of vaso-occlusive crisis (VOC). We aimed to identify factors in the circulation of these patients that provoke NET release, with a focus on triggers associated with hemolysis. Methods Paired serum and plasma samples during VOC and steady state of 18 SCD patients (HbSS/HbSβ0-thal and HbSC/HbSβ+-thal) were collected. Cell-free heme, hemopexin, and labile plasma iron have been measured in the plasma samples of the SCD patients. NETs formation by human neutrophils from healthy donors induced by serum of SCD patients was studied using confocal microscopy and staining for extracellular DNA using Sytox, followed by quantification of surface coverage using ImageJ. Results Eighteen patients paired samples obtained during VOC and steady state were available (11 HbSS/HbSβ0-thal and 7 HbSC/HbSβ+-thal). We observed high levels of systemic heme and iron, concomitant with low levels of the heme-scavenger hemopexin in sera of patients with SCD, both during VOC and in steady state. In our in vitro experiments, neutrophils released NETs when exposed to sera from SCD patients. The release of NETs was associated with high levels of circulating iron in these sera. Although hemin triggered NET formation in vitro, addition of hemopexin to scavenge heme did not suppress NET release in SCD sera. By contrast, the iron scavengers deferoxamine and apotransferrin attenuated NET formation in a significant proportion of SCD sera. Discussion Our results suggest that redox-active iron in the circulation of non-transfusion-dependent SCD patients activates neutrophils to release NETs, and hence, exerts a direct pro-inflammatory effect. Thus, we propose that chelation of iron requires further investigation as a therapeutic strategy in SCD.
Collapse
Affiliation(s)
- Kristof Van Avondt
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
- Institute of Experimental Pathology, Center for Molecular Biology of Inflammation, University Medical Center Münster, University of Münster, Münster, Germany
| | - Marein Schimmel
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Ingrid Bulder
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerard van Mierlo
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Erfan Nur
- Department of Hematology, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Bart J. Biemond
- Department of Hematology, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Brenda M. Luken
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Sacha Zeerleder
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematology, Division of Internal Medicine, Kantonsspital Lucerne, Lucerne and University of Berne, Berne, Switzerland
| |
Collapse
|
7
|
Pires IS, Berthiaume F, Palmer AF. Engineering Therapeutics to Detoxify Hemoglobin, Heme, and Iron. Annu Rev Biomed Eng 2023; 25:1-21. [PMID: 37289555 DOI: 10.1146/annurev-bioeng-081622-031203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hemolysis (i.e., red blood cell lysis) can increase circulatory levels of cell-free hemoglobin (Hb) and its degradation by-products, namely heme (h) and iron (Fe). Under homeostasis, minor increases in these three hemolytic by-products (Hb/h/Fe) are rapidly scavenged and cleared by natural plasma proteins. Under certain pathophysiological conditions, scavenging systems become overwhelmed, leading to the accumulation of Hb/h/Fe in the circulation. Unfortunately, these species cause various side effects such as vasoconstriction, hypertension, and oxidative organ damage. Therefore, various therapeutics strategies are in development, ranging from supplementation with depleted plasma scavenger proteins to engineered biomimetic protein constructs capable of scavenging multiple hemolytic species. In this review, we briefly describe hemolysis and the characteristics of the major plasma-derived protein scavengers of Hb/h/Fe. Finally, we present novel engineering approaches designed to address the toxicity of these hemolytic by-products.
Collapse
Affiliation(s)
- Ivan S Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA;
| | - François Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA;
| |
Collapse
|
8
|
Gbotosho OT, Gollamudi J, Hyacinth HI. The Role of Inflammation in The Cellular and Molecular Mechanisms of Cardiopulmonary Complications of Sickle Cell Disease. Biomolecules 2023; 13:381. [PMID: 36830749 PMCID: PMC9953727 DOI: 10.3390/biom13020381] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Cardiopulmonary complications remain the major cause of mortality despite newer therapies and improvements in the lifespan of patients with sickle cell disease (SCD). Inflammation has been identified as a major risk modifier in the pathogenesis of SCD-associated cardiopulmonary complications in recent mechanistic and observational studies. In this review, we discuss recent cellular and molecular mechanisms of cardiopulmonary complications in SCD and summarize the most recent evidence from clinical and laboratory studies. We emphasize the role of inflammation in the onset and progression of these complications to better understand the underlying pathobiological processes. We also discuss future basic and translational research in addressing questions about the complex role of inflammation in the development of SCD cardiopulmonary complications, which may lead to promising therapies and reduce morbidity and mortality in this vulnerable population.
Collapse
Affiliation(s)
- Oluwabukola T. Gbotosho
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267-0525, USA
| | - Jahnavi Gollamudi
- Division of Hematology & Oncology, Department of Internal Medicine, 3125 Eden Avenue, ML 0562, Cincinnati, OH 45219-0562, USA
| | - Hyacinth I. Hyacinth
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267-0525, USA
| |
Collapse
|
9
|
Arnhold J. Host-Derived Cytotoxic Agents in Chronic Inflammation and Disease Progression. Int J Mol Sci 2023; 24:ijms24033016. [PMID: 36769331 PMCID: PMC9918110 DOI: 10.3390/ijms24033016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
At inflammatory sites, cytotoxic agents are released and generated from invading immune cells and damaged tissue cells. The further fate of the inflammation highly depends on the presence of antagonizing principles that are able to inactivate these host-derived cytotoxic agents. As long as the affected tissues are well equipped with ready-to-use protective mechanisms, no damage by cytotoxic agents occurs and resolution of inflammation is initiated. However, long-lasting and severe immune responses can be associated with the decline, exhaustion, or inactivation of selected antagonizing principles. Hence, cytotoxic agents are only partially inactivated and contribute to damage of yet-unperturbed cells. Consequently, a chronic inflammatory process results. In this vicious circle of permanent cell destruction, not only novel cytotoxic elements but also novel alarmins and antigens are liberated from affected cells. In severe cases, very low protection leads to organ failure, sepsis, and septic shock. In this review, the major classes of host-derived cytotoxic agents (reactive species, oxidized heme proteins and free heme, transition metal ions, serine proteases, matrix metalloproteases, and pro-inflammatory peptides), their corresponding protective principles, and resulting implications on the pathogenesis of diseases are highlighted.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
10
|
Wang D, Ousaka D, Qiao H, Wang Z, Zhao K, Gao S, Liu K, Teshigawara K, Takada K, Nishibori M. Treatment of Marmoset Intracerebral Hemorrhage with Humanized Anti-HMGB1 mAb. Cells 2022; 11:cells11192970. [PMID: 36230933 PMCID: PMC9563572 DOI: 10.3390/cells11192970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is recognized as a severe clinical problem lacking effective treatment. High mobility group box-1 (HMGB1) exhibits inflammatory cytokine-like activity once released into the extracellular space from the nuclei. We previously demonstrated that intravenous injection of rat anti-HMGB1 monoclonal antibody (mAb) remarkably ameliorated brain injury in a rat ICH model. Therefore, we developed a humanized anti-HMGB1 mAb (OKY001) for clinical use. The present study examined whether and how the humanized anti-HMGB1 mAb ameliorates ICH injury in common marmosets. The results show that administration of humanized anti-HMGB1 mAb inhibited HMGB1 release from the brain into plasma, in association with a decrease of 4-hydroxynonenal (4-HNE) accumulation and a decrease in cerebral iron deposition. In addition, humanized anti-HMGB1 mAb treatment resulted in a reduction in brain injury volume at 12 d after ICH induction. Our in vitro experiment showed that recombinant HMGB1 inhibited hemoglobin uptake by macrophages through CD163 in the presence of haptoglobin, suggesting that the release of excess HMGB1 from the brain may induce a delay in hemoglobin scavenging, thereby allowing the toxic effects of hemoglobin, heme, and Fe2+ to persist. Finally, humanized anti-HMGB1 mAb reduced body weight loss and improved behavioral performance after ICH. Taken together, these results suggest that intravenous injection of humanized anti-HMGB1 mAb has potential as a novel therapeutic strategy for ICH.
Collapse
Affiliation(s)
- Dengli Wang
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Daiki Ousaka
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Handong Qiao
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Ziyi Wang
- Research Fellow of Japan Society for the Promotion of Science, Tokyo 1020083, Japan
- Department of Molecular Biology and Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Kun Zhao
- Department of Molecular Biology and Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Shangze Gao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Keyue Liu
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Kiyoshi Teshigawara
- Department of Pharmacology, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Kenzo Takada
- Sapporo Laboratory, EVEC, Inc., Sapporo 0606642, Japan
| | - Masahiro Nishibori
- Department of Translational Research and Drug Development, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
- Correspondence:
| |
Collapse
|
11
|
Roth-Walter F. Iron-Deficiency in Atopic Diseases: Innate Immune Priming by Allergens and Siderophores. FRONTIERS IN ALLERGY 2022; 3:859922. [PMID: 35769558 PMCID: PMC9234869 DOI: 10.3389/falgy.2022.859922] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Although iron is one of the most abundant elements on earth, about a third of the world's population are affected by iron deficiency. Main drivers of iron deficiency are beside the chronic lack of dietary iron, a hampered uptake machinery as a result of immune activation. Macrophages are the principal cells distributing iron in the human body with their iron restriction skewing these cells to a more pro-inflammatory state. Consequently, iron deficiency has a pronounced impact on immune cells, favoring Th2-cell survival, immunoglobulin class switching and primes mast cells for degranulation. Iron deficiency during pregnancy increases the risk of atopic diseases in children, while both children and adults with allergy are more likely to have anemia. In contrast, an improved iron status seems to protect against allergy development. Here, the most important interconnections between iron metabolism and allergies, the effect of iron deprivation on distinct immune cell types, as well as the pathophysiology in atopic diseases are summarized. Although the main focus will be humans, we also compare them with innate defense and iron sequestration strategies of microbes, given, particularly, attention to catechol-siderophores. Similarly, the defense and nutritional strategies in plants with their inducible systemic acquired resistance by salicylic acid, which further leads to synthesis of flavonoids as well as pathogenesis-related proteins, will be elaborated as both are very important for understanding the etiology of allergic diseases. Many allergens, such as lipocalins and the pathogenesis-related proteins, are able to bind iron and either deprive or supply iron to immune cells. Thus, a locally induced iron deficiency will result in immune activation and allergic sensitization. However, the same proteins such as the whey protein beta-lactoglobulin can also transport this precious micronutrient to the host immune cells (holoBLG) and hinder their activation, promoting tolerance and protecting against allergy. Since 2019, several clinical trials have also been conducted in allergic subjects using holoBLG as a food for special medical purposes, leading to a reduction in the allergic symptom burden. Supplementation with nutrient-carrying lipocalin proteins can circumvent the mucosal block and nourish selectively immune cells, therefore representing a new dietary and causative approach to compensate for functional iron deficiency in allergy sufferers.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University of Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Franziska Roth-Walter ;
| |
Collapse
|
12
|
Cichoń J, Ostapiuk-Karolczuk J, Cieślicka M, Dziewiecka H, Marcinkiewicz A, Tafil-Klawe M, Basta P, Maciejewski D, Skarpańska-Stejnborn A. Effect of an acute exercise on early responses of iron and iron regulatory proteins in young female basketball players. BMC Sports Sci Med Rehabil 2022; 14:69. [PMID: 35428332 PMCID: PMC9013050 DOI: 10.1186/s13102-022-00465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/07/2022] [Indexed: 11/27/2022]
Abstract
Background The accumulation of physiological stress and the presence of inflammation disturb iron management in athletes during intense training. However, little is known about the mechanisms regulating iron levels in athletes during training periods with low training loads. In the current study, we analyzed the effect of an acute exercise on early responses of iron and iron regulatory proteins at the end of such training periods. Methods The study was performed at the end of competitive phase of training. A total of 27 trained female basketball players were included in the study after application of the inclusion/exclusion criteria. The participants performed an incremental exercise on a treadmill. Blood samples were taken before the test, immediately after exercise, and after 3 h of restitution. Parameters, such as interleukin (IL) 6, hepcidin, ferritin, transferrin, hemopexin, and lactoferrin levels, total iron-biding capacity (TIBC), unsaturated iron-biding capacity (UIBC) were determined by using appropriate biochemical tests. Results The level of iron increased significantly after exercise, and then decreased within next 3 h restitution. Except for iron levels, only TIBC levels significantly increased after exercise and decreased to baseline level during rest period. No significant changes in the levels of hepcidin, IL-6, and other proteins related to the iron homeostasis were observed. Conclusions The increases in iron level after acute exercise is short-term and transient and appear to have been insufficient to induce the acute systemic effects in rested athletes.
Collapse
Affiliation(s)
- Justyna Cichoń
- Department of Biological Sciences, Faculty of Physical Culture in Gorzow Wielkopolski, Poznan University of Physical Education, Estkowskiego 13, 66-400, Gorzów, Wielkopolski, Poland
| | - Joanna Ostapiuk-Karolczuk
- Department of Biological Sciences, Faculty of Physical Culture in Gorzow Wielkopolski, Poznan University of Physical Education, Estkowskiego 13, 66-400, Gorzów, Wielkopolski, Poland
| | - Mirosława Cieślicka
- Department of Physiology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowskiej-Curie 9, 85-094, Bydgoszcz, Poland
| | - Hanna Dziewiecka
- Department of Biological Sciences, Faculty of Physical Culture in Gorzow Wielkopolski, Poznan University of Physical Education, Estkowskiego 13, 66-400, Gorzów, Wielkopolski, Poland
| | - Anita Marcinkiewicz
- Department of Biological Sciences, Faculty of Physical Culture in Gorzow Wielkopolski, Poznan University of Physical Education, Estkowskiego 13, 66-400, Gorzów, Wielkopolski, Poland
| | - Małgorzata Tafil-Klawe
- Department of Physiology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowskiej-Curie 9, 85-094, Bydgoszcz, Poland
| | - Piotr Basta
- Department of Physical Education and Sport, Poznań University of Physical Education, Faculty of Physical Culture in Gorzów Wielkopolski, Estkowskiego 13, 66-400, Gorzów, Wielkopolski, Poland
| | - Dariusz Maciejewski
- Department of Physical Education and Sport, Poznań University of Physical Education, Faculty of Physical Culture in Gorzów Wielkopolski, Estkowskiego 13, 66-400, Gorzów, Wielkopolski, Poland
| | - Anna Skarpańska-Stejnborn
- Department of Biological Sciences, Faculty of Physical Culture in Gorzow Wielkopolski, Poznan University of Physical Education, Estkowskiego 13, 66-400, Gorzów, Wielkopolski, Poland.
| |
Collapse
|
13
|
Lechuga GC, Napoleão-Pêgo P, Morel CM, Provance DW, De-Simone SG. New Insights into Hemopexin-Binding to Hemin and Hemoglobin. Int J Mol Sci 2022; 23:3789. [PMID: 35409149 PMCID: PMC8998376 DOI: 10.3390/ijms23073789] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Hemopexin (Hx) is a plasma glycoprotein that scavenges heme (Fe(III) protoporphyrin IX). Hx has important implications in hemolytic disorders and hemorrhagic conditions because releasing hemoglobin increases the labile heme, which is potentially toxic, thus producing oxidative stress. Therefore, Hx has been considered for therapeutic use and diagnostics. In this work, we analyzed and mapped the interaction sequences of Hx with hemin and hemoglobin. The spot-synthesis technique was used to map human hemopexin (P02790) binding to hemin and human hemoglobin. A library of 15 amino acid peptides with a 10-amino acid overlap was designed to represent the entire coding region (aa 1-462) of hemopexin and synthesized onto cellulose membranes. An in silico approach was taken to analyze the amino acid frequency in the identified interaction regions, and molecular docking was applied to assess the protein-protein interaction. Seven linear peptide sequences in Hx were identified to bind hemin (H1-H7), and five were described for Hb (Hb1-Hb5) interaction, with just two sequences shared between hemin and Hb. The amino acid composition of the identified sequences demonstrated that histidine residues are relevant for heme binding. H105, H293, H373, H400, H429, and H462 were distributed in the H1-H7 peptide sequences, but other residues may also play an important role. Molecular docking analysis demonstrated Hx's association with the β-chain of Hb, with several hotspot amino acids that coordinated the interaction. This study provides new insights into Hx-hemin binding motifs and protein-protein interactions with Hb. The identified binding sequences and specific peptides can be used for therapeutic purposes and diagnostics as hemopexin is under investigation to treat different diseases and there is an urgent need for diagnostics using labile heme when monitoring hemolysis.
Collapse
Affiliation(s)
- Guilherme C. Lechuga
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (G.C.L.); (P.N.-P.); (C.M.M.); (D.W.P.)
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Paloma Napoleão-Pêgo
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (G.C.L.); (P.N.-P.); (C.M.M.); (D.W.P.)
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Carlos M. Morel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (G.C.L.); (P.N.-P.); (C.M.M.); (D.W.P.)
| | - David W. Provance
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (G.C.L.); (P.N.-P.); (C.M.M.); (D.W.P.)
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Salvatore G. De-Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil; (G.C.L.); (P.N.-P.); (C.M.M.); (D.W.P.)
- Laboratory of Epidemiology and Molecular Systematics (LESM), Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
- Department of Cellular and Molecular Biology, Biology Institute, Federal Fluminense University, Niterói 24020-141, RJ, Brazil
| |
Collapse
|
14
|
Hebbel RP, Vercellotti GM. Multiple inducers of endothelial NOS (eNOS) dysfunction in sickle cell disease. Am J Hematol 2021; 96:1505-1517. [PMID: 34331722 PMCID: PMC9292023 DOI: 10.1002/ajh.26308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022]
Abstract
A characteristic aspect of the robust, systemic inflammatory state in sickle cell disease is dysfunction of endothelial nitric oxide synthase (eNOS). We identify 10 aberrant endothelial cell inputs, present in the specific sickle context, that are known to have the ability to cause eNOS dysfunction. These are: endothelial arginase depletion, asymmetric dimethylarginine, complement activation, endothelial glycocalyx degradation, free fatty acids, inflammatory mediators, microparticles, oxidized low density lipoproteins, reactive oxygen species, and Toll‐like receptor 4 signaling ligands. The effect of true eNOS dysfunction on clinical testing using flow‐mediated dilation can be simulated by two known examples of endothelial dysfunction mimicry (hemoglobin consumption of NO; and oxidation of smooth muscle cell soluble guanylate cyclase). This lends ambiguity to interpretation of such clinical testing. The presence of these multiple perturbing factors argues that a therapeutic approach targeting only a single injurious endothelial input (or either example of mimicry) would not be sufficiently efficacious. This would seem to argue for identifying therapeutics that directly protect eNOS function or application of multiple therapeutic approaches.
Collapse
Affiliation(s)
- Robert P. Hebbel
- Division of Hematology‐Oncology‐Transplantation, Department of Medicine University of Minnesota Medical School Minneapolis Minnesota USA
| | - Gregory M. Vercellotti
- Division of Hematology‐Oncology‐Transplantation, Department of Medicine University of Minnesota Medical School Minneapolis Minnesota USA
| |
Collapse
|
15
|
Alishlash AS, Sapkota M, Ahmad I, Maclin K, Ahmed NA, Molyvdas A, Doran S, Albert CJ, Aggarwal S, Ford DA, Ambalavanan N, Jilling T, Matalon S. Chlorine inhalation induces acute chest syndrome in humanized sickle cell mouse model and ameliorated by postexposure hemopexin. Redox Biol 2021; 44:102009. [PMID: 34044323 PMCID: PMC8167148 DOI: 10.1016/j.redox.2021.102009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 11/26/2022] Open
Abstract
Triggering factors of Acute Chest Syndrome (ACS) is a leading cause of death in patients with Sickle Cell Disease (SCD) and targeted therapies are limited. Chlorine (Cl2) inhalation happens frequently, but its role as a potential trigger of ACS has not been determined. In this study, we hypothesized that Cl2 exposure resembling that in the vicinity of industrial accidents induces acute hemolysis with acute lung injury, reminiscent of ACS in humanized SCD mice. When exposed to Cl2 (500 ppm for 30 min), 64% of SCD mice succumbed within 6 h while none of the control mice expressing normal human hemoglobin died (p<0.01). Surviving SCD mice had evidence of acute hemolysis, respiratory acidosis, acute lung injury, and high concentrations of chlorinated palmitic and stearic acids (p<0.05) in their plasmas and RBCs compared to controls. Treatment with a single intraperitoneal dose of human hemopexin 30 min after Cl2 inhalation reduced mortality to around 15% (p<0.01) with reduced hemolysis (decreased RBCs fragility (p<0.001) and returned plasma heme to normal levels (p<0.0001)), improved oxygenation (p<0.0001) and reduced acute lung injury scores (p<0.0001). RBCs from SCD mice had significant levels of carbonylation (which predisposes RBCs to hemolysis) 6 h post-Cl2 exposure which were absent in RBCs of mice treated with hemopexin. To understand the mechanisms leading to carbonylation, we incubated RBCs from SCD mice with chlorinated lipids and identified sickling and increased hemolysis compared to RBCs obtained from control mice and treated similarly. Our study indicates that Cl2 inhalation induces ACS in SCD mice via induction of acute hemolysis, and that post exposure administration of hemopexin reduces mortality and lung injury. Our data suggest that SCD patients are vulnerable in Cl2 exposure incidents and that hemopexin is a potential therapeutic agent.
Collapse
Affiliation(s)
| | - Muna Sapkota
- Department of Pediatrics, School of Medicine, University of Alabama at Birmingham, AL, USA
| | - Israr Ahmad
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, AL, USA
| | - Kelsey Maclin
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, AL, USA
| | - Noor A Ahmed
- Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, AL, USA
| | - Adam Molyvdas
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, AL, USA
| | - Stephen Doran
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, AL, USA
| | - Carolyn J Albert
- Saint Louis University Department of Biochemistry and Molecular Biology, USA
| | - Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, AL, USA
| | - David A Ford
- Saint Louis University Department of Biochemistry and Molecular Biology, USA
| | | | - Tamas Jilling
- Department of Pediatrics, School of Medicine, University of Alabama at Birmingham, AL, USA; Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, AL, USA
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
16
|
Niksirat H, Siino V, Steinbach C, Levander F. High-Resolution Proteomic Profiling Shows Sexual Dimorphism in Zebrafish Heart-Associated Proteins. J Proteome Res 2021; 20:4075-4088. [PMID: 34185526 DOI: 10.1021/acs.jproteome.1c00387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the molecular basis of sexual dimorphism in the cardiovascular system may contribute to the improvement of the outcome in biological, pharmacological, and toxicological studies as well as on the development of sex-based drugs and therapeutic approaches. Label-free protein quantification using high-resolution mass spectrometry was applied to detect sex-based proteome differences in the heart of zebrafish Danio rerio. Out of almost 3000 unique identified proteins in the heart, 79 showed significant abundance differences between male and female fish. The functional differences were mapped using enrichment analyses. Our results suggest that a large amount of materials needed for reproduction (e.g., sugars, lipids, proteins, etc.) may impose extra pressure on blood, vessels, and heart on their way toward the ovaries. In the present study, the female's heart shows a clear sexual dimorphism by changing abundance levels of numerous proteins, which could be a way to safely overcome material-induced elevated pressures. These proteins belong to the immune system, oxidative stress response, drug metabolization, detoxification, energy, metabolism, and so on. In conclusion, we showed that sex can induce dimorphism at the molecular level in nonsexual organs such as heart and must be considered as an important factor in cardiovascular research. Data are available via ProteomeXchange with identifier PXD023506.
Collapse
Affiliation(s)
- Hamid Niksirat
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Vodňany, 370 05 České Budějovice, Czech Republic
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Lund 223 87, Sweden
| | - Christoph Steinbach
- Faculty of Fisheries and Protection of Waters, CENAKVA, University of South Bohemia in České Budějovice, Vodňany, 370 05 České Budějovice, Czech Republic
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund 223 87, Sweden.,National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund 223 87, Sweden
| |
Collapse
|
17
|
Cardoso RMS, Rodrigues SC, Gomes CF, Duarte FV, Romao M, Leal EC, Freire PC, Neves R, Simões‐Correia J. Development of an optimized and scalable method for isolation of umbilical cord blood-derived small extracellular vesicles for future clinical use. Stem Cells Transl Med 2021; 10:910-921. [PMID: 33577723 PMCID: PMC8133342 DOI: 10.1002/sctm.20-0376] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/10/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EV) are a promising therapeutic tool in regenerative medicine. These particles were shown to accelerate wound healing, through delivery of regenerative mediators, such as microRNAs. Herein we describe an optimized and upscalable process for the isolation of EV smaller than 200 nm (sEV), secreted by umbilical cord blood mononuclear cells (UCB-MNC) under ischemic conditions and propose quality control thresholds for the isolated vesicles, based on the thorough characterization of their protein, lipid and RNA content. Ultrafiltration and size exclusion chromatography (UF/SEC) optimized methodology proved superior to traditional ultracentrifugation (UC), regarding production time, standardization, scalability, and vesicle yield. Using UF/SEC, we were able to recover approximately 400 times more sEV per mL of media than with UC, and upscaling this process further increases EV yield by about 3-fold. UF/SEC-isolated sEV display many of the sEV/exosomes classical markers and are enriched in molecules with anti-inflammatory and regenerative capacity, such as hemopexin and miR-150. Accordingly, treatment with sEV promotes angiogenesis and extracellular matrix remodeling, in vitro. In vivo, UCB-MNC-sEV significantly accelerate skin regeneration in a mouse model of delayed wound healing. The proposed isolation protocol constitutes a significant improvement compared to UC, the gold-standard in the field. Isolated sEV maintain their regenerative properties, whereas downstream contaminants are minimized. The use of UF/SEC allows for the standardization and upscalability required for mass production of sEV to be used in a clinical setting.
Collapse
Affiliation(s)
| | - Silvia C. Rodrigues
- Exogenus Therapeutics, S.A, Biocant ParkCantanhedePortugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB)Institute for Interdisciplinary Research (IIIUC), CNC—Center for Neuroscience and Cell Biology, University of Coimbra.CoimbraPortugal
| | | | | | - Maryse Romao
- Institut CurieParis Sciences Lettres Research University, Centre National de la Recherche Scientifique, UMR 144ParisFrance
- Cell and Tissue Imaging Core Facility PICT‐IBiSAInstitut CurieParisFrance
| | - Ermelindo C. Leal
- CNC—Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbraPortugal
- 3Is—Institute for Interdisciplinary Research, University of CoimbraCoimbraPortugal
| | | | - Ricardo Neves
- Exogenus Therapeutics, S.A, Biocant ParkCantanhedePortugal
- CNC—Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbraPortugal
- 3Is—Institute for Interdisciplinary Research, University of CoimbraCoimbraPortugal
| | - Joana Simões‐Correia
- Exogenus Therapeutics, S.A, Biocant ParkCantanhedePortugal
- CNC—Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbraPortugal
| |
Collapse
|
18
|
McCormack M, Talbot A, Dillon E, O’Connor I, MacCarthy E. Host Response of Atlantic Salmon ( Salmo salar) Re-Inoculated with Paramoeba perurans. Microorganisms 2021; 9:microorganisms9050993. [PMID: 34062978 PMCID: PMC8147987 DOI: 10.3390/microorganisms9050993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 11/28/2022] Open
Abstract
In aquaculture, recurrence rates of amoebic gill disease (AGD) caused by the ectoparasite Paramoeba perurans are high and no prophylactic strategies exist for disease prevention. In this study, Atlantic salmon (Salmo salar) were initially inoculated with P. perurans and following the development of amoebic gill disease were treated with freshwater immersion on day 21 and day 35 post inoculation. Fish were re-inoculated following a negative qPCR analysis for the presence of P. perurans. The gill host immune response was investigated at 7, 14, and 18 days post re-inoculation. Differential proteome expression of immune related proteins was assessed by comparison of each time point against naïve controls. In the gill, some proteins of the innate immune system were expressed in response to gill re-colonization by P. perurans, while no features of adaptive immunity were found to be differentially expressed. Many of the proteins identified are novel in the context of AGD and their expression profiles suggest that their roles in the response to disease development and progression in single or multiple infections warrant further investigation.
Collapse
Affiliation(s)
- Michelle McCormack
- Marine and Freshwater Research Centre, Galway Mayo Institute of Technology, Dublin Road, H91 TRNW Galway, Ireland; (A.T.); (I.O.); (E.M.)
- Correspondence:
| | - Anita Talbot
- Marine and Freshwater Research Centre, Galway Mayo Institute of Technology, Dublin Road, H91 TRNW Galway, Ireland; (A.T.); (I.O.); (E.M.)
| | - Eugene Dillon
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland;
| | - Ian O’Connor
- Marine and Freshwater Research Centre, Galway Mayo Institute of Technology, Dublin Road, H91 TRNW Galway, Ireland; (A.T.); (I.O.); (E.M.)
| | - Eugene MacCarthy
- Marine and Freshwater Research Centre, Galway Mayo Institute of Technology, Dublin Road, H91 TRNW Galway, Ireland; (A.T.); (I.O.); (E.M.)
| |
Collapse
|
19
|
Shin M, Park SH, Mun S, Lee J, Kang HG. Biomarker Discovery of Acute Coronary Syndrome Using Proteomic Approach. Molecules 2021; 26:molecules26041136. [PMID: 33672727 PMCID: PMC7924321 DOI: 10.3390/molecules26041136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 11/17/2022] Open
Abstract
Acute coronary syndrome (ACS) is a condition in which the coronary artery supplying blood to the heart is infarcted via formation of a plaque and thrombus, resulting in abnormal blood supply and high mortality and morbidity. Therefore, the prompt and efficient diagnosis of ACS and the need for new ACS diagnostic biomarkers are important. In this study, we aimed to identify new ACS diagnostic biomarkers with high sensitivity and specificity using a proteomic approach. A discovery set with samples from 20 patients with ACS and 20 healthy controls was analyzed using mass spectrometry. Among the proteins identified, those showing a significant difference between each group were selected. Functional analysis of these proteins was conducted to confirm their association with functions in the diseased state. To determine ACS diagnostic biomarkers, standard peptides of the selected protein candidates from the discovery set were quantified, and these protein candidates were validated in a validation set consisting of the sera of 50 patients with ACS and 50 healthy controls. We showed that hemopexin, leucine-rich α-2-glycoprotein, and vitronectin levels were upregulated, whereas fibronectin level was downregulated, in patients with ACS. Thus, the use of these biomarkers may increase the accuracy of ACS diagnosis.
Collapse
Affiliation(s)
- Miji Shin
- Department of Senior Healthcare, Graduate School, Eulji University, Seongnam 13135, Korea; (M.S.); (S.M.)
| | - Sang Hyun Park
- Department of Internal Medicine, School of Medicine, Eulji University, Daejeon 34824, Korea;
| | - Sora Mun
- Department of Senior Healthcare, Graduate School, Eulji University, Seongnam 13135, Korea; (M.S.); (S.M.)
| | - Jiyeong Lee
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Uijeongbu 11759, Korea
- Correspondence: (J.L.); (H.-G.K.); Tel.: +82-42-259-1752 (J.L.); +82-31-740-7315 (H.-G.K.)
| | - Hee-Gyoo Kang
- Department of Senior Healthcare, Graduate School, Eulji University, Seongnam 13135, Korea; (M.S.); (S.M.)
- Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam 13135, Korea
- Correspondence: (J.L.); (H.-G.K.); Tel.: +82-42-259-1752 (J.L.); +82-31-740-7315 (H.-G.K.)
| |
Collapse
|
20
|
Karnaukhova E, Owczarek C, Schmidt P, Schaer DJ, Buehler PW. Human Plasma and Recombinant Hemopexins: Heme Binding Revisited. Int J Mol Sci 2021; 22:ijms22031199. [PMID: 33530421 PMCID: PMC7866118 DOI: 10.3390/ijms22031199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 11/24/2022] Open
Abstract
Plasma hemopexin (HPX) is the key antioxidant protein of the endogenous clearance pathway that limits the deleterious effects of heme released from hemoglobin and myoglobin (the term “heme” is used in this article to denote both the ferrous and ferric forms). During intra-vascular hemolysis, heme partitioning to protein and lipid increases as the plasma concentration of HPX declines. Therefore, the development of HPX as a replacement therapy during high heme stress could be a relevant intervention for hemolytic disorders. A logical approach to enhance HPX yield involves recombinant production strategies from human cell lines. The present study focuses on a biophysical assessment of heme binding to recombinant human HPX (rhHPX) produced in the Expi293FTM (HEK293) cell system. In this report, we examine rhHPX in comparison with plasma HPX using a systematic analysis of protein structural and functional characteristics related to heme binding. Analysis of rhHPX by UV/Vis absorption spectroscopy, circular dichroism (CD), size-exclusion chromatography (SEC)-HPLC, and catalase-like activity demonstrated a similarity to HPX fractionated from plasma. In particular, the titration of HPX apo-protein(s) with heme was performed for the first time using a wide range of heme concentrations to model HPX–heme interactions to approximate physiological conditions (from extremely low to more than two-fold heme molar excess over the protein). The CD titration data showed an induced bisignate CD Soret band pattern typical for plasma and rhHPX versions at low heme-to-protein molar ratios and demonstrated that further titration is dependent on the amount of protein-bound heme to the extent that the arising opposite CD couplet results in a complete inversion of the observed CD pattern. The data generated in this study suggest more than one binding site in both plasma and rhHPX. Furthermore, our study provides a useful analytical platform for the detailed characterization of HPX–heme interactions and potentially novel HPX fusion constructs.
Collapse
Affiliation(s)
- Elena Karnaukhova
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
- Correspondence: (E.K.); (P.W.B.)
| | - Catherine Owczarek
- CSL Limited, Bio21 Institute, Parkville, Victoria 3010, Australia; (C.O.); (P.S.)
| | - Peter Schmidt
- CSL Limited, Bio21 Institute, Parkville, Victoria 3010, Australia; (C.O.); (P.S.)
| | - Dominik J. Schaer
- Division of Internal Medicine, University Hospital of Zurich, 8091 Zurich, Switzerland;
| | - Paul W. Buehler
- Department of Pathology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA
- The Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, The University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence: (E.K.); (P.W.B.)
| |
Collapse
|
21
|
Pal M, Bao W, Wang R, Liu Y, An X, Mitchell WB, Lobo CA, Minniti C, Shi PA, Manwani D, Yazdanbakhsh K, Zhong H. Hemolysis inhibits humoral B-cell responses and modulates alloimmunization risk in patients with sickle cell disease. Blood 2021; 137:269-280. [PMID: 33152749 PMCID: PMC7820872 DOI: 10.1182/blood.2020008511] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
Red blood cell alloimmunization remains a barrier for safe and effective transfusions in sickle cell disease (SCD), but the associated risk factors remain largely unknown. Intravascular hemolysis, a hallmark of SCD, results in the release of heme with potent immunomodulatory activity, although its effect on SCD humoral response, specifically alloimmunization, remains unclear. Here, we found that cell-free heme suppresses human B-cell plasmablast and plasma cell differentiation by inhibiting the DOCK8/STAT3 signaling pathway, which is critical for B-cell activation, as well as by upregulating heme oxygenase 1 (HO-1) through its enzymatic byproducts, carbon monoxide and biliverdin. Whereas nonalloimmunized SCD B cells were inhibited by exogenous heme, B cells from the alloimmunized group were nonresponsive to heme inhibition and readily differentiated into plasma cells. Consistent with a differential B-cell response to hemolysis, we found elevated B-cell basal levels of DOCK8 and higher HO-1-mediated inhibition of activated B cells in nonalloimmunized compared with alloimmunized SCD patients. To overcome the alloimmunized B-cell heme insensitivity, we screened several heme-binding molecules and identified quinine as a potent inhibitor of B-cell activity, reversing the resistance to heme suppression in alloimmunized patients. B-cell inhibition by quinine occurred only in the presence of heme and through HO-1 induction. Altogether, these data suggest that hemolysis can dampen the humoral B-cell response and that B-cell heme responsiveness maybe a determinant of alloimmunization risk in SCD. By restoring B-cell heme sensitivity, quinine may have therapeutic potential to prevent and inhibit alloimmunization in SCD patients.
Collapse
Affiliation(s)
| | | | | | | | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY
| | - William B Mitchell
- Department of Pediatrics, Montefiore Health Center, Albert Einstein College of Medicine, Children's Hospital at Montefiore, Bronx, NY
| | - Cheryl A Lobo
- Laboratory of Blood-Borne Parasites, New York Blood Center, New York, NY
| | - Caterina Minniti
- Department of Medicine, Division of Hematology, Montefiore Health Center, Albert Einstein College of Medicine, Bronx, NY; and
| | - Patricia A Shi
- Sickle Cell Clinical Research Program, New York Blood Center, New York, NY
| | - Deepa Manwani
- Department of Pediatrics, Montefiore Health Center, Albert Einstein College of Medicine, Children's Hospital at Montefiore, Bronx, NY
| | | | - Hui Zhong
- Laboratory of Immune Regulation, and
| |
Collapse
|
22
|
Chatterton DEW, Aagaard S, Hesselballe Hansen T, Nguyen DN, De Gobba C, Lametsch R, Sangild PT. Bioactive proteins in bovine colostrum and effects of heating, drying and irradiation. Food Funct 2021; 11:2309-2327. [PMID: 32108849 DOI: 10.1039/c9fo02998b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bovine colostrum (BC) contains bioactive proteins, such as immunoglobulin G (IgG), lactoferrin (LF) and lactoperoxidase (LP). BC was subjected to low-temperature, long-time pasteurization (LTLT, 63 °C, 30 min) or high-temperature, short-time pasteurization (HTST, 72 °C, 15 s) and spray-drying (SD), with or without γ-irradiation (GI, ∼14 kGy) to remove microbial contamination. Relative to unpasteurized liquid BC, SD plus GI increased protein denaturation by 6 and 11%, respectively, increasing to 19 and 27% after LTLT and to 48% after HTST, with no further effects after GI (all P < 0.05). LTLT, without or with GI, resulted in 15 or 29% denaturation of IgG, compared with non-pasteurized BC, and 34 or 58% for HTST treatment (all P < 0.05, except LTLT without GI). For IgG, only GI, not SD or LTLT, increased denaturation (30-38%, P < 0.05) but HTST increased denaturation to 40%, with further increases after GI (60%, P < 0.05). LTLT and HTST reduced LP levels (56 and 81% respectively) and LTLT reduced LF levels (21%), especially together with GI (47%, P < 0.05). Denaturation of BSA, β-LgA, β-LgB and α-La were similar to IgG. Methionine, a protective amino acid against free oxygen radicals, was oxidised by LTLT + GI (P < 0.05) while LTLT and HTST had no effect. Many anti-inflammatory proteins, including serpin anti-proteinases were highly sensitive to HTST and GI but preserved after LTLT pasteurization. LTLT, followed by SD is an optimal processing technique preserving bioactive proteins when powdered BC is used as a diet supplement for sensitive patients.
Collapse
Affiliation(s)
| | - Sasha Aagaard
- Department of Food Science, University of Copenhagen, DK-1958, Denmark. and Comparative Pediatrics and Nutrition, Department of Veterinary Clinical and Animal Sciences, Denmark
| | | | - Duc Ninh Nguyen
- Comparative Pediatrics and Nutrition, Department of Veterinary Clinical and Animal Sciences, Denmark
| | - Cristian De Gobba
- Department of Food Science, University of Copenhagen, DK-1958, Denmark.
| | - René Lametsch
- Department of Food Science, University of Copenhagen, DK-1958, Denmark.
| | - Per T Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary Clinical and Animal Sciences, Denmark
| |
Collapse
|
23
|
Arnhold J. The Dual Role of Myeloperoxidase in Immune Response. Int J Mol Sci 2020; 21:E8057. [PMID: 33137905 PMCID: PMC7663354 DOI: 10.3390/ijms21218057] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
The heme protein myeloperoxidase (MPO) is a major constituent of neutrophils. As a key mediator of the innate immune system, neutrophils are rapidly recruited to inflammatory sites, where they recognize, phagocytose, and inactivate foreign microorganisms. In the newly formed phagosomes, MPO is involved in the creation and maintenance of an alkaline milieu, which is optimal in combatting microbes. Myeloperoxidase is also a key component in neutrophil extracellular traps. These helpful properties are contrasted by the release of MPO and other neutrophil constituents from necrotic cells or as a result of frustrated phagocytosis. Although MPO is inactivated by the plasma protein ceruloplasmin, it can interact with negatively charged components of serum and the extracellular matrix. In cardiovascular diseases and many other disease scenarios, active MPO and MPO-modified targets are present in atherosclerotic lesions and other disease-specific locations. This implies an involvement of neutrophils, MPO, and other neutrophil products in pathogenesis mechanisms. This review critically reflects on the beneficial and harmful functions of MPO against the background of immune response.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, 04 107 Leipzig, Germany
| |
Collapse
|
24
|
Al-Dujaili AH, Mousa RF, Al-Hakeim HK, Maes M. High Mobility Group Protein 1 and Dickkopf-Related Protein 1 in Schizophrenia and Treatment-Resistant Schizophrenia: Associations With Interleukin-6, Symptom Domains, and Neurocognitive Impairments. Schizophr Bull 2020; 47:530-541. [PMID: 32971537 PMCID: PMC7965081 DOI: 10.1093/schbul/sbaa136] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Schizophrenia (SCZ) and treatment-resistant schizophrenia (TRS) are associated with aberrations in immune-inflammatory pathways. Increased high mobility group protein 1 (HMGB1), an inflammatory mediator, and Dickkopf-related protein (DKK1), a Wnt/β-catenin signaling antagonist, affect the blood-brain barrier and induce neurotoxic effects and neurocognitive deficits. AIM The present study aims to examine HMGB1 and DDK1 in nonresponders to treatments (NRTT) with antipsychotics (n = 60), partial RTT (PRTT, n = 55), and healthy controls (n = 43) in relation to established markers of SCZ, including interleukin (IL)-6, IL-10, and CCL11 (eotaxin), and to delineate whether these proteins are associated with the SCZ symptom subdomains and neurocognitive impairments. RESULTS HMGB1, DKK1, IL-6, and CCL11 were significantly higher in SCZ patients than in controls. DKK1 and IL-6 were significantly higher in NRTT than in PRTT and controls, while IL-10 was higher in NRTT than in controls. Binary logistic regression analysis showed that SCZ was best predicted by increased DDK1 and HMGB1, while NRTT (vs PRTT) was best predicted by increased IL-6 and CCL11 levels. A large part of the variance in psychosis, hostility, excitation, mannerism, and negative (PHEMN) symptoms and formal thought disorders was explained by HMGB1, IL-6, and CCL11, while most neurocognitive functions were predicted by HMGB1, DDK1, and CCL11. CONCLUSIONS The neurotoxic effects of HMGB1, DKK1, IL-6, and CCL11 including the effects on the blood-brain barrier and the Wnt/β-catenin signaling pathway may cause impairments in executive functions and working, episodic, and semantic memory and explain, in part, PHEMN symptoms and a nonresponse to treatment with antipsychotic drugs.
Collapse
Affiliation(s)
| | - Rana Fadhil Mousa
- Faculty of Veterinary Medicine, University of Kerbala, Kerbala, Iraq
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia
- To whom correspondence should be addressed; IMPACT Strategic Research Center, Barwon Health, School of Medicine, Deakin University, PO Box 281, Geelong, VIC3220, Australia; tel: 0066-930466001, e-mail:
| |
Collapse
|
25
|
Nakharuthai C, Rodrigues PM, Schrama D, Kumkhong S, Boonanuntanasarn S. Effects of Different Dietary Vegetable Lipid Sources on Health Status in Nile Tilapia ( Oreochromis niloticus): Haematological Indices, Immune Response Parameters and Plasma Proteome. Animals (Basel) 2020; 10:E1377. [PMID: 32784430 PMCID: PMC7460521 DOI: 10.3390/ani10081377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
Abstract
This study aimed to investigate the effects of DLs, including palm oil (PO; an SFAs), linseed oil (LO; n-3 PUFAs) and soybean oil (SBO; n-6 PUFAs) on the health status of Nile tilapia (Oreochromis niloticus) during adulthood. Three experimental diets incorporating PO, LO or SBO were fed to adult Nile tilapia for a period of 90 days, and haematological and innate immune parameters were evaluated. Proteome analysis was also conducted to evaluate the effects of DLs on plasma proteins. The tested DLs had no significant effects on red blood cell (RBC) count, haematocrit, haemoglobin, and total immunoglobulin and lysozyme activity. Dietary LO led to increased alternative complement 50 activity (ACH50), and proteome analysis revealed that PO and SBO enhanced A2ML, suggesting that different DLs promote immune system via different processes. Dietary LO or SBO increased the expression of several proteins involved in coagulation activity such as KNG1, HRG and FGG. Increased HPX in fish fed with PO suggests that SFAs are utilised in heme lipid-oxidation. Overall, DLs with distinct fatty acids (FAs) affect several parameters corresponding to health status in Nile tilapia, and dietary LO and SBO seemed to strengthen health in this species.
Collapse
Affiliation(s)
- Chatsirin Nakharuthai
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand; (C.N.); (S.K.)
| | - Pedro M. Rodrigues
- Universidade do Algarve, Centro de Ciências do Mar do Algarve (CCMAR), Campus de Gambelas, Edificio 7, 8005-139 Faro, Portugal; (P.M.R.); (D.S.)
| | - Denise Schrama
- Universidade do Algarve, Centro de Ciências do Mar do Algarve (CCMAR), Campus de Gambelas, Edificio 7, 8005-139 Faro, Portugal; (P.M.R.); (D.S.)
| | - Suksan Kumkhong
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand; (C.N.); (S.K.)
| | - Surintorn Boonanuntanasarn
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand; (C.N.); (S.K.)
| |
Collapse
|
26
|
Poillerat V, Gentinetta T, Leon J, Wassmer A, Edler M, Torset C, Luo D, Tuffin G, Roumenina LT. Hemopexin as an Inhibitor of Hemolysis-Induced Complement Activation. Front Immunol 2020; 11:1684. [PMID: 32849588 PMCID: PMC7412979 DOI: 10.3389/fimmu.2020.01684] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/24/2020] [Indexed: 12/23/2022] Open
Abstract
Hemopexin is the main plasmatic scavenger of cell-free heme, released in the context of intravascular hemolysis or major cell injury. Heme is indispensable for the oxygen transport by hemoglobin but when released outside of the erythrocytes it becomes a danger-associated molecular pattern, contributing to tissue injury. One of the mechanisms of pro-inflammatory action of heme is to activate the innate immune complement cascade. Therefore, we hypothesized that injection of hemopexin will prevent hemolysis-induced complement activation. Human plasma-derived hemopexin is compatible with the heme clearance machinery of the mice. 100 or 500 mg/kg of hemopexin was injected in C57Bl/6 mice before treatment with phenylhydrazine (inducer of erythrocytes lysis) or with PBS as a control. Blood was taken at different timepoints to determine the pharmacokinetic of injected hemopexin in presence and absence of hemolysis. Complement activation was determined in plasma, by the C3 cleavage (western blot) and in the kidneys (immunofluorescence). Kidney injury was evaluated by urea and creatinine in plasma and renal NGAL and HO-1 gene expression were measured. The pharmacokinetic properties of hemopexin (mass spectrometry) in the hemolytic mice were affected by the target-mediated drug disposition phenomenon due to the high affinity of binding of hemopexin to heme. Hemolysis induced complement overactivation and signs of mild renal dysfunction at 6 h, which were prevented by hemopexin, except for the NGAL upregulation. The heme-degrading capacity of the kidney, measured by the HO-1 expression, was not affected by the treatment. These results encourage further studies of hemopexin as a therapeutic agent in models of diseases with heme overload.
Collapse
Affiliation(s)
- Victoria Poillerat
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | | | - Juliette Leon
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | | | | | - Carine Torset
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Dandan Luo
- CSL Behring, King of Prussia, PA, United States
| | | | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
27
|
Abstract
Patients with stroke have a high risk of infection which may be predicted by age, procalcitonin, interleukin-6, C-reactive protein, National Institute of Health stroke scale (NHSS) score, diabetes, etc. These prediction methods can reduce unfavourable outcome by preventing the occurrence of infection.We aim to identify early predictors for urinary tract infection in patients after stroke.In 186 collected acute stroke patients, we divided them into urinary tract infection group, other infection type groups, and non-infected group. Data were recorded at admission. Independent risk factors and infection prediction model were determined using Logistic regression analyses. Likelihood ratio test was used to detect the prediction effect of the model. Receiver operating characteristic curve and the corresponding area under the curve were used to measure the predictive accuracy of indicators for urinary tract infection.Of the 186 subjects, there were 35 cases of urinary tract infection. Elevated interleukin-6, higher NIHSS, and decreased hemoglobin may be used to predict urinary tract infection. And the predictive model for urinary tract infection (including sex, NIHSS, interleukin-6, and hemoglobin) have the best predictive effect.This study is the first to discover that decreased hemoglobin at admission may predict urinary tract infection. The prediction model shows the best accuracy.
Collapse
Affiliation(s)
- Ya-ming Li
- Department of Neurology, Jiading District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences
| | - Jian-hua Xu
- Department of Neurology, Jiading District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences
| | - Yan-xin Zhao
- Department of Neurology, Tenth People's Hospital affiliated to Tongji University, Shanghai, China
| |
Collapse
|
28
|
Stanley S, Vanarsa K, Soliman S, Habazi D, Pedroza C, Gidley G, Zhang T, Mohan S, Der E, Suryawanshi H, Tuschl T, Buyon J, Putterman C, Mok CC, Petri M, Saxena R, Mohan C. Comprehensive aptamer-based screening identifies a spectrum of urinary biomarkers of lupus nephritis across ethnicities. Nat Commun 2020; 11:2197. [PMID: 32366845 PMCID: PMC7198599 DOI: 10.1038/s41467-020-15986-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 04/02/2020] [Indexed: 02/08/2023] Open
Abstract
Emerging urinary biomarkers continue to show promise in evaluating lupus nephritis (LN). Here, we screen urine from active LN patients for 1129 proteins using an aptamer-based platform, followed by ELISA validation in two independent cohorts comprised of 127 inactive lupus, 107 active LN, 67 active non-renal lupus patients and 74 healthy controls, of three different ethnicities. Urine proteins that best distinguish active LN from inactive disease are ALCAM, PF-4, properdin, and VCAM-1 among African-Americans, sE-selectin, VCAM-1, BFL-1 and Hemopexin among Caucasians, and ALCAM, VCAM-1, TFPI and PF-4 among Asians. Most of these correlate significantly with disease activity indices in the respective ethnic groups, and surpass conventional metrics in identifying active LN, with better sensitivity, and negative/positive predictive values. Several elevated urinary molecules are also expressed within the kidneys in LN, based on single-cell RNAseq analysis. Longitudinal studies are warranted to assess the utility of these biomarkers in tracking lupus nephritis.
Collapse
Affiliation(s)
- Samantha Stanley
- Department Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Kamala Vanarsa
- Department Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Samar Soliman
- Department Biomedical Engineering, University of Houston, Houston, TX, USA
- Rheumatology and Rehabilitation Department, Faculty of Medicine, Minia University, Minya, Egypt
| | - Deena Habazi
- Department Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Claudia Pedroza
- Center for Clinical Research and Evidence-Based Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Gabriel Gidley
- Department Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Ting Zhang
- Department Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Shree Mohan
- Department Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Evan Der
- Department of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hemant Suryawanshi
- Department of Molecular Biology, Rockefeller University, New York, NY, USA
| | - Thomas Tuschl
- Department of Molecular Biology, Rockefeller University, New York, NY, USA
| | - Jill Buyon
- Department of Rheumatology, New York University, New York, NY, USA
| | - Chaim Putterman
- Department of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat, Israel
- Research Institute, Galilee Medical Center, Nahariya, Israel
| | - Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, New Territories, Hong Kong, China
| | - Michelle Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ramesh Saxena
- University Hospital Kidney & Liver Clinic, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chandra Mohan
- Department Biomedical Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
29
|
Malaria in Pregnancy and Adverse Birth Outcomes: New Mechanisms and Therapeutic Opportunities. Trends Parasitol 2019; 36:127-137. [PMID: 31864896 DOI: 10.1016/j.pt.2019.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022]
Abstract
Malaria infection during pregnancy is associated with adverse birth outcomes but underlying mechanisms are poorly understood. Here, we discuss the impact of malaria in pregnancy on three pathways that are important regulators of healthy pregnancy outcomes: L-arginine-nitric oxide biogenesis, complement activation, and the heme axis. These pathways are not mutually exclusive, and they collectively create a proinflammatory, antiangiogenic milieu at the maternal-fetal interface that interferes with placental function and development. We hypothesize that targeting these host-response pathways would mitigate the burden of adverse birth outcomes attributable to malaria in pregnancy.
Collapse
|
30
|
What Is Next in This "Age" of Heme-Driven Pathology and Protection by Hemopexin? An Update and Links with Iron. Pharmaceuticals (Basel) 2019; 12:ph12040144. [PMID: 31554244 PMCID: PMC6958331 DOI: 10.3390/ph12040144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/08/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023] Open
Abstract
This review provides a synopsis of the published literature over the past two years on the heme-binding protein hemopexin (HPX), with some background information on the biochemistry of the HPX system. One focus is on the mechanisms of heme-driven pathology in the context of heme and iron homeostasis in human health and disease. The heme-binding protein hemopexin is a multi-functional protectant against hemoglobin (Hb)-derived heme toxicity as well as mitigating heme-mediated effects on immune cells, endothelial cells, and stem cells that collectively contribute to driving inflammation, perturbing vascular hemostasis and blood–brain barrier function. Heme toxicity, which may lead to iron toxicity, is recognized increasingly in a wide range of conditions involving hemolysis and immune system activation and, in this review, we highlight some newly identified actions of heme and hemopexin especially in situations where normal processes fail to maintain heme and iron homeostasis. Finally, we present preliminary data showing that the cytokine IL-6 cross talks with activation of the c-Jun N-terminal kinase pathway in response to heme-hemopexin in models of hepatocytes. This indicates another level of complexity in the cell responses to elevated heme via the HPX system when the immune system is activated and/or in the presence of inflammation.
Collapse
|
31
|
Van Avondt K, Nur E, Zeerleder S. Mechanisms of haemolysis-induced kidney injury. Nat Rev Nephrol 2019; 15:671-692. [PMID: 31455889 DOI: 10.1038/s41581-019-0181-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 12/16/2022]
Abstract
Intravascular haemolysis is a fundamental feature of chronic hereditary and acquired haemolytic anaemias, including those associated with haemoglobinopathies, complement disorders and infectious diseases such as malaria. Destabilization of red blood cells (RBCs) within the vasculature results in systemic inflammation, vasomotor dysfunction, thrombophilia and proliferative vasculopathy. The haemoprotein scavengers haptoglobin and haemopexin act to limit circulating levels of free haemoglobin, haem and iron - potentially toxic species that are released from injured RBCs. However, these adaptive defence systems can fail owing to ongoing intravascular disintegration of RBCs. Induction of the haem-degrading enzyme haem oxygenase 1 (HO1) - and potentially HO2 - represents a response to, and endogenous defence against, large amounts of cellular haem; however, this system can also become saturated. A frequent adverse consequence of massive and/or chronic haemolysis is kidney injury, which contributes to the morbidity and mortality of chronic haemolytic diseases. Intravascular destruction of RBCs and the resulting accumulation of haemoproteins can induce kidney injury via a number of mechanisms, including oxidative stress and cytotoxicity pathways, through the formation of intratubular casts and through direct as well as indirect proinflammatory effects, the latter via the activation of neutrophils and monocytes. Understanding of the detailed pathophysiology of haemolysis-induced kidney injury offers opportunities for the design and implementation of new therapeutic strategies to counteract the unfavourable and potentially fatal effects of haemolysis on the kidney.
Collapse
Affiliation(s)
- Kristof Van Avondt
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University of Munich, Munich, Germany.
| | - Erfan Nur
- Department of Haematology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Sacha Zeerleder
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Haematology and Central Haematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland. .,Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
32
|
Sun X, Lv Y, Wang J, Cheng H, Huang J, Du Y, Dong J. Differential protein expression profiling by iTRAQ‐2D‐LC‐MS/MS of rats treated with oxaliplatin. J Cell Biochem 2019; 120:18128-18141. [PMID: 31237037 DOI: 10.1002/jcb.29116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Xianjun Sun
- Department of Integrative Medicine, Huashan Hospital Fudan University Shanghai China
- Qingpu Chinese Medicine Hospital Institutes of Integrative Medicine, Fudan University Shanghai China
| | - Yubao Lv
- Department of Integrative Medicine, Huashan Hospital Fudan University Shanghai China
- Qingpu Chinese Medicine Hospital Institutes of Integrative Medicine, Fudan University Shanghai China
| | - Junjun Wang
- Qingpu Chinese Medicine Hospital Institutes of Integrative Medicine, Fudan University Shanghai China
| | - HuiQin Cheng
- Department of Prevention and Healthcare Yangpu Daqiao Community Health Service Center Shanghai China
| | - Jianhua Huang
- Department of Integrative Medicine, Huashan Hospital Fudan University Shanghai China
- Qingpu Chinese Medicine Hospital Institutes of Integrative Medicine, Fudan University Shanghai China
| | - Yijie Du
- Department of Integrative Medicine, Huashan Hospital Fudan University Shanghai China
- Qingpu Chinese Medicine Hospital Institutes of Integrative Medicine, Fudan University Shanghai China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital Fudan University Shanghai China
- Qingpu Chinese Medicine Hospital Institutes of Integrative Medicine, Fudan University Shanghai China
| |
Collapse
|
33
|
Glomerular Hematuria: Cause or Consequence of Renal Inflammation? Int J Mol Sci 2019; 20:ijms20092205. [PMID: 31060307 PMCID: PMC6539976 DOI: 10.3390/ijms20092205] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/21/2019] [Accepted: 04/28/2019] [Indexed: 12/12/2022] Open
Abstract
Glomerular hematuria is a cardinal symptom of renal disease. Glomerular hematuria may be classified as microhematuria or macrohematuria according to the number of red blood cells in urine. Recent evidence suggests a pathological role of persistent glomerular microhematuria in the progression of renal disease. Moreover, gross hematuria, or macrohematuria, promotes acute kidney injury (AKI), with subsequent impairment of renal function in a high proportion of patients. In this pathological context, hemoglobin, heme, or iron released from red blood cells in the urinary space may cause direct tubular cell injury, oxidative stress, pro-inflammatory cytokine production, and further monocyte/macrophage recruitment. The aim of this manuscript is to review the role of glomerular hematuria in kidney injury, the role of inflammation as cause and consequence of glomerular hematuria, and to discuss novel therapies to combat hematuria.
Collapse
|
34
|
Nolfi-Donegan D, Pradhan-Sundd T, Pritchard KA, Hillery CA. Redox Signaling in Sickle Cell Disease. CURRENT OPINION IN PHYSIOLOGY 2019; 9:26-33. [PMID: 31240269 DOI: 10.1016/j.cophys.2019.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sickle cell disease (SCD) is characterized by chronic hemolysis and repeated episodes of vascular occlusion leading to progressive organ injury. SCD is characterized by unbalanced, simultaneous pro-oxidant and anti-oxidant processes at the molecular, cellular and tissue levels, with the majority of reactions tipped in favor of pro-oxidant pathways. In this brief review we discuss new findings regarding how oxidized hemin, hemolysis, mitochondrial dysfunction and the innate immune system generate oxidative stress while hemopexin, haptoglobin, heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) may provide protection in human and murine SCD. We will also describe recent clinical trials showing beneficial effects of antioxidant therapy in SCD.
Collapse
Affiliation(s)
- Deirdre Nolfi-Donegan
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Tirthadipa Pradhan-Sundd
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kirkwood A Pritchard
- Department of Surgery, Division of Pediatric Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Cheryl A Hillery
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
35
|
Aggarwal S, Jilling T, Doran S, Ahmad I, Eagen JE, Gu S, Gillespie M, Albert CJ, Ford D, Oh JY, Patel RP, Matalon S. Phosgene inhalation causes hemolysis and acute lung injury. Toxicol Lett 2019; 312:204-213. [PMID: 31047999 DOI: 10.1016/j.toxlet.2019.04.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/28/2019] [Accepted: 04/18/2019] [Indexed: 12/23/2022]
Abstract
Phosgene (Carbonyl Chloride, COCl2) remains an important chemical intermediate in many industrial processes such as combustion of chlorinated hydrocarbons and synthesis of solvents (degreasers, cleaners). It is a sweet smelling gas, and therefore does not prompt escape by the victim upon exposure. Supplemental oxygen and ventilation are the only available management strategies. This study was aimed to delineate the pathogenesis and identify novel biomarkers of acute lung injury post exposure to COCl2 gas. Adult male and female C57BL/6 mice (20-25 g), exposed to COCl2 gas (10 or 20 ppm) for 10 min in environmental chambers, had a dose dependent reduction in PaO2 and an increase in PaCO2, 1 day post exposure. However, mortality increased only in mice exposed to 20 ppm of COCl2 for 10 min. Correspondingly, these mice (20 ppm) also had severe acute lung injury as indicated by an increase in lung wet to dry weight ratio, extravasation of plasma proteins and neutrophils into the bronchoalveolar lavage fluid, and an increase in total lung resistance. The increase in acute lung injury parameters in COCl2 (20 ppm, 10 min) exposed mice correlated with simultaneous increase in oxidation of red blood cells (RBC) membrane, RBC fragility, and plasma levels of cell-free heme. In addition, these mice had decreased plasmalogen levels (plasmenylethanolamine) and elevated levels of their breakdown product, polyunsaturated lysophosphatidylethanolamine, in the circulation suggesting damage to cellular plasma membranes. This study highlights the importance of free heme in the pathogenesis of COCl2 lung injury and identifies plasma membrane breakdown product as potential biomarkers of COCl2 toxicity.
Collapse
Affiliation(s)
- Saurabh Aggarwal
- Department of Anesthesiology and Perioperative Medicine, Birmingham, AL, 35205-3703, United States; Division of Molecular and Translational Biomedicine, Birmingham, AL, 35205-3703, United States; Pulmonary Injury and Repair Center, Birmingham, AL, 35205-3703, United States; Center for Free Radical Biology, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Tamas Jilling
- Pulmonary Injury and Repair Center, Birmingham, AL, 35205-3703, United States; Department of Pediatrics, Division of Neonatology, Birmingham, AL, 35205-3703, United States; Center for Free Radical Biology, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Stephen Doran
- Department of Anesthesiology and Perioperative Medicine, Birmingham, AL, 35205-3703, United States; Division of Molecular and Translational Biomedicine, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Israr Ahmad
- Department of Anesthesiology and Perioperative Medicine, Birmingham, AL, 35205-3703, United States; Division of Molecular and Translational Biomedicine, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Jeannette E Eagen
- Department of Anesthesiology and Perioperative Medicine, Birmingham, AL, 35205-3703, United States; Division of Molecular and Translational Biomedicine, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Stephen Gu
- Department of Anesthesiology and Perioperative Medicine, Birmingham, AL, 35205-3703, United States; Division of Molecular and Translational Biomedicine, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Mark Gillespie
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; Department of Pharmacology, Mobile, AL, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Carolyn J Albert
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; Department of Biochemistry and Molecular Biology, St. Louis, MO, 63104, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - David Ford
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; Department of Biochemistry and Molecular Biology, St. Louis, MO, 63104, United States
| | - Joo-Yeun Oh
- Department of Pathology, Division of Cellular and Molecular Pathology, Birmingham, AL, 35205-3703, United States; Center for Free Radical Biology, Birmingham, AL, 35205-3703, United States; School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Rakesh P Patel
- Pulmonary Injury and Repair Center, Birmingham, AL, 35205-3703, United States; Department of Pathology, Division of Cellular and Molecular Pathology, Birmingham, AL, 35205-3703, United States; Center for Free Radical Biology, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, Birmingham, AL, 35205-3703, United States; Division of Molecular and Translational Biomedicine, Birmingham, AL, 35205-3703, United States; Pulmonary Injury and Repair Center, Birmingham, AL, 35205-3703, United States; Center for Free Radical Biology, Birmingham, AL, 35205-3703, United States; University of South Alabama Health College of Medicine, Mobile, AL, United States; St. Louis University, St. Louis, MO, 63104, United States.
| |
Collapse
|
36
|
P-selectin drives complement attack on endothelium during intravascular hemolysis in TLR-4/heme-dependent manner. Proc Natl Acad Sci U S A 2019; 116:6280-6285. [PMID: 30850533 DOI: 10.1073/pnas.1814797116] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hemolytic diseases are frequently linked to multiorgan failure subsequent to vascular damage. Deciphering the mechanisms leading to organ injury upon hemolytic event could bring out therapeutic approaches. Complement system activation occurs in hemolytic disorders, such as sickle cell disease, but the pathological relevance and the acquisition of a complement-activating phenotype during hemolysis remain unclear. Here we found that intravascular hemolysis, induced by injection of phenylhydrazine, resulted in increased alanine aminotransferase plasma levels and NGAL expression. This liver damage was at least in part complement-dependent, since it was attenuated in complement C3-/- mice and by injection of C5-blocking antibody. We evidenced C3 activation fragments' deposits on liver endothelium in mice with intravascular hemolysis or injected with heme as well as on cultured human endothelial cells (EC) exposed to heme. This process was mediated by TLR4 signaling, as revealed by pharmacological blockade and TLR4 deficiency in mice. Mechanistically, TLR4-dependent surface expression of P-selectin triggered an unconventional mechanism of complement activation by noncovalent anchoring of C3 activation fragments, including the typical fluid-phase C3(H2O), measured by surface plasmon resonance and flow cytometry. P-selectin blockade by an antibody prevented complement deposits and attenuated the liver stress response, measured by NGAL expression, in the hemolytic mice. In conclusion, these results revealed the critical impact of the triad TLR4/P-selectin/complement in the liver damage and its relevance for hemolytic diseases. We anticipate that blockade of TLR4, P-selectin, or the complement system could prevent liver injury in hemolytic diseases like sickle cell disease.
Collapse
|
37
|
The role of redox-dependent mechanisms in heme release from hemoglobin and erythrocyte hemolysates. Arch Biochem Biophys 2019; 662:111-120. [DOI: 10.1016/j.abb.2018.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 11/20/2022]
|
38
|
Chen-Roetling J, Ma SK, Cao Y, Shah A, Regan RF. Hemopexin increases the neurotoxicity of hemoglobin when haptoglobin is absent. J Neurochem 2018; 145:464-473. [PMID: 29500821 DOI: 10.1111/jnc.14328] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 12/24/2022]
Abstract
Hemopexin (Hpx) binds heme with extraordinary affinity, and after haptoglobin may provide a second line of defense against the toxicity of extracellular hemoglobin (Hb). In this series of experiments, the hypothesis that Hpx protects neurons from Hb neurotoxicity was evaluated in murine primary cultures containing neurons and glial cells. Contrary to hypothesis, Hpx increased neuronal loss due to micromolar concentrations of Hb by 4- to 12-fold, as measured by LDH release assay; conversely, the neurotoxicity of hemin was completely prevented. The endogenous fluorescence of Hpx was quenched by Hb, consistent with transfer of Hb-bound heme to Hpx. This was associated with precipitation of globin chains, as detected by immunostaining and fluorescent Hb labeling. A portion of this precipitate attached firmly to cells and could not be removed by multiple washes. Concomitant treatment with haptoglobin (Hp) prevented globin precipitation and most of the increase in neuronal loss. Hpx weakly attenuated the increase in culture non-heme iron produced by Hb treatment, quantified by ferrozine assay. However, Hb-Hpx toxicity was iron-dependent, and was blocked by deferoxamine and ferrostatin-1. Up-regulation of cell ferritin expression, a primary cell defense against Hb toxicity, was not observed on western blots of culture lysates that had been concomitantly treated with Hpx. These results suggest that Hpx destabilizes Hb in the absence of haptoglobin, leading to globin precipitation and exacerbation of iron-dependent oxidative cell injury. Combined therapy with hemopexin plus haptoglobin may be preferable to hemopexin alone after CNS hemorrhage.
Collapse
Affiliation(s)
- Jing Chen-Roetling
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sheng-Kai Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yang Cao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Aishwarya Shah
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Raymond F Regan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
39
|
Maes M, Carvalho AF. The Compensatory Immune-Regulatory Reflex System (CIRS) in Depression and Bipolar Disorder. Mol Neurobiol 2018; 55:8885-8903. [DOI: 10.1007/s12035-018-1016-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022]
|
40
|
Plasma Hemopexin ameliorates murine spinal cord injury by switching microglia from the M1 state to the M2 state. Cell Death Dis 2018; 9:181. [PMID: 29415995 PMCID: PMC5833847 DOI: 10.1038/s41419-017-0236-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/28/2017] [Accepted: 12/13/2017] [Indexed: 12/19/2022]
Abstract
Spinal cord injury (SCI) is a devastating type of central nervous system (CNS) trauma with limited therapeutic treatments. The polarization of microglia into the M1 or M2 state has been documented to play important roles in the pathogenesis of SCI, although the complete repertoire of underlying factors has not been identified. Interestingly, the time point at which hematomyelia (intramedullary spinal cord hemorrhage) is alleviated coincides with a decrease in the number of M2 microglia. Here the function of Hemopexin (Hpx), a hematogenous glycoprotein, was examined in the crush model of SCI. Hpx levels were elevated at the lesion site during hematomyelia and were synchronously correlated with the level of the M2 marker Arginase-1 (Arg-1). Ablation of Hpx in vivo affected the polarization state of lipopolysaccharide (LPS)-stimulated microglia, as mirrored by a lower percentage of M2 microglia and a higher percentage of M1 microglia in the lesion site, which delayed the recovery and exacerbated the behavioral dysfunction after SCI. However, Hpx induced a rapid switch from the M1 to M2 phenotype in LPS-stimulated primary cultured microglia in a heme scavenging-independent manner. The supernant of Hpx-treated microglia ameliorated neuronal degeneration, alleviated demyelination, and promoted oligodendrocyte precursor cell (OPC) maturation. This modulatory effect of Hpx on microglia polarization was at least partially mediated by the LRP-1 receptor. Based on these results, Hpx is considered a novel modulator of the polarization of microglia during the pathogenesis of SCI and may play a crucial role in the recovery from SCI.
Collapse
|
41
|
Vogel S, Thein SL. Platelets at the crossroads of thrombosis, inflammation and haemolysis. Br J Haematol 2018; 180:761-767. [PMID: 29383704 DOI: 10.1111/bjh.15117] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Platelets play a critical role at the interphase of thrombosis and inflammation, key features in haemolysis-associated disorders. Exercising this role requires expression of pattern recognition receptors by platelets, including toll-like receptor 4 (TLR4) and nucleotide-binding domain leucine rich repeat containing protein 3 (NLRP3), the latter forming intraplatelet multiprotein inflammasome complexes. Platelets are a potential target of various damage-associated molecular pattern (DAMP) molecules, such as free haem, a degradation by-product of haemoglobin oxidation during haemolysis, and high-mobility group box 1 (HMGB1), a DNA-binding protein released by dying or stressed cells and activated platelets. We have recently identified platelet TLR4, NLRP3, and Bruton tyrosine kinase (BTK) as critical regulators of platelet aggregation and thrombus formation, suggesting that the BTK inhibitor ibrutinib is a potential therapeutic target. Increasing evidence suggests that these and other DAMP-driven signalling mechanisms employed by platelets might be key in mediating inflammation and thrombosis encountered in haemolytic disorders. However, the precise regulatory triggers and their clinical relevance are poorly understood. We provide new insights into these less-well characterised platelet mechanisms, which are potentially targetable in haemolytic disorders.
Collapse
Affiliation(s)
- Sebastian Vogel
- Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
42
|
Remy KE, Hall MW, Cholette J, Juffermans NP, Nicol K, Doctor A, Blumberg N, Spinella PC, Norris PJ, Dahmer MK, Muszynski JA. Mechanisms of red blood cell transfusion-related immunomodulation. Transfusion 2018; 58:804-815. [PMID: 29383722 DOI: 10.1111/trf.14488] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/13/2017] [Accepted: 12/10/2017] [Indexed: 01/28/2023]
Abstract
Red blood cell (RBC) transfusion is common in critically ill, postsurgical, and posttrauma patients in whom both systemic inflammation and immune suppression are associated with adverse outcomes. RBC products contain a multitude of immunomodulatory mediators that interact with and alter immune cell function. These interactions can lead to both proinflammatory and immunosuppressive effects. Defining clinical outcomes related to immunomodulatory effects of RBCs in transfused patients remains a challenge, likely due to complex interactions between individual blood product characteristics and patient-specific risk factors. Unpacking these complexities requires an in-depth understanding of the mechanisms of immunomodulatory effects of RBC products. In this review, we outline and classify potential mediators of RBC transfusion-related immunomodulation and provide suggestions for future research directions.
Collapse
Affiliation(s)
- Kenneth E Remy
- Department of Pediatrics, Division of Pediatric Critical Care, Washington University School of Medicine, St Louis, Missouri
| | - Mark W Hall
- Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, Ohio.,The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Jill Cholette
- Pediatric Critical Care and Cardiology, University of Rochester, Rochester, New York
| | - Nicole P Juffermans
- Department of Intensive Care Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Kathleen Nicol
- Department of Pathology, Nationwide Children's Hospital, Columbus, Ohio
| | - Allan Doctor
- Department of Pediatrics, Division of Pediatric Critical Care, Washington University School of Medicine, St Louis, Missouri
| | - Neil Blumberg
- Transfusion Medicine/Blood Bank and Clinical Laboratories, Departments of Pathology and Laboratory Medicine, University of Rochester, Rochester, New York
| | - Philip C Spinella
- Department of Pediatrics, Division of Pediatric Critical Care, Washington University School of Medicine, St Louis, Missouri
| | - Philip J Norris
- Blood Systems Research Institute, San Francisco, California.,Departments of Laboratory Medicine and Medicine, University of California at San Francisco, San Francisco, California
| | - Mary K Dahmer
- Department of Pediatrics, Division of Pediatric Critical Care, University of Michigan, Ann Arbor, Michigan
| | - Jennifer A Muszynski
- Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, Ohio.,The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | | |
Collapse
|
43
|
Guerrero-Hue M, Rubio-Navarro A, Sevillano Á, Yuste C, Gutiérrez E, Palomino-Antolín A, Román E, Praga M, Egido J, Moreno JA. Efectos adversos de la acumulación renal de hemoproteínas. Nuevas herramientas terapéuticas. Nefrologia 2018; 38:13-26. [DOI: 10.1016/j.nefro.2017.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/21/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022] Open
|
44
|
Jain S, Bose A, Bastia B, Sharma H, Sachdeva R, Jain AK, Pal R. Oxidized Hemoglobin Is Antigenic and Immunogenic in Lupus. Front Immunol 2017; 8:732. [PMID: 28694810 PMCID: PMC5483465 DOI: 10.3389/fimmu.2017.00732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/09/2017] [Indexed: 12/31/2022] Open
Abstract
Hemolysis-associated anemia is characteristic of diseases such as atherosclerosis, lupus, malaria, and leishmaniasis; the toxic effects of free hemoglobin (Hb) have been extensively described. This study was based on the premise that release of this sequestered, inflammatory molecule can result in deleterious immunological consequences, particularly in the context of pre-existing lupus. IgG anti-Hb responses were detected in the sera of lupus patients. Lupus-prone mice exhibited heightened plasma Hb levels, and ferric (Fe3+) Hb triggered preferential release of lupus-associated cytokines from splenocytes derived from aging lupus-prone mice. Anti-Hb B cell precursor frequencies were heightened in such mice, which also expressed increased titers of anti-Hb antibodies in serum and in kidney eluates. Fe3+ Hb preferentially increased the functional maturation of bone marrow-derived dendritic cells (BMDCs) from lupus-prone mice, effects abrogated upon the inhibition of Stat3. Hb interacted with lupus-associated autoantigens extruded during apoptosis and coincubation of Hb and apoptotic blebs had additional maturation-inducing effects on lupus BMDCs. Immunization with Hb in lupus-prone mice induced antigen spreading to lupus-associated moieties; Hb-interacting autoantigens were preferentially targeted and increased complement deposition and glomerulosclerosis were observed. Hb therefore demonstrates both antigenicity and immunogenicity and triggers specific immuno-pathological effects in a lupus milieu.
Collapse
Affiliation(s)
- Sonia Jain
- Immunoendocrinology Laboratory, National Institute of Immunology, New Delhi, India
| | - Anjali Bose
- Immunoendocrinology Laboratory, National Institute of Immunology, New Delhi, India
| | - Banajit Bastia
- Division of Electron Microscopy, National Institute of Pathology-ICMR, New Delhi, India
| | - Hritika Sharma
- Immunoendocrinology Laboratory, National Institute of Immunology, New Delhi, India
| | - Ruchi Sachdeva
- Immunoendocrinology Laboratory, National Institute of Immunology, New Delhi, India
| | - Arun K Jain
- Division of Electron Microscopy, National Institute of Pathology-ICMR, New Delhi, India
| | - Rahul Pal
- Immunoendocrinology Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
45
|
Hahl P, Hunt R, Bjes ES, Skaff A, Keightley A, Smith A. Identification of oxidative modifications of hemopexin and their predicted physiological relevance. J Biol Chem 2017; 292:13658-13671. [PMID: 28596380 DOI: 10.1074/jbc.m117.783951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/07/2017] [Indexed: 12/26/2022] Open
Abstract
Hemopexin protects against heme toxicity in hemolytic diseases and conditions, sepsis, and sickle cell disease. This protection is sustained by heme-hemopexin complexes in biological fluids that resist oxidative damage during heme-driven inflammation. However, apo-hemopexin is vulnerable to inactivation by reactive nitrogen (RNS) and oxygen species (ROS) that covalently modify amino acids. The resultant nitration of amino acids is considered a specific effect reflecting biological events. Using LC-MS, we discovered low endogenous levels of tyrosine nitration in the peptide YYCFQGNQFLR in the heme-binding site of human hemopexin, which was similarly nitrated in rabbit and rat hemopexins. Immunoblotting and selective reaction monitoring were used to quantify tyrosine nitration of in vivo samples and when hemopexin was incubated in vitro with nitrating nitrite/myeloperoxidase/glucose oxidase. Significantly, heme binding by hemopexin declined as tyrosine nitration proceeded in vitro Three nitrated tyrosines reside in the heme-binding site of hemopexin, and we found that one, Tyr-199, interacts directly with the heme ring D propionate. Investigating the oxidative modifications of amino acids after incubation with tert-butyl hydroperoxide and hypochlorous acid in vitro, we identified additional covalent oxidative modifications on four tyrosine residues and one tryptophan residue of hemopexin. Importantly, three of the four modified tyrosines, some of which have more than one modification, cluster in the heme-binding site, supporting a hierarchy of vulnerable amino acids. We propose that during inflammation, apo-hemopexin is nitrated and oxidated in niches of the body containing activated RNS- and ROS-generating immune and endothelial cells, potentially impairing hemopexin's protective extracellular antioxidant function.
Collapse
Affiliation(s)
- Peter Hahl
- From the Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2239
| | - Rachel Hunt
- From the Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2239
| | - Edward S Bjes
- From the Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2239
| | - Andrew Skaff
- From the Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2239
| | - Andrew Keightley
- From the Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2239
| | - Ann Smith
- From the Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2239
| |
Collapse
|
46
|
Jung JY, Kwak YH, Chang I, Kwon WY, Suh GJ, Choi D. Protective effect of hemopexin on systemic inflammation and acute lung injury in an endotoxemia model. J Surg Res 2017; 212:15-21. [DOI: 10.1016/j.jss.2016.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/21/2016] [Accepted: 12/21/2016] [Indexed: 01/17/2023]
|
47
|
Lawson HA, Zayed M, Wayhart JP, Fabbrini E, Love-Gregory L, Klein S, Semenkovich CF. Physiologic and genetic evidence links hemopexin to triglycerides in mice and humans. Int J Obes (Lond) 2017; 41:631-638. [PMID: 28119529 DOI: 10.1038/ijo.2017.19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/21/2016] [Accepted: 01/11/2017] [Indexed: 01/28/2023]
Abstract
BACKGROUND/OBJECTIVES Elevated triglycerides predict insulin resistance and vascular disease in obesity, but how the inert triglyceride molecule is related to development of metabolic disease is unknown. To pursue novel potential mediators of triglyceride-associated metabolic disease, we used a forward genetics approach involving inbred mice and translated our findings to human subjects. SUBJECTS/METHODS Hemopexin (HPX) was identified as a differentially expressed gene within a quantitative trait locus associated with serum triglycerides in an F16 advanced intercross between the LG/J and SM/J strains of mice. Hpx expression was evaluated in both the reproductive fat pads and livers of mice representing three strains, LG/J (n=25), SM/J (n=27) and C57Bl/6J (n=19), on high- and low-fat diets. The effect of altered Hpx expression on adipogenesis was studied in 3T3-L1 cells. Circulating HPX protein along with HPX expression were characterized in subcutaneous white adipose tissue samples obtained from a cohort of metabolically abnormal (n=18) and of metabolically normal (n=24) obese human subjects. We further examined the relationship between HPX and triglycerides in human atherosclerotic plaques (n=18). RESULTS HPX expression in mouse adipose tissue, but not in liver, was regulated by dietary fat regardless of genetic background. HPX increased in concert with adipogenesis in 3T3-L1 cells, and disruption of its expression impaired adipocyte differentiation. RNAseq data from the adipose tissue of obese humans showed differential expression of HPX based on metabolic disease status (P<0.05), and circulating HPX levels were correlated with serum triglycerides in these subjects (r=0.33; P=0.03). HPX was also found in an unbiased proteomic screen of human atherosclerotic plaques and shown to display differential abundance based on the extent of disease and triglyceride content (P<0.05). CONCLUSIONS Our findings suggest that HPX is associated with triglycerides and provide a framework for understanding mechanisms underlying lipid metabolism and metabolic disease.
Collapse
Affiliation(s)
- H A Lawson
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - M Zayed
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - J P Wayhart
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - E Fabbrini
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - L Love-Gregory
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - S Klein
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - C F Semenkovich
- Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
48
|
Franklin JL, Bennett WL, Messina JL. Insulin attenuates TNFα-induced hemopexin mRNA: An anti-inflammatory action of insulin in rat H4IIE hepatoma cells. Biochem Biophys Rep 2017; 9:211-216. [PMID: 28956007 PMCID: PMC5614554 DOI: 10.1016/j.bbrep.2016.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 11/15/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022] Open
Abstract
Proinflammatory cytokines, including TNF-α and IL-6, can contribute to insulin resistance. Conversely, insulin has some actions that can be considered anti-inflammatory. Hemopexin is a Class 2 acute phase reactant and control of its transcription is predominantly regulated by IL-6, with TNF-α and IL-1β also inducing hemopexin gene expression. Thus, we asked whether insulin could inhibit the ability of TNF-α to stimulate hemopexin mRNA expression. In cultured rat hepatoma (H4IIE) cells, TNF-α significantly increased hemopexin mRNA accumulation. The TNF-α-induced increase of hemopexin mRNA was dramatically attenuated by insulin, even though TNF-α reduced peak insulin activation of ERK. Thus, even though TNF-α can contribute to insulin resistance, the residual insulin response was still able to counteract TNF-α actions. The TNF-α-induced increase of hemopexin mRNA was dramatically attenuated by insulin. This occurred even though TNF-α significantly decreased insulin activation of ERK. This suggests an additional mechanism for the anti-inflammatory action of insulin. Cytokine-induced insulin resistance does not abolish insulin’s anti-inflammatory effect.
Collapse
Affiliation(s)
- J Lee Franklin
- University of Alabama at Birmingham, Department of Pathology, Division of Molecular and Cellular Pathology, Birmingham, AL 35294, United States
| | - William L Bennett
- Yale University, Interventional Cardiology, New Haven, CT 06510, United States
| | - Joseph L Messina
- University of Alabama at Birmingham, Department of Pathology, Division of Molecular and Cellular Pathology, Birmingham, AL 35294, United States.,Veterans Administration Medical Center, Birmingham, AL 35294, United States
| |
Collapse
|
49
|
Flemmig J, Schlorke D, Kühne FW, Arnhold J. Inhibition of the heme-induced hemolysis of red blood cells by the chlorite-based drug WF10. Free Radic Res 2016; 50:1386-1395. [DOI: 10.1080/10715762.2016.1252838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- J. Flemmig
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - D. Schlorke
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - F.-W. Kühne
- OXO Chemie (Thailand) Co., Ltd, Bangkok, Thailand
| | - J. Arnhold
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| |
Collapse
|
50
|
Lin T, Liu J, Huang F, Engelen TSV, Thundivalappil SR, Riley FE, Super M, Watters AL, Smith A, Brinkman N, Ingber DE, Warren HS. Purified and Recombinant Hemopexin: Protease Activity and Effect on Neutrophil Chemotaxis. Mol Med 2016; 22:22-31. [PMID: 26772775 PMCID: PMC5004720 DOI: 10.2119/molmed.2016.00006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 01/10/2023] Open
Abstract
Infusion of the heme-binding protein hemopexin has been proposed as a novel approach to decrease heme-induced inflammation in settings of red blood cell breakdown, but questions have been raised as to possible side effects related to protease activity and inhibition of chemotaxis. We evaluated protease activity and effects on chemotaxis of purified plasma hemopexin obtained from multiple sources as well as a novel recombinant fusion protein Fc-hemopexin. Amidolytic assay was performed to measure the protease activity of several plasma-derived hemopexin and recombinant Fc-hemopexin. Hemopexin was added to the human monocyte culture in the presence of lipopolysaccharides (LPS), and also injected into mice intravenously (i.v.) 30 min before inducing neutrophil migration via intraperitoneal (i.p.) injection of thioglycolate. Control groups received the same amount of albumin. Protease activity varied widely between hemopexins. Recombinant Fc-hemopexin bound heme, inhibited the synergy of heme with LPS on tumor necrosis factor (TNF) production from monocytes, and had minor but detectable protease activity. There was no effect of any hemopexin preparation on chemotaxis, and purified hemopexin did not alter the migration of neutrophils into the peritoneal cavity of mice. Heme and LPS synergistically induced the release of LTB4 from human monocytes, and hemopexin blocked this release, as well as chemotaxis of neutrophils in response to activated monocyte supernatants. These results suggest that hemopexin does not directly affect chemotaxis through protease activity, but may decrease heme-driven chemotaxis and secondary inflammation by attenuating the induction of chemoattractants from monocytes. This property could be beneficial in some settings to control potentially damaging inflammation induced by heme.
Collapse
Affiliation(s)
- Tian Lin
- Department of Pediatrics, Infectious Disease Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jialin Liu
- Department of Pediatrics, Infectious Disease Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Feng Huang
- Department of Pediatrics, Infectious Disease Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Tjitske Sr van Engelen
- Department of Pediatrics, Infectious Disease Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Sujatha R Thundivalappil
- Department of Pediatrics, Infectious Disease Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Frank E Riley
- Department of Pediatrics, Infectious Disease Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Michael Super
- Wyss Institute at Harvard, Center for Life Science, Boston, Massachusetts, United States of America
| | - Alexander L Watters
- Wyss Institute at Harvard, Center for Life Science, Boston, Massachusetts, United States of America
| | - Ann Smith
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri, Kansas City, Missouri, United States of America
| | - Nathan Brinkman
- CSL Behring LLC, Research and Development, Kankakee, Illinois, United States of America
| | - Donald E Ingber
- Wyss Institute at Harvard, Center for Life Science, Boston, Massachusetts, United States of America
| | - H Shaw Warren
- Department of Pediatrics and Medicine, Infectious Disease Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|