1
|
Hawthorne BC, Engel S, McCarthy MBR, Cote MC, Mazzocca AD, Coyner KJ. Biologic Adjuvants to Rotator Cuff Repairs Induce Anti-inflammatory Macrophage 2 Polarization and Reduce Inflammatory Macrophage 1 Polarization In Vitro. Arthroscopy 2024:S0749-8063(24)00337-2. [PMID: 38735413 DOI: 10.1016/j.arthro.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE To examine the effect of various biologic adjuvants on the polarization of macrophages in an in vitro model for rotator cuff tears. METHODS Tissue was harvested from 6 patients undergoing arthroscopic rotator cuff repair. An in vitro model of the supraspinatus and subacromial bursa was created and treated with control, platelet-rich plasma (PRP), autologous activated serum (AAS), or a combination of PRP+AAS. The effect of treatment on macrophage polarization between M1 proinflammatory macrophages or M2 anti-inflammatory macrophages was measured using gene expression, protein expression, flow cytometry, and nitric oxide production. RESULTS Tendon and bursa treated with PRP, AAS, and PRP+AAS significantly decreased the gene expression of M1 markers interleukin (IL)-12 and tumor necrosis factor-alpha while significantly increasing the expression of M2 markers arginase, IL-10, and transforming growth factor-β (P < .05) compared with treatment with control. Enzyme-linked immunosorbent assay analysis of protein production demonstrated that, compared with control, coculture treated with PRP, AAS, and PRP+AAS significantly decreased markers of M1-macrophages (IL-6, IL-12, and tumor necrosis factor-alpha) while significantly increasing the expression of markers of M2-macrophages (arginase, IL-10, and transforming growth factor-beta) (P < .05). Flow cytometry analysis of surface markers demonstrated that compared with control, tendon and bursa treated with PRP, AAS, and PRP+AAS significantly decreased markers of M1-macrophages (CD80, CD86, CD64, CD16) while significantly increasing the expression of markers of M2-macrophages (CD163 and CD206) (P < .05). Treatment of the coculture with PRP, AAS, and PRP+AAS consistently demonstrated a decrease in nitric oxide production (P < .05) compared with control. AAS and PRP+AAS demonstrated an increased macrophage shift to M2 compared with PRP alone, whereas there was not as uniform of a shift when comparing PRP+AAS with AAS alone. CONCLUSIONS In an in vitro model of rotator cuff tears, the treatment of supraspinatus tendon and subacromial bursa with PRP, AAS, and PRP+AAS demonstrated an increase in markers of anti-inflammatory M2-macrophages and a concomitant decrease in markers of proinflammatory M1-macrophages. AAS and PRP+AAS contributed to a large shift to macrophage polarization to the anti-inflammatory M2 compared with PRP. CLINICAL RELEVANCE The mechanism of biologic adjuvant effects on the rotator cuff remains poorly understood. This study suggests that they may contribute to polarization of macrophages for their proinflammatory (M1) state to the anti-inflammatory (M2) state.
Collapse
Affiliation(s)
| | - Sam Engel
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, U.S.A
| | - Mary Beth R McCarthy
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
| | - Mark C Cote
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
| | - Augustus D Mazzocca
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
| | - Katherine J Coyner
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, U.S.A..
| |
Collapse
|
2
|
Marques RE, Shimizu JF, Nogueira ML, Vasilakis N. Current challenges in the discovery of treatments against Mayaro fever. Expert Opin Ther Targets 2024; 28:345-356. [PMID: 38714500 PMCID: PMC11189740 DOI: 10.1080/14728222.2024.2351504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/01/2024] [Indexed: 05/10/2024]
Abstract
INTRODUCTION Mayaro fever is an emerging viral disease that manifests as an acute febrile illness. The disease is self-limiting, however joint pain can persist for months leading to chronic arthralgia. There is no specific treatment available, which ultimately leads to socioeconomic losses in populations at risk as well as strains to the public health systems. AREAS COVERED We reviewed the candidate treatments proposed for Mayaro virus (MAYV) infection and disease, including antiviral compounds targeting viral or host mechanisms, and pathways involved in disease development and pathogenicity. We assessed compound screening technologies and experimental infection models used in these studies and indicated the advantages and limitations of available technologies and intended therapeutic strategies. EXPERT OPINION Although several compounds have been suggested as candidate treatments against MAYV infection, notably those with antiviral activity, most compounds were assessed only in vitro. Compounds rarely progress toin vivo or preclinical studies, and such difficulty may be associated with limited experimental models. MAYV biology is largely inferred from related alphaviruses and reflected by few studies focusing on target proteins or mechanisms of action for MAYV. Therapeutic strategies targeting pathogenic inflammatory responses have shown potential against MAYV-induced disease in vivo, which might reduce long-term sequelae.
Collapse
Affiliation(s)
- Rafael Elias Marques
- Brazilian Biosciences National Laboratory – LNBio, Brazilian Center for Research in Energy and Materials – CNPEM, Campinas, São Paulo, Brazil
| | - Jacqueline Farinha Shimizu
- Brazilian Biosciences National Laboratory – LNBio, Brazilian Center for Research in Energy and Materials – CNPEM, Campinas, São Paulo, Brazil
| | - Maurício Lacerda Nogueira
- Faculdade de Medicina de São Jose do Rio Preto - FAMERP, São Jose do Rio Preto, São Paulo, Brazil
- University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Nikos Vasilakis
- University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
3
|
Li FS, Carpentier KS, Hawman DW, Lucas CJ, Ander SE, Feldmann H, Morrison TE. Species-specific MARCO-alphavirus interactions dictate chikungunya virus viremia. Cell Rep 2023; 42:112418. [PMID: 37083332 DOI: 10.1016/j.celrep.2023.112418] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/23/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
Arboviruses are public health threats that cause explosive outbreaks. Major determinants of arbovirus transmission, geographic spread, and pathogenesis are the magnitude and duration of viremia in vertebrate hosts. Previously, we determined that multiple alphaviruses are cleared efficiently from murine circulation by the scavenger receptor MARCO (Macrophage receptor with collagenous structure). Here, we define biochemical features on chikungunya (CHIKV), o'nyong 'nyong (ONNV), and Ross River (RRV) viruses required for MARCO-dependent clearance in vivo. In vitro, MARCO expression promotes binding and internalization of CHIKV, ONNV, and RRV via the scavenger receptor cysteine-rich (SRCR) domain. Furthermore, we observe species-specific effects of the MARCO SRCR domain on CHIKV internalization, where those from known amplification hosts fail to promote CHIKV internalization. Consistent with this observation, CHIKV is inefficiently cleared from the circulation of rhesus macaques in contrast with mice. These findings suggest a role for MARCO in determining whether a vertebrate serves as an amplification or dead-end host following CHIKV infection.
Collapse
Affiliation(s)
- Frances S Li
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kathryn S Carpentier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - David W Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Cormac J Lucas
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Stephanie E Ander
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
4
|
Geng T, Yang D, Lin T, Cahoon JG, Wang P. UBXN3B Controls Immunopathogenesis of Arthritogenic Alphaviruses by Maintaining Hematopoietic Homeostasis. mBio 2022; 13:e0268722. [PMID: 36377866 PMCID: PMC9765034 DOI: 10.1128/mbio.02687-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Ubiquitin regulatory X domain-containing proteins (UBXN) might be involved in diverse cellular processes. However, their in vivo physiological functions remain largely elusive. We recently showed that UBXN3B positively regulated stimulator-of-interferon-genes (STING)-mediated innate immune responses to DNA viruses. Herein, we reported the essential role of UBXN3B in the control of infection and immunopathogenesis of two arthritogenic RNA viruses, Chikungunya (CHIKV) and O'nyong'nyong (ONNV) viruses. Ubxn3b deficient (Ubxn3b-/-) mice presented higher viral loads, more severe foot swelling and immune infiltrates, and slower clearance of viruses and resolution of inflammation than the Ubxn3b+/+ littermates. While the serum cytokine levels were intact, the virus-specific immunoglobulin G and neutralizing antibody levels were lower in the Ubxn3b-/- mice. The Ubxn3b-/- mice had more neutrophils and macrophages, but much fewer B cells in the ipsilateral feet. Of note, this immune dysregulation was also observed in the spleens and blood of uninfected Ubxn3b-/- mice. UBXN3B restricted CHIKV replication in a cell-intrinsic manner but independent of type I IFN signaling. These results demonstrated a dual role of UBXN3B in the maintenance of immune homeostasis and control of RNA virus replication. IMPORTANCE The human genome encodes 13 ubiquitin regulatory X (UBX) domain-containing proteins (UBXN) that might participate in diverse cellular processes. However, their in vivo physiological functions remain largely elusive. Herein, we reported an essential role of UBXN3B in the control of infection and immunopathogenesis of arthritogenic alphaviruses, including Chikungunya virus (CHIKV), which causes acute and chronic crippling arthralgia, long-term neurological disorders, and poses a significant public health problem in the tropical and subtropical regions worldwide. However, there are no approved vaccines or specific antiviral drugs. This was partly due to a poor understanding of the protective and detrimental immune responses elicited by CHIKV. We showed that UBXN3B was critical for the control of CHIKV replication in a cell-intrinsic manner in the acute phase and persistent immunopathogenesis in the post-viremic stage. Mechanistically, UBXN3B was essential for the maintenance of hematopoietic homeostasis during viral infection and in steady-state.
Collapse
Affiliation(s)
- Tingting Geng
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Duomeng Yang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Tao Lin
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Jason G. Cahoon
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Penghua Wang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
5
|
de Araújo S, de Melo Costa VR, Santos FM, de Sousa CDF, Moreira TP, Gonçalves MR, Félix FB, Queiroz-Junior CM, Campolina-Silva GH, Nogueira ML, Sugimoto MA, Bonilha CS, Perretti M, Souza DG, Costa VV, Teixeira MM. Annexin A1-FPR2/ALX Signaling Axis Regulates Acute Inflammation during Chikungunya Virus Infection. Cells 2022; 11:cells11172717. [PMID: 36078125 PMCID: PMC9454528 DOI: 10.3390/cells11172717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 12/03/2022] Open
Abstract
Chikungunya (CHIKV) is an arthritogenic alphavirus that causes a self-limiting disease usually accompanied by joint pain and/or polyarthralgia with disabling characteristics. Immune responses developed during the acute phase of CHIKV infection determine the rate of disease progression and resolution. Annexin A1 (AnxA1) is involved in both initiating inflammation and preventing over-response, being essential for a balanced end of inflammation. In this study, we investigated the role of the AnxA1-FPR2/ALX pathway during CHIKV infection. Genetic deletion of AnxA1 or its receptor enhanced inflammatory responses driven by CHIKV. These knockout mice showed increased neutrophil accumulation and augmented tissue damage at the site of infection compared with control mice. Conversely, treatment of wild-type animals with the AnxA1 mimetic peptide (Ac2–26) reduced neutrophil accumulation, decreased local concentration of inflammatory mediators and diminished mechanical hypernociception and paw edema induced by CHIKV-infection. Alterations in viral load were mild both in genetic deletion or with treatment. Combined, our data suggest that the AnxA1-FPR2/ALX pathway is a potential therapeutic strategy to control CHIKV-induced acute inflammation and polyarthralgia.
Collapse
Affiliation(s)
- Simone de Araújo
- Graduate Program in Biological Sciences Physiology and Pharmacology, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Victor R. de Melo Costa
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Franciele M. Santos
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Carla D. Ferreira de Sousa
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Thaiane P. Moreira
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Matheus R. Gonçalves
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Franciel B. Félix
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Celso M. Queiroz-Junior
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Gabriel H. Campolina-Silva
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Department of Obstetrics, Gynecology and Reproduction, CHU de Quebec Research Center (CHUL), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Maurício Lacerda Nogueira
- Department of Dermatological, Infections, and Parasitic Diseases, School of Medicine (FAMERP), São José do Rio Preto, São Paulo 15090-000, Brazil
| | - Michelle A. Sugimoto
- Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK
| | - Caio S. Bonilha
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Center for Research on Inflammatory Diseases, University of São Paulo, São Paulo 05508-000, Brazil
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mauro Perretti
- Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London E1 4NS, UK
| | - Danielle G. Souza
- Graduate Program in Microbiology, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Vivian V. Costa
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Graduate Program in Cell Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Correspondence: (V.V.C.); (M.M.T.); Tel.: +55-31-3409-3082 (V.V.C.); +55-31-3409-2651 (M.M.T.)
| | - Mauro M. Teixeira
- Drug Research and Development Center, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
- Correspondence: (V.V.C.); (M.M.T.); Tel.: +55-31-3409-3082 (V.V.C.); +55-31-3409-2651 (M.M.T.)
| |
Collapse
|
6
|
Neutrophil Functional Heterogeneity and Implications for Viral Infections and Treatments. Cells 2022; 11:cells11081322. [PMID: 35456003 PMCID: PMC9025666 DOI: 10.3390/cells11081322] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/15/2022] Open
Abstract
Evidence suggests that neutrophils exert specialized effector functions during infection and inflammation, and that these cells can affect the duration, severity, and outcome of the infection. These functions are related to variations in phenotypes that have implications in immunoregulation during viral infections. Although the complexity of the heterogeneity of neutrophils is still in the process of being uncovered, evidence indicates that they display phenotypes and functions that can assist in viral clearance or augment and amplify the immunopathology of viruses. Therefore, deciphering and understanding neutrophil subsets and their polarization in viral infections is of importance. In this review, the different phenotypes of neutrophils and the roles they play in viral infections are discussed. We also examine the possible ways to target neutrophil subsets during viral infections as potential anti-viral treatments.
Collapse
|
7
|
Kafai NM, Diamond MS, Fox JM. Distinct Cellular Tropism and Immune Responses to Alphavirus Infection. Annu Rev Immunol 2022; 40:615-649. [PMID: 35134315 DOI: 10.1146/annurev-immunol-101220-014952] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alphaviruses are emerging and reemerging viruses that cause disease syndromes ranging from incapacitating arthritis to potentially fatal encephalitis. While infection by arthritogenic and encephalitic alphaviruses results in distinct clinical manifestations, both virus groups induce robust innate and adaptive immune responses. However, differences in cellular tropism, type I interferon induction, immune cell recruitment, and B and T cell responses result in differential disease progression and outcome. In this review, we discuss aspects of immune responses that contribute to protective or pathogenic outcomes after alphavirus infection. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Natasha M Kafai
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; , .,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael S Diamond
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; , .,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA.,Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Julie M Fox
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
8
|
Zhang Y, Yan H, Li X, Zhou D, Zhong M, Yang J, Zhao B, Fan X, Fan J, Shu J, Lu M, Jin X, Zhang E, Yan H. A high-dose inoculum size results in persistent viral infection and arthritis in mice infected with chikungunya virus. PLoS Negl Trop Dis 2022; 16:e0010149. [PMID: 35100271 PMCID: PMC8803182 DOI: 10.1371/journal.pntd.0010149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 01/05/2022] [Indexed: 12/23/2022] Open
Abstract
Chikungunya virus (CHIKV) is an emerging mosquito-transmitted alphavirus that leads to acute fever and chronic debilitating polyarthralgia. To date, the mechanism underlying chronic recurrent arthralgia is unknown. In the present study, newborn wild-type C57BL/6 mice were infected with CHIKV, and the virological and pathological features of CHIKV infection were analyzed over a period of 50 days. Acute viral infection was readily established by footpad inoculation of CHIKV at doses ranging from 10 plaque forming unit (PFU) to 106 PFU, during which inoculation dose-dependent viral RNA and skeletal muscle damage were detected in the foot tissues. However, persistent CHIKV was observed only when the mice were infected with a high dose of 106 PFU of CHIKV, in which low copy numbers (103−104) of viral positive strand RNA were continuously detectable in the feet from 29 to 50 dpi, along with a low level and progressive reduction in virus-specific CD8+ T cell responses. In contrast, viral negative strand RNA was detected at 50 dpi but not at 29 dpi and was accompanied by significant local skeletal muscle damage at 50 dpi when mild synovial hyperplasia appeared in the foot joints, although the damage was briefly repaired at 29 dpi. These results demonstrated that a high viral inoculation dose leads to viral persistence and progression to chronic tissue damage after recovery from acute infection. Taken together, these results provide a useful tool for elucidating the pathogenesis of persistent CHIKV infection and viral relapse-associated chronic arthritis.
Collapse
Affiliation(s)
- Yue Zhang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hu Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xian Li
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dihan Zhou
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Maohua Zhong
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jingyi Yang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bali Zhao
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xuxu Fan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Fan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayi Shu
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Xia Jin
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ejuan Zhang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- * E-mail: (EZ); (HY)
| | - Huimin Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- * E-mail: (EZ); (HY)
| |
Collapse
|
9
|
C-type lectin receptor DCIR contributes to hippocampal injury in acute neurotropic virus infection. Sci Rep 2021; 11:23819. [PMID: 34893671 PMCID: PMC8664856 DOI: 10.1038/s41598-021-03201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Neurotropic viruses target the brain and contribute to neurologic diseases. C-type lectin receptors (CLRs) are pattern recognition receptors that recognize carbohydrate structures on endogenous molecules and pathogens. The myeloid CLR dendritic cell immunoreceptor (DCIR) is expressed by antigen presenting cells and mediates inhibitory intracellular signalling. To investigate the effect of DCIR on neurotropic virus infection, mice were infected experimentally with Theiler’s murine encephalomyelitis virus (TMEV). Brain tissue of TMEV-infected C57BL/6 mice and DCIR−/− mice were analysed by histology, immunohistochemistry and RT-qPCR, and spleen tissue by flow cytometry. To determine the impact of DCIR deficiency on T cell responses upon TMEV infection in vitro, antigen presentation assays were utilised. Genetic DCIR ablation in C57BL/6 mice was associated with an ameliorated hippocampal integrity together with reduced cerebral cytokine responses and reduced TMEV loads in the brain. Additionally, absence of DCIR favoured increased peripheral cytotoxic CD8+ T cell responses following TMEV infection. Co-culture experiments revealed that DCIR deficiency enhances the activation of antigen-specific CD8+ T cells by virus-exposed dendritic cells (DCs), indicated by increased release of interleukin-2 and interferon-γ. Results suggest that DCIR deficiency has a supportive influence on antiviral immune mechanisms, facilitating virus control in the brain and ameliorates neuropathology during acute neurotropic virus infection.
Collapse
|
10
|
Carpentier KS, Sheridan RM, Lucas CJ, Davenport BJ, Li FS, Lucas ED, McCarthy MK, Reynoso GV, May NA, Tamburini BAJ, Hesselberth JR, Hickman HD, Morrison TE. MARCO + lymphatic endothelial cells sequester arthritogenic alphaviruses to limit viremia and viral dissemination. EMBO J 2021; 40:e108966. [PMID: 34618370 PMCID: PMC8591538 DOI: 10.15252/embj.2021108966] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 02/02/2023] Open
Abstract
Viremia in the vertebrate host is a major determinant of arboviral reservoir competency, transmission efficiency, and disease severity. However, immune mechanisms that control arboviral viremia are poorly defined. Here, we identify critical roles for the scavenger receptor MARCO in controlling viremia during arthritogenic alphavirus infections in mice. Following subcutaneous inoculation, arthritogenic alphavirus particles drain via the lymph and are rapidly captured by MARCO+ lymphatic endothelial cells (LECs) in the draining lymph node (dLN), limiting viral spread to the bloodstream. Upon reaching the bloodstream, alphavirus particles are cleared from the circulation by MARCO-expressing Kupffer cells in the liver, limiting viremia and further viral dissemination. MARCO-mediated accumulation of alphavirus particles in the draining lymph node and liver is an important host defense mechanism as viremia and viral tissue burdens are elevated in MARCO-/- mice and disease is more severe. In contrast to prior studies implicating a key role for lymph node macrophages in limiting viral dissemination, these findings exemplify a previously unrecognized arbovirus-scavenging role for lymphatic endothelial cells and improve our mechanistic understanding of viremia control during arthritogenic alphavirus infection.
Collapse
Affiliation(s)
- Kathryn S Carpentier
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Ryan M Sheridan
- RNA Bioscience InitiativeUniversity of Colorado School of MedicineAuroraCOUSA
| | - Cormac J Lucas
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Bennett J Davenport
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Frances S Li
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Erin D Lucas
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Mary K McCarthy
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Glennys V Reynoso
- Viral Immunity and Pathogenesis UnitLaboratory of Clinical Microbiology and ImmunologyNational Institutes of Allergy and Infectious DiseasesNIHBethesdaMDUSA
| | - Nicholas A May
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Beth A J Tamburini
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraCOUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineUniversity of Colorado Anschutz Medical Campus School of MedicineAuroraCOUSA
| | - Jay R Hesselberth
- RNA Bioscience InitiativeUniversity of Colorado School of MedicineAuroraCOUSA
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado School of MedicineAuroraCOUSA
| | - Heather D Hickman
- Viral Immunity and Pathogenesis UnitLaboratory of Clinical Microbiology and ImmunologyNational Institutes of Allergy and Infectious DiseasesNIHBethesdaMDUSA
| | - Thomas E Morrison
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraCOUSA
| |
Collapse
|
11
|
Hibl BM, Dailey Garnes NJM, Kneubehl AR, Vogt MB, Spencer Clinton JL, Rico-Hesse RR. Mosquito-bite infection of humanized mice with chikungunya virus produces systemic disease with long-term effects. PLoS Negl Trop Dis 2021; 15:e0009427. [PMID: 34106915 PMCID: PMC8189471 DOI: 10.1371/journal.pntd.0009427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/02/2021] [Indexed: 12/13/2022] Open
Abstract
Chikungunya virus (CHIKV) is an emerging, mosquito-borne alphavirus responsible for acute to chronic arthralgias and neuropathies. Although it originated in central Africa, recent reports of disease have come from many parts of the world, including the Americas. While limiting human CHIKV cases through mosquito control has been used, it has not been entirely successful. There are currently no licensed vaccines or treatments specific for CHIKV disease, thus more work is needed to develop effective countermeasures. Current animal research on CHIKV is often not representative of human disease. Most models use CHIKV needle inoculation via unnatural routes to create immediate viremia and localized clinical signs; these methods neglect the natural route of transmission (the mosquito vector bite) and the associated human immune response. Since mosquito saliva has been shown to have a profound effect on viral pathogenesis, we evaluated a novel model of infection that included the natural vector, Aedes species mosquitoes, transmitting CHIKV to mice containing components of the human immune system. Humanized mice infected by 3-6 mosquito bites showed signs of systemic infection, with demonstrable viremia (by qRT-PCR and immunofluorescent antibody assay), mild to moderate clinical signs (by observation, histology, and immunohistochemistry), and immune responses consistent with human infection (by flow cytometry and IgM ELISA). This model should give a better understanding of human CHIKV disease and allow for more realistic evaluations of mechanisms of pathogenesis, prophylaxis, and treatments.
Collapse
Affiliation(s)
- Brianne M. Hibl
- Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Natalie J. M. Dailey Garnes
- Section of Infectious Disease, Department of Internal Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Section of Pediatric Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alexander R. Kneubehl
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Megan B. Vogt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jennifer L. Spencer Clinton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rebecca R. Rico-Hesse
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
12
|
Complex Roles of Neutrophils during Arboviral Infections. Cells 2021; 10:cells10061324. [PMID: 34073501 PMCID: PMC8227388 DOI: 10.3390/cells10061324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Arboviruses are known to cause large-scale epidemics in many parts of the world. These arthropod-borne viruses are a large group consisting of viruses from a wide range of families. The ability of their vector to enhance viral pathogenesis and transmission makes the development of treatments against these viruses challenging. Neutrophils are generally the first leukocytes to be recruited to a site of infection, playing a major role in regulating inflammation and, as a result, viral replication and dissemination. However, the underlying mechanisms through which neutrophils control the progression of inflammation and disease remain to be fully understood. In this review, we highlight the major findings from recent years regarding the role of neutrophils during arboviral infections. We discuss the complex nature of neutrophils in mediating not only protection, but also augmenting disease pathology. Better understanding of neutrophil pathways involved in effective protection against arboviral infections can help identify potential targets for therapeutics.
Collapse
|
13
|
McKell MC, Crowther RR, Schmidt SM, Robillard MC, Cantrell R, Lehn MA, Janssen EM, Qualls JE. Promotion of Anti-Tuberculosis Macrophage Activity by L-Arginine in the Absence of Nitric Oxide. Front Immunol 2021; 12:653571. [PMID: 34054815 PMCID: PMC8160513 DOI: 10.3389/fimmu.2021.653571] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
Macrophages are indispensable immune cells tasked at eliminating intracellular pathogens. Mycobacterium tuberculosis (Mtb), one of the most virulent intracellular bacterial pathogens known to man, infects and resides within macrophages. While macrophages can be provoked by extracellular stimuli to inhibit and kill Mtb bacilli, these host defense mechanisms can be blocked by limiting nutritional metabolites, such as amino acids. The amino acid L-arginine has been well described to enhance immune function, especially in the context of driving macrophage nitric oxide (NO) production in mice. In this study, we aimed to establish the necessity of L-arginine on anti-Mtb macrophage function independent of NO. Utilizing an in vitro system, we identified that macrophages relied on NO for only half of their L-arginine-mediated host defenses and this L-arginine-mediated defense in the absence of NO was associated with enhanced macrophage numbers and viability. Additionally, we observed macrophage glycolysis to be driven by both L-arginine and mechanistic target of rapamycin (mTOR), and inhibition of glycolysis or mTOR reduced macrophage control of Mtb as well as macrophage number and viability in the presence of L-arginine. Our data underscore L-arginine as an essential nutrient for macrophage function, not only by fueling anti-mycobacterial NO production, but also as a central regulator of macrophage metabolism and additional host defense mechanisms.
Collapse
Affiliation(s)
- Melanie C McKell
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rebecca R Crowther
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Stephanie M Schmidt
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Michelle C Robillard
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rachel Cantrell
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Maria A Lehn
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Edith M Janssen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Joseph E Qualls
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
14
|
Suchowiecki K, Reid SP, Simon GL, Firestein GS, Chang A. Persistent Joint Pain Following Arthropod Virus Infections. Curr Rheumatol Rep 2021; 23:26. [PMID: 33847834 PMCID: PMC8042844 DOI: 10.1007/s11926-021-00987-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Persistent joint pain is a common manifestation of arthropod-borne viral infections and can cause long-term disability. We review the epidemiology, pathophysiology, diagnosis, and management of arthritogenic alphavirus infection. RECENT FINDINGS The global re-emergence of alphaviral outbreaks has led to an increase in virus-induced arthralgia and arthritis. Alphaviruses, including Chikungunya, O'nyong'nyong, Sindbis, Barmah Forest, Ross River, and Mayaro viruses, are associated with acute and/or chronic rheumatic symptoms. Identification of Mxra8 as a viral entry receptor in the alphaviral replication pathway creates opportunities for treatment and prevention. Recent evidence suggesting virus does not persist in synovial fluid during chronic chikungunya infection indicates that immunomodulators may be given safely. The etiology of persistent joint pain after alphavirus infection is still poorly understood. New diagnostic tools along and evidence-based treatment could significantly improve morbidity and long-term disability.
Collapse
Affiliation(s)
- Karol Suchowiecki
- Department of Medicine, George Washington University, 2150 Pennsylvania Ave Suite 5-416, Washington, DC 20037 USA
| | - St. Patrick Reid
- Department of Pathology and Microbiology, 985900 Nebraska Medical Center, Omaha, NE 68198-5900 USA
| | - Gary L. Simon
- Department of Medicine, George Washington University, 2150 Pennsylvania Ave Suite 5-416, Washington, DC 20037 USA
| | - Gary S. Firestein
- UC San Diego Health Sciences, 9500 Gilman Drive #0602, La Jolla, CA 92093 USA
| | - Aileen Chang
- Department of Medicine, George Washington University, 2150 Pennsylvania Ave Suite 5-416, Washington, DC 20037 USA
| |
Collapse
|
15
|
Arginase 1 ( Arg1) as an Up-Regulated Gene in COVID-19 Patients: A Promising Marker in COVID-19 Immunopathy. J Clin Med 2021; 10:jcm10051051. [PMID: 33806290 PMCID: PMC7961773 DOI: 10.3390/jcm10051051] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/30/2022] Open
Abstract
Background: The coronavirus disease 2019 (COVID-19) outbreak, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been declared a global pandemic. It is well-established that SARS-CoV-2 infection can lead to dysregulated immune responses. Arginase-1 (Arg1), which has a pivotal role in immune cells, can be expressed in most of the myeloid cells, e.g., neutrophils and macrophages. Arg1 has been associated with the suppression of antiviral immune responses. Methods: Whole blood was taken from 21 COVID-19 patients and 21 healthy individuals, and after RNA extraction and complementary DNA (cDNA) synthesis, gene expression of Arg1 was measured by real-time PCR. Results: The qPCR results showed that the expression of Arg1 was significantly increased in COVID-19 patients compared to healthy individuals (p < 0.01). The relative expression analysis demonstrated there were approximately 2.3 times increased Arg1 expression in the whole blood of COVID-19 patients. Furthermore, the receiver operating characteristic (ROC) analysis showed a considerable diagnostic value for Arg1 expression in COVID-19 (p = 0.0002 and AUC = 0.8401). Conclusion: Arg1 might be a promising marker in the pathogenesis of the disease, and it could be a valuable diagnostic tool.
Collapse
|
16
|
Plasmacytoid Dendritic Cells Mediate Control of Ross River Virus Infection via a Type I Interferon-Dependent, MAVS-Independent Mechanism. J Virol 2021; 95:JVI.01538-20. [PMID: 33361425 DOI: 10.1128/jvi.01538-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/15/2020] [Indexed: 11/20/2022] Open
Abstract
Ross River virus (RRV) is a mosquito-borne alphavirus that causes epidemics of debilitating musculoskeletal disease. To define the innate immune mechanisms that mediate control of RRV infection, we studied a RRV strain encoding 6 nonsynonymous mutations in nsP1 (RRV-T48-nsP16M) that is attenuated in wild-type (WT) mice and Rag1 -/- mice, which are unable to mount adaptive immune responses, but not in mice that lack the capacity to respond to type I interferon (IFN) (Ifnar1 -/- mice). Utilizing this attenuated strain, our prior studies revealed that mitochondrial antiviral signaling (MAVS)-dependent production of type I IFN by Ly6Chi monocytes is critical for control of acute RRV infection. Here, we infected Mavs -/- mice with either WT RRV or RRV-T48-nsP16M to elucidate MAVS-independent protective mechanisms. Mavs -/- mice infected with WT RRV developed severe disease and succumbed to infection, whereas those infected with RRV-T48-nsP16M exhibited minimal disease signs. Mavs -/- mice infected with RRV-T48-nsP16M had higher levels of systemic type I IFN than Mavs -/- mice infected with WT virus, and treatment of Mavs -/- mice infected with the attenuated nsP1 mutant virus with an IFNAR1-blocking antibody resulted in a lethal infection. In vitro, type I IFN expression was induced in plasmacytoid dendritic cells (pDCs) cocultured with RRV-infected cells in a MAVS-independent manner, and depletion of pDCs in Mavs -/- mice resulted in increased viral burdens in joint and muscle tissues, suggesting that pDCs are a source of the protective IFN in Mavs -/- mice. These data suggest that pDC production of type I IFN through a MAVS-independent pathway contributes to control of RRV infection.IMPORTANCE Arthritogenic alphaviruses, including Ross River virus (RRV), are human pathogens that cause debilitating acute and chronic musculoskeletal disease and are a significant public health burden. Using an attenuated RRV with enhanced susceptibility to host innate immune responses has revealed key cellular and molecular mechanisms that can mediate control of attenuated RRV infection and that are evaded by more virulent RRV strains. In this study, we found that pDCs contribute to the protective type I interferon response during RRV infection through a mechanism that is independent of the mitochondrial antiviral signaling (MAVS) adaptor protein. These findings highlight a key innate immune mechanism that contributes to control of alphavirus infections.
Collapse
|
17
|
CXCL10 Signaling Contributes to the Pathogenesis of Arthritogenic Alphaviruses. Viruses 2020; 12:v12111252. [PMID: 33147869 PMCID: PMC7692144 DOI: 10.3390/v12111252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/05/2023] Open
Abstract
Emerging and re-emerging arthritogenic alphaviruses, such as Chikungunya virus (CHIKV) and O'nyong nyong virus, cause acute and chronic crippling arthralgia associated with inflammatory immune responses. Approximately 50% of CHIKV-infected patients suffer from rheumatic manifestations that last 6 months to years. However, the physiological functions of individual immune signaling pathways in the pathogenesis of alphaviral arthritis remain poorly understood. Here, we report that a deficiency in CXCL10, which is a chemoattractant for monocytes/macrophages/T cells, led to the same viremia as wild-type animals, but fewer immune infiltrates and lower viral loads in footpads at the peak of arthritic disease (6-8 days post infection). Macrophages constituted the largest immune cell population in footpads following infection, and were significantly reduced in Cxcl10-/- mice. The viral RNA loads in neutrophils and macrophages were reduced in Cxcl10-/- compared to wild-type mice. In summary, our results demonstrate that CXCL10 signaling promotes the pathogenesis of alphaviral disease and suggest that CXCL10 may be a therapeutic target for mitigating alphaviral arthritis.
Collapse
|
18
|
Yang L, Geng T, Yang G, Ma J, Wang L, Ketkar H, Yang D, Lin T, Hwang J, Zhu S, Wang Y, Dai J, You F, Cheng G, Vella AT, Flavell RA, Fikrig E, Wang P. Macrophage scavenger receptor 1 controls Chikungunya virus infection through autophagy in mice. Commun Biol 2020; 3:556. [PMID: 33033362 PMCID: PMC7545163 DOI: 10.1038/s42003-020-01285-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophage scavenger receptor 1 (MSR1) mediates the endocytosis of modified low-density lipoproteins and plays an important antiviral role. However, the molecular mechanism underlying MSR1 antiviral actions remains elusive. We report that MSR1 activates autophagy to restrict infection of Chikungunya virus (CHIKV), an arthritogenic alphavirus that causes acute and chronic crippling arthralgia. Msr1 expression was rapidly upregulated after CHIKV infection in mice. Msr1 knockout mice had elevated viral loads and increased susceptibility to CHIKV arthritis along with a normal type I IFN response. Induction of LC3 lipidation by CHIKV, a marker of autophagy, was reduced in Msr1-/- cells. Mechanistically, MSR1 interacted with ATG12 through its cytoplasmic tail and this interaction was enhanced by CHIKV nsP1 protein. MSR1 repressed CHIKV replication through ATG5-ATG12-ATG16L1 and this was dependent on the FIP200-and-WIPI2-binding domain, but not the WD40 domain of ATG16L1. Our results elucidate an antiviral role for MSR1 involving the autophagic function of ATG5-ATG12-ATG16L1.
Collapse
Affiliation(s)
- Long Yang
- grid.260917.b0000 0001 0728 151XDepartment of Microbiology & Immunology, School of Medicine, New York Medical College, Valhalla, NY 10595 USA
| | - Tingting Geng
- grid.208078.50000000419370394Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Guang Yang
- grid.260917.b0000 0001 0728 151XDepartment of Microbiology & Immunology, School of Medicine, New York Medical College, Valhalla, NY 10595 USA ,grid.258164.c0000 0004 1790 3548Department of Parasitology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jinzhu Ma
- grid.260917.b0000 0001 0728 151XDepartment of Microbiology & Immunology, School of Medicine, New York Medical College, Valhalla, NY 10595 USA
| | - Leilei Wang
- grid.260917.b0000 0001 0728 151XDepartment of Microbiology & Immunology, School of Medicine, New York Medical College, Valhalla, NY 10595 USA
| | - Harshada Ketkar
- grid.260917.b0000 0001 0728 151XDepartment of Microbiology & Immunology, School of Medicine, New York Medical College, Valhalla, NY 10595 USA
| | - Duomeng Yang
- grid.208078.50000000419370394Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Tao Lin
- grid.208078.50000000419370394Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Jesse Hwang
- grid.47100.320000000419368710Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Shu Zhu
- grid.47100.320000000419368710Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 USA ,grid.59053.3a0000000121679639Present Address: Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027 China
| | - Yanlin Wang
- grid.208078.50000000419370394Department of Medicine, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Jianfeng Dai
- grid.263761.70000 0001 0198 0694Institutes of Biology and Medical Sciences, Soochow University, Jiangsu, China
| | - Fuping You
- grid.11135.370000 0001 2256 9319School of Basic Medical Sciences, Peking University, Beijing, China
| | - Gong Cheng
- grid.12527.330000 0001 0662 3178Department of Basic Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Anthony T. Vella
- grid.208078.50000000419370394Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030 USA
| | - Richard. A. Flavell
- grid.47100.320000000419368710Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520 USA ,grid.413575.10000 0001 2167 1581Howard Hughes Medical Institute, Chevy Chase, MD USA
| | - Erol Fikrig
- grid.47100.320000000419368710Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520 USA ,grid.413575.10000 0001 2167 1581Howard Hughes Medical Institute, Chevy Chase, MD USA
| | - Penghua Wang
- grid.260917.b0000 0001 0728 151XDepartment of Microbiology & Immunology, School of Medicine, New York Medical College, Valhalla, NY 10595 USA ,grid.208078.50000000419370394Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030 USA
| |
Collapse
|
19
|
Srivastava P, Kumar A, Hasan A, Mehta D, Kumar R, Sharma C, Sunil S. Disease Resolution in Chikungunya-What Decides the Outcome? Front Immunol 2020; 11:695. [PMID: 32411133 PMCID: PMC7198842 DOI: 10.3389/fimmu.2020.00695] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Chikungunya disease (CHIKD) is a viral infection caused by an alphavirus, chikungunya virus (CHIKV), and triggers large outbreaks leading to epidemics. Despite the low mortality rate, it is a major public health concern owing to high morbidity in affected individuals. The complete spectrum of this disease can be divided into four phases based on its clinical presentation and immunopathology. When a susceptible individual is bitten by an infected mosquito, the bite triggers inflammatory responses attracting neutrophils and initiating a cascade of events, resulting in the entry of the virus into permissive cells. This phase is termed the pre-acute or the intrinsic incubation phase. The virus utilizes the cellular components of the innate immune system to enter into circulation and reach primary sites of infection such as the lymph nodes, spleen, and liver. Also, at this point, antigen-presenting cells (APCs) present the viral antigens to the T cells thereby activating and initiating adaptive immune responses. This phase is marked by the exhibition of clinical symptoms such as fever, rashes, arthralgia, and myalgia and is termed the acute phase of the disease. Viremia reaches its peak during this phase, thereby enhancing the antigen-specific host immune response. Simultaneously, T cell-mediated activation of B cells leads to the formation of CHIKV specific antibodies. Increase in titres of neutralizing IgG/IgM antibodies results in the clearance of virus from the bloodstream and marks the initiation of the post-acute phase. Immune responses mounted during this phase of the infection determine the degree of disease progression or its resolution. Some patients may progress to a chronic arthritic phase of the disease that may last from a few months to several years, owing to a compromised disease resolution. The present review discusses the immunopathology of CHIKD and the factors that dictate disease progression and its resolution.
Collapse
Affiliation(s)
- Priyanshu Srivastava
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Ankit Kumar
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Abdul Hasan
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Divya Mehta
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Ramesh Kumar
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Chetan Sharma
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sujatha Sunil
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
20
|
Davenport BJ, Bullock C, McCarthy MK, Hawman DW, Murphy KM, Kedl RM, Diamond MS, Morrison TE. Chikungunya Virus Evades Antiviral CD8 + T Cell Responses To Establish Persistent Infection in Joint-Associated Tissues. J Virol 2020; 94:e02036-19. [PMID: 32102875 PMCID: PMC7163133 DOI: 10.1128/jvi.02036-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes explosive epidemics of a febrile illness characterized by debilitating arthralgia and arthritis that can endure for months to years following infection. In mouse models, CHIKV persists in joint tissues for weeks to months and is associated with chronic synovitis. Using a recombinant CHIKV strain encoding a CD8+ T cell receptor epitope from ovalbumin, as well as a viral peptide-specific major histocompatibility complex class I tetramer, we interrogated CD8+ T cell responses during CHIKV infection. Epitope-specific CD8+ T cells, which were reduced in Batf3-/- and Wdfy4-/- mice with known defects in antigen cross-presentation, accumulated in joint tissue and the spleen. Antigen-specific ex vivo restimulation assays and in vivo killing assays demonstrated that CD8+ T cells produce cytokine and have cytolytic activity. Despite the induction of a virus-specific CD8+ T cell response, the CHIKV burden in joint-associated tissues and the spleen were equivalent in wild-type (WT) and CD8α-/- mice during both the acute and the chronic phases of infection. In comparison, CD8+ T cells were essential for the control of acute and chronic lymphocytic choriomeningitis virus infection in the joint and spleen. Moreover, adoptive transfer of virus-specific effector CD8+ T cells or immunization with a vaccine that induces virus-specific effector CD8+ T cells prior to infection enhanced the clearance of CHIKV infection in the spleen but had a minimal impact on CHIKV infection in the joint. Collectively, these data suggest that CHIKV establishes and maintains a persistent infection in joint-associated tissue in part by evading CD8+ T cell immunity.IMPORTANCE CHIKV is a reemerging mosquito-transmitted virus that in the last decade has spread into Europe, Asia, the Pacific Region, and the Americas. Joint pain, swelling, and stiffness can endure for months to years after CHIKV infection, and epidemics have a severe economic impact. Elucidating the mechanisms by which CHIKV subverts antiviral immunity to establish and maintain a persistent infection may lead to the development of new therapeutic strategies against chronic CHIKV disease. In this study, we found that CHIKV establishes and maintains a persistent infection in joint-associated tissue in part by evading antiviral CD8+ T cell immunity. Thus, immunomodulatory therapies that improve CD8+ T cell immune surveillance and clearance of CHIKV infection could be a strategy for mitigating chronic CHIKV disease.
Collapse
Affiliation(s)
- Bennett J Davenport
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Christopher Bullock
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mary K McCarthy
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - David W Hawman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
21
|
Modulation of Monocyte-Driven Myositis in Alphavirus Infection Reveals a Role for CX 3CR1 + Macrophages in Tissue Repair. mBio 2020; 11:mBio.03353-19. [PMID: 32127460 PMCID: PMC7064784 DOI: 10.1128/mbio.03353-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Arthritogenic alphaviruses cause debilitating inflammatory disease, and current therapies are restricted to palliative approaches. Here, we show that following monocyte-driven muscle inflammation, tissue recovery is associated with the accumulation of CX3CR1+ macrophages in the muscle. Modulating inflammatory monocyte infiltration using immune-modifying microparticles (IMP) reduced tissue damage and inflammation and enhanced the formation of tissue repair-associated CX3CR1+ macrophages in the muscle. This shows that modulating key effectors of viral inflammation using microparticles can alter the outcome of disease by facilitating the accumulation of macrophage subsets associated with tissue repair. Arthritogenic alphaviruses such as Ross River and Chikungunya viruses cause debilitating muscle and joint pain and pose significant challenges in the light of recent outbreaks. How host immune responses are orchestrated after alphaviral infections and lead to musculoskeletal inflammation remains poorly understood. Here, we show that myositis induced by Ross River virus (RRV) infection is driven by CD11bhi Ly6Chi inflammatory monocytes and followed by the establishment of a CD11bhi Ly6Clo CX3CR1+ macrophage population in the muscle upon recovery. Selective modulation of CD11bhi Ly6Chi monocyte migration to infected muscle using immune-modifying microparticles (IMP) reduced disease score, tissue damage, and inflammation and promoted the accumulation of CX3CR1+ macrophages, enhancing recovery and resolution. Here, we detail the role of immune pathology, describing a poorly characterized muscle macrophage subset as part of the dynamics of alphavirus-induced myositis and tissue recovery and identify IMP as an effective immunomodulatory approach. Given the lack of specific treatments available for alphavirus-induced pathologies, this study highlights a therapeutic potential for simple immune modulation by IMP in infected individuals in the event of large alphavirus outbreaks.
Collapse
|
22
|
Carpentier KS, Davenport BJ, Haist KC, McCarthy MK, May NA, Robison A, Ruckert C, Ebel GD, Morrison TE. Discrete viral E2 lysine residues and scavenger receptor MARCO are required for clearance of circulating alphaviruses. eLife 2019; 8:e49163. [PMID: 31596239 PMCID: PMC6839921 DOI: 10.7554/elife.49163] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
The magnitude and duration of vertebrate viremia is a critical determinant of arbovirus transmission, geographic spread, and disease severity. We find that multiple alphaviruses, including chikungunya (CHIKV), Ross River (RRV), and o'nyong 'nyong (ONNV) viruses, are cleared from the circulation of mice by liver Kupffer cells, impeding viral dissemination. Clearance from the circulation was independent of natural antibodies or complement factor C3, and instead relied on scavenger receptor SR-A6 (MARCO). Remarkably, lysine to arginine substitutions at distinct residues within the E2 glycoproteins of CHIKV and ONNV (E2 K200R) as well as RRV (E2 K251R) allowed for escape from clearance and enhanced viremia and dissemination. Mutational analysis revealed that viral clearance from the circulation is strictly dependent on the presence of lysine at these positions. These findings reveal a previously unrecognized innate immune pathway that controls alphavirus viremia and dissemination in vertebrate hosts, ultimately influencing disease severity and likely transmission efficiency.
Collapse
Affiliation(s)
- Kathryn S Carpentier
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraUnited States
| | - Bennett J Davenport
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraUnited States
| | - Kelsey C Haist
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraUnited States
| | - Mary K McCarthy
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraUnited States
| | - Nicholas A May
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraUnited States
| | - Alexis Robison
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsUnited States
| | - Claudia Ruckert
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsUnited States
| | - Gregory D Ebel
- Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsUnited States
| | - Thomas E Morrison
- Department of Immunology and MicrobiologyUniversity of Colorado School of MedicineAuroraUnited States
| |
Collapse
|
23
|
Santiago-Olivares C, Rivera-Toledo E, Gómez B. Nitric oxide production is downregulated during respiratory syncytial virus persistence by constitutive expression of arginase 1. Arch Virol 2019; 164:2231-2241. [DOI: 10.1007/s00705-019-04259-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/24/2019] [Indexed: 12/25/2022]
|
24
|
Lombardi Pereira AP, Suzukawa HT, do Nascimento AM, Bufalo Kawassaki AC, Basso CR, Dos Santos DP, Damasco KF, Machado LF, Amarante MK, Ehara Watanabe MA. An overview of the immune response and Arginase I on CHIKV immunopathogenesis. Microb Pathog 2019; 135:103581. [PMID: 31175971 DOI: 10.1016/j.micpath.2019.103581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
Abstract
Chikungunya virus (CHIKV) is mosquito-borne alphavirus that has caused epidemics around the world. Many individuals affected by the disease may experience joint pain that persists for months after the acute phase. The pathophysiology of viral arthritis is not completely elucidated. And it is important to emphasize that the effects of the viral infection in each host may depend on host factors that include immune response, as well as factors specific to the virus as tissue tropism. The main pathway for the response against viral infection is through induction of type I interferon (IFN-I), whose function is important to control viral replication. Beside this, T cell and macrophage mediated immunopathology in CHIKV infections has been reported. It has been demonstrated that some association with the Arginase I and macrophages type II are involved in the infection profile along with myeloid-derived suppressor cells (MDSC) that are responsible for T cell suppression. Therefore, in this review, will be discuss an overview on CHIKV immunopathogenesis and the importance of Arginase I.
Collapse
Affiliation(s)
- Ana Paula Lombardi Pereira
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina-Paraná, Brazil
| | - Helena Tiemi Suzukawa
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina-Paraná, Brazil
| | - Aline Miquelin do Nascimento
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina-Paraná, Brazil
| | - Aedra Carla Bufalo Kawassaki
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina-Paraná, Brazil
| | - Camila Regina Basso
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina-Paraná, Brazil
| | - Dayane Priscila Dos Santos
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina-Paraná, Brazil
| | - Kamila Falchetti Damasco
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina-Paraná, Brazil
| | - Laís Fernanda Machado
- Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina-Paraná, Brazil
| | - Marla Karine Amarante
- Laboratory of DNA Polymorphisms and Immunology, Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina-Paraná, Brazil.
| | - Maria Angelica Ehara Watanabe
- Laboratory of DNA Polymorphisms and Immunology, Department of Pathological Sciences, Biological Sciences Center, Londrina State University, Londrina-Paraná, Brazil
| |
Collapse
|
25
|
Kučić N, Rački V, Jurdana K, Marcelić M, Grabušić K. Immunometabolic phenotype of BV-2 microglia cells upon murine cytomegalovirus infection. J Neurovirol 2019; 25:496-507. [PMID: 31025265 DOI: 10.1007/s13365-019-00750-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/19/2019] [Accepted: 04/03/2019] [Indexed: 11/26/2022]
Abstract
Microglia are resident brain macrophages with key roles in development and brain homeostasis. Cytomegalovirus (CMV) readily infects microglia cells, even as a possible primary target of infection in development. Effects of CMV infection on a cellular level in microglia are still unclear; therefore, the aim of this research was to assess the immunometabolic changes of BV-2 microglia cells following the murine cytomegalovirus (MCMV) infection. In light of that aim, we established an in vitro model of ramified BV-2 microglia (BV-2∅FCS, inducible nitric oxide synthase (iNOSlow), arginase-1 (Arg-1high), mannose receptor CD206high, and hypoxia-inducible factor 1α (HIF-1αlow)) to better replicate the in vivo conditions by removing FCS from the cultivation media, while the cells cultivated in 10% FCS DMEM displayed an ameboid morphology (BV-2FCS high, iNOShigh, Arg-1low, CD206low, and HIF-1αhigh). Experiments were performed using both ramified and ameboid microglia, and both of them were permissive to productive viral infection. Our results indicate that MCMV significantly alters the immunometabolic phenotypic properties of BV-2 microglia cells through the manipulation of iNOS and Arg-1 expression patterns, along with an induction of a glycolytic shift in the infected cell cultures.
Collapse
MESH Headings
- Animals
- Arginase/genetics
- Arginase/immunology
- Cell Line
- Culture Media, Serum-Free/pharmacology
- Embryo, Mammalian
- Fibroblasts/immunology
- Fibroblasts/virology
- Gene Expression Regulation
- Herpesviridae Infections/genetics
- Herpesviridae Infections/immunology
- Herpesviridae Infections/virology
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Hypoxia-Inducible Factor 1, alpha Subunit/deficiency
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/immunology
- Lectins, C-Type/deficiency
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Mannose Receptor
- Mannose-Binding Lectins/deficiency
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/immunology
- Mice
- Mice, Inbred BALB C
- Microglia/immunology
- Microglia/virology
- Models, Biological
- Muromegalovirus/genetics
- Muromegalovirus/growth & development
- Muromegalovirus/metabolism
- Nitric Oxide Synthase Type II/deficiency
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type II/immunology
- Primary Cell Culture
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Signal Transduction
Collapse
Affiliation(s)
- Natalia Kučić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000, Rijeka, Croatia.
| | - Valentino Rački
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000, Rijeka, Croatia
| | - Kristina Jurdana
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, Rijeka, Croatia
| | - Marina Marcelić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000, Rijeka, Croatia
| | - Kristina Grabušić
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, Rijeka, Croatia
| |
Collapse
|
26
|
Abstract
Alphaviruses, members of the positive-sense, single-stranded RNA virus family Togaviridae, represent a re-emerging public health concern worldwide as mosquito vectors expand into new geographic ranges. Members of the alphavirus genus tend to induce clinical disease characterized by rash, arthralgia, and arthritis (chikungunya virus, Ross River virus, and Semliki Forest virus) or encephalomyelitis (eastern equine encephalitis virus, western equine encephalitis virus, and Venezuelan equine encephalitis virus), though some patients who recover from the initial acute illness may develop long-term sequelae, regardless of the specific infecting virus. Studies examining the natural disease course in humans and experimental infection in cell culture and animal models reveal that host genetics play a major role in influencing susceptibility to infection and severity of clinical disease. Genome-wide genetic screens, including loss of function screens, microarrays, RNA-sequencing, and candidate gene studies, have further elucidated the role host genetics play in the response to virus infection, with the immune response being found in particular to majorly influence the outcome. This review describes the current knowledge of the mechanisms by which host genetic factors influence alphavirus pathogenesis and discusses emerging technologies that are poised to increase our understanding of the complex interplay between viral and host genetics on disease susceptibility and clinical outcome.
Collapse
|
27
|
Supramaniam A, Lui H, Bellette BM, Rudd PA, Herrero LJ. How myeloid cells contribute to the pathogenesis of prominent emerging zoonotic diseases. J Gen Virol 2018; 99:953-969. [DOI: 10.1099/jgv.0.001024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Aroon Supramaniam
- 1Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| | - Hayman Lui
- 2School of Medicine, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| | | | - Penny A. Rudd
- 1Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| | - Lara J. Herrero
- 1Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, Australia
- 2School of Medicine, Griffith University, Gold Coast Campus, Southport, QLD, Australia
| |
Collapse
|
28
|
Cavalheiro MG, Costa LSDA, Campos HS, Alves LS, Assunção-Miranda I, Poian ATDA. Macrophages as target cells for Mayaro virus infection: involvement of reactive oxygen species in the inflammatory response during virus replication. AN ACAD BRAS CIENC 2018; 88:1485-99. [PMID: 27627069 DOI: 10.1590/0001-3765201620150685] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/18/2016] [Indexed: 02/05/2023] Open
Abstract
Alphaviruses among the viruses that cause arthritis, consisting in a public health problem worldwide by causing localized outbreaks, as well as large epidemics in humans. Interestingly, while the Old World alphaviruses are arthritogenic, the New World alphaviruses cause encephalitis. One exception is Mayaro virus (MAYV), which circulates exclusively in South America but causes arthralgia and is phylogenetically related to the Old World alphaviruses. Although MAYV-induced arthritis in humans is well documented, the molecular and cellular factors that contribute to its pathogenesis are completely unknown. In this study, we demonstrated for the first time that macrophages, key players in arthritis development, are target cells for MAYV infection, which leads to cell death through apoptosis. We showed that MAYV replication in macrophage induced the expression of TNF, a cytokine that would contribute to pathogenesis of MAYV fever, since TNF promotes an inflammatory profile characteristic of arthritis. We also found a significant increase in the production of reactive oxygen species (ROS) at early times of infection, which coincides with the peak of virus replication and precedes TNF secretion. Treatment of the cells with antioxidant agents just after infection completely abolished TNF secretion, indicating an involvement of ROS in inflammation induced during MAYV infection.
Collapse
Affiliation(s)
- Mariana G Cavalheiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco E, Sala 18, 21941-902 Rio de Janeiro, RJ Brasil
| | - Leandro Silva DA Costa
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco E, Sala 18, 21941-902 Rio de Janeiro, RJ Brasil
| | - Holmes S Campos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco E, Sala 18, 21941-902 Rio de Janeiro, RJ Brasil
| | - Letícia S Alves
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco I, Sala I0-55, 21941-902 Rio de Janeiro, RJ, Brasil
| | - Iranaia Assunção-Miranda
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco I, Sala I0-55, 21941-902 Rio de Janeiro, RJ, Brasil
| | - Andrea T DA Poian
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco E, Sala 18, 21941-902 Rio de Janeiro, RJ Brasil
| |
Collapse
|
29
|
Haist KC, Burrack KS, Davenport BJ, Morrison TE. Inflammatory monocytes mediate control of acute alphavirus infection in mice. PLoS Pathog 2017; 13:e1006748. [PMID: 29244871 PMCID: PMC5747464 DOI: 10.1371/journal.ppat.1006748] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/29/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022] Open
Abstract
Chikungunya virus (CHIKV) and Ross River virus (RRV) are mosquito-transmitted alphaviruses that cause debilitating acute and chronic musculoskeletal disease. Monocytes are implicated in the pathogenesis of these infections; however, their specific roles are not well defined. To investigate the role of inflammatory Ly6ChiCCR2+ monocytes in alphavirus pathogenesis, we used CCR2-DTR transgenic mice, enabling depletion of these cells by administration of diptheria toxin (DT). DT-treated CCR2-DTR mice displayed more severe disease following CHIKV and RRV infection and had fewer Ly6Chi monocytes and NK cells in circulation and muscle tissue compared with DT-treated WT mice. Furthermore, depletion of CCR2+ or Gr1+ cells, but not NK cells or neutrophils alone, restored virulence and increased viral loads in mice infected with an RRV strain encoding attenuating mutations in nsP1 to levels detected in monocyte-depleted mice infected with fully virulent RRV. Disease severity and viral loads also were increased in DT-treated CCR2-DTR+;Rag1-/- mice infected with the nsP1 mutant virus, confirming that these effects are independent of adaptive immunity. Monocytes and macrophages sorted from muscle tissue of RRV-infected mice were viral RNA positive and had elevated expression of Irf7, and co-culture of Ly6Chi monocytes with RRV-infected cells resulted in induction of type I IFN gene expression in monocytes that was Irf3;Irf7 and Mavs-dependent. Consistent with these data, viral loads of the attenuated nsP1 mutant virus were equivalent to those of WT RRV in Mavs-/- mice. Finally, reconstitution of Irf3-/-;Irf7-/- mice with CCR2-DTR bone marrow rescued mice from severe infection, and this effect was reversed by depletion of CCR2+ cells, indicating that CCR2+ hematopoietic cells are capable of inducing an antiviral response. Collectively, these data suggest that MAVS-dependent production of type I IFN by monocytes is critical for control of acute alphavirus infection and that determinants in nsP1, the viral RNA capping protein, counteract this response. Mosquito-transmitted arthritogenic alphaviruses, such as chikungunya virus (CHIKV), Mayaro virus, and Ross River virus (RRV), cause large disease outbreaks. Infection with these viruses results in severe pain and inflammation in joints, tendons, and muscles, likely due to direct viral infection of these tissues, that can persist for years. Monocytes and macrophages have been implicated in the damaging effects of the inflammation, however, the role of these cell types in control of alphaviral infection are poorly understood. Using mouse models and an attenuated RRV with mutations in the nsP1 gene, we found that monocytes are critical to control acute infection and to reduce disease severity. Furthermore, we found that monocytes respond to virus-infected cells by increasing expression levels of type I interferon, a critical antiviral defense system. The induction of type I interferon in monocytes was dependent on MAVS, a signaling protein downstream of cytosolic viral RNA sensor proteins. Similar to monocytes, MAVS was required to control infection with the nsP1 mutant RRV. These studies suggest that monocytes control acute alphavirus infection and that determinants in nsP1, the viral RNA capping protein, counteract this response. Thus, therapeutic strategies targeting these cells for the treatment of these viral inflammatory diseases should do so without compromising their role in innate immunity.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Alphavirus Infections/immunology
- Alphavirus Infections/virology
- Animals
- Antigens, Ly/metabolism
- Chikungunya virus/immunology
- Chikungunya virus/pathogenicity
- Diphtheria Toxin/pharmacology
- Heparin-binding EGF-like Growth Factor/genetics
- Heparin-binding EGF-like Growth Factor/immunology
- Humans
- Inflammation/virology
- Interferon Regulatory Factor-3/deficiency
- Interferon Regulatory Factor-3/genetics
- Interferon Regulatory Factor-3/immunology
- Interferon Regulatory Factor-7/deficiency
- Interferon Regulatory Factor-7/genetics
- Interferon Regulatory Factor-7/immunology
- Interferon Type I/biosynthesis
- Interferon Type I/genetics
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Monocytes/drug effects
- Monocytes/immunology
- Monocytes/virology
- Receptors, CCR2/genetics
- Receptors, CCR2/metabolism
- Ross River virus/genetics
- Ross River virus/immunology
- Ross River virus/pathogenicity
- Viral Load
- Virulence/genetics
- Virulence/immunology
Collapse
Affiliation(s)
- Kelsey C. Haist
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Kristina S. Burrack
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Bennett J. Davenport
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
30
|
Interferon Regulatory Factor 1 Protects against Chikungunya Virus-Induced Immunopathology by Restricting Infection in Muscle Cells. J Virol 2017; 91:JVI.01419-17. [PMID: 28835505 DOI: 10.1128/jvi.01419-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/20/2017] [Indexed: 01/14/2023] Open
Abstract
The innate immune system protects cells against viral pathogens in part through the autocrine and paracrine actions of alpha/beta interferon (IFN-α/β) (type I), IFN-γ (type II), and IFN-λ (type III). The transcription factor interferon regulatory factor 1 (IRF-1) has a demonstrated role in shaping innate and adaptive antiviral immunity by inducing the expression of IFN-stimulated genes (ISGs) and mediating signals downstream of IFN-γ. Although ectopic expression experiments have suggested an inhibitory function of IRF-1 against infection of alphaviruses in cell culture, its role in vivo remains unknown. Here, we infected Irf1 -/- mice with two distantly related arthritogenic alphaviruses, chikungunya virus (CHIKV) and Ross River virus (RRV), and assessed the early antiviral functions of IRF-1 prior to induction of adaptive B and T cell responses. IRF-1 expression limited CHIKV-induced foot swelling in joint-associated tissues and prevented dissemination of CHIKV and RRV at early time points. Virological and histological analyses revealed greater infection of muscle tissues in Irf1 -/- mice than in wild-type mice. The antiviral actions of IRF-1 appeared to be independent of the induction of type I IFN or the effects of type II and III IFNs but were associated with altered local proinflammatory cytokine and chemokine responses and differential infiltration of myeloid cell subsets. Collectively, our in vivo experiments suggest that IRF-1 restricts CHIKV and RRV infection in stromal cells, especially muscle cells, and that this controls local inflammation and joint-associated swelling.IMPORTANCE Interferon regulatory factor 1 (IRF-1) is a transcription factor that regulates the expression of a broad range of antiviral host defense genes. In this study, using Irf1 -/- mice, we investigated the role of IRF-1 in modulating pathogenesis of two related arthritogenic alphaviruses, chikungunya virus and Ross River virus. Our studies show that IRF-1 controlled alphavirus replication and swelling in joint-associated tissues within days of infection. Detailed histopathological and virological analyses revealed that IRF-1 preferentially restricted CHIKV infection in cells of nonhematopoietic lineage, including muscle cells. The antiviral actions of IRF-1 resulted in decreased local inflammatory responses in joint-associated tissues, which prevented immunopathology.
Collapse
|
31
|
Baldanta S, Fernández-Escobar M, Acín-Perez R, Albert M, Camafeita E, Jorge I, Vázquez J, Enríquez JA, Guerra S. ISG15 governs mitochondrial function in macrophages following vaccinia virus infection. PLoS Pathog 2017; 13:e1006651. [PMID: 29077752 PMCID: PMC5659798 DOI: 10.1371/journal.ppat.1006651] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/17/2017] [Indexed: 12/17/2022] Open
Abstract
The interferon (IFN)-stimulated gene 15 (ISG15) encodes one of the most abundant proteins induced by interferon, and its expression is associated with antiviral immunity. To identify protein components implicated in IFN and ISG15 signaling, we compared the proteomes of ISG15-/- and ISG15+/+ bone marrow derived macrophages (BMDM) after vaccinia virus (VACV) infection. The results of this analysis revealed that mitochondrial dysfunction and oxidative phosphorylation (OXPHOS) were pathways altered in ISG15-/- BMDM treated with IFN. Mitochondrial respiration, Adenosine triphosphate (ATP) and reactive oxygen species (ROS) production was higher in ISG15+/+ BMDM than in ISG15-/- BMDM following IFN treatment, indicating the involvement of ISG15-dependent mechanisms. An additional consequence of ISG15 depletion was a significant change in macrophage polarization. Although infected ISG15-/- macrophages showed a robust proinflammatory cytokine expression pattern typical of an M1 phenotype, a clear blockade of nitric oxide (NO) production and arginase-1 activation was detected. Accordingly, following IFN treatment, NO release was higher in ISG15+/+ macrophages than in ISG15-/- macrophages concomitant with a decrease in viral titer. Thus, ISG15-/- macrophages were permissive for VACV replication following IFN treatment. In conclusion, our results demonstrate that ISG15 governs the dynamic functionality of mitochondria, specifically, OXPHOS and mitophagy, broadening its physiological role as an antiviral agent. Protein modification by ubiquitin and ubiquitin-like proteins is a key regulatory process of the innate and adaptive immune response. Interferon-stimulated gene 15 product (ISG15) is an ubiquitin-like protein modifier that can reversibly attach to different viral and cellular proteins, mediating potent antiviral responses. In turn, many viruses, including poxviruses, have evolved strategies to antagonize the antiviral and inflammatory effects of the innate immune response in order to keep infected cells alive until virus replication is complete. Here, we describe a novel role for ISG15 in the control of mitochondrial function. Post-translational modifications such as ISGylation regulate essential mitochondrial processes including respiration and mitophagy, and influence macrophage innate immunity signaling. These findings are clinically relevant since mitochondrial dysfunction is seen in many pathologies, such as infectious disease, cancer, and cardiovascular or neurological disorders, among others, underscoring the importance of the relationship between cellular metabolism and immune response.
Collapse
Affiliation(s)
- Sara Baldanta
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, Madrid, Spain
| | | | - Rebeca Acín-Perez
- Functional Genetics of the Oxidative Phosphorylation System, Centro Nacional de Investigaciones Cardiovasculares Carlos III; Madrid (SPAIN)
| | - Manuel Albert
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, Madrid, Spain
| | - Emilio Camafeita
- Laboratory of Cardiovascular Proteomics, Centro Nacional Investigaciones Cardiovasculares Carlos III (CNIC), Madrid (SPAIN)
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and CIBER de Enfermedades Cardiovasculares (CIBER-CV), Madrid (SPAIN)
| | - Inmaculada Jorge
- Laboratory of Cardiovascular Proteomics, Centro Nacional Investigaciones Cardiovasculares Carlos III (CNIC), Madrid (SPAIN)
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and CIBER de Enfermedades Cardiovasculares (CIBER-CV), Madrid (SPAIN)
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional Investigaciones Cardiovasculares Carlos III (CNIC), Madrid (SPAIN)
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and CIBER de Enfermedades Cardiovasculares (CIBER-CV), Madrid (SPAIN)
| | - José Antonio Enríquez
- Functional Genetics of the Oxidative Phosphorylation System, Centro Nacional de Investigaciones Cardiovasculares Carlos III; Madrid (SPAIN)
| | - Susana Guerra
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, Madrid, Spain
- * E-mail:
| |
Collapse
|
32
|
Amdekar S, Parashar D, Alagarasu K. Chikungunya Virus-Induced Arthritis: Role of Host and Viral Factors in the Pathogenesis. Viral Immunol 2017; 30:691-702. [PMID: 28910194 DOI: 10.1089/vim.2017.0052] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chikungunya virus (CHIKV), a member of Alphavirus genus, is responsible for chikungunya fever (CHIKF), which is characterized by the presence of fever, rash, myalgia, and arthralgia. Reemergence of CHIKV has become a significant public health concern in Asian and African countries and is newly emerging in the Middle East, Pacific, American, and European countries. Cytokines, innate (monocytes, natural killer cells) and adaptive immune response (role of B cells and T cells i.e. CD4+ and CD8+), and/or viral factors contribute to CHIKV-induced arthritis. Vector factors such as vector competence (that includes extrinsic and intrinsic factors) and effect of genome mutations on viral replication and fitness in mosquitoes are responsible for the spread of virus, although they are not directly responsible for CHIKV-induced arthritis. CHIKV-induced arthritis mimics arthritis by involving joints and a common pattern of leukocyte infiltrate, cytokine production, and complement activation. Successful establishment of CHIKV infection and induction of arthritis depends on its ability to manipulate host cellular processes or host factors. CHIKV-induced joint damage is due to host inflammatory response mediated by macrophages, T cells, and antibodies, as well as the possible persistence of the virus in hidden sites. This review provides insight into mechanisms of CHIKV-induced arthritis. Understanding the pathogenesis of CHIKV-induced arthritis will help in developing novel strategies to predict and prevent the disease in virus-infected subjects and combat the disease, thereby decreasing the worldwide burden of the disease.
Collapse
Affiliation(s)
- Sarika Amdekar
- Dengue/Chikungunya Group, ICMR-National Institute of Virology , Pune, India
| | - Deepti Parashar
- Dengue/Chikungunya Group, ICMR-National Institute of Virology , Pune, India
| | | |
Collapse
|
33
|
Fox JM, Diamond MS. Immune-Mediated Protection and Pathogenesis of Chikungunya Virus. THE JOURNAL OF IMMUNOLOGY 2017; 197:4210-4218. [PMID: 27864552 DOI: 10.4049/jimmunol.1601426] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/13/2016] [Indexed: 01/16/2023]
Abstract
Chikungunya virus (CHIKV) is a re-emerging alphavirus that causes debilitating acute and chronic arthritis. Infection by CHIKV induces a robust immune response that is characterized by production of type I IFNs, recruitment of innate and adaptive immune cells, and development of neutralizing Abs. Despite this response, chronic arthritis can develop in some individuals, which may be due to a failure to eliminate viral RNA and Ag and/or persistent immune responses that cause chronic joint inflammation. In this review, based primarily on advances from recent studies in mice, we discuss the innate and adaptive immune factors that control CHIKV dissemination and clearance or contribute to pathogenesis.
Collapse
Affiliation(s)
- Julie M Fox
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; .,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110; and.,Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
34
|
Liu X, Tharmarajah K, Taylor A. Ross River virus disease clinical presentation, pathogenesis and current therapeutic strategies. Microbes Infect 2017; 19:496-504. [PMID: 28754345 DOI: 10.1016/j.micinf.2017.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022]
Abstract
Ross River virus (RRV) is an arthitogenic alphavirus capable of causing outbreaks of debilitating musculoskeletal inflammatory disease in humans. RRV is the most common mosquito-borne disease in Australia, with outbreaks of RRV generally occurring during seasonal wet and warm conditions. Patients with Ross River virus disease (RRVD) typically present with fever, polyarthralgia, myalgia and a maculopapular erythematous rash. Treatment of the disease is usually palliative with no licensed vaccines or antiviral therapies currently available. In an effort to better inform therapeutic design, much progress has been made to understand the pathogenesis of RRVD. Progress has been largely driven by clinical evaluations supported by research using established murine models of RRVD, able to accurately replicate human disease. In this review we describe RRVD pathogenesis and the role of the host immune response, with particular focus on insights from studying animal models. We also discuss prospects for effective vaccines, preclinical development of therapeutic strategies and raise important questions for future RRV research.
Collapse
Affiliation(s)
- Xiang Liu
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, 4222, Queensland, Australia
| | - Kothila Tharmarajah
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, 4222, Queensland, Australia
| | - Adam Taylor
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, 4222, Queensland, Australia.
| |
Collapse
|
35
|
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne alphavirus that causes acute and chronic arthritis. The virus reemerged in the Indian Ocean islands in 2005-2006 and is responsible for outbreaks in the Caribbean islands and the Americas since late 2013. Despite the wealth of research over the past 10 years, there are no commercially available antiviral drugs or vaccines. Treatment usually involves analgesics, anti-inflammatory drugs, and supportive care. Most studies have been focused on understanding the pathogenesis of CHIKV infection through clinical observation and with animal models. In this review, the clinical manifestations of CHIKV that define the disease and the use of relevant animal models, from mice to nonhuman primates, are discussed. Understanding key cellular factors in CHIKV infection and the interplay with the immune system will aid in the development of preventive and therapeutic approaches to combat this painful viral disease in humans.
Collapse
Affiliation(s)
- Lisa F P Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648; .,Institute of Infection and Global Health, University of Liverpool, Liverpool L69 3BX, United Kingdom
| |
Collapse
|
36
|
Silva LA, Dermody TS. Chikungunya virus: epidemiology, replication, disease mechanisms, and prospective intervention strategies. J Clin Invest 2017; 127:737-749. [PMID: 28248203 PMCID: PMC5330729 DOI: 10.1172/jci84417] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chikungunya virus (CHIKV), a reemerging arbovirus, causes a crippling musculoskeletal inflammatory disease in humans characterized by fever, polyarthralgia, myalgia, rash, and headache. CHIKV is transmitted by Aedes species of mosquitoes and is capable of an epidemic, urban transmission cycle with high rates of infection. Since 2004, CHIKV has spread to new areas, causing disease on a global scale, and the potential for CHIKV epidemics remains high. Although CHIKV has caused millions of cases of disease and significant economic burden in affected areas, no licensed vaccines or antiviral therapies are available. In this Review, we describe CHIKV epidemiology, replication cycle, pathogenesis and host immune responses, and prospects for effective vaccines and highlight important questions for future research.
Collapse
|
37
|
Mesenchymal Stem Cells and Myeloid Derived Suppressor Cells: Common Traits in Immune Regulation. J Immunol Res 2016; 2016:7121580. [PMID: 27529074 PMCID: PMC4978836 DOI: 10.1155/2016/7121580] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/08/2016] [Indexed: 02/08/2023] Open
Abstract
To protect host against immune-mediated damage, immune responses are tightly regulated. The regulation of immune responses is mediated by various populations of mature immune cells, such as T regulatory cells and B regulatory cells, but also by immature cells of different origins. In this review, we discuss regulatory properties and mechanisms whereby two distinct populations of immature cells, mesenchymal stem cells, and myeloid derived suppressor cells mediate immune regulation, focusing on their similarities, discrepancies, and potential clinical applications.
Collapse
|
38
|
Chandra J, Miao Y, Romoff N, Frazer IH. Epithelium Expressing the E7 Oncoprotein of HPV16 Attracts Immune-Modulatory Dendritic Cells to the Skin and Suppresses Their Antigen-Processing Capacity. PLoS One 2016; 11:e0152886. [PMID: 27031095 PMCID: PMC4816461 DOI: 10.1371/journal.pone.0152886] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/21/2016] [Indexed: 12/31/2022] Open
Abstract
Antigen presenting cells (APCs) in skin can promote either antigen-specific effector functions or antigen tolerance, and thus determine clearance or persistence of cutaneous viral infections. Human papillomavirus (HPV) infections can persist in squamous epithelium in immunocompetent individuals, and some persisting HPV infections, particularly with HPV16, promote malignant epithelial transformation. Here, we investigate whether local expression of the HPV16 protein most associated with malignant transformation, HPV16-E7, affects the phenotype and function of APC subsets in the skin. We demonstrate an expanded population of Langerhans cells in HPV16-E7 transgenic skin with distinct cell surface markers which express immune-modulatory enzymes and cytokines not expressed by cells from non transgenic skin. Furthermore, HPV16-E7 transgene expression in keratinocytes attracts new APC subsets to the epidermis. In vivo migration and transport of antigen to the draining lymph node by these APCs is markedly enhanced in HPV16-E7 expressing skin, whereas antigen-processing, as measured by proteolytic cleavage of DQ-OVA and activation of T cells in vivo by APCs, is significantly impaired. These data suggest that local expression of HPV16-E7 in keratinocytes can contribute to persisting infection with this oncogenic virus, by altering the phenotype and function of local APCs.
Collapse
Affiliation(s)
- Janin Chandra
- University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Yan Miao
- University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Natasha Romoff
- University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Ian H. Frazer
- University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
- * E-mail:
| |
Collapse
|
39
|
Roosenhoff R, Anfasa F, Martina B. The pathogenesis of chronic chikungunya: evolving concepts. Future Virol 2016. [DOI: 10.2217/fvl.15.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chikungunya virus (CHIKV) re-emerged and caused an outbreak in the Caribbean and the Americas. CHIKV can cause incapacitating arthralgia, which may be evolved in chronic arthritis that is similar to rheumatoid arthritis that lasts for months or years. This review provides an overview of known and hypothesized mechanisms that CHIKV uses to promote chronic arthritis. We hypothesized that the chronic inflammatory response that is stimulated by persisting CHIKV replication in the joints results in the arthritic symptoms seen in patients. Most hypotheses proposed in this review need to be tested or confirmed, which may help in the development of new specific treatments and vaccines against CHIKV that will not only combat viral persistence but also prevent tissue damage.
Collapse
Affiliation(s)
- Rueshandra Roosenhoff
- ARTEMIS One Health Research Institute, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
- Curacao Biomedical & Health Research Institute, Curacao
| | - Fatih Anfasa
- Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Byron Martina
- ARTEMIS One Health Research Institute, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
40
|
Arginase 1+ microglia reduce Aβ plaque deposition during IL-1β-dependent neuroinflammation. J Neuroinflammation 2015; 12:203. [PMID: 26538310 PMCID: PMC4634600 DOI: 10.1186/s12974-015-0411-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/16/2015] [Indexed: 11/16/2022] Open
Abstract
Background Neuroinflammation has long been considered a driver of Alzheimer’s disease progression. However, experiments developed to explore the interaction between neuroinflammation and Alzheimer’s disease (AD) pathology showed a surprising reduction in amyloid beta (Aβ) plaque deposition. We sought to understand this unexpected outcome by examining microglia phenotypes during chronic neuroinflammation. Methods Using an adeno-associated virus vector carrying hIL-1β cDNA, inflammation was induced in one hippocampus of 8-month-old amyloid precursor protein (APP)/PS1 mice for 4 weeks, while the other hemisphere received control injections. Bone marrow chimeras and staining analysis were used to identify the origins and types of immune cells present during sustained inflammation. Arginase 1 (Arg1) and inducible nitric oxide synthase (iNOS) immunoreactivity were used as markers of alternatively activated and classically activated cells, respectively, and changes in cellular uptake of Aβ by Arg1+ or iNOS+ microglia was demonstrated by confocal microscopy. To determine if an anti-inflammatory phenotype was present during neuroinflammation, RNA was extracted on flow-sorted microglia and rt-PCR was performed. Interleukin-4 injection was used to induce alternatively activated cells, whereas a minipump and intrahippocampal cannula was used to deliver an interleukin (IL)-4Rα antibody to block the induction of Arg1+ cells in the setting of sustained IL-1β expression. Results We observed a robust upregulation of centrally derived Arg1+ microglia present only in the inflamed hemisphere. Furthermore, in the inflamed hemisphere, greater numbers of Arg1+ microglia contained Aβ when compared to iNOS+ microglia. RNA isolated from flow-sorted microglia from the inflamed hemisphere demonstrated elevation of mRNA species consistent with alternative activation as well as neuroprotective genes such as BDNF and IGF1. To explore if Arg1+ microglia mediated plaque reduction, we induced Arg1+ microglia with IL-4 and observed significant plaque clearance. Moreover, when we reduced Arg1+ microglia induction in the context of neuroinflammation using an anti-IL-4Rα antibody delivered via intrahippocampal cannula, we observed a clear correlation between numbers of Arg1+ microglia and plaque reduction. Conclusions Together, these findings suggest that Arg1+ microglia are involved in Aβ plaque reduction during sustained, IL-1β-dependent neuroinflammation, opening up possible new avenues for immunomodulatory therapy of AD. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0411-8) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
γδ T Cells Play a Protective Role in Chikungunya Virus-Induced Disease. J Virol 2015; 90:433-43. [PMID: 26491151 DOI: 10.1128/jvi.02159-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/12/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Chikungunya virus (CHIKV) is an alphavirus responsible for causing epidemic outbreaks of polyarthralgia in humans. Because CHIKV is initially introduced via the skin, where γδ T cells are prevalent, we evaluated the response of these cells to CHIKV infection. CHIKV infection led to a significant increase in γδ T cells in the infected foot and draining lymph node that was associated with the production of proinflammatory cytokines and chemokines in C57BL/6J mice. γδ T cell(-/-) mice demonstrated exacerbated CHIKV disease characterized by less weight gain and greater foot swelling than occurred in wild-type mice, as well as a transient increase in monocytes and altered cytokine/chemokine expression in the foot. Histologically, γδ T cell(-/-) mice had increased inflammation-mediated oxidative damage in the ipsilateral foot and ankle joint compared to wild-type mice which was independent of differences in CHIKV replication. These results suggest that γδ T cells play a protective role in limiting the CHIKV-induced inflammatory response and subsequent tissue and joint damage. IMPORTANCE Recent epidemics, including the 2004 to 2007 outbreak and the spread of CHIKV to naive populations in the Caribbean and Central and South America with resultant cases imported into the United States, have highlighted the capacity of CHIKV to cause explosive epidemics where the virus can spread to millions of people and rapidly move into new areas. These studies identified γδ T cells as important to both recruitment of key inflammatory cell populations and dampening the tissue injury due to oxidative stress. Given the importance of these cells in the early response to CHIKV, this information may inform the development of CHIKV vaccines and therapeutics.
Collapse
|
42
|
Burrack KS, Tan JJL, McCarthy MK, Her Z, Berger JN, Ng LFP, Morrison TE. Myeloid Cell Arg1 Inhibits Control of Arthritogenic Alphavirus Infection by Suppressing Antiviral T Cells. PLoS Pathog 2015; 11:e1005191. [PMID: 26436766 PMCID: PMC4593600 DOI: 10.1371/journal.ppat.1005191] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/04/2015] [Indexed: 11/30/2022] Open
Abstract
Arthritogenic alphaviruses, including Ross River virus (RRV) and chikungunya virus (CHIKV), are responsible for explosive epidemics involving millions of cases. These mosquito-transmitted viruses cause inflammation and injury in skeletal muscle and joint tissues that results in debilitating pain. We previously showed that arginase 1 (Arg1) was highly expressed in myeloid cells in the infected and inflamed musculoskeletal tissues of RRV- and CHIKV-infected mice, and specific deletion of Arg1 from myeloid cells resulted in enhanced viral control. Here, we show that Arg1, along with other genes associated with suppressive myeloid cells, is induced in PBMCs isolated from CHIKV-infected patients during the acute phase as well as the chronic phase, and that high Arg1 expression levels were associated with high viral loads and disease severity. Depletion of both CD4 and CD8 T cells from RRV-infected Arg1-deficient mice restored viral loads to levels detected in T cell-depleted wild-type mice. Moreover, Arg1-expressing myeloid cells inhibited virus-specific T cells in the inflamed and infected musculoskeletal tissues, but not lymphoid tissues, following RRV infection in mice, including suppression of interferon-γ and CD69 expression. Collectively, these data enhance our understanding of the immune response following arthritogenic alphavirus infection and suggest that immunosuppressive myeloid cells may contribute to the duration or severity of these debilitating infections. Mosquito-transmitted chikungunya virus (CHIKV), Ross River virus (RRV), and related alphaviruses cause epidemics involving millions of persons, such as on-going CHIKV outbreaks in the Caribbean and Central and South America. Infection with these viruses results in severe pain due to inflammation of musculoskeletal tissues that can persist for months and even years. There are no specific therapeutics or licensed vaccines for these viruses. Suppressive myeloid cells have been shown to inhibit anti-pathogen immune responses, including T cell responses, which can promote chronic disease. We showed previously that a gene associated with suppressive myeloid cells, arginase 1 (Arg1), was induced in musculoskeletal tissues and macrophages of mice infected with RRV or CHIKV, and mice that lacked Arg1 expression in myeloid cells had reduced viral loads at late times post-infection. Here, we demonstrate that Arg1 is induced in PBMCs isolated from CHIKV-infected patients, and Arg1 expression is associated with viral loads. Moreover, we found that Arg1-expressing myeloid cells inhibit the activation and function of antiviral T cells in RRV-infected mice. These studies underscore the role of suppressive myeloid cells in modulating the T cell response to arthritogenic alphaviruses and provide a therapeutic target to enhance viral clearance and potentially limit chronic disease.
Collapse
Affiliation(s)
- Kristina S. Burrack
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jeslin J. L. Tan
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Mary K. McCarthy
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Zhisheng Her
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Jennifer N. Berger
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Lisa F. P. Ng
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
43
|
Dhama K, Kapoor S, Pawaiya RVS, Chakraborty S, Tiwari R, Verma AK. Ross River Virus (RRV) infection in horses and humans: a review. Pak J Biol Sci 2015; 17:768-79. [PMID: 26035950 DOI: 10.3923/pjbs.2014.768.779] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A fascinating and important arbovirus is Ross River Virus (RRV) which is endemic and epizootic in nature in certain parts of the world. RRV is a member of the genus Alphavirus within the Semliki Forest complex of the family Togaviridae, which also includes the Getah virus. The virus is responsible for causing disease both in humans as well as horses. Mosquito species (Aedes camptorhynchus and Aedes vigilax; Culex annulirostris) are the most important vector for this virus. In places of low temperature as well as low rainfall or where there is lack of habitat of mosquito there is also limitation in the transmission of the virus. Such probability is higher especially in temperate regions bordering endemic regions having sub-tropical climate. There is involvement of articular as well as non-articular cells in the replication of RRV. Levels of pro-inflammatory factors viz., tumor necrosis factor-alpha (TNF-α); interferon-gamma (IFN-γ); and macrophage chemo-attractant protein-1 (MAC-1) during disease pathogenesis have been found to be reduced. Reverse transcription-polymerase chain reaction (RT-PCR) is the most advanced molecular diagnostic tool along with epitope-blocking enzyme-linked immunosorbent assay (ELISA) for detecting RRV infection. Treatment for RRV infection is only supportive. Vaccination is not a fruitful approach. Precise data collection will help the researchers to understand the RRV disease dynamics and thereby designing effective prevention and control strategy. Advances in diagnosis, vaccine development and emerging/novel therapeutic regimens need to be explored to their full potential to tackle RRV infection and the disease it causes.
Collapse
|
44
|
Pentosan Polysulfate: a Novel Glycosaminoglycan-Like Molecule for Effective Treatment of Alphavirus-Induced Cartilage Destruction and Inflammatory Disease. J Virol 2015; 89:8063-76. [PMID: 26018160 DOI: 10.1128/jvi.00224-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 05/19/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Arthritogenic alphaviruses such as Ross River virus (RRV) and chikungunya virus (CHIKV) cause large-scale epidemics of severe musculoskeletal disease and have been progressively expanding their global distribution. Since its introduction in July 2014, CHIKV now circulates in the United States. The hallmark of alphavirus disease is crippling pain and inflammation of the joints, a similar immunopathology to rheumatoid arthritis. The use of glycans as novel therapeutics is an area of research that has increased in recent years. Here, we describe the promising therapeutic potential of the glycosaminoglycan (GAG)-like molecule pentosan polysulfate (PPS) to alleviate virus-induced arthritis. Mouse models of RRV and CHIKV disease were used to characterize the extent of cartilage damage in infection and investigate the potential of PPS to treat disease. This was assessed using histological analysis, real-time PCR, and fluorescence-activated cell sorting (FACS). Alphaviral infection resulted in cartilage destruction, the severity of which was alleviated by PPS therapy during RRV and CHIKV clinical disease. The reduction in cartilage damage corresponded with a significant reduction in immune infiltrates. Using multiplex bead arrays, PPS treatment was found to have significantly increased the anti-inflammatory cytokine interleukin-10 and reduced proinflammatory cytokines, typically correlated with disease severity. Furthermore, we reveal that the severe RRV-induced joint pathology, including thinning of articular cartilage and loss of proteoglycans in the cartilage matrix, was diminished with treatment. PPS is a promising new therapy for alphavirus-induced arthritis, acting to preserve the cartilage matrix, which is damaged during alphavirus infection. Overall, the data demonstrate the potential of glycotherapeutics as a new class of treatment for infectious arthritis. IMPORTANCE The hallmark of alphavirus disease is crippling pain and joint arthritis, which often has an extended duration. In the past year, CHIKV has expanded into the Americas, with approximately 1 million cases reported to date, whereas RRV continues to circulate in the South Pacific. Currently, there is no licensed specific treatment for alphavirus disease, and the increasing spread of infection highlights an urgent need for therapeutic intervention strategies. Pentosan polysulfate (PPS) is a glycan derivative that is orally bioavailable, has few toxic side effects, and is currently licensed under the name Elmiron for the treatment of cystitis in the United States. Our findings show that RRV infection damages the articular cartilage, including a loss of proteoglycans within the joint. Furthermore, treatment with PPS reduced the severity of both RRV- and CHIKV-induced musculoskeletal disease, including a reduction in inflammation and joint swelling, suggesting that PPS is a promising candidate for drug repurposing for the treatment of alphavirus-induced arthritis.
Collapse
|
45
|
Watson NB, Schneider KM, Massa PT. SHP-1-dependent macrophage differentiation exacerbates virus-induced myositis. THE JOURNAL OF IMMUNOLOGY 2015; 194:2796-809. [PMID: 25681345 DOI: 10.4049/jimmunol.1402210] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Virus-induced myositis is an emerging global affliction that remains poorly characterized with few treatment options. Moreover, muscle-tropic viruses often spread to the CNS, causing dramatically increased morbidity. Therefore, there is an urgent need to explore genetic factors involved in this class of human disease. This report investigates critical innate immune pathways affecting murine virus-induced myositis. Of particular importance, the key immune regulator src homology region 2 domain-containing phosphatase 1 (SHP-1), which normally suppresses macrophage-mediated inflammation, is a major factor in promoting clinical disease in muscle. We show that Theiler's murine encephalomyelitis virus (TMEV) infection of skeletal myofibers induces inflammation and subsequent dystrophic calcification, with loss of ambulation in wild-type (WT) mice. Surprisingly, although similar extensive myofiber infection and inflammation are observed in SHP-1(-/-) mice, these mice neither accumulate dead calcified myofibers nor lose ambulation. Macrophages were the predominant effector cells infiltrating WT and SHP-1(-/-) muscle, and an increased infiltration of immature monocytes/macrophages correlated with an absence of clinical disease in SHP-1(-/-) mice, whereas mature M1-like macrophages corresponded with increased myofiber degeneration in WT mice. Furthermore, blocking SHP-1 activation in WT macrophages blocked virus-induced myofiber degeneration, and pharmacologic ablation of macrophages inhibited muscle calcification in TMEV-infected WT animals. These data suggest that, following TMEV infection of muscle, SHP-1 promotes M1 differentiation of infiltrating macrophages, and these inflammatory macrophages are likely involved in damaging muscle fibers. These findings reveal a pathological role for SHP-1 in promoting inflammatory macrophage differentiation and myofiber damage in virus-infected skeletal muscle, thus identifying SHP-1 and M1 macrophages as essential mediators of virus-induced myopathy.
Collapse
Affiliation(s)
- Neva B Watson
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210; and
| | - Karin M Schneider
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210; and
| | - Paul T Massa
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210; and Department of Neurology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
46
|
Long KM, Heise MT. Protective and Pathogenic Responses to Chikungunya Virus Infection. CURRENT TROPICAL MEDICINE REPORTS 2015; 2:13-21. [PMID: 26366337 DOI: 10.1007/s40475-015-0037-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chikungunya virus (CHIKV) is an arbovirus responsible for causing epidemic outbreaks of human disease characterized by painful and often debilitating arthralgia. Recently CHIKV has moved into the Caribbean and the Americas resulting in massive outbreaks in naïve human populations. Given the importance of CHIKV as an emerging disease, a significant amount of effort has gone into interpreting the virus-host interactions that contribute to protection or virus-induced pathology following CHIKV infection, with the long term goal of using this information to develop new therapies or safe and effective anti-CHIKV vaccines. This work has made it clear that numerous distinct host responses are involved in the response to CHIKV infection, where some aspects of the host innate and adaptive immune response protect from or limit virus-induced disease, while other pathways actually exacerbate the virus-induced disease process. This review will discuss mechanisms that have been identified as playing a role in the host response to CHIKV infection and illustrate the importance of carefully evaluating these responses to determine whether they play a protective or pathologic role during CHIKV infection.
Collapse
Affiliation(s)
- Kristin M Long
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, CB 7292, Chapel Hill, NC 27599
| | - Mark T Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, CB 7292, Chapel Hill, NC 27599 ; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, CB 7292, Chapel Hill, NC 27599
| |
Collapse
|
47
|
Burrack KS, Montgomery SA, Homann D, Morrison TE. CD8+ T cells control Ross River virus infection in musculoskeletal tissues of infected mice. THE JOURNAL OF IMMUNOLOGY 2014; 194:678-89. [PMID: 25488988 DOI: 10.4049/jimmunol.1401833] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Ross River virus (RRV), chikungunya virus, and related alphaviruses cause debilitating polyarthralgia and myalgia. Mouse models of RRV and chikungunya virus have demonstrated a role for the adaptive immune response in the control of these infections. However, questions remain regarding the role for T cells in viral control, including the magnitude, location, and dynamics of CD8(+) T cell responses. To address these questions, we generated a recombinant RRV expressing the H-2(b)-restricted glycoprotein 33 (gp33) determinant derived from the glycoprotein of lymphocytic choriomeningitis virus. Using tetramers, we tracked gp33-specific CD8(+) T cells during RRV-lymphocytic choriomeningitis virus infection. We found that acute RRV infection induces activation of CD8(+) T cell responses in lymphoid and musculoskeletal tissues that peak from 10-14 d postinoculation, suggesting that CD8(+) T cells contribute to control of acute RRV infection. Mice genetically deficient for CD8(+) T cells or wild-type mice depleted of CD8(+) T cells had elevated RRV loads in skeletal muscle tissue, but not joint-associated tissues, at 14 d postinoculation, suggesting that the ability of CD8(+) T cells to control RRV infection is tissue dependent. Finally, adoptively transferred T cells were capable of reducing RRV loads in skeletal muscle tissue of Rag1(-/-) mice, indicating that T cells can contribute to the control of RRV infection in the absence of B cells and Ab. Collectively, these data demonstrate a role for T cells in the control of RRV infection and suggest that the antiviral capacity of T cells is controlled in a tissue-specific manner.
Collapse
Affiliation(s)
- Kristina S Burrack
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Stephanie A Montgomery
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Dirk Homann
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045; Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045; Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029; and Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045;
| |
Collapse
|
48
|
Poo YS, Rudd PA, Gardner J, Wilson JAC, Larcher T, Colle MA, Le TT, Nakaya HI, Warrilow D, Allcock R, Bielefeldt-Ohmann H, Schroder WA, Khromykh AA, Lopez JA, Suhrbier A. Multiple immune factors are involved in controlling acute and chronic chikungunya virus infection. PLoS Negl Trop Dis 2014; 8:e3354. [PMID: 25474568 PMCID: PMC4256279 DOI: 10.1371/journal.pntd.0003354] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/15/2014] [Indexed: 12/18/2022] Open
Abstract
The recent epidemic of the arthritogenic alphavirus, chikungunya virus (CHIKV) has prompted a quest to understand the correlates of protection against virus and disease in order to inform development of new interventions. Herein we highlight the propensity of CHIKV infections to persist long term, both as persistent, steady-state, viraemias in multiple B cell deficient mouse strains, and as persistent RNA (including negative-strand RNA) in wild-type mice. The knockout mouse studies provided evidence for a role for T cells (but not NK cells) in viraemia suppression, and confirmed the role of T cells in arthritis promotion, with vaccine-induced T cells also shown to be arthritogenic in the absence of antibody responses. However, MHC class II-restricted T cells were not required for production of anti-viral IgG2c responses post CHIKV infection. The anti-viral cytokines, TNF and IFNγ, were persistently elevated in persistently infected B and T cell deficient mice, with adoptive transfer of anti-CHIKV antibodies unable to clear permanently the viraemia from these, or B cell deficient, mice. The NOD background increased viraemia and promoted arthritis, with B, T and NK deficient NOD mice showing high-levels of persistent viraemia and ultimately succumbing to encephalitic disease. In wild-type mice persistent CHIKV RNA and negative strand RNA (detected for up to 100 days post infection) was associated with persistence of cellular infiltrates, CHIKV antigen and stimulation of IFNα/β and T cell responses. These studies highlight that, secondary to antibodies, several factors are involved in virus control, and suggest that chronic arthritic disease is a consequence of persistent, replicating and transcriptionally active CHIKV RNA. The largest epidemic ever recorded for chikungunya virus (CHIKV) started in 2004 in Africa, then spread across Asia and recently caused tens of thousands of cases in Papua New Guinea and the Caribbean. This mosquito-borne alphavirus primarily causes an often debilitating, acute and chronic polyarthritis/polyarthalgia. Despite robust anti-viral immune responses CHIKV is able to persist, with such persistence poorly understood and the likely cause of chronic disease. Herein we highlight the propensity of CHIKV to persist long term, both as a persistent viraemia in different B cell deficient mouse strains, but also as persistent viral RNA in wild-type mice. These studies suggest that, aside from antibodies, other immune factors, such as CD4 T cells and TNF, are active in viraemia control. The work also supports the notion that CHIKV disease, with the exception of encephalitis, is largely an immunopathology. Persistent CHIKV RNA in wild-type mice continues to stimulate type I interferon and T cell responses, with this model of chronic disease recapitulating many of the features seen in chronic CHIKV patients.
Collapse
Affiliation(s)
- Yee Suan Poo
- QIMR Berghofer Medical Research Institute, and the Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
- School of Medicine/School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Penny A. Rudd
- QIMR Berghofer Medical Research Institute, and the Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
- School of Medicine/School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Joy Gardner
- QIMR Berghofer Medical Research Institute, and the Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
| | - Jane A. C. Wilson
- QIMR Berghofer Medical Research Institute, and the Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
- School of Medicine/School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Thibaut Larcher
- Institut National de Recherche Agronomique, Unité Mixte de Recherche 703, Oniris, Nantes, France
| | - Marie-Anne Colle
- Institut National de Recherche Agronomique, Unité Mixte de Recherche 703, Oniris, Nantes, France
| | - Thuy T. Le
- QIMR Berghofer Medical Research Institute, and the Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
| | - Helder I. Nakaya
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - David Warrilow
- Public Health Virology Laboratory, Department of Health, Queensland Government, Brisbane, Queensland, Australia
| | - Richard Allcock
- Lotterywest State Biomedical Facility Genomics, Royal Perth Hospital, Perth, Western Australia, Australia
| | | | - Wayne A. Schroder
- QIMR Berghofer Medical Research Institute, and the Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
| | - Alexander A. Khromykh
- School of Medicine/School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - José A. Lopez
- QIMR Berghofer Medical Research Institute, and the Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
- School of Natural Sciences, Griffith University, Nathan, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, and the Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia
- School of Medicine/School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Queensland, Australia
- School of Natural Sciences, Griffith University, Nathan, Australia
- * E-mail:
| |
Collapse
|
49
|
Taylor A, Herrero LJ, Rudd PA, Mahalingam S. Mouse models of alphavirus-induced inflammatory disease. J Gen Virol 2014; 96:221-238. [PMID: 25351726 DOI: 10.1099/vir.0.071282-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Part of the Togaviridae family, alphaviruses are arthropod-borne viruses that are widely distributed throughout the globe. Alphaviruses are able to infect a variety of vertebrate hosts, but in humans, infection can result in extensive morbidity and mortality. Symptomatic infection can manifest as fever, an erythematous rash and/or significant inflammatory pathologies such as arthritis and encephalitis. Recent overwhelming outbreaks of alphaviral disease have highlighted the void in our understanding of alphavirus pathogenesis and the re-emergence of alphaviruses has given new impetus to anti-alphaviral drug design. In this review, the development of viable mouse models of Old Word and New World alphaviruses is examined. How mouse models that best replicate human disease have been used to elucidate the immunopathology of alphavirus pathogenesis and trial novel therapeutic discoveries is also discussed.
Collapse
Affiliation(s)
- Adam Taylor
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Lara J Herrero
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Penny A Rudd
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Suresh Mahalingam
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| |
Collapse
|
50
|
Burrack KS, Morrison TE. The role of myeloid cell activation and arginine metabolism in the pathogenesis of virus-induced diseases. Front Immunol 2014; 5:428. [PMID: 25250029 PMCID: PMC4157561 DOI: 10.3389/fimmu.2014.00428] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/22/2014] [Indexed: 12/25/2022] Open
Abstract
When an antiviral immune response is generated, a balance must be reached between two opposing pathways: the production of proinflammatory and cytotoxic effectors that drive a robust antiviral immune response to control the infection and regulators that function to limit or blunt an excessive immune response to minimize immune-mediated pathology and repair tissue damage. Myeloid cells, including monocytes and macrophages, play an important role in this balance, particularly through the activities of the arginine-hydrolyzing enzymes nitric oxide synthase 2 (Nos2; iNOS) and arginase 1 (Arg1). Nitric oxide (NO) production by iNOS is an important proinflammatory mediator, whereas Arg1-expressing macrophages contribute to the resolution of inflammation and wound repair. In the context of viral infections, expression of these enzymes can result in a variety of outcomes for the host. NO has direct antiviral properties against some viruses, whereas during other virus infections NO can mediate immunopathology and/or inhibit the antiviral immune response to promote chronic infection. Arg1 activity not only has important wound healing functions but can also inhibit the antiviral immune response during some viral infections. Thus, depending on the specific virus and the tissue(s) involved, the activity of both of these arginine-hydrolyzing enzymes can either exacerbate or limit the severity of virus-induced disease. In this review, we will discuss a variety of viral infections, including HIV, SARS-CoV, LCMV, HCV, RSV, and others, where myeloid cells influence the control and clearance of the virus from the host, as well as the severity and resolution of tissue damage, via the activities of iNOS and/or Arg1. Clearly, monocyte/macrophage activation and arginine metabolism will continue to be important areas of investigation in the context of viral infections.
Collapse
Affiliation(s)
- Kristina S Burrack
- Department of Immunology and Microbiology, University of Colorado School of Medicine , Aurora, CO , USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine , Aurora, CO , USA
| |
Collapse
|