1
|
Xu J, Li Y, Yang X, Li H, Xiao X, You J, Li H, Zheng L, Yi C, Li Z, Huang Y. Quercetin inhibited LPS-induced cytokine storm by interacting with the AKT1-FoxO1 and Keap1-Nrf2 signaling pathway in macrophages. Sci Rep 2024; 14:20913. [PMID: 39245773 PMCID: PMC11381534 DOI: 10.1038/s41598-024-71569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
Cytokine storm (CS) emerges as an exacerbated inflammatory response triggered by various factors such as pathogens and excessive immunotherapy, posing a significant threat to life if left unchecked. Quercetin, a monomer found in traditional Chinese medicine, exhibits notable anti-inflammatory and antiviral properties. This study endeavors to explore whether quercetin intervention could mitigate CS through a combination of network pharmacology analysis and experimental validation. First, common target genes and potential mechanisms affected by quercetin and CS were identified through network pharmacology, and molecular docking experiments confirmed quercetin and core targets. Subsequently, in vitro experiments of Raw264.7 cells stimulated by lipopolysaccharide (LPS) showed that quercetin could effectively inhibit the overexpression of pro-inflammatory mediators and regulate the AKT1-FoxO1 signaling pathway. At the same time, quercetin can reduce ROS through the Keap1-Nrf2 signaling pathway. In addition, in vivo studies of C57BL/6 mice injected with LPS further confirmed quercetin's inhibitory effect on CS. In conclusion, this investigation elucidated novel target genes and signaling pathways implicated in the therapeutic effects of quercetin on CS. Moreover, it provided compelling evidence supporting the efficacy of quercetin in reversing LPS-induced CS, primarily through the regulation of the AKT1-FoxO1 and Keap1-Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Jingyi Xu
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, No.17, Section3, Renmin South Road, Chengdu, 610044, People's Republic of China
| | - Yue Li
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, No.17, Section3, Renmin South Road, Chengdu, 610044, People's Republic of China
| | - Xi Yang
- Department of Medical Oncology, West China Hospital, Cancer Center, Sichuan University, No.37 Guoxue Lane, Chengdu, 610041, China
| | - Hong Li
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, No.17, Section3, Renmin South Road, Chengdu, 610044, People's Republic of China
| | - Xi Xiao
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, No.17, Section3, Renmin South Road, Chengdu, 610044, People's Republic of China
| | - Jia You
- Department of Medical Oncology, West China Hospital, Cancer Center, Sichuan University, No.37 Guoxue Lane, Chengdu, 610041, China
| | - Huawei Li
- Department of Integrated Traditional Chinese and Western Medicine, School of Medicine, Cancer Hospital, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Lingnan Zheng
- Department of Medical Oncology, West China Hospital, Cancer Center, Sichuan University, No.37 Guoxue Lane, Chengdu, 610041, China
| | - Cheng Yi
- Department of Medical Oncology, West China Hospital, Cancer Center, Sichuan University, No.37 Guoxue Lane, Chengdu, 610041, China.
| | - Zhaojun Li
- Department of Radiation Oncology, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), No.17, Xiuhua Road, Haikou, 570100, China.
| | - Ying Huang
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, No.17, Section3, Renmin South Road, Chengdu, 610044, People's Republic of China.
| |
Collapse
|
2
|
Sinenko SA, Tomilin AN. Metabolic control of induced pluripotency. Front Cell Dev Biol 2024; 11:1328522. [PMID: 38274274 PMCID: PMC10808704 DOI: 10.3389/fcell.2023.1328522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Pluripotent stem cells of the mammalian epiblast and their cultured counterparts-embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs)-have the capacity to differentiate in all cell types of adult organisms. An artificial process of reactivation of the pluripotency program in terminally differentiated cells was established in 2006, which allowed for the generation of induced pluripotent stem cells (iPSCs). This iPSC technology has become an invaluable tool in investigating the molecular mechanisms of human diseases and therapeutic drug development, and it also holds tremendous promise for iPSC applications in regenerative medicine. Since the process of induced reprogramming of differentiated cells to a pluripotent state was discovered, many questions about the molecular mechanisms involved in this process have been clarified. Studies conducted over the past 2 decades have established that metabolic pathways and retrograde mitochondrial signals are involved in the regulation of various aspects of stem cell biology, including differentiation, pluripotency acquisition, and maintenance. During the reprogramming process, cells undergo major transformations, progressing through three distinct stages that are regulated by different signaling pathways, transcription factor networks, and inputs from metabolic pathways. Among the main metabolic features of this process, representing a switch from the dominance of oxidative phosphorylation to aerobic glycolysis and anabolic processes, are many critical stage-specific metabolic signals that control the path of differentiated cells toward a pluripotent state. In this review, we discuss the achievements in the current understanding of the molecular mechanisms of processes controlled by metabolic pathways, and vice versa, during the reprogramming process.
Collapse
Affiliation(s)
- Sergey A. Sinenko
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | | |
Collapse
|
3
|
Romero-Miguel D, Casquero-Veiga M, Lamanna-Rama N, Torres-Sánchez S, MacDowell KS, García-Partida JA, Santa-Marta C, Berrocoso E, Leza JC, Desco M, Soto-Montenegro ML. N-acetylcysteine during critical neurodevelopmental periods prevents behavioral and neurochemical deficits in the Poly I:C rat model of schizophrenia. Transl Psychiatry 2024; 14:14. [PMID: 38191622 PMCID: PMC10774365 DOI: 10.1038/s41398-023-02652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 01/10/2024] Open
Abstract
Schizophrenia is a chronic neurodevelopmental disorder with an inflammatory/prooxidant component. N-acetylcysteine (NAC) has been evaluated in schizophrenia as an adjuvant to antipsychotics, but its role as a preventive strategy has not been sufficiently explored. We aimed to evaluate the potential of NAC administration in two-time windows before the onset of symptoms in a schizophrenia-like maternal immune stimulation (MIS) rat model. Pregnant Wistar rats were injected with Poly I:C or Saline on gestational day (GD) 15. Three different preventive approaches were evaluated: 1) NAC treatment during periadolescence in the offspring (from postnatal day [PND] 35 to 49); 2) NAC treatment during pregnancy after MIS challenge until delivery (GD15-21); and 3) NAC treatment throughout all pregnancy (GD1-21). At postnatal day (PND) 70, prepulse inhibition (PPI) and anxiety levels were evaluated. In vivo magnetic resonance (MR) imaging was acquired on PND100 to assess structural changes in gray and white matter, and brain metabolite concentrations. Additionally, inflammation and oxidative stress (IOS) markers were measured ex vivo in selected brain regions. MIS offspring showed behavioral, neuroanatomical, and biochemical alterations. Interestingly, NAC treatment during periadolescence prevented PPI deficits and partially counteracted some biochemical imbalances. Moreover, NAC treatments during pregnancy not only replicated the beneficial outcomes reported by the treatment in periadolescence, but also prevented some neuroanatomical deficits, including reductions in hippocampal and corpus callosum volumes. This study suggests that early reduction of inflammation and prooxidation could help prevent the onset of schizophrenia-like symptoms, supporting the importance of anti-IOS compounds in ameliorating this disorder.
Collapse
Grants
- MLS was supported by the Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III (project number PI17/01766, and grant number BA21/00030), co-financed by the European Regional Development Fund (ERDF), “A way to make Europe”; project PID2021-128862OB-I00 funded by MCIN /AEI /10.13039/501100011033 / FEDER, UE, CIBER de Salud Mental - Instituto de Salud Carlos III (project number CB07/09/0031); Delegación del Gobierno para el Plan Nacional sobre Drogas (project number 2017/085, 2022/008917); and Fundación Alicia Koplowitz.
- DRM was supported by Consejería de Educación e investigación, Comunidad de Madrid, co-funded by the European Social Fund “Investing in your future” (grant, PEJD-2018-PRE/BMD-7899).
- MCV was supported by a predoctoral grant from Fundación Tatiana Pérez de Guzmán el Bueno.
- NLR was supported by the Instituto de investigación Sanitaria Gregorio Marañón, “Programa Intramural de Impulso a la I+D+I 2019”.
- EBD, JAG-P and ST-S work was supported by the “Fondo Europeo de Desarrollo Regional” (FEDER)-UE “A way to build Europe” from the “Ministerio de Economía y Competitividad” (RTI2018-099778-B-I00); from the “Plan Nacional sobre Drogas, Ministerio de Sanidad, Consumo y Bienestar Social” (2019I041); from the “Ministerio de Salud-Instituto de Salud Carlos III” (PI18/01691); from the “Programa Operativo de Andalucía FEDER, Iniciativa Territorial Integrada ITI 2014-2020 Consejería Salud y Familias, Junta de Andalucía” (PI-0080-2017, PI-0009-2017), "Consejería de Salud y Familias, Junta de Andalucía" (PI-0134-2018 and PEMP-0008-2020); from the "Consejería de Transformación Económica, Industria, Conocimiento y Universidad, Junta de Andalucía" (P20_00958 and CTS-510); from the CEIMAR (CEIJ-003); from the “Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz-INiBICA” (LI19/06IN-CO22; IN-C09); from the “CIBERSAM”: CIBER-Consorcio Centro de Investigación Biomédica en Red- (CB07/09/0033), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación and from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 955684.
- JCL was supported by the Ministerio de Economía y Competitividad, MINECO-EU-FEDER (SAF2016-75500-R) and Ministerio de Ciencia e Innovación (PID2019-109033RB-I00).
- MD work was supported by Ministerio de Ciencia e Innovación (MCIN) and Instituto de Salud Carlos III (PT20/00044). The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505).
Collapse
Affiliation(s)
- Diego Romero-Miguel
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28007, Spain
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés (Madrid), 28911, Spain
| | - Marta Casquero-Veiga
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28007, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, IIS-FJD, 28040, Madrid, Spain
- Cardiovascular Imaging and Population Studies, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Nicolás Lamanna-Rama
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28007, Spain
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés (Madrid), 28911, Spain
| | - Sonia Torres-Sánchez
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, Universidad de Cádiz, Cádiz, 11003, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, 11009, Spain
| | - Karina S MacDowell
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain
- Department of Pharmacology & Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, Madrid, 28040, Spain
| | - José A García-Partida
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, Universidad de Cádiz, Cádiz, 11003, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, 11009, Spain
| | | | - Esther Berrocoso
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, Universidad de Cádiz, Cádiz, 11003, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, 11009, Spain
| | - Juan C Leza
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain
- Department of Pharmacology & Toxicology, School of Medicine, Universidad Complutense (UCM), IIS Imas12, IUIN, Madrid, 28040, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28007, Spain.
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés (Madrid), 28911, Spain.
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain.
- Advanced Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.
| | - María Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, 28007, Spain.
- CIBER de Salud Mental (CIBERSAM), Madrid, 28029, Spain.
- Grupo de Fisiopatología y Farmacología del Sistema Digestivo de la Universidad Rey Juan Carlos (NeuGut), Alcorcón (Madrid), 28922, Spain.
| |
Collapse
|
4
|
Hasanpour H, Falak R, Mokhtarian K, Sadeghi F, Masoumi E, Asadollahi P, Badirzadeh A, Azami SJ, Gholami MD, Pashangzadeh S, Gharagozlou MJ, Naserifar R, Mowlavi G. The effects of Fasciola hepatica recombinant proteins (peroxiredoxin and cathepsin L1) on Crohn's disease experimental model. Parasite Immunol 2024; 46:e13019. [PMID: 38275199 DOI: 10.1111/pim.13019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 11/19/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024]
Abstract
The immunomodulatory potential of the excretory-secretory (E/S) proteins of the helminths has been shown in previous investigations. This study evaluated the effects of the recombinants and excretory-secretory proteins of the Fasciola hepatica on induced colitis in Balb/c mice. The F. hepatica Recombinant proteins, Cathepsin L1 and Peroxiredoxin, and E/S proteins were intraperitoneally injected into the three mice groups as the case groups, while the control groups received PBS. Colitis was induced in mice by intraluminal administration of the 2, 4, 6-Trinitrobenzenesulfonic acid solution (TNBS). After 8 h, the case groups received the second dosage of the treatments, and it was repeated 24 h later. The immunological, pathological, and macroscopic changes were evaluated 3 days after colitis induction. The macroscopic evaluation revealed significantly lower inflammatory scores in the mice treated with recombinant Peroxiredoxin (rPRX) and recombinant Cathepsin L1 (rCL1). Despite the macroscopic observation, the pathological finding was insignificant between the groups. IFN-γ secretion was significantly lower in splenocytes of the groups that received rPRX, rCL1, and E/S than the controls. IL-10 showed significantly higher levels in groups treated with rPRX and rCL1 than controls, whereas the level of IL-4 was not statistically significant. Excretory-secretory proteins of the F. hepatica showed immunomodulatory potency and the main effects observed in this study were through the reduction of inflammatory cytokine and inflammation manifestation as well as induction of anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Hamid Hasanpour
- Department of Parasitology and Mycology, School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kobra Mokhtarian
- Department of Parasitology and Mycology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Sadeghi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Solna, Sweden
| | - Elham Masoumi
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois, USA
| | - Parisa Asadollahi
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Alireza Badirzadeh
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sanaz Jafarpour Azami
- Department of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Salar Pashangzadeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Razi Naserifar
- Department of Parasitology and Mycology, School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Gholamreza Mowlavi
- Department of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Chowdhury B, Sahoo BM, Jena AP, Hiramani K, Behera A, Acharya B. NOX-2 Inhibitors may be Potential Drug Candidates for the Management of COVID-19 Complications. Curr Drug Res Rev 2024; 16:128-133. [PMID: 37415374 DOI: 10.2174/2589977515666230706114812] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
COVID-19 is an RNA virus that attacks the targeting organs, which express angiotensin- converting enzyme-2 (ACE-2), such as the lungs, heart, renal system, and gastrointestinal tract. The virus that enters the cell by endocytosis triggers ROS production within the confines of endosomes via a NOX-2 containing NADPH-oxidase. Various isoforms of NADPH oxidase are expressed in airways and alveolar epithelial cells, endothelial and vascular smooth muscle cells, and inflammatory cells, such as alveolar macrophages, monocytes, neutrophils, and Tlymphocytes. The key NOX isoform expressed in macrophages and neutrophils is the NOX-2 oxidase, whereas, in airways and alveolar epithelial cells, it appears to be NOX-1 and NOX-2. The respiratory RNA viruses induce NOX-2-mediated ROS production in the endosomes of alveolar macrophages. The mitochondrial and NADPH oxidase (NOX) generated ROS can enhance TGF-β signaling to promote fibrosis of the lungs. The endothelium-derived ROS and platelet-derived ROS, due to activation of the NADPH-oxidase enzyme, play a crucial role in platelet activation. It has been observed that NOX-2 is generally activated in COVID-19 patients. The post-COVID complications like pulmonary fibrosis and platelet aggregation may be due to the activation of NOX-2. NOX-2 inhibitors may be a useful drug candidate to prevent COVID-19 complications like pulmonary fibrosis and platelet aggregation.
Collapse
Affiliation(s)
- Bimalendu Chowdhury
- Department of Pharmacology, Roland Institute of Pharmaceutical Sciences, Khodasingi, Berhampur, 760010, Odisha, India
| | - Biswa Mohan Sahoo
- Department of Pharmacology, Roland Institute of Pharmaceutical Sciences, Khodasingi, Berhampur, 760010, Odisha, India
| | - Akankshya Priyadarsani Jena
- Department of Pharmacology, Roland Institute of Pharmaceutical Sciences, Khodasingi, Berhampur, 760010, Odisha, India
| | - Korikana Hiramani
- Department of Pharmacology, Roland Institute of Pharmaceutical Sciences, Khodasingi, Berhampur, 760010, Odisha, India
| | - Amulyaratna Behera
- Department of Pharmacy, Centurion University of Technology and Management, Odisha, India
| | - Biswajeet Acharya
- Department of Pharmacy, Centurion University of Technology and Management, Odisha, India
| |
Collapse
|
6
|
Chu GE, Park JY, Park CH, Cho WG. Mitochondrial Reactive Oxygen Species in TRIF-Dependent Toll-like Receptor 3 Signaling in Bronchial Epithelial Cells against Viral Infection. Int J Mol Sci 2023; 25:226. [PMID: 38203397 PMCID: PMC10778811 DOI: 10.3390/ijms25010226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Toll-like receptor 3 (TLR3) plays an important role in double-stranded RNA recognition and triggers the innate immune response by acting as a key receptor against viral infections. Intracellular reactive oxygen species (ROS) are involved in TLR3-induced inflammatory responses during viral infections; however, their relationship with mitochondrial ROS (mtROS) remains largely unknown. In this study, we show that polyinosinic-polycytidylic acid (poly(I:C)), a mimic of viral RNA, induced TLR3-mediated nuclear factor-kappa B (NF-κB) signaling pathway activation and enhanced mtROS generation, leading to inflammatory cytokine production. TLR3-targeted small interfering RNA (siRNA) and Mito-TEMPO inhibited inflammatory cytokine production in poly(I:C)-treated BEAS-2B cells. Poly(I:C) recruited the TLR3 adaptor molecule Toll/IL-1R domain-containing adaptor, inducing IFN (TRIF) and activated NF-κB signaling. Additionally, TLR3-induced mtROS generation suppression and siRNA-mediated TRIF downregulation attenuated mitochondrial antiviral signaling protein (MAVS) degradation. Our findings provide insights into the TLR3-TRIF signaling pathway and MAVS in viral infections, and suggest TLR3-mtROS as a therapeutic target for the treatment of airway inflammatory and viral infectious diseases.
Collapse
Affiliation(s)
- Ga Eul Chu
- Department of Anatomy, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Republic of Korea; (G.E.C.); (C.H.P.)
| | - Jun Young Park
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea;
| | - Chan Ho Park
- Department of Anatomy, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Republic of Korea; (G.E.C.); (C.H.P.)
| | - Won Gil Cho
- Department of Anatomy, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Republic of Korea; (G.E.C.); (C.H.P.)
| |
Collapse
|
7
|
Cooke JP, Lai L. Transflammation in tissue regeneration and response to injury: How cell-autonomous inflammatory signaling mediates cell plasticity. Adv Drug Deliv Rev 2023; 203:115118. [PMID: 37884127 PMCID: PMC10842620 DOI: 10.1016/j.addr.2023.115118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 08/01/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Inflammation is a first responder against injury and infection and is also critical for the regeneration and repair of tissue after injury. The role of professional immune cells in tissue healing is well characterized. Professional immune cells respond to pathogens with humoral and cytotoxic responses; remove cellular debris through efferocytosis; secrete angiogenic cytokines and growth factors to repair the microvasculature and parenchyma. However, non-immune cells are also capable of responding to damage or pathogens. Non-immune somatic cells express pattern recognition receptors (PRRs) to detect pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). The PRRs activation leads to the release of inflammatory cytokines required for tissue defense and repair. Notably, the activation of PRRs also triggers epigenetic changes that promote DNA accessibility and cellular plasticity. Thus, non-immune cells directly respond to the local inflammatory cues and can undergo phenotypic modifications or even cell lineage transitions to facilitate tissue regeneration. This review will focus on the novel role of cell-autonomous inflammatory signaling in mediating cell plasticity, a process which is termed transflammation. We will discuss the regulation of this process by changes in the functions and expression levels of epigenetic modifiers, as well as metabolic and ROS/RNS-mediated epigenetic modulation of DNA accessibility during cell fate transition. We will highlight the recent technological developments in detecting cell plasticity and potential therapeutic applications of transflammation in tissue regeneration.
Collapse
Affiliation(s)
- John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Li Lai
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States.
| |
Collapse
|
8
|
Ruiz-Pablos M, Paiva B, Zabaleta A. Epstein-Barr virus-acquired immunodeficiency in myalgic encephalomyelitis-Is it present in long COVID? J Transl Med 2023; 21:633. [PMID: 37718435 PMCID: PMC10506247 DOI: 10.1186/s12967-023-04515-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023] Open
Abstract
Both myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) and long COVID (LC) are characterized by similar immunological alterations, persistence of chronic viral infection, autoimmunity, chronic inflammatory state, viral reactivation, hypocortisolism, and microclot formation. They also present with similar symptoms such as asthenia, exercise intolerance, sleep disorders, cognitive dysfunction, and neurological and gastrointestinal complaints. In addition, both pathologies present Epstein-Barr virus (EBV) reactivation, indicating the possibility of this virus being the link between both pathologies. Therefore, we propose that latency and recurrent EBV reactivation could generate an acquired immunodeficiency syndrome in three steps: first, an acquired EBV immunodeficiency develops in individuals with "weak" EBV HLA-II haplotypes, which prevents the control of latency I cells. Second, ectopic lymphoid structures with EBV latency form in different tissues (including the CNS), promoting inflammatory responses and further impairment of cell-mediated immunity. Finally, immune exhaustion occurs due to chronic exposure to viral antigens, with consolidation of the disease. In the case of LC, prior to the first step, there is the possibility of previous SARS-CoV-2 infection in individuals with "weak" HLA-II haplotypes against this virus and/or EBV.
Collapse
Affiliation(s)
| | - Bruno Paiva
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Av. Pío XII 55, 31008, Pamplona, Spain
| | - Aintzane Zabaleta
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Av. Pío XII 55, 31008, Pamplona, Spain.
| |
Collapse
|
9
|
Zhu M, Dagah OMA, Silaa BB, Lu J. Thioredoxin/Glutaredoxin Systems and Gut Microbiota in NAFLD: Interplay, Mechanism, and Therapeutical Potential. Antioxidants (Basel) 2023; 12:1680. [PMID: 37759983 PMCID: PMC10525532 DOI: 10.3390/antiox12091680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common clinical disease, and its pathogenesis is closely linked to oxidative stress and gut microbiota dysbiosis. Recently accumulating evidence indicates that the thioredoxin and glutaredoxin systems, the two thiol-redox dependent antioxidant systems, are the key players in the NAFLD's development and progression. However, the effects of gut microbiota dysbiosis on the liver thiol-redox systems are not well clarified. This review explores the role and mechanisms of oxidative stress induced by bacteria in NAFLD while emphasizing the crucial interplay between gut microbiota dysbiosis and Trx mediated-redox regulation. The paper explores how dysbiosis affects the production of specific gut microbiota metabolites, such as trimethylamine N-oxide (TMAO), lipopolysaccharides (LPS), short-chain fatty acids (SCFAs), amino acids, bile acid, and alcohol. These metabolites, in turn, significantly impact liver inflammation, lipid metabolism, insulin resistance, and cellular damage through thiol-dependent redox signaling. It suggests that comprehensive approaches targeting both gut microbiota dysbiosis and the thiol-redox antioxidant system are essential for effectively preventing and treating NAFLD. Overall, comprehending the intricate relationship between gut microbiota dysbiosis and thiol-redox systems in NAFLD holds significant promise in enhancing patient outcomes and fostering the development of innovative therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Jun Lu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (M.Z.); (O.M.A.D.); (B.B.S.)
| |
Collapse
|
10
|
Gao Y, Hua R, Peng K, Yin Y, Zeng C, Guo Y, Wang Y, Li L, Li X, Qiu Y, Wang Z. High-starchy carbohydrate diet aggravates NAFLD by increasing fatty acids influx mediated by NOX2. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Najjar RS. The Impacts of Animal-Based Diets in Cardiovascular Disease Development: A Cellular and Physiological Overview. J Cardiovasc Dev Dis 2023; 10:282. [PMID: 37504538 PMCID: PMC10380617 DOI: 10.3390/jcdd10070282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the United States, and diet plays an instrumental role in CVD development. Plant-based diets have been strongly tied to a reduction in CVD incidence. In contrast, animal food consumption may increase CVD risk. While increased serum low-density lipoprotein (LDL) cholesterol concentrations are an established risk factor which may partially explain the positive association with animal foods and CVD, numerous other biochemical factors are also at play. Thus, the aim of this review is to summarize the major cellular and molecular effects of animal food consumption in relation to CVD development. Animal-food-centered diets may (1) increase cardiovascular toll-like receptor (TLR) signaling, due to increased serum endotoxins and oxidized LDL cholesterol, (2) increase cardiovascular lipotoxicity, (3) increase renin-angiotensin system components and subsequent angiotensin II type-1 receptor (AT1R) signaling and (4) increase serum trimethylamine-N-oxide concentrations. These nutritionally mediated factors independently increase cardiovascular oxidative stress and inflammation and are all independently tied to CVD development. Public policy efforts should continue to advocate for the consumption of a mostly plant-based diet, with the minimization of animal-based foods.
Collapse
Affiliation(s)
- Rami Salim Najjar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
12
|
Jain S, Saha P, Syamprasad NP, Panda SR, Rajdev B, Jannu AK, Sharma P, Naidu VGM. Targeting TLR4/3 using chlorogenic acid ameliorates LPS+POLY I:C-induced acute respiratory distress syndrome via alleviating oxidative stress-mediated NLRP3/NF-κB axis. Clin Sci (Lond) 2023; 137:785-805. [PMID: 36951146 DOI: 10.1042/cs20220625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/24/2023]
Abstract
Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a life-threatening condition caused due to significant pulmonary and systemic inflammation. Chlorogenic acid (CGA) has been shown to possess potent antioxidant, anti-inflammatory, and immunoprotective properties. However, the protective effect of CGA on viral and bacterial-induced ALI/ARDS is not yet explored. Hence, the current study is aimed to evaluate the preclinical efficacy of CGA in lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (POLY I:C)-induced ALI/ARDS models in vitro and in vivo. Human airway epithelial (BEAS-2B) cells exposed to LPS+POLY I:C significantly elevated oxidative stress and inflammatory signaling. Co-treatment with CGA (10 and 50 µM) prevented inflammation and oxidative stress mediated by TLR4/TLR3 and NLRP3 inflammasome axis. BALB/c mice, when chronically challenged with LPS+POLY I:C showed a significant influx of immune cells, up-regulation of pro-inflammatory cytokines, namely: IL-6, IL-1β, and TNF-α, and treatment with intranasal CGA (1 and 5 mg/kg) normalized the elevated levels of immune cell infiltration as well as pro-inflammatory cytokines. D-Dimer, the serum marker for intravascular coagulation, was significantly increased in LPS+ POLY I:C challenged animals which was reduced with CGA treatment. Further, CGA treatment also has a beneficial effect on the lung and heart, as shown by improving lung physiological and cardiac functional parameters accompanied by the elevated antioxidant response and simultaneous reduction in tissue damage caused by LPS+POLY I:C co-infection. In summary, these comprehensive, in vitro and in vivo studies suggest that CGA may be a viable therapeutic option for bacterial and viral-induced ALI-ARDS-like pathology.
Collapse
Affiliation(s)
- Siddhi Jain
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Guwahati, Assam 781101, India
| | - Pritam Saha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Guwahati, Assam 781101, India
| | - Nayadi Parambil Syamprasad
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Guwahati, Assam 781101, India
| | - Samir Rajan Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Guwahati, Assam 781101, India
| | - Bishal Rajdev
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Guwahati, Assam 781101, India
| | - Arun Kumar Jannu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Guwahati, Assam 781101, India
| | - Pawan Sharma
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane and Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, U.S.A
| | - Vegi Ganga Modi Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila village, Changsari, Guwahati, Assam 781101, India
- Department of Biotechnology, Centre for the Excellence of GMP Extraction Facility, National Institute of Pharmaceutical Education and Research Guwahati, Assam, India
| |
Collapse
|
13
|
Ahmed D, Al-Daraawi M, Cassol E. Innate sensing and cellular metabolism: role in fine tuning antiviral immune responses. J Leukoc Biol 2023; 113:164-190. [PMID: 36822175 DOI: 10.1093/jleuko/qiac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/19/2023] Open
Abstract
Several studies over the last decade have identified intimate links between cellular metabolism and macrophage function. Metabolism has been shown to both drive and regulate macrophage function by producing bioenergetic and biosynthetic precursors as well as metabolites (and other bioactive molecules) that regulate gene expression and signal transduction. Many studies have focused on lipopolysaccharide-induced reprogramming, assuming that it is representative of most inflammatory responses. However, emerging evidence suggests that diverse pathogen-associated molecular patterns (PAMPs) are associated with unique metabolic profiles, which may drive pathogen specific immune responses. Further, these metabolic pathways and processes may act as a rheostat to regulate the magnitude of an inflammatory response based on the biochemical features of the local microenvironment. In this review, we will discuss recent work examining the relationship between cellular metabolism and macrophage responses to viral PAMPs and describe how these processes differ from lipopolysaccharide-associated responses. We will also discuss how an improved understanding of the specificity of these processes may offer new insights to fine-tune macrophage function during viral infections or when using viral PAMPs as therapeutics.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Malak Al-Daraawi
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
14
|
Li W, Luo F, Wu X, Fan B, Yang M, Zhong W, Guan D, Wang F, Wang Q. Anti-Inflammatory Effects and Mechanisms of Dandelion in RAW264.7 Macrophages and Zebrafish Larvae. Front Pharmacol 2022; 13:906927. [PMID: 36091818 PMCID: PMC9454954 DOI: 10.3389/fphar.2022.906927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Dandelions (Taraxacum spp.) play an important role in the treatment of inflammatory diseases. In this study, we investigated the anti-inflammatory effects of Dandelion Extract (DE) in LPS-induced RAW264.7 macrophages and copper sulfate (CuSO4)-induced zebrafish larvae. DE was not toxic to RAW264.7 cells at 75 μg/ml as measured by cell viability, and DE inhibited LPS-induced cell morphological changes as measured by inverted microscopy. In survival experiments, DE at 25 μg/ml had no toxicity to zebrafish larvae. By using an enzymatic standard assay, DE reduced the production of nitric oxide (NO) in LPS-induced RAW264.7 cells. Fluorescence microscopy results show that DE reduced LPS-induced ROS production and apoptosis in RAW264.7 cells. DE also inhibited CuSO4-induced ROS production and neutrophil aggregation in zebrafish larvae. The results of flow cytometry show that DE alleviated the LPS-induced cell cycle arrest. In LPS-induced RAW264.7 cells, RT-PCR revealed that DE decreased the expression of M1 phenotypic genes iNOS, IL-6, and IL-1β while increasing the expression of M2 phenotypic genes IL-10 and CD206. Furthermore, in CuSO4-induced zebrafish larvae, DE reduced the expression of iNOS, TNF-α, IL-6, and IL-10. The findings suggest that DE reduces the LPS-induced inflammatory response in RAW264.7 cells by regulating polarization and apoptosis. DE also reduces the CuSO4-induced inflammatory response in zebrafish larvae.
Collapse
Affiliation(s)
- Wenju Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fulong Luo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaohui Wu
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingran Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wu Zhong
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Rehabilitation Hospital, Chengdu, China
| | - Dongyan Guan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Sino-Portugal TCM International Cooperation Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
O’Hara-Wright M, Mobini S, Gonzalez-Cordero A. Bioelectric Potential in Next-Generation Organoids: Electrical Stimulation to Enhance 3D Structures of the Central Nervous System. Front Cell Dev Biol 2022; 10:901652. [PMID: 35656553 PMCID: PMC9152151 DOI: 10.3389/fcell.2022.901652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 12/21/2022] Open
Abstract
Pluripotent stem cell-derived organoid models of the central nervous system represent one of the most exciting areas in in vitro tissue engineering. Classically, organoids of the brain, retina and spinal cord have been generated via recapitulation of in vivo developmental cues, including biochemical and biomechanical. However, a lesser studied cue, bioelectricity, has been shown to regulate central nervous system development and function. In particular, electrical stimulation of neural cells has generated some important phenotypes relating to development and differentiation. Emerging techniques in bioengineering and biomaterials utilise electrical stimulation using conductive polymers. However, state-of-the-art pluripotent stem cell technology has not yet merged with this exciting area of bioelectricity. Here, we discuss recent findings in the field of bioelectricity relating to the central nervous system, possible mechanisms, and how electrical stimulation may be utilised as a novel technique to engineer “next-generation” organoids.
Collapse
Affiliation(s)
- Michelle O’Hara-Wright
- Stem Cell Medicine Group, Children’s Medical Research Institute, University of Sydney, Westmead, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Sahba Mobini
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM + CSIC), Madrid, Spain
| | - Anai Gonzalez-Cordero
- Stem Cell Medicine Group, Children’s Medical Research Institute, University of Sydney, Westmead, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
- *Correspondence: Anai Gonzalez-Cordero,
| |
Collapse
|
16
|
Zhang J, Chen R, Zhang G, Wang Y, Peng J, Hu R, Li R, Gu W, Zhang L, Sun Q, Liu C. PM 2.5 increases mouse blood pressure by activating toll-like receptor 3. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113368. [PMID: 35247710 DOI: 10.1016/j.ecoenv.2022.113368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS Plenty of literature has documented that fine particulate matter (PM2.5) exposure is related to blood pressure (BP) elevation. Vascular dysfunction is the initiation of cardiovascular diseases, such as hypertension. This thesis set out to assess the role of Toll-like receptor 3 (TLR3) in the increase in BP induced by PM2.5. METHODS C57BL/6 and TLR3 deficient (TLR3-/-) male mice were randomly allocated to filtered air chamber or real-world inhaled concentrated PM2.5 chamber. BP was evaluated using non-invasive BP recordings. After euthanasia, the aortas and small mesenteric arteries (SMAs) were isolated, and vascular tone was measured using a wire myograph. Leucocytes were detached to assess myeloid-derived suppressor cells using flow cytometry. siRNA transfection was performed to silence TLR3 expression in the human vascular endothelial cells incubated with PM2.5. The gene expression levels of inflammation, adhesion molecules, and oxidative stress in the aortas were assessed by quantitative PCR. RESULTS Exposure to PM2.5 increased mouse BP, and TLR3 deficiency protected against PM2.5 exposure-induced BP increase. Additionally, the injury of vascular function in the aortas and SMAs was inhibited in TLR3-/- mice. The intercellular adhesion molecule-1 (ICAM-1) was attenuated in TLR3-/- mice, accompanied by the inhibition of inflammatory and oxidized genes of the aortas, such as F4/80, interleukin-6, interleukin-1 beta, and NADPH oxidase 4. In vitro, the enhanced mRNA expression of genes encoding inflammation, oxidative stress, and ICAM-1 by PM2.5 was inhibited by TLR3 silence as well. CONCLUSIONS PM2.5 exposure increased BP via TLR3 activation and impaired vascular function.
Collapse
Affiliation(s)
- Jinna Zhang
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rucheng Chen
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guoqing Zhang
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yixuan Wang
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Peng
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Renjie Hu
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ran Li
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weijia Gu
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Zhang
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinghua Sun
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cuiqing Liu
- School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
17
|
Hong AY, Lee SJ, Lee KB, Shin JW, Jeong EM, Kim IG. Double-Stranded RNA Enhances Matrix Metalloproteinase-1 and -13 Expressions through TLR3-Dependent Activation of Transglutaminase 2 in Dermal Fibroblasts. Int J Mol Sci 2022; 23:ijms23052709. [PMID: 35269849 PMCID: PMC8911030 DOI: 10.3390/ijms23052709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
UV-irradiation induces the secretion of double-stranded RNA (dsRNA) derived from damaged noncoding RNAs in keratinocytes, which enhance the expression of matrix metalloproteinases (MMP) in non-irradiated dermal fibroblasts, leading to dysregulation of extracellular matrix homeostasis. However, the signaling pathway responsible for dsRNA-induced MMP expression has not been fully understood. Transglutaminase 2 (TG2) is an enzyme that modifies substrate proteins by incorporating polyamine or crosslinking of proteins, thereby regulating their functions. In this study, we showed that TG2 mediates dsRNA-induced MMP-1 expression through NF-κB activation. Treatment of poly(I:C), a synthetic dsRNA analogue binding to toll-like receptor 3 (TLR3), generates ROS, which in turn activates TG2 in dermal fibroblast. Subsequently, TG2 activity enhances translocation of p65 into the nucleus, where it augments transcription of MMP. We confirmed these results by assessing the level of MMP expression in Tlr3−/−, TG2-knockdowned and Tgm2−/− dermal fibroblasts after poly(I:C)-treatment. Moreover, treatment with quercetin showed dose-dependent suppression of poly(I:C)-induced MMP expression. Furthermore, ex vivo cultured skin from Tgm2−/− mice exhibited a significantly reduced level of MMP mRNA compared with those from wild-type mice. Our results indicate that TG2 is a critical regulator in dsRNA-induced MMP expression, providing a new target and molecular basis for antioxidant therapy in preventing collagen degradation.
Collapse
Affiliation(s)
- Ah-Young Hong
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (A.-Y.H.); (S.-J.L.); (K.B.L.); (J.-W.S.)
| | - Seok-Jin Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (A.-Y.H.); (S.-J.L.); (K.B.L.); (J.-W.S.)
| | - Ki Baek Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (A.-Y.H.); (S.-J.L.); (K.B.L.); (J.-W.S.)
- Laboratory for Cellular Response to Oxidative Stress, Cell2in, Inc., Seoul 03127, Korea
| | - Ji-Woong Shin
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (A.-Y.H.); (S.-J.L.); (K.B.L.); (J.-W.S.)
| | - Eui Man Jeong
- Department of Pharmacy, College of Pharmacy, Jeju National University, Jeju 63243, Korea;
| | - In-Gyu Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea; (A.-Y.H.); (S.-J.L.); (K.B.L.); (J.-W.S.)
- Laboratory for Cellular Response to Oxidative Stress, Cell2in, Inc., Seoul 03127, Korea
- Department of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence:
| |
Collapse
|
18
|
Wu W, Fu G, Xuan R, Zhai L, Lu Y, Tang M, Liu J, Zhang C, Chen H, Wang F. Food additive sodium bisulfite induces intracellular imbalance of biothiols levels in NCM460 colonic cells to trigger intestinal inflammation in mice. Toxicol Lett 2022; 359:73-83. [DOI: 10.1016/j.toxlet.2022.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 10/19/2022]
|
19
|
Houeiss P, Luce S, Boitard C. Environmental Triggering of Type 1 Diabetes Autoimmunity. Front Endocrinol (Lausanne) 2022; 13:933965. [PMID: 35937815 PMCID: PMC9353023 DOI: 10.3389/fendo.2022.933965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease in which pancreatic islet β cells are destroyed by immune cells, ultimately leading to overt diabetes. The progressive increase in T1D incidence over the years points to the role of environmental factors in triggering or accelerating the disease process which develops on a highly multigenic susceptibility background. Evidence that environmental factors induce T1D has mostly been obtained in animal models. In the human, associations between viruses, dietary habits or changes in the microbiota and the development of islet cell autoantibodies or overt diabetes have been reported. So far, prediction of T1D development is mostly based on autoantibody detection. Future work should focus on identifying a causality between the different environmental risk factors and T1D development to improve prediction scores. This should allow developing preventive strategies to limit the T1D burden in the future.
Collapse
Affiliation(s)
- Pamela Houeiss
- Laboratory Immunology of Diabetes, Department EMD, Cochin Institute, INSERMU1016, Paris, France
- Medical Faculty, Paris University, Paris, France
| | - Sandrine Luce
- Laboratory Immunology of Diabetes, Department EMD, Cochin Institute, INSERMU1016, Paris, France
- Medical Faculty, Paris University, Paris, France
| | - Christian Boitard
- Laboratory Immunology of Diabetes, Department EMD, Cochin Institute, INSERMU1016, Paris, France
- Medical Faculty, Paris University, Paris, France
- *Correspondence: Christian Boitard,
| |
Collapse
|
20
|
Ahmed D, Humphrey A, Roy D, Sheridan ME, Versey Z, Jaworski A, Edwards A, Donner J, Abizaid A, Willmore W, Kumar A, Golshani A, Cassol E. HIF-1α Regulation of Cytokine Production following TLR3 Engagement in Murine Bone Marrow-Derived Macrophages Is Dependent on Viral Nucleic Acid Length and Glucose Availability. THE JOURNAL OF IMMUNOLOGY 2021; 207:2813-2827. [PMID: 34740958 DOI: 10.4049/jimmunol.2001282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 09/16/2021] [Indexed: 12/24/2022]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is an important regulator of glucose metabolism and inflammatory cytokine production in innate immune responses. Viruses modulate HIF-1α to support viral replication and the survival of infected cells, but it is unclear if this transcription factor also plays an important role in regulating antiviral immune responses. In this study, we found that short and long dsRNA differentially engage TLR3, inducing distinct levels of proinflammatory cytokine production (TNF-α and IL-6) in bone marrow-derived macrophages from C57BL/6 mice. These responses are associated with differential accumulation of HIF-1α, which augments NF-κB activation. Unlike TLR4 responses, increased HIF-1α following TLR3 engagement is not associated with significant alterations in glycolytic activity and was more pronounced in low glucose conditions. We also show that the mechanisms supporting HIF-1α stabilization may differ following stimulation with short versus long dsRNA and that pyruvate kinase M2 and mitochondrial reactive oxygen species play a central role in these processes. Collectively, this work suggests that HIF-1α may fine-tune proinflammatory cytokine production during early antiviral immune responses, particularly when there is limited glucose availability or under other conditions of stress. Our findings also suggest we may be able to regulate the magnitude of proinflammatory cytokine production during antiviral responses by targeting proteins or molecules that contribute to HIF-1α stabilization.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Biology, Carleton University, Ottawa, Ontario, Canada.,Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Allan Humphrey
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Apoptosis Research Centre, The Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - David Roy
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | | | - Zoya Versey
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Allison Jaworski
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Alex Edwards
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - James Donner
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - William Willmore
- Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ashok Kumar
- Department of Pathology, The Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; and.,Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ashkan Golshani
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada;
| |
Collapse
|
21
|
Luan G, Zhu Z, Wu K, Yin S. Theaflavin-3,3'-digallate attenuates cigarette smoke extract-induced pulmonary emphysema in mice by suppressing necroptosis. Exp Ther Med 2021; 23:11. [PMID: 34815763 PMCID: PMC8593858 DOI: 10.3892/etm.2021.10933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Pulmonary emphysema is one of the most important pathological manifestations of chronic obstructive pulmonary disease and is commonly associated with cigarette smoking. Previous studies have indicated that necroptosis, a novel non-apoptotic cell death mechanism associated with inflammation and oxidative stress, may contribute to the development of pulmonary emphysema. Theaflavin-3,3'-digallate (TF-3), one of the theaflavins present in black tea, is known to possess several bioactive properties. In the present study, it was demonstrated that TF-3 significantly reduced the generation of reactive oxygen species and the mRNA expression levels of TNF-α, IL-1β and IL-6 in CSE-treated human normal lung epithelial BEAS-2B cells. To further explore the role of TF-3 in necroptosis, the necroptotic rates of BEAS-2B cells were examined via flow cytometry and immunofluorescence assays. The results demonstrated that TF-3 may suppress necroptosis in CSE-treated BEAS-2B cells. Furthermore, it was determined that TF-3 significantly inhibited the CSE-induced phosphorylation of p38 MAPK, receptor-interacting serine/threonine-protein kinase three (RIPK3) and mixed lineage kinase domain-like (MLKL) in BEAS-2B cells. Another experiment demonstrated that a pharmacological inhibitor of the p38 MAPK pathway, SB203580, significantly reduced the protein expression levels of phosphorylated (p)-RIPK3 and phosphorylated (p-)MLKL, which indicated that TF-3 suppressed necroptosis via the p38 MAPK/RIPK3/MLKL signaling pathways. In vivo, it was observed that TF-3 treatment significantly attenuated morphological lung injury in mice with CSE-induced emphysema. Moreover, TF-3 significantly reduced the levels of proinflammatory cytokines, TNF-α and IL-1β and significantly enhanced the antioxidant capacity of the lung tissues in mice with emphysema. TF-3 also significantly inhibited the levels of p-RIPK3 and p-MLKL in the lungs of mice with emphysema. Therefore, the present study indicated that TF-3 may attenuate CSE-induced emphysema in mice by inhibiting necroptosis.
Collapse
Affiliation(s)
- Guangxin Luan
- National Demonstration Center for Experimental Fisheries Science Education, Affiliated Shanghai Ocean University, Shanghai 201306, P.R. China.,Department of Respiratory Medicine, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Zhen Zhu
- Department of Respiratory Medicine, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Kaiyue Wu
- National Demonstration Center for Experimental Fisheries Science Education, Affiliated Shanghai Ocean University, Shanghai 201306, P.R. China
| | - Shaojun Yin
- Department of Respiratory Medicine, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| |
Collapse
|
22
|
Protective Effect of Xiao-Xu-Ming Decoction-Mediated Inhibition of ROS/NLRP3 Axis on Lipopolysaccharide-Induced Acute Lung Injury In Vitro and In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8257495. [PMID: 34616481 PMCID: PMC8490040 DOI: 10.1155/2021/8257495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/13/2021] [Indexed: 12/02/2022]
Abstract
Background As a traditional Chinese medicine prescription, Xiao-Xu-Ming decoction (XXMD) could reduce the incidence of lung infection of patients with cerebral infarction. Nonetheless, the therapeutic mechanisms of XXMD in acute lung injury (ALI) remain to be elucidated. Our study was aimed to assess the effects of XXMD protects against ALI. Methods ALI model was induced by intraperitoneal injection of lipopolysaccharide (LPS) in vivo. In vitro, human pulmonary alveolar epithelial cells (HPAEpiC) were treated with XXMD and were followed by LPS treatment. The levels of ZO-1, CLDN4, NLRP3, and caspase 1 were detected by Western blot, and the content of IL-1 and IL-18 was determined by ELISA. Transepithelial electrical resistance was used to detect the cell permeability. The reactive oxygen species (ROS) levels within the cells were evaluated by flow cytometry. Results Our results showed that XXMD attenuated LPS-induced oxidative stress, barrier dysfunction, and the activation of NLRP3 inflammasome in vitro, as evidenced by enhanced ROS production, TEER levels, expression of NLRP3 and caspase 1 (p20) and release of IL-1β and IL-18, and weakened cell permeability. In addition, XXMD could counteract the effects of NLRP3 overexpression on HPAEpiC and vice versa. XXMD treatment also ameliorated the degree of neutrophil infiltration, barrier dysfunction, and the activation of NLRP3 in LPS-induced ALI lung tissues in vivo. Conclusion The findings showed that XXMD could alleviate LPS-induced ALI injury and inhibit inflammation and suppress ROS/NLRP3 signaling pathway, which were involved in these protective effects.
Collapse
|
23
|
Chung SA, Lim JW, Kim H. Docosahexaenoic Acid Inhibits Cytokine Expression by Reducing Reactive Oxygen Species in Pancreatic Stellate Cells. J Cancer Prev 2021; 26:195-206. [PMID: 34703822 PMCID: PMC8511577 DOI: 10.15430/jcp.2021.26.3.195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/08/2022] Open
Abstract
Pancreatic stellate cells (PSCs) are activated by inflammatory stimuli, such as TNF-α or viral infection. Activated PSCs play a crucial role in the development of chronic pancreatitis. Polyinosinic-polycytidylic acid (poly (I:C)) is structurally similar to double-stranded RNA and mimics viral infection. Docosahexaenoic acid (DHA) exhibits anti-inflammatory activity. It inhibited fibrotic mediators and reduced NF-κB activity in the pancreas of mice with chronic pancreatitis. The present study aimed to investigate whether DHA could suppress cytokine expression in PSCs isolated from rats. Cells were pre-treated with DHA or the antioxidant N-acetylcysteine (NAC) and stimulated with TNF-α or poly (I:C). Treatment with TNF-α or poly (I:C) increased the expression of monocyte chemoattractant protein 1 (MCP-1) and chemokine C-X3-C motif ligand 1 (CX3CL1), which are known chemoattractants, and enhanced intracellular and mitochondrial reactive oxygen species (ROS) production and NF-κB activity, but reduced mitochondrial membrane potential (MMP). Increased intracellular and mitochondrial ROS accumulation, cytokine expression, MMP disruption, and NF-κB activation were all prevented by DHA in TNF-α- or poly (I:C)-treated PSCs. NAC suppressed TNF-α- or poly (I:C)-induced expression of MCP-1 and CX3CL1. In conclusion, DHA inhibits poly (I:C)- or TNF-α-induced cytokine expression and NF-κB activation by reducing intracellular and mitochondrial ROS in PSCs. Consumption of DHA-rich foods may be beneficial in preventing chronic pancreatitis by inhibiting cytokine expression in PSCs.
Collapse
Affiliation(s)
- Sun Ah Chung
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Joo Weon Lim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Hyeyong Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
24
|
Stimulation of Toll-Like Receptor 3 Diminishes Intracellular Growth of Salmonella Typhimurium by Enhancing Autophagy in Murine Macrophages. Metabolites 2021; 11:metabo11090602. [PMID: 34564417 PMCID: PMC8466172 DOI: 10.3390/metabo11090602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 12/03/2022] Open
Abstract
The Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative Gram-negative bacterium that causes acute gastroenteritis and food poisoning. S. Typhimurium can survive within macrophages that are able to initiate the innate immune response after recognizing bacteria via various pattern-recognition receptors (PRRs), such as Toll-like receptors (TLRs). In this study, we investigated the effects and molecular mechanisms by which agonists of endosomal TLRs—especially TLR3—contribute to controlling S. Typhimurium infection in murine macrophages. Treatment with polyinosinic:polycytidylic acid (poly(I:C))—an agonist of TLR3—significantly suppressed intracellular bacterial growth by promoting intracellular ROS production in S. Typhimurium-infected cells. Pretreatment with diphenyleneiodonium (DPI)—an NADPH oxidase inhibitor—reduced phosphorylated MEK1/2 levels and restored intracellular bacterial growth in poly(I:C)-treated cells during S. Typhimurium infection. Nitric oxide (NO) production increased through the NF-κB-mediated signaling pathway in poly(I:C)-treated cells during S. Typhimurium infection. Intracellular microtubule-associated protein 1A/1B-light chain 3 (LC3) levels were increased in poly(I:C)-treated cells; however, they were decreased in cells pretreated with 3-methyladenine (3-MA)—a commonly used inhibitor of autophagy. These results suggest that poly(I:C) induces autophagy and enhances ROS production via MEK1/2-mediated signaling to suppress intracellular bacterial growth in S. Typhimurium-infected murine macrophages, and that a TLR3 agonist could be developed as an immune enhancer to protect against S. Typhimurium infection.
Collapse
|
25
|
Peroxiredoxin 6 secreted by Schwann-like cells protects neuron against ischemic stroke in rats via PTEN/PI3K/AKT pathway. Tissue Cell 2021; 73:101635. [PMID: 34482185 DOI: 10.1016/j.tice.2021.101635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/21/2022]
Abstract
Schwann cells can promote the survival of damaged neurons and axon regeneration by secreting or releasing some proteins and factors which may provide effective strategies to the remedy for ischemic stroke. The models of middle cerebral artery occlusion and oxygen-glucose deprivation (OGD) were established. Peroxiredoxin 6 (PRDX6) was found in Schwann-like cell conditioned medium (SCLC-CM) by mass spectrometry. The rehabilitative performance of SCLC-CM on focal cerebral ischemia of rats and on OGD-induced PC12 cells were assessed. SCLC-CM significantly improved neurological recovery, reducing the infarct volume of rats after stroke. PRDX6 could significantly inhibit neuron apoptosis in the OGD injury by mediating oxidative stress and activating the PTEN/PI3K/AKT pathway. In conclusion, PRDX6 secreted by Schwann-like cell protects neuron against focal cerebral ischemia, SCLC-CM might be a new effective early intervention for ischemic stroke.
Collapse
|
26
|
Sinenko SA, Starkova TY, Kuzmin AA, Tomilin AN. Physiological Signaling Functions of Reactive Oxygen Species in Stem Cells: From Flies to Man. Front Cell Dev Biol 2021; 9:714370. [PMID: 34422833 PMCID: PMC8377544 DOI: 10.3389/fcell.2021.714370] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS), superoxide anion and hydrogen peroxide, are generated as byproducts of oxidative phosphorylation in the mitochondria or via cell signaling-induced NADPH oxidases in the cytosol. In the recent two decades, a plethora of studies established that elevated ROS levels generated by oxidative eustress are crucial physiological mediators of many cellular and developmental processes. In this review, we discuss the mechanisms of ROS generation and regulation, current understanding of ROS functions in the maintenance of adult and embryonic stem cells, as well as in the process of cell reprogramming to a pluripotent state. Recently discovered cell-non-autonomous ROS functions mediated by growth factors are crucial for controlling cell differentiation and cellular immune response in Drosophila. Importantly, many physiological functions of ROS discovered in Drosophila may allow for deciphering and understanding analogous processes in human, which could potentially lead to the development of novel therapeutic approaches in ROS-associated diseases treatment.
Collapse
Affiliation(s)
- Sergey A Sinenko
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | - Andrey A Kuzmin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexey N Tomilin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
27
|
Schilling S, Chausse B, Dikmen HO, Almouhanna F, Hollnagel JO, Lewen A, Kann O. TLR2- and TLR3-activated microglia induce different levels of neuronal network dysfunction in a context-dependent manner. Brain Behav Immun 2021; 96:80-91. [PMID: 34015428 DOI: 10.1016/j.bbi.2021.05.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 02/06/2023] Open
Abstract
Recognition of pathogen- or damage-associated molecular patterns (PAMPs, DAMPs) by innate Toll-like receptors (TLRs) is central to the activation of microglia (brain macrophages) in many CNS diseases. Notably, TLR-mediated microglial activation is complex and modulated by additional exogenous and endogenous immunological signals. The impact of different microglial reactive phenotypes on electrical activity and neurotransmission is widely unknown, however. We explored the effects of TLR ligands on microglia and neuronal network function in rat organotypic hippocampal slice cultures (in situ), i.e., postnatal cortical tissue lacking adaptive immunity. Single exposure of slice cultures to TLR2 or TLR3 ligands [PGN, poly(I:C)] for 2-3 days induced moderate microglial activation featuring IL-6 and TNF-α release and only mild alterations of fast neuronal gamma band oscillations (30-70 Hz) that are fundamental to higher cognitive functions, such as perception, memory and behavior. Paired exposure to TLR3/TLR2 or TLR3/TLR4 ligands (LPS) induced nitric oxide (NO) release, enhanced TNF-α release, and associated with advanced network dysfunction, including slowing to the beta frequency band (12-30 Hz) and neural bursts (hyperexcitability). Paired exposure to a TLR ligand and the leukocyte cytokine IFN-γ enhanced NO release and associated with severe network dysfunction, albeit sensitive parvalbumin- and somatostatin-positive inhibitory interneurons were preserved. Notably, the neuronal disturbance was prevented by either microglial depletion or pharmacological inhibition of oxidant-producing enzymes, inducible NO synthase (iNOS) and NADPH oxidase. In conclusion, TLR-activated microglia can induce different levels of neuronal network dysfunction, in which severe dysfunction is mainly caused by reactive oxygen and nitrogen species rather than proinflammatory cytokines. Our findings provide a mechanistic insight into microglial activation and functional neuronal network impairment, with relevance to neuroinflammation and neurodegeneration observed in, e.g., meningoencephalitis, multiple sclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Simone Schilling
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Bruno Chausse
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Hasan Onur Dikmen
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Fadi Almouhanna
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Jan-Oliver Hollnagel
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Andrea Lewen
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, D-69120 Heidelberg, Germany.
| |
Collapse
|
28
|
Liu Y, Tang G, Li J. Effect and Mechanism Study of Sodium Houttuyfonate on Ventilator-Induced Lung Injury by Inhibiting ROS and Inflammation. Yonsei Med J 2021; 62:545-554. [PMID: 34027642 PMCID: PMC8149929 DOI: 10.3349/ymj.2021.62.6.545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/18/2021] [Accepted: 03/16/2021] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Ventilator-induced lung injury (VILI) is a serious complication of mechanical ventilation (MV) that increases morbidity and mortality of patients receiving ventilator treatment. This study aimed to reveal the molecular mechanism of sodium houttuyfonate (SH) on VILI. MATERIALS AND METHODS The male mice VILI model was established by high tidal volume ventilation. The cell model was established by performing cell stretch (CS) experiments on murine respiratory epithelial cells MLE-15. In addition, the JNK activator Anisomycin and JNK inhibitor SP600125 were used on VILI mice and CS-treated cells. RESULTS VILI modeling damaged the structural integrity, increased apoptosis and wet-to-dry (W/D) ratio, enhanced the levels of inflammatory factors, reactive oxygen species (ROS) and malonaldehyde (MDA), and activated JNK pathway in lung tissues. SH gavage alleviated lung injury, decreased apoptosis and W/D ratio, and reduced levels of inflammatory factors, ROS and MDA, and p-JNK/JNK expression of lung tissues in VILI mice. However, activation of JNK wiped the protective effect of SH on VILI. Contrary results were found in experiments with JNK inhibitor SP600125. CONCLUSION SH relieved VILI by inhibiting the ROS-mediated JNK pathway.
Collapse
Affiliation(s)
- Yi Liu
- Department of Anesthesiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Gang Tang
- Department of Anesthesiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinyu Li
- Department of Anesthesiology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
29
|
Reddy SS, Agarwal H, Jaiswal A, Jagavelu K, Dikshit M, Barthwal MK. Macrophage p47 phox regulates pressure overload-induced left ventricular remodeling by modulating IL-4/STAT6/PPARγ signaling. Free Radic Biol Med 2021; 168:168-179. [PMID: 33736980 DOI: 10.1016/j.freeradbiomed.2021.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/19/2022]
Abstract
NADPH oxidase (Nox) mediates ROS production and contributes to cardiac remodeling. However, macrophage p47phox, a Nox subunit regulating cardiac remodeling, is unclear. We aimed to investigate the role of macrophage p47phox in hypertensive cardiac remodeling. Pressure-overload induced by Angiotensin II (AngII) for two weeks in young adult male p47phox deficient (KO) mice showed aggravated cardiac dysfunction and hypertrophy as indicated from echocardiographic and histological studies in comparison with wild-type littermates (WT). Additionally, LV of AngII-infused KO mice showed augmented interstitial fibrosis, collagen deposition and, myofibroblasts compared to AngII-infused WT mice. Moreover, these changes in AngII-infused KO mice correlated well with the gene analysis of hypertrophic and fibrotic markers. Similar results were also found in the transverse aortic constriction model. Further, AngII-infused KO mice showed elevated circulating immunokines and increased LV leukocytes infiltration and CD206+ macrophages compared to AngII-infused WT mice. Likewise, LV of AngII-infused KO mice showed upregulated mRNA expression of anti-inflammatory/pro-fibrotic M2 macrophage markers (Ym1, Arg-1) compared to AngII-infused WT mice. AngII and IL-4 treated bone marrow-derived macrophages (BMDMs) from KO mice showed upregulated M2 macrophage markers and STAT6 phosphorylation (Y641) compared to AngII and IL-4 treated WT BMDMs. These alterations were at least partly mediated by macrophage as bone marrow transplantation from KO mice into WT mice aggravated cardiac remodeling. Mechanistically, AngII-infused KO mice showed hyperactivated IL-4/STAT6/PPARγ signaling and downregulated SOCS3 expression compared to AngII-infused WT mice. Our studies show that macrophage p47phox limits anti-inflammatory signaling and extracellular matrix remodeling in response to pressure-overload.
Collapse
Affiliation(s)
- Sukka Santosh Reddy
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Heena Agarwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anant Jaiswal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Kumaravelu Jagavelu
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manoj Kumar Barthwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
30
|
Kim KS, Kim DK, Na SY, Jung YS, Cho SJ, Kim J, Lee IK, Kim YH, Lee CH, Jeong WI, Jo EK, Choi HS. Frontline Science: Estrogen-related receptor γ increases poly(I:C)-mediated type I IFN expression in mouse macrophages. J Leukoc Biol 2021; 109:865-875. [PMID: 33615540 DOI: 10.1002/jlb.2hi1219-762r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Although type I IFNs (IFN-I) are important for the innate and adaptive immune responses to suppress viral replication, prolonged IFN-I signaling in macrophages suppresses the immune response. Nuclear receptor estrogen-related receptor γ (ERRγ) regulates the transcription of genes involved in endocrine and metabolic functions. However, the role of ERRγ in macrophage immune responses to viruses remains largely unknown. ERRγ expression was significantly induced in mouse bone marrow-derived macrophages (BMDMs) treated with polyinosinic-polycytidylic acid (poly(I:C)). Our results indicated that the induction of ERRγ expression by poly(I:C) is mediated through activation of the cytoplasmic dsRNA receptors, retinoic acid-inducible gene I and melanoma differentiation-associated protein 5. In BMDMs, overexpression of ERRγ significantly increased gene expression and secretion of the IFN-I genes, IFN-α and IFN-β, whereas abolition of ERRγ significantly attenuated poly(I:C)-mediated IFN-I secretion. Chromatin immunoprecipitation assays and mutation analyses of the IFN-I promoters revealed that ERRγ regulates the transcription of IFN-α and IFN-β by binding to a conserved ERR response element in each promoter region. Finally, GSK5182 significantly suppressed poly(I:C)-mediated induction of IFN-I gene expression and secretion in BMDMs. Taken together, these findings reveal a previously unrecognized role for ERRγ in the transcriptional control of innate and adaptive immune response to dsRNA virus replication.
Collapse
Affiliation(s)
- Ki-Sun Kim
- National Creative Research Initiatives Center for Nuclear Receptor Signals, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Soon-Young Na
- National Creative Research Initiatives Center for Nuclear Receptor Signals, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Yoon Seok Jung
- National Creative Research Initiatives Center for Nuclear Receptor Signals, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jina Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - In-Kyu Lee
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Young-Hoon Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Chul-Ho Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Won-Il Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
31
|
Casticin Attenuates Osteoarthritis-Related Cartilage Degeneration by Inhibiting the ROS-Mediated NF-κB Signaling Pathway in vitro and in vivo. Inflammation 2021; 43:810-820. [PMID: 31897918 DOI: 10.1007/s10753-019-01167-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Casticin, a flavonoid isolated from Vitex trifolia, has been shown to have anti-inflammatory and antitumor effects in previous studies. Osteoarthritis (OA) is a disease based on degenerative pathological changes. The disease process is often accompanied by inflammatory pathological changes. However, there is no safe and effective drug for prevention and treatment. In the present study, we aimed to clarify the role of casticin in the murine model of destabilization of the medial meniscus (DMM). Male BALB/c mice were randomly divided into three groups: Sham, DMM-induced OA treated with vehicle, and DMM-induced OA treated with casticin. Our results indicated that the casticin treatments markedly reduced the destruction of cartilage and OARSI grades compared with those of the vehicle-treated mice. The levels of matrix metalloproteinase-13 (MMP13) in cartilage were also significantly reduced in the casticin-treated mice. Casticin also significantly regulated oxidative stress and reduced inflammation in the cartilage of mice with OA. These results suggest that casticin prevents the development of posttraumatic OA in mice. Consequently, decreased reactive oxygen species levels and suppressed proinflammatory cytokine production were confirmed in casticin-treated IL-1β-stimulated ADTC5 cells. After casticin treatment, the NF-κB signaling pathway was significantly inhibited in the cells. It can be concluded that casticin can alleviate arthritis-related cartilage degeneration by inhibiting ROS-mediated NF-κB signaling pathway in vitro and in vivo.
Collapse
|
32
|
Xin Y, Zou L, Lang S. 4-Octyl itaconate (4-OI) attenuates lipopolysaccharide-induced acute lung injury by suppressing PI3K/Akt/NF-κB signaling pathways in mice. Exp Ther Med 2021; 21:141. [PMID: 33456508 PMCID: PMC7791918 DOI: 10.3892/etm.2020.9573] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
The progression of acute lung injury (ALI) is attributable to inflammation and oxidative stress. The cell-permeable itaconate analog 4-octyl itaconate (4-OI) provides protection against inflammatory responses and oxidative stress. However, whether 4-OI can protect against ALI remains poorly understood. The aim of this study was to explore the protective effects of 4-OI against LPS-induced ALI and the underlying mechanisms using hematoxylin and eosin (H&E) to observe lung morphology, ELISA and reverse transcription-quantitative PCR to measure the levels of IL-1β, TNF-α and IL-6 and western blotting to examine the levels of PI3K, Akt and NF-κB. The present study demonstrates that intraperitoneal administration of 4-OI (25 mg/kg) 2 h before lipopolysaccharide (LPS; 5 mg/kg) intratracheal injection significantly alleviated the lung tissue injury induced by LPS, reducing the production of proinflammatory cytokines and reactive oxygen species (ROS) in vivo. Furthermore, 4-OI and the antioxidant N-acetyl-L-cysteine markedly suppressed PI3K and Akt phosphorylation in LPS-treated RAW264.7 macrophage cells in vitro. Further study demonstrated that a pharmacological inhibitor of the phosphoinositide 3-kinase (PI3K)-Akt pathway, LY294002, inhibited the expression of NF-κB p65 in the nuclear fraction and decreased the production of inflammatory cytokines. Collectively, the experimental results of the present study provide evidence that 4-OI significantly decreased LPS-induced lung inflammation by suppressing ROS-mediated PI3K/Akt/NF-κB signaling pathways. These results suggest that 4-OI could be a valuable therapeutic drug in the treatment of ALI.
Collapse
Affiliation(s)
- Yan Xin
- Department of Anesthesiology, Changchun Maternity Hospital, Changchun, Jilin 130042, P.R. China
| | - Lili Zou
- Department of Anesthesiology, General Hospital of Ning Xia Medical University, Yin Chuan, Ningxia 750004, P.R. China
| | - Shuhui Lang
- Department of Anesthesiology, General Hospital of Ning Xia Medical University, Yin Chuan, Ningxia 750004, P.R. China
| |
Collapse
|
33
|
Harasgama JC, Kasthuriarachchi TDW, Kwon H, Wan Q, Lee J. Molecular and functional characterization of a mitochondrial glutathione reductase homolog from redlip mullet (Liza haematocheila): Disclosing its antioxidant properties in the fish immune response mechanism. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 113:103785. [PMID: 32735957 DOI: 10.1016/j.dci.2020.103785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Glutathione reductase (GSHR) is a biologically important enzyme involved in the conversion of oxidized glutathione (GSSG) into its reduced form, reduced glutathione (GSH), with the catalytic activity of NADPH. Most animals and aquatic organisms, including fish, possess high levels of this enzyme system to neutralize oxidative stress in cells. The current study was conducted to broaden our knowledge of GSHR in fish by identifying a mitochondrial isoform of this enzyme (LhGSHRm) in redlip mullet, Liza haematocheila, and clarifying its structure and function. The complete open reading frame of LhGSHRm consists of 1527 base pairs, encoding 508 amino acids, with a predicted molecular weight of 55.43 kDa. Multiple sequence alignment revealed the conservation of important amino acids in this fish. Phylogenetic analysis demonstrated the closest evolutionary relationship between LhGSHRm and other fish GSHRm counterparts. In tissue distribution analysis, the highest mRNA expression of LhGSHRm was observed in the gill tissue under normal physiological conditions. Following pathogenic challenges, the LhGSHRm transcription level was upregulated in a time-dependent manner in the gill and liver tissues, which may modulate the immune reaction against pathogens. rLhGSHRm showed considerable glutathione reductase activity in an enzyme assay. Further, the biological activity of rLhGSHRm in balancing cellular oxidative stress was observed in both disk diffusion and DPPH assays. Collectively, these results support that LhGSHRm has profound effects on modulating the immune reaction in fish to sustain precise redox homeostasis.
Collapse
Affiliation(s)
- J C Harasgama
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, Self-Governing Province, 63333, Republic of Korea
| | - T D W Kasthuriarachchi
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, Self-Governing Province, 63333, Republic of Korea
| | - Hyukjae Kwon
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, Self-Governing Province, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, Self-Governing Province, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
34
|
Li D, Peng H, Qu L, Sommar P, Wang A, Chu T, Li X, Bi X, Liu Q, Gallais Sérézal I, Rollman O, Lohcharoenkal W, Zheng X, Eliasson Angelstig S, Grünler J, Pivarcsi A, Sonkoly E, Catrina SB, Xiao C, Ståhle M, Mi QS, Zhou L, Xu Landén N. miR-19a/b and miR-20a Promote Wound Healing by Regulating the Inflammatory Response of Keratinocytes. J Invest Dermatol 2020; 141:659-671. [PMID: 32949564 DOI: 10.1016/j.jid.2020.06.037] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
Persistent and impaired inflammation impedes tissue healing and is a characteristic of chronic wounds. A better understanding of the mechanisms controlling wound inflammation is needed. In this study, we show that in human wound-edge keratinocytes, the expressions of microRNA (miR)-17, miR-18a, miR-19a, miR-19b, and miR-20a, which all belong to the miR-17∼92 cluster, are upregulated during wound repair. However, their levels are lower in chronic ulcers than in acute wounds at the proliferative phase. Conditional knockout of miR-17∼92 in keratinocytes as well as injection of miR-19a/b and miR-20a antisense inhibitors into wound edges enhanced inflammation and delayed wound closure in mice. In contrast, conditional overexpression of the miR-17∼92 cluster or miR-19b alone in mice keratinocytes accelerated wound closure in vivo. Mechanistically, miR-19a/b and miR-20a decreased TLR3-mediated NF-κB activation by targeting SHCBP1 and SEMA7A, respectively, reducing the production of inflammatory chemokines and cytokines by keratinocytes. Thus, miR-19a/b and miR-20a being crucial regulators of wound inflammation, the lack thereof may contribute to sustained inflammation and impaired healing in chronic wounds. In line with this, we show that a combinatory treatment with miR-19b and miR-20a improved wound healing in a mouse model of type 2 diabetes.
Collapse
Affiliation(s)
- Dongqing Li
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Hongmei Peng
- Department of Dermatology, Center for Cutaneous Biology and Immunology Research, Henry Ford Health System, Detroit, Michigan, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, USA; MirnaTech International, LLC, Detroit, Michigan, USA
| | - Le Qu
- Department of Dermatology, Center for Cutaneous Biology and Immunology Research, Henry Ford Health System, Detroit, Michigan, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, USA
| | - Pehr Sommar
- Department of Reconstructive Plastic Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Aoxue Wang
- Department of Dermatology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Tongbin Chu
- Department of Wound Repair, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xi Li
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Xinling Bi
- Department of Dermatology, Center for Cutaneous Biology and Immunology Research, Henry Ford Health System, Detroit, Michigan, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, USA
| | - Queping Liu
- Department of Dermatology, Center for Cutaneous Biology and Immunology Research, Henry Ford Health System, Detroit, Michigan, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, USA
| | - Irène Gallais Sérézal
- Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden; Department of Medical Genetics, Hôpital Henri Mondor, APHP, Créteil, France
| | - Ola Rollman
- Department of Dermatology, Academic University Hospital, Uppsala, Sweden
| | - Warangkana Lohcharoenkal
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Xiaowei Zheng
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Stockholm, Sweden
| | | | - Jacob Grünler
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Andor Pivarcsi
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Medical Biochemistry and Microbiology (IMBIM), Uppsala University, Uppsala, Sweden
| | - Enikö Sonkoly
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Stockholm, Sweden; Centrum for Diabetes, Academic Specialist Centrum, Stockholm, Sweden
| | - Changchun Xiao
- Department of Immunology and Microbiology, The Scripps Research Institute, San Diego, California, USA
| | - Mona Ståhle
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Qing-Sheng Mi
- Department of Dermatology, Center for Cutaneous Biology and Immunology Research, Henry Ford Health System, Detroit, Michigan, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, USA
| | - Li Zhou
- Department of Dermatology, Center for Cutaneous Biology and Immunology Research, Henry Ford Health System, Detroit, Michigan, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, USA
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden; Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
35
|
COVID-19: Proposing a Ketone-Based Metabolic Therapy as a Treatment to Blunt the Cytokine Storm. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6401341. [PMID: 33014275 PMCID: PMC7519203 DOI: 10.1155/2020/6401341] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
Human SARS-CoV-2 infection is characterized by a high mortality rate due to some patients developing a large innate immune response associated with a cytokine storm and acute respiratory distress syndrome (ARDS). This is characterized at the molecular level by decreased energy metabolism, altered redox state, oxidative damage, and cell death. Therapies that increase levels of (R)-beta-hydroxybutyrate (R-BHB), such as the ketogenic diet or consuming exogenous ketones, should restore altered energy metabolism and redox state. R-BHB activates anti-inflammatory GPR109A signaling and inhibits the NLRP3 inflammasome and histone deacetylases, while a ketogenic diet has been shown to protect mice from influenza virus infection through a protective γδ T cell response and by increasing electron transport chain gene expression to restore energy metabolism. During a virus-induced cytokine storm, metabolic flexibility is compromised due to increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) that damage, downregulate, or inactivate many enzymes of central metabolism including the pyruvate dehydrogenase complex (PDC). This leads to an energy and redox crisis that decreases B and T cell proliferation and results in increased cytokine production and cell death. It is hypothesized that a moderately high-fat diet together with exogenous ketone supplementation at the first signs of respiratory distress will increase mitochondrial metabolism by bypassing the block at PDC. R-BHB-mediated restoration of nucleotide coenzyme ratios and redox state should decrease ROS and RNS to blunt the innate immune response and the associated cytokine storm, allowing the proliferation of cells responsible for adaptive immunity. Limitations of the proposed therapy include the following: it is unknown if human immune and lung cell functions are enhanced by ketosis, the risk of ketoacidosis must be assessed prior to initiating treatment, and permissive dietary fat and carbohydrate levels for exogenous ketones to boost immune function are not yet established. The third limitation could be addressed by studies with influenza-infected mice. A clinical study is warranted where COVID-19 patients consume a permissive diet combined with ketone ester to raise blood ketone levels to 1 to 2 mM with measured outcomes of symptom severity, length of infection, and case fatality rate.
Collapse
|
36
|
Coish JM, Crozier RWE, Schertzer KE. Trusting a gut feeling: the potential of a newly refined human intestinal enteroid model to evaluate viral-host interactions. J Physiol 2020; 598:5013-5015. [PMID: 32770540 DOI: 10.1113/jp280368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jeremia M Coish
- Department of Health Sciences, Brock University, St Catharines, Ontario, Canada
| | - Robert W E Crozier
- Department of Health Sciences, Brock University, St Catharines, Ontario, Canada
| | | |
Collapse
|
37
|
Li X, Zhou H, Guo D, Hu Y, Fang X, Chen Y, Zhang F. Oxidative stress and inflammation: Early predictive indicators of multiple recurrent coronary in‐stent chronic total occlusions in elderly patients after coronary stenting. IUBMB Life 2020; 72:1023-1033. [PMID: 32022379 DOI: 10.1002/iub.2239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 01/23/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Xia Li
- Department of GeriatricsThe Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| | - Hualan Zhou
- Department of GeriatricsThe Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| | - Dianxuan Guo
- Department of GeriatricsThe Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| | - Youdong Hu
- Department of GeriatricsThe Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| | - Xiang Fang
- Department of GeriatricsThe Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| | - Ying Chen
- Department of GeriatricsThe Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| | - Fenglin Zhang
- Department of GeriatricsThe Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| |
Collapse
|
38
|
Chen H, Zhang J, Dai Y, Xu J. Nerve growth factor inhibits TLR3-induced inflammatory cascades in human corneal epithelial cells. JOURNAL OF INFLAMMATION-LONDON 2019; 16:27. [PMID: 31889912 PMCID: PMC6933932 DOI: 10.1186/s12950-019-0232-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022]
Abstract
Background In herpes simplex epithelial keratitis, excessive TLR3-induced cellular responses after virus infection evoke inflammatory cascades that might be destructive to the host cornea. Nerve growth factor (NGF), a pluripotent neurotrophic factor with immune regulatory effect, was proved to be effective in Herpes simplex keratitis (HSK) treatment, although the detailed mechanisms remain unclear. This study aims to investigate the effects of NGF on modulating inflammatory responses triggered by TLR3 activation in human corneal epithelial cells (HCECs) in vitro. Methods HCECs were stimulated with TLR3 agonist, poly(I:C), in the absence or presence of NGF. Cell viability and cytotoxicity were measured by a CCK-8 assay and LDH release assay, respectively. The activation of NF-κB signaling pathway was examined using immunofluorescence staining and western blotting. Levels of proinflammatory cytokines were determined by ELISA or RT-qPCR. ROS generation and 8-OHdG positive cells were examined by a fluorometric analysis. Results It was shown that NGF significantly inhibited the generation of proinflammatory cytokines in HCECs triggered by TLR3 activation (P < 0.05), probably via suppressing NF-κB activation. NGF also impeded the upstream signal to initiate NF-κB activation by scavenging ROS by approximately 50% (P < 0.05). In addition, 8-OHdG positive cells were substantially attenuated by NGF treatment (P < 0.01). Conclusions Taken together, this study indicates that NGF could inhibit TLR3-induced inflammatory cascades in HCECs, suggesting NGF as a potential therapeutic agent for HSK.
Collapse
Affiliation(s)
- Huiyu Chen
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, NHC Key Laboratory of myopia (Fudan University); Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College of Fudan University, Shanghai, 200031 China
| | - Jing Zhang
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, NHC Key Laboratory of myopia (Fudan University); Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College of Fudan University, Shanghai, 200031 China
| | - Yiqin Dai
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, NHC Key Laboratory of myopia (Fudan University); Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College of Fudan University, Shanghai, 200031 China
| | - Jianjiang Xu
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, NHC Key Laboratory of myopia (Fudan University); Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai Medical College of Fudan University, Shanghai, 200031 China
| |
Collapse
|
39
|
Ahmed D, Roy D, Jaworski A, Edwards A, Abizaid A, Kumar A, Golshani A, Cassol E. Differential remodeling of the electron transport chain is required to support TLR3 and TLR4 signaling and cytokine production in macrophages. Sci Rep 2019; 9:18801. [PMID: 31827178 PMCID: PMC6906364 DOI: 10.1038/s41598-019-55295-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence suggests that mitochondria play a critical role in driving innate immune responses against bacteria and viruses. However, it is unclear if differential reprogramming of mitochondrial function contributes to the fine tuning of pathogen specific immune responses. Here, we found that TLR3 and TLR4 engagement on murine bone marrow derived macrophages was associated with differential remodeling of electron transport chain complex expression. This remodeling was associated with differential accumulation of mitochondrial and cytosolic ROS, which were required to support ligand specific inflammatory and antiviral cytokine production. We also found that the magnitude of TLR3, but not TLR4, responses were modulated by glucose availability. Under conditions of low glucose, TLR3 engagement was associated with increased ETC complex III expression, increased mitochondrial and cytosolic ROS and increased inflammatory and antiviral cytokine production. This amplification was selectively reversed by targeting superoxide production from the outer Q-binding site of the ETC complex III. These results suggest that ligand specific modulation of the ETC may act as a rheostat that fine tunes innate immune responses via mitochondrial ROS production. Modulation of these processes may represent a novel mechanism to modulate the nature as well as the magnitude of antiviral vs. inflammatory immune responses.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - David Roy
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Allison Jaworski
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Alexander Edwards
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Ashok Kumar
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,The Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Ashkan Golshani
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
40
|
Omeka WKM, Liyanage DS, Yang H, Lee J. Glutaredoxin 2 from big belly seahorse (Hippocampus abdominalis) and its potential involvement in cellular redox homeostasis and host immune responses. FISH & SHELLFISH IMMUNOLOGY 2019; 95:411-421. [PMID: 31586678 DOI: 10.1016/j.fsi.2019.09.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Glutaredoxins are oxidoreductases present in almost all living organisms. They belong to the thioredoxin superfamily and share the thioredoxin structure and catalytic motif. Glutaredoxin 2 has been identified as a mitochondrial protein in vertebrates. In this study, the sequence of Glutaredoxin 2 from Hippocampus abdominalis (HaGrx2) was analyzed by molecular, transcriptional, and functional assays. In-silico analysis revealed that HaGrx2 shows the highest homology with Hippocampus comes, while distinctly cluster with fish Grx2 orthologs. Tissue distribution analysis showed that HaGrx2 is ubiquitously expressed in all tissues tested, and the highest expression was observed in the brain and skin. Significant HaGrx2 transcript modulation was identified in blood and liver upon injecting bacterial and Pathogen Associated Molecular Patterns. The redox activity of HaGrx2 was revealed by Dehydroascorbic reduction and insulin disulfide reduction activity assays. Further, the deglutathionylation activity of 1 nM HaGrx2 was found to be equivalent to that of 0.84 nM HaGrx1. HaGrx2 exhibited antiapoptotic activity against H2O2-induced oxidative stress in FHM cells. Altogether, the results of this study suggest that HaGrx2 plays a role in redox homeostasis and innate immune responses in fish.
Collapse
Affiliation(s)
- W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
41
|
Yang L, Hong Q, Xu SG, Kuang XY, Di GH, Liu GY, Wu J, Shao ZM, Yu SJ. Downregulation of transgelin 2 promotes breast cancer metastasis by activating the reactive oxygen species/nuclear factor‑κB signaling pathway. Mol Med Rep 2019; 20:4045-4258. [PMID: 31485630 PMCID: PMC6797978 DOI: 10.3892/mmr.2019.10643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
Transgelin 2 (TAGLN2) is a cytoskeletal protein of the calponin family. Abnormal expression of TAGLN2 was observed in various types of cancer. Our previous study reported that TAGLN2 expression was reduced in lymph node-positive breast cancer patients; however, the role of TAGLN2 in breast cancer metastasis remains unknown. In the present study, the role of TAGLN2 in breast cancer metastasis was investigated in vitro and in vivo via Transwell migration, luciferase and flow cytometry assays, and a mouse xenograft model. Proteins interacting with TAGLN2 were identified via co-immunoprecipitation assays and liquid chromatography/mass spectrometry, and the signaling pathway associated with the effects of TAGLN2 was investigated. Additionally, western blotting and reverse transcription-quantitative polymerase chain reaction were performed to further explore the potential pathway in which TAGLN2 may be involved and the mechanism underlying its effects in breast cancer metastasis. The present study reported that TAGLN2 expression was increased by 11.4-fold in patients without distant metastasis compared with those positive for distant metastasis. Knockdown of TAGLN2 resulted in increased cell migration in vitro and promoted lung metastasis in vivo. Additionally, overexpression of TAGLN2 suppressed lung metastasis in a mouse model. Peroxiredoxin 1 (PRDX1), an important reactive oxygen species (ROS) regulator, was revealed to interact with TAGLN2. In addition, mitochondrial redistribution and PRDX1 downregulation were reported following TAGLN2 silencing, which promoted ROS production and nuclear factor (NF)-κB activation in breast cancer cells. This induced the expression of metastasis-associated genes, including C-X-C chemokine receptor 4, matrix metalloproteinase (MMP)1 and MMP2. The present study proposed TAGLN2 to function as a tumor suppressor and that loss of TAGLN2 may promote the metastasis of breast cancer by activating the ROS/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Liu Yang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Qi Hong
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Si-Guang Xu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Xia-Ying Kuang
- Department of Breast Surgery, The First Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Gen-Hong Di
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Guang-Yu Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Jiong Wu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - San-Jian Yu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| |
Collapse
|
42
|
ROS play an important role in ATPR inducing differentiation and inhibiting proliferation of leukemia cells by regulating the PTEN/PI3K/AKT signaling pathway. Biol Res 2019; 52:26. [PMID: 31053167 PMCID: PMC6498685 DOI: 10.1186/s40659-019-0232-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/06/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is an aggressive and mostly incurable hematological malignancy with frequent relapses after an initial response to standard chemotherapy. Therefore, novel therapies are urgently required to improve AML clinical outcomes. 4-Amino-2-trifluoromethyl-phenyl retinate (ATPR), a novel all-trans retinoic acid (ATRA) derivative designed and synthesized by our team, has been proven to show biological anti-tumor characteristics in our previous studies. However, its potential effect on leukemia remains unknown. The present research aims to investigate the underlying mechanism of treating leukemia with ATPR in vitro. METHODS In this study, the AML cell lines NB4 and THP-1 were treated with ATPR. Cell proliferation was analyzed by the CCK-8 assay. Flow cytometry was used to measure the cell cycle distribution and cell differentiation. The expression levels of cell cycle and differentiation-related proteins were detected by western blotting and immunofluorescence staining. The NBT reduction assay was used to detect cell differentiation. RESULTS ATPR inhibited cell proliferation, induced cell differentiation and arrested the cell cycle at the G0/G1 phase. Moreover, ATPR treatment induced a time-dependent release of reactive oxygen species (ROS). Additionally, the PTEN/PI3K/Akt pathway was downregulated 24 h after ATPR treatment, which might account for the anti-AML effects of ATPR that result from the ROS-mediated regulation of the PTEN/PI3K/AKT signaling pathway. CONCLUSIONS Our observations could help to develop new drugs targeting the ROS/PTEN/PI3K/Akt pathway for the treatment of AML.
Collapse
|
43
|
Toll-Like Receptor 3-TRIF Pathway Activation by Neospora caninum RNA Enhances Infection Control in Mice. Infect Immun 2019; 87:IAI.00739-18. [PMID: 30670552 DOI: 10.1128/iai.00739-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/05/2019] [Indexed: 12/11/2022] Open
Abstract
Neospora caninum is a protozoan parasite closely related to Toxoplasma gondii and has been studied for causing neuromuscular disease in dogs and abortions in cattle. It is recognized as one of the main transmissible causes of reproductive failure in cattle and consequent economic losses to the sector. In that sense, this study aimed to evaluate the role of Toll-like receptor 3 (TLR3)-TRIF-dependent resistance against N. caninum infection in mice. We observed that TLR3-/- and TRIF-/- mice presented higher parasite burdens, increased inflammatory lesions, and reduced production of interleukin 12p40 (IL-12p40), tumor necrosis factor (TNF), gamma interferon (IFN-γ), and nitric oxide (NO). Unlike those of T. gondii, N. caninum tachyzoites and RNA recruited TLR3 to the parasitophorous vacuole (PV) and translocated interferon response factor 3 (IRF3) to the nucleus. We also observed that N. caninum upregulated the expression of TRIF in murine macrophages, which in turn upregulated IFN-α and IFN-β in the presence of the parasite. Furthermore, TRIF-/- infected macrophages produced lower levels of IL-12p40, while exogenous IFN-α replacement was able to completely restore the production of this key cytokine. Our results show that the TLR3-TRIF signaling pathway enhances resistance against N. caninum infection in mice, since it improves Th1 immune responses that result in controlled parasitism and reduced tissue inflammation, which are hallmarks of the disease.
Collapse
|
44
|
Burg AR, Tse HM. Redox-Sensitive Innate Immune Pathways During Macrophage Activation in Type 1 Diabetes. Antioxid Redox Signal 2018; 29:1373-1398. [PMID: 29037052 PMCID: PMC6166692 DOI: 10.1089/ars.2017.7243] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Type 1 diabetes (T1D) is an autoimmune disease resulting in β-cell destruction mediated by islet-infiltrating leukocytes. The role of oxidative stress in human and murine models of T1D is highly significant as these noxious molecules contribute to diabetic complications and β-cell lysis, but their direct impact on dysregulated autoimmune responses is highly understudied. Pro-inflammatory macrophages play a vital role in the initiation and effector phases of T1D by producing free radicals and pro-inflammatory cytokines to facilitate β-cell destruction and to present antigen to autoreactive T cells. Recent Advances: Redox modulation of macrophage functions may play critical roles in autoimmunity. These include enhancing pro-inflammatory innate immune signaling pathways in response to environmental triggers, enforcing an M1 macrophage differentiation program, controlling antigen processing, and altering peptide recognition by oxidative post-translational modification. Therefore, an oxidative environment may act on multiple macrophage functions to orchestrate T1D pathogenesis. CRITICAL ISSUES Mechanisms involved in the initiation of T1D remain unclear, making preventive and early therapeutics difficult to develop. Although many of these advances in the redox regulation of macrophages are in their infancy, they provide insight into how oxidative stress aids in the precipitating event of autoimmune activation. FUTURE DIRECTIONS Future studies should be aimed at mechanistically determining which redox-regulated macrophage functions are pertinent in T1D pathogenesis, as well as at investigating potential targetable therapeutics to halt and/or dampen innate immune activation in T1D.
Collapse
Affiliation(s)
- Ashley R Burg
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham , Birmingham, Alabama
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
45
|
Jiang K, Guo S, Yang C, Yang J, Chen Y, Shaukat A, Zhao G, Wu H, Deng G. Barbaloin protects against lipopolysaccharide (LPS)-induced acute lung injury by inhibiting the ROS-mediated PI3K/AKT/NF-κB pathway. Int Immunopharmacol 2018; 64:140-150. [DOI: 10.1016/j.intimp.2018.08.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/07/2018] [Accepted: 08/18/2018] [Indexed: 12/16/2022]
|
46
|
Honda-Ozaki F, Terashima M, Niwa A, Saiki N, Kawasaki Y, Ito H, Hotta A, Nagahashi A, Igura K, Asaka I, Li HL, Yanagimachi M, Furukawa F, Kanazawa N, Nakahata T, Saito MK. Pluripotent Stem Cell Model of Nakajo-Nishimura Syndrome Untangles Proinflammatory Pathways Mediated by Oxidative Stress. Stem Cell Reports 2018; 10:1835-1850. [PMID: 29731430 PMCID: PMC5989695 DOI: 10.1016/j.stemcr.2018.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/10/2023] Open
Abstract
Nakajo-Nishimura syndrome (NNS) is an immunoproteasome-associated autoinflammatory disorder caused by a mutation of the PSMB8 gene. Although dysfunction of the immunoproteasome causes various cellular stresses attributed to the overproduction of inflammatory cytokines and chemokines in NNS, the underlying mechanisms of the autoinflammation are still largely unknown. To investigate and understand the mechanisms and signal pathways in NNS, we established a panel of isogenic pluripotent stem cell (PSC) lines with PSMB8 mutation. Activity of the immunoproteasome in PSMB8-mutant PSC-derived myeloid cell lines (MT-MLs) was reduced even without stimulation compared with non-mutant-MLs. In addition, MT-MLs showed an overproduction of inflammatory cytokines and chemokines, with elevated reactive oxygen species (ROS) and phosphorylated p38 MAPK levels. Treatment with p38 MAPK inhibitor and antioxidants decreased the abnormal production of cytokines and chemokines. The current PSC model revealed a specific ROS-mediated inflammatory pathway, providing a platform for the discovery of alternative therapeutic options for NNS and related immunoproteasome disorders. An isogenic PSC panel for Nakajo-Nishimura syndrome was prepared Mutant myeloid cell lines showed increased proinflammatory response p38 MAPK inhibitor and antioxidant treatment restored the proinflammatory phenotype
Collapse
Affiliation(s)
- Fumiko Honda-Ozaki
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Madoka Terashima
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Akira Niwa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Norikazu Saiki
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Yuri Kawasaki
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Haruna Ito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Akitsu Hotta
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Ayako Nagahashi
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Koichi Igura
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Isao Asaka
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Hongmei Lisa Li
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Masakatsu Yanagimachi
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Fukumi Furukawa
- Department of Dermatology, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Nobuo Kanazawa
- Department of Dermatology, Wakayama Medical University, Wakayama 641-0012, Japan.
| | - Tatsutoshi Nakahata
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
47
|
Dunn JD, Bosmani C, Barisch C, Raykov L, Lefrançois LH, Cardenal-Muñoz E, López-Jiménez AT, Soldati T. Eat Prey, Live: Dictyostelium discoideum As a Model for Cell-Autonomous Defenses. Front Immunol 2018; 8:1906. [PMID: 29354124 PMCID: PMC5758549 DOI: 10.3389/fimmu.2017.01906] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
The soil-dwelling social amoeba Dictyostelium discoideum feeds on bacteria. Each meal is a potential infection because some bacteria have evolved mechanisms to resist predation. To survive such a hostile environment, D. discoideum has in turn evolved efficient antimicrobial responses that are intertwined with phagocytosis and autophagy, its nutrient acquisition pathways. The core machinery and antimicrobial functions of these pathways are conserved in the mononuclear phagocytes of mammals, which mediate the initial, innate-immune response to infection. In this review, we discuss the advantages and relevance of D. discoideum as a model phagocyte to study cell-autonomous defenses. We cover the antimicrobial functions of phagocytosis and autophagy and describe the processes that create a microbicidal phagosome: acidification and delivery of lytic enzymes, generation of reactive oxygen species, and the regulation of Zn2+, Cu2+, and Fe2+ availability. High concentrations of metals poison microbes while metal sequestration inhibits their metabolic activity. We also describe microbial interference with these defenses and highlight observations made first in D. discoideum. Finally, we discuss galectins, TNF receptor-associated factors, tripartite motif-containing proteins, and signal transducers and activators of transcription, microbial restriction factors initially characterized in mammalian phagocytes that have either homologs or functional analogs in D. discoideum.
Collapse
Affiliation(s)
- Joe Dan Dunn
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Cristina Bosmani
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Caroline Barisch
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Lyudmil Raykov
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Louise H Lefrançois
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Elena Cardenal-Muñoz
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | - Thierry Soldati
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
48
|
Kim JY, Choi GE, Yoo HJ, Kim HS. Interferon Potentiates Toll-Like Receptor-Induced Prostaglandin D 2 Production through Positive Feedback Regulation between Signal Transducer and Activators of Transcription 1 and Reactive Oxygen Species. Front Immunol 2017; 8:1720. [PMID: 29255467 PMCID: PMC5723016 DOI: 10.3389/fimmu.2017.01720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/21/2017] [Indexed: 01/14/2023] Open
Abstract
Prostaglandin D2 (PGD2) is a potent lipid mediator that controls inflammation, and its dysregulation has been implicated in diverse inflammatory disorders. Despite significant progress made in understanding the role of PGD2 as a key regulator of immune responses, the molecular mechanism underlying PGD2 production remains unclear, particularly upon challenge with different and multiple inflammatory stimuli. Interferons (IFNs) potentiate macrophage activation and act in concert with exogenous inflammatory mediators such as toll-like receptor (TLR) ligands to amplify inflammatory responses. A recent study found that IFN-γ enhanced lipopolysaccharide-induced PGD2 production, indicating a role of IFNs in PGD2 regulation. Here, we demonstrate that TLR-induced PGD2 production by macrophages was significantly potentiated by signaling common to IFN-β and IFN-γ in a signal transducer and activators of transcription (STAT)1-dependent mechanism. Such potentiation by IFNs was also observed for PGE2 production, despite the differential regulation of PGD synthase and PGE synthase isoforms mediating PGD2 and PGE2 production under inflammatory conditions. Mechanistic analysis revealed that the generation of intracellular reactive oxygen species (ROS) was remarkably potentiated by IFNs and required for PGD2 production, but was nullified by STAT1 deficiency. Conversely, the regulation of STAT1 level and activity by IFNs was largely dependent on ROS levels. Using a model of zymosan-induced peritonitis, the relevance of this finding in vivo was supported by marked inhibition of PGD2 and ROS produced in peritoneal exudate cells by STAT1 deficiency. Collectively, our findings suggest that IFNs, although not activating on their own, are potent amplifiers of TLR-induced PGD2 production via positive-feedback regulation between STAT1 and ROS.
Collapse
Affiliation(s)
- Ji-Yun Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Go-Eun Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Institute of Convergence Bio-Health, Dong-A University, Busan, South Korea
| | - Hyun Ju Yoo
- Biomedical Research Center, Department of Convergence Medicine, Asan Institute of Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hun Sik Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Cellular Dysfunction Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
49
|
Transflammation: Innate immune signaling in nuclear reprogramming. Adv Drug Deliv Rev 2017; 120:133-141. [PMID: 28916494 DOI: 10.1016/j.addr.2017.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 12/23/2022]
Abstract
Induction of pluripotency in somatic cells by retroviral overexpression of four transcription factors has revolutionized the field of stem cell biology and regenerative medicine. The efficient induction of pluripotency requires the activation of innate immune signaling in a process termed "transflammation" (Lee et al., 2012). Specifically, the stimulation of pattern recognition receptors (PRRs) causes global alterations in the expression and activity of epigenetic modifiers to favor an open chromatin configuration. Activation of toll-like receptors (TLR) or RIG-1-like receptors (RLR) (Sayed et al. 2017) trigger signaling cascades that result in NFκB or IRF-3 mediated changes in epigenetic plasticity that facilitate reprogramming. Another form of nuclear reprogramming is so-called direct reprogramming or transdifferentiation of one somatic cell to another lineage. We have shown that transdifferentiation of human fibroblasts to endothelial cells also involves transflammation (Sayed et al., 2015). Recently, we also identified reactive oxygen species (ROS) (Zhou et al. 2016) and reactive nitrogen species (RNS) (Meng et al., 2016) as mediators of innate immune signaling in nuclear reprogramming. Innate immune signaling plays a key role in nuclear reprogramming by regulating DNA accessibility (Fig. 1). Here, we review recent progress of innate immunity signaling in nuclear reprogramming and epigenetic plasticity.
Collapse
|
50
|
Myricitrin Modulates NADPH Oxidase-Dependent ROS Production to Inhibit Endotoxin-Mediated Inflammation by Blocking the JAK/STAT1 and NOX2/p47 phox Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9738745. [PMID: 28751937 PMCID: PMC5496130 DOI: 10.1155/2017/9738745] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/24/2016] [Accepted: 01/04/2017] [Indexed: 12/23/2022]
Abstract
Myricitrin, a naturally occurring polyphenol hydroxy flavonoid, has been reported to possess anti-inflammatory properties. However, the precise molecular mechanism of myricitrin's effects on LPS-induced inflammation is unclear. In the present study, myricitrin significantly alleviated acute lung injury in mice. Myricitrin also markedly suppressed the production of NO, TNF-α, IL-6, and MCP-1 in RAW264.7 macrophage cells. The inhibition of NO was concomitant with a decrease in the protein and mRNA levels of iNOS. The phosphorylation of JAKs and STAT-1 was abrogated by myricitrin. Furthermore, myricitrin inhibited the nuclear transfer and DNA binding activity of STAT1. The JAK-specific inhibitor ruxolitinib simulated the anti-inflammatory effect of myricitrin. However, myricitrin had no impact on the MAPK signalling pathway. Myricitrin attenuated the generation of intracellular ROS by inhibiting the assembly of components of the gp91phox and p47phox. Suppression of ROS generation using NAC or apocynin or by silencing gp91phox and p47phox all demonstrated that decreasing the level of ROS inhibited the LPS-induced inflammatory response. Collectively, these results confirmed that myricitrin exhibited anti-inflammatory activity by blocking the activation of JAKs and the downstream transcription factor STAT1, which may result from the downregulation of NOX2-dependent ROS production mediated by myricitrin.
Collapse
|