1
|
Labeur-Iurman L, Harker JA. Mechanisms of antibody mediated immunity - Distinct in early life. Int J Biochem Cell Biol 2024; 172:106588. [PMID: 38768890 DOI: 10.1016/j.biocel.2024.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Immune responses in early life are characterized by a failure to robustly generate long-lasting protective responses against many common pathogens or upon vaccination. This is associated with a reduced ability to generate T-cell dependent high affinity antibodies. This review highlights the differences in T-cell dependent antibody responses observed between infants and adults, in particular focussing on the alterations in immune cell function that lead to reduced T follicular helper cell-B cell crosstalk within germinal centres in early life. Understanding the distinct functional characteristics of early life humoral immunity, and how these are regulated, will be critical in guiding age-appropriate immunological interventions in the very young.
Collapse
Affiliation(s)
- Lucia Labeur-Iurman
- National Heart & Lung Institute, Imperial College London, London, United Kingdom.
| | - James A Harker
- National Heart & Lung Institute, Imperial College London, London, United Kingdom; Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom.
| |
Collapse
|
2
|
Lotspeich-Cole L, Parvathaneni S, Sakai J, Liu L, Takeda K, Lee RC, Akkoyunlu M. Sustained antigen delivery improves germinal center reaction and increases antibody responses in neonatal mice. NPJ Vaccines 2024; 9:92. [PMID: 38796539 PMCID: PMC11128021 DOI: 10.1038/s41541-024-00875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/17/2024] [Indexed: 05/28/2024] Open
Abstract
Neonates and young infants are known to have limited responses to pediatric vaccines due to reduced germinal center formation. Extended vaccine antigen dosing was previously shown to expand germinal center formation and improve humoral responses in adult mice. We report that sustained antigen delivery through sequential dosing overcomes neonatal limitations to form germinal center reactions and improves humoral immunity. Thus, vaccine strategies that extend the release of vaccine antigens may reduce the number of doses, and time needed, to achieve protective immunity in neonates and young infants.
Collapse
Affiliation(s)
| | | | - Jiro Sakai
- US FDA/CBER/OVRR/DBPAP, 10903 New Hampshire Avenue, Silver Spring, MD, USA
| | - Lunhua Liu
- US FDA/CBER/OVRR/DBPAP, 10903 New Hampshire Avenue, Silver Spring, MD, USA
| | - Kazuyo Takeda
- US FDA/CBER/OBRR/DBCD, 10903 New Hampshire Avenue, Silver Spring, MD, USA
| | - Robert C Lee
- US FDA/CBER/OVRR/DBPAP, 10903 New Hampshire Avenue, Silver Spring, MD, USA
| | - Mustafa Akkoyunlu
- US FDA/CBER/OVRR/DBPAP, 10903 New Hampshire Avenue, Silver Spring, MD, USA.
| |
Collapse
|
3
|
Parvathaneni S, Yang J, Lotspeich-Cole L, Sakai J, Lee RC, Akkoyunlu M. IL6 suppresses vaccine responses in neonates by enhancing IL2 activity on T follicular helper cells. NPJ Vaccines 2023; 8:173. [PMID: 37938563 PMCID: PMC10632457 DOI: 10.1038/s41541-023-00764-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 10/17/2023] [Indexed: 11/09/2023] Open
Abstract
The inability of neonates to develop CD4+FoxP3-CXCR5hiPD-1hi T follicular helper (TFH) cells contributes to their weak vaccine responses. In previous studies, we measured diminished IgG responses when IL-6 was co-injected with a pneumococcal conjugate vaccine (PCV) in neonatal mice. This is in sharp contrast to adults, where IL-6 improves vaccine responses by downregulating the expression of IL-2Rβ on TFH cells and protecting them from the inhibitory effect of IL-2. In this study, we found that splenic IL-6 levels rapidly increased in both adult and neonatal mice following immunization, but the increase in neonatal mice was significantly more than that of adult mice. Moreover, immunized neonatal TFH cells expressed significantly more IL-2 as well as its receptors, IL-2Rα and IL-2Rβ, than the adult cells. Remarkably, IL-6 co-injection with PCV vaccine further increased the production of IL-2 and the expression of its receptors by neonatal TFH cells, whereas excess IL-6 had totally opposite effect in immunized adult mice. Underscoring the role of IL-6 in activating the IL-2 mediated suppression of vaccine responses, immunization of IL-6 knock-out neonates led to improved antibody responses accompanied by expanded TFH cells as well as lower levels of IL-2 and IL-2 receptors on TFH cells. Moreover, CpG containing PCV improved TFH response in neonates by suppressing the expression of IL-2 receptors on TFH cells and inhibiting IL-2 activity. These findings unveil age-specific differences in IL-6 mediated vaccine responses and highlight the need to consider age-related immunobiological attributes in designing vaccines.
Collapse
Affiliation(s)
| | - Jiyeon Yang
- US FDA/CBER/OVRR/DBPAP, 10903, New Hampshire Ave., Silver Spring, MD, USA
| | | | - Jiro Sakai
- US FDA/CBER/OVRR/DBPAP, 10903, New Hampshire Ave., Silver Spring, MD, USA
| | - Robert C Lee
- US FDA/CBER/OVRR/DBPAP, 10903, New Hampshire Ave., Silver Spring, MD, USA
| | - Mustafa Akkoyunlu
- US FDA/CBER/OVRR/DBPAP, 10903, New Hampshire Ave., Silver Spring, MD, USA.
| |
Collapse
|
4
|
Kibler A, Seifert M, Budeus B. Age-related changes of the human splenic marginal zone B cell compartment. Immunol Lett 2023; 256-257:59-65. [PMID: 37044264 DOI: 10.1016/j.imlet.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
In this review, we will summarize the growing body of knowledge on the age-related changes of human splenic B cell composition and molecular evidence of immune maturation and discuss the contribution of these changes on splenic protective function. From birth on, the splenic marginal zone (sMZ) contains a specialized B cell subpopulation, which recruits and archives memory B cells from immune responses throughout the organism. The quality of sMZ B cell responses is augmented by germinal center (GC)-dependent maturation of memory B cells during childhood, however, in old age, these mechanisms likely contribute to waning of splenic protective function.
Collapse
Affiliation(s)
- Artur Kibler
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Marc Seifert
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany; Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine University, Düsseldorf, Germany.
| | - Bettina Budeus
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
5
|
Vono M, Mastelic-Gavillet B, Mohr E, Östensson M, Persson J, Olafsdottir TA, Lemeille S, Pejoski D, Hartley O, Christensen D, Andersen P, Didierlaurent AM, Harandi AM, Lambert PH, Siegrist CA. C-type lectin receptor agonists elicit functional IL21-expressing Tfh cells and induce primary B cell responses in neonates. Front Immunol 2023; 14:1155200. [PMID: 37063899 PMCID: PMC10102809 DOI: 10.3389/fimmu.2023.1155200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
IntroductionC-type lectin receptor (CLR) agonists emerged as superior inducers of primary B cell responses in early life compared with Toll-like receptor (TLR) agonists, while both types of adjuvants are potent in adults.MethodsHere, we explored the mechanisms accounting for the differences in neonatal adjuvanticity between a CLR-based (CAF®01) and a TLR4-based (GLA-SE) adjuvant administered with influenza hemagglutinin (HA) in neonatal mice, by using transcriptomics and systems biology analyses.ResultsOn day 7 after immunization, HA/CAF01 increased IL6 and IL21 levels in the draining lymph nodes, while HA/GLA-SE increased IL10. CAF01 induced mixed Th1/Th17 neonatal responses while T cell responses induced by GLA-SE had a more pronounced Th2-profile. Only CAF01 induced T follicular helper (Tfh) cells expressing high levels of IL21 similar to levels induced in adult mice, which is essential for germinal center (GC) formation. Accordingly, only CAF01- induced neonatal Tfh cells activated adoptively transferred hen egg lysozyme (HEL)-specific B cells to form HEL+ GC B cells in neonatal mice upon vaccination with HEL-OVA.DiscussionCollectively, the data show that CLR-based adjuvants are promising neonatal and infant adjuvants due to their ability to harness Tfh responses in early life.
Collapse
Affiliation(s)
- Maria Vono
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- *Correspondence: Maria Vono,
| | - Beatris Mastelic-Gavillet
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Elodie Mohr
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Malin Östensson
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Josefine Persson
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | | | - Sylvain Lemeille
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - David Pejoski
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Oliver Hartley
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Dennis Christensen
- Vaccine Adjuvant Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Andersen
- Vaccine Adjuvant Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Arnaud M. Didierlaurent
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ali M. Harandi
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
- Vaccine Evaluation Center, British Columbia (BC) Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Paul-Henri Lambert
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Center for Vaccine Immunology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Smout J, Valentin C, Delbauve S, Pauwels J, Köhler A, Flamand V. Maternal Lactobacillus rhamnosus administration impacts neonatal CD4 T-cell activation and prevents murine T helper 2-type allergic airways disease. Front Immunol 2023; 13:1082648. [PMID: 36685549 PMCID: PMC9847498 DOI: 10.3389/fimmu.2022.1082648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Gut microbiota plays a role in the neonatal immune education and could influence susceptibility to Th2-type immune disorders, such as allergies, the most prevalent chronic diseases in early childhood. We studied the impact of oral Lactobacillus rhamnosus (L.rhamnosus) supplementation to pregnant/breastfeeding C57BL/6 mice on the development of allergic airways disease in their offspring. We observed that mice, from L.rhamnosus-treated mothers, inoculated with ovalbumin (OVA)-Aluminium hydroxide (ALUM) at 3 days of life and challenged intranasally 4 weeks later showed decreased Th2-associated cytokines, IgE and IgG1, lung eosinophilia and airway hyper-reactivity compared to OVA-sensitized mice from untreated mothers. In that setting, the L.rhamnosus treatment increased the number and maturation of splenic neonatal type 1 conventional dendritic cells (cDC1) that remained largely dominant over the cDC2 and favored their OVA-specific Th1 differentiation. In response to inhaled house dust mite (HDM) allergen, the maternal L.rhamnosus supplementation increased the number of neonatal pulmonary cDC1 expressing lower amount of costimulatory molecules compared with no supplementation and decreased the number of cDC2 without affecting their costimulatory molecules expression. An HDM-specific Foxp3+RORγt+ Treg polarization was monitored in the lung draining lymph nodes. Finally, we confirmed the inhibitory effect of maternal L.rhamnosus treatment on all the measured features of the HDM allergic airways reaction in their offspring. We conclude that maternal L.rhamnosus administration prevents Th2-type allergic airways disease in their neonates by favoring splenic cDC1/Th1 responses against ALUM-adjuvanted OVA or by promoting a pulmonary Foxp3+RORγt+ Treg activation against inhaled HDM.
Collapse
Affiliation(s)
- Justine Smout
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Clara Valentin
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Sandrine Delbauve
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Jeanne Pauwels
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Arnaud Köhler
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Véronique Flamand
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium,*Correspondence: Véronique Flamand,
| |
Collapse
|
7
|
Pieren DKJ, Boer MC, de Wit J. The adaptive immune system in early life: The shift makes it count. Front Immunol 2022; 13:1031924. [PMID: 36466865 PMCID: PMC9712958 DOI: 10.3389/fimmu.2022.1031924] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 10/13/2023] Open
Abstract
Respiratory infectious diseases encountered early in life may result in life-threatening disease in neonates, which is primarily explained by the relatively naive neonatal immune system. Whereas vaccines are not readily available for all infectious diseases, vaccinations have greatly reduced childhood mortality. However, repeated vaccinations are required to reach protective immunity in infants and not all vaccinations are effective at young age. Moreover, protective adaptive immunity elicited by vaccination wanes more rapidly at young age compared to adulthood. The infant adaptive immune system has previously been considered immature but this paradigm has changed during the past years. Recent evidence shows that the early life adaptive immune system is equipped with a strong innate-like effector function to eliminate acute pathogenic threats. These strong innate-like effector capacities are in turn kept in check by a tolerogenic counterpart of the adaptive system that may have evolved to maintain balance and to reduce collateral damage. In this review, we provide insight into these aspects of the early life's adaptive immune system by addressing recent literature. Moreover, we speculate that this shift from innate-like and tolerogenic adaptive immune features towards formation of immune memory may underlie different efficacy of infant vaccination in these different phases of immune development. Therefore, presence of innate-like and tolerogenic features of the adaptive immune system may be used as a biomarker to improve vaccination strategies against respiratory and other infections in early life.
Collapse
Affiliation(s)
| | | | - Jelle de Wit
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
8
|
TLR agonists induce sustained IgG to hemagglutinin stem and modulate T cells following newborn vaccination. NPJ Vaccines 2022; 7:102. [PMID: 36038596 PMCID: PMC9424286 DOI: 10.1038/s41541-022-00523-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The newborn immune system is characterized by diminished immune responses that leave infants vulnerable to virus-mediated disease and make vaccination more challenging. Optimal vaccination strategies for influenza A virus (IAV) in newborns should result in robust levels of protective antibodies, including those with broad reactivity to combat the variability in IAV strains across seasons. The stem region of the hemagglutinin (HA) molecule is a target of such antibodies. Using a nonhuman primate model, we investigate the capacity of newborns to generate and maintain antibodies to the conserved stem region following vaccination. We find adjuvanting an inactivated vaccine with the TLR7/8 agonist R848 is effective in promoting sustained HA stem-specific IgG. Unexpectedly, HA stem-specific antibodies were generated with a distinct kinetic pattern compared to the overall response. Administration of R848 was associated with increased influenza-specific T follicular helper cells as well as Tregs with a less suppressive phenotype, suggesting adjuvant impacts multiple cell types that have the potential to contribute to the HA-stem response.
Collapse
|
9
|
LAMP-1 Chimeric to HIV-1 p55Gag in the Immunization of Neonate Mice Induces an Early Germinal Center Formation and AID Expression. Vaccines (Basel) 2022; 10:vaccines10081246. [PMID: 36016134 PMCID: PMC9414238 DOI: 10.3390/vaccines10081246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Neonates have a limited adaptive response of plasma cells, germinal center (GC) B cells, and T follicular helper cells (TFH). As neonatal vaccination can be an important tool for AIDS prevention, these limitations need to be overcome. Chimeric DNA vaccine encoding p55Gag HIV-1 protein conjugated with lysosomal-associated membrane protein 1 (LAMP-1) has been described as immunogenic in the neonate period. Herein, we investigated the immunologic mechanisms involved in neonatal immunization with a LAMP-1/p55Gag (LAMP/Gag) DNA vaccine in a C57BL/6 mouse background. Neonatal LAMP/Gag vaccination induced strong Gag-specific T-cell response until adulthood and elevated levels of anti-Gag IgG antibodies. We also demonstrated for the first time that the immunogenicity of the neonatal period with LAMP/Gag is due to the induction of high-affinity anti-p24 IgG antibodies and long-term plasma cells. Together with that, there is the generation of early TFH cells and the formation of GC sites with the upregulation of activation-induced cytidine deaminase (AID) enzyme mRNA and protein expression in draining lymph nodes after neonatal LAMP/Gag vaccination. These findings underscore that the LAMP-1 strategy in the chimeric vaccine could be useful to enhance antibody production even in the face of neonatal immaturity, and they contribute to the development of new vaccine approaches for other emerging pathogens at an early stage of life.
Collapse
|
10
|
Eddens T, Parks OB, Williams JV. Neonatal Immune Responses to Respiratory Viruses. Front Immunol 2022; 13:863149. [PMID: 35493465 PMCID: PMC9047724 DOI: 10.3389/fimmu.2022.863149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
Respiratory tract infections are a leading cause of morbidity and mortality in newborns, infants, and young children. These early life infections present a formidable immunologic challenge with a number of possibly conflicting goals: simultaneously eliminate the acute pathogen, preserve the primary gas-exchange function of the lung parenchyma in a developing lung, and limit long-term sequelae of both the infection and the inflammatory response. The latter has been most well studied in the context of childhood asthma, where multiple epidemiologic studies have linked early life viral infection with subsequent bronchospasm. This review will focus on the clinical relevance of respiratory syncytial virus (RSV), human metapneumovirus (HMPV), and rhinovirus (RV) and examine the protective and pathogenic host responses within the neonate.
Collapse
Affiliation(s)
- Taylor Eddens
- Pediatric Scientist Development Program, University of Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
- Division of Allergy/Immunology, University of Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Olivia B. Parks
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, United States
| | - John V. Williams
- Division of Pediatric Infectious Diseases, University of Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Oyong DA, Loughland JR, Soon MSF, Chan JA, Andrew D, Wines BD, Hogarth PM, Olver SD, Collinge AD, Varelias A, Beeson JG, Kenangalem E, Price RN, Anstey NM, Minigo G, Boyle MJ. Adults with Plasmodium falciparum malaria have higher magnitude and quality of circulating T-follicular helper cells compared to children. EBioMedicine 2022; 75:103784. [PMID: 34968760 PMCID: PMC8718734 DOI: 10.1016/j.ebiom.2021.103784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/28/2021] [Accepted: 12/11/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Protective malarial antibodies are acquired more rapidly in adults than children, independently of cumulative exposure, however the cellular responses mediating these differences are unknown. CD4 T-follicular helper (Tfh) cells have key roles in inducing antibodies, with Th2-Tfh cell activation associated with antibody development in malaria. Whether Tfh cell activation in malaria is age dependent is unknown and no studies have compared Tfh cell activation in children and adults with malaria. METHODS We undertook a comprehensive study of Tfh cells, along with B cells and antibody induction in children and adults with malaria. Activation and proliferation of circulating Tfh (cTfh) cell subsets was measured ex vivo and parasite-specific Tfh cell frequencies and functions studied with Activation Induced Marker (AIM) assays and intracellular cytokine staining. FINDINGS During acute malaria, the magnitude of cTfh cell activation was higher in adults than in children and occurred across all cTfh cell subsets in adults but was restricted only to the Th1-cTfh subset in children. Further, adults had higher levels of parasite-specific cTfh cells, and cTfh cells which produced more Th2-Tfh associated cytokine IL-4. Consistent with a role of higher Tfh cell activation in rapid immune development in adults, adults had higher activation of B cells during infection and higher induction of antibodies 7 and 28 days after malaria compared to children. INTERPRETATION Our data provide evidence that age impacts Tfh cell activation during malaria, and that these differences may influence antibody induction after treatment. Findings have important implications for vaccine development in children. FUNDING This word was supported by the National Health and Medical Research Council of Australia, Wellcome Trust, Charles Darwin University Menzies School of Health Research, Channel 7 Children's Research Foundation, and National Health Institute.
Collapse
Affiliation(s)
- Damian A Oyong
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia; Charles Darwin University, Darwin, NT, Australia
| | - Jessica R Loughland
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Megan S F Soon
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jo-Anne Chan
- Burnet Institute, Melbourne, VIC, Australia; Department of Immunology, Central Clinical School, Monash University, VIC, Australia; Department of Medicine, University of Melbourne, VIC, Australia
| | - Dean Andrew
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Bruce D Wines
- Burnet Institute, Melbourne, VIC, Australia; Department of Immunology, Central Clinical School, Monash University, VIC, Australia; Department of Clinical Pathology, University of Melbourne, VIC, Australia
| | - P Mark Hogarth
- Burnet Institute, Melbourne, VIC, Australia; Department of Immunology, Central Clinical School, Monash University, VIC, Australia; Department of Clinical Pathology, University of Melbourne, VIC, Australia
| | - Stuart D Olver
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Alika D Collinge
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Faculty of Medicine, The University of Queensland, QLD, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia; Department of Medicine, University of Melbourne, VIC, Australia; Department of Microbiology, Monash University, VIC, Australia
| | - Enny Kenangalem
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia; District Health Authority, Timika, Papua, Indonesia
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Gabriela Minigo
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia; Charles Darwin University, Darwin, NT, Australia
| | - Michelle J Boyle
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Burnet Institute, Melbourne, VIC, Australia; Faculty of Medicine, The University of Queensland, QLD, Australia.
| |
Collapse
|
12
|
Pyle CJ, Labeur-Iurman L, Groves HT, Puttur F, Lloyd CM, Tregoning JS, Harker JA. Enhanced IL-2 in early life limits the development of TFH and protective antiviral immunity. J Exp Med 2021; 218:e20201555. [PMID: 34665220 PMCID: PMC8529914 DOI: 10.1084/jem.20201555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/23/2021] [Accepted: 09/23/2021] [Indexed: 01/03/2023] Open
Abstract
T follicular helper cell (TFH)-dependent antibody responses are critical for long-term immunity. Antibody responses are diminished in early life, limiting long-term protective immunity and allowing prolonged or recurrent infection, which may be important for viral lung infections that are highly prevalent in infancy. In a murine model using respiratory syncytial virus (RSV), we show that TFH and the high-affinity antibody production they promote are vital for preventing disease on RSV reinfection. Following a secondary RSV infection, TFH-deficient mice had significantly exacerbated disease characterized by delayed viral clearance, increased weight loss, and immunopathology. TFH generation in early life was compromised by heightened IL-2 and STAT5 signaling in differentiating naive T cells. Neutralization of IL-2 during early-life RSV infection resulted in a TFH-dependent increase in antibody-mediated immunity and was sufficient to limit disease severity upon reinfection. These data demonstrate the importance of TFH in protection against recurrent RSV infection and highlight a mechanism by which this is suppressed in early life.
Collapse
Affiliation(s)
- Chloe J. Pyle
- National Heart and Lung Institute, Imperial College London, South Kensington, London, UK
| | - Lucia Labeur-Iurman
- National Heart and Lung Institute, Imperial College London, South Kensington, London, UK
| | - Helen T. Groves
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - Franz Puttur
- National Heart and Lung Institute, Imperial College London, South Kensington, London, UK
| | - Clare M. Lloyd
- National Heart and Lung Institute, Imperial College London, South Kensington, London, UK
- Asthma UK Centre in Allergic Mechanisms for Asthma, London, UK
| | - John S. Tregoning
- Department of Infectious Disease, Imperial College London, St. Mary’s Campus, London, UK
| | - James A. Harker
- National Heart and Lung Institute, Imperial College London, South Kensington, London, UK
- Asthma UK Centre in Allergic Mechanisms for Asthma, London, UK
| |
Collapse
|
13
|
Clemens EA, Alexander-Miller MA. Understanding Antibody Responses in Early Life: Baby Steps towards Developing an Effective Influenza Vaccine. Viruses 2021; 13:v13071392. [PMID: 34372597 PMCID: PMC8310046 DOI: 10.3390/v13071392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
The immune system of young infants is both quantitatively and qualitatively distinct from that of adults, with diminished responsiveness leaving these individuals vulnerable to infection. Because of this, young infants suffer increased morbidity and mortality from respiratory pathogens such as influenza viruses. The impaired generation of robust and persistent antibody responses in these individuals makes overcoming this increased vulnerability through vaccination challenging. Because of this, an effective vaccine against influenza viruses in infants under 6 months is not available. Furthermore, vaccination against influenza viruses is challenging even in adults due to the high antigenic variability across viral strains, allowing immune evasion even after induction of robust immune responses. This has led to substantial interest in understanding how specific antibody responses are formed to variable and conserved components of influenza viruses, as immune responses tend to strongly favor recognition of variable epitopes. Elicitation of broadly protective antibody in young infants, therefore, requires that both the unique characteristics of young infant immunity as well as the antibody immunodominance present among epitopes be effectively addressed. Here, we review our current understanding of the antibody response in newborns and young infants and discuss recent developments in vaccination strategies that can modulate both magnitude and epitope specificity of IAV-specific antibody.
Collapse
|
14
|
Soon MSF, Nalubega M, Boyle MJ. T-follicular helper cells in malaria infection and roles in antibody induction. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab008. [PMID: 36845571 PMCID: PMC9914587 DOI: 10.1093/oxfimm/iqab008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 01/29/2023] Open
Abstract
Immunity to malaria is mediated by antibodies that block parasite replication to limit parasite burden and prevent disease. Cytophilic antibodies have been consistently shown to be associated with protection, and recent work has improved our understanding of the direct and Fc-mediated mechanisms of protective antibodies. Antibodies also have important roles in vaccine-mediated immunity. Antibody induction is driven by the specialized CD4+ T cells, T-follicular helper (Tfh) cells, which function within the germinal centre to drive B-cell activation and antibody induction. In humans, circulating Tfh cells can be identified in peripheral blood and are differentiated into subsets that appear to have pathogen/vaccination-specific roles in antibody induction. Tfh cell responses are essential for protective immunity from Plasmodium infection in murine models of malaria. Our understanding of the activation of Tfh cells during human malaria infection and the importance of different Tfh cell subsets in antibody development is still emerging. This review will discuss our current knowledge of Tfh cell activation and development in malaria, and the potential avenues and pitfalls of targeting Tfh cells to improve malaria vaccines.
Collapse
Affiliation(s)
- Megan S F Soon
- Department of Infectious Diseases, QIMR-Berghofer, 300 Herston Road, Herston, QLD, 4006, Australia
| | - Mayimuna Nalubega
- Infectious Diseases Research Collaboration, Tororo District Hospital, Tororo, Uganda
| | - Michelle J Boyle
- Department of Infectious Diseases, QIMR-Berghofer, 300 Herston Road, Herston, QLD, 4006, Australia,Correspondence address. QIMR Berghofer Medical Research Institute, Brisbane, Australia. E-mail:
| |
Collapse
|
15
|
Pietrasanta C, De Leo P, Jofra T, Ronchi A, Pugni L, Mosca F, Aiuti A, Cicalese MP, Fousteri G. CXCR5-CXCL13 axis markers in full-term and preterm human neonates in the first weeks of life. Eur J Immunol 2021; 51:1289-1292. [PMID: 33491181 DOI: 10.1002/eji.202048831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/11/2020] [Accepted: 01/19/2021] [Indexed: 11/06/2022]
Abstract
Term and preterm neonates have very few circulating Tfh-like cells (cTfh), and no circulating Tfr-like cells. Neonatal cTfh are CXCR5lo PD-1lo CD45RAhi , suggestive of a naive, possibly recently activated phenotype. CXCL13 is high at birth, but decreases rapidly in the first weeks of life. Overall, signs of GC activity in human neonates are weak, even in those born prematurely or after sepsis.
Collapse
Affiliation(s)
- Carlo Pietrasanta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Pasqualina De Leo
- Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, DRI-Diabetes Research Institute, Regulation of Adaptive Immunology, Milan, Italy
| | - Tatiana Jofra
- Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, DRI-Diabetes Research Institute, Regulation of Adaptive Immunology, Milan, Italy
| | - Andrea Ronchi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy
| | - Lorenza Pugni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy
| | - Fabio Mosca
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, NICU, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Georgia Fousteri
- Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, DRI-Diabetes Research Institute, Regulation of Adaptive Immunology, Milan, Italy
| |
Collapse
|
16
|
Lirussi D, Weissmann SF, Ebensen T, Nitsche-Gloy U, Franz HBG, Guzmán CA. Cyclic Di-Adenosine Monophosphate: A Promising Adjuvant Candidate for the Development of Neonatal Vaccines. Pharmaceutics 2021; 13:pharmaceutics13020188. [PMID: 33535570 PMCID: PMC7912751 DOI: 10.3390/pharmaceutics13020188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
Underdeveloped immunity during the neonatal age makes this period one of the most dangerous during the human lifespan, with infection-related mortality being one of the highest of all age groups. It is also discussed that vaccination during this time window may result in tolerance rather than in productive immunity, thus raising concerns about the overall vaccine-mediated protective efficacy. Cyclic di-nucleotides (CDN) are bacterial second messengers that are rapidly sensed by the immune system as a danger signal, allowing the utilization of these molecules as potent activators of the immune response. We have previously shown that cyclic di-adenosine monophosphate (CDA) is a potent and versatile adjuvant capable of promoting humoral and cellular immunity. We characterize here the cytokine profiles elicited by CDA in neonatal cord blood in comparison with other promising neonatal adjuvants, such as the imidazoquinoline resiquimod (R848), which is a synthetic dual TLR7 and TLR8 agonist. We observed superior activity of CDA in eliciting T helper 1 (Th1) and T follicular helper (TfH) cytokines in cells from human cord blood when compared to R848. Additional in vivo studies in mice showed that neonatal priming in a three-dose vaccination schedule is beneficial when CDA is used as a vaccine adjuvant. Humoral antibody titers were significantly higher in mice that received a neonatal prime as compared to those that did not. This effect was absent when using other adjuvants that were reported as suitable for neonatal vaccination. The biological significance of this immune response was assessed by a challenge with a genetically modified influenza H1N1 PR8 virus. The obtained results confirmed that CDA performed better than any other adjuvant tested. Altogether, our results suggest that CDA is a potent adjuvant in vitro on human cord blood, and in vivo in newborn mice, and thus a suitable candidate for the development of neonatal vaccines.
Collapse
Affiliation(s)
- Darío Lirussi
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (S.F.W.); (C.A.G.)
- Correspondence: (D.L.); (T.E.); Tel.: +49-531-61814607 (T.E.); Fax: +49-531-618414699 (T.E.)
| | - Sebastian Felix Weissmann
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (S.F.W.); (C.A.G.)
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (S.F.W.); (C.A.G.)
- Correspondence: (D.L.); (T.E.); Tel.: +49-531-61814607 (T.E.); Fax: +49-531-618414699 (T.E.)
| | - Ursula Nitsche-Gloy
- Women’s Clinic, Hospital Marienstift GmbH, Helmstedter Strasse 35, 38102 Braunschweig, Germany;
| | - Heiko B. G. Franz
- Department of Obstetrics and Gynecology, Women’s Clinic, Braunschweig Central Hospital, Celler Strasse 38, 38114 Braunschweig, Germany;
| | - Carlos A. Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; (S.F.W.); (C.A.G.)
| |
Collapse
|
17
|
Semmes EC, Chen JL, Goswami R, Burt TD, Permar SR, Fouda GG. Understanding Early-Life Adaptive Immunity to Guide Interventions for Pediatric Health. Front Immunol 2021; 11:595297. [PMID: 33552052 PMCID: PMC7858666 DOI: 10.3389/fimmu.2020.595297] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/04/2020] [Indexed: 01/16/2023] Open
Abstract
Infants are capable of mounting adaptive immune responses, but their ability to develop long-lasting immunity is limited. Understanding the particularities of the neonatal adaptive immune system is therefore critical to guide the design of immune-based interventions, including vaccines, in early life. In this review, we present a thorough summary of T cell, B cell, and humoral immunity in early life and discuss infant adaptive immune responses to pathogens and vaccines. We focus on the differences between T and B cell responses in early life and adulthood, which hinder the generation of long-lasting adaptive immune responses in infancy. We discuss how knowledge of early life adaptive immunity can be applied when developing vaccine strategies for this unique period of immune development. In particular, we emphasize the use of novel vaccine adjuvants and optimization of infant vaccine schedules. We also propose integrating maternal and infant immunization strategies to ensure optimal neonatal protection through passive maternal antibody transfer while avoiding hindering infant vaccine responses. Our review highlights that the infant adaptive immune system is functionally distinct and uniquely regulated compared to later life and that these particularities should be considered when designing interventions to promote pediatric health.
Collapse
Affiliation(s)
- Eleanor C. Semmes
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
- Medical Scientist Training Program, Duke University, Durham, NC, United States
- Children’s Health and Discovery Initiative, Department of Pediatrics, Duke University, Durham, NC, United States
| | - Jui-Lin Chen
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Ria Goswami
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
| | - Trevor D. Burt
- Children’s Health and Discovery Initiative, Department of Pediatrics, Duke University, Durham, NC, United States
- Division of Neonatology, Department of Pediatrics, Duke University, Durham, NC, United States
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
- Children’s Health and Discovery Initiative, Department of Pediatrics, Duke University, Durham, NC, United States
| | - Genevieve G. Fouda
- Duke Human Vaccine Institute, Duke University, Durham, NC, United States
- Children’s Health and Discovery Initiative, Department of Pediatrics, Duke University, Durham, NC, United States
| |
Collapse
|
18
|
Zhang Z, Song X, Zhang Z, Li H, Duan Y, Zhang H, Lu H, Luo C, Wang M. The molecular characterization and immune protection of adhesion protein 65 (AP65) of Trichomonas vaginalis. Microb Pathog 2021; 152:104750. [PMID: 33484808 DOI: 10.1016/j.micpath.2021.104750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/13/2020] [Accepted: 01/13/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Adherence to the surface of the host cell is the precondition for T. vaginalis parasitism and pathogenicity, causing urogenital infection. The AP65 of T. vaginalis (TvAP65) involves in the process of adhesion. So, the present study was aimed at investigating the molecular characterization and vaccine candidacy of TvAP65 for protecting the host from the onset of Trichomoniasis. METHODS The open reading frame (ORF) of TvAP65 was amplified and then inserted into pET-32a (+) to clone recombinant TvAP65 (rTvAP65). The immunoblotting determined the immunogenicity and molecular size of TvAP65, while immunofluorescence staining visualized and the precise localization of TvAP65 in T. vaginalis trophozoites. Animal challenge and enzyme-linked immunosorbent assay (ELISA) test were used to evaluate the immunoprotection and the types of the immune response of TvAP65. RESULTS By the sequence analysis, TvAP65 encoded a 63.13 kDa protein that consisted 567 amino acid residues with a high antigenic index. The western blotting revealed that rTvAP65 and native TvAP65 could interact with the antibodies in the rat serums post hoc rTvAP65 immunization and the serums from the mice that were experimentally infected with T. vaginalis, respectively. Immunofluorescence stained TvAP65 on the surface of T. vaginalis trophozoites. Moreover, following emulsification with Freund's adjuvant, rTvAP65 was subsequently administered to BALB/c mice three times at 0, 2, and 4 weeks and the results from this animal challenge experiments showed significant increases in immunoglobulins of IgG2a, IgG1, and IgG, and cytokine of IFN-γ, and IL-2, and 10. Lastly, rTvAP65 vaccinated animals had a prolonged survival time (26.80 ± 4.05) after challenged by T. vaginalis. CONCLUSIONS TvAP65 mediated the adhesion of T. vaginalis to the host epithelia for the pathogenesis of the parasite and can be considered as a candidate protein for designing a functional vaccine that induces cell-mediated and humoral immunity against the T. vaginalis infection.
Collapse
Affiliation(s)
- Zhenchao Zhang
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China.
| | - Xiaoxiao Song
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Zhengbo Zhang
- School of International Education, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Haoran Li
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Yujuan Duan
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Hao Zhang
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Haoran Lu
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Chengyang Luo
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China
| | - Mingyong Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, PR China.
| |
Collapse
|
19
|
Alexander-Miller MA. Challenges for the Newborn Following Influenza Virus Infection and Prospects for an Effective Vaccine. Front Immunol 2020; 11:568651. [PMID: 33042150 PMCID: PMC7524958 DOI: 10.3389/fimmu.2020.568651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/18/2020] [Indexed: 01/10/2023] Open
Abstract
Newborns are at significantly increased risk of severe disease following infection with influenza virus. This is the collective result of their naïve status, altered immune responsiveness, and the lack of a vaccine that is effective in these individuals. Numerous studies have revealed impairments in both the innate and adaptive arms of the immune system of newborns. The consequence of these alterations is a quantitative and qualitative decrease in both antibody and T cell responses. This review summarizes the hurdles newborns experience in mounting an effective response that can clear influenza virus and limit disease following infection. In addition, the challenges, as well as the opportunities, for developing vaccines that can elicit protective responses in these at risk individuals are discussed.
Collapse
Affiliation(s)
- Martha A Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
20
|
Challenges for the Newborn Immune Response to Respiratory Virus Infection and Vaccination. Vaccines (Basel) 2020; 8:vaccines8040558. [PMID: 32987691 PMCID: PMC7712002 DOI: 10.3390/vaccines8040558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
The initial months of life reflect an extremely challenging time for newborns as a naïve immune system is bombarded with a large array of pathogens, commensals, and other foreign entities. In many instances, the immune response of young infants is dampened or altered, resulting in increased susceptibility and disease following infection. This is the result of both qualitative and quantitative changes in the response of multiple cell types across the immune system. Here we provide a review of the challenges associated with the newborn response to respiratory viral pathogens as well as the hurdles and advances for vaccine-mediated protection.
Collapse
|
21
|
Zhang Z, Li Y, Wang S, Hao L, Zhu Y, Li H, Song X, Duan Y, Sang Y, Wu P, Li X. The Molecular Characterization and Immunity Identification of Trichomonas vaginalis Adhesion Protein 33 (AP33). Front Microbiol 2020; 11:1433. [PMID: 32695085 PMCID: PMC7338309 DOI: 10.3389/fmicb.2020.01433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/03/2020] [Indexed: 12/22/2022] Open
Abstract
Trichomoniasis is caused by Trichomonas vaginalis (T. vaginalis), which is a widespread and serious sexually transmitted pathogen in humans. The procedure of T. vaginalis adherence to the host cell is the precondition for T. vaginalis parasitism and pathogenicity. The AP33 adhesin of T. vaginalis (TvAP33) plays a key role in the process of adhesion. In this study, the specific primers for polymerase chain reaction (PCR) were designed based on the sequence of TvAP33 (GenBank Accession No. U87098.1) to amplify the open reading frame (ORF), and the ORF was inserted into pET-32a (+) to produce recombinant TvAP33 (rTvAP33). The sequence analysis indicated that the TvAP33 gene encoded a protein of 309 amino acids with 32.53 kDa, and the protein was predicted to have a high antigen index. Western blotting assay showed rTvAP33 was successfully recognized by the sera of mice experimentally infected with T. vaginalis, while native TvAP33 in the somatic extract of T. vaginalis trophozoite was as well detected by sera from rats immunized with the rTvAP33. Immunofluorescence analysis using an antibody against rTvAP33 demonstrated that the protein was expressed and located on the surface of T. vaginalis trophozoites. The recombinant protein was emulsified in Freund's adjuvant and used to immunize BALB/C mice three times at days 0, 14, and 28. The result of animal challenge experiments revealed the levels of IgG, IgG1, and IgG2a, and IL-4, IL-10, and IL17 among rTvAP33 vaccinated animals were integrally increased. Moreover, the rTvAP33 vaccinated animals were apparently prolonged survival time (26.45 ± 4.10) after challenge infection with this parasite. All these results indicated that TvAP33 could be used as vaccine candidate antigen to induce cell-mediated and humoral immunity.
Collapse
Affiliation(s)
- Zhenchao Zhang
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yuhua Li
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Shuai Wang
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Lixia Hao
- Xinxiang Maternity and Child Health Care Hospital, Xinxiang, China
| | - Yunqing Zhu
- Xinxiang Maternity and Child Health Care Hospital, Xinxiang, China
| | - Haoran Li
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiaoxiao Song
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yujuan Duan
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yuhui Sang
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Pucheng Wu
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiangrui Li
- Xinxiang Key Laboratory of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
22
|
Schussek S, Bernasconi V, Mattsson J, Wenzel UA, Strömberg A, Gribonika I, Schön K, Lycke NY. The CTA1-DD adjuvant strongly potentiates follicular dendritic cell function and germinal center formation, which results in improved neonatal immunization. Mucosal Immunol 2020; 13:545-557. [PMID: 31959882 PMCID: PMC7223721 DOI: 10.1038/s41385-020-0253-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 02/04/2023]
Abstract
Vaccination of neonates and young infants is hampered by the relative immaturity of their immune systems and the lack of safe and efficacious vaccine adjuvants. Immaturity of the follicular dendritic cells (FDCs), in particular, appears to play a critical role for the inability to stimulate immune responses. Using the CD21mT/mG mouse model we found that at 7 days of life, FDCs exhibited a mature phenotype only in the Peyer´s patches (PP), but our unique adjuvant, CTA1-DD, effectively matured FDCs also in peripheral lymph nodes following systemic, as well as mucosal immunizations. This was a direct effect of complement receptor 2-binding to the FDC and a CTA1-enzyme-dependent enhancing effect on gene transcription, among which CR2, IL-6, ICAM-1, IL-1β, and CXCL13 encoding genes were upregulated. This way we achieved FDC maturation, increased germinal center B-cell- and Tfh responses, and enhanced specific antibody levels close to adult magnitudes. Oral priming immunization of neonates against influenza infection with CTA1-3M2e-DD effectively promoted anti-M2e-immunity and significantly reduced morbidity against a live virus challenge infection. To the best of our knowledge, this is the first study to demonstrate direct effects of an adjuvant on FDC gene transcriptional functions and the subsequent enhancement of neonatal immune responses.
Collapse
Affiliation(s)
- Sophie Schussek
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Valentina Bernasconi
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johan Mattsson
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Alexander Wenzel
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Anneli Strömberg
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Inta Gribonika
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Nils Y Lycke
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
23
|
Identification of Toxoplasma Gondii Tyrosine Hydroxylase (TH) Activity and Molecular Immunoprotection against Toxoplasmosis. Vaccines (Basel) 2020; 8:vaccines8020158. [PMID: 32244791 PMCID: PMC7349186 DOI: 10.3390/vaccines8020158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023] Open
Abstract
The neurotropic parasite Toxoplasma gondii (T. gondii) infection can change the behavior of rodents and cause neuropsychological symptoms in humans, which may be related to the change in neurotransmitter dopamine in the host brain caused by T. gondii infection. T. gondii tyrosine hydroxylase (TgTH) is an important factor in increasing the neurotransmitter dopamine in the host brain. In this study, the enzyme activity of TgTH catalytic substrate for dopamine production and the molecular characteristics of TgTH were identified. In order to amplify the open reading frame (ORF), the designing of the specific primers for polymerase chain reaction (PCR) was on the basis of the TgTH sequence (GenBank Accession No. EU481510.1), which was inserted into pET-32a (+) for the expression of recombined TgTH (rTgTH). The sequence analysis indicated that the gene of TgTH directed the encoding of a 62.4-kDa protein consisting of 565 amino acid residues, which was predicted to have a high antigen index. The enzyme activity test showed that rTgTH and the soluble proteins extracted separately from T. gondii RH strain and PRU strain could catalyze the substrate to produce dopamine in a dose-dependent manner, and the optimum catalytic temperature was 37 °C. The result of the Western Blotting assay revealed that the rTgTH and the native TgTH extracted from somatic of T. gondii RH tachyzoite were successfully detected by the sera of mice infected with T. gondii and the rat serum after rTgTH immune, respectively. Immunofluorescence analysis using antibody against rTgTH demonstrated that the protein was expressed and located on the surface of T. gondii RH tachyzoite. Freund’s adjuvant was used to emulsify the rTgTH, which was subsequently applied to BALB/c mouse immune thrice on week 0, week 2, and week 4, respectively. The result of the animal challenge experiments showed an integral increase in IgG, IgG2a, IgG1, and IFN-γ, IL-4, and IL17 were as well significantly increased, and that the rTgTH vaccinated animals apparently had a prolonged survival time (14.30 ± 2.41) after infection with the RH strain of T. gondii compared with that of the non-vaccinated control animals, which died within 11 days. Additionally, in the rTgTH vaccination group, the number of brain cysts (1275 ± 224) significantly decreased (p < 0.05) compared to the blank control group (2375 ± 883), and the size of the brain cysts in the animals immunized with rTgTH vaccination was remarkably smaller than that of the control mice. All the findings prove that TgTH played an important role in increasing the neurotransmitter dopamine in the host brain and could be used as a vaccine candidate antigen to mediate cell-mediated and humoral immunity.
Collapse
|
24
|
Clemens E, Angeletti D, Holbrook BC, Kanekiyo M, Jorgensen MJ, Graham BS, Yewdell J, Alexander-Miller MA. Influenza-infected newborn and adult monkeys exhibit a strong primary antibody response to hemagglutinin stem. JCI Insight 2020; 5:135449. [PMID: 32078584 DOI: 10.1172/jci.insight.135449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/12/2020] [Indexed: 01/06/2023] Open
Abstract
The specificity of antibodies (Abs) generated against influenza A virus (IAV) infection can significantly alter protection and viral clearance. At present, the impact of age upon this process is relatively unexplored. Here, we evaluated the Ab response in newborn and adult African green monkeys following infection with IAV using a strain that enables us to determine the immunodominance (ID) hierarchy of the Ab response to hemagglutinin (HA), the principal target of protective Abs. This revealed altered ID patterns in the early IgM anti-HA response in newborns versus adults that converged over time. While the IgG ID profiles for HA in newborn and adult monkeys were similar, this was not the case for IgA. Importantly, HA stem-specific Abs were generated robustly and similarly in newborns and adults in terms of quality and quantity. Together, these results demonstrate that newborns and adults can differ in the Ab ID pattern established following infection and that the ID pattern can vary across isotypes. In addition, newborns have the ability to generate potent HA stem-specific Ab responses. Our findings further the understanding of the newborn response to IAV antigens and inform the development of improved vaccines for this at-risk population.
Collapse
Affiliation(s)
- Elene Clemens
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Matthew J Jorgensen
- Section on Comparative Medicine, Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Jonathan Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Martha A Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
25
|
Hill DL, Carr EJ, Rutishauser T, Moncunill G, Campo JJ, Innocentin S, Mpina M, Nhabomba A, Tumbo A, Jairoce C, Moll HA, van Zelm MC, Dobaño C, Daubenberger C, Linterman MA. Immune system development varies according to age, location, and anemia in African children. Sci Transl Med 2020; 12:eaaw9522. [PMID: 32024802 PMCID: PMC7738197 DOI: 10.1126/scitranslmed.aaw9522] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/19/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Children from low- and middle-income countries, where there is a high incidence of infectious disease, have the greatest need for the protection afforded by vaccination, but vaccines often show reduced efficacy in these populations. An improved understanding of how age, infection, nutrition, and genetics influence immune ontogeny and function is key to informing vaccine design for this at-risk population. We sought to identify factors that shape immune development in children under 5 years of age from Tanzania and Mozambique by detailed immunophenotyping of longitudinal blood samples collected during the RTS,S malaria vaccine phase 3 trial. In these cohorts, the composition of the immune system is dynamically transformed during the first years of life, and this was further influenced by geographical location, with some immune cell types showing an altered rate of development in Tanzanian children compared to Dutch children enrolled in the Generation R population-based cohort study. High-titer antibody responses to the RTS,S/AS01E vaccine were associated with an activated immune profile at the time of vaccination, including an increased frequency of antibody-secreting plasmablasts and follicular helper T cells. Anemic children had lower frequencies of recent thymic emigrant T cells, isotype-switched memory B cells, and plasmablasts; modulating iron bioavailability in vitro could recapitulate the B cell defects observed in anemic children. Our findings demonstrate that the composition of the immune system in children varies according to age, geographical location, and anemia status.
Collapse
Affiliation(s)
- Danika L Hill
- Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, UK.
- Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Victoria 3004, Australia
| | - Edward J Carr
- Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Tobias Rutishauser
- Swiss Tropical and Public Health Institute, Basel 4051, Switzerland
- University of Basel, Basel 4001, Switzerland
| | - Gemma Moncunill
- ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, Catalonia 08036, Spain
| | - Joseph J Campo
- ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, Catalonia 08036, Spain
| | - Silvia Innocentin
- Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, UK
| | - Maxmillian Mpina
- Swiss Tropical and Public Health Institute, Basel 4051, Switzerland
- University of Basel, Basel 4001, Switzerland
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Augusto Nhabomba
- Centro de Investigação em Saúde de Manhiça, Maputo, CP 1929, Mozambique
| | - Anneth Tumbo
- Swiss Tropical and Public Health Institute, Basel 4051, Switzerland
- University of Basel, Basel 4001, Switzerland
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde de Manhiça, Maputo, CP 1929, Mozambique
| | - Henriëtte A Moll
- Department of Pediatrics, Sophia Children's Hospital, Erasmus MC, University Medical Center, Rotterdam 3015 GD, Netherlands
| | - Menno C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Victoria 3004, Australia
| | - Carlota Dobaño
- ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, Catalonia 08036, Spain
- Centro de Investigação em Saúde de Manhiça, Maputo, CP 1929, Mozambique
| | - Claudia Daubenberger
- Swiss Tropical and Public Health Institute, Basel 4051, Switzerland.
- University of Basel, Basel 4001, Switzerland
| | - Michelle A Linterman
- Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, UK.
| |
Collapse
|
26
|
Mastelic-Gavillet B, Vono M, Gonzalez-Dias P, Ferreira FM, Cardozo L, Lambert PH, Nakaya HI, Siegrist CA. Neonatal T Follicular Helper Cells Are Lodged in a Pre-T Follicular Helper Stage Favoring Innate Over Adaptive Germinal Center Responses. Front Immunol 2019; 10:1845. [PMID: 31456798 PMCID: PMC6700230 DOI: 10.3389/fimmu.2019.01845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/22/2019] [Indexed: 11/24/2022] Open
Abstract
T follicular helper (Tfh) cells have emerged as a critical limiting factor for controlling the magnitude of neonatal germinal center (GC) reactions and primary vaccine antibody responses. We compared the functional attributes of neonatal and adult Tfh cells at the transcriptomic level and demonstrated that the Tfh cell program is well-initiated in neonates although the Tfh gene-expression pattern (i.e., CXCR5, IL-21, BCL6, TBK1, STAT4, ASCL2, and c-MAF) is largely underrepresented as compared to adult Tfh cells. Importantly, we identified a TH2-bias of neonatal Tfh cells, with preferential differentiation toward short-lived pre-Tfh effector cells. Remarkably, adjuvantation with CpG-ODNs redirect neonatal pre-Tfh cells toward committed GC-Tfh cells, as illustrated by increased expression of Tfh signature genes and reduced expression of TH2-related genes.
Collapse
Affiliation(s)
- Beatris Mastelic-Gavillet
- Departments of Pathology-Immunology and Pediatrics, World Health Organization Collaborating Center for Vaccine Immunology, University of Geneva, Geneva, Switzerland
| | - Maria Vono
- Departments of Pathology-Immunology and Pediatrics, World Health Organization Collaborating Center for Vaccine Immunology, University of Geneva, Geneva, Switzerland
| | - Patrícia Gonzalez-Dias
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Frederico Moraes Ferreira
- Laboratory of Immunology, School of Medicine, Heart Institute, University of São Paulo, São Paulo, Brazil
| | - Lucas Cardozo
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paul-Henri Lambert
- Departments of Pathology-Immunology and Pediatrics, World Health Organization Collaborating Center for Vaccine Immunology, University of Geneva, Geneva, Switzerland
| | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Claire-Anne Siegrist
- Departments of Pathology-Immunology and Pediatrics, World Health Organization Collaborating Center for Vaccine Immunology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
27
|
Abstract
Introduction: Neonates are less responsive to vaccines than adults, making it harder to protect newborns against infection. Neonatal differences in antigen-presenting cell, B and T cell function, all likely contribute. A key question is whether novel adjuvants might be able to make neonatal vaccines more effective. Areas covered: This review addresses the issues of how to improve neonatal vaccines, which we have defined as vaccines given in the first 4 weeks of life in a human infant or the first week of life in a mouse. A search was performed using keywords including 'neonatal immunity', 'neonatal immunisation', 'vaccine' and 'adjuvant' of PubMed articles published between 1960 and 2018. Expert opinion: Sugar-like structures have recently been shown to prime the infant adaptive immune system to respond to vaccines, being potentially more effective than traditional adjuvants. Sugar-based compounds with beneficial adjuvant effects in neonatal vaccine models include delta inulin (Advax), curdlan, and trehalose 6,6'-dibehenate. Such compounds make interesting neonatal adjuvant candidates, either used alone or in combination with traditional innate immune adjuvants.
Collapse
Affiliation(s)
- Isaac G Sakala
- a Vaxine Pty Ltd , Adelaide , Australia.,b Department of Diabetes and Endocrinology, Flinders Medical Centre/Flinders University , Adelaide , Australia
| | - Katherine Marie Eichinger
- c Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, University of Pittsburgh , Pittsburgh , PA , USA
| | - Nikolai Petrovsky
- a Vaxine Pty Ltd , Adelaide , Australia.,b Department of Diabetes and Endocrinology, Flinders Medical Centre/Flinders University , Adelaide , Australia
| |
Collapse
|
28
|
Yao Y, Wang ZC, Wang N, Zhou PC, Chen CL, Song J, Pan L, Liao B, Zhang XH, Yang YS, Xu XY, Zhu RF, Yu D, Liu Z. Allergen immunotherapy improves defective follicular regulatory T cells in patients with allergic rhinitis. J Allergy Clin Immunol 2019; 144:118-128. [PMID: 30796979 DOI: 10.1016/j.jaci.2019.02.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 12/25/2018] [Accepted: 02/08/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND The function of follicular regulatory T (TFR) cells, especially in regulating IgE production in patients with allergic diseases, is poorly understood. OBJECTIVE We sought to investigate the phenotype, function, and clinical relevance of TFR cells in patients with allergic rhinitis (AR). METHODS The phenotype and frequency of tonsillar and circulating TFR cells were characterized by using flow cytometry. TFR cell function was examined in an assay by coculturing with follicular helper T cells and B cells. The associations between TFR cells and the clinical features in patients with AR before and after allergen immunotherapy (AIT) were analyzed. RESULTS TFR cells were detected in germinal centers of tonsils, but compared with subjects without AR, the frequencies decreased in patients with AR who were allergic to house dust mites. Circulating TFR cells in blood were phenotypically and numerically correlated with tonsillar TFR cells, and a reduction of circulating TFR cells but not total or CXCR5- regulatory T cells was noted in patients with AR compared with healthy control subjects. Moreover, circulating TFR cells in patients with AR showed a specific defect in suppressing IgE production but were capable of suppressing production of other immunoglobulin types. We identified negative associations of circulating TFR cell frequencies and function with antigen-specific IgE levels or disease severity in patients with AR. After AIT, the frequencies and function of circulating TFR cells were improved, which positively associated with disease remission. CONCLUSION Impairment in TFR cells might contribute to aberrant IgE production in patients with AR, and AIT improves defective TFR cell function. TFR cells might serve as a potential biomarker to monitor clinical response to AIT.
Collapse
Affiliation(s)
- Yin Yao
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Chao Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng-Cheng Zhou
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Cai-Ling Chen
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Song
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Pan
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liao
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Hao Zhang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong-Shi Yang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Yan Xu
- Department of Otolaryngology-Head and Neck Surgery, China Resources & Wisco General Hospital, Wuhan, China
| | - Rong-Fei Zhu
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Yu
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australia.
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
29
|
Yang J, Sakai J, Siddiqui S, Lee RC, Ireland DDC, Verthelyi D, Akkoyunlu M. IL-6 Impairs Vaccine Responses in Neonatal Mice. Front Immunol 2018; 9:3049. [PMID: 30619375 PMCID: PMC6307459 DOI: 10.3389/fimmu.2018.03049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/10/2018] [Indexed: 12/24/2022] Open
Abstract
The inability of infants to mount proper follicular helper T (TFH) cell response renders this age group susceptible to infectious diseases. Initial instruction of T cells by antigen presenting cells and subsequent differentiation into TFH cells are controlled by T cell receptor signal strength, co-stimulatory molecules and cytokines such as IL-6 and IL-21. In immunized adults, IL-6 promotes TFH development by increasing the expression of CXCR5 and the TFH master transcription factor, B cell lymphoma 6. Underscoring the importance of IL-6 in TFH generation, we found improved antibody responses accompanied by increased TFH cells and decreased follicular regulatory helper T (TFR) cells, a Foxp3 expressing inhibitory CD4+ T cell occupying the germinal center (GC), when a tetanus toxoid conjugated pneumococcal polysaccharide type 14 vaccine was injected in adult mice together with IL-6. Paradoxically, in neonates IL-6 containing PPS14-TT vaccine suppressed the already impaired TFH development and antibody responses in addition to increasing TFR cell population. Supporting the diminished TFH development, we detected lower frequency of phospho-STAT-3+ TFH in immunized neonatal T cells after IL-6 stimulation than adult cells. Moreover, IL-6 induced more phospho-STAT-3+ TFR in neonatal cells than adult cells. We also measured lower expression of IL-6R on TFH cells and higher expression on TFR cells in neonatal cells than adult cells, a possible explanation for the difference in IL-6 induced signaling in different age groups. Supporting the flow cytometry findings, microscopic examination revealed the localization of Treg cells in the splenic interfollicular niches of immunized adult mice compared to splenic follicles in neonatal mice. In addition to the limitations in the formation of IL-21 producing TFH cells, neonatal mice GC B cells also expressed lower levels of IL-21R in comparison to the adult mice cells. These findings point to diminished IL-6 activity on neonatal TFH cells as an underlying mechanism of the increased TFR: TFH ratio in immunized neonatal mice.
Collapse
Affiliation(s)
- Jiyeon Yang
- Division of Bacterial Allergenic and Parasitic Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Jiro Sakai
- Division of Bacterial Allergenic and Parasitic Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Shafiuddin Siddiqui
- Division of Bacterial Allergenic and Parasitic Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Robert C Lee
- Division of Bacterial Allergenic and Parasitic Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Derek D C Ireland
- Office of Biotechnology Products, Division of Biotechnology Review and Research III, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Daniela Verthelyi
- Office of Biotechnology Products, Division of Biotechnology Review and Research III, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Mustafa Akkoyunlu
- Division of Bacterial Allergenic and Parasitic Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
30
|
Felter S, Kern P, Ryan C. Allergic contact dermatitis: Adequacy of the default 10X assessment factor for human variability to protect infants and children. Regul Toxicol Pharmacol 2018; 99:116-121. [DOI: 10.1016/j.yrtph.2018.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/08/2018] [Accepted: 09/12/2018] [Indexed: 01/03/2023]
|
31
|
Xu H, Ziani W, Shao J, Doyle-Meyers LA, Russell-Lodrigue KE, Ratterree MS, Veazey RS, Wang X. Impaired Development and Expansion of Germinal Center Follicular Th Cells in Simian Immunodeficiency Virus-Infected Neonatal Macaques. THE JOURNAL OF IMMUNOLOGY 2018; 201:1994-2003. [PMID: 30104244 DOI: 10.4049/jimmunol.1800235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/15/2018] [Indexed: 12/16/2022]
Abstract
Germinal center (GC) CD4+ follicular Th (Tfh) cells are critical for cognate B cell help in humoral immune responses to pathogenic infections. Although Tfh cells are expanded or depleted in HIV/SIV-infected adults, the effects of pediatric HIV/SIV infection on Tfh cells remain unclear. In this study, we examined changes in lymphoid follicle formation in lymph nodes focusing on GC Tfh cells, B cell development, and differentiation in SIV-infected neonatal rhesus macaques (Macaca mulatta) compared with age-matched cohorts. Our data showed that follicles and GCs of normal infants rapidly formed in the first few weeks of age, in parallel with increasing GC Tfh cells in various lymphoid tissues. In contrast, GC development and GC Tfh cells were markedly impaired in SIV-infected infants. There was a very low frequency of GC Tfh cells throughout SIV infection in neonates and subsequent infants, accompanied by high viremia, reduction of B cell proliferation/resting memory B cells, and displayed proinflammatory unresponsiveness. These findings indicate neonatal HIV/SIV infection compromises the development of GC Tfh cells, likely contributing to ineffective Ab responses, high viremia, and eventually rapid disease progression to AIDS.
Collapse
Affiliation(s)
- Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Widade Ziani
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Jiasheng Shao
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Lara A Doyle-Meyers
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Kasi E Russell-Lodrigue
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Marion S Ratterree
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| | - Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433
| |
Collapse
|
32
|
Vono M, Eberhardt CS, Mohr E, Auderset F, Christensen D, Schmolke M, Coler R, Meinke A, Andersen P, Lambert PH, Mastelic-Gavillet B, Siegrist CA. Overcoming the Neonatal Limitations of Inducing Germinal Centers through Liposome-Based Adjuvants Including C-Type Lectin Agonists Trehalose Dibehenate or Curdlan. Front Immunol 2018. [PMID: 29541075 PMCID: PMC5835515 DOI: 10.3389/fimmu.2018.00381] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Neonates and infants are more vulnerable to infections and show reduced responses to vaccination. Consequently, repeated immunizations are required to induce protection and early life vaccines against major pathogens such as influenza are yet unavailable. Formulating antigens with potent adjuvants, including immunostimulators and delivery systems, is a demonstrated approach to enhance vaccine efficacy. Yet, adjuvants effective in adults may not meet the specific requirements for activating the early life immune system. Here, we assessed the neonatal adjuvanticity of three novel adjuvants including TLR4 (glucopyranosyl lipid adjuvant-squalene emulsion), TLR9 (IC31®), and Mincle (CAF01) agonists, which all induce germinal centers (GCs) and potent antibody responses to influenza hemagglutinin (HA) in adult mice. In neonates, a single dose of HA formulated into each adjuvant induced T follicular helper (TFH) cells. However, only HA/CAF01 elicited significantly higher and sustained antibody responses, engaging neonatal B cells to differentiate into GCs already after a single dose. Although antibody titers remained lower than in adults, HA-specific responses induced by a single neonatal dose of HA/CAF01 were sufficient to confer protection against influenza viral challenge. Postulating that the neonatal adjuvanticity of CAF01 may result from the functionality of the C-type lectin receptor (CLR) Mincle in early life we asked whether other C-type lectin agonists would show a similar neonatal adjuvanticity. Replacing the Mincle agonist trehalose 6,6′-dibehenate by Curdlan, which binds to Dectin-1, enhanced antibody responses through the induction of similar levels of TFH, GCs and bone marrow high-affinity plasma cells. Thus, specific requirements of early life B cells may already be met after a single vaccine dose using CLR-activating agonists, identified here as promising B cell immunostimulators for early life vaccines when included into cationic liposomes.
Collapse
Affiliation(s)
- Maria Vono
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland
| | - Christiane Sigrid Eberhardt
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland.,WHO Collaborative Center for Vaccine Immunology, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Elodie Mohr
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland
| | - Floriane Auderset
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland
| | - Dennis Christensen
- Vaccine Adjuvant Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Rhea Coler
- Infectious Disease Research Institute, Seattle, WA, United States
| | | | - Peter Andersen
- Vaccine Adjuvant Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Paul-Henri Lambert
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland
| | - Beatris Mastelic-Gavillet
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- WHO Collaborative Center for Vaccine Immunology, Department of Pathology-Immunology, University of Geneva, Geneva, Switzerland.,WHO Collaborative Center for Vaccine Immunology, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| |
Collapse
|
33
|
Glaesener S, Jaenke C, Habener A, Geffers R, Hagendorff P, Witzlau K, Imelmann E, Krueger A, Meyer-Bahlburg A. Decreased production of class-switched antibodies in neonatal B cells is associated with increased expression of miR-181b. PLoS One 2018; 13:e0192230. [PMID: 29389970 PMCID: PMC5794184 DOI: 10.1371/journal.pone.0192230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/18/2018] [Indexed: 01/11/2023] Open
Abstract
The increased susceptibility to infections of neonates is caused by an immaturity of the immune system as a result of both qualitative and quantitative differences between neonatal and adult immune cells. With respect to B cells, neonatal antibody responses are known to be decreased. Accountable for this is an altered composition of the neonatal B cell compartment towards more immature B cells. However, it remains unclear whether the functionality of individual neonatal B cell subsets is altered as well. In the current study we therefore compared phenotypical and functional characteristics of corresponding neonatal and adult B cell subpopulations. No phenotypic differences could be identified with the exception of higher IgM expression in neonatal B cells. Functional analysis revealed differences in proliferation, survival, and B cell receptor signaling. Most importantly, neonatal B cells showed severely impaired class-switch recombination (CSR) to IgG and IgA. This was associated with increased expression of miR-181b in neonatal B cells. Deficiency of miR-181b resulted in increased CSR. With this, our results highlight intrinsic differences that contribute to weaker B cell antibody responses in newborns.
Collapse
Affiliation(s)
- Stephanie Glaesener
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Christine Jaenke
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Anika Habener
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Hagendorff
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Katrin Witzlau
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Esther Imelmann
- Institute for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Andreas Krueger
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Almut Meyer-Bahlburg
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- * E-mail:
| |
Collapse
|
34
|
Borriello F, Pietrasanta C, Lai JCY, Walsh LM, Sharma P, O'Driscoll DN, Ramirez J, Brightman S, Pugni L, Mosca F, Burkhart DJ, Dowling DJ, Levy O. Identification and Characterization of Stimulator of Interferon Genes As a Robust Adjuvant Target for Early Life Immunization. Front Immunol 2017; 8:1772. [PMID: 29312305 PMCID: PMC5732947 DOI: 10.3389/fimmu.2017.01772] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/27/2017] [Indexed: 11/16/2022] Open
Abstract
Immunization is key to preventing infectious diseases, a leading cause of death early in life. However, due to age-specific immunity, vaccines often demonstrate reduced efficacy in newborns and young infants as compared to adults. Here, we combined in vitro and in vivo approaches to identify adjuvant candidates for early life immunization. We employed newborn and adult bone marrow-derived dendritic cells (BMDCs) to perform a screening of pattern recognition receptor agonists and found that the stimulator of interferon genes ligand 2′3′-cGAMP (hereafter cGAMP) induces a comparable expression of surface maturation markers in newborn and adult BMDCs. Then, we utilized the trivalent recombinant hemagglutinin (rHA) influenza vaccine, Flublok, as a model antigen to investigate the role of cGAMP in adult and early life immunization. cGAMP adjuvantation alone could increase rHA-specific antibody titers in adult but not newborn mice. Remarkably, as compared to alum or cGAMP alone, immunization with cGAMP formulated with alum (Alhydrogel) enhanced newborn rHA-specific IgG2a/c titers ~400-fold, an antibody subclass associated with the development of IFNγ-driven type 1 immunity in vivo and endowed with higher effector functions, by 42 days of life. Highlighting the amenability for successful vaccine formulation and delivery, we next confirmed that cGAMP adsorbs onto alum in vitro. Accordingly, immunization early in life with (cGAMP+alum) promoted IFNγ production by CD4+ T cells and increased the proportions and absolute numbers of CD4+ CXCR5+ PD-1+ T follicular helper and germinal center (GC) GL-7+ CD138+ B cells, suggesting an enhancement of the GC reaction. Adjuvantation effects were apparently specific for IgG2a/c isotype switching without effect on antibody affinity maturation, as there was no effect on rHA-specific IgG avidity. Overall, our studies suggest that cGAMP when formulated with alum may represent an effective adjuvantation system to foster humoral and cellular aspects of type 1 immunity for early life immunization.
Collapse
Affiliation(s)
- Francesco Borriello
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Precision Vaccines Program, Divisions of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Napoli, Italy.,WAO Center of Excellence, Naples, Italy
| | - Carlo Pietrasanta
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Precision Vaccines Program, Divisions of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Neonatal Intensive Care Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Jacqueline C Y Lai
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Precision Vaccines Program, Divisions of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States.,Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Lois M Walsh
- Biomedical & Pharmaceutical Science Skaggs School of Pharmacy, University of Montana, Missoula, MT, United States
| | - Pankaj Sharma
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Precision Vaccines Program, Divisions of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - David N O'Driscoll
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Precision Vaccines Program, Divisions of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - Juan Ramirez
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Precision Vaccines Program, Divisions of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - Spencer Brightman
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Precision Vaccines Program, Divisions of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| | - Lorenza Pugni
- Neonatal Intensive Care Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Fabio Mosca
- Neonatal Intensive Care Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - David J Burkhart
- Biomedical & Pharmaceutical Science Skaggs School of Pharmacy, University of Montana, Missoula, MT, United States
| | - David J Dowling
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Ofer Levy
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Precision Vaccines Program, Divisions of Infectious Diseases, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
35
|
Intrinsic Maturational Neonatal Immune Deficiencies and Susceptibility to Group B Streptococcus Infection. Clin Microbiol Rev 2017; 30:973-989. [PMID: 28814408 DOI: 10.1128/cmr.00019-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although a normal member of the gastrointestinal and vaginal microbiota, group B Streptococcus (GBS) can also occasionally be the cause of highly invasive neonatal disease and is an emerging pathogen in both elderly and immunocompromised adults. Neonatal GBS infections are typically transmitted from mother to baby either in utero or during passage through the birth canal and can lead to pneumonia, sepsis, and meningitis within the first few months of life. Compared to the adult immune system, the neonatal immune system has a number of deficiencies, making neonates more susceptible to infection. Recognition of GBS by the host immune system triggers an inflammatory response to clear the pathogen. However, GBS has developed several mechanisms to evade the host immune response. A comprehensive understanding of this interplay between GBS and the host immune system will aid in the development of new preventative measures and therapeutics.
Collapse
|
36
|
Abstract
Immunisation of the newborn represents a key global strategy in overcoming morbidity and mortality due to infection in early life. Potential limitations, however, include poor immunogenicity, safety concerns and the development of tolerogenicity or hypo-responsiveness to either the same antigen and/or concomitant antigens administered at birth or in the subsequent months. Furthermore, the neonatal immunological milieu is polarised towards Th2-type immunity with dampening of Th1-type responses and impaired humoral immunity, resulting in qualitatively and quantitatively poorer antibody responses compared to older infants. Innate immunity also shows functional deficiency in antigen-presenting cells: the expression and signalling of Toll-like receptors undergo maturational changes associated with distinct functional responses. Nevertheless, the effectiveness of BCG, hepatitis B and oral polio vaccines, the only immunisations currently in use in the neonatal period, is proof of concept that vaccines can be successfully administered to the newborn via different routes of delivery to induce a range of protective mechanisms for three different diseases. In this review paper, we discuss the rationale for and challenges to neonatal immunisation, summarising progress made in the field, including lessons learnt from newborn vaccines in the pipeline. Furthermore, we explore important maternal, infant and environmental co-factors that may impede the success of current and future neonatal immunisation strategies. A variety of approaches have been proposed to overcome the inherent regulatory constraints of the newborn innate and adaptive immune system, including alternative routes of delivery, novel vaccine configurations, improved innate receptor agonists and optimised antigen-adjuvant combinations. Crucially, a dual strategy may be employed whereby immunisation at birth is used to prime the immune system in order to improve immunogenicity to subsequent homologous or heterologous boosters in later infancy. Similarly, potent non-specific immunomodulatory effects may be elicited when challenged with unrelated antigens, with the potential to reduce the overall risk of infection and allergic disease in early life.
Collapse
Affiliation(s)
- Anja Saso
- Centre of International Child Health, Department of Paediatrics, Imperial College London, W2 1NY, London, UK
| | - Beate Kampmann
- Centre of International Child Health, Department of Paediatrics, Imperial College London, W2 1NY, London, UK.
- Vaccines and Immunity Theme, MRC Unit The Gambia, Fajara, The Gambia.
| |
Collapse
|
37
|
Holbrook BC, D'Agostino RB, Tyler Aycock S, Jorgensen MJ, Hadimani MB, Bruce King S, Alexander-Miller MA. Adjuvanting an inactivated influenza vaccine with conjugated R848 improves the level of antibody present at 6months in a nonhuman primate neonate model. Vaccine 2017; 35:6137-6142. [PMID: 28967521 DOI: 10.1016/j.vaccine.2017.09.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/06/2017] [Accepted: 09/17/2017] [Indexed: 01/24/2023]
Abstract
Generation of a potent antibody response that can be sustained over time is highly challenging in young infants. Our previous studies using a nursery-reared nonhuman primate model identified R848 conjugated to inactivated influenza virus as a highly immunogenic vaccine for neonates. Here we determined the effectiveness of this vaccine in mother-reared infants as well as its ability to promote improved responses at 6months compared to vaccination in the absence of R848. In agreement with our nursery study, R848 conjugated to influenza virus induced a higher antibody response in neonates compared to the non-adjuvanted vaccine. Further, the increase in the response relative to that induced by the non-adjuvanted vaccine was maintained at 6months suggesting the increased antibody secreting cells that resulted from inclusion of conjugated R848 production were capable of surviving long term. There was no significant difference in quality of antibody (i.e. neutralization or affinity), suggesting the beneficial effect of conjugated R848 during vaccination of neonates with inactivated influenza virus is likely manifest during the early generation of antibody secreting cells.
Collapse
Affiliation(s)
- Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ralph B D'Agostino
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - S Tyler Aycock
- Animal Resources Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Matthew J Jorgensen
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | | - S Bruce King
- Department of Chemistry, Wake Forest University, United States
| | - Martha A Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
38
|
Zens KD, Connors T, Farber DL. Tissue compartmentalization of T cell responses during early life. Semin Immunopathol 2017; 39:593-604. [PMID: 28894935 PMCID: PMC5743209 DOI: 10.1007/s00281-017-0648-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/07/2017] [Indexed: 12/21/2022]
Abstract
The immune system in early life is tasked with transitioning from a relatively protected environment to one in which it encounters a wide variety of innocuous antigens and dangerous pathogens. The immaturity of the developing immune system, and particularly the distinct functionality of T lymphocytes in early life, has been implicated in increased susceptibility to infection. Previous work has demonstrated that immune responses in early life are skewed toward limited inflammation and atopy; however, there is mounting evidence that such responses are context- and tissue-dependent. The regulation, differentiation, and maintenance of infant T cell responses, particularly as it relates to tissue compartmentalization, remains poorly understood. How the tissue environment impacts early-life immune responses and whether the development of localized protective immune memory cell subsets are established is an emerging area of research. As infectious diseases affecting the respiratory and digestive tracts are a leading cause of morbidity and mortality worldwide in infants and young children, a deeper understanding of site-specific immunity is essential to addressing these challenges. Here, we review the current paradigms of T cell responses during infancy as they relate to tissue localization and discuss implications for the development of vaccines and therapeutics.
Collapse
Affiliation(s)
- Kyra D Zens
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Thomas Connors
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Donna L Farber
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA.
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA.
- Department of Surgery, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
39
|
Munguía-Fuentes R, Yam-Puc JC, Silva-Sánchez A, Marcial-Juárez E, Gallegos-Hernández IA, Calderón-Amador J, Randall TD, Flores-Romo L. Immunization of Newborn Mice Accelerates the Architectural Maturation of Lymph Nodes, But AID-Dependent IgG Responses Are Still Delayed Compared to the Adult. Front Immunol 2017; 8:13. [PMID: 28154564 PMCID: PMC5243854 DOI: 10.3389/fimmu.2017.00013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/05/2017] [Indexed: 01/02/2023] Open
Abstract
Lymph nodes (LNs) have evolved to maximize antigen (Ag) collection and presentation as well as lymphocyte proliferation and differentiation—processes that are spatially regulated by stromal cell subsets, including fibroblastic reticular cells (FRCs) and follicular dendritic cells (FDCs). Here, we showed that naïve neonatal mice have poorly organized LNs with few B and T cells and undetectable FDCs, whereas adult LNs have numerous B cells and large FDC networks. Interestingly, immunization on the day of birth accelerated B cell accumulation and T cell recruitment into follicles as well as FDC maturation and FRC organization in neonatal LNs. However, compared to adults, the formation of germinal centers was both delayed and reduced following immunization of neonatal mice. Although immunized neonates poorly expressed activation-induced cytidine deaminase (AID), they were able to produce Ag-specific IgGs, but with lower titers than adults. Interestingly, the Ag-specific IgM response in neonates was similar to that in adults. These results suggest that despite an accelerated structural maturation of LNs in neonates following vaccination, the B cell response is still delayed and reduced in its ability to isotype switch most likely due to poor AID expression. Of note, naïve pups born to Ag-immunized mothers had high titers of Ag-specific IgGs from day 0 (at birth). These transferred antibodies confirm a mother-derived coverage to neonates for Ags to which mothers (and most likely neonates) are exposed, thus protecting the neonates while they produce their own antibodies. Finally, the type of Ag used in this study and the results obtained also indicate that T cell help would be operating at this stage of life. Thus, neonatal immune system might not be intrinsically immature but rather evolutionary adapted to cope with Ags at birth.
Collapse
Affiliation(s)
- Rosario Munguía-Fuentes
- Department of Cell Biology, Center for Advanced Research, The National Polytechnic Institute, Cinvestav-IPN , Mexico City , Mexico
| | - Juan Carlos Yam-Puc
- Department of Cell Biology, Center for Advanced Research, The National Polytechnic Institute, Cinvestav-IPN , Mexico City , Mexico
| | - Aarón Silva-Sánchez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Edith Marcial-Juárez
- Department of Cell Biology, Center for Advanced Research, The National Polytechnic Institute, Cinvestav-IPN , Mexico City , Mexico
| | - Isis Amara Gallegos-Hernández
- Department of Cell Biology, Center for Advanced Research, The National Polytechnic Institute, Cinvestav-IPN , Mexico City , Mexico
| | - Juana Calderón-Amador
- Department of Cell Biology, Center for Advanced Research, The National Polytechnic Institute, Cinvestav-IPN , Mexico City , Mexico
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Leopoldo Flores-Romo
- Department of Cell Biology, Center for Advanced Research, The National Polytechnic Institute, Cinvestav-IPN , Mexico City , Mexico
| |
Collapse
|
40
|
Aranburu A, Piano Mortari E, Baban A, Giorda E, Cascioli S, Marcellini V, Scarsella M, Ceccarelli S, Corbelli S, Cantarutti N, De Vito R, Inserra A, Nicolosi L, Lanfranchi A, Porta F, Cancrini C, Finocchi A, Carsetti R. Human B-cell memory is shaped by age- and tissue-specific T-independent and GC-dependent events. Eur J Immunol 2016; 47:327-344. [PMID: 27859047 DOI: 10.1002/eji.201646642] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/28/2016] [Accepted: 11/10/2016] [Indexed: 11/09/2022]
Abstract
Switched and IgM memory B cells execute different and noninterchangeable functions. We studied memory B cells in children of different ages, in peripheral blood and spleen and compared them with those of children born asplenic or unable to build germinal centers. We show that, whereas switched memory B cells are mostly generated in the germinal centers at all ages, IgM memory B cells can be distinct in three types with different developmental history. Innate IgM memory B cells, the largest pool in infants, are generated in the spleen by a germinal center-independent mechanism. With age, if the spleen is present and germinal centers are functional, innate IgM memory B cells are remodelled and accumulate somatic mutations. The third type of IgM memory B cell is a by-product of the germinal center reaction. Our data suggest that the B-cell memory developmental program is implemented during the first 5-6 years of life.
Collapse
Affiliation(s)
- Alaitz Aranburu
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino, Gesù IRCSS, Roma, Italy
| | - Eva Piano Mortari
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino, Gesù IRCSS, Roma, Italy
| | - Anwar Baban
- Medical and Surgical Department of Pediatric Cardiology, Bambino Gesù Children Hospital, Rome
| | - Ezio Giorda
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino, Gesù IRCSS, Roma, Italy
| | - Simona Cascioli
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino, Gesù IRCSS, Roma, Italy
| | - Valentina Marcellini
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino, Gesù IRCSS, Roma, Italy
| | - Marco Scarsella
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino, Gesù IRCSS, Roma, Italy
| | - Sara Ceccarelli
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino, Gesù IRCSS, Roma, Italy
| | - Sandro Corbelli
- Core Facilities, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Nicoletta Cantarutti
- Medical and Surgical Department of Pediatric Cardiology, Bambino Gesù Children Hospital, Rome
| | - Rita De Vito
- Division of Pathology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Alessandro Inserra
- Pediatric General and Thoracic Surgery Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Luciana Nicolosi
- Department of Pediatrics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Fulvio Porta
- Department of Pediatrics, University of Brescia, Brescia, Italy
| | - Caterina Cancrini
- DPUO, University Department of Pediatrics, Bambino Gesù Children Hospital and University of Tor Vergata School of Medicine, Rome, Italy
| | - Andrea Finocchi
- DPUO, University Department of Pediatrics, Bambino Gesù Children Hospital and University of Tor Vergata School of Medicine, Rome, Italy
| | - Rita Carsetti
- B Cell Physiopathology Unit, Immunology Research Area, Ospedale Pediatrico Bambino, Gesù IRCSS, Roma, Italy.,Diagnostic Immunology Unit, Department of Oncohematology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
41
|
Holbrook BC, D'Agostino RB, Parks GD, Alexander-Miller MA. Adjuvanting an inactivated influenza vaccine with flagellin improves the function and quantity of the long-term antibody response in a nonhuman primate neonate model. Vaccine 2016; 34:4712-4717. [PMID: 27516064 DOI: 10.1016/j.vaccine.2016.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/25/2016] [Accepted: 08/02/2016] [Indexed: 01/07/2023]
Abstract
Young infants are at significantly increased risk of developing severe disease following infection with influenza virus. At present there is no approved vaccine for individuals below the age of six months given previous studies showing a failure of these individuals to efficiently seroconvert. Given the major impact of influenza on infant health, it is critical that we develop vaccines that will be safe and effective in this population. Using a nonhuman primate (NHP) model, we have evaluated the ability of an inactivated influenza virus vaccine adjuvanted with flagellin to result in long term immune responses in neonates. To evaluate this critical attribute, neonate NHP were vaccinated and boosted with inactivated influenza virus in combination with either flagellin or a mutant inactive flagellin control. Our studies show that inclusion of flagellin resulted in a significant increase (5-fold, p=0.04) in influenza virus-specific IgG antibody at 6months post-vaccination. In addition, the antibody present at this late time was of higher affinity (2.4-fold, p=0.02). Finally a greater percentage of infants had detectable neutralizing antibody. These results support the use of flagellin in neonates as an adjuvant that promotes long-lived, high affinity antibody responses.
Collapse
Affiliation(s)
- Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ralph B D'Agostino
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Griffith D Parks
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Martha A Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
42
|
Knorr DA, Wang H, Aurora M, MacMillan ML, Holtan SG, Bergerson R, Cao Q, Weisdorf DJ, Cooley S, Brunstein C, Miller JS, Wagner JE, Blazar BR, Verneris MR. Loss of T Follicular Helper Cells in the Peripheral Blood of Patients with Chronic Graft-versus-Host Disease. Biol Blood Marrow Transplant 2016; 22:825-33. [PMID: 26806586 PMCID: PMC5015683 DOI: 10.1016/j.bbmt.2016.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/05/2016] [Indexed: 11/29/2022]
Abstract
B cell antihost antibody production plays a central role in chronic graft-versus-host disease (cGVHD). T follicular helper (TFH) cells drive B cell responses and are implicated in this process. Given differences in cGVHD incidence between umbilical cord blood (UCB) and adult donor transplant recipients, we evaluated TFH cell reconstitution kinetics to define graft source differences and their potential pathogenic role in cGVHD. Although we observed significantly fewer TFH cells in the blood of UCB recipients (versus matched related donors [MRD]) early after transplantation, by 1 year the numbers of TFH cells were similar. Additionally, at both early (day 60) and late (1 year) time points, TFH cell phenotype was predominantly central memory cells in both cohorts. TFH cells were functional and able to produce multiple cytokines (INF-γ, TNF-α, IL-2, IL-17, and IL-21) after stimulation. In contrast to mouse models, where an enhanced frequency of splenic TFH cells contributes to cGVHD, patients with cGVHD showed significantly depleted circulating TFH cells after both UCB and MRD transplantation. Low numbers of TFH cells early after UCB transplantation could directly contribute to less cGVHD in this cohort. Additionally, systemic therapy (including steroids and calcineurin inhibitors) may contribute to decreases in TFH cells in patients with cGVHD. These data provide further evidence supporting the importance of TFH cells in cGVHD pathogenesis.
Collapse
Affiliation(s)
- David A Knorr
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minnesota
| | - Hongbo Wang
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minnesota
| | - Mukta Aurora
- Division of Blood and Marrow Transplantation, Department of Medicine, University of Minnesota, Minnesota
| | - Margaret L MacMillan
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minnesota
| | - Shernan G Holtan
- Division of Blood and Marrow Transplantation, Department of Medicine, University of Minnesota, Minnesota
| | - Rachel Bergerson
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minnesota
| | - Qing Cao
- Division of Blood and Marrow Transplantation, Department of Biostatistics, University of Minnesota, Minnesota
| | - Daniel J Weisdorf
- Division of Blood and Marrow Transplantation, Department of Medicine, University of Minnesota, Minnesota
| | - Sarah Cooley
- Division of Blood and Marrow Transplantation, Department of Medicine, University of Minnesota, Minnesota
| | - Claudio Brunstein
- Division of Blood and Marrow Transplantation, Department of Medicine, University of Minnesota, Minnesota
| | - Jeffery S Miller
- Division of Blood and Marrow Transplantation, Department of Medicine, University of Minnesota, Minnesota
| | - John E Wagner
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minnesota
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minnesota
| | - Michael R Verneris
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minnesota.
| |
Collapse
|
43
|
Vaccination in early life: standing up to the challenges. Curr Opin Immunol 2016; 41:1-8. [PMID: 27104290 DOI: 10.1016/j.coi.2016.04.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/16/2016] [Accepted: 04/06/2016] [Indexed: 01/18/2023]
Abstract
The challenge for any vaccine design is to elicit protective humoral and/or cytotoxic immunity against life threatening pathogens while remaining innocuous. Neonatal vaccinology faces additional challenges linked to intrinsic peculiarities of the innate and adaptive neonatal immune system. These include anti-inflammatory rather than pro-inflammatory responses to innate signals, preferential Th2 differentiation limiting the induction of Th1 and cytotoxic responses, trends to immunoregulatory responses and weak plasma cell and germinal centre B cell responses. Recent progresses in our understanding of the molecular bases of these physiological peculiarities and of the mode of action of novel adjuvants open new opportunities to design vaccine formulations and immunization strategies better adapted to the early life period.
Collapse
|
44
|
Honda-Okubo Y, Ong CH, Petrovsky N. Advax delta inulin adjuvant overcomes immune immaturity in neonatal mice thereby allowing single-dose influenza vaccine protection. Vaccine 2015; 33:4892-900. [PMID: 26232344 PMCID: PMC4562881 DOI: 10.1016/j.vaccine.2015.07.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/10/2015] [Accepted: 07/17/2015] [Indexed: 01/16/2023]
Abstract
A single dose of Advax-adjuvanted influenza vaccine in 7-day-old pups protected against lethal influenza infection. Advax adjuvant enhanced both B-cell and T-cell memory in neonates. Influenza protection in Advax-immunized neonates was dependent on memory B-cells. Advax adjuvant confirmed to be safe and well tolerated in neonates.
Neonates are at high risk for influenza morbidity and mortality due to immune immaturity and lack of priming by prior influenza virus exposure. Inactivated influenza vaccines are ineffective in infants under six months and to provide protection in older children generally require two doses given a month apart. This leaves few options for rapid protection of infants, e.g. during an influenza pandemic. We investigated whether Advax™, a novel polysaccharide adjuvant based on delta inulin microparticles could help overcome neonatal immune hypo-responsiveness. We first tested whether it was possible to use Advax to obtain single-dose vaccine protection of neonatal pups against lethal influenza infection. Inactivated influenza A/H1N1 vaccine (iH1N1) combined with Advax™ adjuvant administered as a single subcutaneous immunization to 7-day-old mouse pups significantly enhanced serum influenza-specific IgM, IgG1, IgG2a and IgG2b levels and was associated with a 3–4 fold increase in the frequency of splenic influenza-specific IgM and IgG antibody secreting cells. Pups immunized with Advax had significantly higher splenocyte influenza-stimulated IFN-γ, IL-2, IL-4, and IL-10 production by CBA and a 3–10 fold higher frequency of IFN-γ, IL-2, IL-4 or IL-17 secreting T cells by ELISPOT. Immunization with iH1N1 + Advax induced robust protection of pups against virus challenge 3 weeks later, whereas pups immunized with iH1N1 antigen alone had no protection. Protection by Advax-adjuvanted iH1N1 was dependent on memory B cells rather than memory T cells, with no protection in neonatal μMT mice that are B-cell deficient. Hence, Advax adjuvant overcame neonatal immune hypo-responsiveness and enabled single-dose protection of pups against otherwise lethal influenza infection, thereby supporting ongoing development of Advax™ as a neonatal vaccine adjuvant.
Collapse
Affiliation(s)
- Yoshikazu Honda-Okubo
- Vaxine Pty Ltd., Bedford Park, Australia; Flinders Medical Centre, Adelaide 5042, Australia
| | - Chun Hao Ong
- Vaxine Pty Ltd., Bedford Park, Australia; Flinders Medical Centre, Adelaide 5042, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Bedford Park, Australia; Flinders Medical Centre, Adelaide 5042, Australia; Department of Endocrinology, Flinders University, Adelaide 5042, Australia.
| |
Collapse
|
45
|
Bekele Y, Amu S, Bobosha K, Lantto R, Nilsson A, Endale B, Gebre M, Aseffa A, Rethi B, Howe R, Chiodi F. Impaired Phenotype and Function of T Follicular Helper Cells in HIV-1-Infected Children Receiving ART. Medicine (Baltimore) 2015; 94:e1125. [PMID: 26166114 PMCID: PMC4504540 DOI: 10.1097/md.0000000000001125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
T follicular helper (Tfh) cells are important components in development of specific humoral immune responses; whether the number and biology of Tfh cells is impaired in HIV-1-infected children is not yet studied.The frequency, phenotype, and function of Tfh cells and B cells were determined in blood of HIV-1-infected children receiving antiretroviral therapy (ART) and age-matched controls. Flow cytometry was used to characterize the frequency of Tfh cells and B cell subsets. Cytokine expression was measured after in vitro activation of Tfh cells.A reduced frequency of memory Tfh cells (P < 0.001) was identified in HIV-1-infected children and, on these cells, a reduced expression of programmed death-1 (PD-1) and inducible T cell costimulator (ICOS) (P < 0.001 and P < 0.01). Upon activation, the capacity of Tfh cells to express IL-4, an important cytokine for B cell function, was impaired in HIV-1-infected children.B cell subpopulations in HIV-1-infected children displayed significant differences from the control group: the frequency of resting memory (RM) B cells was reduced (P < 0.01) whereas the frequency of exhausted memory B cells increased (P < 0.001). Interestingly, the decline of RM cells correlated with the reduction of memory Tfh cells (P = 0.02).Our study shows that function and phenotype of Tfh cells, pivotal cells for establishment of adaptive B cell responses, are impaired during HIV-1 infection in children. A consistent reduction of memory Tfh cells is associated with declined frequencies of RM B cells, creating a novel link between dysfunctional features of these cell types, major players in establishment of humoral immunity.
Collapse
Affiliation(s)
- Yonas Bekele
- From Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden (YB, SA, RL, BR, FC); Armauer Hansen Research Institute, Addis Ababa, Ethiopia (YB, KB, BE, AA, RH); Department of Woman and Child Health, Karolinska Institutet, Stockholm, Sweden (AN); Pediatric Infectious Diseases Unit at the Pediatric Emergency Department, Astrid Lindgren's Children Hospital, Stockholm, Sweden (AN); and All Africa Leprosy, Tuberculosis and Rehabilitation Training (ALERT) Hospital, Addis Ababa, Ethiopia (MG)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Bamford A, Hart M, Lyall H, Goldblatt D, Kelleher P, Kampmann B. The influence of paediatric HIV infection on circulating B cell subsets and CXCR5(+) T helper cells. Clin Exp Immunol 2015; 181:110-7. [PMID: 25737039 PMCID: PMC4469160 DOI: 10.1111/cei.12618] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 02/22/2015] [Accepted: 02/26/2015] [Indexed: 12/31/2022] Open
Abstract
Antiretroviral therapy (ART) only partially restores HIV-induced alterations in lymphocyte populations. We assessed B and T cell phenotypes in a cohort of children from a single centre in the United Kingdom with perinatally acquired HIV compared to healthy controls. The majority of HIV infected children (44 of 56) were on fully suppressive combination ART. Children with perinatally acquired HIV had significantly lower memory B and CD4(+) CD45RO(+) CXCR5(+) [follicular T helper cell (Tfh)-like] T cell percentages. Detectable viraemia was associated with higher CD21(-) (activated and exhausted/tissue-like memory) B cells. A greater proportion of life spent on suppressive ART was associated with higher memory B cell percentages. These results suggest that early and sustained suppressive ART may preserve B and T cell phenotypes in perinatally acquired HIV and limit deficits in humoral immunity. A lower proportion of circulating Tfh-like cells in HIV infected children appears to be independent of HIV treatment history and ongoing HIV viraemia and warrants further investigation.
Collapse
Affiliation(s)
- A Bamford
- Section of Paediatrics, Division of Infectious Diseases
| | - M Hart
- Section of Immunology, Division of Infectious Diseases, Imperial College
| | - H Lyall
- Department of Paediatric Infectious Diseases, Imperial College Healthcare NHS Trust
| | - D Goldblatt
- Immunobiology Unit, Institute of Child Health, University College London, London, UK
| | - P Kelleher
- Section of Immunology, Division of Infectious Diseases, Imperial College
| | - B Kampmann
- Section of Paediatrics, Division of Infectious Diseases.,MRC Unit, The Gambia Vaccinology Theme, Fajara, The Gambia, West Africa
| |
Collapse
|
48
|
Inclusion of Flagellin during Vaccination against Influenza Enhances Recall Responses in Nonhuman Primate Neonates. J Virol 2015; 89:7291-303. [PMID: 25948746 DOI: 10.1128/jvi.00549-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/28/2015] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED Influenza virus can cause life-threatening infections in neonates and young infants. Although vaccination is a major countermeasure against influenza, current vaccines are not approved for use in infants less than 6 months of age, in part due to the weak immune response following vaccination. Thus, there is a strong need to develop new vaccines with improved efficacy for this vulnerable population. To address this issue, we established a neonatal African green monkey (AGM) nonhuman primate model that could be used to identify effective influenza vaccine approaches for use in young infants. We assessed the ability of flagellin, a Toll-like receptor 5 (TLR5) agonist, to serve as an effective adjuvant in this at-risk population. Four- to 6-day-old AGMs were primed and boosted with inactivated PR8 influenza virus (IPR8) adjuvanted with either wild-type flagellin or inactive flagellin with a mutation at position 229 (m229), the latter of which is incapable of signaling through TLR5. Increased IgG responses were observed following a boost, as well as at early times after challenge, in infants vaccinated with flagellin-adjuvanted IPR8. Inclusion of flagellin during vaccination also resulted in a significantly increased number of influenza virus-specific T cells following challenge compared to the number in infants vaccinated with the m229 adjuvant. Finally, following challenge infants vaccinated with IPR8 plus flagellin exhibited a reduced pathology in the lungs compared to that in infants that received IPR8 plus m229. This study provides the first evidence of flagellin-mediated enhancement of vaccine responses in nonhuman primate neonates. IMPORTANCE Young infants are particularly susceptible to severe disease as a result of influenza virus infection. Compounding this is the lack of effective vaccines for use in this vulnerable population. Here we describe a vaccine approach that results in improved immune responses and protection in young infants. Incorporation of flagellin during vaccination resulted in increased antibody and T cell responses together with reduced disease following virus infection. These results suggest that flagellin may serve as an effective adjuvant for vaccines targeted to this vulnerable population.
Collapse
|
49
|
Alexander-Miller MA. Vaccines against respiratory viral pathogens for use in neonates: opportunities and challenges. THE JOURNAL OF IMMUNOLOGY 2015; 193:5363-9. [PMID: 25411431 DOI: 10.4049/jimmunol.1401410] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The first six months of life reflect a time of high susceptibility to severe disease following respiratory virus infection. Although this could be improved significantly by immunization, current vaccines are not approved for use in these very young individuals. This is the result of the combined effects of poor immune responsiveness and safety concerns regarding the use of live attenuated vaccines or potent adjuvants in this population. Vaccines to effectively combat respiratory viral infection ideally would result in robust CD4(+) and CD8(+) T cell responses, as well as high-affinity Ab. Inclusion of TLR agonists or single-cycle viruses is an attractive approach for provision of signals that can act as potent stimulators of dendritic cell maturation, as well as direct activators of T and/or B cells. In this article, I discuss the challenges associated with generation of a robust immune response in neonates and the potential for adjuvants to overcome these obstacles.
Collapse
|
50
|
Debock I, Flamand V. Unbalanced Neonatal CD4(+) T-Cell Immunity. Front Immunol 2014; 5:393. [PMID: 25221551 PMCID: PMC4145351 DOI: 10.3389/fimmu.2014.00393] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/31/2014] [Indexed: 12/24/2022] Open
Abstract
In comparison to adults, newborns display a heightened susceptibility to pathogens and a propensity to develop allergic diseases. Particular properties of the neonatal immune system can account for this sensitivity. Indeed, a defect in developing protective Th1-type responses and a skewing toward Th2 immunity characterize today the neonatal T-cell immunity. Recently, new findings concerning Th17, regulatory helper T-cell, and follicular helper T-cell subsets in newborns have emerged. In some circumstances, development of effector inflammatory Th17-type responses can be induced in neonates, while differentiation in regulatory T-cells appears to be a default program of neonatal CD4+ T-cells. Poor antibody production, affinity maturation, and germinal center reaction in vaccinated neonates are correlated with a limiting expansion of TFH lymphocytes. We review herein the factors accounting for and the implications of the unbalanced neonatal helper T-cell immunity.
Collapse
Affiliation(s)
- Isabelle Debock
- Institut d'Immunologie Médicale, Université Libre de Bruxelles , Gosselies , Belgium
| | - Véronique Flamand
- Institut d'Immunologie Médicale, Université Libre de Bruxelles , Gosselies , Belgium
| |
Collapse
|