1
|
Bitar L, Puig B, Oertner TG, Dénes Á, Magnus T. Changes in Neuroimmunological Synapses During Cerebral Ischemia. Transl Stroke Res 2024:10.1007/s12975-024-01286-1. [PMID: 39103660 DOI: 10.1007/s12975-024-01286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
The direct interplay between the immune and nervous systems is now well established. Within the brain, these interactions take place between neurons and resident glial cells, i.e., microglia and astrocytes, or infiltrating immune cells, influenced by systemic factors. A special form of physical cell-cell interactions is the so-called "neuroimmunological (NI) synapse." There is compelling evidence that the same signaling pathways that regulate inflammatory responses to injury or ischemia also play potent roles in brain development, plasticity, and function. Proper synaptic wiring is as important during development as it is during disease states, as it is necessary for activity-dependent refinement of neuronal circuits. Since the process of forming synaptic connections in the brain is highly dynamic, with constant changes in strength and connectivity, the immune component is perfectly suited for the regulatory task as it is in constant turnover. Many cellular and molecular players in this interaction remain to be uncovered, especially in pathological states. In this review, we discuss and propose possible communication hubs between components of the adaptive and innate immune systems and the synaptic element in ischemic stroke pathology.
Collapse
Affiliation(s)
- Lynn Bitar
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, Hamburg, 20246, Germany
| | - Berta Puig
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, Hamburg, 20246, Germany
| | - Thomas G Oertner
- Institute for Synaptic Physiology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Tim Magnus
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, Hamburg, 20246, Germany.
| |
Collapse
|
2
|
Zhang Q, Lin J, Yang M, Li Z, Zhang M, Bu B. Therapeutic potential of natural killer cells in neuroimmunological diseases. Biomed Pharmacother 2024; 173:116371. [PMID: 38430631 DOI: 10.1016/j.biopha.2024.116371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
Natural killer (NK) cells, a major component of the innate immune system, have prominent immunoregulatory, antitumor proliferation, and antiviral activities. NK cells act as a double-edged sword with therapeutic potential in neurological autoimmunity. Emerging evidence has identified NK cells are involved in the development and progression of neuroimmunological diseases such as multiple sclerosis, neuromyelitis optica spectrum disorders, autoimmune encephalitis, Guillain-Barré Syndrome, chronic inflammatory demyelinating polyneuropathy, myasthenia gravis, and idiopathic inflammatory myopathy. However, the regulatory mechanisms and functional roles of NK cells are highly variable in different clinical states of neuroimmunological diseases and need to be further determined. In this review, we summarize the evidence for the heterogenic involvement of NK cells in the above conditions. Further, we describe cutting-edge NK-cell-based immunotherapy for neuroimmunological diseases in preclinical and clinical development and highlight challenges that must be overcome to fully realize the therapeutic potential of NK cells.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Lin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengge Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhijun Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Tian M, Zhan Y, Cao J, Gao J, Sun J, Zhang L. Targeting blood-brain barrier for sepsis-associated encephalopathy: Regulation of immune cells and ncRNAs. Brain Res Bull 2024; 209:110922. [PMID: 38458135 DOI: 10.1016/j.brainresbull.2024.110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Sepsis causes significant morbidity and mortality worldwide, most surviving patients show acute or chronic mental disorders, which are known as sepsis-associated encephalopathy (SAE). SAE involves many pathological processes, including the blood-brain barrier (BBB) damage. The BBB is located at the interface between the central nervous system and the surrounding environment, which protects the central nervous system (CNS) from the invasion of exogenous molecules, harmful substances or microorganisms in the blood. Recently, a growing number of studies have indicated that the BBB destruction was involved in SAE and played an important role in SAE-induced brain injury. In the present review, we firstly reveal the pathological processes of SAE such as the neurotransmitter disorders, oxidative stress, immune dysfunction and BBB destruction. Moreover, we introduce the structure of BBB, and describe the immune cells including microglia and astrocytes that participate in the BBB destruction after SAE. Furthermore, in view of the current research on non-coding RNAs (ncRNAs), we explain the regulatory mechanism of ncRNAs including long noncoding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) on BBB in the processes of SAE. Finally, we propose some challenges and perspectives of regulating BBB functions in SAE. Hence, on the basis of these effects, both immune cells and ncRNAs may be developed as therapeutic targets to protect BBB for SAE patients.
Collapse
Affiliation(s)
- Mi Tian
- Department of Anesthesiology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province, China
| | - Yunliang Zhan
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jinyuan Cao
- Department of Anesthesiology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province, China
| | - Jinqi Gao
- Department of Anesthesiology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province, China
| | - Jie Sun
- Department of Anesthesiology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province, China.
| | - Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
4
|
Kamyan D, Hassane M, Alnaqbi A, Souid AK, Rasbi ZA, Tahrawi AA, Shamsi MA. Ozanimod-mediated remission in experimental autoimmune encephalomyelitis is associated with enhanced activity of CNS CD27 low/- NK cell subset. Front Immunol 2024; 15:1230735. [PMID: 38533505 PMCID: PMC10963535 DOI: 10.3389/fimmu.2024.1230735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/30/2024] [Indexed: 03/28/2024] Open
Abstract
Background Ozanimod (RPC1063) is an immunomodulator that has been recently approved by the FDA (2020) for the treatment of relapsing-remitting multiple sclerosis (RRMS). It is a selective agonist of the sphingosine-1-phophate receptors 1 and 5, expressed on naïve and central memory T and B cells, as well as natural killer (NK) cells, and is involved in lymphocyte trafficking. Oral administration of ozanimod was reported to result in rapid and reversible reduction in circulating lymphocytes in multiple sclerosis (MS) patients, however, only minimal effect on NK cells was observed. In this study, we sought to investigate the effect of ozanimod on NK cells and assess whether they play any role in ozanimod-induced remission in experimental autoimmune encephalomyelitis (EAE), the animal model of MS. Methods Active EAE induction was done in C57BL/6 female mice, followed by daily oral treatment with ozanimod (0.6mg/kg) starting at disease onset (score 1). Flow cytometry of blood and CNS was performed 24 hours after the last oral dose of ozanimod treatment in diseased mice. Histological analysis of lumbar spinal cord was performed for evaluating the level of inflammation and demyelination. Depletion of peripheral NK cells was done using anti-NK1.1 mouse antibody (mAb) at day 5 post-EAE induction. Results Ozanimod was effective in reducing the clinical severity of EAE and reducing the percentage of autoreactive CD4+ and CD8+ T cells along with significant inhibition of lymphocyte infiltration into the spinal cord, accompanied by reversed demyelination. Furthermore, ozanimod treatment resulted in a significant increase in the frequency of total NK cells in the blood and CNS along with upregulation of the activating receptor NKG2D on CD27low/- NK cell subset in the CNS. The effectiveness of ozanimod treatment in inhibiting the progression of the disease was reduced when NK cells were depleted using anti-NK1.1 mAb. Conclusion The current study demonstrated that ozanimod treatment significantly improved clinical symptoms in EAE mice. Ozanimod and anti-NK1.1 mAb appear to function in opposition to one another. Collectively, our data suggest that ozanimod-mediated remission is associated with an increased percentage of total NK cells and CD27low/- NK cells expressing the activating receptor, NKG2D in the CNS.
Collapse
Affiliation(s)
- Doua Kamyan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates (UAE) University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Maya Hassane
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates (UAE) University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Alanood Alnaqbi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates (UAE) University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Abdul-Kader Souid
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates (UAE) University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Zakeya Al Rasbi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates (UAE) University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Abeer Al Tahrawi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates (UAE) University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Mariam Al Shamsi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates (UAE) University, Al Ain, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Rodriguez-Mogeda C, van Ansenwoude CMJ, van der Molen L, Strijbis EMM, Mebius RE, de Vries HE. The role of CD56 bright NK cells in neurodegenerative disorders. J Neuroinflammation 2024; 21:48. [PMID: 38350967 PMCID: PMC10865604 DOI: 10.1186/s12974-024-03040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024] Open
Abstract
Emerging evidence suggests a potential role for natural killer (NK) cells in neurodegenerative diseases, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. However, the precise function of NK cells in these diseases remains ambiguous. The existence of two NK cell subsets, CD56bright and CD56dim NK cells, complicates the understanding of the contribution of NK cells in neurodegeneration as their functions within the context of neurodegenerative diseases may differ significantly. CD56bright NK cells are potent cytokine secretors and are considered more immunoregulatory and less terminally differentiated than their mostly cytotoxic CD56dim counterparts. Hence, this review focusses on NK cells, specifically on CD56bright NK cells, and their role in neurodegenerative diseases. Moreover, it explores the mechanisms underlying their ability to enter the central nervous system. By consolidating current knowledge, we aim to provide a comprehensive overview on the role of CD56bright NK cells in neurodegenerative diseases. Elucidating their impact on neurodegeneration may have implications for future therapeutic interventions, potentially ameliorating disease pathogenesis.
Collapse
Affiliation(s)
- Carla Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Chaja M J van Ansenwoude
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Lennart van der Molen
- IQ Health Science Department, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva M M Strijbis
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Ghafouri-Fard S, Askari A, Zangooie A, Shoorei H, Pourmoshtagh H, Taheri M. Non-coding RNA profile for natural killer cell activity. Mol Cell Probes 2023; 72:101935. [PMID: 37806642 DOI: 10.1016/j.mcp.2023.101935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/10/2023]
Abstract
Natural killer cells (NK cells) are a type of cytotoxic lymphocytes which are involved in innate immunity, alongside with assisting with adaptive immune response. Since they have cytotoxic effects, disruptions in their functionality and development leads to a variety of conditions, whether malignant or non-malignant. The profile and interaction of these non-coding RNAs and NK cells in different conditions is extensively studied, and it is now approved that if dysregulated, non-coding RNAs have detrimental effects on NK cell activity and can contribute to the pathogenesis of diverse disorders. In this review, we aim at a thorough inspection on the role of different non-coding RNAs on the activity and development of NK cells, in a broad spectrum of conditions, including blood-related disorders, viral infections, neurological diseases, gastrointestinal disorders, lung disorders, reproductive system conditions and other types of maladies, alongside with providing insight to the future non-coding RNA-NK cell studies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zangooie
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamed Shoorei
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hasan Pourmoshtagh
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Mimic S, Aru B, Pehlivanoğlu C, Sleiman H, Andjus PR, Yanıkkaya Demirel G. Immunology of amyotrophic lateral sclerosis - role of the innate and adaptive immunity. Front Neurosci 2023; 17:1277399. [PMID: 38105925 PMCID: PMC10723830 DOI: 10.3389/fnins.2023.1277399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023] Open
Abstract
This review aims to summarize the latest evidence about the role of innate and adaptive immunity in Amyotrophic Lateral Sclerosis (ALS). ALS is a devastating neurodegenerative disease affecting upper and lower motor neurons, which involves essential cells of the immune system that play a basic role in innate or adaptive immunity, that can be neurotoxic or neuroprotective for neurons. However, distinguishing between the sole neurotoxic or neuroprotective function of certain cells such as astrocytes can be challenging due to intricate nature of these cells, the complexity of the microenvironment and the contextual factors. In this review, in regard to innate immunity we focus on the involvement of monocytes/macrophages, microglia, the complement, NK cells, neutrophils, mast cells, and astrocytes, while regarding adaptive immunity, in addition to humoral immunity the most important features and roles of T and B cells are highlighted, specifically different subsets of CD4+ as well as CD8+ T cells. The role of autoantibodies and cytokines is also discussed in distinct sections of this review.
Collapse
Affiliation(s)
- Stefan Mimic
- Centre for Laser Microscopy, Institute of Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Başak Aru
- Immunology Department, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Cemil Pehlivanoğlu
- Immunology Department, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Hadi Sleiman
- Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Pavle R. Andjus
- Centre for Laser Microscopy, Institute of Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
8
|
Piccoli T, Castro F, La Bella V, Meraviglia S, Di Simone M, Salemi G, Dieli F, Spataro R. Role of the immune system in amyotrophic lateral sclerosis. Analysis of the natural killer cells and other circulating lymphocytes in a cohort of ALS patients. BMC Neurol 2023; 23:222. [PMID: 37296379 DOI: 10.1186/s12883-023-03255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
AIMS Neuroinflammation might be involved in the degeneration and progression of Amyotrophic Lateral Sclerosis (ALS). Here, we studied the role of the circulating lymphocytes in ALS, in particular the NK cells. We focused on the relationship between blood lymphocytes, ALS clinical subtype and disease severity. SUBJECTS AND METHODS Blood samples were collected from 92 patients with sporadic ALS, 21 patients with Primary Lateral Sclerosis (PLS) and 37 patients affected by primary progressive multiple sclerosis (PPMS) with inactive plaques. Blood was taken from ALS and controls at the time of diagnosis/referral. Circulating lymphocytes were analyzed by flow cytometry with specific antibodies. Values were expressed as absolute number (n°/µl) of viable lymphocytes subpopulations in ALS were compared with controls. Multivariable analysis was made using site of onset, gender changes in ALSFRS-R and disease progression rate (calculated as ΔFS score). RESULTS Age at onset was 65y (58-71) in ALS (spinal 67.4%; bulbar, 32.6%), 57y (48-78) in PLS and 56y (44-68) PPMS. Absolute blood levels of the lymphocytes in the different cohorts were within normal range. Furthermore, while levels of lymphocytes T and B were not different between disease groups, NK cells were increased in the ALS cohort (ALS = 236 [158-360] vs. Controls = 174[113-240], p < 0.001). In ALS, blood levels of NK cells were not related with the main clinical-demographic variables, including the rate of disease progression. Multivariable analysis suggested that male gender and bulbar onset were independently associated with a risk of high blood NK cells levels. CONCLUSIONS We show that blood NK cells are selectively increased in ALS, though their level appear unaffected in patients with an estimated rapidly progressing disease. Being of a male gender and with a bulbar onset seems to confer higher susceptibility to have increased NK lymphocytes levels at diagnosis/referral. Our experiments provides a further clear-cut evidence of the role of the NK lymphocytes as a significant player in ALS pathogenesis.
Collapse
Affiliation(s)
- Tommaso Piccoli
- Cognitive and Memory Disorders Clinic, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| | - Francesca Castro
- ALS Clinical Research Center, Laboratory of Neurochemistry, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| | - Vincenzo La Bella
- ALS Clinical Research Center, Laboratory of Neurochemistry, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy.
- ALS Clinical Research Center, Laboratory of Neurochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, via Gaetano La Loggia, 1, Palermo, I-90129, Italy.
| | - Serena Meraviglia
- Central Laboratory of Advanced Diagnosis and Biomedical Research, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| | - Marta Di Simone
- Central Laboratory of Advanced Diagnosis and Biomedical Research, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| | - Giuseppe Salemi
- Multiple Sclerosis Clinic, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| | - Rossella Spataro
- ALS Clinical Research Center, Laboratory of Neurochemistry, AOUP "Paolo Giaccone" University Teaching Hospital and BiND, University of Palermo, Palermo, Italy
| |
Collapse
|
9
|
Zhou Y, Cheng L, Liu L, Li X. NK cells are never alone: crosstalk and communication in tumour microenvironments. Mol Cancer 2023; 22:34. [PMID: 36797782 PMCID: PMC9933398 DOI: 10.1186/s12943-023-01737-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Immune escape is a hallmark of cancer. The dynamic and heterogeneous tumour microenvironment (TME) causes insufficient infiltration and poor efficacy of natural killer (NK) cell-based immunotherapy, which becomes a key factor triggering tumour progression. Understanding the crosstalk between NK cells and the TME provides new insights for optimising NK cell-based immunotherapy. Here, we present new advances in direct or indirect crosstalk between NK cells and 9 specialised TMEs, including immune, metabolic, innervated niche, mechanical, and microbial microenvironments, summarise TME-mediated mechanisms of NK cell function inhibition, and highlight potential targeted therapies for NK-TME crosstalk. Importantly, we discuss novel strategies to overcome the inhibitory TME and provide an attractive outlook for the future.
Collapse
Affiliation(s)
- Yongqiang Zhou
- grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000 China ,grid.412643.60000 0004 1757 2902Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China ,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Lu Cheng
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Lu Liu
- grid.412643.60000 0004 1757 2902Department of Pediatrics, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China. .,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China. .,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China.
| |
Collapse
|
10
|
Gong Z, Gao R, Ba L, Liu Y, Hou H, Zhang M. The Peripheral Immune Traits Changed in Patients with Multiple System Atrophy. Brain Sci 2023; 13:brainsci13020205. [PMID: 36831748 PMCID: PMC9953988 DOI: 10.3390/brainsci13020205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
A growing body of evidence suggests immune involvement in the pathology of multiple system atrophy (MSA). Research on detailed peripheral immune indices, however, is relatively sparse, and is one of the intriguing aspects of MSA yet to be elucidated. A total of 26 MSA patients and 56 age-and sex-matched healthy controls (HC) were enrolled in the current case-control study to delineate the peripheral immune traits of MSA patients. The ratio of CD4+/CD8+ T cells, natural killer cells, CD28 expression on both CD4+ T cells and CD8+ T cells increased in MSA patients compared to HC, but CD8+ T cells and active marker (HLA-DR) expression on total T cells decreased (p < 0.05). This study sheds light on the dysregulation of cellular immunity in MSA, pointing to future mechanistic research.
Collapse
Affiliation(s)
- Zhenxiang Gong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rong Gao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Ba
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongyan Hou
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (H.H.); (M.Z.)
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (H.H.); (M.Z.)
| |
Collapse
|
11
|
Kaur K, Jewett A. Supercharged NK Cell-Based Immuotherapy in Humanized Bone Marrow Liver and Thymus (Hu-BLT) Mice Model of Oral, Pancreatic, Glioblastoma, Hepatic, Melanoma and Ovarian Cancers. Crit Rev Immunol 2023; 43:13-25. [PMID: 37938193 DOI: 10.1615/critrevimmunol.2023050618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
In this paper, we review a number of in vitro and in vivo studies regarding the efficacy of supercharged NK (sNK) cell therapy in elimination or treatment of cancer. We have performed studies using six different types of cancer models of oral, pancreatic, glioblastoma, melanoma, hepatic and ovarian cancers using hu-BLT mice. Our in vitro studies demonstrated that primary NK cells preferentially target cancer stem-like cells (CSCs)/poorly differentiated tumors whereas sNK cells target both CSCs/poorly-differentiated and well-differentiated tumors significantly higher than primary activated NK cells. Our in vivo studies in humanized-BLT mice showed that sNK cells alone or in combination with other cancer therapeutics prevented tumor growth and metastasis. In addition, sNK cells were able to increase IFN-γ secretion and cytotoxic function by the immune cells in bone marrow, spleen, gingiva, pancreas and peripheral blood. Furthermore, sNK cells were able to increase the expansion and function of CD8+ T cells both in in vitro and in vivo studies. Overall, our studies demonstrated that sNK cells alone or in combination with other cancer therapeutics were not only effective against eliminating aggressive cancers, but were also able to increase the expansion and function of CD8+ T cells to further target cancer cells, providing a successful approach to eradicate and cure cancer.
Collapse
Affiliation(s)
- Kawaljit Kaur
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, 90095 Los Angeles, CA, USA
| | - Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, 90095 Los Angeles, CA, USA; The Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
| |
Collapse
|
12
|
Dong Y, Li T, Ma Z, Zhou C, Wang X, Li J. HSPA1A, HSPA2, and HSPA8 Are Potential Molecular Biomarkers for Prognosis among HSP70 Family in Alzheimer's Disease. DISEASE MARKERS 2022; 2022:9480398. [PMID: 36246562 PMCID: PMC9553556 DOI: 10.1155/2022/9480398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease, which leads to impairment of cognition and memory. The heat shock protein 70 (HSP70) family plays an important role in the pathogenesis of AD. It is known to regulate protein misfolding in a variety of diseases, including inhibition of Aβ aggregation and NFT formation in AD. As yet, the diagnostic molecular markers of AD remain unclear. Herein, we sought to investigate molecular markers of HSP70 family that can affect diagnosis and treatment in AD through computational analysis. In this study, the intersection between HSP70 family members and immune molecules was taken to screen immune-related HSP70 family genes. Based on the datasets from the NCBI-Gene Expression Omnibus (GEO) database, we found that the expression levels of HSPA1A and HSPA2 were significantly increased in AD samples, while HSPA8 significantly decreased. Surprisingly, the combination of the 3 hub genes had a good diagnosis of AD via receiver operating characteristic curve (ROC). Moreover, the clinical value of the 3 hub genes was further assessed by the Spearman correlation analysis with AD-related genes, β-secretase activity, and γ-secretase activity. In terms of immune cell infiltration, we showed that the distribution of seven immune cell types (macrophages M2, neutrophils, T cells CD4 memory activated, macrophages M0, NK cells activated, plasma cells, and T cells follicular helper) was associated with the occurrence of AD by CIBERSORT. Furthermore, our data suggested that EP300, MYC, TP53, JUN, CREBBP, and ESR1 might be key transcription factors (TFs) for the 3 hub genes. In general, these findings suggest that HSPA1A, HSPA2, and HSPA8 are potential molecular biomarkers for prognosis among HSP70 family in AD, and it provides a new perspective on diagnostic and therapeutic targets for AD.
Collapse
Affiliation(s)
- Yeqing Dong
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Tongxin Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Zhonghui Ma
- Department of Laboratory Medicine, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Chi Zhou
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Xinxu Wang
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Jie Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| |
Collapse
|
13
|
Gong Z, Liu Y, Ding F, Ba L, Zhang M. Natural killer cells-related immune traits and amyotrophic lateral sclerosis: A Mendelian randomization study. Front Neurosci 2022; 16:981371. [PMID: 36248644 PMCID: PMC9562140 DOI: 10.3389/fnins.2022.981371] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundObservational studies have suggested that peripheral immune disorders are associated with amyotrophic lateral sclerosis (ALS). Previous studies predominantly focused on changes in adaptive immunity. However, emerging evidence showed natural killer (NK) cells, an essential component of innate immunity, were involved in the degeneration of motor neurons. However, the causal relationship between dysregulated NK cells-related immune traits and ALS remains unclear.ObjectiveThis study aimed to explore the causal relationship between NK cells-related immune traits and the risk of ALS.Materials and methodsSingle nucleotide polymorphisms (SNPs) significantly associated with NK cells-related immune traits were selected as instrumental variables to estimate their causal effects on ALS. SNPs from a genome-wide association study (GWAS) on NK cells-related immune traits were used as exposure instruments, including an absolute NK-cells count, absolute HLA-DR+ NK-cells count, NK cells/lymphocytes, NK cells/CD3– lymphocytes, HLA DR+ NK cells/NK cells, HLA DR+ NK cells/CD3– lymphocytes, and the median fluorescence intensities of CD16–CD56+ on NK cells and HLA-DR+ NK cells. Summary-level GWAS statistics of ALS were used as the outcome data. Exposure and outcome data were analyzed using the two-sample Mendelian randomization (MR) method.ResultsEach one standard deviation increase in the expression levels of CD16–CD56+ on NK cells and HLA-DR+ NK cells were associated with a lower risk of ALS in both the MR-Egger and inverse variance weighted methods (P < 0.05). The results proved robust under all sensitivity analyses. Neither instrumental outliers nor heterogeneity were detected.ConclusionOur results suggest that higher expression levels of CD16–CD56+ on NK cells and HLA-DR+ NK cells are associated with a lower risk of ALS.
Collapse
Affiliation(s)
- Zhenxiang Gong
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Liu
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengfei Ding
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Li Ba
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Li Ba,
| | - Min Zhang
- Department of Neurology and Psychiatry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Li Ba,
| |
Collapse
|
14
|
Aronica E, Binder DK, Drexel M, Ikonomidou C, Kadam SD, Sperk G, Steinhäuser C. A companion to the preclinical common data elements and case report forms for neuropathology studies in epilepsy research. A report of the TASK3 WG2 Neuropathology Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2022. [PMID: 35938285 DOI: 10.1002/epi4.12638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/28/2022] [Indexed: 11/06/2022] Open
Abstract
The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force initiated the TASK3 working group to create common data elements (CDEs) for various aspects of preclinical epilepsy research studies, which could help improve the standardization of experimental designs. This article addresses neuropathological changes associated with seizures and epilepsy in rodent models of epilepsy. We discuss CDEs for histopathological parameters for neurodegeneration, changes in astrocyte morphology and function, mechanisms of inflammation, and changes in the blood-brain barrier and myelin/oligodendrocytes resulting from recurrent seizures in rats and mice. We provide detailed CDE tables and case report forms (CRFs), and with this companion manuscript, we discuss the rationale and methodological aspects of individual neuropathological examinations. The CDEs, CRFs, and companion paper are available to all researchers, and their use will benefit the harmonization and comparability of translational preclinical epilepsy research. The ultimate hope is to facilitate the development of rational therapy concepts for treating epilepsies, seizures, and comorbidities and the development of biomarkers assessing the pathological state of the disease.
Collapse
Affiliation(s)
- Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Meinrad Drexel
- Department of Genetics and Pharmacology, Institute of Molecular and Cellular Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Shilpa D Kadam
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guenther Sperk
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical School, University of Bonn, Bonn, Germany
| |
Collapse
|
15
|
Intervention of neuroinflammation in the traumatic brain injury trajectory: In vivo and clinical approaches. Int Immunopharmacol 2022; 108:108902. [DOI: 10.1016/j.intimp.2022.108902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022]
|
16
|
Zhu L, Huang L, Le A, Wang TJ, Zhang J, Chen X, Wang J, Wang J, Jiang C. Interactions between the Autonomic Nervous System and the Immune System after Stroke. Compr Physiol 2022; 12:3665-3704. [PMID: 35766834 DOI: 10.1002/cphy.c210047] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acute stroke is one of the leading causes of morbidity and mortality worldwide. Stroke-induced immune-inflammatory response occurs in the perilesion areas and the periphery. Although stroke-induced immunosuppression may alleviate brain injury, it hinders brain repair as the immune-inflammatory response plays a bidirectional role after acute stroke. Furthermore, suppression of the systemic immune-inflammatory response increases the risk of life-threatening systemic bacterial infections after acute stroke. Therefore, it is essential to explore the mechanisms that underlie the stroke-induced immune-inflammatory response. Autonomic nervous system (ANS) activation is critical for regulating the local and systemic immune-inflammatory responses and may influence the prognosis of acute stroke. We review the changes in the sympathetic and parasympathetic nervous systems and their influence on the immune-inflammatory response after stroke. Importantly, this article summarizes the mechanisms on how ANS regulates the immune-inflammatory response through neurotransmitters and their receptors in immunocytes and immune organs after stroke. To facilitate translational research, we also discuss the promising therapeutic approaches modulating the activation of the ANS or the immune-inflammatory response to promote neurologic recovery after stroke. © 2022 American Physiological Society. Compr Physiol 12:3665-3704, 2022.
Collapse
Affiliation(s)
- Li Zhu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Anh Le
- Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Tom J Wang
- Winston Churchill High School, Potomac, Maryland, USA
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Xuemei Chen
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Junmin Wang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Jian Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.,Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
17
|
Reducing neuroinflammation via therapeutic compounds and lifestyle to prevent or delay progression of Parkinson's disease. Ageing Res Rev 2022; 78:101618. [PMID: 35395416 DOI: 10.1016/j.arr.2022.101618] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/08/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is the second most common age-associated neurodegenerative disorder and is characterised by progressive loss of dopamine neurons in the substantia nigra. Peripheral immune cell infiltration and activation of microglia and astrocytes are observed in PD, a process called neuroinflammation. Neuroinflammation is a fundamental response to protect the brain but, when chronic, it triggers neuronal damage. In the last decade, central and peripheral inflammation were suggested to occur at the prodromal stage of PD, sustained throughout disease progression, and may play a significant role in the pathology. Understanding the pathological mechanisms of PD has been a high priority in research, primarily to find effective treatments once symptoms are present. Evidence indicates that early life exposure to neuroinflammation as a consequence of life events, environmental or behaviour factors such as exposure to infections, pollution or a high fat diet increase the risk of developing PD. Many studies show healthy habits and products that decrease neuroinflammation also reduce the risk of PD. Here, we aim to stimulate discussion about the role of neuroinflammation in PD onset and progression. We highlight that reducing neuroinflammation throughout the lifespan is critical for preventing idiopathic PD, and present epidemiological studies that detail risk and protective factors. It is possible that introducing lifestyle changes that reduce neuroinflammation at the time of PD diagnosis may slow symptom progression. Finally, we discuss compounds and therapeutics to treat the neuroinflammation associated with PD.
Collapse
|
18
|
Zhang L, Zhang Y, Fan D. Pathological Role of Natural Killer Cells in Parkinson's Disease: A Systematic Review. Front Aging Neurosci 2022; 14:890816. [PMID: 35663564 PMCID: PMC9157643 DOI: 10.3389/fnagi.2022.890816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is one of the common neurodegenerative diseases that is characterized by selective degeneration of dopaminergic neurons in the substantia nigra, and misfolding of α-synuclein into aggregates is thought to contribute to its pathology. Studies have shown that immune-inflammatory responses are involved in the development of PD and play an important role in α-synuclein scavenge. Natural killer (NK) cells are first responders in immune cells and can directly promote immune defense mechanisms by cytotoxicity and by secreting cytokines. Recent discoveries suggest that NK cells are increasingly recognized in the pathological features of PD. However, the mechanisms underlying it have not been fully understood. In this review, we systematically retrieved and evaluated published evidence about the functions of NK cells in PD. We find alterations in the number of NK cells and cytotoxicity during the progression of PD, and it seems that NK cells play a neuroprotective role in PD pathogenesis, which may further reveal novel targets for the management and treatment of PD.
Collapse
Affiliation(s)
- Le Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Yingshuang Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China
- *Correspondence: Yingshuang Zhang
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- Dongsheng Fan
| |
Collapse
|
19
|
Balatsoukas A, Rossignoli F, Shah K. NK cells in the brain: implications for brain tumor development and therapy. Trends Mol Med 2022; 28:194-209. [PMID: 35078713 PMCID: PMC8882142 DOI: 10.1016/j.molmed.2021.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022]
Abstract
Natural killer (NK) cells are innate lymphoid cells with robust antitumor functions rendering them promising therapeutic tools against malignancies. Despite constituting a minor fraction of the immune cells infiltrating tumors in the brain, insights into their role in central nervous system (CNS) pathophysiology are emerging. The challenges posed by a profoundly immunosuppressive microenvironment as well as by tumor resistance mechanisms necessitate exploring avenues to enhance the therapeutic potential of NK cells in both primary and metastatic brain malignancies. In this review, we summarize the role of NK cells in the pathogenesis of tumors in the brain and discuss the avenues investigated to harness their anticancer effects against primary and metastatic CNS tumors, including sources of therapeutic NK cells, combinations with other treatments, and novel engineering approaches for augmenting their cytotoxicity. We also highlight relevant preclinical evidence and clinical trials of NK cell-based therapies.
Collapse
Affiliation(s)
- Agisilaos Balatsoukas
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, MA 02115, USA
| | - Filippo Rossignoli
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
20
|
Singh G, Tucker EW, Rohlwink UK. Infection in the Developing Brain: The Role of Unique Systemic Immune Vulnerabilities. Front Neurol 2022; 12:805643. [PMID: 35140675 PMCID: PMC8818751 DOI: 10.3389/fneur.2021.805643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Central nervous system (CNS) infections remain a major burden of pediatric disease associated with significant long-term morbidity due to injury to the developing brain. Children are susceptible to various etiologies of CNS infection partly because of vulnerabilities in their peripheral immune system. Young children are known to have reduced numbers and functionality of innate and adaptive immune cells, poorer production of immune mediators, impaired responses to inflammatory stimuli and depressed antibody activity in comparison to adults. This has implications not only for their response to pathogen invasion, but also for the development of appropriate vaccines and vaccination strategies. Further, pediatric immune characteristics evolve across the span of childhood into adolescence as their broader physiological and hormonal landscape develop. In addition to intrinsic vulnerabilities, children are subject to external factors that impact their susceptibility to infections, including maternal immunity and exposure, and nutrition. In this review we summarize the current evidence for immune characteristics across childhood that render children at risk for CNS infection and introduce the link with the CNS through the modulatory role that the brain has on the immune response. This manuscript lays the foundation from which we explore the specifics of infection and inflammation within the CNS and the consequences to the maturing brain in part two of this review series.
Collapse
Affiliation(s)
- Gabriela Singh
- Division of Neurosurgery, Department of Surgery, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Elizabeth W. Tucker
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ursula K. Rohlwink
- Division of Neurosurgery, Department of Surgery, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Francis Crick Institute, London, United Kingdom
| |
Collapse
|
21
|
Lim AR, Ghajar CM. Thorny ground, rocky soil: Tissue-specific mechanisms of tumor dormancy and relapse. Semin Cancer Biol 2022; 78:104-123. [PMID: 33979673 PMCID: PMC9595433 DOI: 10.1016/j.semcancer.2021.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Disseminated tumor cells (DTCs) spread systemically yet distinct patterns of metastasis indicate a range of tissue susceptibility to metastatic colonization. Distinctions between permissive and suppressive tissues are still being elucidated at cellular and molecular levels. Although there is a growing appreciation for the role of the microenvironment in regulating metastatic success, we have a limited understanding of how diverse tissues regulate DTC dormancy, the state of reversible quiescence and subsequent awakening thought to contribute to delayed relapse. Several themes of microenvironmental regulation of dormancy are beginning to emerge, including vascular association, co-option of pre-existing niches, metabolic adaptation, and immune evasion, with tissue-specific nuances. Conversely, DTC awakening is often associated with injury or inflammation-induced activation of the stroma, promoting a proliferative environment with DTCs following suit. We review what is known about tissue-specific regulation of tumor dormancy on a tissue-by-tissue basis, profiling major metastatic organs including the bone, lung, brain, liver, and lymph node. An aerial view of the barriers to metastatic growth may reveal common targets and dependencies to inform the therapeutic prevention of relapse.
Collapse
Affiliation(s)
- Andrea R Lim
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Graduate Program in Molecular and Cellular Biology, University of Washington/Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Cyrus M Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
22
|
Kim HW, Davies AJ, Oh SB. In Vitro Visualization of Cell-to-Cell Interactions Between Natural Killer Cells and Sensory Neurons. Methods Mol Biol 2022; 2463:251-268. [PMID: 35344180 DOI: 10.1007/978-1-0716-2160-8_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell-to-cell interactions between the immune and nervous systems are increasingly recognized for their importance in health and disease. Assessment of cellular neuro-immune interactions can be aided by co-culture of two (or more) cells in an in vitro model system that preserves the morphology of neuronal cells. Here we describe methods to investigate the cytotoxic effector functions of natural killer cells on sensory neurons isolated from syngeneic embryonic and adult mice. We present methods for the morphological analysis of axon fragmentation (pruning) and dynamic cell function via live confocal calcium imaging. These techniques can easily be adapted to study interactions between other combinations of immune cell subsets and neuronal populations.
Collapse
Affiliation(s)
- Hyoung Woo Kim
- Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Alexander J Davies
- Nuffield Department of Clinical Neurosciences, Level 6 West Wing, John Radcliffe Hospital, Oxford, UK.
| | - Seog Bae Oh
- Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Lee S, Wang EY, Steinberg AB, Walton CC, Chinta SJ, Andersen JK. A guide to senolytic intervention in neurodegenerative disease. Mech Ageing Dev 2021; 200:111585. [PMID: 34627838 PMCID: PMC8627445 DOI: 10.1016/j.mad.2021.111585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/20/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022]
Abstract
Cellular senescence is a potential tumor-suppressive mechanism that generally results in an irreversible cell cycle arrest. Senescent cells accumulate with age and actively secrete soluble factors, collectively termed the 'senescence-associated secretory phenotype' (SASP), which has both beneficial and detrimental effects. Although the contribution of senescent cells to age-related pathologies has been well-established outside the brain, emerging evidence indicates that brain cells also undergo cellular senescence and contribute to neuronal loss in the context of age-related neurodegenerative diseases. Contribution of senescent cells in the pathogenesis of neurological disorders has led to the possibility of eliminating senescence cells via pharmacological compounds called senolytics. Recently several senolytics have been demonstrated to elicit improved cognitive performance and healthspan in mouse models of neurodegeneration. However, their translation for use in the clinic still holds several potential challenges. This review summarizes available senolytics, their purported mode of action, and possible off-target effects. We also discuss possible alternative strategies that may help minimize potential side-effects associated with the senolytics approach.
Collapse
Affiliation(s)
- Suckwon Lee
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Ellen Y Wang
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA
| | - Alexandra B Steinberg
- University of Wisconsin Department of Biochemistry, 433 Babcock Drive., Madison, WI, 53706, USA
| | - Chaska C Walton
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA.
| | - Shankar J Chinta
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA; Touro University California, College of Pharmacy, 1310 Club Dr., Vallejo, CA, 94592, USA.
| | - Julie K Andersen
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, 94945, USA.
| |
Collapse
|
24
|
Vahabi Z, Etesam F, Zandifar A, Khaleghi A, Badrfam R. Is psychosocial stress a potential risk factor for Anti NMDAR Encephalitis? Attention to the important role of NK cell's innate immune system. Clin Neurol Neurosurg 2021; 213:106979. [PMID: 34674884 DOI: 10.1016/j.clineuro.2021.106979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 09/27/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Zahra Vahabi
- Memory and Behavioral Neurology Division, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Farnaz Etesam
- Psychosomatic Medicine Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Atefeh Zandifar
- Cardiovascular Research Center, Shahid Rajaei Educational and Medical Center, Alborz University of Medical Sciences, Karaj, Iran; Social Determinants of Health Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| | - Ali Khaleghi
- Psychiatry and Psychology Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Rahim Badrfam
- Department of Psychiatry, Roozbeh Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Silla L, Valim V, Pezzi A, da Silva M, Wilke I, Nobrega J, Vargas A, Amorin B, Correa B, Zambonato B, Scherer F, Merzoni J, Sekine L, Huls H, Cooper LJ, Paz A, Lee DA. Adoptive immunotherapy with double-bright (CD56 bright /CD16 bright ) expanded natural killer cells in patients with relapsed or refractory acute myeloid leukaemia: a proof-of-concept study. Br J Haematol 2021; 195:710-721. [PMID: 34490616 DOI: 10.1111/bjh.17751] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/10/2021] [Accepted: 07/21/2021] [Indexed: 12/26/2022]
Abstract
Patients with acute myeloid leukaemia (AML) have a five-year survival rate of 28·7%. Natural killer (NK)-cell have anti-leukaemic activity. Here, we report on a series of 13 patients with high-risk R/R AML, treated with repeated infusions of double-bright (CD56bright /CD16bright ) expanded NK cells at an academic centre in Brazil. NK cells from HLA-haploidentical donors were expanded using K562 feeder cells, modified to express membrane-bound interleukin-21. Patients received FLAG, after which cryopreserved NK cells were thawed and infused thrice weekly for six infusions in three dose cohorts (106 -107 cells/kg/infusion). Primary objectives were safety and feasibility. Secondary endpoints included overall response (OR) and complete response (CR) rates at 28-30 days after the first infusion. Patients received a median of five prior lines of therapy, seven with intermediate or adverse cytogenetics, three with concurrent central nervous system (CNS) leukaemia, and one with concurrent CNS mycetoma. No dose-limiting toxicities, infusion-related fever, or cytokine release syndrome were observed. An OR of 78·6% and CR of 50·0% were observed, including responses in three patients with CNS disease and clearance of a CNS mycetoma. Multiple infusions of expanded, cryopreserved NK cells were safely administered after intensive chemotherapy in high-risk patients with R/R AML and demonstrated encouraging outcomes.
Collapse
Affiliation(s)
- Lucia Silla
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Vanessa Valim
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Annelise Pezzi
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Maria da Silva
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Ianae Wilke
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliana Nobrega
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alini Vargas
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Bruna Amorin
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Bruna Correa
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bruna Zambonato
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Joice Merzoni
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Leo Sekine
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Helen Huls
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Alessandra Paz
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Dean A Lee
- Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
26
|
Immune cell compartmentalization for brain surveillance and protection. Nat Immunol 2021; 22:1083-1092. [PMID: 34429552 DOI: 10.1038/s41590-021-00994-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
For decades, it was commonly accepted that the brain is secluded from peripheral immune activity and is self-sufficient for its maintenance and repair. This simplistic perception was based on the presence of resident immune cells, the microglia, and barrier systems within the brain, and the assumption that the central nervous system (CNS) lacks lymphatic drainage. This view was revised with the discoveries that higher functions of the CNS, homeostasis and repair are supported by peripheral innate and adaptive immune cells. The findings of bone marrow-derived immune cells in specialized niches, and the renewed observation that a lymphatic drainage system exists within the brain, further contributed to this revised model. In this Review, we describe the immune niches within the brain, the contribution of professional immune cells to brain functions, the bidirectional relationships between the CNS and the immune system and the relevance of immune components to brain aging and neurodegenerative diseases.
Collapse
|
27
|
Grembecka B, Glac W, Listowska M, Jerzemowska G, Plucińska K, Majkutewicz I, Badtke P, Wrona D. Subthalamic Deep Brain Stimulation Affects Plasma Corticosterone Concentration and Peripheral Immunity Changes in Rat Model of Parkinson's Disease. J Neuroimmune Pharmacol 2021; 16:454-469. [PMID: 32648088 PMCID: PMC8087570 DOI: 10.1007/s11481-020-09934-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
Deep brain stimulation of the subthalamic nucleus (DBS-STN) is an effective treatment for advanced motor symptoms of Parkinson's disease (PD). Recently, a connection between the limbic part of the STN and side effects of DBS-STN has been increasingly recognized. Animal studies have shown that DBS-STN influences behavior and provokes neurochemical changes in regions of the limbic system. Some of these regions, which are activated during DBS-STN, are involved in neuroimmunomodulation. The therapeutic effects of DBS-STN in PD treatment are clear, but the influence of DBS-STN on peripheral immunity has not been reported so far. In this study, we examined the effects of unilateral DBS-STN applied in male Wistar rats with 6-hydroxydopamine PD model (DBS-6OHDA) and rats without nigral dopamine depletion (DBS) on corticosterone (CORT) plasma concentration, blood natural killer cell cytotoxicity (NKCC), leukocyte numbers, lymphocyte population and apoptosis numbers, plasma interferon gamma (IFN-γ), interleukin 6 (IL-6), and tumor necrosis factor (TNF-α) concentration. The same peripheral immune parameters we measured also in non-stimulated rats with PD model (6OHDA). We observed peripheral immunity changes related to PD model. The NKCC and percentage of T cytotoxic lymphocytes were enhanced, while the level of lymphocyte apoptosis was down regulated in 6OHDA and DBS-6OHDA groups. After DBS-STN (DBS-6OHDA and DBS groups), the plasma CORT and TNF-α were elevated, the number of NK cells and percentage of apoptosis were increased, while the number of B lymphocytes was decreased. We also found, changes in plasma IFN-γ and IL-6 levels in all the groups. These results suggest potential peripheral immunomodulative effects of DBS-STN in the rat model of PD. However, further studies are necessary to explain these findings and their clinical implication. Graphical Abstract Influence of deep brain stimulation of the subthalamic nucleus on peripheral immunity in rat model of Parkinson's disease.
Collapse
Affiliation(s)
- Beata Grembecka
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza Str, 80-308, Gdańsk, Poland.
| | - Wojciech Glac
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza Str, 80-308, Gdańsk, Poland
| | - Magdalena Listowska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza Str, 80-308, Gdańsk, Poland
| | - Grażyna Jerzemowska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza Str, 80-308, Gdańsk, Poland
| | - Karolina Plucińska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza Str, 80-308, Gdańsk, Poland
| | - Irena Majkutewicz
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza Str, 80-308, Gdańsk, Poland
| | - Piotr Badtke
- Department of Physiology, Medical University of Gdańsk, 1 Dębinki Str, 80-211, Gdańsk, Poland
| | - Danuta Wrona
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza Str, 80-308, Gdańsk, Poland
| |
Collapse
|
28
|
Fu W, Wang W, Li H, Jiao Y, Weng J, Huo R, Yan Z, Wang J, Xu H, Wang S, Wang J, Chen D, Cao Y, Zhao J. CyTOF Analysis Reveals a Distinct Immunosuppressive Microenvironment in IDH Mutant Anaplastic Gliomas. Front Oncol 2021; 10:560211. [PMID: 33614475 PMCID: PMC7890006 DOI: 10.3389/fonc.2020.560211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/07/2020] [Indexed: 11/23/2022] Open
Abstract
The immune microenvironment is important for the development, progression, and prognosis of anaplastic glioma (AG). This complex milieu has not been fully elucidated, and a high-dimensional analysis is urgently required. Utilizing mass cytometry (CyTOF), we performed an analysis of immune cells from 5 patients with anaplastic astrocytoma, IDH-mutant (AAmut) and 10 patients with anaplastic oligodendroglioma, IDH-mutant and 1p/19q codeletion (AOD) and their paired peripheral blood mononuclear cells (PBMCs). Based on a panel of 33 biomarkers, we demonstrated the tumor-driven immune changes in the AG immune microenvironment. Our study confirmed that mononuclear phagocytes and T cells are the most abundant immunocytes in the AG immune microenvironment. Glioma-associated microglia/macrophages in both AAmut and AOD samples showed highly immunosuppressive characteristics. Compared to those in the PBMCs, the ratios of immune checkpoint-positive exhausted CD4+ T cells and CD8+ T cells were higher at the AG tumor sites. The AAmut immune milieu exhibits more immunosuppressive characteristics than that in AOD.
Collapse
Affiliation(s)
- Weilun Fu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China.,Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuming Jiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jiancong Weng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ran Huo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zihan Yan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jie Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hongyuan Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China.,Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
29
|
Samanta S. Potential Impacts of Prebiotics and Probiotics in Cancer Prevention. Anticancer Agents Med Chem 2020; 22:605-628. [PMID: 33305713 DOI: 10.2174/1871520621999201210220442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/15/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is a serious problem throughout the world. The pathophysiology of cancer is multifactorial and is also related to gut microbiota. Intestinal microbes are the useful resident of the healthy human. They play various aspects of human health including nutritional biotransformation, flushing of the pathogens, toxin neutralization, immune response, and onco-suppression. Disruption in the interactions among the gut microbiota, intestinal epithelium, and the host immune system are associated with gastrointestinal disorders, neurodegenerative diseases, metabolic syndrome, and cancer. Probiotic bacteria (Lactobacillus spp., Bifidobacterium spp.) have been regarded as beneficial to health and shown to play a significant role in immunomodulation and displayed preventive role against obesity, diabetes, liver disease, inflammatory bowel disease, tumor progression, and cancer. OBJECTIVE The involvement of gut microorganisms in cancer development and prevention has been recognized as a balancing factor. The events of dysbiosis emphasize metabolic disorder and carcinogenesis. The gut flora potentiates immunomodulation and minimizes the limitations of usual chemotherapy. The significant role of prebiotics and probiotics on the improvement of immunomodulation and antitumor properties has been considered. METHODS I had reviewed the literature on the multidimensional activities of prebiotics and probiotics from the NCBI website database PubMed, Springer Nature, Science Direct (Elsevier), Google Scholar database to search relevant articles. Specifically, I had focused on the role of prebiotics and probiotics in immunomodulation and cancer prevention. RESULTS Prebiotics are the nondigestible fermentable sugars that selectively influence the growth of probiotic organisms that exert immunomodulation over the cancerous growth. The oncostatic properties of bacteria are mediated through the recruitment of cytotoxic T cells, natural killer cells, and oxidative stress-induced apoptosis in the tumor microenvironment. Moreover, approaches have also been taken to use probiotics as an adjuvant in cancer therapy. CONCLUSION The present review has indicated that dysbiosis is the crucial factor in many pathological situations including cancer. Applications of prebiotics and probiotics exhibit the immune-surveillance as oncostatic effects. These events increase the possibilities of new therapeutic strategies for cancer prevention.
Collapse
Affiliation(s)
- Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, Paschim Medinipur, 721101, West Bengal,. India
| |
Collapse
|
30
|
Gagliano A, Galati C, Ingrassia M, Ciuffo M, Alquino MA, Tanca MG, Carucci S, Zuddas A, Grossi E. Pediatric Acute-Onset Neuropsychiatric Syndrome: A Data Mining Approach to a Very Specific Constellation of Clinical Variables. J Child Adolesc Psychopharmacol 2020; 30:495-511. [PMID: 32460516 DOI: 10.1089/cap.2019.0165] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objectives: Pediatric acute onset neuropsychiatric syndrome (PANS) is a clinically heterogeneous disorder presenting with: unusually abrupt onset of obsessive compulsive disorder (OCD) or severe eating restrictions, with at least two concomitant cognitive, behavioral, or affective symptoms such as anxiety, obsessive-compulsive behavior, and irritability/depression. This study describes the clinical and laboratory variables of 39 children (13 female and 26 male) with a mean age at recruitment of 8.6 years (standard deviation 3.1). Methods: Using a mathematical approach based on Artificial Neural Networks, the putative associations between PANS working criteria, as defined at the NIH in July 2010 (Swedo et al. 2012), were explored by the Auto Contractive Map (Auto-CM) system, a mapping method able to compute the multidimensional association of strength of each variable with all other variables in predefined dataset. Results: The PANS symptoms were strictly linked to one another on the semantic connectivity map, shaping a central "diamond" encompassing anxiety, irritability/oppositional defiant disorder symptoms, obsessive-compulsive symptoms, behavioral regression, sensory motor abnormalities, school performance deterioration, sleep disturbances, and emotional lability/depression. The semantic connectivity map also showed the aggregation between PANS symptoms and laboratory and clinical variables. In particular, the emotional lability/depression resulted as a highly connected hub linked to autoimmune disease in pregnancy, allergic and atopic disorders, and low Natural Killer percentage. Also anxiety symptoms were shown to be strongly related with recurrent infectious disease remarking the possible role of infections as a risk factor for PANS. Conclusion: Our data mining approach shows a very specific constellation of symptoms having strong links to laboratory and clinical variables consistent with PANS feature.
Collapse
Affiliation(s)
- Antonella Gagliano
- Child & Adolescent Neuropsychiatry Unit, Department of Biomedical Sciences, University of Cagliari, & "G. Brotzu" Hospital Trust, Cagliari, Italy
- Funding: The authors received no specific funding
| | - Cecilia Galati
- Division of Child Neurology and Psychiatry, Department of Paediatrics, University of Messina, Messina, Italy
- Funding: The authors received no specific funding
| | - Massimo Ingrassia
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- Funding: The authors received no specific funding
| | - Massimo Ciuffo
- Department of Cognitive Psychological Pedagogical Sciences and Cultural Studies, University of Messina, Messina, Italy
- Funding: The authors received no specific funding
| | - Maria Ausilia Alquino
- Division of Child Neurology and Psychiatry, Department of Paediatrics, University of Messina, Messina, Italy
- Funding: The authors received no specific funding
| | - Marcello G Tanca
- Child & Adolescent Neuropsychiatry Unit, Department of Biomedical Sciences, University of Cagliari, & "G. Brotzu" Hospital Trust, Cagliari, Italy
- Funding: The authors received no specific funding
| | - Sara Carucci
- Child & Adolescent Neuropsychiatry Unit, Department of Biomedical Sciences, University of Cagliari, & "G. Brotzu" Hospital Trust, Cagliari, Italy
- Funding: The authors received no specific funding
| | - Alessandro Zuddas
- Child & Adolescent Neuropsychiatry Unit, Department of Biomedical Sciences, University of Cagliari, & "G. Brotzu" Hospital Trust, Cagliari, Italy
- Funding: The authors received no specific funding
| | - Enzo Grossi
- Autism Research Unit, Villa Santa Maria Foundation, Tavernerio, Italy
- Funding: The authors received no specific funding
| |
Collapse
|
31
|
Walton CC, Begelman D, Nguyen W, Andersen JK. Senescence as an Amyloid Cascade: The Amyloid Senescence Hypothesis. Front Cell Neurosci 2020; 14:129. [PMID: 32508595 PMCID: PMC7248249 DOI: 10.3389/fncel.2020.00129] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/20/2020] [Indexed: 01/10/2023] Open
Abstract
Due to their postmitotic status, the potential for neurons to undergo senescence has historically received little attention. This lack of attention has extended to some non-postmitotic cells as well. Recently, the study of senescence within the central nervous system (CNS) has begun to emerge as a new etiological framework for neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). The presence of senescent cells is known to be deleterious to non-senescent neighboring cells via development of a senescence-associated secretory phenotype (SASP) which includes the release of inflammatory, oxidative, mitogenic, and matrix-degrading factors. Senescence and the SASP have recently been hailed as an alternative to the amyloid cascade hypothesis and the selective killing of senescence cells by senolytic drugs as a substitute for amyloid beta (Aß) targeting antibodies. Here we call for caution in rejecting the amyloid cascade hypothesis and to the dismissal of Aß antibody intervention at least in early disease stages, as Aß oligomers (AßO), and cellular senescence may be inextricably linked. We will review literature that portrays AßO as a stressor capable of inducing senescence. We will discuss research on the potential role of secondary senescence, a process by which senescent cells induce senescence in neighboring cells, in disease progression. Once this seed of senescent cells is present, the elimination of senescence-inducing stressors like Aß would likely be ineffective in abrogating the spread of senescence. This has potential implications for when and why AßO clearance may or may not be effective as a therapeutic for AD. The selective killing of senescent cells by the immune system via immune surveillance naturally curtails the SASP and secondary senescence outside the CNS. Immune privilege restricts the access of peripheral immune cells to the brain parenchyma, making the brain a safe harbor for the spread of senescence and the SASP. However, an increasingly leaky blood brain barrier (BBB) compromises immune privilege in aging AD patients, potentially enabling immune infiltration that could have detrimental consequences in later AD stages. Rather than an alternative etiology, senescence itself may constitute an essential component of the cascade in the amyloid cascade hypothesis.
Collapse
|
32
|
Fu W, Wang W, Li H, Jiao Y, Huo R, Yan Z, Wang J, Wang S, Wang J, Chen D, Cao Y, Zhao J. Single-Cell Atlas Reveals Complexity of the Immunosuppressive Microenvironment of Initial and Recurrent Glioblastoma. Front Immunol 2020; 11:835. [PMID: 32457755 PMCID: PMC7221162 DOI: 10.3389/fimmu.2020.00835] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/14/2020] [Indexed: 11/14/2022] Open
Abstract
The Glioblastoma (GBM) immune microenvironment plays a critical role in tumor development, progression, and prognosis. A comprehensive understanding of the intricate milieu and its interactions remains unclear, and single-cell analysis is crucially needed. Leveraging mass cytometry (CyTOF), we analyzed immunocytes from 13 initial and three recurrent GBM samples and their matched peripheral blood mononuclear cells (pPBMCs). Using a panel of 30 markers, we provide a high-dimensional view of the complex GBM immune microenvironment. Hematoxylin and eosin staining and polychromatic immunofluorescence were used for verification of the key findings. In the initial and recurrent GBMs, glioma-associated microglia/macrophages (GAMs) constituted 59.05 and 27.87% of the immunocytes, respectively; programmed cell death-ligand 1 (PD-L1), T cell immunoglobulin domain and mucin domain-3 (TIM-3), lymphocyte activation gene-3 (LAG-3), interleukin-10 (IL-10) and transforming growth factor-β (TGFβ) demonstrated different expression levels in the GAMs among the patients. GAMs could be subdivided into different subgroups with different phenotypes. Both the exhausted T cell and regulatory T (Treg) cell percentages were significantly higher in tumors than in pPBMCs. The natural killer (NK) cells that infiltrated into the tumor lesions expressed higher levels of CXC chemokine receptor 3 (CXCR3), as these cells expressed lower levels of interferon-γ (IFNγ). The immune microenvironment in the initial and recurrent GBMs displayed similar suppressive changes. Our study confirmed that GAMs, as the dominant infiltrating immunocytes, present great inter- and intra-tumoral heterogeneity and that GAMs, increased exhausted T cells, infiltrating Tregs, and nonfunctional NK cells contribute to local immune suppressive characteristics. Recurrent GBMs share similar immune signatures with the initial GBMs except the proportion of GAMs decreases.
Collapse
Affiliation(s)
- Weilun Fu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wenjing Wang
- Institute of Hepatology, Capital Medical University Affiliated Beijing You'an Hospital, Beijing, China
| | - Hao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuming Jiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ran Huo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zihan Yan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jie Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Dexi Chen
- Institute of Hepatology, Capital Medical University Affiliated Beijing You'an Hospital, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
33
|
Natural killer cells modulate motor neuron-immune cell cross talk in models of Amyotrophic Lateral Sclerosis. Nat Commun 2020; 11:1773. [PMID: 32286313 PMCID: PMC7156729 DOI: 10.1038/s41467-020-15644-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
In amyotrophic lateral sclerosis (ALS), immune cells and glia contribute to motor neuron (MN) degeneration. We report the presence of NK cells in post-mortem ALS motor cortex and spinal cord tissues, and the expression of NKG2D ligands on MNs. Using a mouse model of familial-ALS, hSOD1G93A, we demonstrate NK cell accumulation in the motor cortex and spinal cord, with an early CCL2-dependent peak. NK cell depletion reduces the pace of MN degeneration, delays motor impairment and increases survival. This is confirmed in another ALS mouse model, TDP43A315T. NK cells are neurotoxic to hSOD1G93A MNs which express NKG2D ligands, while IFNγ produced by NK cells instructs microglia toward an inflammatory phenotype, and impairs FOXP3+/Treg cell infiltration in the spinal cord of hSOD1G93A mice. Together, these data suggest a role of NK cells in determining the onset and progression of MN degeneration in ALS, and in modulating Treg recruitment and microglia phenotype. Neuroimmune interactions are important in amyotrophic lateral sclerosis (ALS). Here the authors characterize the role of NK cells in mouse models of ALS, and in patient tissue.
Collapse
|
34
|
Fu W, Wang W, Li H, Jiao Y, Weng J, Huo R, Yan Z, Wang J, Xu H, Wang S, Wang J, Chen D, Cao Y, Zhao J. High Dimensional Mass Cytometry Analysis Reveals Characteristics of the Immunosuppressive Microenvironment in Diffuse Astrocytomas. Front Oncol 2020; 10:78. [PMID: 32117733 PMCID: PMC7010913 DOI: 10.3389/fonc.2020.00078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/16/2020] [Indexed: 01/01/2023] Open
Abstract
The tumor immune microenvironment (TIME) plays a pivotal role in tumor development, progression, and prognosis. However, the characteristics of the TIME in diffuse astrocytoma (DA) are still unclear. Leveraging mass cytometry with a panel of 33 markers, we analyzed the infiltrating immune cells from 10 DA and 4 oligodendroglioma (OG) tissues and provided a single cell-resolution landscape of the intricate immune microenvironment. Our study profiled the composition of the TIME in DA and confirmed the presence of immune cells, such as glioma-associated microglia/macrophages (GAMs), CD8+ T cells, CD4+ T cells, regulatory T cells (Tregs), and natural killer cells. Increased percentages of PD-1+ CD8+ T cells, TIM-3+ CD4+ T cell subpopulations, Tregs and pro-tumor phenotype GAMs substantially contribute to the local immunosuppressive microenvironment in DA. DAs and OGs share similar compositions in terms of immune cells, while GAMs in DA exhibit more inhibitory characteristics than those in OG.
Collapse
Affiliation(s)
- Weilun Fu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wenjing Wang
- Institute of Hepatology, Capital Medical University Affiliated Beijing You'an Hospital, Beijing, China
| | - Hao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuming Jiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jiancong Weng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ran Huo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zihan Yan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jie Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hongyuan Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Dexi Chen
- Institute of Hepatology, Capital Medical University Affiliated Beijing You'an Hospital, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
35
|
NK cells clear α-synuclein and the depletion of NK cells exacerbates synuclein pathology in a mouse model of α-synucleinopathy. Proc Natl Acad Sci U S A 2020; 117:1762-1771. [PMID: 31900358 DOI: 10.1073/pnas.1909110117] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The pathological hallmark of synucleinopathies, including Lewy body dementia and Parkinson's disease (PD), is the presence of Lewy bodies, which are primarily composed of intracellular inclusions of misfolded α-synuclein (α-syn) among other proteins. α-Syn is found in extracellular biological fluids in PD patients and has been implicated in modulating immune responses in the central nervous system (CNS) and the periphery. Natural killer (NK) cells are innate effector lymphocytes that are present in the CNS in homeostatic and pathological conditions. NK cell numbers are increased in the blood of PD patients and their activity is associated with disease severity; however, the role of NK cells in the context of α-synucleinopathies has never been explored. Here, we show that human NK cells can efficiently internalize and degrade α-syn aggregates via the endosomal/lysosomal pathway. We demonstrate that α-syn aggregates attenuate NK cell cytotoxicity in a dose-dependent manner and decrease the release of the proinflammatory cytokine, IFN-γ. To address the role of NK cells in PD pathogenesis, NK cell function was investigated in a preformed fibril α-syn-induced mouse PD model. Our studies demonstrate that in vivo depletion of NK cells in a preclinical mouse PD model resulted in exacerbated motor deficits and increased phosphorylated α-syn deposits. Collectively, our data provide a role of NK cells in modulating synuclein pathology and motor symptoms in a preclinical mouse model of PD, which could be developed into a therapeutic for PD and other synucleinopathies.
Collapse
|
36
|
Furlan R, Melloni E, Finardi A, Vai B, Di Toro S, Aggio V, Battistini L, Borsellino G, Manfredi E, Falini A, Colombo C, Poletti S, Benedetti F. Natural killer cells protect white matter integrity in bipolar disorder. Brain Behav Immun 2019; 81:410-421. [PMID: 31254622 DOI: 10.1016/j.bbi.2019.06.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/08/2019] [Accepted: 06/25/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Bipolar Disorder (BD) associates with disrupted white matter (WM) microstructure and functional connectivity, and with a perturbation of the immune system. Higher cytokines, and reduced T cells, correlated with WM disruption and fMRI responses. A core component of the innate immune system, natural killer (NK) cells were detected in brain parenchyma, but never studied in BD. METHODS We studied Diffusion Tensor Imaging (DTI) measures of water diffusion, fMRI corticolimbic functional response and connectivity, and multi-parameter cytofluorometry analysis of NK (CD56+) subpopulations, in 30 inpatients with active Bipolar Disorder type I. NK cells were also obtained in 36 healthy controls. RESULTS Patients had significantly higher circulating counts of CD56+GMCSF+, CD56+INFγ+, and CD56+IL17+. NK cell levels positively associated to fractional anisotropy (FA) measures. CD56+TNFα+, CD56+INFγ+, and CD56+GMCSF+ directly correlated with FA, and inversely with radial (RD) and mean (MD) diffusivity. Duration of lithium treatment associated with higher CD56+TNFα+, CD56+IL2+, and CD56+IL4+, and positively associated with FA in tracts were NKs had significant effects. A mediation model suggested a partial mediation of CD56+TNFα+ cells, higher in patients on lithium, on the effects of lithium on FA. Frequencies of the same cytokine-producing NK cells also influenced fMRI cortico-limbic functional connectivity during processing of both, emotional and non-emotional stimuli. DISCUSSION Higher circulating cytokine-producing NK cells associated with lithium treatment, and with DTI measures of WM integrity, partially mediating the effect of lithium on WM. The same cells associated with fMRI responses and connectivity, thus suggesting an effect on structural and functional connectomics in BD.
Collapse
Affiliation(s)
- Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Elisa Melloni
- University Vita-Salute San Raffaele, Italy; Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Benedetta Vai
- University Vita-Salute San Raffaele, Italy; Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Sara Di Toro
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Veronica Aggio
- University Vita-Salute San Raffaele, Italy; Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | - Andrea Falini
- University Vita-Salute San Raffaele, Italy; Department of Neuroradiology, San Raffaele Scientific Institute, Milano, Italy
| | - Cristina Colombo
- University Vita-Salute San Raffaele, Italy; Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Sara Poletti
- University Vita-Salute San Raffaele, Italy; Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Francesco Benedetti
- University Vita-Salute San Raffaele, Italy; Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy.
| |
Collapse
|
37
|
Bennabi M, Tarantino N, Gaman A, Scheid I, Krishnamoorthy R, Debré P, Bouleau A, Caralp M, Gueguen S, Le-Moal ML, Bouvard M, Amestoy A, Delorme R, Leboyer M, Tamouza R, Vieillard V. Persistence of dysfunctional natural killer cells in adults with high-functioning autism spectrum disorders: stigma/consequence of unresolved early infectious events? Mol Autism 2019; 10:22. [PMID: 31123562 PMCID: PMC6521549 DOI: 10.1186/s13229-019-0269-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/18/2019] [Indexed: 12/27/2022] Open
Abstract
Background Autism spectrum disorders (ASD) are characterized by abnormal neurodevelopment, genetic, and environmental risk factors, as well as immune dysfunctions. Several lines of evidence suggest alterations in innate immune responses in children with ASD. To address this question in adults with high-functioning ASD (hf-ASD), we sought to investigate the role of natural killer (NK) cells in the persistence of ASD. Methods NK cells from 35 adults with hf-ASD were compared to that of 35 healthy controls (HC), selected for the absence of any immune dysfunctions, at different time-points, and over a 2-year follow-up period for four patients. The phenotype and polyfunctional capacities of NK cells were explored according to infectious stigma and clinical parameters (IQ, social, and communication scores). Results As compared to HC, NK cells from patients with hf-ASD showed a high level of cell activation (p < 0.0001), spontaneous degranulation (p < 0.0001), and interferon-gamma production (p = 0.0004), whereas they were exhausted after in vitro stimulations (p = 0.0006). These data yielded a specific HLA-DR+KIR2DL1+NKG2C+ NK-cell signature. Significant overexpression of NKG2C in hf-ASD patients (p = 0.0005), indicative of viral infections, was inversely correlated with the NKp46 receptor level (r = − 0.67; p < 0.0001), regardless of the IgG status of tested pathogens. Multivariate linear regression analysis also revealed that expression of the late-activating HLA-DR marker was both associated with structural language (r = 0.48; p = 0.007) and social awareness (r = 0.60; p = 0.0007) scores in adult patients with hf-ASD, while KIR2DL1 expression correlated with IQ scores (p = 0.0083). Conclusions This study demonstrates that adults with hf-ASD have specific NK-cell profile. Presence of NKG2C overexpression together with high-level activation of NK cells suggest an association with underlying pathogens, a hypothesis warranting further exploration in future studies. Electronic supplementary material The online version of this article (10.1186/s13229-019-0269-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meriem Bennabi
- 1INSERM, U1160, Hôpital Saint Louis, Paris, France.,2Fondation FondaMental, Créteil, France.,4DHU PePSY, Department of psychiatry, Mondor Hospital, Université Paris Est Créteil, INSERM, U955, Psychiatrie Translationnelle, Créteil, France
| | - Nadine Tarantino
- 3Sorbonne Université, UPMC, INSERM U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Alexandru Gaman
- 2Fondation FondaMental, Créteil, France.,4DHU PePSY, Department of psychiatry, Mondor Hospital, Université Paris Est Créteil, INSERM, U955, Psychiatrie Translationnelle, Créteil, France
| | - Isabelle Scheid
- 2Fondation FondaMental, Créteil, France.,4DHU PePSY, Department of psychiatry, Mondor Hospital, Université Paris Est Créteil, INSERM, U955, Psychiatrie Translationnelle, Créteil, France
| | | | - Patrice Debré
- 3Sorbonne Université, UPMC, INSERM U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Arthur Bouleau
- 4DHU PePSY, Department of psychiatry, Mondor Hospital, Université Paris Est Créteil, INSERM, U955, Psychiatrie Translationnelle, Créteil, France
| | - Mireille Caralp
- 5Inserm Transfer, Paris, France.,6French Institute of Health and Medical Research, Paris, France
| | - Sonia Gueguen
- 5Inserm Transfer, Paris, France.,6French Institute of Health and Medical Research, Paris, France
| | | | - Manuel Bouvard
- 2Fondation FondaMental, Créteil, France.,8Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, Bordeaux, France
| | - Anouck Amestoy
- 2Fondation FondaMental, Créteil, France.,8Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, Bordeaux, France
| | - Richard Delorme
- 2Fondation FondaMental, Créteil, France.,DHU Protect, Service de Psychiatrie de l'Enfant et de l'Adolescent, Hôpital Robert Debré, Département de Génétique Humaine et Fonctions Cognitives, Institut Pasteur, Paris, France
| | - Marion Leboyer
- 2Fondation FondaMental, Créteil, France.,4DHU PePSY, Department of psychiatry, Mondor Hospital, Université Paris Est Créteil, INSERM, U955, Psychiatrie Translationnelle, Créteil, France
| | - Ryad Tamouza
- 1INSERM, U1160, Hôpital Saint Louis, Paris, France.,2Fondation FondaMental, Créteil, France.,4DHU PePSY, Department of psychiatry, Mondor Hospital, Université Paris Est Créteil, INSERM, U955, Psychiatrie Translationnelle, Créteil, France
| | - Vincent Vieillard
- 3Sorbonne Université, UPMC, INSERM U1135, CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| |
Collapse
|
38
|
Mehrian-Shai R, Reichardt JKV, Harris CC, Toren A. The Gut-Brain Axis, Paving the Way to Brain Cancer. Trends Cancer 2019; 5:200-207. [PMID: 30961828 DOI: 10.1016/j.trecan.2019.02.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 12/15/2022]
Abstract
The gut-brain axis formed by blood and lymphatic vessels paves the way for microbiota to impact the brain. Bacterial populations in the gut are a good candidate for a nongenetic factor contributing substantively to brain tumor development and to the success of therapy. Specifically, suppression of the immune system and induction of inflammation by microbiota sustain proliferative signaling, limit cell death, and induce angiogenesis as well as invasiveness. In addition, altered microbial metabolites and their levels could stimulate cell proliferation. We propose here a novel gear model connecting these complex interdisciplinary fields. Our model may impact mechanistic studies of brain cancer and better treatment outcomes through precision oncology.
Collapse
Affiliation(s)
| | - Juergen K V Reichardt
- Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Curtis C Harris
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amos Toren
- Pediatric Hemato-Oncology, Sheba Medical Center, Ramat Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
39
|
Benbenishty A, Gadrich M, Cottarelli A, Lubart A, Kain D, Amer M, Shaashua L, Glasner A, Erez N, Agalliu D, Mayo L, Ben-Eliyahu S, Blinder P. Prophylactic TLR9 stimulation reduces brain metastasis through microglia activation. PLoS Biol 2019; 17:e2006859. [PMID: 30921319 PMCID: PMC6469801 DOI: 10.1371/journal.pbio.2006859] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 04/17/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
Brain metastases are prevalent in various types of cancer and are often terminal, given the low efficacy of available therapies. Therefore, preventing them is of utmost clinical relevance, and prophylactic treatments are perhaps the most efficient strategy. Here, we show that systemic prophylactic administration of a toll-like receptor (TLR) 9 agonist, CpG-C, is effective against brain metastases. Acute and chronic systemic administration of CpG-C reduced tumor cell seeding and growth in the brain in three tumor models in mice, including metastasis of human and mouse lung cancer, and spontaneous melanoma-derived brain metastasis. Studying mechanisms underlying the therapeutic effects of CpG-C, we found that in the brain, unlike in the periphery, natural killer (NK) cells and monocytes are not involved in controlling metastasis. Next, we demonstrated that the systemically administered CpG-C is taken up by endothelial cells, astrocytes, and microglia, without affecting blood-brain barrier (BBB) integrity and tumor brain extravasation. In vitro assays pointed to microglia, but not astrocytes, as mediators of CpG- C effects through increased tumor killing and phagocytosis, mediated by direct microglia-tumor contact. In vivo, CpG-C-activated microglia displayed elevated mRNA expression levels of apoptosis-inducing and phagocytosis-related genes. Intravital imaging showed that CpG-C-activated microglia cells contact, kill, and phagocytize tumor cells in the early stages of tumor brain invasion more than nonactivated microglia. Blocking in vivo activation of microglia with minocycline, and depletion of microglia with a colony-stimulating factor 1 inhibitor, indicated that microglia mediate the antitumor effects of CpG-C. Overall, the results suggest prophylactic CpG-C treatment as a new intervention against brain metastasis, through an essential activation of microglia.
Collapse
Affiliation(s)
- Amit Benbenishty
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
- Neurobiology Department, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Meital Gadrich
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School for Molecular Cell Biology & Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Azzurra Cottarelli
- Department of Neurology, Columbia University Medical Center, New York, New York, United States of America
| | - Alisa Lubart
- Neurobiology Department, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - David Kain
- Neurobiology Department, Tel Aviv University, Tel Aviv, Israel
| | - Malak Amer
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lee Shaashua
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ariella Glasner
- The Lautenberg Centre for General and Tumor Immunology, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Neta Erez
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dritan Agalliu
- Department of Neurology, Columbia University Medical Center, New York, New York, United States of America
| | - Lior Mayo
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School for Molecular Cell Biology & Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Shamgar Ben-Eliyahu
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Pablo Blinder
- Neurobiology Department, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
40
|
Marischen L, Englert A, Schmitt AL, Einsele H, Loeffler J. Human NK cells adapt their immune response towards increasing multiplicities of infection of Aspergillus fumigatus. BMC Immunol 2018; 19:39. [PMID: 30563459 PMCID: PMC6299526 DOI: 10.1186/s12865-018-0276-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 11/29/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The saprophytic fungus Aspergillus fumigatus reproduces by generation of conidia, which are spread by airflow throughout nature. Since humans are inhaling certain amounts of spores every day, the (innate) immune system is constantly challenged. Even though macrophages and neutrophils carry the main burden, also NK cells are regarded to contribute to the antifungal immune response. While NK cells reveal a low frequency, expression and release of immunomodulatory molecules seem to be a natural way of their involvement. RESULTS In this study we show, that NK cells secrete chemokines such as CCL3/MIP-1α, CCL4/MIP-1β and CCL5/RANTES early on after stimulation with Aspergillus fumigatus and, in addition, adjust the concentration of chemokines released to the multiplicity of infection of Aspergillus fumigatus. CONCLUSIONS These results further corroborate the relevance of NK cells within the antifungal immune response, which is regarded to be more and more important in the development and outcome of invasive aspergillosis in immunocompromised patients after hematopoietic stem cell transplantation. Additionally, the correlation between the multiplicity of infection and the expression and release of chemokines shown here may be useful in further studies for the quantification and/or surveillance of the NK cell involvement in antifungal immune responses.
Collapse
Affiliation(s)
- Lothar Marischen
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany.
| | - Anne Englert
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Anna-Lena Schmitt
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Juergen Loeffler
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
41
|
Solana C, Tarazona R, Solana R. Immunosenescence of Natural Killer Cells, Inflammation, and Alzheimer's Disease. Int J Alzheimers Dis 2018; 2018:3128758. [PMID: 30515321 PMCID: PMC6236558 DOI: 10.1155/2018/3128758] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) represents the most common cause of dementia in the elderly. AD is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although the aetiology of AD is not clear, both environmental factors and heritable predisposition may contribute to disease occurrence. In addition, inflammation and immune system alterations have been linked to AD. The prevailing hypothesis as cause of AD is the deposition in the brain of amyloid beta peptides (Aβ). Although Aβ have a role in defending the brain against infections, their accumulation promotes an inflammatory response mediated by microglia and astrocytes. The production of proinflammatory cytokines and other inflammatory mediators such as prostaglandins and complement factors favours the recruitment of peripheral immune cells further promoting neuroinflammation. Age-related inflammation and chronic infection with herpes virus such as cytomegalovirus may also contribute to inflammation in AD patients. Natural killer (NK) cells are innate lymphoid cells involved in host defence against viral infections and tumours. Once activated NK cells secrete cytokines such as IFN-γ and TNF-α and chemokines and exert cytotoxic activity against target cells. In the elderly, changes in NK cell compartment have been described which may contribute to the lower capacity of elderly individuals to respond to pathogens and tumours. Recently, the role of NK cells in the immunopathogenesis of AD is discussed. Although in AD patients the frequency of NK cells is not affected, a high NK cell response to cytokines has been described together with NK cell dysregulation of signalling pathways which is in part involved in this altered behaviour.
Collapse
Affiliation(s)
| | | | - Rafael Solana
- Instituto Maimónides de Investigación Biomédica (IMIBIC), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- University of Cordoba, Córdoba, Spain
| |
Collapse
|
42
|
Sendo S, Saegusa J, Morinobu A. Myeloid-derived suppressor cells in non-neoplastic inflamed organs. Inflamm Regen 2018; 38:19. [PMID: 30237829 PMCID: PMC6139938 DOI: 10.1186/s41232-018-0076-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) are a highly heterogeneous population of immature myeloid cells with immunosuppressive function. Although their function in tumor-bearing conditions is well studied, less is known about the role of MDSCs in various organs under non-neoplastic inflammatory conditions. MAIN BODY MDSCs are divided into two subpopulations, G-MDSCs and M-MDSCs, and their distribution varies between organs. MDSCs negatively control inflammation in inflamed organs such as the lungs, joints, liver, kidneys, intestines, central nervous system (CNS), and eyes by suppressing T cells and myeloid cells. MDSCs also regulate fibrosis in the lungs, liver, and kidneys and help repair CNS injuries. MDSCs in organs are plastic and can differentiate into osteoclasts and tolerogenic dendritic cells according to the microenvironment under non-neoplastic inflammatory conditions. CONCLUSION This article summarizes recent findings about MDSCs under inflammatory conditions, especially with respect to their function and differentiation in specific organs.
Collapse
Affiliation(s)
- Sho Sendo
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| | - Jun Saegusa
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
- Division of Laboratory Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| | - Akio Morinobu
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan
| |
Collapse
|
43
|
Human dorsal root ganglion pulsed radiofrequency treatment modulates cerebrospinal fluid lymphocytes and neuroinflammatory markers in chronic radicular pain. Brain Behav Immun 2018; 70:157-165. [PMID: 29458195 DOI: 10.1016/j.bbi.2018.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/29/2018] [Accepted: 02/15/2018] [Indexed: 12/26/2022] Open
Abstract
Radicular pain is a common cause of disability. Traditionally treatment has been either epidural steroid injection providing short-term relief or surgery with associated complications. Pulsed radiofrequency (PRF) applied to the dorsal root ganglion (DRG) is a minimally invasive day-care treatment, which is gaining significant clinical acceptance in a selective group of patients with pure radicular pain. Greater insights into the immunomodulatory effects of this procedure may help to further optimise its application and find alternative treatment options. We have examined it's effect on lymphocyte frequencies and secreted inflammatory markers in the cerebrospinal fluid (CSF) and correlated this with clinical outcome to identify clinical markers of chronic radicular pain. Ten patients were recruited for the study. CSF lymphocyte frequencies and levels of cytokines, chemokines and growth factors were quantified using flow cytometry and enzyme-linked immunosorbent assay (ELISA), respectively. Clinical assessment utilised Brief Pain Inventory scores. Nine out of ten patients (90%) demonstrated significant reduction in pain severity (p = 0.0007) and pain interference scores (p = 0.0015) three months post-treatment. Our data revealed significant reductions in CD56+, CD3-, NK cell frequencies (p = 0.03) and IFN-γ levels (p = 0.03) in treatment responders, while CD8+ T cell frequencies (p = 0.02) and IL-6 levels were increased (p = 0.05). IL-17 inversely correlated with post-treatment pain severity score (p = 0.01) and pre and post-treatment pain interference scores (p = 0.03, p = 0.01). These results support the concept that chronic radicular pain is a centrally mediated neuroimmune phenomenon and the mechanism of action of DRG PRF treatment is immunomodulatory.
Collapse
|
44
|
Yan Z, Gibson SA, Buckley JA, Qin H, Benveniste EN. Role of the JAK/STAT signaling pathway in regulation of innate immunity in neuroinflammatory diseases. Clin Immunol 2018; 189:4-13. [PMID: 27713030 PMCID: PMC5573639 DOI: 10.1016/j.clim.2016.09.014] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/20/2016] [Accepted: 09/28/2016] [Indexed: 02/06/2023]
Abstract
The Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) signaling pathway is utilized by numerous cytokines and interferons, and is essential for the development and function of both innate and adaptive immunity. Aberrant activation of the JAK/STAT pathway is evident in neuroinflammatory diseases such as Multiple Sclerosis and Parkinson's Disease. Innate immunity is the front line defender of the immune system and is composed of various cell types, including microglia, macrophages and neutrophils. Innate immune responses have both pathogenic and protective roles in neuroinflammation, depending on disease context and the microenvironment in the central nervous system. In this review, we discuss the role of innate immunity in the pathogenesis of neuroinflammatory diseases, how the JAK/STAT signaling pathway regulates the innate immune response, and finally, the potential for ameliorating neuroinflammation by utilization of JAK/STAT inhibitors.
Collapse
Affiliation(s)
- Zhaoqi Yan
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Sara A Gibson
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Jessica A Buckley
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Hongwei Qin
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
45
|
Poli A, Michel T, Patil N, Zimmer J. Revisiting the Functional Impact of NK Cells. Trends Immunol 2018; 39:460-472. [PMID: 29496432 DOI: 10.1016/j.it.2018.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/08/2017] [Accepted: 01/23/2018] [Indexed: 01/28/2023]
Abstract
Immune responses are critical for the maintenance of homeostasis but can also upset the equilibrium, depending on the context and magnitude of the response. Natural killer (NK) cells are well known for their important roles in antiviral and antitumor immune responses, and they are currently used, mostly under optimized forms, as immunotherapeutic agents against cancer. Nevertheless, with accumulating examples of deleterious effects of NK cells, it is paramount to consider their negative contributions. Here, we critically review and comment on the literature surrounding undesirable aspects of NK cell activity, focusing on situations where they play a harmful rather than a protective role.
Collapse
Affiliation(s)
- Aurélie Poli
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; These authors contributed equally to this work and share first authorship
| | - Tatiana Michel
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; These authors contributed equally to this work and share first authorship
| | - Neha Patil
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Jacques Zimmer
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
46
|
Bowen KE, Mathew SO, Borgmann K, Ghorpade A, Mathew PA. A novel ligand on astrocytes interacts with natural cytotoxicity receptor NKp44 regulating immune response mediated by NK cells. PLoS One 2018; 13:e0193008. [PMID: 29447242 PMCID: PMC5814005 DOI: 10.1371/journal.pone.0193008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/16/2018] [Indexed: 12/29/2022] Open
Abstract
NK cells play important role in immunity against pathogens and cancer. NK cell functions are regulated by inhibitory and activating receptors binding corresponding ligands on the surface of target cells. NK cells were shown to be recruited to the CNS following several pathological conditions. NK cells could impact CNS physiology by killing glial cells and by secreting IFN-γ. Astrocytes are intimately involved in immunological and inflammatory events occurring in the CNS and reactive astrogliosis is a key feature in HIV-associated neurocognitive disorders. There is little data on NK-astrocyte interactions and ligands expressed on astrocytes that could impact NK cell function. Natural cytotoxicity receptors (NCRs) play a critical role in the cytolytic function of NK cells. Among the NCRs, NKp44 is unique in expression and signal transduction. NKp44 is expressed only upon activation of NK cells and it can mediate both activating and inhibitory signals to NK cells. Here, we have studied the expression and function of natural cytotoxicity receptor NKp44 upon NK-astrocytes interactions in the presence or absence of an HIV peptide (HIV-3S peptide) shown to induce NK cell killing of CD4+ T cells during HIV–infection. Using a fusion protein consisting of the extracellular domain of NKp44 fused to Fc portion of human IgG, we determined the expression of a novel ligand for NKp44 (NKp44L) on astrocytes. Incubation of astrocytes with HIV-3S peptide downregulated NKp44L expression on astrocytes implicating protection from NK mediated killing. Thus, our study showed that NKp44 have a protective effect on astrocytes from NK cell mediated killing during HIV infection and impact astrocyte role in HAND.
Collapse
Affiliation(s)
- Kelly E Bowen
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Stephen O Mathew
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Kathleen Borgmann
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Anuja Ghorpade
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Porunelloor A Mathew
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| |
Collapse
|
47
|
Trained innate immunity: a salient factor in the pathogenesis of neuroimmune psychiatric disorders. Mol Psychiatry 2018; 23:170-176. [PMID: 29230022 DOI: 10.1038/mp.2017.186] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 02/07/2023]
Abstract
Historically, only cells of the adaptive immune system have been considered capable of retaining memory for infectious challenges. Recently, however, cells of the innate immune system have been shown to be capable of displaying long-term functional memory following a single immunostimulatory challenge, leading to enhanced production of proinflammatory molecules upon other subsequent, and temporally distant, immunostimulatory challenges. This effect has been termed 'trained innate immunity', and is underwritten by stable epigenetic changes in immune and metabolic pathways. Importantly, the long-term training of innate immune cells can occur as a result of infectious as well as and non-infectious challenges, including stress. Given the role that both stress and an activated immune system have in neuropathology, innate immune training has important implications for our understanding and treatment of neuropsychiatric disorders. This review focuses on the evidence for trained innate immunity and highlights some insights into its relevance for psychiatric diseases.
Collapse
|
48
|
Jin WN, Ducruet AF, Liu Q, Shi SXY, Waters M, Zou M, Sheth KN, Gonzales R, Shi FD. Activation of JAK/STAT3 restores NK-cell function and improves immune defense after brain ischemia. FASEB J 2018; 32:2757-2767. [PMID: 29401578 DOI: 10.1096/fj.201700962r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Stroke-induced immune suppression predisposes the host to infections and can contribute to high morbidity and mortality in stroke patients. Because ischemic stroke has a profound effect on the systemic immune response, which may explain the increased susceptibility of stroke patients to infection, an urgent need persists for a better understanding of mechanisms associated with immune suppression; new and effective treatments for stroke can then be identified. NK cells play a key role in early host defense against pathogens by killing infected cells and/or producing cytokines such as IFN-γ. Because the phenotype and function of peripheral NK cells have been widely investigated in ischemic stroke, nCounter Inflammation Gene Array Analysis was used to build immune-related gene profiles of NK cells to comprehensively analyze the molecular signature of NK cells after ischemic brain injury. We observed distinct gene expression profiles reflecting different splenic NK-cell phenotypes and functional properties across the time course of transient middle cerebral artery occlusion (MCAO). Based on gene expression and pathway-network analysis, lower expression levels of signal transducer and activator of transcription-3 (STAT3) were observed in animals with MCAO compared with sham control animals. Genetic activation of STAT3 through the introduction of STAT3 clustered regularly interspaced short palindromic repeats (CRISPR) plasmid prevented the loss of NK-cell-derived IFN-γ production after MCAO, together with reduced bacterial burden and mortality. Our data suggest that brain ischemia impairs NK-cell-mediated immune defense in the periphery, at least in part through the JAK-STAT3 pathway, which can be readdressed by modulating STAT3 activation status.-Jin, W.-N., Ducruet, A. F., Liu, Q., Shi, S. X.-Y., Waters, M., Zou, M., Sheth, K. N., Gonzales, R., Shi, F.-D. Activation of JAK/STAT3 restores NK-cell function and improves immune defense after brain ischemia.
Collapse
Affiliation(s)
- Wei-Na Jin
- Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Division of Neurology and Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Andrew F Ducruet
- Division of Neurology and Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Division of Neurology and Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Samuel Xiang-Yu Shi
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA; and
| | - Michael Waters
- Division of Neurology and Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Ming Zou
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Kevin N Sheth
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Rayna Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA; and
| | - Fu-Dong Shi
- Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Division of Neurology and Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
49
|
Vermeulen JF, Van Hecke W, Adriaansen EJM, Jansen MK, Bouma RG, Villacorta Hidalgo J, Fisch P, Broekhuizen R, Spliet WGM, Kool M, Bovenschen N. Prognostic relevance of tumor-infiltrating lymphocytes and immune checkpoints in pediatric medulloblastoma. Oncoimmunology 2017; 7:e1398877. [PMID: 29399402 PMCID: PMC5790383 DOI: 10.1080/2162402x.2017.1398877] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/19/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022] Open
Abstract
Pediatric medulloblastomas are the most frequently diagnosed embryonal tumors of the central nervous system. Current therapies cause severe neurological and cognitive side effects including secondary malignancies. Cellular immunotherapy might be key to improve survival and to avoid morbidity. Efficient killing of tumor cells using immunotherapy requires to overcome cancer-associated strategies to evade cytotoxic immune responses. Here, we examined the immune response and immune evasion strategies in pediatric medulloblastomas. Cytotoxic T-cells, infiltrating medulloblastomas with variable activation status, showed no correlation with overall survival of the patients. We found limited numbers of PD1+ T-cells and complete absence of PD-L1 on medulloblastomas. Medulloblastomas downregulated immune recognition molecules MHC-I and CD1 d. Intriguingly, expression of granzyme inhibitors SERPINB1 and SERPINB4 was acquired in 23% and 50% of the tumors, respectively. Concluding, pediatric medulloblastomas exploit multiple immune evasion strategies to overcome immune surveillance. Absence of PD-L1 expression in medulloblastoma suggest limited or no added value for immunotherapy with PD1/PD-L1 blockers.
Collapse
Affiliation(s)
- Jeroen F Vermeulen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wim Van Hecke
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Mieke K Jansen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rianne G Bouma
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Paul Fisch
- Institute of Clinical Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Roel Broekhuizen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wim G M Spliet
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), Heidelberg, Germany
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
50
|
Abstract
Brain ischemia induces profound systemic immunosuppression, leading to infectious complications. In this issue of Immunity, Liu et al. (2017) demonstrate that distinct neuroendocrine pathways differentially inhibit natural killer (NK) cell responses in the central nervous system and the periphery after cerebral infarction.
Collapse
|