1
|
Zhang L, Xu F, Hou L. IL-6 and diabetic kidney disease. Front Immunol 2024; 15:1465625. [PMID: 39749325 PMCID: PMC11693507 DOI: 10.3389/fimmu.2024.1465625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Diabetic kidney disease (DKD) is a severe microvascular complication of diabetes associated with high mortality and disability rates. Inflammation has emerged as a key pathological mechanism in DKD, prompting interest in novel therapeutic approaches targeting inflammatory pathways. Interleukin-6 (IL-6), a well-established inflammatory cytokine known for mediating various inflammatory responses, has attracted great attention in the DKD field. Although multiple in vivo and in vitro studies highlight the potential of targeting IL-6 in DKD treatment, its exact roles in the disease remains unclear. This review presents the roles of IL-6 in the pathogenesis of DKD, including immunoinflammation, metabolism, hemodynamics, and ferroptosis. In addition, we summarize the current status of IL-6 inhibitors in DKD-related clinical trials and discuss the potential of targeting IL-6 for treating DKD in the clinic.
Collapse
Affiliation(s)
- Lei Zhang
- Pharmacy Department, Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
| | - Futian Xu
- Logistics Management Department, Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
| | - Liyan Hou
- Pharmacy Department, Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
| |
Collapse
|
2
|
Matsumoto T, Nagano T, Taguchi K, Kobayashi T, Tanaka-Totoribe N. Toll-like receptor 3 involvement in vascular function. Eur J Pharmacol 2024; 979:176842. [PMID: 39033837 DOI: 10.1016/j.ejphar.2024.176842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/24/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
Maintaining endothelial cell (EC) and vascular smooth muscle cell (VSMC) integrity is an important component of human health and disease because both EC and VSMC regulate various functions, including vascular tone control, cellular adhesion, homeostasis and thrombosis regulation, proliferation, and vascular inflammation. Diverse stressors affect functions in both ECs and VSMCs and abnormalities of functions in these cells play a crucial role in cardiovascular disease initiation and progression. Toll-like receptors (TLRs) are important detectors of pathogen-associated molecular patterns derived from various microbes and viruses as well as damage-associated molecular patterns derived from damaged cells and perform innate immune responses. Among TLRs, several studies reveal that TLR3 plays a key role in initiation, development and/or protection of diseases, and an emerging body of evidence indicates that TLR3 presents components of the vasculature, including ECs and VSMCs, and plays a functional role. An agonist of TLR3, polyinosinic-polycytidylic acid [poly (I:C)], affects ECs, including cell death, inflammation, chemoattractant, adhesion, permeability, and hemostasis. Poly (I:C) also affects VSMCs including inflammation, proliferation, and modulation of vascular tone. Moreover, alterations of vascular function induced by certain molecules and/or interventions are exerted through TLR3 signaling. Hence, we present the association between TLR3 and vascular function according to the latest studies.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Second Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Medical Science, Nobeoka, Miyazaki, 882-8508, Japan.
| | - Takayuki Nagano
- Second Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Medical Science, Nobeoka, Miyazaki, 882-8508, Japan
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Naoko Tanaka-Totoribe
- First Department of Pharmacology, School of Pharmaceutical Sciences, Kyushu University of Medical Science, Nobeoka, Miyazaki, 882-8508, Japan
| |
Collapse
|
3
|
Chernova I. Lupus Nephritis: Immune Cells and the Kidney Microenvironment. KIDNEY360 2024; 5:1394-1401. [PMID: 39120952 PMCID: PMC11441818 DOI: 10.34067/kid.0000000000000531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/29/2024] [Indexed: 08/11/2024]
Abstract
Lupus nephritis (LN) is the most common major organ manifestation of the autoimmune disease SLE (lupus), with 10% of those afflicted progressing to ESKD. The kidney in LN is characterized by a significant immune infiltrate and proinflammatory cytokine milieu that affects intrinsic renal cells and is, in part, responsible for the tissue damage observed in LN. It is now increasingly appreciated that LN is not due to unidirectional immune cell activation with subsequent kidney damage. Rather, the kidney microenvironment influences the recruitment, survival, differentiation, and activation of immune cells, which, in turn, modify kidney cell function. This review covers how the biochemical environment of the kidney ( i.e ., low oxygen tension and hypertonicity) and unique kidney cell types affect the intrarenal immune cells in LN. The pathways used by intrinsic renal cells to interact with immune cells, such as antigen presentation and cytokine production, are discussed in detail. An understanding of these mechanisms can lead to the design of more kidney-targeted treatments and the avoidance of systemic immunosuppressive effects and may represent the next frontier of LN therapies.
Collapse
Affiliation(s)
- Irene Chernova
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
4
|
Tsokos GC, Boulougoura A, Kasinath V, Endo Y, Abdi R, Li H. The immunoregulatory roles of non-haematopoietic cells in the kidney. Nat Rev Nephrol 2024; 20:206-217. [PMID: 37985868 PMCID: PMC11005998 DOI: 10.1038/s41581-023-00786-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
The deposition of immune complexes, activation of complement and infiltration of the kidney by cells of the adaptive and innate immune systems have long been considered responsible for the induction of kidney damage in autoimmune, alloimmune and other inflammatory kidney diseases. However, emerging findings have highlighted the contribution of resident immune cells and of immune molecules expressed by kidney-resident parenchymal cells to disease processes. Several types of kidney parenchymal cells seem to express a variety of immune molecules with a distinct topographic distribution, which may reflect the exposure of these cells to different pathogenic threats or microenvironments. A growing body of literature suggests that these cells can stimulate the infiltration of immune cells that provide protection against infections or contribute to inflammation - a process that is also regulated by draining kidney lymph nodes. Moreover, components of the immune system, such as autoantibodies, cytokines and immune cells, can influence the metabolic profile of kidney parenchymal cells in the kidney, highlighting the importance of crosstalk in pathogenic processes. The development of targeted nanomedicine approaches that modulate the immune response or control inflammation and damage directly within the kidney has the potential to eliminate the need for systemically acting drugs.
Collapse
Affiliation(s)
- George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | | | - Vivek Kasinath
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yushiro Endo
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Reza Abdi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
5
|
Li M, Armelloni S, Mattinzoli D, Ikehata M, Chatziantoniou C, Alfieri C, Molinari P, Chadjichristos CE, Malvica S, Castellano G. Crosstalk mechanisms between glomerular endothelial cells and podocytes in renal diseases and kidney transplantation. Kidney Res Clin Pract 2024; 43:47-62. [PMID: 38062623 PMCID: PMC10846991 DOI: 10.23876/j.krcp.23.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 02/06/2024] Open
Abstract
The glomerular filtration barrier (GFB), composed of endothelial cells, glomerular basement membrane, and podocytes, is a unique structure for filtering blood while detaining plasma proteins according to size and charge selectivity. Structurally, the fenestrated endothelial cells, which align the capillary loops, are in close proximity to mesangial cells. Podocytes are connected by specialized intercellular junctions known as slit diaphragms and are separated from the endothelial compartment by the glomerular basement membrane. Podocyte-endothelial cell communication or crosstalk is required for the development and maintenance of an efficient filtration process in physiological conditions. In pathological situations, communication also has an essential role in promoting or delaying disease progression. Podocytes and endothelial cells can secrete signaling molecules, which act as crosstalk effectors and, through binding to their target receptors, can trigger bidirectional paracrine or autocrine signal transduction. Moreover, the emerging evidence of extracellular vesicles derived from various cell types engaging in cell communication has also been reported. In this review, we summarize the principal pathways involved in the development and maintenance of the GFB and the progression of kidney disease, particularly in kidney transplantation.
Collapse
Affiliation(s)
- Min Li
- Renal Research Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Armelloni
- Renal Research Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Deborah Mattinzoli
- Renal Research Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Masami Ikehata
- Renal Research Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Christos Chatziantoniou
- Unité Mixte de Recherche Scientifique 1155, Institut National de la Santé et de la Recherche Médicale, Hôpital Tenon, Paris, France
- Faculty of Medicine, Sorbonne University, Paris, France
| | - Carlo Alfieri
- Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Paolo Molinari
- Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Christos E. Chadjichristos
- Unité Mixte de Recherche Scientifique 1155, Institut National de la Santé et de la Recherche Médicale, Hôpital Tenon, Paris, France
- Faculty of Medicine, Sorbonne University, Paris, France
| | - Silvia Malvica
- Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Castellano
- Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Pajoumshariati R, Ewart L, Kujala V, Luc R, Peel S, Corrigan A, Weber H, Nugraha B, Hansen PBL, Williams J. Physiological Replication of the Human Glomerulus Using a Triple Culture Microphysiological System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303131. [PMID: 37867234 PMCID: PMC10667800 DOI: 10.1002/advs.202303131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/12/2023] [Indexed: 10/24/2023]
Abstract
The function of the glomerulus depends on the complex cell-cell/matrix interactions and replication of this in vitro would aid biological understanding in both health and disease. Previous models do not fully reflect all cell types and interactions present as they overlook mesangial cells within their 3D matrix. Herein, the development of a microphysiological system that contains all resident renal cell types in an anatomically relevant manner is presented. A detailed transcriptomic analysis of the contributing biology of each cell type, as well as functionally appropriate albumin retention in the system, is demonstrated. The important role of mesangial cells is shown in promoting the health and maturity of the other cell types. Additionally, a comparison of the incremental advances that each individual cell type brings to the phenotype of the others demonstrates that glomerular cells in simple 2D culture exhibit a state more reflective of the dysfunction observed in human disease than previously recognized. This in vitro model will expand the capability to investigate glomerular biology in a more translatable manner by the inclusion of the important mesangial cell compartment.
Collapse
Affiliation(s)
- Ramin Pajoumshariati
- Bioscience RenalResearch and Early DevelopmentCardiovascularRenal and Metabolism (CVRM)BioPharmaceuticals R&DAstraZenecaGothenburg431 83Sweden
| | | | | | | | - Samantha Peel
- Functional Genomics, Research and Early DevelopmentDiscovery SciencesBioPharmaceuticals R&DAstraZenecaCambridgeCB21 6GHUK
| | - Adam Corrigan
- Functional Genomics, Research and Early DevelopmentDiscovery SciencesBioPharmaceuticals R&DAstraZenecaCambridgeCB21 6GHUK
| | | | - Bramasta Nugraha
- Bioscience RenalResearch and Early DevelopmentCardiovascularRenal and Metabolism (CVRM)BioPharmaceuticals R&DAstraZenecaGothenburg431 83Sweden
| | - Pernille B. L. Hansen
- Bioscience RenalResearch and Early DevelopmentCardiovascularRenal and Metabolism (CVRM)BioPharmaceuticals R&DAstraZenecaGothenburg431 83Sweden
| | - Julie Williams
- Bioscience RenalResearch and Early DevelopmentCardiovascularRenal and Metabolism (CVRM)BioPharmaceuticals R&DAstraZenecaGothenburg431 83Sweden
| |
Collapse
|
7
|
Albrecht M, Sticht C, Wagner T, Hettler SA, De La Torre C, Qiu J, Gretz N, Albrecht T, Yard B, Sleeman JP, Garvalov BK. The crosstalk between glomerular endothelial cells and podocytes controls their responses to metabolic stimuli in diabetic nephropathy. Sci Rep 2023; 13:17985. [PMID: 37863933 PMCID: PMC10589299 DOI: 10.1038/s41598-023-45139-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
In diabetic nephropathy (DN), glomerular endothelial cells (GECs) and podocytes undergo pathological alterations, which are influenced by metabolic changes characteristic of diabetes, including hyperglycaemia (HG) and elevated methylglyoxal (MGO) levels. However, it remains insufficiently understood what effects these metabolic factors have on GEC and podocytes and to what extent the interactions between the two cell types can modulate these effects. To address these questions, we established a co-culture system in which GECs and podocytes were grown together in close proximity, and assessed transcriptional changes in each cell type after exposure to HG and MGO. We found that HG and MGO had distinct effects on gene expression and that the effect of each treatment was markedly different between GECs and podocytes. HG treatment led to upregulation of "immediate early response" genes, particularly those of the EGR family, as well as genes involved in inflammatory responses (in GECs) or DNA replication/cell cycle (in podocytes). Interestingly, both HG and MGO led to downregulation of genes related to extracellular matrix organisation in podocytes. Crucially, the transcriptional responses of GECs and podocytes were dependent on their interaction with each other, as many of the prominently regulated genes in co-culture of the two cell types were not significantly changed when monocultures of the cells were exposed to the same stimuli. Finally, the changes in the expression of selected genes were validated in BTBR ob/ob mice, an established model of DN. This work highlights the molecular alterations in GECs and podocytes in response to the key diabetic metabolic triggers HG and MGO, as well as the central role of GEC-podocyte crosstalk in governing these responses.
Collapse
Affiliation(s)
- Michael Albrecht
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany
| | - Carsten Sticht
- Center of Medical Research, Bioinformatics and Statistics, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- NGS Core Facility, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Tabea Wagner
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany
| | - Steffen A Hettler
- Department of Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology and Pneumology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Carolina De La Torre
- Center of Medical Research, Bioinformatics and Statistics, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- NGS Core Facility, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Jiedong Qiu
- Department of Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology and Pneumology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Center of Medical Research, Bioinformatics and Statistics, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Thomas Albrecht
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, Heidelberg, Germany
| | - Benito Yard
- Department of Nephrology, Hypertensiology, Endocrinology, Diabetology, Rheumatology and Pneumology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Jonathan P Sleeman
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany.
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany.
- Institute of Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology Campus North, Building 319, Hermann-Von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Boyan K Garvalov
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany.
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim of the University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany.
| |
Collapse
|
8
|
Buvall L, Menzies RI, Williams J, Woollard KJ, Kumar C, Granqvist AB, Fritsch M, Feliers D, Reznichenko A, Gianni D, Petrovski S, Bendtsen C, Bohlooly-Y M, Haefliger C, Danielson RF, Hansen PBL. Selecting the right therapeutic target for kidney disease. Front Pharmacol 2022; 13:971065. [DOI: 10.3389/fphar.2022.971065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Kidney disease is a complex disease with several different etiologies and underlying associated pathophysiology. This is reflected by the lack of effective treatment therapies in chronic kidney disease (CKD) that stop disease progression. However, novel strategies, recent scientific breakthroughs, and technological advances have revealed new possibilities for finding novel disease drivers in CKD. This review describes some of the latest advances in the field and brings them together in a more holistic framework as applied to identification and validation of disease drivers in CKD. It uses high-resolution ‘patient-centric’ omics data sets, advanced in silico tools (systems biology, connectivity mapping, and machine learning) and ‘state-of-the-art‘ experimental systems (complex 3D systems in vitro, CRISPR gene editing, and various model biological systems in vivo). Application of such a framework is expected to increase the likelihood of successful identification of novel drug candidates based on strong human target validation and a better scientific understanding of underlying mechanisms.
Collapse
|
9
|
Dong R, Xu Y. Glomerular cell cross talk in diabetic kidney diseases. J Diabetes 2022; 14:514-523. [PMID: 35999686 PMCID: PMC9426281 DOI: 10.1111/1753-0407.13304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022] Open
Abstract
Diabetic kidney disease (DKD) is a severe microvascular complication of diabetes mellitus. It is the leading inducement of end-stage renal disease (ESRD), and its global incidence has been increasing at an alarming rate. The strict control of blood pressure and blood glucose can delay the progression of DKD, but intensive treatment is challenging to maintain. Studies to date have failed to find a complete cure. The glomerulus's alterations and injuries play a pivotal role in the initiation and development of DKD. A wealth of data indicates that the interdependent relationship between resident cells in the glomerulus will provide clues to the mechanism of DKD and new ways for therapeutic intervention. This review summarizes the significant findings of glomerular cell cross talk in DKD, focusing on cellular signaling pathways, regulators, and potential novel avenues for treating progressive DKD.
Collapse
Affiliation(s)
- Ruixue Dong
- Faculty of Pharmacy, Macau University of Science and Technology, Taipa, Macau, People's Republic of China
| | - Youhua Xu
- Faculty of Pharmacy, Macau University of Science and Technology, Taipa, Macau, People's Republic of China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, People's Republic of China
- Department of Endocrinology, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, People's Republic of China
| |
Collapse
|
10
|
Shu Z, Chen S, Xiang H, Wu R, Wang X, Ouyang J, Zhang J, Liu H, Chen AF, Lu H. AKT/PACS2 Participates in Renal Vascular Hyperpermeability by Regulating Endothelial Fatty Acid Oxidation in Diabetic Mice. Front Pharmacol 2022; 13:876937. [PMID: 35865947 PMCID: PMC9294407 DOI: 10.3389/fphar.2022.876937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetes is a chronic metabolic disorder that can cause many microvascular and macrovascular complications, including diabetic nephropathy. Endothelial cells exhibit phenotypic and metabolic diversity and are affected by metabolic disorders. Whether changes in endothelial cell metabolism affect vascular endothelial function in diabetic nephropathy remains unclear. In diabetic mice, increased renal microvascular permeability and fibrosis, as well as increased MAMs and PACS2 in renal endothelial cells, were observed. Mice lacking PACS2 improved vascular leakage and glomerulosclerosis under high fat diet. In vitro, PACS2 expression, VE-cadherin internalization, fibronectin production, and Smad-2 phosphorylation increased in HUVECs treated with high glucose and palmitic acid (HGHF). Pharmacological inhibition of AKT significantly reduced HGHF-induced upregulation of PACS2 and p-Smad2 expression. Blocking fatty acid β-oxidation (FAO) ameliorated the impaired barrier function mediated by HGHF. Further studies observed that HGHF induced decreased FAO, CPT1α expression, ATP production, and NADPH/NADP+ ratio in endothelial cells. However, these changes in fatty acid metabolism were rescued by silencing PACS2. In conclusion, PACS2 participates in renal vascular hyperpermeability and glomerulosclerosis by regulating the FAO of diabetic mice. Targeting PACS2 is potential new strategy for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Zhihao Shu
- Health Management Center, Third Xiangya Hospital of Central South University, Changsha, China
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuhua Chen
- Department of Biochemistry, School of Life Sciences, Central South University, Changsha, China
| | - Hong Xiang
- Center for Experimental Medicine, Third Xiangya Hospital of Central South University, Changsha, China
| | - Ruoru Wu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xuewen Wang
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Jie Ouyang
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Jing Zhang
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Huiqin Liu
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Alex F. Chen
- Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongwei Lu
- Health Management Center, Third Xiangya Hospital of Central South University, Changsha, China
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Hongwei Lu,
| |
Collapse
|
11
|
Karasawa T, Sato R, Imaizumi T, Hashimoto S, Fujita M, Aizawa T, Tsugawa K, Kawaguchi S, Seya K, Terui K, Tanaka H. Glomerular endothelial expression of type I IFN-stimulated gene, DExD/H-Box helicase 60 via toll-like receptor 3 signaling: possible involvement in the pathogenesis of lupus nephritis. Ren Fail 2022; 44:137-145. [PMID: 35392757 PMCID: PMC9004514 DOI: 10.1080/0886022x.2022.2027249] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Sustained type I interferon (IFN) activation via Toll-like receptor (TLR) 3, 7 and 9 signaling has been reported to play a pivotal role in the development of lupus nephritis (LN). Although type I IFN activation has been shown to induce interferon-stimulated genes (ISGs) expression in systemic lupus erythematosus, the implication of ISGs expression in intrinsic glomerular cells remains largely unknown. Methods We treated cultured human glomerular endothelial cells (GECs) with polyinosinic-polycytidylic acid (poly IC), R848, and CpG (TLR3, TLR7, and TLR9 agonists, respectively) and analyzed the expression of DExD/H-Box Helicase 60 (DDX60), a representative ISG, using quantitative reverse transcription-polymerase chain reaction and western blotting. Additionally, RNA interference against IFN-β or DDX60 was performed. Furthermore, cleavage of caspase 9 and poly (ADP-ribose) polymerase (PARP), markers of cells undergoing apoptosis, was examined using western blotting. We conducted an immunofluorescence study to examine endothelial DDX60 expression in biopsy specimens from patients with LN. Results We observed that endothelial expression of DDX60 was induced by poly IC but not by R848 or CpG, and RNA interference against IFN-β inhibited poly IC-induced DDX60 expression. DDX60 knockdown induced cleavage of caspase 9 and PARP. Intense endothelial DDX60 expression was observed in biopsy specimens from patients with diffuse proliferative LN. Conclusion Glomerular endothelial DDX60 expression may prevent apoptosis, which is involved in the pathogenesis of LN. Modulating the upregulation of the regional innate immune system via TLR3 signaling may be a promising treatment target for LN.
Collapse
Affiliation(s)
- Takao Karasawa
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan.,Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Riko Sato
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan.,Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shun Hashimoto
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Masashi Fujita
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Tomomi Aizawa
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Koji Tsugawa
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Shogo Kawaguchi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazuhiko Seya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kiminori Terui
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Hiroshi Tanaka
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan.,Department of School Health Science, Hirosaki University Faculty of Education, Hirosaki, Japan
| |
Collapse
|
12
|
Umetsu H, Watanabe S, Imaizumi T, Aizawa T, Tsugawa K, Kawaguchi S, Seya K, Matsumiya T, Tanaka H. Interleukin-6 via Toll-Like Receptor 3 Signaling Attenuates the Expression of Proinflammatory Chemokines in Human Podocytes. Kidney Blood Press Res 2021; 46:207-218. [PMID: 33827102 DOI: 10.1159/000514589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/20/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although toll-like receptor 3 (TLR3) signaling is involved in the development of certain chronic kidney diseases, the specific molecular mechanisms underlying inflammatory reactions via activation of TLR3 signaling in human podocytes remain unclear. Interleukin (IL)-6 is a pleiotropic cytokine associated with innate and adaptive immune responses; however, little is known about the implication of IL-6 via the activation of regional TLR3 signaling in the inflammatory reactions in human podocytes. METHODS We treated immortalized human podocytes with polyinosinic-polycytidylic acid (poly IC), an authentic viral double-stranded RNA, and assessed the expression of IL-6, monocyte chemoattractant protein-1 (MCP-1), and C-C motif chemokine ligand 5 (CCL5) using quantitative real-time reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. To further elucidate the poly IC-induced signaling pathway, we subjected the cells to RNA interference against IFN-β and IL-6. RESULTS We found that the activation of TLR3 induced expression of IL-6, MCP-1, CCL5, and IFN-β in human podocytes. RNA interference experiments revealed that IFN-β was involved in the poly IC-induced expression of IL-6, MCP-1, and CCL5. Interestingly, IL-6 knockdown markedly increased the poly IC-induced expression of MCP-1 and CCL5. Further, treatment of cells with IL-6 attenuated the expression of CCL5 and MCP-1 mRNA and proteins. CONCLUSION IL-6 induced by TLR3 signaling negatively regulates the expression of representative TLR3 signaling-dependent proinflammatory chemokines in human podocytes.
Collapse
Affiliation(s)
- Hidenori Umetsu
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shojiro Watanabe
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomomi Aizawa
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Koji Tsugawa
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shogo Kawaguchi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazuhiko Seya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiroshi Tanaka
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Department of School Health Science, Hirosaki University Faculty of Education, Hirosaki, Japan
| |
Collapse
|
13
|
Groeneweg L, Hidalgo A, A-Gonzalez N. Emerging roles of infiltrating granulocytes and monocytes in homeostasis. Cell Mol Life Sci 2020; 77:3823-3830. [PMID: 32248248 PMCID: PMC7508737 DOI: 10.1007/s00018-020-03509-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/08/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
The infiltration of naïve tissues by myeloid cells has been long related to their clearance and the physiological cell turnover, however, increasing evidence shows that they can additionally fulfill specific, non-immune functions in different tissues. There is also growing evidence to support that infiltrated granulocytes and monocytes respond to different environments by modulating gene expression and cytokine production, which in turn contribute to the normal function of the host tissue. This review will address the roles of immigrated myeloid cells in different tissues and their crosstalk with the host tissue environments.
Collapse
Affiliation(s)
- Linda Groeneweg
- Institute of Immunology, University of Münster, Münster, Germany
| | - Andres Hidalgo
- Department of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany
| | - Noelia A-Gonzalez
- Institute of Immunology, University of Münster, Münster, Germany.
- Cells-in-Motion Interfaculty Center, University of Münster, Münster, Germany.
| |
Collapse
|
14
|
Chaudhari S, Yazdizadeh Shotorbani P, Tao Y, Davis ME, Mallet RT, Ma R. Inhibition of interleukin-6 on matrix protein production by glomerular mesangial cells and the pathway involved. Am J Physiol Renal Physiol 2020; 318:F1478-F1488. [PMID: 32390515 DOI: 10.1152/ajprenal.00043.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Activation of immunological pathways and disturbances of extracellular matrix (ECM) dynamics are important contributors to the pathogenesis of chronic kidney diseases. Glomerular mesangial cells (MCs) are critical for homeostasis of glomerular ECM dynamics. Interleukin-6 (IL-6) can act as a pro/anti-inflammatory agent relative to cell types and conditions. This study investigated whether IL-6 influences ECM protein production by MCs and the regulatory pathways involved. Experiments were carried out in cultured human MCs (HMCs) and in mice. We found that overexpression of IL-6 and its receptor decreased the abundance of fibronectin and collagen type IV in MCs. ELISA and immunoblot analysis demonstrated that thapsigargin [an activator of store-operated Ca2+ entry (SOCE)], but not the endoplasmic reticulum stress inducer tunicamycin, significantly increased IL-6 content. This thapsigargin effect was abolished by GSK-7975A, a selective inhibitor of SOCE, and by silencing Orai1 (the channel protein mediating SOCE). Furthermore, inhibition of NF-κB pharmacologically and genetically significantly reduced SOCE-induced IL-6 production. Thapsigargin also stimulated nuclear translocation of the p65 subunit of NF-κB. Moreover, MCs overexpressing IL-6 and its receptor in HMCs increased the content of the glucagon-like peptide-1 receptor (GLP-1R), and IL-6 inhibition of fibronectin was attenuated by the GLP-1R antagonist exendin 9-39. In agreement with the HMC data, specific knockdown of Orai1 in MCs using the targeted nanoparticle delivery system in mice significantly reduced glomerular GLP-1R levels. Taken together, our results suggest a novel SOCE/NF-κB/IL-6/GLP-1R signaling pathway that inhibits ECM protein production by MCs.
Collapse
Affiliation(s)
- Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | | | - Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Mark E Davis
- Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
15
|
Adamichou C, Georgakis S, Bertsias G. Cytokine targets in lupus nephritis: Current and future prospects. Clin Immunol 2019; 206:42-52. [DOI: 10.1016/j.clim.2018.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/21/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022]
|
16
|
Liu Q, Imaizumi T, Aizawa T, Hirono K, Kawaguchi S, Watanabe S, Tsugawa K, Matsumiya T, Seya K, Yoshida H, Tanaka H. Cytosolic Sensors of Viral RNA Are Involved in the Production of Interleukin-6 via Toll-Like Receptor 3 Signaling in Human Glomerular Endothelial Cells. Kidney Blood Press Res 2019; 44:62-71. [PMID: 30808838 DOI: 10.1159/000498837] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Dysregulation of interleukin-6 (IL-6) production in residual renal cells may play a pivotal role in the development of glomerulonephritis (GN). Given that Toll-like receptor 3 (TLR3) signaling has been implicated in the pathogenesis of some forms of GN, we examined activated TLR3-mediated IL-6 signaling in cultured normal human glomerular endothelial cells (GECs). METHODS We treated GECs with polyinosinic-polycytidylic acid (poly IC), an authentic double-stranded RNA, and analyzed the expression of IL-6 and the cytosolic viral RNA sensors retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation associated gene 5 (MDA5) using reverse transcription quantitative real-time polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assays. To further elucidate the effects of poly IC on this signaling pathway, we subjected the cells to small interfering RNA (siRNA) against TLR3, interferon (IFN)-β, RIG-I, and MDA5. RESULTS We found that poly IC induced the expression of RIG-I, MDA5 and IL-6 via TLR3/IFN-β signaling in GECs. siRNA experiments revealed that both MDA5 and RIG-I were involved in the poly IC-induced expression of IL-6, with MDA5 being upstream of RIG-I. CONCLUSION Interestingly, cytosolic sensors of viral RNA were found to be involved in IL-6 production via TLR3 signaling in GECs. Regional activation of TLR3/IFN-β/ MDA5/RIG-I/IL-6 axis due to viral and "pseudoviral" infections is involved in innate immunity and inflammatory reactions in GECs. We believe this signaling pathway also plays a pivotal role in the development of some forms of GN.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Nephrology, the First Hospital of China Medical University, Shenyang, China
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomomi Aizawa
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Koji Hirono
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Shogo Kawaguchi
- Department of Gastroenterology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shojiro Watanabe
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Koji Tsugawa
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazuhiko Seya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hidemi Yoshida
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiroshi Tanaka
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan,
- Department of School Health Science, Hirosaki University Faculty of Education, Hirosaki, Japan,
| |
Collapse
|
17
|
Barbagallo C, Passanisi R, Mirabella F, Cirnigliaro M, Costanzo A, Lauretta G, Barbagallo D, Bianchi C, Pagni F, Castorina S, Granata A, Di Pietro C, Ragusa M, Malatino LS, Purrello M. Upregulated microRNAs in membranous glomerulonephropathy are associated with significant downregulation of IL6 and MYC mRNAs. J Cell Physiol 2018; 234:12625-12636. [PMID: 30515781 DOI: 10.1002/jcp.27851] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022]
Abstract
Membranous glomerulonephropathy (MGN) is a glomerulopathy characterized by subepithelial deposits of immune complexes on the extracapillary side of the glomerular basement membrane. Insertion of C5b-9 (complement membrane-attack complex) into the membrane leads to functional impairment of the glomerular capillary wall. Knowledge of the molecular pathogenesis of MGN is actually scanty. MicroRNA (miRNA) profiling in MGN and unaffected tissues was performed by TaqMan Low-Density Arrays. Expression of miRNAs and miRNA targets was evaluated in Real-Time polymerase chain reaction (PCR). In vitro transient silencing of miRNAs was achieved through transfection with miRNA inhibitors. Ten miRNAs (let-7a-5p, let-7b-5p, let-7c-5p, let-7d-5p, miR-107, miR-129-3p, miR-423-5p, miR-516-3p, miR-532-3p, and miR-1275) were differentially expressed (DE) in MGN biopsies compared to unaffected controls. Interleukin 6 (IL6) and MYC messenger RNAs (mRNAs; targets of DE miRNAs) were significantly downregulated in biopsies from MGN patients, and upregulated in A498 cells following let-7a-5p or let-7c-5p transient silencing. Gene ontology analysis showed that DE miRNAs regulate pathways associated with MGN pathogenesis, including cell cycle, proliferation, and apoptosis. A significant correlation between DE miRNAs and mRNAs and clinical parameters (i.e., antiphospholipid antibodies, serum creatinine, estimated glomerular filtration, proteinuria, and serum cholesterol) has been detected. Based on our data, we propose that DE miRNAs and their downstream network may be involved in MGN pathogenesis and could be considered as potential diagnostic biomarkers of MGN.
Collapse
Affiliation(s)
- Cristina Barbagallo
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Roberta Passanisi
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Department of Thoracic Surgery, Centro Clinico e Diagnostico Morgagni, Catania, Italy
| | - Federica Mirabella
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Matilde Cirnigliaro
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Arianna Costanzo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giovanni Lauretta
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Davide Barbagallo
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cristina Bianchi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Section of Pathology, University of Milano-Bicocca, Monza, Italy
| | - Sergio Castorina
- Department of Thoracic Surgery, Centro Clinico e Diagnostico Morgagni, Catania, Italy.,Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Antonio Granata
- Unit of Nephrology, Ospedale S. Giovanni di Dio, Agrigento, Italy
| | - Cinzia Di Pietro
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marco Ragusa
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Oasi Research Institute - IRCCS, Troina, Italy
| | - Lorenzo S Malatino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Michele Purrello
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
18
|
Estrada CC, Paladugu P, Guo Y, Pace J, Revelo MP, Salant DJ, Shankland SJ, D'Agati VD, Mehrotra A, Cardona S, Bialkowska AB, Yang VW, He JC, Mallipattu SK. Krüppel-like factor 4 is a negative regulator of STAT3-induced glomerular epithelial cell proliferation. JCI Insight 2018; 3:98214. [PMID: 29925693 PMCID: PMC6124441 DOI: 10.1172/jci.insight.98214] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 05/14/2018] [Indexed: 01/11/2023] Open
Abstract
Pathologic glomerular epithelial cell (GEC) hyperplasia is characteristic of both rapidly progressive glomerulonephritis (RPGN) and subtypes of focal segmental glomerulosclerosis (FSGS). Although initial podocyte injury resulting in activation of STAT3 signals GEC proliferation in both diseases, mechanisms regulating this are unknown. Here, we show that the loss of Krüppel-like factor 4 (KLF4), a zinc-finger transcription factor, enhances GEC proliferation in both RPGN and FSGS due to dysregulated STAT3 signaling. We observed that podocyte-specific knockdown of Klf4 (C57BL/6J) increased STAT3 signaling and exacerbated crescent formation after nephrotoxic serum treatment. Interestingly, podocyte-specific knockdown of Klf4 in the FVB/N background alone was sufficient to activate STAT3 signaling, resulting in FSGS with extracapillary proliferation, as well as renal failure and reduced survival. In cultured podocytes, loss of KLF4 resulted in STAT3 activation and cell-cycle reentry, leading to mitotic catastrophe. This triggered IL-6 release into the supernatant, which activated STAT3 signaling in parietal epithelial cells. Conversely, either restoration of KLF4 expression or inhibition of STAT3 signaling improved survival in KLF4-knockdown podocytes. Finally, human kidney biopsy specimens with RPGN exhibited reduced KLF4 expression with a concomitant increase in phospho-STAT3 expression as compared with controls. Collectively, these results suggest the essential role of KLF4/STAT3 signaling in podocyte injury and its regulation of aberrant GEC proliferation.
Collapse
Affiliation(s)
- Chelsea C Estrada
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Praharshasai Paladugu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Yiqing Guo
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Jesse Pace
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Monica P Revelo
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - David J Salant
- Division of Nephrology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Stuart J Shankland
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Vivette D D'Agati
- Department of Pathology, Columbia University, New York, New York, USA
| | - Anita Mehrotra
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Renal Section, James J. Peters VA Medical Center, New York, New York, USA
| | - Stephanie Cardona
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Agnieszka B Bialkowska
- Division of Gastroenterology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Vincent W Yang
- Division of Gastroenterology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Renal Section, James J. Peters VA Medical Center, New York, New York, USA
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA.,Renal Section, Northport VA Medical Center, Northport, New York, USA
| |
Collapse
|
19
|
Liu Q, Imaizumi T, Kawaguchi S, Aizawa T, Matsumiya T, Watanabe S, Tsugawa K, Yoshida H, Tsuruga K, Joh K, Kijima H, Tanaka H. Toll-Like Receptor 3 Signaling Contributes to Regional Neutrophil Recruitment in Cultured Human Glomerular Endothelial Cells. Nephron Clin Pract 2018; 139:349-358. [PMID: 29791907 DOI: 10.1159/000489507] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/20/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Given the importance of neutrophil recruitment in the pathogenesis of glomerulonephritis (GN), the representative neutrophil chemoattractant C-X-C motif chemokine 1 (CXCL1)/GROα and the adhesion molecule E-selectin in glomerular endothelial cells (GECs) play a pivotal role in the development of GN. Endothelial Toll-like receptor 3 (TLR3) is thought to be involved in the inflammatory response via innate immunity. However, the role of endothelial TLR3 signaling in the expression of neutrophil chemoattractants and adhesion molecules remains to be elucidated. Thus, we aimed to examine this issue. METHODS We treated normal human GECs with polyinosinic-polycytidylic acid (poly IC), an authentic double-stranded RNA, and analyzed the expressions of CXCL1 and E-selectin using quantitative real-time reverse transcription-polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay. To further elucidate the poly IC-induced signaling pathway, we subjected the cells to RNA interference against TLR3, interferon (IFN)-β, nuclear factor (NF)-κB p65, and IFN regulatory factor (IRF) 3. We also used immunofluorescence to examine the endothelial expression of CXCL1 in biopsy specimens from patients with crescentic and non-crescentic purpura nephritis (PN). RESULTS We found that the activation of TLR3 induced the endothelial expression of CXCL1 and E-selectin, and that this involved TLR3, -NF-κB, IRF3, and IFN-β. Intense endothelial CXCL1 expression was observed in biopsy specimens from patients with crescentic PN. CONCLUSION These findings support a role for glomerular antiviral innate immunity in the pathogenesis of GN. Intervention of glomerular TLR3 signaling may therefore be a suitable therapeutic strategy for treating GN in the future.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shogo Kawaguchi
- Department of Gastroenterology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomomi Aizawa
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shojiro Watanabe
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Koji Tsugawa
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Hidemi Yoshida
- Department of Vascular Biology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazushi Tsuruga
- Department of Pediatrics, Hirosaki University Hospital, Hirosaki, Japan
| | - Kensuke Joh
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Kijima
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiroshi Tanaka
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Department of School Health Science, Hirosaki University Faculty of Education, Hirosaki, Japan
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The kidney is a highly complex organ and renal function depends on many factors, both extrinsic to the kidney and intrinsic. The kidney responds both to systemic hormonal and neuronal signals and to autocrine and paracrine factors produced within the renal tissue. Recently, there has been an increased emphasis on crosstalk in and between different compartments in the kidney. RECENT FINDINGS Crosstalk in the kidney between different cellular compartments has added new and important understanding of renal function and the development of kidney disease. SUMMARY Most of the literature cited concern glomerular crosstalk but also tubular and interstitial crosstalk are being reviewed. Mechanistic insight into the communication between the cells may help us find new targets for treating kidney disease.
Collapse
|
21
|
Munir H, Ward LSC, McGettrick HM. Mesenchymal Stem Cells as Endogenous Regulators of Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1060:73-98. [PMID: 30155623 DOI: 10.1007/978-3-319-78127-3_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter discusses the regulatory role of endogenous mesenchymal stem cells (MSC) during an inflammatory response. MSC are a heterogeneous population of multipotent cells that normally contribute towards tissue maintenance and repair but have garnered significant scientific interest for their potent immunomodulatory potential. It is through these physicochemical interactions that MSC are able to exert an anti-inflammatory response on neighbouring stromal and haematopoietic cells. However, the impact of the chronic inflammatory environment on MSC function remains to be determined. Understanding the relationship of MSC between resolution of inflammation and autoimmunity will both offer new insights in the use of MSC as a therapeutic, and also their involvement in the pathogenesis of inflammatory disorders.
Collapse
Affiliation(s)
- Hafsa Munir
- MRC Cancer Unit/Hutchison, University of Cambridge, Cambridge, UK
| | | | - Helen M McGettrick
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| |
Collapse
|
22
|
Korte EA, Caster DJ, Barati MT, Tan M, Zheng S, Berthier CC, Brosius FC, Vieyra MB, Sheehan RM, Kosiewicz M, Wysoczynski M, Gaffney PM, Salant DJ, McLeish KR, Powell DW. ABIN1 Determines Severity of Glomerulonephritis via Activation of Intrinsic Glomerular Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2799-2810. [PMID: 28935578 PMCID: PMC5718094 DOI: 10.1016/j.ajpath.2017.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/15/2017] [Accepted: 08/17/2017] [Indexed: 10/24/2022]
Abstract
Transcription factor NF-κB regulates expression of numerous genes that control inflammation and is activated in glomerular cells in glomerulonephritis (GN). We previously identified genetic variants for a NF-κB regulatory, ubiquitin-binding protein ABIN1 as risk factors for GN in systemic autoimmunity. The goal was to define glomerular inflammatory events controlled by ABIN1 function in GN. Nephrotoxic serum nephritis was induced in wild-type (WT) and ubiquitin-binding deficient ABIN1[D485N] mice, and renal pathophysiology and glomerular inflammatory phenotypes were assessed. Proteinuria was also measured in ABIN1[D485N] mice transplanted with WT mouse bone marrow. Inflammatory activation of ABIN1[D472N] (D485N homolog) cultured human-derived podocytes, and interaction with primary human neutrophils were also assessed. Disruption of ABIN1 function exacerbated proteinuria, podocyte injury, glomerular NF-κB activity, glomerular expression of inflammatory mediators, and glomerular recruitment and retention of neutrophils in antibody-mediated nephritis. Transplantation of WT bone marrow did not prevent the increased proteinuria in ABIN1[D845N] mice. Tumor necrosis factor-stimulated enhanced expression and secretion of NF-κB-targeted proinflammatory mediators in ABIN1[D472N] cultured podocytes compared with WT cells. Supernatants from ABIN1[D472N] podocytes accelerated chemotaxis of human neutrophils, and ABIN1[D472N] podocytes displayed a greater susceptibility to injurious morphologic findings induced by neutrophil granule contents. These studies define a novel role for ABIN1 dysfunction and NF-κB in mediating GN through proinflammatory activation of podocytes.
Collapse
Affiliation(s)
- Erik A Korte
- Department of Medicine University of Louisville, Louisville, Kentucky
| | - Dawn J Caster
- Department of Medicine University of Louisville, Louisville, Kentucky; Robley Rex VA Medical Center, Louisville, Kentucky
| | - Michelle T Barati
- Department of Medicine University of Louisville, Louisville, Kentucky
| | - Min Tan
- Department of Medicine University of Louisville, Louisville, Kentucky
| | - Shirong Zheng
- Department of Medicine University of Louisville, Louisville, Kentucky
| | - Celine C Berthier
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Frank C Brosius
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Mark B Vieyra
- Department of Medicine University of Louisville, Louisville, Kentucky
| | - Ryan M Sheehan
- Department of Medicine University of Louisville, Louisville, Kentucky
| | - Michele Kosiewicz
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | | | - Patrick M Gaffney
- Arthritis and Clinical Immunology Program and Clinical Pharmacology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - David J Salant
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Kenneth R McLeish
- Department of Medicine University of Louisville, Louisville, Kentucky; Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan
| | - David W Powell
- Department of Medicine University of Louisville, Louisville, Kentucky.
| |
Collapse
|
23
|
Zhou D, Qu Z, Wang H, Su Y, Wang Y, Zhang W, Wang Z, Xu Q. The effect of hydroxy safflower yellow A on coronary heart disease through Bcl-2/Bax and PPAR-γ. Exp Ther Med 2017; 15:520-526. [PMID: 29399062 DOI: 10.3892/etm.2017.5414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 02/02/2017] [Indexed: 12/28/2022] Open
Abstract
The aim of the present study was to investigate the effect of hydroxy safflower yellow A (HSYA) on coronary heart disease through assessing the expression of B-cell lymphoma 2 (Bcl-2)/Bcl-2-like protein 4 (Bax) and peroxisome proliferator-activated receptor (PPAR)-γ. Coronary heart disease was induced in male Bama miniature swines via thoracoscope to serve as an animal model. Coronary heart disease swine were lavaged with 20 or 40 mg/kg HSYA. The mRNA levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-10, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were detected using reverse transcription-quantitative polymerase chain reaction. The protein expression of Bcl-2, Bax, PPAR-γ, phosphorylation of Janus kinase (JAK)2 and phosphorylation of signal transducer and activator of transcription (STAT)3 were detected using western blot analysis. Treatment with HSYA significantly suppressed the mRNA levels of IL-1β (P<0.01), IL-6 (P<0.01), TNF-α (P<0.01), COX-2 (P<0.01) and iNOS (P<0.01), and significantly increased IL-10 mRNA level in the coronary heart disease model (P<0.01). Furthermore, HSYA treatment significantly decreased the Bcl-2/Bax ratio (P<0.01) in the coronary heart disease model group, and enhanced the phosphorylation of JAK2/STAT3 pathway (P<0.01). However, HSYA had no significant effect on the expression of PPAR-γ protein. The results of the present study suggest that HSYA is able to weaken coronary heart disease via inflammation, Bcl-2/Bax and the PPAR-γ signaling pathway.
Collapse
Affiliation(s)
- Dayan Zhou
- Department of Cardiology, The Fifth People's Hospital of Chongqing, Chongqing 400062, P.R. China
| | - Zongjie Qu
- Department of Cardiology, The Fifth People's Hospital of Chongqing, Chongqing 400062, P.R. China
| | - Hao Wang
- Department of Cardiology, The Fifth People's Hospital of Chongqing, Chongqing 400062, P.R. China
| | - Yong Su
- Department of Cardiology, The Fifth People's Hospital of Chongqing, Chongqing 400062, P.R. China
| | - Yazhu Wang
- Department of Cardiology, The Fifth People's Hospital of Chongqing, Chongqing 400062, P.R. China
| | - Weiwei Zhang
- Department of Cardiology, The Fifth People's Hospital of Chongqing, Chongqing 400062, P.R. China
| | - Zhe Wang
- Department of Cardiology, The Fifth People's Hospital of Chongqing, Chongqing 400062, P.R. China
| | - Qiang Xu
- Department of Cardiology, The Fifth People's Hospital of Chongqing, Chongqing 400062, P.R. China
| |
Collapse
|
24
|
Li Q, Wang Y, Chen Y, Teng M, He J, Wang X, Kong F, Teng L, Wang D. Investigation of the immunomodulatory activity of Tricholoma matsutake mycelium in cyclophosphamide-induced immunosuppressed mice. Mol Med Rep 2017; 16:4320-4326. [DOI: 10.3892/mmr.2017.7090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 04/10/2017] [Indexed: 11/06/2022] Open
|
25
|
Munir H, Ward LSC, Sheriff L, Kemble S, Nayar S, Barone F, Nash GB, McGettrick HM. Adipogenic Differentiation of Mesenchymal Stem Cells Alters Their Immunomodulatory Properties in a Tissue-Specific Manner. Stem Cells 2017; 35:1636-1646. [PMID: 28376564 PMCID: PMC6052434 DOI: 10.1002/stem.2622] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/08/2017] [Accepted: 03/10/2017] [Indexed: 12/27/2022]
Abstract
Chronic inflammation is associated with formation of ectopic fat deposits that might represent damage-induced aberrant mesenchymal stem cell (MSC) differentiation. Such deposits are associated with increased levels of inflammatory infiltrate and poor prognosis. Here we tested the hypothesis that differentiation from MSC to adipocytes in inflamed tissue might contribute to chronicity through loss of immunomodulatory function. We assessed the effects of adipogenic differentiation of MSC isolated from bone marrow or adipose tissue on their capacity to regulate neutrophil recruitment by endothelial cells and compared the differentiated cells to primary adipocytes from adipose tissue. Bone marrow derived MSC were immunosuppressive, inhibiting neutrophil recruitment to TNFα-treated endothelial cells (EC), but MSC-derived adipocytes were no longer able to suppress neutrophil adhesion. Changes in IL-6 and TGFβ1 signalling appeared critical for the loss of the immunosuppressive phenotype. In contrast, native stromal cells, adipocytes derived from them, and mature adipocytes from adipose tissue were all immunoprotective. Thus disruption of normal tissue stroma homeostasis, as occurs in chronic inflammatory diseases, might drive "abnormal" adipogenesis which adversely influences the behavior of MSC and contributes to pathogenic recruitment of leukocytes. Interestingly, stromal cells programmed in native fat tissue retain an immunoprotective phenotype. Stem Cells 2017;35:1636-1646.
Collapse
Affiliation(s)
- Hafsa Munir
- Institute for Cardiovascular Sciences, College of Medical and Dental Sciences
| | - Lewis S C Ward
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Lozan Sheriff
- Institute for Cardiovascular Sciences, College of Medical and Dental Sciences
| | - Samuel Kemble
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Saba Nayar
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Francesca Barone
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gerard B Nash
- Institute for Cardiovascular Sciences, College of Medical and Dental Sciences
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
26
|
Su H, Lei CT, Zhang C. Interleukin-6 Signaling Pathway and Its Role in Kidney Disease: An Update. Front Immunol 2017; 8:405. [PMID: 28484449 PMCID: PMC5399081 DOI: 10.3389/fimmu.2017.00405] [Citation(s) in RCA: 327] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/22/2017] [Indexed: 12/19/2022] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine that not only regulates the immune and inflammatory response but also affects hematopoiesis, metabolism, and organ development. IL-6 can simultaneously elicit distinct or even contradictory physiopathological processes, which is likely discriminated by the cascades of signaling pathway, termed classic and trans-signaling. Besides playing several important physiological roles, dysregulated IL-6 has been demonstrated to underlie a number of autoimmune and inflammatory diseases, metabolic abnormalities, and malignancies. This review provides an overview of basic concept of IL-6 signaling pathway as well as the interplay between IL-6 and renal-resident cells, including podocytes, mesangial cells, endothelial cells, and tubular epithelial cells. Additionally, we summarize the roles of IL-6 in several renal diseases, such as IgA nephropathy, lupus nephritis, diabetic nephropathy, acute kidney injury, and chronic kidney disease.
Collapse
Affiliation(s)
- Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Tao Lei
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Chimen M, Yates CM, McGettrick HM, Ward LSC, Harrison MJ, Apta B, Dib LH, Imhof BA, Harrison P, Nash GB, Rainger GE. Monocyte Subsets Coregulate Inflammatory Responses by Integrated Signaling through TNF and IL-6 at the Endothelial Cell Interface. THE JOURNAL OF IMMUNOLOGY 2017; 198:2834-2843. [PMID: 28193827 PMCID: PMC5357784 DOI: 10.4049/jimmunol.1601281] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/20/2017] [Indexed: 01/13/2023]
Abstract
Two major monocyte subsets, CD14+CD16− (classical) and CD14+/dimCD16+ (nonclassical/intermediate), have been described. Each has different functions ascribed in its interactions with vascular endothelial cells (EC), including migration and promoting inflammation. Although monocyte subpopulations have been studied in isolated systems, their influence on EC and on the course of inflammation has been ignored. In this study, using unstimulated or cytokine-activated EC, we observed significant differences in the recruitment, migration, and reverse migration of human monocyte subsets. Associated with this, and based on their patterns of cytokine secretion, there was a difference in their capacity to activate EC and support the secondary recruitment of flowing neutrophils. High levels of TNF were detected in cocultures with nonclassical/intermediate monocytes, the blockade of which significantly reduced neutrophil recruitment. In contrast, classical monocytes secreted high levels of IL-6, the blockade of which resulted in increased neutrophil recruitment. When cocultures contained both monocyte subsets, or when conditioned supernatant from classical monocytes cocultures (IL-6hi) was added to nonclassical/intermediate monocyte cocultures (TNFhi), the activating effects of TNF were dramatically reduced, implying that when present, the anti-inflammatory activities of IL-6 were dominant over the proinflammatory activities of TNF. These changes in neutrophil recruitment could be explained by regulation of E-selectin on the cocultured EC. This study suggests that recruited human monocyte subsets trigger a regulatory pathway of cytokine-mediated signaling at the EC interface, and we propose that this is a mechanism for limiting the phlogistic activity of newly recruited monocytes.
Collapse
Affiliation(s)
- Myriam Chimen
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Clara M Yates
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Lewis S C Ward
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Matthew J Harrison
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Bonita Apta
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Lea H Dib
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Beat A Imhof
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Paul Harrison
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and
| | - Gerard B Nash
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - G Ed Rainger
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
28
|
Valiño-Rivas L, Gonzalez-Lafuente L, Sanz AB, Ruiz-Ortega M, Ortiz A, Sanchez-Niño MD. Non-canonical NFκB activation promotes chemokine expression in podocytes. Sci Rep 2016; 6:28857. [PMID: 27353019 PMCID: PMC4926283 DOI: 10.1038/srep28857] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/10/2016] [Indexed: 12/13/2022] Open
Abstract
TNF-like weak inducer of apoptosis (TWEAK) receptor Fn14 is expressed by podocytes and Fn14 deficiency protects from experimental proteinuric kidney disease. However, the downstream effectors of TWEAK/Fn14 in podocytes are poorly characterized. We have explored TWEAK activation of non-canonical NFκB signaling in cultured podocytes. In cultured podocytes, TWEAK increased the expression of the chemokines CCL21, CCL19 and RANTES in a time-dependent manner. The inhibitor of canonical NFκB activation parthenolide inhibited the CCL19 and the early RANTES responses, but not the CCL21 or late RANTES responses. In this regard, TWEAK induced non-canonical NFκB activation in podocytes, characterized by NFκB2/p100 processing to NFκB2/p52 and nuclear migration of RelB/p52. Silencing by a specific siRNA of NIK, the upstream kinase of the non-canonical NFκB pathway, prevented CCL21 upregulation but did not modulate CCL19 or RANTES expression in response to TWEAK, thus establishing CCL21 as a non-canonical NFκB target in podocytes. Increased kidney Fn14 and CCL21 expression was also observed in rat proteinuric kidney disease induced by puromycin, and was localized to podocytes. In conclusion, TWEAK activates the non-canonical NFκB pathway in podocytes, leading to upregulation of CCL21 expression. The non-canonical NFκB pathway should be explored as a potential therapeutic target in proteinuric kidney disease.
Collapse
Affiliation(s)
- Lara Valiño-Rivas
- IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Laura Gonzalez-Lafuente
- IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Ana B Sanz
- IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Marta Ruiz-Ortega
- IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Alberto Ortiz
- IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Maria D Sanchez-Niño
- IIS-Fundación Jiménez Díaz-Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| |
Collapse
|
29
|
Jia D, Lu W, Wang C, Sun S, Cai G, Li Y, Wang G, Liu Y, Zhang M, Wang D. Investigation on Immunomodulatory Activity of Calf Spleen Extractive Injection in Cyclophosphamide-induced Immunosuppressed Mice and Underlying Mechanisms. Scand J Immunol 2016; 84:20-7. [DOI: 10.1111/sji.12442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/17/2016] [Indexed: 12/20/2022]
Affiliation(s)
- D. Jia
- School of Life Sciences; Jilin University; Changchun China
| | - W. Lu
- School of Life Sciences; Jilin University; Changchun China
| | - C. Wang
- School of Life Sciences; Jilin University; Changchun China
| | - S. Sun
- JiLin AoDong Medicine Industry Group Co. Ltd.; Taonan China
| | - G. Cai
- School of Life Sciences; Jilin University; Changchun China
| | - Y. Li
- School of Life Sciences; Jilin University; Changchun China
| | - G. Wang
- JiLin AoDong Medicine Industry Group Co. Ltd.; Taonan China
| | - Y. Liu
- School of Life Sciences; Jilin University; Changchun China
| | - M. Zhang
- School of Life Sciences; Jilin University; Changchun China
| | - D. Wang
- School of Life Sciences; Jilin University; Changchun China
| |
Collapse
|
30
|
Munir H, Luu NT, Clarke LSC, Nash GB, McGettrick HM. Comparative Ability of Mesenchymal Stromal Cells from Different Tissues to Limit Neutrophil Recruitment to Inflamed Endothelium. PLoS One 2016; 11:e0155161. [PMID: 27171357 PMCID: PMC4865100 DOI: 10.1371/journal.pone.0155161] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/25/2016] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stromal cells (MSC) are tissue-resident stromal cells capable of modulating immune responses, including leukocyte recruitment by endothelial cells (EC). However, the comparative potency of MSC from different sources in suppressing recruitment, and the necessity for close contact with endothelium remain uncertain, although these factors have implications for use of MSC in therapy. We thus compared the effects of MSC isolated from bone marrow, Wharton's jelly, and trabecular bone on neutrophil recruitment to cytokine-stimulated EC, using co-culture models with different degrees of proximity between MSC and EC. All types of MSC suppressed neutrophil adhesion to inflamed endothelium but not neutrophil transmigration, whether directly incorporated into endothelial monolayers or separated from them by thin micropore filters. Further increase in the separation of the two cell types tended to reduce efficacy, although this diminution was least for the bone marrow MSC. Immuno-protective effects of MSC were also diminished with repeated passage; with BMMSC, but not WJMSC, completing losing their suppressive effect by passage 7. Conditioned media from all co-cultures suppressed neutrophil recruitment, and IL-6 was identified as a common bioactive mediator. These results suggest endogenous MSC have a homeostatic role in limiting inflammatory leukocyte infiltration in a range of tissues. Since released soluble mediators might have effects locally or remotely, infusion of MSC into blood or direct injection into target organs might be efficacious, but in either case, cross-talk between EC and MSC appears necessary.
Collapse
Affiliation(s)
- Hafsa Munir
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Nguyet-Thin Luu
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Lewis S. C. Clarke
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Gerard B. Nash
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Helen M. McGettrick
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
31
|
Antidiabetic and Antinephritic Activities of Aqueous Extract of Cordyceps militaris Fruit Body in Diet-Streptozotocin-Induced Diabetic Sprague Dawley Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9685257. [PMID: 27274781 PMCID: PMC4870376 DOI: 10.1155/2016/9685257] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/16/2016] [Accepted: 04/07/2016] [Indexed: 01/23/2023]
Abstract
Cordyceps militaris has long been used as a crude drug and folk tonic food in East Asia. The present study aims to evaluate the antidiabetic and antinephritic effects of the aqueous extract of the Cordyceps militaris fruit body (CM) in diet-streptozotocin- (STZ-) induced diabetic rats. During four weeks of continuous oral administration of CM at doses of 0.5, 1.0, and 2.0 g/kg and metformin at 100 mg/kg, the fasting blood glucose and bodyweight of each rat were monitored. Hypoglycemic effects of CM on diabetic rats were indicated by decreases in plasma glucose, food and water intake, and urine output. The hypolipidemic activity of CM was confirmed by the normalization of total cholesterol, triglycerides, and low- and high-density lipoprotein cholesterol in diabetic rats. Inhibitory effects on albuminuria, creatinine, urea nitrogen, and n-acetyl-β-d-glucosaminidase verified CM's renal protective activity in diabetic rats. Furthermore, CM exerted beneficial modulation of inflammatory factors and oxidative enzymes. Compared with untreated diabetic rats, CM decreased the expression of phosphor-AKT and phosphor-GSK-3β in the kidneys. Altogether, via attenuating oxidative stress, CM displayed antidiabetic and antinephritic activities in diet-STZ-induced diabetic rats.
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW The glomerulus is a unique structure required for filtration of blood, while retaining plasma proteins based on size and charge selectivity. Distinct cell types form the structural unit that creates the filtration barrier. Structurally, fenestrated endothelial cells line the capillary loops and lie in close contact with mesangial cells. Podocytes are connected by specialized intercellular junctions known as slit diaphragms and separated from the endothelial compartment by the glomerular basement membrane. In order for this highly specialized structure to function, cross-communication between these cells must occur. RECENT FINDINGS Although classical studies have established key roles for vascular endothelial and platelet-derived growth factors in glomerular cross-communication, novel paracrine signaling pathways within the glomerulus have recently been identified. In addition, unique cellular pathways of established signaling cascades have been identified that are important for maintaining glomerular barrier function in health and disease. SUMMARY Here, we will review our current understanding of the processes of cross-communication between the unique cellular constituents forming the glomerular filtration unit. We will highlight recent findings of cellular crosstalk via signaling pathways that regulate glomerular barrier function in pathophysiological conditions.
Collapse
|
33
|
Bassi R, Fornoni A, Doria A, Fiorina P. CTLA4-Ig in B7-1-positive diabetic and non-diabetic kidney disease. Diabetologia 2016; 59:21-29. [PMID: 26409459 PMCID: PMC5003171 DOI: 10.1007/s00125-015-3766-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/19/2015] [Indexed: 01/10/2023]
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease in the Western world. Standard treatments have ultimately proven ineffective in blocking DKD progression, thus necessitating the design of new therapies to complement glycaemic and blood pressure control. High glucose levels upregulate the immune-related molecule B7-1 in podocytes, and such an event may play a relevant role in DKD onset, suggesting that B7-1 is a suitable therapeutic target for DKD. CTLA4-Ig is a clinically available fusion protein, approved for the treatment of some autoimmune diseases, which binds B7-1 and blocks its signalling. We have previously demonstrated that CTLA4-Ig restores the physiological structure and cellular motility of podocytes challenged with high glucose in vitro and abrogates the onset of proteinuria in murine models of DKD in vivo. Notably, these beneficial effects occurred independently of any systemic immunological effects of CTLA4-Ig. While the expression of B7-1 on podocytes raises questions regarding the very nature of the podocyte as we know it, the preliminary positive effect of CTLA4-Ig on proteinuria in preclinical models and the evidence of B7-1 expression in kidney biopsies of diabetic individuals suggest a potential novel indication for CTLA4-Ig in DKD. Nonetheless, recent reports of problems with detecting podocyte B7-1 and of inconsistent therapeutic efficacy of CTLA4-Ig in proteinuric patients highlight the necessity to establish uniformly accepted protocols for the detection of B7-1 and underline the need for randomised trials with CTLA4-Ig in kidney diseases.
Collapse
Affiliation(s)
- Roberto Bassi
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave., Enders Building, Boston, MA, 02115, USA
- Department of Transplant Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center, Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alessandro Doria
- Section on Genetics and Epidemiology, Joslin Diabetes Center, Boston, MA, USA
| | - Paolo Fiorina
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave., Enders Building, Boston, MA, 02115, USA.
- Department of Transplant Medicine, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
34
|
Kim ND, Luster AD. The role of tissue resident cells in neutrophil recruitment. Trends Immunol 2015; 36:547-55. [PMID: 26297103 DOI: 10.1016/j.it.2015.07.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/14/2015] [Accepted: 07/17/2015] [Indexed: 01/09/2023]
Abstract
Neutrophils are first responders of the immune system, rapidly migrating into affected tissues in response to injury or infection. To effectively call in this first line of defense, strategically placed cells within the vasculature and tissue respond to noxious stimuli by sending out coordinated signals that recruit neutrophils. Regulation of organ-specific neutrophil entry occurs at two levels. First, the vasculature supplying the organ provides cues for neutrophil egress out of the bloodstream in a manner dependent upon its unique cellular composition and architectural features. Second, resident immune cells and stromal cells within the organ send coordinated signals that guide neutrophils to their final destination. Here, we review recent findings that highlight the importance of these tissue-specific responses in the regulation of neutrophil recruitment and the initiation and resolution of inflammation.
Collapse
Affiliation(s)
- Nancy D Kim
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andrew D Luster
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
35
|
Braun GS, Nagayama Y, Maruta Y, Heymann F, van Roeyen CR, Klinkhammer BM, Boor P, Villa L, Salant DJ, Raffetseder U, Rose-John S, Ostendorf T, Floege J. IL-6 Trans-Signaling Drives Murine Crescentic GN. J Am Soc Nephrol 2015; 27:132-42. [PMID: 26041841 DOI: 10.1681/asn.2014111147] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/20/2015] [Indexed: 01/07/2023] Open
Abstract
The role of IL-6 signaling in renal diseases remains controversial, with data describing both anti-inflammatory and proinflammatory effects. IL-6 can act via classic signaling, engaging its two membrane receptors gp130 and IL-6 receptor (IL-6R). Alternatively, IL-6 trans-signaling requires soluble IL-6R (sIL-6R) to act on IL-6R-negative cells that express gp130. Here, we characterize the role of both pathways in crescentic nephritis. Patients with crescentic nephritis had significantly elevated levels of IL-6 in both serum and urine. Similarly, nephrotoxic serum-induced nephritis (NTN) in BALB/c mice was associated with elevated serum IL-6 levels. Levels of serum sIL-6R and renal downstream signals of IL-6 (phosphorylated signal transducer and activator of transcription 3, suppressor of cytokine signaling 3) increased over time in this model. Simultaneous inhibition of both IL-6 signaling pathways using anti-IL-6 antibody did not have a significant impact on NTN severity. In contrast, specific inhibition of trans-signaling using recombinant sgp130Fc resulted in milder disease. Vice versa, specific activation of trans-signaling using a recombinant IL-6-sIL-6R fusion molecule (Hyper-IL-6) significantly aggravated NTN and led to increased systolic BP in NTN mice. This correlated with increased renal mRNA synthesis of the Th17 cell cytokine IL-17A and decreased synthesis of resistin-like alpha (RELMalpha)-encoding mRNA, a surrogate marker of lesion-mitigating M2 macrophage subtypes. Collectively, our data suggest a central role for IL-6 trans-signaling in crescentic nephritis and offer options for more effective and specific therapeutic interventions in the IL-6 system.
Collapse
Affiliation(s)
- Gerald S Braun
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany; Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany;
| | - Yoshikuni Nagayama
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany; Division of Nephrology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Yuichi Maruta
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany; Division of Nephrology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Felix Heymann
- Division of Gastroenterology, Metabolic Diseases and Intensive Care, RWTH Aachen University, Aachen, Germany
| | - Claudia R van Roeyen
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany
| | - Barbara M Klinkhammer
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany; Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Peter Boor
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany; Institute of Pathology, RWTH Aachen University, Aachen, Germany; Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Luigi Villa
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany
| | - David J Salant
- Department of Medicine, Section of Nephrology, Boston University School of Medicine, Boston, MA; and
| | - Ute Raffetseder
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University, Kiel, Germany
| | - Tammo Ostendorf
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany
| | - Jürgen Floege
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen Germany
| |
Collapse
|
36
|
Affiliation(s)
- Alan D Salama
- University College London Centre for Nephrology, Royal Free Campus, London, United Kingdom; and
| | - Mark A Little
- Trinity Health Kidney Centre, Tallaght Hospital, Dublin, Ireland
| |
Collapse
|
37
|
Munir H, Rainger GE, Nash GB, McGettrick H. Analyzing the effects of stromal cells on the recruitment of leukocytes from flow. J Vis Exp 2015:e52480. [PMID: 25590557 DOI: 10.3791/52480] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Stromal cells regulate the recruitment of circulating leukocytes during inflammation through cross-talk with neighboring endothelial cells. Here we describe two in vitro "vascular" models for studying the recruitment of circulating neutrophils from flow by inflamed endothelial cells. A major advantage of these models is the ability to analyze each step in the leukocyte adhesion cascade in order, as would occur in vivo. We also describe how both models can be adapted to study the role of stromal cells, in this case mesenchymal stem cells (MSC), in regulating leukocyte recruitment. Primary endothelial cells were cultured alone or together with human MSC in direct contact on Ibidi microslides or on opposite sides of a Transwell filter for 24 hr. Cultures were stimulated with tumor necrosis factor alpha (TNFα) for 4 hr and incorporated into a flow-based adhesion assay. A bolus of neutrophils was perfused over the endothelium for 4 min. The capture of flowing neutrophils and their interactions with the endothelium was visualized by phase-contrast microscopy. In both models, cytokine-stimulation increased endothelial recruitment of flowing neutrophils in a dose-dependent manner. Analysis of the behavior of recruited neutrophils showed a dose-dependent decrease in rolling and a dose-dependent increase in transmigration through the endothelium. In co-culture, MSC suppressed neutrophil adhesion to TNFα-stimulated endothelium. Our flow based-adhesion models mimic the initial phases of leukocyte recruitment from the circulation. In addition to leukocytes, they can be used to examine the recruitment of other cell types, such as therapeutically administered MSC or circulating tumor cells. Our multi-layered co-culture models have shown that MSC communicate with endothelium to modify their response to pro-inflammatory cytokines, altering the recruitment of neutrophils. Further research using such models is required to fully understand how stromal cells from different tissues and conditions (inflammatory disorders or cancer) influence the recruitment of leukocytes during inflammation.
Collapse
Affiliation(s)
- Hafsa Munir
- School of Clinical and Experimental Medicine, University of Birmingham; College of Medical and Dental Sciences, University of Birmingham
| | - G Ed Rainger
- School of Clinical and Experimental Medicine, University of Birmingham; College of Medical and Dental Sciences, University of Birmingham
| | - Gerard B Nash
- School of Clinical and Experimental Medicine, University of Birmingham; College of Medical and Dental Sciences, University of Birmingham
| | - Helen McGettrick
- College of Medical and Dental Sciences, University of Birmingham; School of Immunity and Infection, University of Birmingham;
| |
Collapse
|
38
|
Musante L, Tataruch D, Gu D, Liu X, Forsblom C, Groop PH, Holthofer H. Proteases and protease inhibitors of urinary extracellular vesicles in diabetic nephropathy. J Diabetes Res 2015; 2015:289734. [PMID: 25874235 PMCID: PMC4383158 DOI: 10.1155/2015/289734] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/23/2015] [Indexed: 12/14/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the major complications of diabetes mellitus (DM), leads to chronic kidney disease (CKD), and, ultimately, is the main cause for end-stage kidney disease (ESKD). Beyond urinary albumin, no reliable biomarkers are available for accurate early diagnostics. Urinary extracellular vesicles (UEVs) have recently emerged as an interesting source of diagnostic and prognostic disease biomarkers. Here we used a protease and respective protease inhibitor array to profile urines of type 1 diabetes patients at different stages of kidney involvement. Urine samples were divided into groups based on the level of albuminuria and UEVs isolated by hydrostatic dialysis and screened for relative changes of 34 different proteases and 32 protease inhibitors, respectively. Interestingly, myeloblastin and its natural inhibitor elafin showed an increase in the normo- and microalbuminuric groups. Similarly, a characteristic pattern was observed in the array of protease inhibitors, with a marked increase of cystatin B, natural inhibitor of cathepsins L, H, and B as well as of neutrophil gelatinase-associated Lipocalin (NGAL) in the normoalbuminuric group. This study shows for the first time the distinctive alterations in comprehensive protease profiles of UEVs in diabetic nephropathy and uncovers intriguing mechanistic, prognostic, and diagnostic features of kidney damage in diabetes.
Collapse
Affiliation(s)
- Luca Musante
- Centre for Bioanalytical Sciences (CBAS), Dublin City University, Dublin 9, Ireland
- *Luca Musante: and
| | - Dorota Tataruch
- Centre for Bioanalytical Sciences (CBAS), Dublin City University, Dublin 9, Ireland
| | - Dongfeng Gu
- Centre for Bioanalytical Sciences (CBAS), Dublin City University, Dublin 9, Ireland
| | - Xinyu Liu
- Centre for Bioanalytical Sciences (CBAS), Dublin City University, Dublin 9, Ireland
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00100 Helsinki, Finland
- Department of Medicine, Division of Nephrology, Helsinki University Central Hospital, 00100 Helsinki, Finland
- Diabetes and Obesity, Research Program Unit, University of Helsinki, 00100 Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00100 Helsinki, Finland
- Department of Medicine, Division of Nephrology, Helsinki University Central Hospital, 00100 Helsinki, Finland
- Diabetes and Obesity, Research Program Unit, University of Helsinki, 00100 Helsinki, Finland
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Harry Holthofer
- Centre for Bioanalytical Sciences (CBAS), Dublin City University, Dublin 9, Ireland
- *Harry Holthofer:
| |
Collapse
|
39
|
Fu J, Lee K, Chuang PY, Liu Z, He JC. Glomerular endothelial cell injury and cross talk in diabetic kidney disease. Am J Physiol Renal Physiol 2014; 308:F287-97. [PMID: 25411387 DOI: 10.1152/ajprenal.00533.2014] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Diabetic kidney disease (DKD) remains a leading cause of new-onset end-stage renal disease (ESRD), and yet, at present, the treatment is still very limited. A better understanding of the pathogenesis of DKD is therefore necessary to develop more effective therapies. Increasing evidence suggests that glomerular endothelial cell (GEC) injury plays a major role in the development and progression of DKD. Alteration of the glomerular endothelial cell surface layer, including its major component, glycocalyx, is a leading cause of microalbuminuria observed in early DKD. Many studies suggest a presence of cross talk between glomerular cells, such as between GEC and mesangial cells or GEC and podocytes. PDGFB/PDGFRβ is a major mediator for GEC and mesangial cell cross talk, while vascular endothelial growth factor (VEGF), angiopoietins, and endothelin-1 are the major mediators for GEC and podocyte communication. In DKD, GEC injury may lead to podocyte damage, while podocyte loss further exacerbates GEC injury, forming a vicious cycle. Therefore, GEC injury may predispose to albuminuria in diabetes either directly or indirectly by communication with neighboring podocytes and mesangial cells via secreted mediators. Identification of novel mediators of glomerular cell cross talk, such as microRNAs, will lead to a better understanding of the pathogenesis of DKD. Targeting these mediators may be a novel approach to develop more effective therapy for DKD.
Collapse
Affiliation(s)
- Jia Fu
- Research Institute of Nephrology, Jinling Hospital, Nanjing University School of Medicine, Jiangsu, China; and
| | - Kyung Lee
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Peter Y Chuang
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zhihong Liu
- Research Institute of Nephrology, Jinling Hospital, Nanjing University School of Medicine, Jiangsu, China; and
| | - John Cijiang He
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|