1
|
Policicchio BB, Cardozo-Ojeda EF, Xu C, Ma D, He T, Raehtz KD, Sivanandham R, Kleinman AJ, Perelson AS, Apetrei C, Pandrea I, Ribeiro RM. CD8 + T cells control SIV infection using both cytolytic effects and non-cytolytic suppression of virus production. Nat Commun 2023; 14:6657. [PMID: 37863982 PMCID: PMC10589330 DOI: 10.1038/s41467-023-42435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Whether CD8+ T lymphocytes control human immunodeficiency virus infection by cytopathic or non-cytopathic mechanisms is not fully understood. Multiple studies highlighted non-cytopathic effects, but one hypothesis is that cytopathic effects of CD8+ T cells occur before viral production. Here, to examine the role of CD8+ T cells prior to virus production, we treated SIVmac251-infected macaques with an integrase inhibitor combined with a CD8-depleting antibody, or with either reagent alone. We analyzed the ensuing viral dynamics using a mathematical model that included infected cells pre- and post- viral DNA integration to compare different immune effector mechanisms. Macaques receiving the integrase inhibitor alone experienced greater viral load decays, reaching lower nadirs on treatment, than those treated also with the CD8-depleting antibody. Models including CD8+ cell-mediated reduction of viral production (non-cytolytic) were found to best explain the viral profiles across all macaques, in addition an effect in killing infected cells pre-integration (cytolytic) was supported in some of the best models. Our results suggest that CD8+ T cells have both a cytolytic effect on infected cells before viral integration, and a direct, non-cytolytic effect by suppressing viral production.
Collapse
Affiliation(s)
- Benjamin B Policicchio
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | | | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Dongzhu Ma
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Tianyu He
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Kevin D Raehtz
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ranjit Sivanandham
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Adam J Kleinman
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ivona Pandrea
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ruy M Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- Laboratório de Biomatemática, Faculdade de Medicina da Universidade de Lisboa (previous address), Lisboa, Portugal.
| |
Collapse
|
2
|
Turner M. Regulation and function of poised mRNAs in lymphocytes. Bioessays 2023; 45:e2200236. [PMID: 37009769 DOI: 10.1002/bies.202200236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 04/04/2023]
Abstract
Pre-existing but untranslated or 'poised' mRNA exists as a means to rapidly induce the production of specific proteins in response to stimuli and as a safeguard to limit the actions of these proteins. The translation of poised mRNA enables immune cells to express quickly genes that enhance immune responses. The molecular mechanisms that repress the translation of poised mRNA and, upon stimulation, enable translation have yet to be elucidated. They likely reflect intrinsic properties of the mRNAs and their interactions with trans-acting factors that direct poised mRNAs away from or into the ribosome. Here, I discuss mechanisms by which this might be regulated.
Collapse
Affiliation(s)
- Martin Turner
- Immunology Programme, The Babraham Institute, Cambridge, UK
| |
Collapse
|
3
|
Jiao A, Liu H, Ding R, Zheng H, Zhang C, Feng Z, Lei L, Wang X, Su Y, Yang X, Sun C, Zhang L, Bai L, Sun L, Zhang B. Med1 Controls Effector CD8+ T Cell Differentiation and Survival through C/EBPβ-Mediated Transcriptional Control of T-bet. THE JOURNAL OF IMMUNOLOGY 2022; 209:855-863. [DOI: 10.4049/jimmunol.2200037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/25/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Effector CD8+ T cells are crucial players in adaptive immunity for effective protection against invading pathogens. The regulatory mechanisms underlying CD8+ T cell effector differentiation are incompletely understood. In this study, we defined a critical role of mediator complex subunit 1 (Med1) in controlling effector CD8+ T cell differentiation and survival during acute bacterial infection. Mice with Med1-deficient CD8+ T cells exhibited significantly impaired expansion with evidently reduced killer cell lectin-like receptor G1+ terminally differentiated and Ly6c+ effector cell populations. Moreover, Med1 deficiency led to enhanced cell apoptosis and expression of multiple inhibitory receptors (programmed cell death 1, T cell Ig and mucin domain–containing-3, and T cell immunoreceptor with Ig and ITIM domains). RNA-sequencing analysis revealed that T-bet– and Zeb2-mediated transcriptional programs were impaired in Med1-deficient CD8+ T cells. Overexpression of T-bet could rescue the differentiation and survival of Med1-deficient CD8+ effector T cells. Mechanistically, the transcription factor C/EBPβ promoted T-bet expression through interacting with Med1 in effector T cells. Collectively, our findings revealed a novel role of Med1 in regulating effector CD8+ T cell differentiation and survival in response to bacterial infection.
Collapse
Affiliation(s)
- Anjun Jiao
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- ‡Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, China
- §Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Haiyan Liu
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Renyi Ding
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Huiqiang Zheng
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Cangang Zhang
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhao Feng
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lei Lei
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- ‡Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, China
- §Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xin Wang
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- ‡Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, China
- §Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yanhong Su
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaofeng Yang
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- ‡Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, China
- §Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chenming Sun
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- ‡Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, China
- §Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lianjun Zhang
- ¶Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- ‖Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China; and
| | - Liang Bai
- #Institute of Cardiovascular Science, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Lina Sun
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- ‡Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, China
- §Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Baojun Zhang
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- ‡Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, China
- §Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Hudson WH, Gensheimer J, Hashimoto M, Wieland A, Valanparambil RM, Li P, Lin JX, Konieczny BT, Im SJ, Freeman GJ, Leonard WJ, Kissick HT, Ahmed R. Proliferating Transitory T Cells with an Effector-like Transcriptional Signature Emerge from PD-1 + Stem-like CD8 + T Cells during Chronic Infection. Immunity 2019; 51:1043-1058.e4. [PMID: 31810882 PMCID: PMC6920571 DOI: 10.1016/j.immuni.2019.11.002] [Citation(s) in RCA: 377] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 08/06/2019] [Accepted: 11/01/2019] [Indexed: 01/01/2023]
Abstract
T cell dysfunction is a characteristic feature of chronic viral infection and cancer. Recent studies in chronic lymphocytic choriomeningitis virus (LCMV) infection have defined a PD-1+ Tcf-1+ CD8+ T cell subset capable of self-renewal and differentiation into more terminally differentiated cells that downregulate Tcf-1 and express additional inhibitory molecules such as Tim3. Here, we demonstrated that expression of the glycoprotein CD101 divides this terminally differentiated population into two subsets. Stem-like Tcf-1+ CD8+ T cells initially differentiated into a transitory population of CD101-Tim3+ cells that later converted into CD101+ Tim3+ cells. Recently generated CD101-Tim3+ cells proliferated in vivo, contributed to viral control, and were marked by an effector-like transcriptional signature including expression of the chemokine receptor CX3CR1, pro-inflammatory cytokines, and granzyme B. PD-1 pathway blockade increased the numbers of CD101-Tim3+ CD8+ T cells, suggesting that these newly generated transitional cells play a critical role in PD-1-based immunotherapy.
Collapse
Affiliation(s)
- William H Hudson
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30033, USA
| | - Julia Gensheimer
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30033, USA
| | - Masao Hashimoto
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30033, USA
| | - Andreas Wieland
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30033, USA
| | - Rajesh M Valanparambil
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30033, USA
| | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA
| | - Bogumila T Konieczny
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30033, USA
| | - Se Jin Im
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30033, USA
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA
| | - Haydn T Kissick
- Department of Urology, Emory University School of Medicine, Atlanta, GA 30033, USA
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30033, USA.
| |
Collapse
|
5
|
Tomé M, Pappalardo A, Soulet F, López JJ, Olaizola J, Leger Y, Dubreuil M, Mouchard A, Fessart D, Delom F, Pitard V, Bechade D, Fonck M, Rosado JA, Ghiringhelli F, Déchanet-Merville J, Soubeyran I, Siegfried G, Evrard S, Khatib AM. Inactivation of Proprotein Convertases in T Cells Inhibits PD-1 Expression and Creates a Favorable Immune Microenvironment in Colorectal Cancer. Cancer Res 2019; 79:5008-5021. [PMID: 31358531 DOI: 10.1158/0008-5472.can-19-0086] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/27/2019] [Accepted: 07/22/2019] [Indexed: 11/16/2022]
Abstract
Proprotein convertases (PC) activate precursor proteins that play crucial roles in various cancers. In this study, we investigated whether PC enzyme activity is required for expression of the checkpoint protein programmed cell death protein 1 (PD-1) on cytotoxic T lymphocytes (CTL) in colon cancer. Although altered expression of the PC secretory pathway was observed in human colon cancers, only furin showed highly diffuse expression throughout the tumors. Inhibition of PCs in T cells using the general protein-based inhibitor α1-PDX or the pharmacologic inhibitor Decanoyl-Arg-Val-Lys-Arg-chloromethylketone repressed PD-1 and exhausted CTLs via induction of T-cell proliferation and apoptosis inhibition, which improved CTL efficacy against microsatellite instable and microsatellite stable colon cancer cells. In vivo, inhibition of PCs enhanced CTL infiltration in colorectal tumors and increased tumor clearance in syngeneic mice compared with immunodeficient mice. Inhibition of PCs repressed PD-1 expression by blocking proteolytic maturation of the Notch precursor, inhibiting calcium/NFAT and NF-κB signaling, and enhancing ERK activation. These findings define a key role for PCs in regulating PD-1 expression and suggest targeting PCs as an adjunct approach to colorectal tumor immunotherapy. SIGNIFICANCE: Protein convertase enzymatic activity is required for PD-1 expression on T cells, and inhibition of protein convertase improves T-cell targeting of microsatellite instable and stable colorectal cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/19/5008/F1.large.jpg.
Collapse
Affiliation(s)
- Mercedes Tomé
- Université Bordeaux, Bordeaux, France.
- INSERM UMR1029, Pessac, France
| | - Angela Pappalardo
- ImmunoConcept, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
| | - Fabienne Soulet
- Université Bordeaux, Bordeaux, France
- INSERM UMR1029, Pessac, France
| | - José Javier López
- Department of Physiology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Jone Olaizola
- Université Bordeaux, Bordeaux, France
- INSERM UMR1029, Pessac, France
| | - Yannick Leger
- Université Bordeaux, Bordeaux, France
- INSERM UMR1029, Pessac, France
| | | | - Amandine Mouchard
- Université Bordeaux, Bordeaux, France
- Institut Bergonié, Bordeaux, France
| | - Delphine Fessart
- Institut Bergonié, Bordeaux, France
- INSERM U1218, ACTION, Bordeaux, France
| | - Frédéric Delom
- Institut Bergonié, Bordeaux, France
- INSERM U1218, ACTION, Bordeaux, France
| | - Vincent Pitard
- ImmunoConcept, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
| | | | | | - Juan Antonio Rosado
- Department of Physiology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | | | | | | | | | - Serge Evrard
- Université Bordeaux, Bordeaux, France
- INSERM UMR1029, Pessac, France
- Institut Bergonié, Bordeaux, France
| | | |
Collapse
|
6
|
Moreno-Altamirano MMB, Kolstoe SE, Sánchez-García FJ. Virus Control of Cell Metabolism for Replication and Evasion of Host Immune Responses. Front Cell Infect Microbiol 2019; 9:95. [PMID: 31058096 PMCID: PMC6482253 DOI: 10.3389/fcimb.2019.00095] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
Over the last decade, there has been significant advances in the understanding of the cross-talk between metabolism and immune responses. It is now evident that immune cell effector function strongly depends on the metabolic pathway in which cells are engaged in at a particular point in time, the activation conditions, and the cell microenvironment. It is also clear that some metabolic intermediates have signaling as well as effector properties and, hence, topics such as immunometabolism, metabolic reprograming, and metabolic symbiosis (among others) have emerged. Viruses completely rely on their host's cell energy and molecular machinery to enter, multiply, and exit for a new round of infection. This review explores how viruses mimic, exploit or interfere with host cell metabolic pathways and how, in doing so, they may evade immune responses. It offers a brief outline of key metabolic pathways, mitochondrial function and metabolism-related signaling pathways, followed by examples of the mechanisms by which several viral proteins regulate host cell metabolic activity.
Collapse
Affiliation(s)
- María Maximina B Moreno-Altamirano
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Simon E Kolstoe
- School of Health Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Francisco Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
7
|
Cao Y, Cartwright EK, Silvestri G, Perelson AS. CD8+ lymphocyte control of SIV infection during antiretroviral therapy. PLoS Pathog 2018; 14:e1007350. [PMID: 30308068 PMCID: PMC6199003 DOI: 10.1371/journal.ppat.1007350] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 10/23/2018] [Accepted: 09/21/2018] [Indexed: 12/19/2022] Open
Abstract
CD8+ lymphocytes play an important role in suppressing in vivo viral replication in HIV infection. However, both the extent to which and the mechanisms by which CD8+ lymphocytes contribute to viral control are not completely understood. A recent experiment depleted CD8+ lymphocytes in simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs) on antiretroviral treatment (ART) to study the role of CD8+ lymphocytes. CD8+ lymphocytes depletion resulted in temporary plasma viremia in all studied RMs. Viral control was restored when CD8+ lymphocytes repopulated. We developed a viral dynamic model to fit the viral load (VL) data from the CD8 depletion experiment. We explicitly modeled the dynamics of the latent reservoir and the SIV-specific effector cell population including their exhaustion and their potential cytolytic and noncytolytic functions. We found that the latent reservoir significantly contributes to the size of the peak VL after CD8 depletion, while drug efficacy plays a lesser role. Our model suggests that the overall CD8+ lymphocyte cytolytic killing rate is dynamically changing depending on the levels of antigen-induced effector cell activation and exhaustion. Based on estimated parameters, our model suggests that before ART or without ART the overall CD8 cytolytic killing rate is small due to exhaustion. However, after the start of ART, the overall CD8 cytolytic killing rate increases due to an expansion of SIV-specific CD8 effector cells. Further, we estimate that the cytolytic killing rate can be significantly larger than the cytopathic death rate in some animals during the second phase of ART-induced viral decay. Lastly, our model provides a new explanation for the puzzling findings by Klatt et al. and Wong et al. that CD8 depletion done immediately before ART has no noticeable effect on the first phase viral decay slope seen after ART initiation Overall, by incorporating effector cells and their exhaustion, our model can explain the effects of CD8 depletion on VL during ART, reveals a detailed dynamic role of CD8+ lymphocytes in controlling viral infection, and provides a unified explanation for CD8 depletion experimental data. CD8+ lymphocytes play an important role in suppressing in vivo viral replication in HIV infection. However, both the extent to which and the mechanisms by which CD8+ lymphocytes contribute to viral control are not completely understood. By mathematically modeling data from a recent CD8 depletion experiment done in antiretroviral (ART) treated animals, our results suggest that the overall CD8+ lymphocyte cytolytic killing rate is dynamically changing depending on the levels of antigen-induced effector cell activation and exhaustion, i.e. before ART or without ART the overall CD8 cytolytic killing rate is small due to exhaustion. However, after the start of ART, the overall CD8 cytolytic killing rate increases due to an expansion of SIV-specific CD8 effector cells. By incorporating effector cells and their exhaustion, our model explains the effects on viral load of CD8 depletion done before ART or during ART, reveals a detailed dynamic role of CD8+ lymphocytes in controlling viral infection, and provides a unified explanation for CD8 depletion experimental data.
Collapse
Affiliation(s)
- Youfang Cao
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, United States of America
- Center for Nonlinear Studies (CNLS), Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Emily K. Cartwright
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Guido Silvestri
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Alan S. Perelson
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, United States of America
- * E-mail:
| |
Collapse
|
8
|
Hosking MP, Flynn CT, Whitton JL. TCR independent suppression of CD8(+) T cell cytokine production mediated by IFNγ in vivo. Virology 2016; 498:69-81. [PMID: 27564543 PMCID: PMC5045820 DOI: 10.1016/j.virol.2016.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/02/2016] [Indexed: 01/12/2023]
Abstract
CD8(+) memory T cells produce IFNγ within hours of secondary infection, but this is quickly terminated in vivo despite the presence of stimulatory viral antigen, suggesting that active suppression occurs. Herein, we investigated the in vivo effector function of CD8(+) memory T cells during successive encounters with viral antigen. CD8(+) T cells in immune mice receiving prior viral or peptide challenge failed to reproduce IFNγ during LCMV rechallenge. Surprisingly, this refractory state was induced even in memory cells that had not encountered their cognate antigen, indicating that the silencing of CD8(+) T cell responses is TCR-independent. Direct injection of IFNγ also suppressed the ability of virus-specific memory cells to respond to subsequent viral challenge. We propose the existence of a negative feedback loop whereby IFNγ, produced by memory CD8(+) T cells to combat viral challenge, acts - directly or indirectly - to limit its further production.
Collapse
Affiliation(s)
- Martin P Hosking
- Dept. of Immunology and Microbial Science, SP30-2110, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Claudia T Flynn
- Dept. of Immunology and Microbial Science, SP30-2110, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - J Lindsay Whitton
- Dept. of Immunology and Microbial Science, SP30-2110, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| |
Collapse
|
9
|
Hosking MP, Flynn CT, Whitton JL. Type I IFN Signaling Is Dispensable during Secondary Viral Infection. PLoS Pathog 2016; 12:e1005861. [PMID: 27580079 PMCID: PMC5006979 DOI: 10.1371/journal.ppat.1005861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/11/2016] [Indexed: 11/18/2022] Open
Abstract
Innate immune responses in general, and type I interferons (T1IFNs) in particular, play an important and often essential role during primary viral infections, by directly combatting the virus and by maximizing the primary adaptive immune response. Several studies have suggested that T1IFNs also contribute very substantially to the secondary (recall) response; they are thought (i) to be required to drive the early attrition of memory T cells, (ii) to support the subsequent expansion of surviving virus-specific memory cells, and (iii) to assist in the suppression and clearance of the infectious agent. However, many of these observations were predicated upon models in which T1IFN signaling was interrupted prior to a primary immune response, raising the possibility that the resulting memory cells might be intrinsically abnormal. We have directly addressed this by using an inducible-Cre model system in which the host remains genetically-intact during the primary response to infection, and in which T1IFN signaling can be effectively ablated prior to secondary viral challenge. We report that, in stark contrast to primary infection, T1IFN signaling is not required during the recall response. IFNαβR-deficient memory CD8+ and CD4+ memory T cells undergo attrition and expansion with kinetics that are indistinguishable from those of receptor-sufficient cells. Moreover, even in the absence of functional T1IFN signaling, the host's immune capacity to rapidly suppress, and then to eradicate, a secondary infection remains intact. Thus, this study shows that T1IFN signaling is dispensable during the recall response to a virus infection. Moreover, two broader implications may be drawn. First, a T cell's requirement for a cytokine is highly dependent on the cell's maturation / differentiation status. Consequently, second, these data underscore the importance of evaluating a gene's impact by modulating its expression or function in a temporally-controllable manner.
Collapse
Affiliation(s)
- Martin P. Hosking
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Claudia T. Flynn
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - J. Lindsay Whitton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Chew GM, Fujita T, Webb GM, Burwitz BJ, Wu HL, Reed JS, Hammond KB, Clayton KL, Ishii N, Abdel-Mohsen M, Liegler T, Mitchell BI, Hecht FM, Ostrowski M, Shikuma CM, Hansen SG, Maurer M, Korman AJ, Deeks SG, Sacha JB, Ndhlovu LC. TIGIT Marks Exhausted T Cells, Correlates with Disease Progression, and Serves as a Target for Immune Restoration in HIV and SIV Infection. PLoS Pathog 2016; 12:e1005349. [PMID: 26741490 PMCID: PMC4704737 DOI: 10.1371/journal.ppat.1005349] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/30/2015] [Indexed: 12/16/2022] Open
Abstract
HIV infection induces phenotypic and functional changes to CD8+ T cells defined by the coordinated upregulation of a series of negative checkpoint receptors that eventually result in T cell exhaustion and failure to control viral replication. We report that effector CD8+ T cells during HIV infection in blood and SIV infection in lymphoid tissue exhibit higher levels of the negative checkpoint receptor TIGIT. Increased frequencies of TIGIT+ and TIGIT+ PD-1+ CD8+ T cells correlated with parameters of HIV and SIV disease progression. TIGIT remained elevated despite viral suppression in those with either pharmacological antiretroviral control or immunologically in elite controllers. HIV and SIV-specific CD8+ T cells were dysfunctional and expressed high levels of TIGIT and PD-1. Ex-vivo single or combinational antibody blockade of TIGIT and/or PD-L1 restored viral-specific CD8+ T cell effector responses. The frequency of TIGIT+ CD4+ T cells correlated with the CD4+ T cell total HIV DNA. These findings identify TIGIT as a novel marker of dysfunctional HIV-specific T cells and suggest TIGIT along with other checkpoint receptors may be novel curative HIV targets to reverse T cell exhaustion. HIV-1 infection contributes substantially to global morbidity and mortality, with no immediate promise of an effective vaccine. One major obstacle to vaccine development and therapy is to understand why HIV-1 replication persists in a person despite the presence of viral specific immune responses. The emerging consensus has been that these immune cells are functionally ‘exhausted’ or anergic, and thus, although they can recognize HIV-1 specific target cells, they are unable to effectively keep up with rapid and dynamic viral replication in an individual. We have identified a novel combination pathway that can be targeted, TIGIT and PD-L1which may be responsible, at least in part, for making these immune cells dysfunctional and exhausted and thus unable to control the virus. We show that by blocking the TIGIT and PD-L1 pathway, we can reverse the defects of these viral specific immune cells. Our findings will give new directions to vaccines and therapies that will potentially reverse these dysfunctional cells and allow them to control HIV-1 replication, but also serve in “Shock and Kill” HIV curative strategies.
Collapse
Affiliation(s)
- Glen M. Chew
- Hawaii Center for HIV/AIDS, Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Tsuyoshi Fujita
- Hawaii Center for HIV/AIDS, Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Gabriela M. Webb
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Benjamin J. Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Helen L. Wu
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Jason S. Reed
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Katherine B. Hammond
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Kiera L. Clayton
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Naoto Ishii
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mohamed Abdel-Mohsen
- Division of Experimental Medicine, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
| | - Teri Liegler
- Division of Experimental Medicine, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
| | - Brooks I. Mitchell
- Hawaii Center for HIV/AIDS, Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Frederick M. Hecht
- HIV/AIDS Division, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
| | - Mario Ostrowski
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Cecilia M. Shikuma
- Hawaii Center for HIV/AIDS, Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Scott G. Hansen
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Mark Maurer
- Biologics Discovery California, Bristol-Myers Squibb, Redwood City, California, United States of America
| | - Alan J. Korman
- Biologics Discovery California, Bristol-Myers Squibb, Redwood City, California, United States of America
| | - Steven G. Deeks
- HIV/AIDS Division, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
| | - Jonah B. Sacha
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Lishomwa C. Ndhlovu
- Hawaii Center for HIV/AIDS, Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
11
|
Sato F, Omura S, Jaffe S, Tsunoda I. Role of CD4+ T Cells in the Pathophysiology of Multiple Sclerosis. MULTIPLE SCLEROSIS 2016. [PMCID: PMC7150304 DOI: 10.1016/b978-0-12-800763-1.00004-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. Although the precise etiology of MS remains unclear, CD4+ T cells have been proposed to play not only effector but also regulatory roles in MS. CD4+ T cells can be divided into four subsets: pro-inflammatory helper T (Th) 1 and Th17 cells, anti-inflammatory Th2 cells and regulatory T cells (Tregs). The roles of CD4+ T cells in MS have been clarified by either “loss-of-function” or “gain-of-function” methods, which have been carried out mainly in autoimmune and viral models of MS: experimental autoimmune encephalomyelitis and Theiler's murine encephalomyelitis virus infection, respectively. Observations in MS patients were consistent with the mechanisms found in the MS models, that is, increased pro-inflammatory Th1 and Th17 activity is associated with disease exacerbation, while anti-inflammatory Th2 cells and Tregs appear to play a protective role.
Collapse
|
12
|
Haist K, Ziegler C, Botten J. Strand-Specific Quantitative Reverse Transcription-Polymerase Chain Reaction Assay for Measurement of Arenavirus Genomic and Antigenomic RNAs. PLoS One 2015; 10:e0120043. [PMID: 25978311 PMCID: PMC4433285 DOI: 10.1371/journal.pone.0120043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/02/2015] [Indexed: 02/03/2023] Open
Abstract
Arenaviruses are bi-segmented, single-stranded RNA viruses that cause significant human disease. The manner in which they regulate the replication of their genome is not well-understood. This is partly due to the absence of a highly sensitive assay to measure individual species of arenavirus replicative RNAs. To overcome this obstacle, we designed a quantitative reverse transcription (RT)-PCR assay for selective quantitation of each of the lymphocytic choriomeningitis virus (LCMV) genomic or antigenomic RNAs. During the course of assay design, we identified a nonspecific priming phenomenon whereby, in the absence of an RT primer, cDNAs complementary to each of the LCMV replicative RNA species are generated during RT. We successfully circumvented this nonspecific priming event through the use of biotinylated primers in the RT reaction, which permitted affinity purification of primer-specific cDNAs using streptavidin-coated magnetic beads. As proof of principle, we used the assay to map the dynamics of LCMV replication at acute and persistent time points and to determine the quantities of genomic and antigenomic RNAs that are incorporated into LCMV particles. This assay can be adapted to measure total S or L segment-derived viral RNAs and therefore represents a highly sensitive diagnostic platform to screen for LCMV infection in rodent and human tissue samples and can also be used to quantify virus-cell attachment.
Collapse
Affiliation(s)
- Kelsey Haist
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
| | - Christopher Ziegler
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
| | - Jason Botten
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
13
|
Abstract
Dynamic tuning of cellular responsiveness as a result of repeated stimuli improves the ability of cells to distinguish physiologically meaningful signals from each other and from noise. In particular, lymphocyte activation thresholds are subject to tuning, which contributes to maintaining tolerance to self-antigens and persisting foreign antigens, averting autoimmunity and immune pathogenesis, but allowing responses to strong, structured perturbations that are typically associated with acute infection. Such tuning is also implicated in conferring flexibility to positive selection in the thymus, in controlling the magnitude of the immune response, and in generating memory cells. Additional functional properties are dynamically and differentially tuned in parallel via subthreshold contact interactions between developing or mature lymphocytes and self-antigen-presenting cells. These interactions facilitate and regulate lymphocyte viability, maintain their functional integrity, and influence their responses to foreign antigens and accessory signals, qualitatively and quantitatively. Bidirectional tuning of T cells and antigen-presenting cells leads to the definition of homeostatic set points, thus maximizing clonal diversity.
Collapse
Affiliation(s)
- Zvi Grossman
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; ,
| | | |
Collapse
|
14
|
Hosking MP, Flynn CT, Whitton JL. Antigen-specific naive CD8+ T cells produce a single pulse of IFN-γ in vivo within hours of infection, but without antiviral effect. THE JOURNAL OF IMMUNOLOGY 2014; 193:1873-85. [PMID: 25015828 DOI: 10.4049/jimmunol.1400348] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In vitro studies have shown that naive CD8(+) T cells are unable to express most of their effector proteins until after at least one round of cell division has taken place. We have reassessed this issue in vivo and find that naive CD8(+) T cells mount Ag-specific responses within hours of infection, before proliferation has commenced. Newly activated naive Ag-specific CD8(+) T cells produce a rapid pulse of IFN-γ in vivo and begin to accumulate granzyme B and perforin. Later, in vivo cytolytic activity is detectable, coincident with the initiation of cell division. Despite the rapid development of these functional attributes, no antiviral effect was observed early during infection, even when the cells are present in numbers similar to those of virus-specific memory cells. The evolutionary reason for the pulse of IFN-γ synthesis by naive T cells is uncertain, but the lack of antiviral impact suggests that it may be regulatory.
Collapse
Affiliation(s)
- Martin P Hosking
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Claudia T Flynn
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - J Lindsay Whitton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
15
|
Mulder R, Banete A, Basta S. Spleen-derived macrophages are readily polarized into classically activated (M1) or alternatively activated (M2) states. Immunobiology 2014; 219:737-45. [PMID: 24954891 DOI: 10.1016/j.imbio.2014.05.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/25/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
Abstract
Bone marrow derived macrophages (BM-MΦ) that differentiate from precursor cells can be polarized into classically activated pro-inflammatory (M1) or alternatively activated (M2) states depending upon the cytokine microenvironment. We questioned whether tissue MΦ, such as spleen-derived MΦ (Sp-MΦ), have the ability to differentiate into M1 or M2 cells. We show in response to activation with IFN-gamma (IFN-γ) and lipopolysaccharide (LPS), that the Sp-MΦ readily acquired an M1 status indicated by up-regulation of iNOS mRNA, nitric oxide (NO) production, and the co-stimulatory molecule CD86. Conversely, Sp-MΦ exposed to IL-4 exhibited increased levels of mannose receptor (CD 206), arginase-1 (Arg)-1 mRNA expression, and significant urea production typical of M2 cells. At this stage of differentiation, the M2 Sp-MΦ were more efficient at phagocytosis of cell-associated antigens than their M1 counterparts. This polarization was not indefinite as the cells could revert back to their original state upon the removal of stimuli and exhibited flexibility to convert from M2 to M1. Remarkably, both M1 and M2 Sp-MΦ induced more CD4 expression on their cells surface after stimulation. We also demonstrate that adherent macrophages cultured for a short term in IL-4 enhances ARG-1 and YM-1 mRNA along with increasing urea producing capacity: traits indicative of an M2 phenotype. Moreover, in response to in vivo virus infection, the adherent macrophages obtained from spleens rapidly express iNOS. These results provide new evidence for the polarization capabilities of Sp-MΦ when exposed to pro-inflammatory or anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Rylend Mulder
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Andra Banete
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
16
|
Clinical immune-monitoring strategies for predicting infection risk in solid organ transplantation. Clin Transl Immunology 2014; 3:e12. [PMID: 25505960 PMCID: PMC4232060 DOI: 10.1038/cti.2014.3] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/28/2014] [Accepted: 01/28/2014] [Indexed: 02/06/2023] Open
Abstract
Infectious complications remain a leading cause of morbidity and mortality after solid organ transplantation (SOT), and largely depend on the net state of immunosuppression achieved with current regimens. Cytomegalovirus (CMV) is a major opportunistic viral pathogen in this setting. The application of strategies of immunological monitoring in SOT recipients would allow tailoring of immunosuppression and prophylaxis practices according to the individual's actual risk of infection. Immune monitoring may be pathogen-specific or nonspecific. Nonspecific immune monitoring may rely on either the quantification of peripheral blood biomarkers that reflect the status of a given arm of the immune response (serum immunoglobulins and complement factors, lymphocyte sub-populations, soluble form of CD30), or on the functional assessment of T-cell responsiveness (release of intracellular adenosine triphosphate following a mitogenic stimulus). In addition, various methods are currently available for monitoring pathogen-specific responses, such as CMV-specific T-cell-mediated immune response, based on interferon-γ release assays, intracellular cytokine staining or main histocompatibility complex-tetramer technology. This review summarizes the clinical evidence to date supporting the use of these approaches to the post-transplant immune status, as well as their potential limitations. Intervention studies based on validated strategies for immune monitoring still need to be performed.
Collapse
|