1
|
Gao M, Wang X, Su S, Feng W, Lai Y, Huang K, Cao D, Wang Q. Meningeal lymphatic vessel crosstalk with central nervous system immune cells in aging and neurodegenerative diseases. Neural Regen Res 2025; 20:763-778. [PMID: 38886941 PMCID: PMC11433890 DOI: 10.4103/nrr.nrr-d-23-01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/22/2023] [Indexed: 06/20/2024] Open
Abstract
Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity.
Collapse
Affiliation(s)
- Minghuang Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Xinyue Wang
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shijie Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Weicheng Feng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yaona Lai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Kongli Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Dandan Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Kostic M, Zivkovic N, Cvetanovic A, Basic J, Stojanovic I. Dissecting the immune response of CD4 + T cells in Alzheimer's disease. Rev Neurosci 2024:revneuro-2024-0090. [PMID: 39238424 DOI: 10.1515/revneuro-2024-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024]
Abstract
The formation of amyloid-β (Aβ) plaques is a neuropathological hallmark of Alzheimer's disease (AD), however, these pathological aggregates can also be found in the brains of cognitively unimpaired elderly population. In that context, individual variations in the Aβ-specific immune response could be key factors that determine the level of Aβ-induced neuroinflammation and thus the propensity to develop AD. CD4+ T cells are the cornerstone of the immune response that coordinate the effector functions of both adaptive and innate immunity. However, despite intensive research efforts, the precise role of these cells during AD pathogenesis is still not fully elucidated. Both pathogenic and beneficial effects have been observed in various animal models of AD, as well as in humans with AD. Although this functional duality of CD4+ T cells in AD can be simply attributed to the vast phenotype heterogeneity of this cell lineage, disease stage-specific effect have also been proposed. Therefore, in this review, we summarized the current understanding of the role of CD4+ T cells in the pathophysiology of AD, from the aspect of their antigen specificity, activation, and phenotype characteristics. Such knowledge is of practical importance as it paves the way for immunomodulation as a therapeutic option for AD treatment, given that currently available therapies have not yielded satisfactory results.
Collapse
Affiliation(s)
- Milos Kostic
- Department of Immunology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Nikola Zivkovic
- Department of Pathology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ana Cvetanovic
- Department of Oncology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Jelena Basic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ivana Stojanovic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| |
Collapse
|
3
|
Schwinghamer K, Kopec BM, Ayewoh E, Tao X, Sadekar S, Sreedhara A, Kelley RF, Tesar DB, Siahaan TJ. Exploring How Antibody Format Drives Clearance from the Brain. Mol Pharm 2024; 21:4416-4429. [PMID: 39058284 PMCID: PMC11368618 DOI: 10.1021/acs.molpharmaceut.4c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Monoclonal antibodies (mAbs) have high binding specificity and affinity, making them attractive for treating brain diseases. However, their effectiveness is limited by poor blood-brain barrier (BBB) penetration and rapid central nervous system (CNS) clearance. Our group identified blood-brain barrier modulator (BBBM) peptides that improved mAb penetration across the BBB into the brain. In this study, we investigated the pharmacokinetics of a mAb delivered to the brain using BBBMs after intravenous (IV) administration and explored the impact of antibody format (size, neonatal Fc receptor (FcRn) binding, hyaluronic acid binding) on brain clearance following direct injection into the central nervous system (CNS) via intracerebroventricular (ICV) injection. IRDye800CW-labeled antibodies were administered into C57BL/6 mice via ICV or IV injection, and organ concentrations were measured after various time points. When a mAb was coadministered with a BBBM peptide, the permeation of mAb across the BBB was increased compared to mAb alone at early time points; however, the mAb was cleared within 2 h from the brain. ICV experiments revealed that an antibody Fab fragment had a higher brain exposure than a mAb, and that a Fab fused to a hyaluronic acid binding domain (Fab-VG1) showed remarkable improvement in brain exposure. These findings suggest that BBBMs and antibody format optimization may be promising strategies for enhancing brain retention of therapeutic antibodies.
Collapse
Affiliation(s)
- Kelly Schwinghamer
- Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Ave., Lawrence, Kansas 66046, United States
| | - Brian M Kopec
- Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Ave., Lawrence, Kansas 66046, United States
| | - Ebehiremen Ayewoh
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Xun Tao
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shraddha Sadekar
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Alavattam Sreedhara
- Department of Pharmaceutical Development, 1 DNA Way, South San Francisco, California 94080, United States
| | - Robert F Kelley
- Department of Pharmaceutical Development, 1 DNA Way, South San Francisco, California 94080, United States
| | - Devin B Tesar
- Department of Pharmaceutical Development, 1 DNA Way, South San Francisco, California 94080, United States
| | - Teruna J Siahaan
- Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Ave., Lawrence, Kansas 66046, United States
| |
Collapse
|
4
|
Ma YZ, Cao JX, Zhang YS, Su XM, Jing YH, Gao LP. T Cells Trafficking into the Brain in Aging and Alzheimer's Disease. J Neuroimmune Pharmacol 2024; 19:47. [PMID: 39180590 DOI: 10.1007/s11481-024-10147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
The meninges, choroid plexus (CP) and blood-brain barrier (BBB) are recognized as important gateways for peripheral immune cell trafficking into the central nervous system (CNS). Accumulation of peripheral immune cells in brain parenchyma can be observed during aging and Alzheimer's disease (AD). However, the mechanisms by which peripheral immune cells enter the CNS through these three pathways and how they interact with resident cells within the CNS to cause brain injury are not fully understood. In this paper, we review recent research on T cells recruitment in the brain during aging and AD. This review focuses on the possible pathways through which T cells infiltrate the brain, the evidence that T cells are recruited to the brain, and how infiltrating T cells interact with the resident cells in the CNS during aging and AD. Unraveling these issues will contribute to a better understanding of the mechanisms of aging and AD from the perspective of immunity, and hopefully develop new therapeutic strategies for brain aging and AD.
Collapse
Affiliation(s)
- Yue-Zhang Ma
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jia-Xin Cao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yi-Shu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiao-Mei Su
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yu-Hong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Li-Ping Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
5
|
Lee EJ, Suh M, Choi H, Choi Y, Hwang DW, Bae S, Lee DS. Spatial transcriptomic brain imaging reveals the effects of immunomodulation therapy on specific regional brain cells in a mouse dementia model. BMC Genomics 2024; 25:516. [PMID: 38796425 PMCID: PMC11128132 DOI: 10.1186/s12864-024-10434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Increasing evidence of brain-immune crosstalk raises expectations for the efficacy of novel immunotherapies in Alzheimer's disease (AD), but the lack of methods to examine brain tissues makes it difficult to evaluate therapeutics. Here, we investigated the changes in spatial transcriptomic signatures and brain cell types using the 10x Genomics Visium platform in immune-modulated AD models after various treatments. To proceed with an analysis suitable for barcode-based spatial transcriptomics, we first organized a workflow for segmentation of neuroanatomical regions, establishment of appropriate gene combinations, and comprehensive review of altered brain cell signatures. Ultimately, we investigated spatial transcriptomic changes following administration of immunomodulators, NK cell supplements and an anti-CD4 antibody, which ameliorated behavior impairment, and designated brain cells and regions showing probable associations with behavior changes. We provided the customized analytic pipeline into an application named STquantool. Thus, we anticipate that our approach can help researchers interpret the real action of drug candidates by simultaneously investigating the dynamics of all transcripts for the development of novel AD therapeutics.
Collapse
Affiliation(s)
- Eun Ji Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Minseok Suh
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoori Choi
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Cliniclal Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Do Won Hwang
- Research and Development Center, THERABEST Inc., Seocho-daero 40-gil, Seoul, 06657, Republic of Korea
| | - Sungwoo Bae
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Medical Science and Engineering, School of Convergence Science and Technology, POSTECH, Pohang, Republic of Korea.
| |
Collapse
|
6
|
Boskovic P, Gao W, Kipnis J. Will cellular immunotherapies end neurodegenerative diseases? Trends Immunol 2024; 45:329-337. [PMID: 38600001 DOI: 10.1016/j.it.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Neurodegenerative disorders present major challenges to global health, exacerbated by an aging population and the absence of therapies. Despite diverse pathological manifestations, they share a common hallmark, loosely termed 'neuroinflammation'. The prevailing dogma is that the immune system is an active contributor to neurodegeneration; however, recent evidence challenges this. By analogy with road construction, which causes temporary closures and disruptions, the immune system's actions in the central nervous system (CNS) might initially appear destructive, and might even cause harm, while aiming to combat neurodegeneration. We propose that the application of cellular immunotherapies to coordinate the immune response towards remodeling might pave the way for new modes of tackling the roadblocks of neurodegenerative diseases.
Collapse
Affiliation(s)
- Pavle Boskovic
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO 63110, USA.
| | - Wenqing Gao
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO 63110, USA
| | - Jonathan Kipnis
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO 63110, USA; Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO 63110, USA.
| |
Collapse
|
7
|
Wang Y, Jiang R, Li M, Wang Z, Yang Y, Sun L. Characteristics of T Cells in Single-Cell Datasets of Peripheral Blood and Cerebrospinal Fluid in Alzheimer's Disease Patients. J Alzheimers Dis 2024; 99:S265-S280. [PMID: 38043012 PMCID: PMC11091562 DOI: 10.3233/jad-230784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 12/04/2023]
Abstract
Background Alzheimer's disease (AD) is the most common type of dementia, causing a huge socioeconomic burden. In parallel with the widespread uptake of single-cell RNA sequencing (scRNA-seq) technology, there has been a rapid accumulation of data produced by researching AD at single-cell resolution, which is more conductive to explore the neuroimmune-related mechanism of AD. Objective To explore the potential features of T cells in the peripheral blood and cerebrospinal fluid of AD patients. Methods Two datasets, GSE181279 and GSE134578, were integrated from GEO database. Seurat, Monocle, CellChat, scRepertoire, and singleR packages were mainly employed for data analysis. Results Our analysis demonstrated that in peripheral blood, T cells were significantly expanded, and these expanded T cells were possessed effector function, such as CD8+TEMRA, CD4+TEMRA, and CD8+TEM. Interestingly, CD8+TEMRA and CD4+TEMRA cells positioned adjacently after dimensions reduction and clustering. Notably, we identified that the expanded T cells were developed from Naïve T cells and TCM cells, and TEM cells was in the intermediate state of this developing process. Additionally, in cerebrospinal fluid of AD patients, the amplified T cells were mainly CD8+TEMRA cells, and the number and strength of communication between CD4+TEM, CD8+TEM, and CD8+TEMRA were decreased in AD patients. Conclusions Our comprehensive analyses identified the cells in cerebrospinal fluid from AD patients are expanded TEMRA or TEM cells and the TEMRA cells communicating with other immune cells is weakened, which may be an important immune feature that leads to AD.
Collapse
Affiliation(s)
- Yongchun Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Richeng Jiang
- Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun, China
| | - Mingxi Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Zicheng Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yu Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
- Department of Neurology, Cognitive Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
8
|
Asamu MO, Oladipo OO, Abayomi OA, Adebayo AA. Alzheimer's disease: The role of T lymphocytes in neuroinflammation and neurodegeneration. Brain Res 2023; 1821:148589. [PMID: 37734576 DOI: 10.1016/j.brainres.2023.148589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Alzheimer's disease, the leading cause of progressive cognitive decline globally, has been reported to be enhanced by neuroinflammation. Brain-resident innate immune cells and adaptive immune cells work together to produce neuroinflammation. Studies over the past decade have established the neuroimmune axis present in Alzheimer's disease; the crosstalk between adaptive and innate immune cells within and outside the brain is crucial to the onset and progression of Alzheimer's disease. Although the role of the adaptive immune system in Alzheimer's disease is not fully understood, it has been hypothesized that the brain's immune homeostasis is significantly disrupted, which greatly contributes to neuroinflammation. Brain-infiltrating T cells possess proinflammatory phenotypes and activities that directly contribute to neuroinflammation. The pro-inflammatory activities of the adaptive immune system in Alzheimer's disease are characterized by the upregulation of effector T cell activities and the downregulation of regulatory T cell activities in the brain, blood, and cerebrospinal fluid. In this review, we discuss the major impact of T lymphocytes on the pathogenesis and progression of Alzheimer's disease. Understanding the role and mechanism of action of T cells in Alzheimer's disease would significantly contribute to the identification of novel biomarkers for diagnosing and monitoring the progression of the disease. This knowledge could also be crucial to the development of immunotherapies for Alzheimer's disease.
Collapse
Affiliation(s)
- Moses O Asamu
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oladapo O Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - Oluseun A Abayomi
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Olabisi Onabanjo University Teaching Hospital (OOUTH), Sagamu, Ogun State, Nigeria
| | - Afeez A Adebayo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
9
|
Jafarzadeh A, Sheikhi A, Jafarzadeh Z, Nemati M. Differential roles of regulatory T cells in Alzheimer's disease. Cell Immunol 2023; 393-394:104778. [PMID: 37907046 DOI: 10.1016/j.cellimm.2023.104778] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
Regulatory T (Treg) cells interact with a variety of resident cells and infiltrated immune cells in the central nervous system (CNS) to modulate neuroinflammation and neurodegeneration. Extracellular amyloid-β (Aβ) peptide deposition and secondary persistent inflammation due to activation of microglia, astrocytes, and infiltrated immune cells contribute to Alzheimer's disease (AD)-related neurodegeneration. The majority of evidence supports the neuroprotective effects of Treg cells in AD. In the early stages of AD, appropriate Treg cell activity is required for the induction of microglia and astrocyte phagocytic activity in order to clear A deposits and prevent neuroinflammation. Such neuroprotective impacts were in part attributed to the ability of Treg cells to suppress deleterious and/or boost beneficial functions of microglia/astrocytes. In the later stages of AD, an effective Treg cell activity needs to prevent neurotoxicity and neurodegeneration. Treg cells can exert preventive effects on Th1-, and Th17 cell-related pathologic responses, whilst potentiating Th2-mediated protective activity. The impaired Treg cell-related immunomodulatory mechanisms have been described in AD patients and in related animal models which can contribute to the onset and progression of AD. This review aimed to provide a comprehensive figure regarding the role of Treg cells in AD while highlighting potential therapeutic approaches.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Abdolkarim Sheikhi
- Department of Immunology, Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Zahra Jafarzadeh
- Student Research Committee, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Zhao J, Zhang Z, Lai KC, Lai L. Administration of recombinant FOXN1 protein attenuates Alzheimer's pathology in mice. Brain Behav Immun 2023; 113:341-352. [PMID: 37541395 PMCID: PMC10528256 DOI: 10.1016/j.bbi.2023.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia in older adults and characterized by progressive loss of memory and cognitive functions that are associated with amyloid-beta (Aβ) plaques and neurofibrillary tangles. Immune cells play an important role in the clearance of Aβ deposits and neurofibrillary tangles. T cells are the major component of the immune system. The thymus is the primary organ for T cell generation. T cell development in the thymus depends on thymic epithelial cells (TECs). However, TECs undergo both qualitative and quantitative loss over time. We have previously reported that a recombinant (r) protein containing FOXN1 and a protein transduction domain can increase the number of TECs and subsequently increases the number of T cells in mice. In this study we determined the ability of rFOXN1 to affect cognitive performance and AD pathology in mice. METHODS Aged 3xTg-AD and APP/PS1 AD mice were injected with rFOXN1 or control protein. Cognitive performance, AD pathology, the thymic microenvironment and immune cells were then analyzed. RESULTS Administration of rFOXN1 into AD mice improves cognitive performance and reduces Aβ plaque load and phosphorylated tau in the brain. This is related to rejuvenating the aged thymic microenvironment, which results in enhanced T cell generation in the thymus, leading to increased number of T cells, especially IFNγ-producing T cells, in the spleen and the choroid plexus (CP), enhanced expression of immune cell trafficking molecules in the CP, and increased migration of monocyte-derived macrophages into the brain. Furthermore, the production of anti-Aβ antibodies in the serum and the brain, and the macrophage phagocytosis of Aβ are enhanced in rFOXN1-treated AD mice. CONCLUSIONS Our results suggest that rFOXN1 protein has the potential to provide a novel approach to treat AD patients.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Zhenzhen Zhang
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Kuan Chen Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA; University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
11
|
Guo L, Li X, Gould T, Wang ZY, Cao W. T cell aging and Alzheimer's disease. Front Immunol 2023; 14:1154699. [PMID: 37081887 PMCID: PMC10110977 DOI: 10.3389/fimmu.2023.1154699] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023] Open
Abstract
The brain has long been considered an immune-privileged organ due to the presence of the blood-brain barrier (BBB). However, recent discoveries have revealed the underestimated role of T cells in the brain through the meningeal lymphatic system. Age is the primary risk factor for Alzheimer's disease (AD), resulting in marked age-dependent changes in T cells. Manipulating peripheral T cell immune response has been shown to impact AD, but the relationship between T cell aging and AD remains poorly understood. Given the limited success of targeting amyloid beta (Aβ) and the growing evidence of T cells' involvement in non-lymphoid organ aging, a deeper understanding of the relationship between T cells and AD in the context of aging is crucial for advancing therapeutic progress. In this review, we comprehensively examine existing studies on T cells and AD and offer an integrated perspective on their interconnections in the context of aging. This understanding can inform the development of new interventions to prevent or treat AD.
Collapse
Affiliation(s)
- Lin Guo
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
| | - Xiaoting Li
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| | | | - Zhan-You Wang
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
| | - Wenqiang Cao
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Zhao J, Wang X, He Y, Xu P, Lai L, Chung Y, Pan X. The Role of T Cells in Alzheimer's Disease Pathogenesis. Crit Rev Immunol 2023; 43:15-23. [PMID: 37943150 DOI: 10.1615/critrevimmunol.2023050145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder associated with memory decline and cognitive impairment, which is related to hallmark protein aggregates, amyloid-β (Аβ) plaques and neurofibrillary tangles; the latter are accumulated with hyperphosphorylated Tau protein. Immune cells play an important role in AD pathogenesis. Although the role of T cells in AD remains controversial, studies have shown that T cell deficiency is associated with increased AD pathology. In contrast, transplantation of T cells reduces AD pathology. T cells can help B cells generate anti-Аβ antibody to neutralize the toxin of Аβ and hyperphosphorylated Tau. T cells also activate macrophages to phagocytose misfolded proteins including Аβ and Tau. Recent data have also shown that AD animals have a damaged thymic microenvironment, especially thymic epithelial cells (TECs), resulting in decreased T cell numbers, which contribute to AD pathology. Therefore, regulation of T cell regeneration, for example by rejuvenating the thymic microenvironment, has the potential to be used in the treatment of AD.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong, 510515, China; ZhuHai Hengqin ImStem Biotechnology Co. Ltd., Hengqin New District Huandao Donglu 1889 Building 3, Zhuhai, Guangdong, 519000, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangdong, 510515, China
| | - Xiaofang Wang
- ZhuHai Hengqin ImStem Biotechnology Co. Ltd., Hengqin New District Huandao Donglu 1889 Building 3, Zhuhai, Guangdong, 519000, China; ImStem Biotechnology, Inc., 400 Farmington Avenue R1808, Farmington, CT 06030, USA
| | - Yusheng He
- ZhuHai Hengqin ImStem Biotechnology Co. Ltd., Hengqin New District Huandao Donglu 1889 Building 3, Zhuhai, Guangdong, 519000, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA; University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, USA
| | - Younggie Chung
- ZhuHai Hengqin ImStem Biotechnology Co. Ltd., Hengqin New District Huandao Donglu 1889 Building 3, Zhuhai, Guangdong, 519000, China; ImStem Biotechnology, Inc., 400 Farmington Avenue R1808, Farmington, CT 06030, USA
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong, 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangdong, 510515, China
| |
Collapse
|
13
|
Feng W, Zhang Y, Sun P, Xiao M. Acquired immunity and Alzheimer's disease. J Biomed Res 2023; 37:15-29. [PMID: 36165328 PMCID: PMC9898041 DOI: 10.7555/jbr.36.20220083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by progressive cognitive defects. The role of the central immune system dominated by microglia in the progression of AD has been extensively investigated. However, little is known about the peripheral immune system in AD pathogenesis. Recently, with the discovery of the meningeal lymphatic vessels and glymphatic system, the roles of the acquired immunity in the maintenance of central homeostasis and neurodegenerative diseases have attracted an increasing attention. The T cells not only regulate the function of neurons, astrocytes, microglia, oligodendrocytes and brain microvascular endothelial cells, but also participate in the clearance of β-amyloid (Aβ) plaques. Apart from producing antibodies to bind Aβ peptides, the B cells affect Aβ-related cascades via a variety of antibody-independent mechanisms. This review systemically summarizes the recent progress in understanding pathophysiological roles of the T cells and B cells in AD.
Collapse
Affiliation(s)
- Weixi Feng
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China,Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Chinese Academy of Sciences, Shanghai 200031, China,Weixi Feng, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu 211166, China. Tel: +86-25-86869338; E-mail:
| | - Yanli Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China,Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Peng Sun
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China,Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu 211166, China,Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Chinese Academy of Sciences, Shanghai 200031, China,Brain Institute, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
14
|
Chen X, Holtzman DM. Emerging roles of innate and adaptive immunity in Alzheimer's disease. Immunity 2022; 55:2236-2254. [PMID: 36351425 PMCID: PMC9772134 DOI: 10.1016/j.immuni.2022.10.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/15/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, with characteristic extracellular amyloid-β (Aβ) deposition and intracellular accumulation of hyperphosphorylated, aggregated tau. Several key regulators of innate immune pathways are genetic risk factors for AD. While these genetic risk factors as well as in vivo data point to key roles for microglia, emerging evidence also points to a role of the adaptive immune response in disease pathogenesis. We review the roles of innate and adaptive immunity, their niches, their communication, and their contributions to AD development and progression. We also summarize the cellular compositions and physiological functions of immune cells in the parenchyma, together with those in the brain border structures that form a dynamic disease-related immune niche. We propose that both innate and adaptive immune responses in brain parenchyma and border structures could serve as important therapeutic targets for treating both the pre-symptomatic and the symptomatic stages of AD.
Collapse
Affiliation(s)
- Xiaoying Chen
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
15
|
Zieneldien T, Kim J, Sawmiller D, Cao C. The Immune System as a Therapeutic Target for Alzheimer’s Disease. Life (Basel) 2022; 12:life12091440. [PMID: 36143476 PMCID: PMC9506058 DOI: 10.3390/life12091440] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a heterogeneous neurodegenerative disorder and is the most common cause of dementia. Furthermore, aging is considered the most critical risk factor for AD. However, despite the vast amount of research and resources allocated to the understanding and development of AD treatments, setbacks have been more prominent than successes. Recent studies have shown that there is an intricate connection between the immune and central nervous systems, which can be imbalanced and thereby mediate neuroinflammation and AD. Thus, this review examines this connection and how it can be altered with AD. Recent developments in active and passive immunotherapy for AD are also discussed as well as suggestions for improving these therapies moving forward.
Collapse
Affiliation(s)
- Tarek Zieneldien
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Janice Kim
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Darrell Sawmiller
- MegaNano BioTech, Inc., 3802 Spectrum Blvd. Suite 122, Tampa, FL 33612, USA
| | - Chuanhai Cao
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- USF-Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, FL 33613, USA
- Correspondence:
| |
Collapse
|
16
|
Bi SQ, Zhang QM, Zeng X, Liu C, Nong WX, Xie H, Li F, Lin LN, Luo B, Ge YY, Xie XX. Combined treatment with epigenetic agents enhances anti-tumor activity of MAGE-D4 peptide-specific T cells by upregulating the MAGE-D4 expression in glioma. Front Oncol 2022; 12:873639. [PMID: 35992806 PMCID: PMC9382192 DOI: 10.3389/fonc.2022.873639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThe study evaluated the efficacy of combined epigenetic drugs of decitabine (DAC), valproic acid (VPA), and trichostatin A (TSA) on immunotherapy against glioma.MethodsThe expression and prognosis of MAGE-D4 in glioma were analyzed online, and the expression of MAGE-D4 and HLA-A2 in glioma induced by epigenetic drugs was detected by qRT-PCR, Western blot, and flow cytometry. The methylation status of the MAGE-D4 promoter was determined by pyrosequencing. An HLA-A2 restricted MAGE-D4 peptide was predicted and synthesized. An affinity assay and a peptide/HLA complex stability assay were performed to determine the affinity between peptide and HLA. CCK8 assay, CFSE assay, ELISA and ELISPOT were performed to detect the function of MAGE-D4 peptide-specific T cells. Flow cytometry, ELISA, and cytotoxicity assays were used to detect the cytotoxicity effect of MAGE-D4 peptide-specific T cells combined with epigenetic drugs against glioma in vitro. Finally, the glioma-loaded mouse model was applied to test the inhibitory effect of specific T cells on gliomas in vivo.ResultsMAGE-D4 was highly expressed in glioma and correlated with poor prognosis. Glioma cells could be induced to express MAGE-D4 and HLA-A2 by epigenetic drugs. MAGE-D4-associated peptides were found that induce DCs to stimulate the highest T-cell activities of proliferation, IL-2 excretion, and IFN-γ secretion. MAGE-D4 peptide-specific T cells treated with TSA only or combining TSA and DAC had the most cytotoxicity effect, and its cytotoxicity effect on glioma cells decreased significantly after HLA blocking. In vivo experiments also confirmed that MAGE-D4-specific T cells inhibit TSA-treated glioma.ConclusionMAGE-D4 is highly expressed in glioma and correlated with the prognosis of glioma. The novel MAGE-D4 peptide identified was capable of inducing MAGE-D4-specific T cells that can effectively inhibit glioma growth, and the epigenetic drug application can enhance this inhibition.
Collapse
Affiliation(s)
- Shui-Qing Bi
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Department of Neurosurgery, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Qing-Mei Zhang
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Key laboratory of Preclinical Medicine, Education Department of Guangxi Zhuang Autonomous region, Nanning, China
| | - Xia Zeng
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Chang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wei-Xia Nong
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Huan Xie
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Feng Li
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Li-Na Lin
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Bin Luo
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Key laboratory of Preclinical Medicine, Education Department of Guangxi Zhuang Autonomous region, Nanning, China
| | - Ying-Ying Ge
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
- *Correspondence: Ying-Ying Ge, ; Xiao-Xun Xie,
| | - Xiao-Xun Xie
- Department of Histology and Embryology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Key laboratory of Preclinical Medicine, Education Department of Guangxi Zhuang Autonomous region, Nanning, China
- *Correspondence: Ying-Ying Ge, ; Xiao-Xun Xie,
| |
Collapse
|
17
|
van Olst L, Coenen L, Nieuwland JM, Rodriguez-Mogeda C, de Wit NM, Kamermans A, Middeldorp J, de Vries HE. Crossing borders in Alzheimer's disease: A T cell's perspective. Adv Drug Deliv Rev 2022; 188:114398. [PMID: 35780907 DOI: 10.1016/j.addr.2022.114398] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting millions of people worldwide. While different immunotherapies are imminent, currently only disease-modifying medications are available and a cure is lacking. Over the past decade, immunological interfaces of the central nervous system (CNS) and their role in neurodegenerative diseases received increasing attention. Specifically, emerging evidence shows that subsets of circulating CD8+ T cells cross the brain barriers and associate with AD pathology. To gain more insight into how the adaptive immune system is involved in disease pathogenesis, we here provide a comprehensive overview of the contribution of T cells to AD pathology, incorporating changes at the brain barriers. In addition, we review studies that provide translation of these findings by targeting T cells to combat AD pathology and cognitive decline. Importantly, these data show that immunological changes in AD are not confined to the CNS and that AD-associated systemic immune changes appear to affect brain homeostasis.
Collapse
Affiliation(s)
- L van Olst
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - L Coenen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - J M Nieuwland
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - C Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - N M de Wit
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - A Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - J Middeldorp
- Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - H E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Zhang PF, Wang ZT, Liu Y, Hu H, Sun Y, Hu HY, Ma YH, Tan L, Yu JT. Peripheral Immune Cells and Cerebrospinal Fluid Biomarkers of Alzheimer's Disease Pathology in Cognitively Intact Older Adults: The CABLE Study. J Alzheimers Dis 2022; 87:721-730. [PMID: 35342094 DOI: 10.3233/jad-220057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Inflammation plays a role in occurrence and progression of Alzheimer's disease (AD). Whether peripheral immune cells are involved in major pathological processes including amyloid-β plaques and tau tangles is still controversial. OBJECTIVE We aimed to examine whether peripheral immune cells counts were associated with early changes in cerebrospinal fluid (CSF) biomarkers of AD pathology in cognitively intact older adults. METHODS This study included 738 objective cognitive normal participants from the Chinese Alzheimer's Biomarker and Lifestyle (CABLE) database. Group comparisons of peripheral immune cells counts were tested by analysis of covariance. Multiple linear regression models were used to examine the associations of peripheral immune cells counts with CSF AD biomarkers. RESULTS In preclinical AD, peripheral lymphocytes and eosinophils changed dynamically along with disease progression. Consistently, regression analysis showed that lymphocytes and eosinophils were associated with Aβ pathology. There were no interaction effects of peripheral immune cells counts with APOE ɛ4, gender, age, and educate. Eosinophil to lymphocyte ratio were also significantly associated with Aβ-related biomarkers. CONCLUSION Our findings showed the relationship between peripheral immune cells and Aβ pathological biomarkers, which indicated that peripheral immune might play a role in progression of AD pathology.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ying Liu
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Sun
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Fighting fire with fire: the immune system might be key in our fight against Alzheimer's disease. Drug Discov Today 2022; 27:1261-1283. [PMID: 35032668 DOI: 10.1016/j.drudis.2022.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/25/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
The ultimate cause of Alzheimer's disease (AD) is still unknown and no disease-modifying treatment exists. Emerging evidence supports the concept that the immune system has a key role in AD pathogenesis. This awareness leads to the idea that specific parts of the immune system must be engaged to ward off the disease. Immunotherapy has dramatically improved the management of several previously untreatable cancers and could hold similar promise as a novel therapy for treating AD. However, before potent immunotherapies can be rationally designed as treatment against AD, we need to fully understand the dynamic interplay between AD and the different parts of our immune system. Accordingly, here we review the most important aspects of both the innate and adaptive immune system in relation to AD pathology. Teaser: Emerging results support the concept that Alzheimer's disease is affected by the inability of the immune system to contain the pathology of the brain. Here, we discuss how we can engage our immune system to fight this devastating disease.
Collapse
|
20
|
Machhi J, Yeapuri P, Lu Y, Foster E, Chikhale R, Herskovitz J, Namminga KL, Olson KE, Abdelmoaty MM, Gao J, Quadros RM, Kiyota T, Jingjing L, Kevadiya BD, Wang X, Liu Y, Poluektova LY, Gurumurthy CB, Mosley RL, Gendelman HE. CD4+ effector T cells accelerate Alzheimer's disease in mice. J Neuroinflammation 2021; 18:272. [PMID: 34798897 PMCID: PMC8603581 DOI: 10.1186/s12974-021-02308-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by pathological deposition of misfolded self-protein amyloid beta (Aβ) which in kind facilitates tau aggregation and neurodegeneration. Neuroinflammation is accepted as a key disease driver caused by innate microglia activation. Recently, adaptive immune alterations have been uncovered that begin early and persist throughout the disease. How these occur and whether they can be harnessed to halt disease progress is unclear. We propose that self-antigens would induct autoreactive effector T cells (Teffs) that drive pro-inflammatory and neurodestructive immunity leading to cognitive impairments. Here, we investigated the role of effector immunity and how it could affect cellular-level disease pathobiology in an AD animal model. METHODS In this report, we developed and characterized cloned lines of amyloid beta (Aβ) reactive type 1 T helper (Th1) and type 17 Th (Th17) cells to study their role in AD pathogenesis. The cellular phenotype and antigen-specificity of Aβ-specific Th1 and Th17 clones were confirmed using flow cytometry, immunoblot staining and Aβ T cell epitope loaded haplotype-matched major histocompatibility complex II IAb (MHCII-IAb-KLVFFAEDVGSNKGA) tetramer binding. Aβ-Th1 and Aβ-Th17 clones were adoptively transferred into APP/PS1 double-transgenic mice expressing chimeric mouse/human amyloid precursor protein and mutant human presenilin 1, and the mice were assessed for memory impairments. Finally, blood, spleen, lymph nodes and brain were harvested for immunological, biochemical, and histological analyses. RESULTS The propagated Aβ-Th1 and Aβ-Th17 clones were confirmed stable and long-lived. Treatment of APP/PS1 mice with Aβ reactive Teffs accelerated memory impairment and systemic inflammation, increased amyloid burden, elevated microglia activation, and exacerbated neuroinflammation. Both Th1 and Th17 Aβ-reactive Teffs progressed AD pathology by downregulating anti-inflammatory and immunosuppressive regulatory T cells (Tregs) as recorded in the periphery and within the central nervous system. CONCLUSIONS These results underscore an important pathological role for CD4+ Teffs in AD progression. We posit that aberrant disease-associated effector T cell immune responses can be controlled. One solution is by Aβ reactive Tregs.
Collapse
Affiliation(s)
- Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Pravin Yeapuri
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Yaman Lu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Emma Foster
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099 USA
| | - Rupesh Chikhale
- University College London School of Pharmacy, Bloomsbury, London, WC1E 6DE UK
| | - Jonathan Herskovitz
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Krista L. Namminga
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Katherine E. Olson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Mai Mohamed Abdelmoaty
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198 USA
- Therapeutic Chemistry Department, National Research Centre, Giza, Egypt
| | - Ju Gao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Rolen M. Quadros
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE USA
| | - Tomomi Kiyota
- Department of Safety Assessment, Genentech Inc., South San Francisco, CA 94080 USA
| | - Liang Jingjing
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Bhavesh D. Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Xinglong Wang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Yutong Liu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Channabasavaiah B. Gurumurthy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE USA
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198 USA
| |
Collapse
|
21
|
Liu H, Zhao J, Lin Y, Su M, Lai L. Administration of anti-ERMAP antibody ameliorates Alzheimer's disease in mice. J Neuroinflammation 2021; 18:268. [PMID: 34774090 PMCID: PMC8590358 DOI: 10.1186/s12974-021-02320-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/08/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a devastating age-related neurodegenerative disorder and characterized by progressive loss of memory and cognitive functions, which are associated with amyloid-beta (Aβ) plaques. Immune cells play an important role in the clearance of Aβ deposits. Immune responses are regulated by immune regulators in which the B7 family members play a crucial role. We have recently identified erythroid membrane-associated protein (ERMAP) as a novel B7 family-related immune regulator and shown that ERMAP protein affects T cell and macrophage functions. METHODS We produced a monoclonal antibody (mAb) against ERMAP protein and then determined the ability of the mAb to affect cognitive performance and AD pathology in mice. RESULTS We have shown that the anti-ERMAP mAb neutralizes the T cell inhibitory activity of ERMAP and enhances macrophages to phagocytose Aβ in vitro. Administration of the mAb into AD mice improves cognitive performance and reduces Aβ plaque load in the brain. This is related to increased proportion of T cells, especially IFNγ-producing T cells, in the spleen and the choroid plexus (CP), enhanced expression of immune cell trafficking molecules in the CP, and increased migration of monocyte-derived macrophages into the brain. Furthermore, the production of anti-Aβ antibodies in the serum and the macrophage phagocytosis of Aβ are enhanced in the anti-ERMAP mAb-treated AD mice. CONCLUSIONS Our results suggest that manipulating the ERMAP pathway has the potential to provide a novel approach to treat AD patients.
Collapse
Affiliation(s)
- Haiyan Liu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Department of Allied Health Sciences, University of Connecticut, 1390 Storrs Road, Storrs, CT, 06269, USA
| | - Jin Zhao
- Department of Allied Health Sciences, University of Connecticut, 1390 Storrs Road, Storrs, CT, 06269, USA
| | - Yujun Lin
- Department of Allied Health Sciences, University of Connecticut, 1390 Storrs Road, Storrs, CT, 06269, USA
| | - Min Su
- Department of Allied Health Sciences, University of Connecticut, 1390 Storrs Road, Storrs, CT, 06269, USA
- Department of Human Histology and Embryology, Tissue Engineering and Stem Cell Research Center, Guizhou Medical University, Guiyang, 550004, China
| | - Laijun Lai
- Department of Allied Health Sciences, University of Connecticut, 1390 Storrs Road, Storrs, CT, 06269, USA.
- University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
22
|
Thomas P, Galopin N, Bonérandi E, Clémenceau B, Fougeray S, Birklé S. CAR T Cell Therapy's Potential for Pediatric Brain Tumors. Cancers (Basel) 2021; 13:cancers13215445. [PMID: 34771608 PMCID: PMC8582542 DOI: 10.3390/cancers13215445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary T cells that are genetically engineered to express chimeric antigen receptors constitute an effective new therapy with curative potential for patients with hematological tumors. The value of chimeric antigen receptor T cells in childhood brain tumors, the leading cause of cancer death in children, is less clear. In this context, the main obstacles for these engineered T cells remain how to find them, allow them to infiltrate, and induce them to remain active in the tumor site. Here, we discuss recent progress in the field and examine future directions for realizing the potential of this therapy. Abstract Malignant central nervous system tumors are the leading cause of cancer death in children. Progress in high-throughput molecular techniques has increased the molecular understanding of these tumors, but the outcomes are still poor. Even when efficacious, surgery, radiation, and chemotherapy cause neurologic and neurocognitive morbidity. Adoptive cell therapy with autologous CD19 chimeric antigen receptor T cells (CAR T) has demonstrated remarkable remission rates in patients with relapsed refractory B cell malignancies. Unfortunately, tumor heterogeneity, the identification of appropriate target antigens, and location in a growing brain behind the blood–brain barrier within a specific suppressive immune microenvironment restrict the efficacy of this strategy in pediatric neuro-oncology. In addition, the vulnerability of the brain to unrepairable tissue damage raises important safety concerns. Recent preclinical findings, however, have provided a strong rationale for clinical trials of this approach in patients. Here, we examine the most important challenges associated with the development of CAR T cell immunotherapy and further present the latest preclinical strategies intending to optimize genetically engineered T cells’ efficiency and safety in the field of pediatric neuro-oncology.
Collapse
Affiliation(s)
- Pauline Thomas
- Université de Nantes, INSERM, CRCINA, F-44000 Nantes, France; (P.T.); (N.G.); (E.B.); (S.F.)
| | - Natacha Galopin
- Université de Nantes, INSERM, CRCINA, F-44000 Nantes, France; (P.T.); (N.G.); (E.B.); (S.F.)
| | - Emma Bonérandi
- Université de Nantes, INSERM, CRCINA, F-44000 Nantes, France; (P.T.); (N.G.); (E.B.); (S.F.)
| | - Béatrice Clémenceau
- Université de Nantes, CHU Nantes, CNRS, INSERM, CRCINA, F-44000 Nantes, France;
| | - Sophie Fougeray
- Université de Nantes, INSERM, CRCINA, F-44000 Nantes, France; (P.T.); (N.G.); (E.B.); (S.F.)
| | - Stéphane Birklé
- Université de Nantes, INSERM, CRCINA, F-44000 Nantes, France; (P.T.); (N.G.); (E.B.); (S.F.)
- Correspondence: ; Tel.: +33-228-08-03-00
| |
Collapse
|
23
|
Taylor ZV, Khand B, Porgador A, Monsonego A, Eremenko E. An optimized intracerebroventricular injection of CD4 + T cells into mice. STAR Protoc 2021; 2:100725. [PMID: 34401790 PMCID: PMC8353483 DOI: 10.1016/j.xpro.2021.100725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The blood-brain barrier acts as a major barrier for the entrance of most therapeutics into the brain, impeding treatment for neurological disorders. Intracerebroventricular (ICV) injection of T cells is a useful tool for cell therapy of neurological disorders including neurodegenerative and neuropsychiatric diseases and brain tumors. Here, we present an optimized ICV injection of T cells with improved injection efficiency at pathological sites within the brain parenchyma. We describe details of the surgical procedure and verification of injection via immunohistochemistry. For complete details on the use and execution of this protocol, please refer to Fisher et al. (2014); Strominger et al., (2018); Mittal et al. (2019); Eremenko et al. (2019).
Collapse
Affiliation(s)
- Zoe V. Taylor
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
- The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Bishnu Khand
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
- The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
- The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Alon Monsonego
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
- The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ekaterina Eremenko
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
- The Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
- The National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center, and Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
24
|
Microglia as the Critical Regulators of Neuroprotection and Functional Recovery in Cerebral Ischemia. Cell Mol Neurobiol 2021; 42:2505-2525. [PMID: 34460037 DOI: 10.1007/s10571-021-01145-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022]
Abstract
Microglial activation is considered as the critical pathogenic event in diverse central nervous system disorders including cerebral ischemia. Proinflammatory responses of activated microglia have been well reported in the ischemic brain and neuroinflammatory responses of activated microglia have been believed to be the potential therapeutic strategy. However, despite having proinflammatory roles, microglia can have significant anti-inflammatory roles and they are associated with the production of growth factors which are responsible for neuroprotection and recovery after ischemic injury. Microglia can directly promote neuroprotection by preventing ischemic infarct expansion and promoting functional outcomes. Indirectly, microglia are involved in promoting anti-inflammatory responses, neurogenesis, and angiogenesis in the ischemic brain which are crucial pathophysiological events for ischemic recovery. In fact, anti-inflammatory cytokines and growth factors produced by microglia can promote neuroprotection and attenuate neurobehavioral deficits. In addition, microglia regulate phagocytosis, axonal regeneration, blood-brain barrier protection, white matter integrity, and synaptic remodeling, which are essential for ischemic recovery. Microglia can also regulate crosstalk with neurons and other cell types to promote neuroprotection and ischemic recovery. This review mainly focuses on the roles of microglia in neuroprotection and recovery following ischemic injury. Furthermore, this review also sheds the light on the therapeutic potential of microglia in stroke patients.
Collapse
|
25
|
Shi M, Chu F, Tian X, Aerqin Q, Zhu F, Zhu J. Role of Adaptive Immune and Impacts of Risk Factors on Adaptive Immune in Alzheimer's Disease: Are Immunotherapies Effective or Off-Target? Neuroscientist 2021; 28:254-270. [PMID: 33530843 DOI: 10.1177/1073858420987224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pathogenesis of Alzheimer's disease (AD) is complex. Still it remains unclear, which resulted in all efforts for AD treatments with targeting the pathogenic factors unsuccessful over past decades. It has been evidenced that the innate immune is strongly implicated in the pathogenesis of AD. However, the role of adaptive immune in AD remains mostly unknown and the results obtained were controversial. In the review, we summarized recent studies and showed that the molecular and cellular alterations in AD patients and its animal models involving T cells and B cells as well as immune mediators of adaptive immune occur not only in the peripheral blood but also in the brain and the cerebrospinal fluid. The risk factors that cause AD contribute to AD progress by affecting the adaptive immune, indicating that adaptive immunity proposes a pivotal role in this disease. It may provide a possible basis for applying immunotherapy in AD and further investigates whether the immunotherapies are effective or off-target?
Collapse
Affiliation(s)
- Mingchao Shi
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Fengna Chu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Xiaoping Tian
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Qiaolifan Aerqin
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
26
|
Yu Z, Ling Z, Lu L, Zhao J, Chen X, Xu P, Zou X. Regulatory Roles of Bone in Neurodegenerative Diseases. Front Aging Neurosci 2020; 12:610581. [PMID: 33408628 PMCID: PMC7779400 DOI: 10.3389/fnagi.2020.610581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoporosis and neurodegenerative diseases are two kinds of common disorders of the elderly, which often co-occur. Previous studies have shown the skeletal and central nervous systems are closely related to pathophysiology. As the main structural scaffold of the body, the bone is also a reservoir for stem cells, a primary lymphoid organ, and an important endocrine organ. It can interact with the brain through various bone-derived cells, mostly the mesenchymal and hematopoietic stem cells (HSCs). The bone marrow is also a place for generating immune cells, which could greatly influence brain functions. Finally, the proteins secreted by bones (osteokines) also play important roles in the growth and function of the brain. This article reviews the latest research studying the impact of bone-derived cells, bone-controlled immune system, and bone-secreted proteins on the brain, and evaluates how these factors are implicated in the progress of neurodegenerative diseases and their potential use in the diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Zhengran Yu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zemin Ling
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lin Lu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin Zhao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Colazo JM, Evans BC, Farinas AF, Al-Kassis S, Duvall CL, Thayer WP. Applied Bioengineering in Tissue Reconstruction, Replacement, and Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2020; 25:259-290. [PMID: 30896342 DOI: 10.1089/ten.teb.2018.0325] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPACT STATEMENT The use of autologous tissue in the reconstruction of tissue defects has been the gold standard. However, current standards still face many limitations and complications. Improving patient outcomes and quality of life by addressing these barriers remain imperative. This article provides historical perspective, covers the major limitations of current standards of care, and reviews recent advances and future prospects in applied bioengineering in the context of tissue reconstruction, replacement, and regeneration.
Collapse
Affiliation(s)
- Juan M Colazo
- 1Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,2Medical Scientist Training Program, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brian C Evans
- 3Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Angel F Farinas
- 4Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Salam Al-Kassis
- 4Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Craig L Duvall
- 3Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Wesley P Thayer
- 3Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.,4Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
28
|
Gericke C, Mallone A, Engelhardt B, Nitsch RM, Ferretti MT. Oligomeric Forms of Human Amyloid-Beta(1-42) Inhibit Antigen Presentation. Front Immunol 2020; 11:1029. [PMID: 32582162 PMCID: PMC7290131 DOI: 10.3389/fimmu.2020.01029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/29/2020] [Indexed: 11/13/2022] Open
Abstract
Genetic, clinical, biochemical and histochemical data indicate a crucial involvement of inflammation in Alzheimer's disease (AD), but harnessing the immune system to cure or prevent AD has so far proven difficult. Clarifying the cellular heterogeneity and signaling pathways associated with the presence of the AD hallmarks beta-amyloid and tau in the brain, would help to identify potential targets for therapy. While much attention has been so far devoted to microglia and their homeostatic phagocytic activity, additional cell types and immune functions might be affected in AD. Beyond microglia localized in the brain parenchyma, additional antigen-presenting cell (APC) types might be affected by beta-amyloid toxicity. Here, we investigated potential immunomodulatory properties of oligomeric species of beta-amyloid-peptide (Aβ) on microglia and putative APCs. We performed a comprehensive characterization of time- and pathology-dependent APC and T-cell alterations in a model of AD-like brain beta-amyloidosis, the APP-PS1-dE9 mouse model. We show that the deposition of first beta-amyloid plaques is accompanied by a significant reduction in MHC class II surface levels on brain APCs. Furthermore, taking advantage of customized in vitro systems and RNAseq, we demonstrate that a preparation containing various forms of oligomeric Aβ1-42 inhibits antigen presentation by altering the transcription of key immune mediators in dendritic cells. These results suggest that, beyond their neurotoxic effects, certain oligomeric Aβ forms can act as immunomodulatory agents on cerebral APCs and interfere with brain antigen presentation. Impaired brain immune surveillance might be one of the factors that facilitate Aβ and tau spreading in AD.
Collapse
Affiliation(s)
- Christoph Gericke
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| | - Anna Mallone
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| | | | - Roger M Nitsch
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland.,Neurimmune AG, Schlieren, Switzerland
| | - Maria Teresa Ferretti
- Institute for Regenerative Medicine - IREM, University of Zurich, Schlieren, Switzerland.,Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| |
Collapse
|
29
|
Ní Chasaide C, Lynch MA. The role of the immune system in driving neuroinflammation. Brain Neurosci Adv 2020; 4:2398212819901082. [PMID: 32219178 PMCID: PMC7085916 DOI: 10.1177/2398212819901082] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is now recognised as an important contributory factor in the progression of Alzheimer’s disease and probably also in the early stages of the disease. It is likely that this derives largely from aberrant activation of microglia, the resident mononuclear phagocytes of the brain. These cells are responsible for physiological immune surveillance and clearance of pathogens in the central nervous system, but evidence indicates that in Alzheimer’s disease, microglial function is compromised, and this contributes to the pathology. It is unclear what factors cause the inappropriate activation of the microglia in Alzheimer’s disease, but one contributor may be infiltrating peripheral immune cells and these include macrophages and T cells. It has been suggested that both cell types modulate the phenotype of microglia, highlighting the importance of crosstalk between the innate and adaptive immune system in Alzheimer’s disease. This review outlines our current knowledge of how cells of the peripheral immune system, specifically macrophages and T cells, may modulate microglial phenotype in the context of Alzheimer’s disease and considers the impact on their function, especially phagocytic capacity.
Collapse
Affiliation(s)
| | - Marina A Lynch
- Marina A Lynch, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
30
|
Wiatr M, Stump-Guthier C, Latorre D, Uhlig S, Weiss C, Ilonen J, Engelhardt B, Ishikawa H, Schwerk C, Schroten H, Tenenbaum T, Rudolph H. Distinct migratory pattern of naive and effector T cells through the blood-CSF barrier following Echovirus 30 infection. J Neuroinflammation 2019; 16:232. [PMID: 31752904 PMCID: PMC6868812 DOI: 10.1186/s12974-019-1626-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/28/2019] [Indexed: 01/04/2023] Open
Abstract
Background Echovirus 30 (E-30) is one of the most frequently isolated pathogens in aseptic meningitis worldwide. To gain access to the central nervous system (CNS), E-30 and immune cells have to cross one of the two main barriers of the CNS, the epithelial blood–cerebrospinal fluid barrier (BCSFB) or the endothelial blood–brain barrier (BBB). In an in vitro model of the BCSFB, it has been shown that E-30 can infect human immortalized brain choroid plexus papilloma (HIBCPP) cells. Methods In this study we investigated the migration of different T cell subpopulations, naive and effector T cells, through HIBCPP cells during E-30 infection. Effects of E-30 infection and the migration process were evaluated via immunofluorescence and flow cytometry analysis, as well as transepithelial resistance and dextran flux measurement. Results Th1 effector cells and enterovirus-specific effector T cells migrated through HIBCPP cells more efficiently than naive CD4+ T cells following E-30 infection of HIBCPP cells. Among the different naive T cell populations, CD8+ T cells crossed the E-30-infected HIBCPP cell layer in a significantly higher number than CD4+ T cells. A large amount of effector T cells also remained attached to the basolateral side of the HIBCPP cells compared with naive T cells. Analysis of HIBCPP barrier function showed significant alteration after E-30 infection and trans- as well as paracellular migration of T cells independent of the respective subpopulation. Morphologic analysis of migrating T cells revealed that a polarized phenotype was induced by the chemokine CXCL12, but reversed to a round phenotype after E-30 infection. Further characterization of migrating Th1 effector cells revealed a downregulation of surface adhesion proteins such as LFA-1 PSGL-1, CD44, and CD49d. Conclusion Taken together these results suggest that naive CD8+ and Th1 effector cells are highly efficient to migrate through the BCSFB in an inflammatory environment. The T cell phenotype is modified during the migration process through HIBCPP cells.
Collapse
Affiliation(s)
- Marie Wiatr
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Carolin Stump-Guthier
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Daniela Latorre
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500, Bellinzona, Switzerland.,Institute of Microbiology, ETH Zurich, 8093, Zurich, Switzerland
| | - Stefanie Uhlig
- Flowcore Mannheim, Ludolf-Krehl-Strasse 13 - 17, 68167, Mannheim, Germany
| | - Christel Weiss
- Institute of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, and Clinical Microbiology, Turku University Hospital, University of Turku, Turku, Finland
| | | | - Hiroshi Ishikawa
- Department of NDU Life Sciences, School of Life Dentistry, Nippon Dental University, Tokyo, Japan
| | - Christian Schwerk
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Tobias Tenenbaum
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Henriette Rudolph
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
31
|
Mittal K, Eremenko E, Berner O, Elyahu Y, Strominger I, Apelblat D, Nemirovsky A, Spiegel I, Monsonego A. CD4 T Cells Induce A Subset of MHCII-Expressing Microglia that Attenuates Alzheimer Pathology. iScience 2019; 16:298-311. [PMID: 31203186 PMCID: PMC6581663 DOI: 10.1016/j.isci.2019.05.039] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/01/2019] [Accepted: 05/28/2019] [Indexed: 01/10/2023] Open
Abstract
Microglia play a key role in innate immunity in Alzheimer disease (AD), but their role as antigen-presenting cells is as yet unclear. Here we found that amyloid β peptide (Aβ)-specific T helper 1 (Aβ-Th1 cells) T cells polarized to secrete interferon-γ and intracerebroventricularly (ICV) injected to the 5XFAD mouse model of AD induced the differentiation of major histocompatibility complex class II (MHCII)+ microglia with distinct morphology and enhanced plaque clearance capacity than MHCII- microglia. Notably, 5XFAD mice lacking MHCII exhibited an enhanced amyloid pathology in the brain along with exacerbated innate inflammation and reduced phagocytic capacity. Using a bone marrow chimera mouse model, we showed that infiltrating macrophages did not differentiate to MHCII+ cells following ICV injection of Aβ-Th1 cells and did not support T cell-mediated amyloid clearance. Overall, we demonstrate that CD4 T cells induce a P2ry12+ MHCII+ subset of microglia, which play a key role in T cell-mediated effector functions that abrogate AD-like pathology.
Collapse
Affiliation(s)
- Kritika Mittal
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Zlotowski Center for Neuroscience, The National Institute of Biotechnology in the Negev, Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ekaterina Eremenko
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Zlotowski Center for Neuroscience, The National Institute of Biotechnology in the Negev, Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Omer Berner
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Zlotowski Center for Neuroscience, The National Institute of Biotechnology in the Negev, Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Yehezqel Elyahu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Zlotowski Center for Neuroscience, The National Institute of Biotechnology in the Negev, Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Itai Strominger
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Zlotowski Center for Neuroscience, The National Institute of Biotechnology in the Negev, Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Daniella Apelblat
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anna Nemirovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Zlotowski Center for Neuroscience, The National Institute of Biotechnology in the Negev, Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ivo Spiegel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alon Monsonego
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Zlotowski Center for Neuroscience, The National Institute of Biotechnology in the Negev, Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
32
|
Eremenko E, Mittal K, Berner O, Kamenetsky N, Nemirovsky A, Elyahu Y, Monsonego A. BDNF-producing, amyloid β-specific CD4 T cells as targeted drug-delivery vehicles in Alzheimer's disease. EBioMedicine 2019; 43:424-434. [PMID: 31085101 PMCID: PMC6557914 DOI: 10.1016/j.ebiom.2019.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The delivery of therapeutic proteins to selected sites within the central nervous system (CNS) parenchyma is a major challenge in the treatment of various neurodegenerative disorders. As brain-derived neurotrophic factor (BDNF) is reduced in the brain of people with Alzheimer's disease (AD) and its administration has shown promising therapeutic effects in mouse model of the disease, we generated a novel platform for T cell-based BDNF delivery into the brain parenchyma. METHODS We generated amyloid beta-protein (Aβ)-specific CD4 T cells (Aβ-T cells), genetically engineered to express BDNF, and injected them intracerebroventricularly into the 5XFAD mouse model of AD. FINDINGS The BDNF-secreting Aβ-T cells migrated efficiently to amyloid plaques, where they significantly increased the levels of BDNF, its receptor TrkB, and various synaptic proteins known to be reduced in AD. Furthermore, the injected mice demonstrated reduced levels of beta-secretase 1 (BACE1)-a protease essential in the cleavage process of the amyloid precursor protein-and ameliorated amyloid pathology and inflammation within the brain parenchyma. INTERPRETATION A T cell-based delivery of proteins into the brain can serve as a platform to modulate neurotoxic inflammation and to promote neuronal repair in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ekaterina Eremenko
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Kritika Mittal
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Omer Berner
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Nikita Kamenetsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Anna Nemirovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Yehezqel Elyahu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Alon Monsonego
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
33
|
Limanaqi F, Biagioni F, Gaglione A, Busceti CL, Fornai F. A Sentinel in the Crosstalk Between the Nervous and Immune System: The (Immuno)-Proteasome. Front Immunol 2019; 10:628. [PMID: 30984192 PMCID: PMC6450179 DOI: 10.3389/fimmu.2019.00628] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022] Open
Abstract
The wealth of recent evidence about a bi-directional communication between nerve- and immune- cells revolutionized the traditional concept about the brain as an “immune-privileged” organ while opening novel avenues in the pathophysiology of CNS disorders. In fact, altered communication between the immune and nervous system is emerging as a common hallmark in neuro-developmental, neurodegenerative, and neuro-immunological diseases. At molecular level, the ubiquitin proteasome machinery operates as a sentinel at the crossroad between the immune system and brain. In fact, the standard proteasome and its alternative/inducible counterpart, the immunoproteasome, operate dynamically and coordinately in both nerve- and immune- cells to modulate neurotransmission, oxidative/inflammatory stress response, and immunity. When dysregulations of the proteasome system occur, altered amounts of standard- vs. immune-proteasome subtypes translate into altered communication between neurons, glia, and immune cells. This contributes to neuro-inflammatory pathology in a variety of neurological disorders encompassing Parkinson's, Alzheimer's, and Huntingtin's diseases, brain trauma, epilepsy, and Multiple Sclerosis. In the present review, we analyze those proteasome-dependent molecular interactions which sustain communication between neurons, glia, and brain circulating T-lymphocytes both in baseline and pathological conditions. The evidence here discussed converges in that upregulation of immunoproteasome to the detriment of the standard proteasome, is commonly implicated in the inflammatory- and immune- biology of neurodegeneration. These concepts may foster additional studies investigating the role of immunoproteasome as a potential target in neurodegenerative and neuro-immunological disorders.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | | | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,I.R.C.C.S Neuromed, Pozzilli, Italy
| |
Collapse
|
34
|
Katsel P, Haroutunian V. Is Alzheimer disease a failure of mobilizing immune defense? Lessons from cognitively fit oldest-old. DIALOGUES IN CLINICAL NEUROSCIENCE 2019. [PMID: 31607776 PMCID: PMC6780355 DOI: 10.31887/dcns.2019.21.1/vharoutunian] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Multifaceted evidence supports the hypothesis that inflammatory-immune mechanisms contribute to Alzheimer disease (AD) neuropathology and genetic association of several immune specific genes (TREM2, CR1, and CD33) suggests that maladaptive immune responses may be pivotal drivers of AD pathogenesis. We reviewed microglia-related data from postmortem AD studies and examined supporting evidence from AD animal models to answer the following questions: i) What is the temporal sequence of immune activation in AD progression and what is its impact on cognition? ii) Are there discordant, “primed”, microglia responses in AD vs successful cognitive aging? iii) Does central nervous system (CNS) repair in aging depend on recruitment of the elements of cellular adaptive immune response such as effector T cells, and can the recruitment of systemic immune cells ameliorate AD neuropathology? iv) How effective are the immune-system-based therapeutic approaches currently employed for the treatment of AD?
Collapse
Affiliation(s)
- Pavel Katsel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vahram Haroutunian
- Department of Neuroscience, The Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA
| |
Collapse
|
35
|
Martinez B, Peplow PV. Amelioration of Alzheimer's disease pathology and cognitive deficits by immunomodulatory agents in animal models of Alzheimer's disease. Neural Regen Res 2019; 14:1158-1176. [PMID: 30804241 PMCID: PMC6425849 DOI: 10.4103/1673-5374.251192] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The most common age-related neurodegenerative disease is Alzheimer’s disease (AD) characterized by aggregated amyloid-β (Aβ) peptides in extracellular plaques and aggregated hyperphosphorylated tau protein in intraneuronal neurofibrillary tangles, together with loss of cholinergic neurons, synaptic alterations, and chronic inflammation within the brain. These lead to progressive impairment of cognitive function. There is evidence of innate immune activation in AD with microgliosis. Classically-activated microglia (M1 state) secrete inflammatory and neurotoxic mediators, and peripheral immune cells are recruited to inflammation sites in the brain. The few drugs approved by the US FDA for the treatment of AD improve symptoms but do not change the course of disease progression and may cause some undesirable effects. Translation of active and passive immunotherapy targeting Aβ in AD animal model trials had limited success in clinical trials. Treatment with immunomodulatory/anti-inflammatory agents early in the disease process, while not preventive, is able to inhibit the inflammatory consequences of both Aβ and tau aggregation. The studies described in this review have identified several agents with immunomodulatory properties that alleviated AD pathology and cognitive impairment in animal models of AD. The majority of the animal studies reviewed had used transgenic models of early-onset AD. More effort needs to be given to creat models of late-onset AD. The effects of a combinational therapy involving two or more of the tested pharmaceutical agents, or one of these agents given in conjunction with one of the cell-based therapies, in an aged animal model of AD would warrant investigation.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Molecular & Cellular Biology, University of California, Merced, Merced, CA, USA; Department of Medicine, St. Georges University School of Medicine, Grenada; Department of Physics and Engineering, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
36
|
Wang X, Xuan W, Zhu ZY, Li Y, Zhu H, Zhu L, Fu DY, Yang LQ, Li PY, Yu WF. The evolving role of neuro-immune interaction in brain repair after cerebral ischemic stroke. CNS Neurosci Ther 2018; 24:1100-1114. [PMID: 30350341 DOI: 10.1111/cns.13077] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
Stroke is the world's leading cause of disability with limited brain repair treatments which effectively improve long-term neurological deficits. The neuroinflammatory responses persist into the late repair phase of stroke and participate in all brain repair elements, including neurogenesis, angiogenesis, synaptogenesis, remyelination and axonal sprouting, shedding new light on post-stroke brain recovery. Resident brain glial cells, such as astrocytes not only contribute to neuroinflammation after stroke, but also secrete a wide range of trophic factors that can promote post-stroke brain repair. Alternatively, activated microglia, monocytes, and neutrophils in the innate immune system, traditionally considered as major damaging factors after stroke, have been suggested to be extensively involved in brain repair after stroke. The adaptive immune system may also have its bright side during the late regenerative phase, affecting the immune suppressive regulatory T cells and B cells. This review summarizes the recent findings in the evolving role of neuroinflammation in multiple post-stroke brain repair mechanisms and poses unanswered questions that may generate new directions for future research and give rise to novel therapeutic targets to improve stroke recovery.
Collapse
Affiliation(s)
- Xin Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Xuan
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zi-Yu Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hao Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ling Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dan-Yun Fu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li-Qun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Pei-Ying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
37
|
Cao W, Zheng H. Peripheral immune system in aging and Alzheimer's disease. Mol Neurodegener 2018; 13:51. [PMID: 30285785 PMCID: PMC6169078 DOI: 10.1186/s13024-018-0284-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) represents an urgent public health mandate. AD is no longer considered a neural-centric disease; rather, a plethora of recent studies strongly implicate a critical role played by neuroinflammation in the pathogeneses of AD and other neurodegenerative conditions. A close functional connection between the immune system and central nervous system is increasingly recognized. In late-onset AD, aging represents the most significant risk factor. Here, from an immunological perspective, we summarize the prominent molecular and cellular changes in the periphery of aging individuals and AD patients. Moreover, we review the knowledge gained in the past several years that implicate specific arms of the peripheral immune system and other types of immune responses in modulating AD progression. Taken together, these findings collectively emphasize a dynamic role of a concert of brain-extrinsic, peripheral signals in the aging and degenerative processes in the CNS. We believe that a systematic view synthesizing the vast amounts of existing results will help guide the development of next-generation therapeutics and inform future directions of AD investigation.
Collapse
Affiliation(s)
- Wei Cao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Huffington Center on Aging, Houston, TX, 77030, USA.
| | - Hui Zheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Huffington Center on Aging, Houston, TX, 77030, USA.
| |
Collapse
|
38
|
Strominger I, Elyahu Y, Berner O, Reckhow J, Mittal K, Nemirovsky A, Monsonego A. The Choroid Plexus Functions as a Niche for T-Cell Stimulation Within the Central Nervous System. Front Immunol 2018; 9:1066. [PMID: 29868025 PMCID: PMC5962702 DOI: 10.3389/fimmu.2018.01066] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/27/2018] [Indexed: 12/20/2022] Open
Abstract
The choroid plexus (CP) compartment in the ventricles of the brain comprises fenestrated vasculature and, therefore, it is permeable to blood-borne mediators of inflammation. Here, we explored whether T-cell activation in the CP plays a role in regulating central nervous system (CNS) inflammation. We show that CD4 T cells injected into the lateral ventricles adhere to the CP, transmigrate across its epithelium, and undergo antigen-specific activation and proliferation. This process is enhanced following peripheral immune stimulation and significantly impacts the immune signaling induced by the CP. Ex vivo studies demonstrate that T-cell harboring the CP through its apical surface is a chemokine- and adhesion molecule-dependent process. We suggest that, within the CNS, the CP serves an immunological niche, which rapidly responds to peripheral inflammation and, thereby, promotes two-way T-cell trafficking that impact adaptive immunity in the CNS.
Collapse
Affiliation(s)
- Itai Strominger
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yehezqel Elyahu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Omer Berner
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jensen Reckhow
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Kritika Mittal
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Anna Nemirovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Alon Monsonego
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel.,The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
39
|
Coder B, Wang W, Wang L, Wu Z, Zhuge Q, Su DM. Friend or foe: the dichotomous impact of T cells on neuro-de/re-generation during aging. Oncotarget 2018; 8:7116-7137. [PMID: 27738345 PMCID: PMC5351694 DOI: 10.18632/oncotarget.12572] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/05/2016] [Indexed: 12/15/2022] Open
Abstract
The interaction between T cells and the central nervous system (CNS) in homeostasis and injury has been recognized being both pathogenic (CD4+ T-helper 1 - Th1, Th17 and γδT) and ameliorative (Th2 and regulatory T cells - Tregs). However, in-depth studies aimed to elucidate the precise in the aged microenvironment and the dichotomous role of Tregs have just begun and many aspects remain unclear. This is due, not only to a mutual dependency and reciprocal causation of alterations and diseases between the nervous and T cell immune systems, but also to an inconsistent aging of the two systems, which dynamically changes with CNS injury/recovery and/or aging process. Cellular immune system aging, particularly immunosenescence and T cell aging initiated by thymic involution - sources of chronic inflammation in the elderly (termed inflammaging), potentially induces an acceleration of brain aging and memory loss. In turn, aging of the brain via neuro-endocrine-immune network drives total body systemic aging, including that of the immune system. Therefore, immunotherapeutics including vaccination and “protective autoimmunity” provide promising means to rejuvenate neuro-inflammatory disorders and repair CNS acute injury and chronic neuro-degeneration. We review the current understanding and recent discoveries linking the aging immune system with CNS injury and neuro-degeneration. Additionally, we discuss potential recovery and rejuvenation strategies, focusing on targeting the aging T cell immune system in an effort to alleviate acute brain injury and chronic neuro-degeneration during aging, via the “thymus-inflammaging-neurodegeneration axis”.
Collapse
Affiliation(s)
- Brandon Coder
- Institute of Molecular Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Weikan Wang
- Institute of Molecular Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA.,Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang, P. R. China
| | - Liefeng Wang
- Institute of Molecular Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA.,Department of Biotechnology, Gannan Medical University, Ganzhou, P. R. China
| | - Zhongdao Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P. R. China
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang, P. R. China
| | - Dong-Ming Su
- Institute of Molecular Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
40
|
Zaki-Dizaji M, Akrami SM, Abolhassani H, Rezaei N, Aghamohammadi A. Ataxia telangiectasia syndrome: moonlighting ATM. Expert Rev Clin Immunol 2017; 13:1155-1172. [PMID: 29034753 DOI: 10.1080/1744666x.2017.1392856] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Ataxia-telangiectasia (A-T) a multisystem disorder primarily characterized by cerebellar degeneration, telangiectasia, immunodeficiency, cancer susceptibility and radiation sensitivity. Identification of the gene defective in this syndrome, ataxia-telangiectasia mutated gene (ATM), and further characterization of the disorder together with a greater insight into the function of the ATM protein have expanded our knowledge about the molecular pathogenesis of this disease. Area covered: In this review, we have attempted to summarize the different roles of ATM signaling that have provided new insights into the diverse clinical phenotypes exhibited by A-T patients. Expert commentary: ATM, in addition to DNA repair response, is involved in many cytoplasmic roles that explain diverse phenotypes of A-T patients. It seems accumulation of DNA damage, persistent DNA damage response signaling, and chronic oxidative stress are the main players in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Majid Zaki-Dizaji
- a Department of Medical Genetics, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran
| | - Seyed Mohammad Akrami
- a Department of Medical Genetics, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Hassan Abolhassani
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran.,c Division of Clinical Immunology, Department of Laboratory Medicine , Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm , Sweden.,d Primary Immunodeficiency Diseases Network (PIDNet ), Universal Scientific Education and Research Network (USERN) , Stockholm , Sweden
| | - Nima Rezaei
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran.,e Department of Immunology and Biology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,f Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Asghar Aghamohammadi
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran
| |
Collapse
|
41
|
Intracranial IL-17A overexpression decreases cerebral amyloid angiopathy by upregulation of ABCA1 in an animal model of Alzheimer's disease. Brain Behav Immun 2017; 65:262-273. [PMID: 28526436 PMCID: PMC5537015 DOI: 10.1016/j.bbi.2017.05.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 01/18/2023] Open
Abstract
Neuroinflammation is a pervasive feature of Alzheimer's disease (AD) and characterized by activated microglia, increased proinflammatory cytokines and/or infiltrating immune cells. T helper 17 (Th17) cells are found in AD brain parenchyma and interleukin-17A (IL-17A) is identified around deposits of aggregated amyloid β protein (Aβ). However, the role of IL-17A in AD pathogenesis remains elusive. We overexpressed IL-17A in an AD mouse model via recombinant adeno-associated virus serotype 5 (rAAV5)-mediated intracranial gene delivery. AD model mice subjected to injection of a vehicle (PBS) or rAAV5 carrying the lacZ gene served as controls. IL-17A did not exacerbate neuroinflammation in IL-17A-overexpressing mice. We found that IL-17A overexpression markedly improved glucose metabolism, decreased soluble Aβ levels in the hippocampus and cerebrospinal fluid, drastically reduced cerebral amyloid angiopathy, and modestly but significantly improved anxiety and learning deficits. Moreover, the ATP-binding cassette subfamily A member 1 (ABCA1), which can transport Aβ from the brain into the blood circulation, significantly increased in IL-17A-overexpressing mice. In vitro treatment of brain endothelial bEnd.3 cells with IL-17A induced a dose-dependent increase in protein expression of ABCA1 through ERK activation. Our study suggests that IL-17A may decrease Aβ levels in the brain by upregulating ABCA1 in blood-brain barrier endothelial cells.
Collapse
|
42
|
Impact of aging immune system on neurodegeneration and potential immunotherapies. Prog Neurobiol 2017; 157:2-28. [PMID: 28782588 DOI: 10.1016/j.pneurobio.2017.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 12/19/2022]
Abstract
The interaction between the nervous and immune systems during aging is an area of avid interest, but many aspects remain unclear. This is due, not only to the complexity of the aging process, but also to a mutual dependency and reciprocal causation of alterations and diseases between both the nervous and immune systems. Aging of the brain drives whole body systemic aging, including aging-related changes of the immune system. In turn, the immune system aging, particularly immunosenescence and T cell aging initiated by thymic involution that are sources of chronic inflammation in the elderly (termed inflammaging), potentially induces brain aging and memory loss in a reciprocal manner. Therefore, immunotherapeutics including modulation of inflammation, vaccination, cellular immune therapies and "protective autoimmunity" provide promising approaches to rejuvenate neuroinflammatory disorders and repair brain injury. In this review, we summarize recent discoveries linking the aging immune system with the development of neurodegeneration. Additionally, we discuss potential rejuvenation strategies, focusing aimed at targeting the aging immune system in an effort to prevent acute brain injury and chronic neurodegeneration during aging.
Collapse
|
43
|
T Lymphocytes and Inflammatory Mediators in the Interplay between Brain and Blood in Alzheimer's Disease: Potential Pools of New Biomarkers. J Immunol Res 2017; 2017:4626540. [PMID: 28293644 PMCID: PMC5331319 DOI: 10.1155/2017/4626540] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/22/2016] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the main cause of dementia. The disease is among the leading medical concerns of the modern world, because only symptomatic therapies are available, and no reliable, easily accessible biomarkers exist for AD detection and monitoring. Therefore extensive research is conducted to elucidate the mechanisms of AD pathogenesis, which seems to be heterogeneous and multifactorial. Recently much attention has been given to the neuroinflammation and activation of glial cells in the AD brain. Reports also highlighted the proinflammatory role of T lymphocytes infiltrating the AD brain. However, in AD molecular and cellular alterations involving T cells and immune mediators occur not only in the brain, but also in the blood and the cerebrospinal fluid (CSF). Here we review alterations concerning T lymphocytes and related immune mediators in the AD brain, CSF, and blood and the mechanisms by which peripheral T cells cross the blood brain barrier and the blood-CSF barrier. This knowledge is relevant for better AD therapies and for identification of novel biomarkers for improved AD diagnostics in the blood and the CSF. The data will be reviewed with the special emphasis on possibilities for development of AD biomarkers.
Collapse
|
44
|
Mutated tau, amyloid and neuroinflammation in Alzheimer disease—A brief review. ACTA ACUST UNITED AC 2016; 51:1-8. [PMID: 26851150 DOI: 10.1016/j.proghi.2016.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 01/08/2023]
|
45
|
Deczkowska A, Baruch K, Schwartz M. Type I/II Interferon Balance in the Regulation of Brain Physiology and Pathology. Trends Immunol 2016; 37:181-192. [PMID: 26877243 DOI: 10.1016/j.it.2016.01.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/11/2022]
Abstract
Recent findings have revealed distinct roles for type I and II interferons (IFN-I and IFN-γ) in the recruitment of immune cells to the central nervous system (CNS) and highlighted the importance of this process for brain maintenance and protection/repair. Furthermore, manipulation of IFN-I and IFN-γ pathways in pathological contexts has yielded conflicting results. We discuss these findings, focusing on two distinct conditions; relapsing remitting multiple sclerosis (RRMS) and brain aging. Using these examples, we propose that regulation of immune cell entry to the CNS is a mechanism through which interaction between IFN-I and -II can affect brain function from its anatomical borders. Deviation from homeostatic IFN-I/-II balance may contribute to distinct brain pathologies, resulting from either insufficient immune surveillance of the CNS and loss of immune-dependent protection, or overwhelming leukocyte entry and immune-mediated destruction.
Collapse
Affiliation(s)
| | - Kuti Baruch
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
46
|
Späni C, Suter T, Derungs R, Ferretti MT, Welt T, Wirth F, Gericke C, Nitsch RM, Kulic L. Reduced β-amyloid pathology in an APP transgenic mouse model of Alzheimer's disease lacking functional B and T cells. Acta Neuropathol Commun 2015; 3:71. [PMID: 26558367 PMCID: PMC4642668 DOI: 10.1186/s40478-015-0251-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 12/31/2022] Open
Abstract
Introduction In Alzheimer’s disease, accumulation and pathological aggregation of amyloid β-peptide is accompanied by the induction of complex immune responses, which have been attributed both beneficial and detrimental properties. Such responses implicate various cell types of the innate and adaptive arm of the immunesystem, both inside the central nervous system, and in the periphery. To investigate the role of the adaptive immune system in brain β-amyloidosis, PSAPP transgenic mice, an established mouse model of Alzheimer’s disease, were crossbred with the recombination activating gene-2 knockout (Rag2 ko) mice lacking functional B and T cells. In a second experimental paradigm, aged PSAPP mice were reconstituted with bone marrow cells from either Rag2 ko or wildtype control mice. Results Analyses from both experimental approaches revealed reduced β-amyloid pathology and decreased brain amyloid β-peptide levels in PSAPP mice lacking functional adaptive immune cells. The decrease in brain β-amyloid pathology was associated with enhanced microgliosis and increased phagocytosis of amyloid β-peptide aggregates. Conclusion The results of this study demonstrate an impact of the adaptive immunity on cerebral β-amyloid pathology in vivo and suggest an influence on microglia-mediated amyloid β-peptide clearance as a possible underlying mechanism. Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0251-x) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
Bryson KJ, Lynch MA. Linking T cells to Alzheimer's disease: from neurodegeneration to neurorepair. Curr Opin Pharmacol 2015; 26:67-73. [PMID: 26516722 DOI: 10.1016/j.coph.2015.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/02/2015] [Accepted: 10/06/2015] [Indexed: 12/14/2022]
Abstract
The overly-simplistic view that inflammatory and anti-inflammatory influences in the brain were respectively detrimental and advantageous in Alzheimer's disease (AD) is being challenged by advances in methodologies, and a debate relating to immune surveillance mechanisms in the brain. In contrast with previous findings, increasing interleukin (IL)-4 and IL-10 in brain by a recently-developed adenoviral delivery method, had detrimental effects in an animal model of AD, and the ability to isolate the choroid plexus has opened the debate on the role of this specialized tissue in immune surveillance. Delivery of polarized T cells to animal models of AD by different routes has yielded contrasting results; analysis of these diverse responses is vital to understand the role of T cells in the brain in AD, first reported over 25 years ago.
Collapse
Affiliation(s)
- Karen J Bryson
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland.
| | - Marina A Lynch
- Trinity College Institute for Neuroscience, Trinity College, Dublin 2, Ireland
| |
Collapse
|
48
|
T Cells-Protective or Pathogenic in Alzheimer's Disease? J Neuroimmune Pharmacol 2015; 10:547-60. [PMID: 25957956 DOI: 10.1007/s11481-015-9612-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/29/2015] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and is characterised by deposits of amyloid β (Aβ), neurofibrillary tangles and neuronal loss. Neuroinflammatory changes have been identified as a feature of the disease, and recent studies have suggested a potential role for the peripheral immune system in driving these changes and, ultimately, the associated neuronal degeneration. A number of reports have detailed changes in the activation state and subtype of T cells in the circulation and CSF of AD patients and there is evidence of T cell infiltration into the brain. In this review, we examine the possible impact of T cell infiltration in the progression of pathology in AD and consider the data obtained from animal models of the disease. We consider how these cells infiltrate the brain, particularly in AD, and discuss whether the presence of T cells in the AD brain is protective or pathogenic. Finally we evaluate the current therapies, particularly those that involve immunization.
Collapse
|
49
|
Hohsfield LA, Humpel C. Migration of blood cells to β-amyloid plaques in Alzheimer's disease. Exp Gerontol 2015; 65:8-15. [PMID: 25752742 PMCID: PMC4526125 DOI: 10.1016/j.exger.2015.03.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/27/2015] [Accepted: 03/05/2015] [Indexed: 12/17/2022]
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that leads to the progressive deterioration of cognitive and memory functions. The deposition of extracellular beta-amyloid (Aβ) senile plaques and intracellular tau neurofibrillary tangles are considered the cardinal pathological hallmarks of AD, however, accumulating evidence indicates that immune cells may also play an important role in disease pathogenesis. Among these immune cells, blood-derived cells and their infiltration into the CNS towards Aβ plaques have been implicated in therapeutic strategies against AD. Here, we review the current literature on blood cell migration into the AD brain and the important players involved in this selective migration towards Aβ plaques.
Collapse
Affiliation(s)
- Lindsay A Hohsfield
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | - Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria.
| |
Collapse
|
50
|
Anderson KM, Olson KE, Estes KA, Flanagan K, Gendelman HE, Mosley RL. Dual destructive and protective roles of adaptive immunity in neurodegenerative disorders. Transl Neurodegener 2014; 3:25. [PMID: 25671101 PMCID: PMC4323229 DOI: 10.1186/2047-9158-3-25] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/28/2014] [Indexed: 12/14/2022] Open
Abstract
Inappropriate T cell responses in the central nervous system (CNS) affect the pathogenesis of a broad range of neuroinflammatory and neurodegenerative disorders that include, but are not limited to, multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer’s disease and Parkinson’s disease. On the one hand immune responses can exacerbate neurotoxic responses; while on the other hand, they can lead to neuroprotective outcomes. The temporal and spatial mechanisms by which these immune responses occur and are regulated in the setting of active disease have gained significant recent attention. Spatially, immune responses that affect neurodegeneration may occur within or outside the CNS. Migration of antigen-specific CD4+ T cells from the periphery to the CNS and consequent immune cell interactions with resident glial cells affect neuroinflammation and neuronal survival. The destructive or protective mechanisms of these interactions are linked to the relative numerical and functional dominance of effector or regulatory T cells. Temporally, immune responses at disease onset or during progression may exhibit a differential balance of immune responses in the periphery and within the CNS. Immune responses with predominate T cell subtypes may differentially manifest migratory, regulatory and effector functions when triggered by endogenous misfolded and aggregated proteins and cell-specific stimuli. The final result is altered glial and neuronal behaviors that influence the disease course. Thus, discovery of neurodestructive and neuroprotective immune mechanisms will permit potential new therapeutic pathways that affect neuronal survival and slow disease progression.
Collapse
Affiliation(s)
- Kristi M Anderson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, The University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, The University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Katherine A Estes
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, The University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Ken Flanagan
- Prothena Biosciences, South San Francisco, 650 Gateway Boulevard, CA 94080 USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, The University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, The University of Nebraska Medical Center, Omaha, NE 68198 USA
| |
Collapse
|