1
|
Liu X, Min Q, Li Y, Chen S. Enhanced Cellular Immunity for Hepatitis B Virus Vaccine: A Novel Polyinosinic-Polycytidylic Acid-Incorporated Adjuvant Leveraging Cytoplasmic Retinoic Acid-Inducible Gene-Like Receptor Activation and Increased Antigen Uptake. Biomater Res 2024; 28:0096. [PMID: 39469105 PMCID: PMC11513446 DOI: 10.34133/bmr.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Conventional aluminum adjuvants exhibit limited cellular immunity. Polyinosinic-polycytidylic acid (poly I:C) activates cytoplasmic retinoic acid-inducible gene-like receptor (RLR), triggering strong T cell activation and cellular responses. However, when applied as an adjuvant, its limited endocytosis and restricted cytoplasmic delivery diminish its effectiveness and increase its toxicity. Hybrid polymer-lipid nanoparticle (PLNP) possesses numerous benefits such as good stability, reduced drug leakage, simple fabrication, easy property modulation, and excellent reproducibility compared to the lipid nanoparticle or the polymeric vector. Here, we developed a novel cationic polymer-lipid hybrid adjuvant capable of incorporating poly I:C to enhance cellular immunity. The hepatitis B surface antigen (HBsAg) was immobilized onto poly I:C-incorprated PLNP (PPLNP) via electrostatic interactions, forming the HBsAg/PPLNP vaccine formulation. The PPLNP adjuvant largely enhanced the cellular endocytosis and cytoplasmic transport of poly I:C, activating RLR followed by promoting type I interferon (IFN) secretion. Meanwhile, PPLNP obviously enhanced the antigen uptake, prolonged antigen retention at the site of administration, and facilitated enhanced transport of antigens to lymph nodes. The HBsAg/PPLNP nanovaccine led to amplified concentrations of antigen-specific immunoglobulin G (IgG), IFN-γ, granzyme B, and an enhanced IgG2a/IgG1 ratio, alongside the FasL+/CD8+ T cell activation, favoring a T helper 1 (TH1)-driven immune response. PPLNP, distinguished by its biocompatibility, ease of fabrication, and effectiveness in augmenting cellular immunity, holds significant promise as a new adjuvant.
Collapse
Affiliation(s)
- Xuhan Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Institute for Inheritance-Based Innovation of Chinese Medicine, Marshall Laboratory of Biomedical Engineering, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Qiuxia Min
- Department of Pharmacy, First People’s Hospital of Yunnan Province,
Kunming University of Science and Technology, Kunming, 650034 Yunnan, China
| | - Yihui Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Siyuan Chen
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211816 China
| |
Collapse
|
2
|
Pejler G, Zhao XO, Fagerström E, Paivandy A. Blockade of endolysosomal acidification suppresses TLR3-mediated proinflammatory signaling in airway epithelial cells. J Allergy Clin Immunol 2024; 154:940-951. [PMID: 38906273 DOI: 10.1016/j.jaci.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Endolysosomal compartments are acidic and contain low pH-dependent proteases, and these conditions are exploited by respiratory viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus, for escaping into the cytosol. Moreover, endolysosomes contain various pattern recognition receptors (PRRs), which respond to virus-derived pathogen-associated molecular patterns (PAMPs) by production of proinflammatory cytokines/chemokines. However, excessive proinflammatory responses can lead to a potentially lethal cytokine storm. OBJECTIVES Here we investigated the endosomal PRR expression profile in primary human small airway epithelial cells (HSAECs), and whether blockade of endolysosomal acidification affects their cytokine/chemokine production after challenge with virus-derived stimulants. METHODS HSAECs were exposed to stimulants mimicking virus-derived PAMPs, either in the absence or presence of compounds causing blockade of endolysosomal acidification, followed by measurement of cytokine expression and release. RESULTS We show that Toll-like receptor 3 (TLR3) is the major endosomal PRR expressed by HSAECs, and that TLR3 expression is strongly induced by TLR3 agonists, but not by a range of other PRR agonists. We also demonstrate that TLR3 engagement with its agonists elicits a robust proinflammatory cytokine/chemokine response, which is profoundly suppressed through blockade of endolysosomal acidification, by bafilomycin A1, monensin, or niclosamide. Using TLR3 reporter cells, it was confirmed that TLR3 signaling is strongly induced by Poly(I:C) and that blockade of endolysosomal acidification efficiently blocked TLR3 signaling. Finally, we show that blockade of endolysosomal acidification causes a reduction in the levels of TLR3 mRNA and protein. CONCLUSIONS These findings show that blockade of endolysosomal acidification suppresses TLR3-dependent cytokine and chemokine production in HSAECs.
Collapse
Affiliation(s)
- Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Xinran O Zhao
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ella Fagerström
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Aida Paivandy
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Ziersch M, Harms D, Neumair L, Kurreck A, Johne R, Bock CT, Kurreck J. Combining RNA Interference and RIG-I Activation to Inhibit Hepatitis E Virus Replication. Viruses 2024; 16:1378. [PMID: 39339854 PMCID: PMC11435946 DOI: 10.3390/v16091378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Hepatitis E virus (HEV) poses a significant global health threat, with an estimated 20 million infections occurring annually. Despite being a self-limiting illness, in most cases, HEV infection can lead to severe outcomes, particularly in pregnant women and individuals with pre-existing liver disease. In the absence of specific antiviral treatments, the exploration of RNAi interference (RNAi) as a targeted strategy provides valuable insights for urgently needed therapeutic interventions against Hepatitis E. We designed small interfering RNAs (siRNAs) against HEV, which target the helicase domain and the open reading frame 3 (ORF3). These target regions will reduce the risk of viral escape through mutations, as they belong to the most conserved regions in the HEV genome. The siRNAs targeting the ORF3 efficiently inhibited viral replication in A549 cells after HEV infection. Importantly, the siRNA was also highly effective at inhibiting HEV in the persistently infected A549 cell line, which provides a suitable model for chronic infection in patients. Furthermore, we showed that a 5' triphosphate modification on the siRNA sense strand activates the RIG-I receptor, a cytoplasmic pattern recognition receptor that recognizes viral RNA. Upon activation, RIG-I triggers a signaling cascade, effectively suppressing HEV replication. This dual-action strategy, combining the activation of the adaptive immune response and the inherent RNAi pathway, inhibits HEV replication successfully and may lead to the development of new therapies.
Collapse
Affiliation(s)
- Mathias Ziersch
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Dominik Harms
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enterovirus, Robert Koch Institute, 13353 Berlin, Germany
| | - Lena Neumair
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Anke Kurreck
- Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
- BioNukleo GmbH, Ackerstrasse 76, 13355 Berlin, Germany
| | - Reimar Johne
- Department of Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany
| | - C-Thomas Bock
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enterovirus, Robert Koch Institute, 13353 Berlin, Germany
| | - Jens Kurreck
- Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| |
Collapse
|
4
|
Li D, Mo R, Li X, Cheng R, Xie J, Li H, Yang Y, Li S, Li H, Yan Z, Wei S, Idris A, Li X, Feng R. Mammalian orthoreovirus capsid protein σ3 antagonizes RLR-mediated antiviral responses by degrading MAVS. mSphere 2024; 9:e0023624. [PMID: 38757961 PMCID: PMC11332348 DOI: 10.1128/msphere.00236-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 05/18/2024] Open
Abstract
Mammalian orthoreovirus (MRV) outer capsid protein σ3 is a multifunctional protein containing a double-stranded RNA-binding domain, which facilitates viral entry and assembly. We reasoned that σ3 has an innate immune evasion function. Here, we show that σ3 protein localizes in the mitochondria and interacts with mitochondrial antiviral signaling protein (MAVS) to activate the intrinsic mitochondria-mediated apoptotic pathway. Consequently, σ3 protein promotes the degradation of MAVS through the intrinsic caspase-9/caspase-3 apoptotic pathway. Moreover, σ3 protein can also inhibit the expression of the components of the RNA-sensing retinoic acid-inducible gene (RIG)-like receptor (RLR) signaling pathway to block antiviral type I interferon responses. Mechanistically, σ3 inhibits RIG-I and melanoma differentiation-associated gene 5 expression is independent of its inhibitory effect on MAVS. Overall, we demonstrate that the MRV σ3 protein plays a vital role in negatively regulating the RLR signaling pathway to inhibit antiviral responses. This enables MRV to evade host defenses to facilitate its own replication providing a target for the development of effective antiviral drugs against MRV. IMPORTANCE Mammalian orthoreovirus (MRV) is an important zoonotic pathogen, but the regulatory role of its viral proteins in retinoic acid-inducible gene-like receptor (RLR)-mediated antiviral responses is still poorly understood. Herein, we show that MRV σ3 protein co-localizes with mitochondrial antiviral signaling protein (MAVS) in the mitochondria and promotes the mitochondria-mediated intrinsic apoptotic pathway to cleave and consequently degrade MAVS. Furthermore, tryptophan at position 133 of σ3 protein plays a key role in the degradation of MAVS. Importantly, we show that MRV outer capsid protein σ3 is a key factor in antagonizing RLR-mediated antiviral responses, providing evidence to better unravel the infection and transmission mechanisms of MRV.
Collapse
Affiliation(s)
- Dianyu Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Rongqian Mo
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Xiaoyi Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Rongrong Cheng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jingying Xie
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Hongshan Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yanmei Yang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Shasha Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Huixia Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Zhenfang Yan
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Suocheng Wei
- College of Life science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Adi Idris
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Xiangrong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
5
|
Wang X, Mei J, Zhang F, Wei M, Xie Y, Bayoude A, Liu X, Zhang B, Yu B. A ternary correlation multi-symptom network strategy based on in vivo chemical profile identification and metabolomics to explore the molecular basis of Ephedra herb against viral pneumonia. J Sep Sci 2024; 47:e2400090. [PMID: 38819782 DOI: 10.1002/jssc.202400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024]
Abstract
Ephedra herb (EH), an important medicine prescribed in herbal formulas by Traditional Chinese Medicine practitioners, has been widely used in the treatment of viral pneumonia in China. However, the molecular basis of EH in viral pneumonia remains unclear. In this study, a ternary correlation multi-symptom network strategy was established based on in vivo chemical profile identification and metabolomics to explore the molecular basis of EH against viral pneumonia. Results showed that 143 compounds of EH and 70 prototype components were identified in vivo. EH could reduce alveolar-capillary barrier disruption in rats with viral pneumonia and significantly downregulate the expression of inflammatory factors and bronchoalveolar lavage fluid. Plasma metabolomics revealed that EH may be involved in the regulation of arachidonic acid, tryptophan, tyrosine, nicotinate, and nicotinamide metabolism. The multi-symptom network showed that 12 compounds have an integral function in the treatment of viral pneumonia by intervening in many pathways related to viruses, immunity and inflammation, and lung injury. Further verification demonstrated that sinapic acid and frambinone can regulate the expression of related genes. It has been shown to be a promising representative of the pharmacological constituents of ephedra.
Collapse
Affiliation(s)
- Xiaoyan Wang
- State Key Laboratory of Natural Medicines, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Jie Mei
- State Key Laboratory of Natural Medicines, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Fan Zhang
- State Key Laboratory of Natural Medicines, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Miaomiao Wei
- State Key Laboratory of Natural Medicines, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Yujun Xie
- State Key Laboratory of Natural Medicines, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Alamusi Bayoude
- State Key Laboratory of Natural Medicines, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Xiufeng Liu
- State Key Laboratory of Natural Medicines, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
- Research Center for Traceability and Standardization of TCMs, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| | - Boli Zhang
- State Key Laboratory of Component-Based Chinese Medicine, School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
- Research Center for Traceability and Standardization of TCMs, School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
6
|
Yuan X, Wu Z, Guo J, Luo D, Li T, Cao Q, Ren X, Fang H, Xu D, Cao Y. Natural Wood-Derived Macroporous Cellulose for Highly Efficient and Ultrafast Elimination of Double-Stranded RNA from In Vitro-Transcribed mRNA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303321. [PMID: 37540501 DOI: 10.1002/adma.202303321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Double-stranded RNA (dsRNA) is a major impurity that can induce innate immune responses and cause adverse drug reactions. Removing dsRNA is an essential and non-trivial process in manufacturing mRNA. Current methods for dsRNA elimination use either high-performance liquid chromatography or microcrystalline cellulose, rendering the process complex, expensive, toxic, and/or time-consuming. This study introduces a highly efficient and ultrafast method for dsRNA elimination using natural wood-derived macroporous cellulose (WMC). With a naturally formed large total pore area and low tortuosity, WMC removes up to 98% dsRNA within 5 min. This significantly shortens the time for mRNA purification and improves purification efficiency. WMC can also be filled into chromatographic columns of different sizes and integrates with fast-protein liquid chromatography for large-scale mRNA purification to meet the requirements of mRNA manufacture. This study further shows that WMC purification improves the enhanced green fluorescent protein mRNA expression efficiency by over 28% and significantly reduces cytokine secretion and innate immune responses in the cells. Successfully applying WMC provides an ultrafast and efficient platform for mRNA purification, enabling large-scale production with significant cost reduction.
Collapse
Affiliation(s)
- Xiushuang Yuan
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhanfeng Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular, Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Guo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Dengwang Luo
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tianyao Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qinghao Cao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangyu Ren
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Han Fang
- Bisheng Biotech Company, Beijing, 100083, China
| | - Dawei Xu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuhong Cao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Castellano M, Blanco V, Calzi ML, Costa B, Witwer K, Hill M, Cayota A, Segovia M, Tosar JP. Ribonuclease activity undermines immune sensing of naked extracellular RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590771. [PMID: 38712104 PMCID: PMC11071435 DOI: 10.1101/2024.04.23.590771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The plasma membrane and the membrane of endosomal vesicles are considered physical barriers preventing extracellular RNA uptake. While naked RNA can be spontaneously internalized by certain cells types, functional delivery of naked RNA into the cytosol has been rarely observed. Here we show that extracellular ribonucleases, mainly derived from cell culture supplements, have so far hindered the study of extracellular RNA functionality. In the presence of active ribonuclease inhibitors (RI), naked bacterial RNA is pro-inflammatory when spiked in the media of dendritic cells and macrophages. In murine cells, this response mainly depends on the action of endosomal Toll-like receptors. However, we also show that naked RNA can perform endosomal escape and engage with cytosolic RNA sensors and ribosomes. For example, naked mRNAs encoding reporter proteins can be spontaneously internalized and translated by a variety of cell types, in an RI-dependent manner. In vivo, RI co-injection enhances the activation induced by naked extracellular RNA on splenic lymphocytes and myeloid-derived leukocytes. Furthermore, naked extracellular RNA is inherently pro-inflammatory in ribonuclease-poor compartments such as the peritoneal cavity. Overall, these results demonstrate that naked RNA is bioactive and does not need encapsulation inside synthetic or biological lipid vesicles for functional uptake, making a case for nonvesicular extracellular RNA-mediated intercellular communication.
Collapse
Affiliation(s)
- Mauricio Castellano
- Functional Genomics Laboratory, Institut Pasteur Montevideo, Uruguay
- Immunoregulation and Inflammation Laboratory, Institut Pasteur Montevideo, Uruguay
| | - Valentina Blanco
- Functional Genomics Laboratory, Institut Pasteur Montevideo, Uruguay
| | - Marco Li Calzi
- Functional Genomics Laboratory, Institut Pasteur Montevideo, Uruguay
| | - Bruno Costa
- Functional Genomics Laboratory, Institut Pasteur Montevideo, Uruguay
- Analytical Biochemistry Unit, School of Science, Universidad de la República, Uruguay
| | - Kenneth Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- EV Core Facility “EXCEL”, Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marcelo Hill
- Immunoregulation and Inflammation Laboratory, Institut Pasteur Montevideo, Uruguay
- Academic Unit of Immunobiology, School of Medicine, Universidad de la República, Uruguay
| | - Alfonso Cayota
- Functional Genomics Laboratory, Institut Pasteur Montevideo, Uruguay
- Hospital de Clínicas, Universidad de la República, Uruguay
| | - Mercedes Segovia
- Immunoregulation and Inflammation Laboratory, Institut Pasteur Montevideo, Uruguay
- Academic Unit of Immunobiology, School of Medicine, Universidad de la República, Uruguay
| | - Juan Pablo Tosar
- Functional Genomics Laboratory, Institut Pasteur Montevideo, Uruguay
- Analytical Biochemistry Unit, School of Science, Universidad de la República, Uruguay
| |
Collapse
|
8
|
Madsen HB, Pease LI, Scanlan RL, Akbari M, Rasmussen LJ, Shanley DP, Bohr VA. The DNA repair enzyme, aprataxin, plays a role in innate immune signaling. Front Aging Neurosci 2023; 15:1290681. [PMID: 38161589 PMCID: PMC10754971 DOI: 10.3389/fnagi.2023.1290681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Ataxia with oculomotor apraxia type 1 (AOA1) is a progressive neurodegenerative disorder characterized by a gradual loss of coordination of hand movements, speech, and eye movements. AOA1 is caused by an inactivation mutation in the APTX gene. APTX resolves abortive DNA ligation intermediates. APTX deficiency may lead to the accumulation of 5'-AMP termini, especially in the mitochondrial genome. The consequences of APTX deficiency includes impaired mitochondrial function, increased DNA single-strand breaks, elevated reactive oxygen species production, and altered mitochondrial morphology. All of these processes can cause misplacement of nuclear and mitochondrial DNA, which can activate innate immune sensors to elicit an inflammatory response. This study explores the impact of APTX knockout in microglial cells, the immune cells of the brain. RNA-seq analysis revealed significant differences in the transcriptomes of wild-type and APTX knockout cells, especially in response to viral infections and innate immune pathways. Specifically, genes and proteins involved in the cGAS-STING and RIG-I/MAVS pathways were downregulated in APTX knockout cells, which suggests an impaired immune response to cytosolic DNA and RNA. The clinical relevance of these findings was supported by analyzing publicly available RNA-seq data from AOA1 patient cell lines. Comparisons between APTX-deficient patient cells and healthy control cells also revealed altered immune responses and dysregulated DNA- and RNA-sensing pathways in the patient cells. Overall, this study highlights the critical role of APTX in regulating innate immunity, particularly in DNA- and RNA-sensing pathways. Our findings contribute to a better understanding of the underlying molecular mechanisms of AOA1 pathology and highlights potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Helena B. Madsen
- Center for Healthy Aging, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Louise I. Pease
- CAMPUS for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | | | - Mansour Akbari
- Center for Healthy Aging, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lene J. Rasmussen
- Center for Healthy Aging, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Daryl P. Shanley
- CAMPUS for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - Vilhelm A. Bohr
- Center for Healthy Aging, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Korwek Z, Czerkies M, Jaruszewicz-Błońska J, Prus W, Kosiuk I, Kochańczyk M, Lipniacki T. Nonself RNA rewires IFN-β signaling: A mathematical model of the innate immune response. Sci Signal 2023; 16:eabq1173. [PMID: 38085817 DOI: 10.1126/scisignal.abq1173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
Type I interferons (IFNs) are key coordinators of the innate immune response to viral infection, which, through activation of the transcriptional regulators STAT1 and STAT2 (STAT1/2) in bystander cells, induce the expression of IFN-stimulated genes (ISGs). Here, we showed that in cells transfected with poly(I:C), an analog of viral RNA, the transcriptional activity of STAT1/2 was terminated because of depletion of the interferon-β (IFN-β) receptor, IFNAR. Activation of RNase L and PKR, products of two ISGs, not only hindered the replenishment of IFNAR but also suppressed negative regulators of IRF3 and NF-κB, consequently promoting IFNB transcription. We incorporated these findings into a mathematical model of innate immunity. By coupling signaling through the IRF3-NF-κB and STAT1/2 pathways with the activities of RNase L and PKR, the model explains how poly(I:C) switches the transcriptional program from being STAT1/2 induced to being IRF3 and NF-κB induced, which converts IFN-β-responding cells to IFN-β-secreting cells.
Collapse
Affiliation(s)
- Zbigniew Korwek
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Maciej Czerkies
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Joanna Jaruszewicz-Błońska
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Wiktor Prus
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Ilona Kosiuk
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Marek Kochańczyk
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Tomasz Lipniacki
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research of the Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
10
|
Tewari DN, Biswas A, Chakrabarti AK, Dutta S. AMFR promotes innate immunity activation and proteasomal degradation of HMGCR in response to influenza virus infection in A549 cells. Virology 2023; 587:109875. [PMID: 37703797 DOI: 10.1016/j.virol.2023.109875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023]
Abstract
Differential regulation of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), which is considered the rate-limiting enzyme of the cholesterol biosynthesis pathway, has been reported in case of infection with many viruses. In our study, we have found that influenza virus infection decreases total cellular cholesterol level which is directly related to the downregulation of HMGCR protein. We found that HMGCR is degraded through ubiquitination and proteasomal-mediated pathway upon viral infection. Upregulation of Autocrine Motility Factor Receptor (AMFR), which is an E3-ubiquitin ligase of HMGCR, was also observed. Furthermore, knockdown of AMFR inhibits ubiquitination of HMGCR and also leads to inactivation of the innate immunity components TANK-binding kinase 1 (TBK1) and Interferon regulatory factor 3 (IRF3). Our study is the first to show the role of HMGCR and AMFR in influenza virus infection and reveals that AMFR plays a crucial role in the downregulation of HMGCR and the activation of innate immunity following influenza virus infection.
Collapse
Affiliation(s)
- Devendra Nath Tewari
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India
| | - Asim Biswas
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India
| | - Alok Kumar Chakrabarti
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India.
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, 700010, India
| |
Collapse
|
11
|
Wang J, Wang P, Shao Y, He D. Advancing Treatment Strategies: A Comprehensive Review of Drug Delivery Innovations for Chronic Inflammatory Respiratory Diseases. Pharmaceutics 2023; 15:2151. [PMID: 37631365 PMCID: PMC10458134 DOI: 10.3390/pharmaceutics15082151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic inflammatory respiratory diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis, present ongoing challenges in terms of effective treatment and management. These diseases are characterized by persistent inflammation in the airways, leading to structural changes and compromised lung function. There are several treatments available for them, such as bronchodilators, immunomodulators, and oxygen therapy. However, there are still some shortcomings in the effectiveness and side effects of drugs. To achieve optimal therapeutic outcomes while minimizing systemic side effects, targeted therapies and precise drug delivery systems are crucial to the management of these diseases. This comprehensive review focuses on the role of drug delivery systems in chronic inflammatory respiratory diseases, particularly nanoparticle-based drug delivery systems, inhaled corticosteroids (ICSs), novel biologicals, gene therapy, and personalized medicine. By examining the latest advancements and strategies in these areas, we aim to provide a thorough understanding of the current landscape and future prospects for improving treatment outcomes in these challenging conditions.
Collapse
Affiliation(s)
- Junming Wang
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; (J.W.); (P.W.); (Y.S.)
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Pengfei Wang
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; (J.W.); (P.W.); (Y.S.)
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Yiru Shao
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; (J.W.); (P.W.); (Y.S.)
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
| | - Daikun He
- Center of Emergency and Critical Care Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China; (J.W.); (P.W.); (Y.S.)
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai 201508, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai 201508, China
- Department of General Practice, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of General Practice, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Wagner R, Amonkar GM, Wang W, Shui JE, Bankoti K, Tse WH, High FA, Zalieckas JM, Buchmiller TL, Zani A, Keijzer R, Donahoe PK, Lerou PH, Ai X. A Tracheal Aspirate-derived Airway Basal Cell Model Reveals a Proinflammatory Epithelial Defect in Congenital Diaphragmatic Hernia. Am J Respir Crit Care Med 2023; 207:1214-1226. [PMID: 36731066 PMCID: PMC10161756 DOI: 10.1164/rccm.202205-0953oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 02/02/2023] [Indexed: 02/04/2023] Open
Abstract
Rationale: Congenital diaphragmatic hernia (CDH) is characterized by incomplete closure of the diaphragm and lung hypoplasia. The pathophysiology of lung defects in CDH is poorly understood. Objectives: To establish a translational model of human airway epithelium in CDH for pathogenic investigation and therapeutic testing. Methods: We developed a robust methodology of epithelial progenitor derivation from tracheal aspirates of newborns. Basal stem cells (BSCs) from patients with CDH and preterm and term non-CDH control subjects were derived and analyzed by bulk RNA sequencing, assay for transposase accessible chromatin with sequencing, and air-liquid interface differentiation. Lung sections from fetal human CDH samples and the nitrofen rat model of CDH were subjected to histological assessment of epithelial defects. Therapeutics to restore epithelial differentiation were evaluated in human epithelial cell culture and the nitrofen rat model of CDH. Measurements and Main Results: Transcriptomic and epigenetic profiling of CDH and control BSCs reveals a proinflammatory signature that is manifested by hyperactive nuclear factor kappa B and independent of severity and hernia size. In addition, CDH BSCs exhibit defective epithelial differentiation in vitro that recapitulates epithelial phenotypes found in fetal human CDH lung samples and fetal tracheas of the nitrofen rat model of CDH. Furthermore, blockade of nuclear factor kappa B hyperactivity normalizes epithelial differentiation phenotypes of human CDH BSCs in vitro and in nitrofen rat tracheas in vivo. Conclusions: Our findings have identified an underlying proinflammatory signature and BSC differentiation defects as a potential therapeutic target for airway epithelial defects in CDH.
Collapse
Affiliation(s)
- Richard Wagner
- Division of Newborn Medicine and
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Pediatric Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Gaurang M. Amonkar
- Division of Newborn Medicine and
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Wei Wang
- Division of Newborn Medicine and
| | | | | | - Wai Hei Tse
- Departments of Surgery, Pediatrics & Child Health, Physiology & Pathophysiology, University of Manitoba and Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Frances A. High
- Division of Medical Genetics, Department of Pediatrics, and
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Surgery and
| | - Jill M. Zalieckas
- Division of Pediatric Surgery, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Terry L. Buchmiller
- Division of Pediatric Surgery, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Augusto Zani
- Department of Pediatric Surgery, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Richard Keijzer
- Departments of Surgery, Pediatrics & Child Health, Physiology & Pathophysiology, University of Manitoba and Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Patricia K. Donahoe
- Pediatric Surgical Research Laboratories, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
13
|
Villamayor L, Rivero V, López-García D, Topham DJ, Martínez-Sobrido L, Nogales A, DeDiego ML. Interferon alpha inducible protein 6 is a negative regulator of innate immune responses by modulating RIG-I activation. Front Immunol 2023; 14:1105309. [PMID: 36793726 PMCID: PMC9923010 DOI: 10.3389/fimmu.2023.1105309] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023] Open
Abstract
Interferons (IFNs), IFN-stimulated genes (ISGs), and inflammatory cytokines mediate innate immune responses, and are essential to establish an antiviral response. Within the innate immune responses, retinoic acid-inducible gene I (RIG-I) is a key sensor of virus infections, mediating the transcriptional induction of IFNs and inflammatory proteins. Nevertheless, since excessive responses could be detrimental to the host, these responses need to be tightly regulated. In this work, we describe, for the first time, how knocking-down or knocking-out the expression of IFN alpha-inducible protein 6 (IFI6) increases IFN, ISG, and pro-inflammatory cytokine expression after the infections with Influenza A Virus (IAV), Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), and Sendai Virus (SeV), or poly(I:C) transfection. We also show how overexpression of IFI6 produces the opposite effect, in vitro and in vivo, indicating that IFI6 negatively modulates the induction of innate immune responses. Knocking-out or knocking-down the expression of IFI6 diminishes the production of infectious IAV and SARS-CoV-2, most likely because of its effect on antiviral responses. Importantly, we report a novel interaction of IFI6 with RIG-I, most likely mediated through binding to RNA, that affects RIG-I activation, providing a molecular mechanism for the effect of IFI6 on negatively regulating innate immunity. Remarkably, these new functions of IFI6 could be targeted to treat diseases associated with an exacerbated induction of innate immune responses and to combat viral infections, such as IAV and SARS-CoV-2.
Collapse
Affiliation(s)
- Laura Villamayor
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Vanessa Rivero
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Darío López-García
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - David J. Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Luis Martínez-Sobrido
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Aitor Nogales
- Center for Animal Health Research, CISA-INIA-CSIC, Valdeolmos, Madrid, Spain
| | - Marta L. DeDiego
- Department of Molecular and Cell Biology. Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain,*Correspondence: Marta L. DeDiego,
| |
Collapse
|
14
|
Villamayor L, López-García D, Rivero V, Martínez-Sobrido L, Nogales A, DeDiego ML. The IFN-stimulated gene IFI27 counteracts innate immune responses after viral infections by interfering with RIG-I signaling. Front Microbiol 2023; 14:1176177. [PMID: 37187533 PMCID: PMC10175689 DOI: 10.3389/fmicb.2023.1176177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
The recognition of viral nucleic acids by host pattern recognition receptors (PRRs) is critical for initiating innate immune responses against viral infections. These innate immune responses are mediated by the induction of interferons (IFNs), IFN-stimulated genes (ISGs) and pro-inflammatory cytokines. However, regulatory mechanisms are critical to avoid excessive or long-lasting innate immune responses that may cause detrimental hyperinflammation. Here, we identified a novel regulatory function of the ISG, IFN alpha inducible protein 27 (IFI27) in counteracting the innate immune responses triggered by cytoplasmic RNA recognition and binding. Our model systems included three unrelated viral infections caused by Influenza A virus (IAV), Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), and Sendai virus (SeV), and transfection with an analog of double-stranded (ds) RNA. Furthermore, we found that IFI27 has a positive effect on IAV and SARS-CoV-2 replication, most likely due to its ability to counteract host-induced antiviral responses, including in vivo. We also show that IFI27 interacts with nucleic acids and PRR retinoic acid-inducible gene I (RIG-I), being the interaction of IFI27 with RIG-I most likely mediated through RNA binding. Interestingly, our results indicate that interaction of IFI27 with RIG-I impairs RIG-I activation, providing a molecular mechanism for the effect of IFI27 on modulating innate immune responses. Our study identifies a molecular mechanism that may explain the effect of IFI27 in counterbalancing innate immune responses to RNA viral infections and preventing excessive innate immune responses. Therefore, this study will have important implications in drug design to control viral infections and viral-induced pathology.
Collapse
Affiliation(s)
- Laura Villamayor
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Darío López-García
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Vanessa Rivero
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | - Aitor Nogales
- Center for Animal Health Research, CISA-INIA-CSIC, Madrid, Spain
| | - Marta L. DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- *Correspondence: Marta L. DeDiego,
| |
Collapse
|
15
|
Ramos B, Ferreira AR, Ribeiro D. Tools to Investigate the Peroxisome-Dependent Antiviral Response. Methods Mol Biol 2023; 2643:295-307. [PMID: 36952193 DOI: 10.1007/978-1-0716-3048-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The importance of peroxisomes in the context of viral infections has been increasingly demonstrated in recent years. The discovery that MAVS localizes at peroxisomes and that peroxisomal and mitochondrial MAVS perform complementing functions within the antiviral response has raised the interest in studying the peroxisome-dependent signaling in the context of infection by different viruses. To that end, specific experimental procedures should be applied, taking into consideration the endogenous localization of MAVS at both organelles. The analysis of peroxisomal MAVS activation requires, hence, the preliminar generation and validation of cell lines where MAVS localizes solely at peroxisomes, as well as other specific cellular tools. Here, we present a detailed protocol to analyse the peroxisome-dependent antiviral response, using virus-specific and virus-unspecific stimuli.
Collapse
Affiliation(s)
- Bruno Ramos
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Ana Rita Ferreira
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Daniela Ribeiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
16
|
Otero AM, Antonson AM. At the crux of maternal immune activation: Viruses, microglia, microbes, and IL-17A. Immunol Rev 2022; 311:205-223. [PMID: 35979731 PMCID: PMC9804202 DOI: 10.1111/imr.13125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inflammation during prenatal development can be detrimental to neurodevelopmental processes, increasing the risk of neuropsychiatric disorders. Prenatal exposure to maternal viral infection during pregnancy is a leading environmental risk factor for manifestation of these disorders. Preclinical animal models of maternal immune activation (MIA), established to investigate this link, have revealed common immune and microbial signaling pathways that link mother and fetus and set the tone for prenatal neurodevelopment. In particular, maternal intestinal T helper 17 cells, educated by endogenous microbes, appear to be key drivers of effector IL-17A signals capable of reaching the fetal brain and causing neuropathologies. Fetal microglial cells are particularly sensitive to maternally derived inflammatory and microbial signals, and they shift their functional phenotype in response to MIA. Resulting cortical malformations and miswired interneuron circuits cause aberrant offspring behaviors that recapitulate core symptoms of human neurodevelopmental disorders. Still, the popular use of "sterile" immunostimulants to initiate MIA has limited translation to the clinic, as these stimulants fail to capture biologically relevant innate and adaptive inflammatory sequelae induced by live pathogen infection. Thus, there is a need for more translatable MIA models, with a focus on relevant pathogens like seasonal influenza viruses.
Collapse
Affiliation(s)
- Ashley M. Otero
- Neuroscience ProgramUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Adrienne M. Antonson
- Department of Animal SciencesUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
17
|
Yap JMG, Ueda T, Kanemitsu Y, Takeda N, Fukumitsu K, Fukuda S, Uemura T, Tajiri T, Ohkubo H, Maeno K, Ito Y, Oguri T, Ugawa S, Niimi A. Human Lung Fibroblasts Exhibit Induced Inflammation Memory via Increased IL6 Gene Expression and Release. Front Immunol 2022; 13:921728. [PMID: 35941890 PMCID: PMC9356221 DOI: 10.3389/fimmu.2022.921728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Fibroblasts of different origins are known to possess stromal memory after inflammatory episodes. However, there are no studies exploring human lung fibroblast memory which may predict a subsequent inflammatory response in chronic respiratory diseases and COVID-19. MRC-5 and HF19 human lung fibroblast cell lines were treated using different primary and secondary stimulus combinations: TNFα–WD–TNFα, Poly (I:C)–WD–TNFα, TNFα–WD–Poly (I:C), or LPS–WD–TNFα with a 24-h rest period (withdrawal period; WD) between the two 24-h stimulations. TLR3 and NF-κB inhibitors were used to determine pathways involved. The effect of SARS-Cov-2 spike protein to inflammatory response of lung fibroblasts was also investigated. mRNA expressions of genes and IL6 release were measured using qRT-PCR and ELISA, respectively. Statistical significance was determined by using one- or two-way ANOVA, followed by Bonferroni’s post hoc analysis for comparison of multiple groups. Preexposure with Poly (I:C) significantly increased TNFα-induced IL6 gene expression and IL6 release in both cell lines, while it affected neither gene expressions of IL1B, IL2, IL8, and MMP8 nor fibrosis-related genes: ACTA2, COL1A1, POSTN, and TGFB1. Inhibition of TLR3 or NF-κB during primary stimulation significantly downregulated IL6 release. Simultaneous treatment of MRC-5 cells with SARS-CoV-2 spike protein further increased TNFα-induced IL6 release; however, preexposure to Poly (I:C) did not affect it. Human lung fibroblasts are capable of retaining inflammatory memory and showed an augmented response upon secondary exposure. These results may contribute to the possibility of training human lung fibroblasts to respond suitably on inflammatory episodes after viral infection.
Collapse
Affiliation(s)
- Jennifer Maries Go Yap
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Takashi Ueda
- Department of Anatomy and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Yoshihiro Kanemitsu
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
- *Correspondence: Yoshihiro Kanemitsu,
| | - Norihisa Takeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Kensuke Fukumitsu
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Satoshi Fukuda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Takehiro Uemura
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Tomoko Tajiri
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Hirotsugu Ohkubo
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Ken Maeno
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Yutaka Ito
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Testsuya Oguri
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Shinya Ugawa
- Department of Anatomy and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| |
Collapse
|
18
|
Muresan XM, Slabáková E, Procházková J, Drápela S, Fedr R, Pícková M, Vacek O, Víchová R, Suchánková T, Bouchal J, Kürfürstová D, Král M, Hulínová T, Sýkora RP, Študent V, Hejret V, van Weerden WM, Puhr M, Pustka V, Potěšil D, Zdráhal Z, Culig Z, Souček K. Toll-Like Receptor 3 Overexpression Induces Invasion of Prostate Cancer Cells, whereas Its Activation Triggers Apoptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1321-1335. [PMID: 35750257 DOI: 10.1016/j.ajpath.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/29/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023]
Abstract
Toll-like receptor 3 (TLR3) is an endosomal receptor expressed in several immune and epithelial cells. Recent studies have highlighted its expression also in solid tumors, including prostate cancer (PCa), and described its role mainly in the proinflammatory response and induction of apoptosis. It has been found up-regulated in some castration-resistant prostate cancers. However, the role of TLR3 in prostate cancer progression remains largely unknown. We have experimentally demonstrated that exogenous TLR3 activation in PCa cell lines leads to the significant induction of secretion of the cytokines IL-6, IL-8, and interferon-β, depending on the model and chemoresistance status. Transcriptomic analysis of TLR3-overexpressing cells revealed a functional program that is enriched for genes involved in the regulation of cell motility, migration, and tumor invasiveness. Increased motility, migration, and invasion in TLR3-overexpressing cell line were confirmed by several in vitro assays and using an orthotopic prostate xenograft model in vivo. Furthermore, TLR3-ligand induced apoptosis via cleavage of caspase-3/7 and poly (ADP-ribose) polymerase, predominantly in TLR3-overexpressing cells. We conclude that TLR3 may be involved in prostate cancer progression and metastasis; however, it might also represent an Achilles heel of PCa, which can be exploited for targeted therapy.
Collapse
Affiliation(s)
- Ximena M Muresan
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic
| | - Eva Slabáková
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic
| | - Jiřina Procházková
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic
| | - Stanislav Drápela
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Radek Fedr
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic
| | - Markéta Pícková
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ondřej Vacek
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ráchel Víchová
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic
| | - Tereza Suchánková
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic
| | | | - Milan Král
- Department of Urology, University Hospital, Olomouc, Czech Republic
| | - Tereza Hulínová
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc, Czech Republic; Department of Clinical and Molecular Pathology, University Hospital, Ostrava, Czech Republic
| | - Radek P Sýkora
- Department of Urology, University Hospital, Ostrava, Czech Republic
| | - Vladimír Študent
- Department of Urology, University Hospital, Olomouc, Czech Republic
| | - Václav Hejret
- Bioinformatics Core Facility Central European Institute of Technology, Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Wytske M van Weerden
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Martin Puhr
- Proteomics Core Facility Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Václav Pustka
- Department of Urology, Experimental Urology, Innsbruck Medical University, Innsbruck, Austria
| | - David Potěšil
- Department of Urology, Experimental Urology, Innsbruck Medical University, Innsbruck, Austria
| | - Zbyněk Zdráhal
- Department of Urology, Experimental Urology, Innsbruck Medical University, Innsbruck, Austria
| | - Zoran Culig
- International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic; Proteomics Core Facility Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of Czech Academy of Sciences, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
19
|
Okuda K, Sato Y, Iwakawa K, Sasaki K, Okabe N, Maeki M, Tokeshi M, Harashima H. On the size-regulation of RNA-loaded lipid nanoparticles synthesized by microfluidic device. J Control Release 2022; 348:648-659. [PMID: 35716883 DOI: 10.1016/j.jconrel.2022.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/27/2022] [Accepted: 06/10/2022] [Indexed: 10/18/2022]
Abstract
The use of lipid nanoparticles (LNPs) for nucleic acid delivery is now becoming a promising strategy with a number of clinical trials as vaccines or as novel therapies against a variety of genetic and infectious diseases. The use of microfluidics for the synthesis of the LNPs has attracted interest because of its considerable advantages over other conventional synthetic methods including scalability, reproducibility, and speed. However, despite the potential usefulness of large particles for nucleic acid delivery to dendritic cells (DCs) as a vaccine, the particle size of the LNPs prepared using microfluidics is typically limited to approximately from 30 to 100 nm. In this study, focusing on Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, the effect of some synthetic parameters, including total flow rate, flow rate ratio, buffer pH, lipid concentration, molar ratio of PEG-lipid as well as salt concentration, on particle size was systematically examined by means of the design of experiment approaches. The findings indicated that the simple addition of salt (e.g. NaCl) to a buffer containing nucleic acids contributed greatly to the synthesis of large LNPs over 200 nm and this effect was concentration-dependent with respect to the salt. The effect of salt on particle size was consistent with a Hofmeister series. The systemic injection of larger mRNA-loaded LNPs resulted in a higher transgene expression in mouse splenic DCs, a higher activation of various splenic immune cells, and had a superior effect as a therapeutic cancer vaccine in a syngeneic mouse model compared to the smaller-sized counterpart with constant lipid composition prepared with lower NaCl concentration. Collectively, size-regulation by the simple addition of salt is a promising strategy for developing potent LNPs.
Collapse
Affiliation(s)
- Kento Okuda
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-Ku, Sapporo 060-0812, Japan
| | - Yusuke Sato
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-Ku, Sapporo 060-0812, Japan.
| | - Kazuki Iwakawa
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-Ku, Sapporo 060-0812, Japan
| | - Kosuke Sasaki
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-Ku, Sapporo 060-0812, Japan
| | - Nana Okabe
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-Ku, Sapporo 060-0812, Japan
| | - Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-Ku, Sapporo 060-8628, Japan; JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-Ku, Sapporo 060-8628, Japan; Innovative Research Center for Preventive Medical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Institute of Nano-Life Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hideyoshi Harashima
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-Ku, Sapporo 060-0812, Japan.
| |
Collapse
|
20
|
Strategies for fighting pandemic virus infections: Integration of virology and drug delivery. J Control Release 2022; 343:361-378. [PMID: 35122872 PMCID: PMC8810279 DOI: 10.1016/j.jconrel.2022.01.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Respiratory viruses have sometimes resulted in worldwide pandemics, with the influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) being major participants. Long-term efforts have made it possible to control the influenza virus, but seasonal influenza continues to take many lives each year, and a pandemic influenza virus sometimes emerges. Although vaccines for coronavirus disease 2019 (COVID-19) have been developed, we are not yet able to coexist with the SARS-CoV-2. To overcome such viruses, it is necessary to obtain knowledge about international surveillance systems, virology, ecology and to determine that immune responses are effective. The information must then be transferred to drugs. Delivery systems would be expected to contribute to the rational development of drugs. In this review, virologist and drug delivery system (DDS) researchers discuss drug delivery strategies, especially the use of lipid-based nanocarriers, for fighting to respiratory virus infections.
Collapse
|
21
|
Kan S, Grainge C, Nichol K, Reid A, Knight D, Sun Y, Bartlett N, Liang M. TLR7 agonist loaded airway epithelial targeting nanoparticles stimulate innate immunity and suppress viral replication in human bronchial epithelial cells. Int J Pharm 2022; 617:121586. [PMID: 35181464 DOI: 10.1016/j.ijpharm.2022.121586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
Abstract
Nanoparticle-based delivery is a strategy for increasing the therapeutic window of inhaled immunomodulatory drugs that have inflammatory activity. TLR7 agonists are a class of immunomodulators that have been considered for the treatment of virus-induced respiratory diseases. However, due to high immune-stimulatory activity, TLR7 agonists, delivered via direct exposure, generally have a narrow therapeutic window. To address this, we have developed lipid/polymer hybrid nanoparticles (NPs) conjugated with anti-EpCAM monoclonal antibody for targeted delivery of TLR7 agonist (CL264) to airway epithelial cells (AECs)2 - the primary site of respiratory virus infection. These airway epithelial targeting nanoparticles (AEC-NPs)3 showed safety and biocompatibility, and approximately two-fold increased cellular uptake compared to non-targeting NPs. Upon cell entry, AEC-NPs were able to deliver CL264 to cytoplasm and endosomes where TLR7 is located. CL264 delivered by AEC-NPs significantly increased innate immune response through expression of IFN-β, IFN-λ 2/3 and IFN-stimulated genes and suppressed more than 92% of viral load at 48 hours post-infection compared to the drug alone and non-targeting NPs. In conclusion, AEC-NPs exhibited increased cellular uptake leading to enhanced innate immune activation and suppression of viral replication. These findings support the use of AEC-targeting approach for delivering drugs with a narrow therapeutic window.
Collapse
Affiliation(s)
- Stanislav Kan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Christopher Grainge
- School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Kristy Nichol
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Andrew Reid
- School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Darryl Knight
- Department of Anaesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, P. R. China
| | - Nathan Bartlett
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Mingtao Liang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|
22
|
Resano A, Bhattacharjee S, Barajas M, Do KV, Aguado-Jiménez R, Rodríguez D, Palacios R, Bazán NG. Elovanoids Counteract Inflammatory Signaling, Autophagy, Endoplasmic Reticulum Stress, and Senescence Gene Programming in Human Nasal Epithelial Cells Exposed to Allergens. Pharmaceutics 2022; 14:113. [PMID: 35057008 PMCID: PMC8778361 DOI: 10.3390/pharmaceutics14010113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/13/2021] [Accepted: 12/25/2021] [Indexed: 11/28/2022] Open
Abstract
To contribute to further understanding the cellular and molecular complexities of inflammatory-immune responses in allergic disorders, we have tested the pro-homeostatic elovanoids (ELV) in human nasal epithelial cells (HNEpC) in culture challenged by several allergens. ELV are novel bioactive lipid mediators synthesized from the omega-3 very-long-chain polyunsaturated fatty acids (VLC-PUFA,n-3). We ask if: (a) several critical signaling events that sustain the integrity of the human nasal epithelium and other organ barriers are perturbed by house dust mites (HDM) and other allergens, and (b) if ELV would participate in beneficially modulating these events. HDM is a prevalent indoor allergen that frequently causes allergic respiratory diseases, including allergic rhinitis and allergic asthma, in HDM-sensitized individuals. Our study used HNEpC as an in vitro model to study the effects of ELV in counteracting HDM sensitization resulting in inflammation, endoplasmic reticulum (ER) stress, autophagy, and senescence. HNEpC were challenged with the following allergy inducers: LPS, poly(I:C), or Dermatophagoides farinae plus Dermatophagoides pteronyssinus extract (HDM) (30 µg/mL), with either phosphate-buffered saline (PBS) (vehicle) or ELVN-34 (500 nM). Results show that ELVN-34 promotes cell viability and reduces cytotoxicity upon HDM sensitization of HNEpC. This lipid mediator remarkably reduces the abundance of pro-inflammatory cytokines and chemokines IL-1β, IL-8, VEGF, IL-6, CXCL1, CCL2, and cell adhesion molecule ICAM1 and restores the levels of the pleiotropic anti-inflammatory IL-10. ELVN-34 also lessens the expression of senescence gene programming as well as of gene transcription engaged in pro-inflammatory responses. Our data also uncovered that HDM triggered the expression of key genes that drive autophagy, unfolded protein response (UPR), and matrix metalloproteinases (MMP). ELVN-34 has been shown to counteract these effects effectively. Together, our data reveal a novel, pro-homeostatic, cell-protective lipid-signaling mechanism in HNEpC as potential therapeutic targets for allergies.
Collapse
Affiliation(s)
- Alfredo Resano
- Department of Health Science, Public University of Navarra, 31006 Pamplona, Spain;
| | - Surjyadipta Bhattacharjee
- Neuroscience Center of Excellence, Louisiana State University Health New Orleans (LSUHSC), New Orleans, LA 70112, USA; (S.B.); (K.V.D.)
| | - Miguel Barajas
- Department of Health Science, Public University of Navarra, 31006 Pamplona, Spain;
| | - Khanh V. Do
- Neuroscience Center of Excellence, Louisiana State University Health New Orleans (LSUHSC), New Orleans, LA 70112, USA; (S.B.); (K.V.D.)
| | | | | | | | - Nicolás G. Bazán
- Neuroscience Center of Excellence, Louisiana State University Health New Orleans (LSUHSC), New Orleans, LA 70112, USA; (S.B.); (K.V.D.)
| |
Collapse
|
23
|
Packaging and Delivery of Asthma Therapeutics. Pharmaceutics 2021; 14:pharmaceutics14010092. [PMID: 35056988 PMCID: PMC8777963 DOI: 10.3390/pharmaceutics14010092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 12/11/2022] Open
Abstract
Asthma is a life-altering, chronic disease of heterogenous origin that features a complex interplay of immune and environmental signaling. Although very little progress has been made in prevention, diverse types of medications and delivery systems, including nanoscale systems, have been or are currently being developed to control airway inflammation and prevent exacerbations and fibrosis. These medications are delivered through mechanical methods, with various inhalers (with benefits and drawbacks) existing, and new types offering some variety in delivery. Of particular interest is the progress being made in nanosized materials for efficient penetration into the epithelial mucus layer and delivery into the deepest parts of the lungs. Liposomes, nanoparticles, and extracellular vesicles, both natural and synthetic, have been explored in animal models of asthma and have produced promising results. This review will summarize and synthesize the latest developments in both macro-(inhaler) and micro-sized delivery systems for the purpose of treating asthma patients.
Collapse
|
24
|
Ding J, Aldo P, Roberts CM, Stabach P, Liu H, You Y, Qiu X, Jeong J, Maxwell A, Lindenbach B, Braddock D, Liao A, Mor G. Placenta-derived interferon-stimulated gene 20 controls ZIKA virus infection. EMBO Rep 2021; 22:e52450. [PMID: 34405956 PMCID: PMC8490983 DOI: 10.15252/embr.202152450] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
Zika virus is a positive-sense single-stranded RNA virus, which can be transmitted across the placenta and has adverse effects on fetal development during pregnancy. The severity of these complications highlights the importance of prevention and treatment. However, no vaccines or drugs are currently available. In this study, we characterize the IFNβ-mediated anti-viral response in trophoblast cells in order to identify critical components that are necessary for the successful control of viral replication and determine whether components of the IFN-induced response can be used as a replacement therapy for ZIKA virus infection during pregnancy. We identify and characterize interferon-stimulated gene 20 (ISG20) as playing a central role in controlling Zika virus infection in trophoblast cells and successfully establish a recombinant ISG20-Fc protein that effectively decreases viral titers in vitro and in vivo by maintaining its exonuclease activity and displaying potential immune modulatory functions. Recombinant ISG20-Fc has thus the potential to be further developed as an anti-viral treatment against ZIKA viral infection in high-risk populations, particularly in pregnant women.
Collapse
Affiliation(s)
- Jiahui Ding
- C.S Mott center for Human Growth and DevelopmentDepartment of Obstetrics and GynecologyWayne State UniversityDetroitMIUSA
- Department of Obstetrics, Gynecology and Reproductive SciencesYale University School of MedicineNew HavenCTUSA
| | - Paulomi Aldo
- Department of Obstetrics, Gynecology and Reproductive SciencesYale University School of MedicineNew HavenCTUSA
| | - Cai M Roberts
- Department of Obstetrics, Gynecology and Reproductive SciencesYale University School of MedicineNew HavenCTUSA
| | - Paul Stabach
- Department of PathologyYale University School of MedicineNew HavenCTUSA
| | - Hong Liu
- Institute of Reproductive HealthCenter for Reproductive MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuan You
- C.S Mott center for Human Growth and DevelopmentDepartment of Obstetrics and GynecologyWayne State UniversityDetroitMIUSA
| | - Xuemin Qiu
- Obstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Jiwon Jeong
- Massachusetts College of Pharmacy and Health SciencesBostonMAUSA
| | - Anthony Maxwell
- C.S Mott center for Human Growth and DevelopmentDepartment of Obstetrics and GynecologyWayne State UniversityDetroitMIUSA
| | - Brett Lindenbach
- Department of Microbial PathogenesisYale University School of MedicineNew HavenCTUSA
| | | | - Aihua Liao
- Institute of Reproductive HealthCenter for Reproductive MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Gil Mor
- C.S Mott center for Human Growth and DevelopmentDepartment of Obstetrics and GynecologyWayne State UniversityDetroitMIUSA
| |
Collapse
|
25
|
McGarry N, Murray CL, Garvey S, Wilkinson A, Tortorelli L, Ryan L, Hayden L, Healy D, Griffin EW, Hennessy E, Arumugam M, Skelly DT, Mitchell KJ, Cunningham C. Double stranded RNA drives anti-viral innate immune responses, sickness behavior and cognitive dysfunction dependent on dsRNA length, IFNAR1 expression and age. Brain Behav Immun 2021; 95:413-428. [PMID: 33892139 PMCID: PMC8447494 DOI: 10.1016/j.bbi.2021.04.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/08/2021] [Accepted: 04/18/2021] [Indexed: 02/08/2023] Open
Abstract
Double stranded RNA is generated during viral replication. The synthetic analogue poly I:C is frequently used to mimic anti-viral innate immune responses in models of psychiatric and neurodegenerative disorders including schizophrenia, autism, Parkinson's disease and Alzheimer's disease. Many studies perform limited analysis of innate immunity despite these responses potentially differing as a function of dsRNA molecular weight and age. Therefore fundamental questions relevant to impacts of systemic viral infection on brain function and integrity remain. Here, we studied innate immune-inducing properties of poly I:C preparations of different lengths and responses in adult and aged mice. High molecular weight (HMW) poly I:C (1-6 kb, 12 mg/kg) produced more robust sickness behavior and more robust IL-6, IFN-I and TNF-α responses than poly I:C of < 500 bases (low MW) preparations. This was partly overcome with higher doses of LMW (up to 80 mg/kg), but neither circulating IFNβ nor brain transcription of Irf7 were significantly induced by LMW poly I:C, despite brain Ifnb transcription, suggesting that brain IFN-dependent gene expression is predominantly triggered by circulating IFNβ binding of IFNAR1. In aged animals, poly I:C induced exaggerated IL-6, IL-1β and IFN-I in the plasma and similar exaggerated brain cytokine responses. This was associated with acute working memory deficits selectively in aged mice. Thus, we demonstrate dsRNA length-, IFNAR1- and age-dependent effects on anti-viral inflammation and cognitive function. The data have implications for CNS symptoms of acute systemic viral infection such as those with SARS-CoV-2 and for models of maternal immune activation.
Collapse
Affiliation(s)
- Niamh McGarry
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Carol L Murray
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Sean Garvey
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Abigail Wilkinson
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Lucas Tortorelli
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Lucy Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Lorna Hayden
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Daire Healy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Eadaoin W Griffin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Edel Hennessy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Malathy Arumugam
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Donal T Skelly
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Kevin J Mitchell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland.
| |
Collapse
|
26
|
Targeting Innate Immunity in Cancer Therapy. Vaccines (Basel) 2021; 9:vaccines9020138. [PMID: 33572196 PMCID: PMC7916062 DOI: 10.3390/vaccines9020138] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
The majority of current cancer immunotherapy strategies target and potentiate antitumor adaptive immune responses. Unfortunately, the efficacy of these treatments has been limited to a fraction of patients within a subset of tumor types, with an aggregate response rate of approximately 20% to date across all malignancies. The success of therapeutic inhibition of programmed death protein 1 (PD-1), protein death ligand 1 (PD-L1) and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) with immune checkpoint inhibitors (ICI) has been limited to “hot” tumors characterized by preexisting T cell infiltration, whereas “cold” tumors, which lack T cell infiltration, have not achieved durable benefit. There are several mechanisms by which “cold” tumors fail to generate spontaneous immune infiltration, which converge upon the generation of an immunosuppressive tumor microenvironment (TME). The role of the innate immune system in tumor immunosurveillance and generation of antitumor immune responses has been long recognized. In recent years, novel strategies to target innate immunity in cancer therapy have emerged, including therapeutic stimulation of pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs); the DNA sensing cGAS/STING pathway; nucleotide-binding oligomerization domain-like receptors (NLRs), such as NLRP3; and the retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs). In addition, therapeutic modulation of key innate immune cell types, such as macrophages and natural killer cells, has been investigated. Herein, we review therapeutic approaches to activate innate immunity within the TME to enhance antitumor immune responses, with the goal of disease eradication in “cold” tumors. In addition, we discuss rational immune-oncology combination strategies that activate both innate and adaptive immunity, with the potential to enhance the efficacy of current immunotherapeutic approaches.
Collapse
|
27
|
Hendricks MR, Lane S, Melvin JA, Ouyang Y, Stolz DB, Williams JV, Sadovsky Y, Bomberger JM. Extracellular vesicles promote transkingdom nutrient transfer during viral-bacterial co-infection. Cell Rep 2021; 34:108672. [PMID: 33503419 PMCID: PMC7918795 DOI: 10.1016/j.celrep.2020.108672] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/10/2020] [Accepted: 12/30/2020] [Indexed: 01/28/2023] Open
Abstract
Extracellular vesicles (EVs) are increasingly appreciated as a mechanism of communication among cells that contribute to many physiological processes. Although EVs can promote either antiviral or proviral effects during viral infections, the role of EVs in virus-associated polymicrobial infections remains poorly defined. We report that EVs secreted from airway epithelial cells during respiratory viral infection promote secondary bacterial growth, including biofilm biogenesis, by Pseudomonas aeruginosa. Respiratory syncytial virus (RSV) increases the release of the host iron-binding protein transferrin on the extravesicular face of EVs, which interact with P. aeruginosa biofilms to transfer the nutrient iron and promote bacterial biofilm growth. Vesicular delivery of iron by transferrin more efficiently promotes P. aeruginosa biofilm growth than soluble holo-transferrin delivered alone. Our findings indicate that EVs are a nutrient source for secondary bacterial infections in the airways during viral infection and offer evidence of transkingdom communication in the setting of polymicrobial infections.
Collapse
Affiliation(s)
- Matthew R Hendricks
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Sidney Lane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Jeffrey A Melvin
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Yingshi Ouyang
- Magee-Womens Research Institute, Department of OBGYN and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - John V Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Yoel Sadovsky
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Magee-Womens Research Institute, Department of OBGYN and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jennifer M Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
28
|
Mcgarry N, Murray CL, Garvey S, Wilkinson A, Tortorelli L, Ryan L, Hayden L, Healy D, Griffin EW, Hennessy E, Arumugam M, Skelly DT, Mitchell KJ, Cunningham C. Double stranded RNA drives innate immune responses, sickness behavior and cognitive impairment dependent on dsRNA length, IFNAR1 expression and age.. [PMID: 33442686 PMCID: PMC7805443 DOI: 10.1101/2021.01.09.426034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Double stranded RNA is generated during viral replication. The synthetic analogue poly I:C is frequently used to mimic anti-viral innate immune responses in models of psychiatric and neurodegenerative disorders including schizophrenia, autism, Parkinson’s disease and Alzheimer’s disease. Many studies perform limited analysis of innate immunity despite these responses potentially differing as a function of dsRNA molecular weight and age. Therefore fundamental questions relevant to impacts of systemic viral infection on brain function and integrity remain. Here, we studied innate immune-inducing properties of poly I:C preparations of different lengths and responses in adult and aged mice. High molecular weight (HMW) poly I:C (1–6kb, 12 mg/kg) produced more robust sickness behavior and more robust IL-6, IFN-I and TNFα responses than poly I:C of <500 bases (low MW) preparations. This was partly overcome with higher doses of LMW (up to 80 mg/kg), but neither circulating IFNβ nor brain transcription of Irf7 were significantly induced by LMW poly I:C, despite brain Ifnb transcription, suggesting that brain IFN-dependent gene expression is predominantly triggered by circulating IFNβ binding of IFNAR1. In aged animals, poly I:C induced exaggerated IL-6, IL-1β and IFN-I in the plasma and similar exaggerated brain cytokine responses. This was associated with acute working memory deficits selectively in aged mice. Thus, we demonstrate dsRNA length-, IFNAR1- and age-dependent effects on anti-viral inflammation and cognitive function. The data have implications for CNS symptoms of acute systemic viral infection such as those with SARS-CoV-2 and for models of maternal immune activation.
Collapse
|
29
|
Mehta M, Paudel KR, Shukla SD, Shastri MD, Singh SK, Gulati M, Dureja H, Gupta G, Satija S, Hansbro PM, Chellappan DK, Dua K. Interferon therapy for preventing COPD exacerbations. EXCLI JOURNAL 2020; 19:1477-1480. [PMID: 33312108 PMCID: PMC7726488 DOI: 10.17179/excli2020-2997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 11/17/2022]
Affiliation(s)
- Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
| | - Keshav R Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Madhur D Shastri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.,School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, Newcastle, NSW 2305, Australia.,School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| |
Collapse
|
30
|
Mielcarska MB, Gregorczyk-Zboroch KP, Szulc-Da̧browska L, Bossowska-Nowicka M, Wyżewski Z, Cymerys J, Chodkowski M, Kiełbik P, Godlewski MM, Gieryńska M, Toka FN. Participation of Endosomes in Toll-Like Receptor 3 Transportation Pathway in Murine Astrocytes. Front Cell Neurosci 2020; 14:544612. [PMID: 33281554 PMCID: PMC7705377 DOI: 10.3389/fncel.2020.544612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022] Open
Abstract
TLR3 provides immediate type I IFN response following entry of stimulatory PAMPs into the CNS, as it is in HSV infection. The receptor plays a vital role in astrocytes, contributing to rapid infection sensing and suppression of viral replication, precluding the spread of virus beyond neurons. The route of TLR3 mobilization culminating in the receptor activation remains unexplained. In this research, we investigated the involvement of various types of endosomes in the regulation of the TLR3 mobility in C8-D1A murine astrocyte cell line. TLR3 was transported rapidly to early EEA1-positive endosomes as well as LAMP1-lysosomes following stimulation with the poly(I:C). Later, TLR3 largely associated with late Rab7-positive endosomes. Twenty-four hours after stimulation, TLR3 co-localized with LAMP1 abundantly in lysosomes of astrocytes. TLR3 interacted with poly(I:C) intracellularly from 1 min to 8 h following cell stimulation. We detected TLR3 on the surface of astrocytes indicating constitutive expression, which increased after poly(I:C) stimulation. Our findings contribute to the understanding of cellular modulation of TLR3 trafficking. Detailed analysis of the TLR3 transportation pathway is an important component in disclosing the fate of the receptor in HSV-infected CNS and may help in the search for rationale therapeutics to control the replication of neuropathic viruses.
Collapse
Affiliation(s)
- Matylda B Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Karolina P Gregorczyk-Zboroch
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Lidia Szulc-Da̧browska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| | - Joanna Cymerys
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marcin Chodkowski
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Paula Kiełbik
- Division of Physiology, Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Michał M Godlewski
- Division of Physiology, Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Małgorzata Gieryńska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Felix N Toka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland.,Center for Integrative Mammalian Research, Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
31
|
Gracia-Hernandez M, Sotomayor EM, Villagra A. Targeting Macrophages as a Therapeutic Option in Coronavirus Disease 2019. Front Pharmacol 2020; 11:577571. [PMID: 33324210 PMCID: PMC7723423 DOI: 10.3389/fphar.2020.577571] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Immune cells of the monocyte/macrophage lineage are characterized by their diversity, plasticity, and variety of functions. Among them, macrophages play a central role in antiviral responses, tissue repair, and fibrosis. Macrophages can be reprogrammed by environmental cues, thus changing their phenotype during an antiviral immune response as the viral infection progresses. While M1-like macrophages are essential for the initial inflammatory responses, M2-like macrophages are critical for tissue repair after pathogen clearance. Numerous reports have evaluated the detrimental effects that coronaviruses, e.g., HCoV-229E, SARS-CoV, MERS-CoV, and SARS-CoV-2, have on the antiviral immune response and macrophage functions. In this review, we have addressed the breadth of macrophage phenotypes during the antiviral response and provided an overview of macrophage-coronavirus interactions. We also discussed therapeutic approaches to target macrophage-induced complications, currently under evaluation in clinical trials for coronavirus disease 2019 patients. Additionally, we have proposed alternative approaches that target macrophage recruitment, interferon signaling, cytokine storm, pulmonary fibrosis, and hypercoagulability.
Collapse
Affiliation(s)
- Maria Gracia-Hernandez
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- The George Washington University Cancer Center, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Eduardo M. Sotomayor
- The George Washington University Cancer Center, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Alejandro Villagra
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- The George Washington University Cancer Center, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
32
|
Warden AS, DaCosta A, Mason S, Blednov YA, Mayfield RD, Harris RA. Inbred Substrain Differences Influence Neuroimmune Response and Drinking Behavior. Alcohol Clin Exp Res 2020; 44:1760-1768. [PMID: 32640038 DOI: 10.1111/acer.14410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The inbred mouse strain C57BL/6 is widely used in both models of addiction and immunological disease. However, there are pronounced phenotypic differences in ethanol (EtOH) consumption and innate immune response between C57BL/6 substrains. The focus of this study was to examine the effects of substrain on innate immune response and neuroimmune-induced escalation of voluntary EtOH consumption. The main goal was to identify whether substrain differences in immune response can account for differences in EtOH behavior. METHODS We compared acute innate immune response with a viral dsRNA mimic, polyinosinic:polycytidylic acid (poly(I:C)), in brain using qRT-PCR in both C57BL/6N and C57BL/6J mice. Next, we used a neuroimmune model of escalation using poly(I:C) to compare drinking behavior between substrains. Finally, we compared brain neuroimmune response with both EtOH and repeated poly(I:C) in both substrains as a way to account for differences in EtOH behavior. RESULTS We found that C57BL/6 substrains have differing immune response and drinking behaviors. C57BL/6N mice have a shorter but more robust inflammatory response to acute poly(I:C). In contrast, C57BL/6J mice have a smaller but longer-lasting acute immune response to poly(I:C). In our neuroimmune-induced escalation model, C57BL/6J mice but not C57BL/6N mice escalate EtOH intake after poly(I:C). Finally, only C57BL/6J mice show enhanced proinflammatory transcript abundance after poly(I:C) and EtOH, suggesting that longer-lasting immune responses are critical to neuroimmune drinking phenotypes. CONCLUSIONS Altogether, this work has elucidated additional influences that substrain has on both innate immune response and drinking phenotypes. Our observations highlight the importance of considering and reporting the source and background used for production of transgenic and knockout mice. These data provide further evidence that genetic background must be carefully considered when investigating the role of neuroimmune signaling in EtOH abuse.
Collapse
Affiliation(s)
- Anna S Warden
- From the Waggoner Center for Alcoholism and Addiction Research, The University of Texas at Austin, Austin, Texas, USA.,Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, USA.,Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Adriana DaCosta
- From the Waggoner Center for Alcoholism and Addiction Research, The University of Texas at Austin, Austin, Texas, USA
| | - Sonia Mason
- From the Waggoner Center for Alcoholism and Addiction Research, The University of Texas at Austin, Austin, Texas, USA
| | - Yuri A Blednov
- From the Waggoner Center for Alcoholism and Addiction Research, The University of Texas at Austin, Austin, Texas, USA
| | - Roy Dayne Mayfield
- From the Waggoner Center for Alcoholism and Addiction Research, The University of Texas at Austin, Austin, Texas, USA.,Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| | - Robert Adron Harris
- From the Waggoner Center for Alcoholism and Addiction Research, The University of Texas at Austin, Austin, Texas, USA.,Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
33
|
Nelson J, Sorensen EW, Mintri S, Rabideau AE, Zheng W, Besin G, Khatwani N, Su SV, Miracco EJ, Issa WJ, Hoge S, Stanton MG, Joyal JL. Impact of mRNA chemistry and manufacturing process on innate immune activation. SCIENCE ADVANCES 2020; 6:eaaz6893. [PMID: 32637598 PMCID: PMC7314518 DOI: 10.1126/sciadv.aaz6893] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 05/11/2020] [Indexed: 05/21/2023]
Abstract
Messenger RNA (mRNA) represents an attractive therapeutic modality for potentially a wide range of clinical indications but requires uridine chemistry modification and/or tuning of the production process to prevent activation of cellular innate immune sensors and a concomitant reduction in protein expression. To decipher the relative contributions of these factors on immune activation, here, we compared, in multiple cell and in vivo models, mRNA that encodes human erythropoietin incorporating either canonical uridine or N1-methyl-pseudouridine (1mΨ), synthesized by either a standard process shown to have double-stranded RNA (dsRNA) impurities or a modified process that yields a highly purified mRNA preparation. Our data demonstrate that the lowest stimulation of immune endpoints was with 1mΨ made by the modified process, while mRNA containing canonical uridine was immunostimulatory regardless of process. These findings confirm that uridine modification and the reduction of dsRNA impurities are both necessary and sufficient at controlling the immune-activating profile of therapeutic mRNA.
Collapse
Affiliation(s)
| | | | | | | | - Wei Zheng
- Moderna Inc., 200 Technology Square, Cambridge, MA, USA
| | | | | | | | | | | | - Stephen Hoge
- Moderna Inc., 200 Technology Square, Cambridge, MA, USA
| | | | - John L. Joyal
- Moderna Inc., 200 Technology Square, Cambridge, MA, USA
| |
Collapse
|
34
|
Han B, García‐Mendoza D, van den Berg H, van den Brink NW. Modulatory Effects of Pb 2+ on Virally Challenged Chicken Macrophage (HD-11) and B-Lymphocyte (DT40) Cell Lines In Vitro. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1060-1070. [PMID: 32124477 PMCID: PMC7277059 DOI: 10.1002/etc.4702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/24/2020] [Accepted: 02/25/2020] [Indexed: 05/08/2023]
Abstract
Elevated levels of lead have been found in waterfowl, due to human activities. Lead may cause immunomodulatory effects, but the mechanisms are largely unknown, especially after viral challenges. To characterize avian immunomodulatory hazards of lead (Pb)2+ , we used chicken macrophage (HD-11) and B-lymphocyte (DT40) cell lines, as in vitro models for the innate and adaptive immune systems, respectively. The cells were activated via toll-like receptor-3 by polyinosinic-polycytidylic acid sodium salt (poly I:C), mimicking viral infections. Our results indicate that Pb2+ is cytotoxic to both cell lines, macrophages being more sensitive. De novo synthesis of glutathione plays an important role in protecting macrophages from Pb2+ intoxication, which might also be closely involved in the induction of nitric oxide after Pb2+ exposure. Stimulatory effects on cell proliferation were noticed at noncytotoxic Pb2+ concentrations as well. Exposure to Pb2+ could also affect the inflammatory status by inhibiting the pro-inflammatory interferon (IFN)-γ while promoting the production of anti-inflammatory type I IFNs in both macrophages and B-cells, and increasing intracellular IgM levels in B-cells. These results suggest that the immunomodulatory effects of Pb2+ in birds are probably closely associated with disruption of immune cell proliferation and cytokine production, potentially causing disorders of the avian immune system. Environ Toxicol Chem 2020;39:1060-1070. © 2020 SETAC.
Collapse
Affiliation(s)
- Biyao Han
- Division of ToxicologyWageningen University and ResearchWageningenThe Netherlands
| | - Diego García‐Mendoza
- Division of ToxicologyWageningen University and ResearchWageningenThe Netherlands
| | - Hans van den Berg
- Division of ToxicologyWageningen University and ResearchWageningenThe Netherlands
| | | |
Collapse
|
35
|
Shin SH, Jeong J, Kim JH, Sohn KY, Yoon SY, Kim JW. 1-Palmitoyl-2-Linoleoyl-3-Acetyl-rac-Glycerol (PLAG) Mitigates Monosodium Urate (MSU)-Induced Acute Gouty Inflammation in BALB/c Mice. Front Immunol 2020; 11:710. [PMID: 32395118 PMCID: PMC7196669 DOI: 10.3389/fimmu.2020.00710] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/30/2020] [Indexed: 12/25/2022] Open
Abstract
Acute gouty arthritis is an auto-inflammatory disease caused by the deposition of monosodium urate (MSU) crystals in joints or tissues. Excessive neutrophil recruitment into gouty lesions is a general clinical sign and induces a pain phenotype. Attenuation of successive periods of neutrophil infiltration might be a beneficial approach to achieve therapeutic efficacy. In this study, the activity of 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) in attenuation of excess neutrophil infiltration was assessed in gout-induced lesions of BALB/c mice. Neutrophil infiltration in MSU-induced gouty lesions was analyzed using immunohistochemical staining. ELISA and RT-PCR were used to measure attenuation of expression of the major neutrophil chemoattractant, CXC motif chemokine ligand 8 (CXCL8), in a PLAG-treated animal model and in cells in vitro. The animal model revealed massive increased neutrophil infiltration in the MSU-induced gouty lesions, but the PLAG-treated mice had significantly reduced neutrophil numbers in these lesions. The results also indicated that the MSU crystals stimulated a damage-associated molecular pattern that was recognized by the P2Y6 purinergic receptor. This MSU-stimulated P2Y6 receptor was destined to intracellular trafficking. During intracellular endosomal trafficking of the receptor, endosome-dependent signaling provided expression of CXCL8 chemokines for neutrophil recruitment. PLAG accelerated initiation of the intracellular trafficking of the P2Y6 receptor and returning the receptor to the membrane. This process shortened the intracellular retention time of the receptor anchoring endosome and subsequently attenuated endosome-dependent signaling for CXCL8 expression. These study results suggested that PLAG could be used for resolution of acute inflammation induced in gout lesions.
Collapse
Affiliation(s)
- Su-Hyun Shin
- Division of Systems Biology and Bioengineering, Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea
| | - Jinseon Jeong
- Division of Global New Drug Development, ENZYCHEM Lifesciences, Seoul, South Korea
| | - Joo Heon Kim
- Department of Pathology, EulJi University School of Medicine, Daejeon, South Korea
| | - Ki-Young Sohn
- Division of Global New Drug Development, ENZYCHEM Lifesciences, Seoul, South Korea
| | - Sun Young Yoon
- Division of Global New Drug Development, ENZYCHEM Lifesciences, Seoul, South Korea
| | - Jae Wha Kim
- Division of Systems Biology and Bioengineering, Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
36
|
Rawling DC, Jagdmann GE, Potapova O, Pyle AM. Small-Molecule Antagonists of the RIG-I Innate Immune Receptor. ACS Chem Biol 2020; 15:311-317. [PMID: 31944652 DOI: 10.1021/acschembio.9b00810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The RIG-I receptor plays a key role in the vertebrate innate immune system, where it functions as a sensor for detecting infection by RNA viruses. Although agonists of RIG-I show great potential as antitumor and antimicrobial therapies, antagonists of RIG-I remain undeveloped, despite the role of RIG-I hyperstimulation in a range of diseases, including COPD and autoimmune disorders. There is now a wealth of information on RIG-I structure, enzymatic function, and signaling mechanism that can drive new drug design strategies. Here, we used the enzymatic activity of RIG-I to develop assays for high-throughput screening, SAR, and downstream optimization of RIG-I antagonists. Using this approach, we have developed potent RIG-I antagonists that interact directly with the receptor and which inhibit RIG-I signaling and interferon response in living cells.
Collapse
Affiliation(s)
- David C Rawling
- Inflammatix, Inc , Burlingame , California 94010 , United States
| | - G Erik Jagdmann
- Department of Molecular, Cellular and Developmental Biology , Yale University , New Haven , Connecticut 06520 , United States
| | - Olga Potapova
- Department of Molecular, Cellular and Developmental Biology , Yale University , New Haven , Connecticut 06520 , United States
| | - Anna Marie Pyle
- Department of Molecular, Cellular and Developmental Biology , Yale University , New Haven , Connecticut 06520 , United States
- Howard Hughes Medical Institute , New Haven , Connecticut 06520 , United States
| |
Collapse
|
37
|
Kan S, Hariyadi DM, Grainge C, Knight DA, Bartlett NW, Liang M. Airway epithelial-targeted nanoparticles for asthma therapy. Am J Physiol Lung Cell Mol Physiol 2020; 318:L500-L509. [PMID: 31913649 DOI: 10.1152/ajplung.00237.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Asthma is a common chronic inflammatory disease associated with intermittent airflow obstruction caused by airway inflammation, mucus overproduction, and bronchial hyperresponsiveness. Despite current treatment and management options, a large number of patients with asthma still have poorly controlled disease and are susceptible to acute exacerbations, usually caused by a respiratory virus infection. As a result, there remains a need for novel therapies to achieve better control and prevent/treat exacerbations. Nanoparticles (NPs), including extracellular vesicles (EV) and their synthetic counterparts, have been developed for drug delivery in respiratory diseases. In the case of asthma, where airway epithelium dysfunction, including dysregulated differentiation of epithelial cells, impaired barrier, and immune response, is a driver of disease, targeting airway epithelial cells with NPs may offer opportunities to repair or reverse these dysfunctions with therapeutic interventions. EVs possess multiple advantages for airway epithelial targeting, such as their natural intrinsic cell-targeting properties and low immunogenicity. Synthetic NPs can be coated with muco-inert polymers to overcome biological barriers such as mucus and the phagocytic response of immune cells. Targeting ligands could be also added to enhance targeting specificity to epithelial cells. The review presents current understanding and advances in NP-mediated drug delivery to airway epithelium for asthma therapy. Future perspectives in this therapeutic strategy will also be discussed, including the development of novel formulations and physiologically relevant preclinical models.
Collapse
Affiliation(s)
- Stanislav Kan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | | | - Christopher Grainge
- School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Nathan W Bartlett
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Mingtao Liang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, Australia.,Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
38
|
Castro-Muñoz LJ, Manzo-Merino J, Muñoz-Bello JO, Olmedo-Nieva L, Cedro-Tanda A, Alfaro-Ruiz LA, Hidalgo-Miranda A, Madrid-Marina V, Lizano M. The Human Papillomavirus (HPV) E1 protein regulates the expression of cellular genes involved in immune response. Sci Rep 2019; 9:13620. [PMID: 31541186 PMCID: PMC6754496 DOI: 10.1038/s41598-019-49886-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
The Human Papillomavirus (HPV) E1 protein is the only viral protein with enzymatic activity. The main known function of this protein is the regulation of the viral DNA replication. Nevertheless, it has been demonstrated that the ablation of HPV18 E1 mRNA in HeLa cells promotes a deregulation of several genes, particularly those involved in host defense mechanisms against viral infections; however, the specific contribution of E1 protein in HPV-independent context has not been studied. The aim of this work was to determine the effect of the HPV E1 protein in the regulation of cellular gene expression profiles evaluated through RNA-seq. We found that E1 proteins from HPV16 and 18 induced an overexpression of different set of genes associated with proliferation and differentiation processes, as well as downregulation of immune response genes, including IFNβ1 and IFNλ1 and Interferon-stimulated gene (ISG), which are important components involved in the antiviral immune response. Together, our results indicate that HR-(High-Risk) and LR-(Low-Risk) HPV E1 proteins play an important role in inhibiting the anti-viral immune response.
Collapse
Affiliation(s)
- Leonardo Josué Castro-Muñoz
- Programa de Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, Delegación Coyoacán, 04500, Mexico City, Mexico
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Joaquín Manzo-Merino
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico
- Cátedras CONACyT-Instituto Nacional de Cancerología, San Fernando No. 22, Col. Sección XVI, Tlalpan, México City, Mexico
| | - J Omar Muñoz-Bello
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Leslie Olmedo-Nieva
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Alberto Cedro-Tanda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, México City, Mexico
| | - Luis Alberto Alfaro-Ruiz
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, México City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, México City, Mexico
| | - Vicente Madrid-Marina
- Dirección de Infecciones Crónicas y Cáncer. Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública, Av. Universidad 655, Santa María Ahuacatitlán, Cuernavaca, Morelos, 62100, Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico.
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| |
Collapse
|
39
|
Baturcam E, Vollmer S, Schlüter H, Maciewicz RA, Kurian N, Vaarala O, Ludwig S, Cunoosamy DM. MEK inhibition drives anti-viral defence in RV but not RSV challenged human airway epithelial cells through AKT/p70S6K/4E-BP1 signalling. Cell Commun Signal 2019; 17:78. [PMID: 31319869 PMCID: PMC6639958 DOI: 10.1186/s12964-019-0378-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/29/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The airway epithelium is a major target tissue in respiratory infections, and its antiviral response is mainly orchestrated by the interferon regulatory factor-3 (IRF3), which subsequently induces type I (β) and III (λ) interferon (IFN) signalling. Dual specificity mitogen-activated protein kinase kinase (MEK) pathway contributes to epithelial defence, but its role in the regulation of IFN response in human primary airway epithelial cells (AECs) is not fully understood. Here, we studied the impact of a small-molecule inhibitor (MEKi) on the IFN response following challenge with two major respiratory viruses rhinovirus (RV2) and respiratory syncytial virus (RSVA2) and a TLR3 agonist, poly(I:C). METHODS The impact of MEKi on viral load and IFN response was evaluated in primary AECs with or without a neutralising antibody against IFN-β. Quantification of viral load was determined by live virus assay and absolute quantification using qRT-PCR. Secretion of cytokines was determined by AlphaLISA/ELISA and expression of interferon-stimulated genes (ISGs) was examined by qRT-PCR and immunoblotting. A poly(I:C) model was also used to further understand the molecular mechanism by which MEK controls IFN response. AlphaLISA, siRNA-interference, immunoblotting, and confocal microscopy was used to investigate the effect of MEKi on IRF3 activation and signalling. The impact of MEKi on ERK and AKT signalling was evaluated by immunoblotting and AlphaLISA. RESULTS Here, we report that pharmacological inhibition of MEK pathway augments IRF3-driven type I and III IFN response in primary human AECs. MEKi induced activation of PI3K-AKT pathway, which was associated with phosphorylation/inactivation of the translational repressor 4E-BP1 and activation of the protein synthesis regulator p70 S6 kinase, two critical translational effectors. Elevated IFN-β response due to MEKi was also attributed to decreased STAT3 activation, which consequently dampened expression of the transcriptional repressor of IFNB1 gene, PRDI-BF1. Augmented IFN response translated into inhibition of rhinovirus 2 replication in primary AECs but not respiratory syncytial virus A2. CONCLUSIONS Our findings unveil MEK as a key molecular mechanism by which rhinovirus dampens the epithelial cell's antiviral response. Our study provides a better understanding of the role of signalling pathways in shaping the antiviral response and suggests the use of MEK inhibitors in anti-viral therapy against RV.
Collapse
Affiliation(s)
- Engin Baturcam
- Early Respiratory, Inflammation & Autoimmunity, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden.
| | - Stefan Vollmer
- Early Respiratory, Inflammation & Autoimmunity, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Holger Schlüter
- Early Respiratory, Inflammation & Autoimmunity, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Rose A Maciewicz
- Early Respiratory, Inflammation & Autoimmunity, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Nisha Kurian
- Precision Medicine, R&D Oncology, AstraZeneca, Gothenburg, Sweden
| | - Outi Vaarala
- Early Respiratory, Inflammation & Autoimmunity, R&D BioPharmaceuticals, Gaithersburg, USA
| | - Stephan Ludwig
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | | |
Collapse
|
40
|
Tran-Thi TN, Wang S, Adetula AA, Zou C, Omar AI, Han JL, Zhang DX, Zhao SH. Gene expression profiling of porcine skeletal muscle satellite cells after poly(I:C) stimulation. Gene 2019; 695:113-121. [PMID: 30633943 DOI: 10.1016/j.gene.2018.12.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 12/21/2018] [Accepted: 12/30/2018] [Indexed: 02/08/2023]
Abstract
Porcine satellite cells (PSCs) play a vital role in the construction, development and self-renewal of skeletal muscle. In this study, PSCs were exposed to poly(I:C) stimulation to mimic viral infection during the proliferation and differentiation phases at 0, 12, 24 and 48 hours (h) of the stimulation. The untreated and treated PSCs were analyzed by the RNA-Seq technology. There were 88, 119, 104 and 95 genes being differentially expressed in 0 h vs 12 h treated, 12 h vs 24 h treated, 0 h vs 24 h treated and 24 h vs 48 h untreated comparison libraries, respectively. The GO terms analysis results showed that during the proliferation phase of treated PSCs, the up-regulated genes related to the immune system were highly expressed. In addition, the gene expressions associated with muscle structure development in response to growth factor emerged during the differentiation phase of untreated PSCs. The biological pathways associated with Influenza A, Toll-like receptor and chemokine signaling were revealed in PSCs following poly(I:C) stimulation. The differentially expressed genes were confirmed by quantitative real-time PCR. These findings expanded our understanding of gene expressions and signaling pathways about the infiltrated mechanism of the virus into PSCs.
Collapse
Affiliation(s)
- Thuy-Nhien Tran-Thi
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Pig Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Sheng Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Pig Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Adeyinka Abiola Adetula
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Pig Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Cheng Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Pig Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Abdullah Ibne Omar
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Pig Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China; National Engineering Laboratory for Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, PR China; International Livestock Research Institute (ILRI), Nairobi 00100, Kenya.
| | - Ding-Xiao Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Pig Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Shu-Hong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Key Laboratory of Pig Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
41
|
Nakano T, Yamamura ET, Fujita H, Sone T, Asano K. Novel methods for nucleotide length control in double-stranded polyinosinic-polycytidylic acid production using uneven length components. Biosci Biotechnol Biochem 2018; 82:1889-1901. [PMID: 30079840 DOI: 10.1080/09168451.2018.1501264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyinosinic-polycytidylic acid (PIC), a double-stranded RNA that induces innate immunity in mammals, is a candidate immunopotentiator for pharmaceuticals. The potency and adverse effects of PIC are strongly correlated with the nucleotide length, and the inability to precisely control the length in PIC production limits its practical use. Length extension during the annealing process is the major factor underlying the lack of control, but tuning the annealing conditions is insufficient to resolve this issue. In this study, we developed a novel method to produce accurate nucleotide length PIC at an industrial scale. The length extension was significantly suppressed by the assembly of multiple short polyinosinic acid molecules with one long polycytidylic acid molecule. A newly developed PIC, uPIC100-400, demonstrated a reproducible length and better storage stability than that of corresponding evenly structured PIC. Human dsRNA receptors exhibited equivalent responsiveness to uPIC100-400 and the evenly structured PIC with the same length.
Collapse
Affiliation(s)
- Tetsuo Nakano
- a Technical research laboratories , Kyowa Hakko Bio Co., Ltd ., Hofu , Japan.,b Graduate school of agriculture , Hokkaido University , Sapporo , Japan
| | - Ei-Tora Yamamura
- a Technical research laboratories , Kyowa Hakko Bio Co., Ltd ., Hofu , Japan
| | - Hiroshi Fujita
- a Technical research laboratories , Kyowa Hakko Bio Co., Ltd ., Hofu , Japan
| | - Teruo Sone
- b Graduate school of agriculture , Hokkaido University , Sapporo , Japan
| | - Kozo Asano
- b Graduate school of agriculture , Hokkaido University , Sapporo , Japan
| |
Collapse
|
42
|
Li L, Yang R, Feng M, Guo Y, Wang Y, Guo J, Lu X. Rig-I is involved in inflammation through the IPS-1/TRAF 6 pathway in astrocytes under chemical hypoxia. Neurosci Lett 2018; 672:46-52. [PMID: 29474875 DOI: 10.1016/j.neulet.2018.02.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 12/26/2022]
Abstract
The retinoic acid-inducible gene I (RIG-I) is a crucial cytoplasmic pathogen recognition receptor involved in neuroinflammation in degenerative diseases. In the present study, in vitro human astrocytes were subjected to a chemical hypoxia model using cobalt chloride pretreatment. Chemical hypoxia induces the up-regulation of RIG-I in astrocytes and results in the expression of inflammatory cytokines IL-1β, IL-6, and TNF-α in an NF-κB dependent manner. Elevated RIG-I modulates the interaction of interferon-β promoter stimulator-1 (IPS-1) and TNF receptor-associated factor 6 (TRAF6) following chemical hypoxia. Inhibition of IPS-1 or TRAF6 suppresses RIG-I-induced NF-κB activation and inflammatory cytokines in response to chemical hypoxia. These data suggest that chemical hypoxia leads to RIG-I activation and the expression of inflammatory cytokines through the NF-κB pathway. Blocking IPS-1/TRAF6 pathway relieves RIG-I-induced neuroinflammation in astrocytes subjected to hypoxia.
Collapse
Affiliation(s)
- Lei Li
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China; Department of Geriatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Rongli Yang
- Department of Geriatrics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Meijiang Feng
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - YiChen Guo
- School of medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - YuXuan Wang
- School of medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Guo
- School of medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China.
| |
Collapse
|
43
|
Ma X, Xu Z, Ding S, Yi G, Wang Q. Alendronate promotes osteoblast differentiation and bone formation in ovariectomy-induced osteoporosis through interferon-β/signal transducer and activator of transcription 1 pathway. Exp Ther Med 2017; 15:182-190. [PMID: 29375681 PMCID: PMC5763659 DOI: 10.3892/etm.2017.5381] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 05/19/2017] [Indexed: 12/30/2022] Open
Abstract
Alendronate is commonly used for the treatment of postmenopausal osteoporosis; however, the underlying pathological molecular mechanisms of its action remain unclear. In the present study, the alendronate-treated signaling pathway in bone metabolism in rats with ovariectomy induced by osteoporosis was investigated. Rats with osteoporosis were orally administered alendronate or phosphate-buffered saline (control). In addition, the interferon-β (IFN-β)/signal transducer and activator of transcription 1 (STAT1) signaling pathway was investigated in osteoblasts following treatment with alendronate in vitro and in vivo. During the differentiation period, IFN-β (100 ng/ml) was used to treat the osteoblast cells, and the activity, viability and bone metabolism-associated gene expression levels (STAT1, p-STAT1, Fra1, TRAF6 and SOCS1) were analyzed in osteoblast cells. Histopathological changes were used to evaluate osteoblasts, osteoclasts, inflammatory phase of bone healing and osteonecrotic areas. The results demonstrated that alendronate significantly inhibited the activity of osteoporotic osteoclasts by stimulating expression of IFN-β, as well as markedly improved the viability and activity of osteoblasts compared with the control group. In addition, alendronate increased the expression and phosphorylation levels of STAT1 in osteoclasts, enhanced osteoblast differentiation, upregulated the expression levels of alkaline phosphatase and osteocalcin, and increased the expression of osteoblast differentiation-associated genes (osteocalcin, osterix and Runx2). Inhibition of IFN-β expression canceled the benefits of alendronate-mediated osteoblast differentiation. Notably, alendronate enhanced bone formation in rats with osteoporosis induced by ovariectomy. In conclusion, these findings suggest that alendronate can regulate osteoblast differentiation and bone formation in rats with osteoporosis induced by ovariectomy through upregulation of IFN-β/STAT1 signaling pathway.
Collapse
Affiliation(s)
- Xiaoqing Ma
- Department of Endocrinology, Jining No. 1 People's Hospital, Jining, Shandong 272000, P.R. China
| | - Zhongyang Xu
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272000, P.R. China
| | - Shaofeng Ding
- Department of Endocrinology, Jining No. 1 People's Hospital, Jining, Shandong 272000, P.R. China
| | - Guangkun Yi
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272000, P.R. China
| | - Qian Wang
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272000, P.R. China
| |
Collapse
|
44
|
Teofilović NK, Bihi M, Stojković MR, Tumir LM, Ester K, Kralj M, Majhen D, Oršolić N, Lepur A, Vrbanec D, Markotić A, Dembić Z, Weber ANR, Piantanida I, Vugrek O, Diken M, Knežević J. 1-ethyl-3-(6-methylphenanthridine-8-il) urea modulates TLR3/9 activation and induces selective pro-inflammatory cytokine expression in vitro. Bioorg Med Chem Lett 2017; 27:1530-1537. [PMID: 28254484 DOI: 10.1016/j.bmcl.2017.02.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 01/07/2023]
Abstract
We have previously demonstrated the nucleic acid binding capacity of phenanthridine derivatives (PHTs). Because nucleic acids are potent inducers of innate immune response through Toll-like receptors (TLRs), and because PTHs bear a structural resemblance to commonly used synthetic ligands for TLR7/8, we hypothesized that PHTs could modulate/activate immune response. We found that compound M199 induces secretion of IL-6, IL-8 and TNFα in human PBMCs and inhibits TLR3/9 activation in different cellular systems (PBMCs, HEK293 and THP-1 cell lines).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Damir Vrbanec
- Department of Medical Oncology, University Hospital Center Zagreb, Croatia
| | - Alemka Markotić
- University Hospital for Infectious Diseases "Dr. Fran Mihaljevic", Zagreb, Croatia
| | - Zlatko Dembić
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Norway
| | | | | | | | - Mustafa Diken
- TRON-Translational Oncology at the University Medical Center of Johannes Gutenberg University GmbH, Mainz, Germany
| | | |
Collapse
|
45
|
Sun L, Wang X, Zhou Y, Zhou RH, Ho WZ, Li JL. Exosomes contribute to the transmission of anti-HIV activity from TLR3-activated brain microvascular endothelial cells to macrophages. Antiviral Res 2016; 134:167-171. [PMID: 27496004 DOI: 10.1016/j.antiviral.2016.07.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/01/2016] [Indexed: 12/17/2022]
Abstract
Human brain microvascular endothelial cells (HBMECs), the major cell type in the blood-brain barrier (BBB), play a key role in maintaining brain homeostasis. However, their role in the BBB innate immunity against HIV invasion of the central nervous system (CNS) remains to be determined. Our early work showed that TLR3 signaling of HBMECs could produce the antiviral factors that inhibit HIV replication in macrophages. The present study examined whether exosomes from TLR3-activated HBMECs mediate the intercellular transfer of antiviral factors to macrophages. Primary human macrophages could take up exosomes from TLR3-activated HBMECs. HBMECs-derived exosomes contained multiple antiviral factors, including several key IFN-stimulated genes (ISGs; ISG15, ISG56, and Mx2) at mRNA and protein levels. The depletion of exosomes from TLR3-activated HBMECs culture supernatant diminished HBMECs-mediated anti-HIV activity in macrophages. In conclusion, we demonstrate that exosomes shed by HBMECs are able to transport the antiviral molecules to macrophages. This finding suggests the possibility that HIV nonpermissive BBB cells (HBMECs) can help to restore the antiviral state in HIV-infected macrophages, which may be a defense mechanism against HIV neuroinvasion.
Collapse
Affiliation(s)
- Li Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xu Wang
- State Key Laboratory of Virology, Wuhan University, Wuhan, 430071, China; Department of Pathology and Laboratory Medicine, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Yu Zhou
- Department of Pathology and Laboratory Medicine, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Run-Hong Zhou
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wen-Zhe Ho
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan University, Wuhan, 430071, China; Department of Pathology and Laboratory Medicine, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| | - Jie-Liang Li
- Department of Pathology and Laboratory Medicine, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
46
|
Lind K, Svedin E, Domsgen E, Kapell S, Laitinen OH, Moll M, Flodström-Tullberg M. Coxsackievirus counters the host innate immune response by blocking type III interferon expression. J Gen Virol 2016; 97:1368-1380. [PMID: 26935471 DOI: 10.1099/jgv.0.000443] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Type I IFNs play an important role in the immune response to enterovirus infections. Their importance is underscored by observations showing that many enteroviruses including coxsackie B viruses (CVBs) have developed strategies to block type I IFN production. Recent studies have highlighted a role for the type III IFNs (also called IFNλs) in reducing permissiveness to infections with enteric viruses including coxsackievirus. However, whether or not CVBs have measures to evade the effects of type III IFNs remains unknown. By combining virus infection studies and different modes of administrating the dsRNA mimic poly I : C, we discovered that CVBs target both TLR3- and MDA5/RIG-I-mediated type III IFN expression. Consistent with this, the cellular protein expression levels of the signal transduction proteins TRIF and IPS1 were reduced and no hyperphosphorylation of IRF-3 was observed following infection with the virus. Notably, decreased expression of full-length TRIF and IPS1 and the appearance of cleavage products was observed upon both CVB3 infection and in cellular protein extracts incubated with recombinant 2Apro, indicating an important role for the viral protease in subverting the cellular immune system. Collectively, our study reveals that CVBs block the expression of type III IFNs, and that this is achieved by a similar mechanism as the virus uses to block type I IFN production. We also demonstrate that the virus blocks several intracellular viral recognition pathways of importance for both type I and III IFN production. The simultaneous targeting of numerous arms of the host immune response may be required for successful viral replication and dissemination.
Collapse
Affiliation(s)
- Katharina Lind
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Emma Svedin
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Erna Domsgen
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Kapell
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Olli H Laitinen
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Markus Moll
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Malin Flodström-Tullberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
47
|
Dauletbaev N, Das M, Cammisano M, Chen H, Singh S, Kooi C, Leigh R, Beaudoin T, Rousseau S, Lands LC. Rhinovirus Load Is High despite Preserved Interferon-β Response in Cystic Fibrosis Bronchial Epithelial Cells. PLoS One 2015; 10:e0143129. [PMID: 26599098 PMCID: PMC4658124 DOI: 10.1371/journal.pone.0143129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/30/2015] [Indexed: 11/18/2022] Open
Abstract
Lung disease in cystic fibrosis (CF) is often exacerbated following acute upper respiratory tract infections caused by the human rhinovirus (HRV). Pathophysiology of these exacerbations is presently unclear and may involve deficient innate antiviral or exaggerated inflammatory responses in CF airway epithelial cells. Furthermore, responses of CF cells to HRV may be adversely affected by pre-exposure to virulence factors of Pseudomonas (P.) aeruginosa, the microorganism that frequently colonizes CF airways. Here we examined production of antiviral cytokine interferon-β and inflammatory chemokine interleukin-8, expression of the interferon-responsive antiviral gene 2'-5'-oligoadenylate synthetase 1 (OAS1), and intracellular virus RNA load in primary CF (delF508 CFTR) and healthy airway epithelial cells following inoculation with HRV16. Parallel cells were exposed to virulence factors of P. aeruginosa prior to and during HRV16 inoculation. CF cells exhibited production of interferon-β and interleukin-8, and expression of OAS1 at levels comparable to those in healthy cells, yet significantly higher HRV16 RNA load during early hours post-inoculation with HRV16. In line with this, HRV16 RNA load was higher in the CFBE41o- dF cell line overexpessing delF508 CFTR, compared with the isogenic control CFBE41o- WT (wild-type CFTR). Pre-exposure to virulence factors of P. aeruginosa did not affect OAS1 expression or HRV16 RNA load, but potentiated interleukin-8 production. In conclusion, CF cells demonstrate elevated HRV RNA load despite preserved interferon-β and OAS1 responses. High HRV load in CF airway epithelial cells appears to be due to deficiencies manifesting early during HRV infection, and may not be related to interferon-β.
Collapse
Affiliation(s)
- Nurlan Dauletbaev
- Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- * E-mail:
| | - Mithun Das
- Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Maria Cammisano
- Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - He Chen
- Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Sareen Singh
- Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Cora Kooi
- Department of Medicine and Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Richard Leigh
- Department of Medicine and Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Trevor Beaudoin
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | - Simon Rousseau
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | - Larry C. Lands
- Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
- Respiratory Division, Montreal Children’s Hospital, Montreal, Quebec, Canada
| |
Collapse
|