1
|
Vučić M, Milenkovic J, Djindjic B, Stojiljkovic V, Stojanovic D, Djordjevic B, Milojkovic M, Velickovic S. Indicators of stress hematopoiesis in the blood predict COVID-19 progression in patients over 65 years old. Hematology 2024; 29:2311006. [PMID: 38305411 DOI: 10.1080/16078454.2024.2311006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
OBJECTIVES Advanced age is a well-established risk factor for severe coronavirus disease 2019 (COVID-19). Exacerbated inflammation affects multiple organs, among which hematopoiesis responds by increased output of various cells. We aimed to determine the association between COVID-19 progression and large immature cell (LIC) counts, changes in erythrocyte and platelet distribution widths (RDW, PDW) with reference to patients' age. METHODS A total of 755 patients with complete blood cell (CBC) analysis in the first 24 h of hospitalization were enrolled. Patients were divided into two groups: under and above 65 years of age. RESULTS The LIC counts were different in both groups (p < 0.003). However, only the senior patients had markedly different values of RDW and PDW (p < 0.001). The receiver operating characteristic (ROC) curve analysis provided increased LIC (AUC = 0.600), RDW (AUC = 0.609), PDW (AUC = 0.556), and platelet to LIC ratio (AUC = 0.634) as significant in discriminating outcome in the older group. Importantly, these results were not repeated in the younger patients. In the elderly, the progression was predicted with LIC cut-off at ≥ 0.305 × 109/L (OR = 3.166) and RDW over 12.15% (OR = 2.081). DISCUSSION Aging is characterized by a decline in immunological competence with a compromised control of inflammation leading to a proinflammatory state. This background together with the actions of pathogens may lead to emergency myelopoiesis. CONCLUSION Our results point to the important differences between age groups regarding CBC-related parameters of stress hematopoiesis during severe infection. Higher LIC, RDW and PDW levels were reliable in the early identification of COVID-19 progression only in the elderly.
Collapse
Affiliation(s)
- Miodrag Vučić
- Department of Internal medicine and patient care, Faculty of Medicine, University of Nis, Niš, Serbia
- Clinic of hematology, allergology and clinical immunology, University Clinical Center in Nis, Niš, Serbia
| | - Jelena Milenkovic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, Niš, Serbia
| | - Boris Djindjic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, Niš, Serbia
- Clinic of Cardiology, University Clinical Center of Nis, Niš, Serbia
| | - Vladana Stojiljkovic
- Department of Biochemistry, Faculty of Medicine, University of Nis, Niš, Serbia
- Medical Biochemistry Center, University Clinical Center of Nis, Niš, Serbia
| | - Dijana Stojanovic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, Niš, Serbia
| | - Branka Djordjevic
- Department of Biochemistry, Faculty of Medicine, University of Nis, Niš, Serbia
| | - Maja Milojkovic
- Department of Pathophysiology, Faculty of Medicine, University of Nis, Niš, Serbia
| | - Sanja Velickovic
- Clinic of hematology, allergology and clinical immunology, University Clinical Center in Nis, Niš, Serbia
| |
Collapse
|
2
|
Brummelman J, Suárez-Hernández S, de Rond L, Bogaard-van Maurik M, Molenaar P, van Wijlen E, Oomen D, Beckers L, Rots NY, van Beek J, Nicolaie MA, van Els CACM, Boer MC, Kaaijk P, Buisman AM, de Wit J. Distinct T cell responsiveness to different COVID-19 vaccines and cross-reactivity to SARS-CoV-2 variants with age and CMV status. Front Immunol 2024; 15:1392477. [PMID: 38774878 PMCID: PMC11106399 DOI: 10.3389/fimmu.2024.1392477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction Accumulating evidence indicates the importance of T cell immunity in vaccination-induced protection against severe COVID-19 disease, especially against SARS-CoV-2 Variants-of-Concern (VOCs) that more readily escape from recognition by neutralizing antibodies. However, there is limited knowledge on the T cell responses across different age groups and the impact of CMV status after primary and booster vaccination with different vaccine combinations. Moreover, it remains unclear whether age has an effect on the ability of T cells to cross-react against VOCs. Methods Therefore, we interrogated the Spike-specific T cell responses in healthy adults of the Dutch population across different ages, whom received different vaccine types for the primary series and/or booster vaccination, using IFNɣ ELISpot. Cells were stimulated with overlapping peptide pools of the ancestral Spike protein and different VOCs. Results Robust Spike-specific T cell responses were detected in the vast majority of participants upon the primary vaccination series, regardless of the vaccine type (i.e. BNT162b2, mRNA-1273, ChAdOx1 nCoV-19, or Ad26.COV2.S). Clearly, in the 70+ age group, responses were overall lower and showed more variation compared to younger age groups. Only in CMV-seropositive older adults (>70y) there was a significant inverse relation of age with T cell responses. Although T cell responses increased in all age groups after booster vaccination, Spike-specific T cell frequencies remained lower in the 70+ age group. Regardless of age or CMV status, primary mRNA-1273 vaccination followed by BNT162b2 booster vaccination showed limited booster effect compared to the BNT162b2/BNT162b2 or BNT162b2/mRNA-1273 primary-booster regimen. A modest reduction in cross-reactivity to the Alpha, Delta and Omicron BA.1, but not the Beta or Gamma variant, was observed after primary vaccination. Discussion Together, this study shows that age, CMV status, but also the primary-booster vaccination regimen influence the height of the vaccination-induced Spike-specific T cell response, but did not impact the VOC cross-reactivity.
Collapse
Affiliation(s)
- Jolanda Brummelman
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Sara Suárez-Hernández
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Lia de Rond
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Marjan Bogaard-van Maurik
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Petra Molenaar
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Emma van Wijlen
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Debbie Oomen
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Lisa Beckers
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Nynke Y. Rots
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Josine van Beek
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Mioara A. Nicolaie
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Cécile A. C. M. van Els
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Mardi C. Boer
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Patricia Kaaijk
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Anne-Marie Buisman
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Jelle de Wit
- Center for Infectious Disease Control, Dutch National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
3
|
Hou Y, Chen M, Bian Y, Hu Y, Chuan J, Zhong L, Zhu Y, Tong R. Insights into vaccines for elderly individuals: from the impacts of immunosenescence to delivery strategies. NPJ Vaccines 2024; 9:77. [PMID: 38600250 PMCID: PMC11006855 DOI: 10.1038/s41541-024-00874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Immunosenescence increases the risk and severity of diseases in elderly individuals and leads to impaired vaccine-induced immunity. With aging of the global population and the emerging risk of epidemics, developing adjuvants and vaccines for elderly individuals to improve their immune protection is pivotal for healthy aging worldwide. Deepening our understanding of the role of immunosenescence in vaccine efficacy could accelerate research focused on optimizing vaccine delivery for elderly individuals. In this review, we analyzed the characteristics of immunosenescence at the cellular and molecular levels. Strategies to improve vaccination potency in elderly individuals are summarized, including increasing the antigen dose, preparing multivalent antigen vaccines, adding appropriate adjuvants, inhibiting chronic inflammation, and inhibiting immunosenescence. We hope that this review can provide a review of new findings with regards to the impacts of immunosenescence on vaccine-mediated protection and inspire the development of individualized vaccines for elderly individuals.
Collapse
Affiliation(s)
- Yingying Hou
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Min Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yuan Hu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Junlan Chuan
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Zhong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Yuxuan Zhu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
4
|
Zhang Y, Zhao L, Zhang J, Zhang X, Han S, Sun Q, Yao M, Pang B, Duan Q, Jiang X. Antibody and transcription landscape in peripheral blood mononuclear cells of elderly adults over 70 years of age with third dose of COVID-19 BBIBP-CorV and ZF2001 booster vaccine. Immun Ageing 2024; 21:11. [PMID: 38280989 PMCID: PMC10821575 DOI: 10.1186/s12979-023-00408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/20/2023] [Indexed: 01/29/2024]
Abstract
BACKGROUND In the context of the COVID-19 pandemic and extensive vaccination, it is important to explore the immune response of elderly adults to homologous and heterologous booster vaccines of COVID-19. At this point, we detected serum IgG antibodies and PBMC sample transcriptome profiles in 46 participants under 70 years old and 25 participants over 70 years old who received the third dose of the BBIBP-CorV and ZF2001 vaccines. RESULTS On day 7, the antibody levels of people over 70 years old after the third dose of booster vaccine were lower than those of young people, and the transcriptional responses of innate and adaptive immunity were also weak. The age of the participants showed a significant negative correlation with functions related to T-cell differentiation and costimulation. Nevertheless, 28 days after the third dose, the IgG antibodies of elderly adults reached equivalence to those of younger adults, and immune-related transcriptional regulation was significantly improved. The age showed a significant positive correlation with functions related to "chemokine receptor binding", "chemokine activity", and "chemokine-mediated signaling pathway". CONCLUSIONS Our results document that the response of elderly adults to the third dose of the vaccine was delayed, but still able to achieve comparable immune effects compared to younger adults, in regard to antibody responses as well as at the transcript level.
Collapse
Affiliation(s)
- Yuwei Zhang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, China
| | - Lianxiang Zhao
- School of Public Health and Management, Binzhou Medical University, Yantai , Shandong Province, China
| | - Jinzhong Zhang
- Liaocheng Center for Disease Control and Prevention, Liaocheng, Shandong Province, China
| | - Xiaomei Zhang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, China
| | - Shanshan Han
- School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Qingshuai Sun
- School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Mingxiao Yao
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, China
| | - Bo Pang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, China
| | - Qing Duan
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, China
| | - Xiaolin Jiang
- School of Public Health and Management, Binzhou Medical University, Yantai , Shandong Province, China.
- School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China.
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, 16992 Jingshi Road , Jinan, 250014, Shandong Province, China.
| |
Collapse
|
5
|
Hofstee MI, Cevirgel A, de Zeeuw-Brouwer ML, de Rond L, van der Klis F, Buisman AM. Cytomegalovirus and Epstein-Barr virus co-infected young and middle-aged adults can have an aging-related T-cell phenotype. Sci Rep 2023; 13:10912. [PMID: 37407603 DOI: 10.1038/s41598-023-37502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Cytomegalovirus (CMV) is known to alter circulating effector memory or re-expressing CD45RA+ (TemRA) T-cell numbers, but whether Epstein-Barr virus (EBV) does the same or this is amplified during a CMV and EBV co-infection is unclear. Immune cell numbers in blood of children and young, middle-aged, and senior adults (n = 336) were determined with flow cytometry, and additional multivariate linear regression, intra-group correlation, and cluster analyses were performed. Compared to non-infected controls, CMV-seropositive individuals from all age groups had more immune cell variance, and CMV+ EBV- senior adults had more late-differentiated CD4+ and CD8+ TemRA and CD4+ effector memory T-cells. EBV-seropositive children and young adults had a more equal immune cell composition than non-infected controls, and CMV- EBV+ senior adults had more intermediate/late-differentiated CD4+ TemRA and effector memory T-cells than non-infected controls. CMV and EBV co-infected young and middle-aged adults with an elevated BMI and anti-CMV antibody levels had a similar immune cell composition as senior adults, and CMV+ EBV+ middle-aged adults had more late-differentiated CD8+ TemRA, effector memory, and HLA-DR+ CD38- T-cells than CMV+ EBV- controls. This study identified changes in T-cell numbers in CMV- or EBV-seropositive individuals and that some CMV and EBV co-infected young and middle-aged adults had an aging-related T-cell phenotype.
Collapse
Affiliation(s)
- Marloes I Hofstee
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands.
| | - Alper Cevirgel
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
- Department of Medical Microbiology and Infection Prevention, Virology and Immunology Research Group, University Medical Center Groningen, Groningen, The Netherlands
| | - Mary-Lène de Zeeuw-Brouwer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Lia de Rond
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Fiona van der Klis
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Anne-Marie Buisman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| |
Collapse
|
6
|
Verheul MK, Nijhof KH, de Zeeuw-Brouwer ML, Duijm G, Ten Hulscher H, de Rond L, Beckers L, Eggink D, van Tol S, Reimerink J, Boer M, van Beek J, Rots N, van Binnendijk R, Buisman AM. Booster Immunization Improves Memory B Cell Responses in Older Adults Unresponsive to Primary SARS-CoV-2 Immunization. Vaccines (Basel) 2023; 11:1196. [PMID: 37515012 PMCID: PMC10384172 DOI: 10.3390/vaccines11071196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
The generation of a specific long-term immune response to SARS-CoV-2 is considered important for protection against COVID-19 infection and disease. Memory B cells, responsible for the generation of antibody-producing plasmablasts upon a new antigen encounter, play an important role in this process. Therefore, the induction of memory B cell responses after primary and booster SARS-CoV-2 immunizations was investigated in the general population with an emphasis on older adults. Participants, 20-99 years of age, due to receive the mRNA-1273 or BNT162b2 SARS-CoV-2 vaccine were included in the current study. Specific memory B cells were determined by ex vivo ELISpot assays. In a subset of participants, antibody levels, avidity, and virus neutralization capacity were compared to memory B cell responses. Memory B cells specific for both Spike S1 and receptor-binding domain (RBD) were detected in the majority of participants following the primary immunization series. However, a proportion of predominantly older adults showed low frequencies of specific memory B cells. Booster vaccination resulted in a large increase in the frequencies of S1- and RBD-specific memory B cells also for those in which low memory B cell frequencies were detected after the primary series. These data show that booster immunization is important for the generation of a memory B cell response, as a subset of older adults shows a suboptimal response to the primary SARS-CoV-2 immunization series. It is anticipated that these memory B cells will play a significant role in the immune response following viral re-exposure.
Collapse
Affiliation(s)
- Marije K Verheul
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Kim H Nijhof
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Mary-Lène de Zeeuw-Brouwer
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Geraly Duijm
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Hinke Ten Hulscher
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Lia de Rond
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Lisa Beckers
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Dirk Eggink
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, WHO COVID-19 Reference Laboratory, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Sophie van Tol
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, WHO COVID-19 Reference Laboratory, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Johan Reimerink
- Centre for Infectious Diseases Research, Diagnostics and Laboratory Surveillance, WHO COVID-19 Reference Laboratory, Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Mardi Boer
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Josine van Beek
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Nynke Rots
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Rob van Binnendijk
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| | - Anne-Marie Buisman
- Centre for Immunology of Infectious Diseases and Vaccines, Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
7
|
Yan Y, Yan G, Cao Z, Wang B, Zeng Q, Shi L, Chang Q, Chen C, Zhang L, Liao C, Jin S, Sun X, Zhang G, Wang P, Wang X. Single cell transcriptome profiling reveals cutaneous immune microenvironment remodeling by photodynamic therapy in photoaged skin. Front Immunol 2023; 14:1183709. [PMID: 37404811 PMCID: PMC10315469 DOI: 10.3389/fimmu.2023.1183709] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/16/2023] [Indexed: 07/06/2023] Open
Abstract
Background The immune microenvironment plays a critical role in maintaining skin homeostasis, which is closely related to the dysfunction in photoaged skin such as autoimmunity and tumorigenesis. Several recent studies have demonstrated the efficacy of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) in alleviating photoaging and skin cancer. However, the underlying immune mechanisms and the immune microenvironment change by ALA-PDT remain largely unknown. Methods To illustrate the effects of ALA-PDT on immune microenvironment in photoaged skin, single cell RNA sequencing (scRNA-seq) analysis of photoaged skin on the extensor side of the human forearm before and after ALA-PDT was performed. R-packages of Seurat, clusterProfiler, Monocle, CellChat were used for cell clustering, differentially expressed genes analysis, functional annotation, pseudotime analysis and cell-cell communication analysis. The gene sets related to specific functions were extracted from the MSigDB database, which were used to score the functions of immune cells in different states. We also compared our result with published scRNA-seq data of photoaged skin of the eyelids. Results The increase score of cellular senescence, hypoxia and reactive oxygen species pathway in immune cells and the decrease of immune receptor activity function and proportion of naive T cells were found in skin photoaging. Moreover, the function of T cell ribosomal synthesis was also impaired or down regulated and function of G2M checkpoint was up regulated. However, ALA-PDT showed promising results in reversing these effects, as it improved the above functions of T cells. The ratio of M1/M2 and percentage of Langerhans cells also decreased with photoaging and increased after ALA-PDT. Additionally, ALA-PDT restored the antigen presentation and migration function of dendritic cells and enhanced cell-cell communication among immune cells. These effects were observed to last for 6 months. Conclusion ALA-PDT has potential to rejuvenate immune cells, partially reversed immunosenescence and improved the immunosuppressive state, ultimately remodelling the immune microenvironment in photoaged skin. These results provide an important immunological basis for further exploring strategies to reverse skin photoaging, chronological aging and potentially systemic aging.
Collapse
Affiliation(s)
- Yu Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guorong Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhi Cao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bo Wang
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Qingyu Zeng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Shi
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai, China
| | - Qihang Chang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chengqian Chen
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Linglin Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Caihe Liao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shengkai Jin
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaofei Sun
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guolong Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Pozo-Balado MDM, Bulnes-Ramos Á, Olivas-Martínez I, Garrido-Rodríguez V, Lozano C, Álvarez-Ríos AI, Sánchez-Sánchez B, Sánchez-Bejarano E, Maldonado-Calzado I, Martín-Lara JM, Santamaría JA, Bernal R, González-Escribano MF, Leal M, Pacheco YM. Higher plasma levels of thymosin-α1 are associated with a lower waning of humoral response after COVID-19 vaccination: an eight months follow-up study in a nursing home. Immun Ageing 2023; 20:9. [PMID: 36879319 PMCID: PMC9986663 DOI: 10.1186/s12979-023-00334-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Older people achieve lower levels of antibody titers than younger populations after Covid-19 vaccination and show a marked waning humoral immunity over time, likely due to the senescence of the immune system. Nevertheless, age-related predictive factors of the waning humoral immune response to the vaccine have been scarcely explored. In a cohort of residents and healthcare workers from a nursing home that had received two doses of the BNT162b2 vaccine, we measured specific anti-S antibodies one (T1), four (T4), and eight (T8) months after receiving the second dose. Thymic-related functional markers, including thymic output, relative telomere length, and plasma thymosin-α1 levels, as well as immune cellular subsets, and biochemical and inflammatory biomarkers, were determined at T1, and tested for their associations with the magnitude of the vaccine response (T1) and the durability of such response both, at the short- (T1-T4) and the long-term (T1-T8). We aimed to identify age-related factors potentially associated with the magnitude and persistence of specific anti-S immunoglobulin G (IgG)-antibodies after COVID-19 vaccination in older people. RESULTS Participants (100% men, n = 98), were subdivided into three groups: young (< 50 years-old), middle-age (50-65 years-old), and older (≥65 years-old). Older participants achieved lower antibody titers at T1 and experienced higher decreases in both the short- and long-term. In the entire cohort, while the magnitude of the initial response was mainly associated with the levels of homocysteine [β (95% CI); - 0.155 (- 0.241 to - 0.068); p = 0.001], the durability of such response at both, the short-term and the long-term were predicted by the levels of thymosin-α1 [- 0.168 (- 0.305 to - 0.031); p = 0.017, and - 0.123 (- 0.212 to - 0.034); p = 0.008, respectively]. CONCLUSIONS Higher plasma levels of thymosin-α1 were associated with a lower waning of anti-S IgG antibodies along the time. Our results suggest that plasma levels of thymosin-α1 could be used as a biomarker for predicting the durability of the responses after COVID-19 vaccination, possibly allowing to personalize the administration of vaccine boosters.
Collapse
Affiliation(s)
- María Del Mar Pozo-Balado
- Immunology Laboratory, Institute of Biomedicine of Seville (IBiS), Immunology Service, Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Ave. Manuel Siurot s/n, 41013, Seville, Spain
| | - Ángel Bulnes-Ramos
- Immunology Laboratory, Institute of Biomedicine of Seville (IBiS), Immunology Service, Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Ave. Manuel Siurot s/n, 41013, Seville, Spain
| | - Israel Olivas-Martínez
- Immunology Laboratory, Institute of Biomedicine of Seville (IBiS), Immunology Service, Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Ave. Manuel Siurot s/n, 41013, Seville, Spain
| | - Vanesa Garrido-Rodríguez
- Immunology Laboratory, Institute of Biomedicine of Seville (IBiS), Immunology Service, Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Ave. Manuel Siurot s/n, 41013, Seville, Spain
| | - Carmen Lozano
- Microbiology Service, Virgen del Rocío University Hospital (HUVR), Seville, Spain
| | - Ana I Álvarez-Ríos
- Biochemistry Service, Virgen del Rocío University Hospital (HUVR), Seville, Spain
| | | | | | | | | | | | - Rafael Bernal
- Hogar Residencia de la Santa Caridad, Seville, Spain
| | - María Francisca González-Escribano
- Immunology Laboratory, Institute of Biomedicine of Seville (IBiS), Immunology Service, Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Ave. Manuel Siurot s/n, 41013, Seville, Spain.,Immunology Service, Virgen del Rocío University Hospital (HUVR), Seville, Spain
| | - Manuel Leal
- Hogar Residencia de la Santa Caridad, Seville, Spain.,Internal Medicine Service, Viamed Hospital, Santa Ángela de la Cruz, Seville, Spain
| | - Yolanda M Pacheco
- Immunology Laboratory, Institute of Biomedicine of Seville (IBiS), Immunology Service, Virgen del Rocío University Hospital (HUVR)/CSIC/University of Seville, Ave. Manuel Siurot s/n, 41013, Seville, Spain.
| |
Collapse
|
9
|
Interaction of aging and Immunosenescence: New therapeutic targets of aging. Int Immunopharmacol 2022; 113:109397. [DOI: 10.1016/j.intimp.2022.109397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
10
|
Singh B, Kumar Rai A. Loss of immune regulation in aged T-cells: A metabolic review to show lack of ability to control responses within the self. Hum Immunol 2022; 83:808-817. [DOI: 10.1016/j.humimm.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/04/2022]
|
11
|
Aiello A, Ligotti ME, Garnica M, Accardi G, Calabrò A, Pojero F, Arasanz H, Bocanegra A, Blanco E, Chocarro L, Echaide M, Fernandez-Rubio L, Ramos P, Piñeiro-Hermida S, Kochan G, Zareian N, Farzaneh F, Escors D, Caruso C, Candore G. How Can We Improve Vaccination Response in Old People? Part I: Targeting Immunosenescence of Innate Immunity Cells. Int J Mol Sci 2022; 23:9880. [PMID: 36077278 PMCID: PMC9456428 DOI: 10.3390/ijms23179880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 11/20/2022] Open
Abstract
Vaccination, being able to prevent millions of cases of infectious diseases around the world every year, is the most effective medical intervention ever introduced. However, immunosenescence makes vaccines less effective in providing protection to older people. Although most studies explain that this is mainly due to the immunosenescence of T and B cells, the immunosenescence of innate immunity can also be a significant contributing factor. Alterations in function, number, subset, and distribution of blood neutrophils, monocytes, and natural killer and dendritic cells are detected in aging, thus potentially reducing the efficacy of vaccines in older individuals. In this paper, we focus on the immunosenescence of the innate blood immune cells. We discuss possible strategies to counteract the immunosenescence of innate immunity in order to improve the response to vaccination. In particular, we focus on advances in understanding the role and the development of new adjuvants, such as TLR agonists, considered a promising strategy to increase vaccination efficiency in older individuals.
Collapse
Affiliation(s)
- Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Maider Garnica
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Anna Calabrò
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Hugo Arasanz
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Ana Bocanegra
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Ester Blanco
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Division of Gene Therapy and Regulation of Gene Expression, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Luisa Chocarro
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Miriam Echaide
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Leticia Fernandez-Rubio
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Pablo Ramos
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Sergio Piñeiro-Hermida
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Grazyna Kochan
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Nahid Zareian
- The Rayne Institute, School of Cancer and Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
| | - Farzin Farzaneh
- The Rayne Institute, School of Cancer and Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
| | - David Escors
- Oncoimmunology Group, Navarrabiomed, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Technologies, University of Palermo, 90133 Palermo, Italy
| |
Collapse
|
12
|
Lewis ED, Wu D, Meydani SN. Age-associated alterations in immune function and inflammation. Prog Neuropsychopharmacol Biol Psychiatry 2022; 118:110576. [PMID: 35588939 DOI: 10.1016/j.pnpbp.2022.110576] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunosenescence is a term used to describe the age-related changes in the immune system. Immunosenescence is associated with complex alterations and dysregulation of immune function and inflammatory processes. Age-related changes in innate immune responses including alterations in chemotactic, phagocytic, and natural killing functions, impaired antigen presenting capacity, and dysregulated inflammatory response have been described. The most striking and best characterized feature of immunosenescence is the decline in both number and function of T cells. With age there is decreased proliferation, decreased number of antigen-naïve T cells, and increased number of antigen-experienced memory T cells. This decline in naïve T cell population is associated with impaired immunity and reduced response to new or mutated pathogens. While the absolute number of peripheral B cells appears constant with age, changes in B cell functions including reduced antibody production and response and cell memory have been described. However, the main alteration in cell-mediated function that has been reported across all species with aging is those observed in in T cell. These T cell mediated changes have been shown to contribute to increased susceptibility to infection and cancer in older adults. In addition to functional and phenotype alterations in immune cells, studies demonstrate that circulating concentrations of inflammatory mediators in older adults are higher than those of young. This low grade, chronic inflammatory state that occurs in the context of aging has been termed "inflammaging". This review will focus on age-related changes in the immune system including immunosenescence and inflammation as well as the functional consequences of these age-related alterations for the aged.
Collapse
Affiliation(s)
- Erin Diane Lewis
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, United States of America
| | - Dayong Wu
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, United States of America
| | - Simin Nikbin Meydani
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, United States of America.
| |
Collapse
|
13
|
Vitallé J, Pérez-Gómez A, Ostos FJ, Gasca-Capote C, Jiménez-Leon MR, Bachiller S, Rivas-Jeremías I, Silva-Sánchez MDM, Ruiz-Mateos AM, Martín-Sánchez MÁ, López-Cortes LF, Rafii El Idrissi Benhnia M, Ruiz-Mateos E. Immune defects associated with lower SARS-CoV-2 BNT162b2 mRNA vaccine response in elderly people. JCI Insight 2022; 7:161045. [PMID: 35943812 PMCID: PMC9536264 DOI: 10.1172/jci.insight.161045] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
The immune factors associated with impaired SARS-CoV-2 vaccine response in the elderly are mostly unknown. We studied >60 and <60 years old people vaccinated with SARS-CoV-2 BNT162b2 mRNA before and after the first and second dose. Aging was associated with a lower anti-RBD IgG levels and a decreased magnitude and polyfunctionality of SARS-CoV-2 specific T cell response. The dramatic decrease in thymic function in aged people with >60 years of age, which fueled alteration in T cell homeostasis, and lower CD161+ T cell levels were associated with decreased T cell response two months after vaccination. Additionally, a deficient dendritic cell (DC) homing, activation and Toll like receptor (TLR)-mediated function, along with a proinflammatory functional profile in monocytes, were observed in the >60 years old group, which was also related to lower specific T cell response after vaccination. These findings might be relevant for the improvement of the current vaccination strategies and for the development of new vaccine prototypes.
Collapse
Affiliation(s)
- Joana Vitallé
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Seville, Spain
| | - Alberto Pérez-Gómez
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Seville, Spain
| | - Francisco José Ostos
- Department of Medical Biochemistry, Molecular Biology, and Immunology, University of Seville School of Medicine, Seville, Spain
| | - Carmen Gasca-Capote
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Seville, Spain
| | - Maria Reyes Jiménez-Leon
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Seville, Spain
| | - Sara Bachiller
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Seville, Spain
| | - Inmaculada Rivas-Jeremías
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Seville, Spain
| | - Maria Del Mar Silva-Sánchez
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Seville, Spain
| | - Anabel M Ruiz-Mateos
- Centro de Salud Pinillo Chico, Centro de Salud Pinillo Chico, El Puerto de Santa María, Seville, Spain
| | - María Ángeles Martín-Sánchez
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Seville, Spain
| | - Luis Fernando López-Cortes
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Seville, Spain
| | - Mohammed Rafii El Idrissi Benhnia
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Seville, Spain
| | - Ezequiel Ruiz-Mateos
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Seville, Spain
| |
Collapse
|
14
|
Herbst AC, Reedy SE, Page AE, Horohov DW, Adams AA. Effect of aging on monocyte phagocytic and inflammatory functions, and on the ex vivo inflammatory responses to lipopolysaccharide, in horses. Vet Immunol Immunopathol 2022; 250:110459. [PMID: 35863208 DOI: 10.1016/j.vetimm.2022.110459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/16/2022]
Abstract
Studies investigating age-related changes in the function of monocytes are currently limited for horses. Thus, the main goal of this study was to determine the effect of aging on monocyte phagocytic capacity and pro-inflammatory cytokine responses to bacterial lipopolysaccharide (LPS). A second goal of this work was to examine the effect of aging on the inflammatory cytokine responses to LPS in a whole blood ex vivo model. Seven healthy young adult (4-6 years of age) and seven healthy senior horses (>20 years of age) were enrolled. Phagocytosis of E. coli, and pro-inflammatory cytokine (TNFα) responses to LPS, were measured in monocytes by flow cytometry. Gene expressions of pro-inflammatory cytokines (TNFα, IL-1β, IL-6, IL-8, IL-18, CCL-5, CCL-2) were measured in peripheral blood mononuclear cells (PBMCs) and whole blood by RT-qPCR post incubation for 2 h or 6 h with a low (0.01 µg/mL) or a high (1 µg/mL) dose of LPS. Two sets of statistical models were applied to compare the age groups, one adjusted, and one unadjusted for the horses' body condition scores (BCS). The percentage of monocytes that phagocytosed E. coli after 2 h of incubation was significantly lower in senior compared to young adult horses in the BCS-adjusted model. In the senior group, the expression of IL-1β in 2 h-0.01 µg/mL LPS-stimulated PBMCs was significantly higher than in the young adult group (BCS-adjusted and unadjusted models). In senior horses, expressions of IL-8 and IL-6 in whole blood samples stimulated for 6 h with 0.01 µg/mL LPS and for 2 h with 1 µg/mL LPS, respectively, were significantly lower than in young adult horses (BCS-adjusted models). The results of this study suggest that the phagocytic function of monocytes, as well as their IL-1β response to LPS may be altered in senior horses. In addition, the whole blood IL-8 and IL-6 gene expression responses to LPS may be insufficient in senior horses. While investigation of the effect of BCS on monocyte functions and whole blood pro-inflammatory LPS-responses was not a major goal of this work, it appears that adiposity may play a role in innate immune cell function, as significant differences between the age groups were often not apparent until the models were adjusted for BCS.
Collapse
Affiliation(s)
- A C Herbst
- M. H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.
| | - S E Reedy
- M. H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - A E Page
- M. H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - D W Horohov
- M. H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - A A Adams
- MARS EQUESTRIAN™ Research Fellow, M. H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
15
|
Caruso C, Ligotti ME, Accardi G, Aiello A, Candore G. An immunologist's guide to immunosenescence and its treatment. Expert Rev Clin Immunol 2022; 18:961-981. [PMID: 35876758 DOI: 10.1080/1744666x.2022.2106217] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION : The ageing process causes several changes in the immune system, although immune ageing is strongly influenced by individual immunological history, as well as genetic and environmental factors leading to inter-individual variability. AREAS COVERED : Here, we focused on the biological and clinical meaning of immunosenescence. Data on SARS-CoV-2 and Yellow Fever vaccine have demonstrated the clinical relevance of immunosenescence, while inconsistent results, obtained from longitudinal studies aimed at looking for immune risk phenotypes, have revealed that the immunosenescence process is highly context-dependent. Large projects have allowed the delineation of the drivers of immune system variance, including genetic and environmental factors, sex, smoking, and co-habitation. Therefore, it is difficult to identify the interventions that can be envisaged to maintain or improve immune function in older people. That suggests that drug treatment of immunosenescence should require personalized intervention. Regarding this, we discussed the role of changes in lifestyle as a potential therapeutic approach. EXPERT OPINION : Our review points out that age is only part of the problem of immunosenescence. Everyone ages differently because he/she is unique in genetics and experience of life and this applies even more to the immune system (immunobiography). Finally, the present review shows how appreciable results in the modification of immunosenescence biomarkers can be achieved with lifestyle modification.
Collapse
Affiliation(s)
- Calogero Caruso
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Giulia Accardi
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Anna Aiello
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Giuseppina Candore
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| |
Collapse
|
16
|
Clinical and Phenotypic Characterization of Common Variable Immunodeficiency Diagnosed in Younger and Older Adults. J Clin Immunol 2022; 42:1270-1279. [PMID: 35588029 DOI: 10.1007/s10875-022-01290-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Common variable immunodeficiency (CVID) is the most prevalent symptomatic immunodeficiency in adults. Little is known about the manifestations of CVID presenting in older adults. Herein, we performed a phenotypic characterization of patients diagnosed older than age 40. METHODS A retrospective chart review of 79 patients seen at UF Health between 2006 and 2020 with a verified diagnosis of CVID per the ICON 2016 criteria was conducted. Patients were classified according to four phenotypes: no-disease-related complications, autoimmune cytopenias, polyclonal lymphoproliferation, and unexplained enteropathy. Patients diagnosed with CVID from age 2 to 40 (n = 41, "younger cohort") were compared to patients diagnosed with CVID age 41 and older (n = 38, "older cohort"). RESULTS Among the younger cohort, pathologic genetic variants, positive family history for immunodeficiency, autoimmunity (49% vs 24%, p = 0.03), and splenomegaly (46% vs 16%, p = 0.004) were more common, as was the "autoimmune cytopenias" phenotype (24% vs 3%, p = 0.007). Among the older cohort, lymphoma (11% vs 0%, p = 0.049) and the "no disease-related complications" phenotype (79% vs 57%, p = 0.03) were more commonly seen. Comorbidities such as bronchiectasis (27% vs 21%, p = 0.61), GI involvement (34% vs 24%, p = 0.33), and GLILD (5% vs 8%, p = 0.67) were equally present among both the younger and older cohorts, respectively. CONCLUSION The lower incidence of autoimmunity and splenomegaly, as well as overlapping clinical features with immunosenescence, may make diagnosing CVID in older patients more challenging; however, the disease is not more indolent as the risks for lymphoma, bronchiectasis, and GLILD are similar to those of younger patients.
Collapse
|
17
|
Meyer-Arndt L, Schwarz T, Loyal L, Henze L, Kruse B, Dingeldey M, Gürcan K, Uyar-Aydin Z, Müller MA, Drosten C, Paul F, Sander LE, Demuth I, Lauster R, Giesecke-Thiel C, Braun J, Corman VM, Thiel A. Cutting Edge: Serum but Not Mucosal Antibody Responses Are Associated with Pre-Existing SARS-CoV-2 Spike Cross-Reactive CD4 + T Cells following BNT162b2 Vaccination in the Elderly. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1001-1005. [PMID: 35121642 DOI: 10.4049/jimmunol.2100990] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022]
Abstract
Advanced age is a main risk factor for severe COVID-19. However, low vaccination efficacy and accelerated waning immunity have been reported in this age group. To elucidate age-related differences in immunogenicity, we analyzed human cellular, serological, and salivary SARS-CoV-2 spike glycoprotein-specific immune responses to the BNT162b2 COVID-19 vaccine in old (69-92 y) and middle-aged (24-57 y) vaccinees compared with natural infection (COVID-19 convalescents, 21-55 y of age). Serological humoral responses to vaccination excee-ded those of convalescents, but salivary anti-spike subunit 1 (S1) IgA and neutralizing capacity were less durable in vaccinees. In old vaccinees, we observed that pre-existing spike-specific CD4+ T cells are associated with efficient induction of anti-S1 IgG and neutralizing capacity in serum but not saliva. Our results suggest pre-existing SARS-CoV-2 cross-reactive CD4+ T cells as a predictor of an efficient COVID-19 vaccine-induced humoral immune response in old individuals.
Collapse
Affiliation(s)
- Lil Meyer-Arndt
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berliner Institut für Gesundheitsforschung, Immunomics, Regenerative Immunologie und Altern, Berlin, Germany.,Charité - Universitätsmedizin Berlin, NeuroCure Clinical Research Center, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany.,Charité - Universitätsmedizin Berlin and Max-Delbrück-Centrum für Molekulare Medizin, Experimental and Clinical Research Center, Berlin, Germany
| | - Tatjana Schwarz
- Charité - Universitätsmedizin Berlin, Institut für Virologie, Berlin, Germany
| | - Lucie Loyal
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berliner Institut für Gesundheitsforschung, Immunomics, Regenerative Immunologie und Altern, Berlin, Germany
| | - Larissa Henze
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berliner Institut für Gesundheitsforschung, Immunomics, Regenerative Immunologie und Altern, Berlin, Germany
| | - Beate Kruse
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berliner Institut für Gesundheitsforschung, Immunomics, Regenerative Immunologie und Altern, Berlin, Germany
| | - Manuela Dingeldey
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berliner Institut für Gesundheitsforschung, Immunomics, Regenerative Immunologie und Altern, Berlin, Germany
| | - Kübrah Gürcan
- Medizinische Biotechnologie, Institut für Biotechnologie, Technische Universität Berlin, Berlin, Germany
| | - Zehra Uyar-Aydin
- Medizinische Biotechnologie, Institut für Biotechnologie, Technische Universität Berlin, Berlin, Germany
| | - Marcel A Müller
- Charité - Universitätsmedizin Berlin, Institut für Virologie, Berlin, Germany
| | - Christian Drosten
- Charité - Universitätsmedizin Berlin, Institut für Virologie, Berlin, Germany
| | - Friedemann Paul
- Charité - Universitätsmedizin Berlin, Berliner Institut für Gesundheitsforschung, Immunomics, Regenerative Immunologie und Altern, Berlin, Germany.,Charité - Universitätsmedizin Berlin and Max-Delbrück-Centrum für Molekulare Medizin, Experimental and Clinical Research Center, Berlin, Germany
| | - Leif E Sander
- Charité - Universitätsmedizin Berlin, Klinik für Infektiologie und Pneumologie, Berlin, Germany
| | - Ilja Demuth
- Charité - Universitätsmedizin Berlin, Klinik für Endokrinologie und Stoffwechselmedizin, Biologie des Alterns, Berlin, Germany.,Berliner Institut für Gesundheitsforschung der Charité - Universitätsmedizin Berlin, Centrum für Regenerative Therapien, Berlin, Germany; and
| | - Roland Lauster
- Medizinische Biotechnologie, Institut für Biotechnologie, Technische Universität Berlin, Berlin, Germany
| | | | - Julian Braun
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berliner Institut für Gesundheitsforschung, Immunomics, Regenerative Immunologie und Altern, Berlin, Germany
| | - Victor M Corman
- Charité - Universitätsmedizin Berlin, Institut für Virologie, Berlin, Germany;
| | - Andreas Thiel
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany; .,Charité - Universitätsmedizin Berlin, Berliner Institut für Gesundheitsforschung, Immunomics, Regenerative Immunologie und Altern, Berlin, Germany
| |
Collapse
|
18
|
Pawelec G. Latent CMV makes older adults less naïve. EBioMedicine 2022; 77:103887. [PMID: 35182997 PMCID: PMC8857661 DOI: 10.1016/j.ebiom.2022.103887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 11/19/2022] Open
|
19
|
Nicoli F, Clave E, Wanke K, von Braun A, Bondet V, Alanio C, Douay C, Baque M, Lependu C, Marconi P, Stiasny K, Heinz FX, Muetsch M, Duffy D, Boddaert J, Sauce D, Toubert A, Karrer U, Appay V. Primary immune responses are negatively impacted by persistent herpesvirus infections in older people: results from an observational study on healthy subjects and a vaccination trial on subjects aged more than 70 years old. EBioMedicine 2022; 76:103852. [PMID: 35114631 PMCID: PMC8818547 DOI: 10.1016/j.ebiom.2022.103852] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 01/08/2023] Open
Abstract
Background Advanced age is accompanied by a decline of immune functions, which may play a role in increased vulnerability to emerging pathogens and low efficacy of primary vaccinations in elderly people. The capacity to mount immune responses against new antigens is particularly affected in this population. However, its precise determinants are not fully understood. We aimed here at establishing the influence of persistent viral infections on the naive T-cell compartment and primary immune responsiveness in older adults. Methods We assessed immunological parameters, related to CD8+ and CD4+ T-cell responsiveness, according to the serological status for common latent herpesviruses in two independent cohorts: 1) healthy individuals aged 19y to 95y (n = 150) and 2) individuals above 70y old enrolled in a primo-vaccination clinical trial (n = 137). Findings We demonstrate a prevalent effect of age and CMV infection on CD8+ and CD4+ naive T cells, respectively. CMV seropositivity was associated with blunted CD4+ T-cell and antibody responses to primary vaccination. Interpretation These data provide insights on the changes in adaptive immunity over time and the associated decline in vaccine efficacy with ageing. This knowledge is important for the management of emerging infectious diseases in elderly populations.
Collapse
Affiliation(s)
- Francesco Nicoli
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, 75013 Paris, France; Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Emmanuel Clave
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris F-75010, France
| | - Kerstin Wanke
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, Zurich, Switzerland
| | - Amrei von Braun
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Vincent Bondet
- Translational Immunology Lab, Institut Pasteur, Université de Paris, Paris, France
| | - Cécile Alanio
- INSERM U932, PSL University, Institut Curie, Paris 75005, France; Laboratoire D'immunologie Clinique, Institut Curie, Paris 75005, France
| | - Corinne Douay
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris F-75010, France
| | - Margaux Baque
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, 75013 Paris, France
| | - Claire Lependu
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, 75013 Paris, France
| | - Peggy Marconi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Austria
| | - Franz X Heinz
- Center for Virology, Medical University of Vienna, Austria
| | - Margot Muetsch
- Epidemiology, Biostatistics and Prevention Institute (EBPI), University of Zurich, Zurich, Switzerland
| | - Darragh Duffy
- Translational Immunology Lab, Institut Pasteur, Université de Paris, Paris, France
| | - Jacques Boddaert
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, 75013 Paris, France
| | - Delphine Sauce
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, 75013 Paris, France
| | - Antoine Toubert
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris F-75010, France; Laboratoire d'Immunologie et d'Histocompatibilité, AP-HP, Hopital Saint-Louis, Paris F-75010, France
| | - Urs Karrer
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, Zurich, Switzerland; Division of Infectious Diseases, Department of Medicine, Cantonal Hospital of Winterthur, Winterthur, Switzerland.
| | - Victor Appay
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, 75013 Paris, France; Université de Bordeaux, CNRS UMR5164, INSERM ERL1303, ImmunoConcEpT, Bordeaux, France; International Research Center of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
20
|
Baarz BR, Rink L. Rebalancing the unbalanced aged immune system - A special focus on zinc. Ageing Res Rev 2022; 74:101541. [PMID: 34915196 DOI: 10.1016/j.arr.2021.101541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
Nowadays, aging is understood as a dynamic and multifaceted dysregulation process that spares almost no human organ or cell. The immune system being among the most affected, it has been shown predominantly that its integrity determines the tightrope walk between the difference of escaping or suffering from age-related diseases. Next to drug-based anti-aging strategies, micronutrient intervention may represent an emerging but less radical way to slow immune aging. While a sufficient supply of a variety of micronutrients is undeniably important, adequate intake of the trace element zinc appears to tower over others in terms of reaching old age. Inconveniently, zinc deficiency prevalence among the elderly is high, which in turn contributes to increased susceptibility to infection, decreased anti-tumor immunity as well as attenuated response to vaccination. Driven by this research, this review aims to provide a comprehensive and up-to-date overview of the various rebalancing capabilities of zinc in the unbalanced immune system of the elderly. This includes an in-depth and cell type-centered discussion on the role of zinc in immunosenescence and inflammaging. We further address upcoming translational aspects e.g. how zinc deficiency promotes the flourishing of certain pathogenic taxa of the gut microbiome and how zinc supply counteracts such alterations in a manner that may contribute to longevity. In the light of the ongoing COVID-19 pandemic, we also briefly review current knowledge on the interdependency between age, zinc status, and respiratory infections. Based on two concrete examples and considering the latest findings in the field we conclude our remarks by outlining tremendous parallels between suboptimal zinc status and accelerated aging on the one hand and an optimized zinc status and successful aging on the other hand.
Collapse
|
21
|
Induction of robust cellular and humoral immunity against SARS-CoV-2 after a third dose of BNT162b2 vaccine in previously unresponsive older adults. Nat Microbiol 2022; 7:195-199. [PMID: 35013593 DOI: 10.1038/s41564-021-01046-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/09/2021] [Indexed: 01/08/2023]
Abstract
Here we compared SARS-CoV-2-specific antibody and T-cell responses between older adults (>80 years old, n = 51) and a younger control group (20-53 years old, n = 46) after receiving two doses of BNT162b2. We found that responses in older adults were generally lower, and we identified 10% low-/non-responders. After receiving a third vaccination with BNT162b2, 4 out of 5 low-/non-responders showed antibody and T-cell responses similar to those of responders after two vaccinations.
Collapse
|
22
|
Shenoy S. Gut microbiome, Vitamin D, ACE2 interactions are critical factors in immune-senescence and inflammaging: key for vaccine response and severity of COVID-19 infection. Inflamm Res 2022; 71:13-26. [PMID: 34738147 PMCID: PMC8568567 DOI: 10.1007/s00011-021-01510-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The SARS-CoV-2 pandemic continues to spread sporadically in the Unites States and worldwide. The severity and mortality excessively affected the frail elderly with co-existing medical diseases. There is growing evidence that cross-talk between the gut microbiome, Vitamin D and RAS/ACE2 system is essential for a balanced functioning of the elderly immune system and in regulating inflammation. In this review, we hypothesize that the state of gut microbiome, prior to infection determines the outcome associated with COVID-19 sepsis and may also be a critical factor in success to vaccination. METHODS Articles from PubMed/Medline searches were reviewed using a combination of terms "SARS-CoV-2, COVID-19, Inflammaging, Immune-senescence, Gut microbiome, Vitamin D, RAS/ACE2, Vaccination". CONCLUSION Evidence indicates a complex association between gut microbiota, ACE-2 expression and Vitamin D in COVID-19 severity. Status of gut microbiome is highly predictive of the blood molecular signatures and inflammatory markers and host responses to infection. Vitamin D has immunomodulatory function in innate and adaptive immune responses to viral infection. Anti-inflammatory functions of Vit D include regulation of gut microbiome and maintaining microbial diversity. It promotes growth of gut-friendly commensal strains of Bifida and Fermicutus species. In addition, Vitamin D is a negative regulator for expression of renin and interacts with the RAS/ ACE/ACE-2 signaling axis. Collectively, this triad may be the critical, link in determination of outcomes in SARS-CoV-2 infection. The presented data are empirical and informative. Further research using advanced systems biology techniques and artificial intelligence-assisted integration could assist with correlation of the gut microbiome with sepsis and vaccine responses. Modulating these factors may impact in guiding the success of vaccines and clinical outcomes in COVID-19 infections.
Collapse
Affiliation(s)
- Santosh Shenoy
- Department of Surgery, Kansas City VA Medical Center, University of Missouri Kansas City, 4801 E Linwood Blvd., Kansas City , MO, 64128, USA.
| |
Collapse
|
23
|
Immune Memory in Aging: a Wide Perspective Covering Microbiota, Brain, Metabolism, and Epigenetics. Clin Rev Allergy Immunol 2021; 63:499-529. [PMID: 34910283 PMCID: PMC8671603 DOI: 10.1007/s12016-021-08905-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 11/06/2022]
Abstract
Non-specific innate and antigen-specific adaptive immunological memories are vital evolutionary adaptations that confer long-lasting protection against a wide range of pathogens. Adaptive memory is established by memory T and B lymphocytes following the recognition of an antigen. On the other hand, innate immune memory, also called trained immunity, is imprinted in innate cells such as macrophages and natural killer cells through epigenetic and metabolic reprogramming. However, these mechanisms of memory generation and maintenance are compromised as organisms age. Almost all immune cell types, both mature cells and their progenitors, go through age-related changes concerning numbers and functions. The aging immune system renders the elderly highly susceptible to infections and incapable of mounting a proper immune response upon vaccinations. Besides the increased infectious burden, older individuals also have heightened risks of metabolic and neurodegenerative diseases, which have an immunological component. This review discusses how immune function, particularly the establishment and maintenance of innate and adaptive immunological memory, regulates and is regulated by epigenetics, metabolic processes, gut microbiota, and the central nervous system throughout life, with a focus on old age. We explain in-depth how epigenetics and cellular metabolism impact immune cell function and contribute or resist the aging process. Microbiota is intimately linked with the immune system of the human host, and therefore, plays an important role in immunological memory during both homeostasis and aging. The brain, which is not an immune-isolated organ despite former opinion, interacts with the peripheral immune cells, and the aging of both systems influences the health of each other. With all these in mind, we aimed to present a comprehensive view of the aging immune system and its consequences, especially in terms of immunological memory. The review also details the mechanisms of promising anti-aging interventions and highlights a few, namely, caloric restriction, physical exercise, metformin, and resveratrol, that impact multiple facets of the aging process, including the regulation of innate and adaptive immune memory. We propose that understanding aging as a complex phenomenon, with the immune system at the center role interacting with all the other tissues and systems, would allow for more effective anti-aging strategies.
Collapse
|
24
|
[Immunosenescence, viral infections and nutrition: A narrative review of scientific available evidence]. Rev Esp Geriatr Gerontol 2021; 57:33-38. [PMID: 34844781 DOI: 10.1016/j.regg.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 01/22/2023]
Abstract
Aging of the immune system, or immunosenescence, alters the viral immune response in the elderly, especially when frailty exists. Research findings have demonstrated an imbalance in pro- and anti-inflammatory mechanisms, reduced production and diversification of T lymphocytes, and an alteration in immunovigilance and antibody synthesis. In this context, nutrition has a role in combating sarcopenia and frailty. Some food components that contribute to immune-competence are protein, vitamin D, n-3 fatty acids, antioxidant vitamins (vitamins C and E), zinc, selenium and iron. In times of a pandemic, nutritional recommendations for immune-competence in the elderly should be based on clinical studies. In this article, immunosenescence and its relationship to nutrition are addressed, including interventions studied in the context of the COVID-19 pandemic.
Collapse
|
25
|
Csekes E, Račková L. Skin Aging, Cellular Senescence and Natural Polyphenols. Int J Mol Sci 2021; 22:12641. [PMID: 34884444 PMCID: PMC8657738 DOI: 10.3390/ijms222312641] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 01/10/2023] Open
Abstract
The skin, being the barrier organ of the body, is constitutively exposed to various stimuli impacting its morphology and function. Senescent cells have been found to accumulate with age and may contribute to age-related skin changes and pathologies. Natural polyphenols exert many health benefits, including ameliorative effects on skin aging. By affecting molecular pathways of senescence, polyphenols are able to prevent or delay the senescence formation and, consequently, avoid or ameliorate aging and age-associated pathologies of the skin. This review aims to provide an overview of the current state of knowledge in skin aging and cellular senescence, and to summarize the recent in vitro studies related to the anti-senescent mechanisms of natural polyphenols carried out on keratinocytes, melanocytes and fibroblasts. Aged skin in the context of the COVID-19 pandemic will be also discussed.
Collapse
Affiliation(s)
- Erika Csekes
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| | - Lucia Račková
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
26
|
Freimane L, Barkane L, Igumnova V, Kivrane A, Zole E, Ranka R. Telomere length and mitochondrial DNA copy number in multidrug-resistant tuberculosis. Tuberculosis (Edinb) 2021; 131:102144. [PMID: 34781086 DOI: 10.1016/j.tube.2021.102144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 12/25/2022]
Abstract
Multidrug resistant tuberculosis (MDR-TB) is a severe disease that requires prolonged chemotherapy and is associated with an increased probability of treatment failure and death. MDR-TB is a state of heightened oxidative stress and inflammation, which could be related to the aging-related processes and immunosenescence. We, therefore, tested the hypothesis that MDR-TB is associated with alterations in aging biomarkers in peripheral blood cells. We investigated 51 MDR-TB patients and 57 healthy individuals and carried out an analysis of covariance to assess the possible impact of different variables on biomarker perturbations. The results showed that MDR-TB patients had significantly reduced telomere length (TL) and increased mitochondrial DNA copy number (mtDNA CN) (P < 0.05) in comparison to the controls, and MDR-TB infection was the main influencing factor. Male sex and extrapulmonary TB strongly influenced mtDNA CN increment, and MDR-TB patients with normal weight had longer telomeres than those who were underweight (P < 0.05). In conclusion, the evidence for shorter telomeres and higher mtDNA CN in the peripheral blood cells of MDR-TB patients was obtained indicating the connection between MDR-TB and aging biomarkers. The observed associations highlight a complicated interplay between MDR-TB and immunosenescence, thus further studies are required to achieve full understanding.
Collapse
Affiliation(s)
- Lauma Freimane
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1, k-1, Riga, LV1067, Latvia; Riga Stradins University, Dzirciema Street 16, Riga, LV1007, Latvia
| | - Linda Barkane
- Riga Stradins University, Dzirciema Street 16, Riga, LV1007, Latvia; Riga East University Hospital, Centre of Tuberculosis and Lung Diseases, Stopini Region, Upeslejas, LV2118, Latvia
| | - Viktorija Igumnova
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1, k-1, Riga, LV1067, Latvia
| | - Agnija Kivrane
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1, k-1, Riga, LV1067, Latvia
| | - Egija Zole
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1, k-1, Riga, LV1067, Latvia
| | - Renate Ranka
- Latvian Biomedical Research and Study Centre, Ratsupites Street 1, k-1, Riga, LV1067, Latvia; Riga Stradins University, Dzirciema Street 16, Riga, LV1007, Latvia.
| |
Collapse
|
27
|
Kim C, Ye Z, Weyand CM, Goronzy JJ. miR-181a-regulated pathways in T-cell differentiation and aging. Immun Ageing 2021; 18:28. [PMID: 34130717 PMCID: PMC8203492 DOI: 10.1186/s12979-021-00240-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are regulatory noncoding RNAs important for many aspects of cellular processes including cell differentiation and proliferation. Functions of numerous miRNAs have been identified in T cells, with miR-181a regulating T cell activation thresholds during thymic T cell development and during activation of peripheral T cells. Intriguingly, miR-181a is implicated in defective antiviral and vaccine responses in older individuals, as its expression declines in naïve T cells with increasing age. Here, we review the pathways that are regulated by miR-181a and that explain the unique role of miR-181a in T cell development, T cell activation and antiviral T cell responses. These studies provide a framework for understanding how a decline in miR-181a expression in T cells could contribute to age-related defects in adaptive immunity. We furthermore review the mechanisms that cause the age-related decline in miR-181a expression and discuss the potential of restoring miR-181a expression or targeting miR-181a-regulated pathways to improve impaired T cell responses in older individuals.
Collapse
Affiliation(s)
- Chulwoo Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Zhongde Ye
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
28
|
Srinivasan J, Lancaster JN, Singarapu N, Hale LP, Ehrlich LIR, Richie ER. Age-Related Changes in Thymic Central Tolerance. Front Immunol 2021; 12:676236. [PMID: 33968086 PMCID: PMC8100025 DOI: 10.3389/fimmu.2021.676236] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 01/03/2023] Open
Abstract
Thymic epithelial cells (TECs) and hematopoietic antigen presenting cells (HAPCs) in the thymus microenvironment provide essential signals to self-reactive thymocytes that induce either negative selection or generation of regulatory T cells (Treg), both of which are required to establish and maintain central tolerance throughout life. HAPCs and TECs are comprised of multiple subsets that play distinct and overlapping roles in central tolerance. Changes that occur in the composition and function of TEC and HAPC subsets across the lifespan have potential consequences for central tolerance. In keeping with this possibility, there are age-associated changes in the cellular composition and function of T cells and Treg. This review summarizes changes in T cell and Treg function during the perinatal to adult transition and in the course of normal aging, and relates these changes to age-associated alterations in thymic HAPC and TEC subsets.
Collapse
Affiliation(s)
- Jayashree Srinivasan
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | | | - Nandini Singarapu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, TX, United States
| | - Laura P Hale
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Ellen R Richie
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Smithville, TX, United States
| |
Collapse
|
29
|
Booth JS, Goldberg E, Patil SA, Barnes RS, Greenwald BD, Sztein MB. Age-dependency of terminal ileum tissue resident memory T cell responsiveness profiles to S. Typhi following oral Ty21a immunization in humans. Immun Ageing 2021; 18:19. [PMID: 33874975 PMCID: PMC8053564 DOI: 10.1186/s12979-021-00227-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/16/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND The impact of aging on the immune system is unequivocal and results in an altered immune status termed immunosenescence. In humans, the mechanisms of immunosenescence have been examined almost exclusively in blood. However, most immune cells are present in tissue compartments and exhibit differential cell (e.g., memory T cells -TM) subset distributions. Thus, it is crucial to understand immunosenescence in tissues, especially those that are exposed to pathogens (e.g., intestine). Using a human model of oral live attenuated typhoid vaccine, Ty21a, we investigated the effect of aging on terminal ileum (TI) tissue resident memory T (TRM) cells. TRM provide immediate adaptive effector immune responsiveness at the infection site. However, it is unknown whether aging impacts TRM S. Typhi-responsive cells at the site of infection (e.g., TI). Here, we determined the effect of aging on the induction of TI S. Typhi-responsive TRM subsets elicited by Ty21a immunization. RESULTS We observed that aging impacts the frequencies of TI-lamina propria mononuclear cells (LPMC) TM and TRM in both Ty21a-vaccinated and control groups. In unvaccinated volunteers, the frequencies of LPMC CD103- CD4+ TRM displayed a positive correlation with age whilst the CD4/CD8 ratio in LPMC displayed a negative correlation with age. We observed that elderly volunteers have weaker S. Typhi-specific mucosal immune responses following Ty21a immunization compared to adults. For example, CD103+ CD4+ TRM showed reduced IL-17A production, while CD103- CD4+ TRM exhibited lower levels of IL-17A and IL-2 in the elderly than in adults following Ty21a immunization. Similar results were observed in LPMC CD8+ TRM and CD103- CD8+ T cell subsets. A comparison of multifunctional (MF) profiles of both CD4+ and CD8+ TRM subsets between elderly and adults also showed significant differences in the quality and quantity of elicited single (S) and MF responses. CONCLUSIONS Aging influences tissue resident TM S. Typhi-specific responses in the terminal ileum following oral Ty21a-immunization. This study is the first to provide insights in the generation of local vaccine-specific responses in the elderly population and highlights the importance of evaluating tissue immune responses in the context of infection and aging. TRIAL REGISTRATION This study was approved by the Institutional Review Board and registered on ClinicalTrials.gov (identifier NCT03970304 , Registered 29 May 2019 - Retrospectively registered).
Collapse
Affiliation(s)
- Jayaum S Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Eric Goldberg
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Seema A Patil
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robin S Barnes
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Bruce D Greenwald
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
- Program in Oncology, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, 21201, USA.
| |
Collapse
|
30
|
Auma AWN, Shive CL, Lange A, Damjanovska S, Kowal C, Zebrowski E, Pandiyan P, Wilson B, Kalayjian RC, Canaday DH, Anthony DD. Naïve CD4+ T Cell Lymphopenia and Apoptosis in Chronic Hepatitis C Virus Infection Is Driven by the CD31+ Subset and Is Partially Normalized in Direct-Acting Antiviral Treated Persons. Front Immunol 2021; 12:641230. [PMID: 33912168 PMCID: PMC8075159 DOI: 10.3389/fimmu.2021.641230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/24/2021] [Indexed: 12/29/2022] Open
Abstract
Background The mechanisms underlying naïve CD4+ lymphopenia during chronic Hepatitis C Virus (HCV) infection are unclear. Whether direct-acting antiviral (DAA) therapy restores peripheral naïve CD4+ T cell numbers and function is unknown. Methods We enumerated frequencies and counts of peripheral naïve CD4+, CD4+CD31+ and CD4+CD31- T cells by flow cytometry in a cross sectional analysis comparing chronic HCV infected (n=34), DAA-treated(n=29), and age-range matched controls (n=25), as well as in a longitudinal cohort of HCV DAA treated persons (n=16). The cross-sectional cohort was stratified by cirrhosis state. Cell apoptosis/survival (AnnexinV+7AAD+/BCL-2 labeling) and cell cycle entry (Ki67 expression) of CD31+ and CD31- naïve CD4+ T cells was analyzed directly ex vivo and following 3 and 5 days of in vitro culture with media, interleukin (IL) -7 or CD3/CD28 activator. Results In the cross-sectional cohort, naïve CD4+ proportions were lower in chronic HCV infected persons compared to controls and DAA-treated persons, an effect in part attributed to cirrhosis. Age was associated with naïve cell counts and proportions in HCV infected and treated persons as well. Naïve CD4+ cell proportions negatively correlated with plasma levels of soluble CD14 following therapy in DAA-treated persons. Naïve CD4+ cells from HCV infected persons exhibited greater direct ex vivo apoptosis and cell-cycling compared to cells from DAA-treated persons and controls, and this was localized to the CD4+CD31+ subset. On the other hand, no remarkable differences in expression of BCL-2 or IL-7 Receptor (CD127) at baseline or following in vitro media or IL7 containing culture were observed. In the longitudinal cohort, naïve CD4+CD31+/CD31- ratio tended to increase 24 weeks after DAA therapy initiation. Conclusions Activation and apoptosis of peripheral naïve CD4+CD31+ T cells appear to contribute to naïve CD4+ lymphopenia in chronic HCV infection, and this defect is partially reversible with HCV DAA therapy. Age and cirrhosis -associated naïve CD4+ lymphopenia is present both before and after HCV DAA therapy. These findings have implications for restoration of host immune function after DAA therapy.
Collapse
Affiliation(s)
- Ann W N Auma
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Carey L Shive
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States.,GRECC, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| | - Alyssa Lange
- GRECC, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| | - Sofi Damjanovska
- GRECC, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| | - Corinne Kowal
- GRECC, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| | | | - Pushpa Pandiyan
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Brigid Wilson
- GRECC, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| | - Robert C Kalayjian
- Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - David H Canaday
- GRECC, VA Northeast Ohio Healthcare System, Cleveland, OH, United States
| | - Donald D Anthony
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States.,GRECC, VA Northeast Ohio Healthcare System, Cleveland, OH, United States.,Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
31
|
Pilkington SM, Bulfone-Paus S, Griffiths CE, Watson RE. Inflammaging and the Skin. J Invest Dermatol 2021; 141:1087-1095. [DOI: 10.1016/j.jid.2020.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/09/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022]
|
32
|
Pawelec G, McElhaney J. Unanticipated efficacy of SARS-CoV-2 vaccination in older adults. IMMUNITY & AGEING 2021; 18:7. [PMID: 33596958 PMCID: PMC7886644 DOI: 10.1186/s12979-021-00219-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
The rapidity with which vaccines against COVID-19 have been developed and tested is unprecedented. As classically the case with randomized clinical trials, many studies excluded older adults. However, given the early realisation that senior citizens were most highly susceptible to COVID, older individuals have been included in licensing trials under these unusual conditions. The recently published results from the Comirnaty Vaccine (BNT162b) trial unexpectedly documented that vaccine efficacy was equally exceptionally high in older and younger adults. These extremely encouraging trial results with a neoantigen vaccine may suggest the beginning of a paradigm shift in our view of the impact of immunosenescence on vaccination against novel infectious diseases.
Collapse
Affiliation(s)
- Graham Pawelec
- Department of Immunology, University of Tübingen, Tübingen, Germany. .,Health Sciences North Research Institute, Sudbury, Ontario, Canada.
| | - Janet McElhaney
- Health Sciences North Research Institute, Sudbury, Ontario, Canada
| |
Collapse
|
33
|
The impact of immuno-aging on SARS-CoV-2 vaccine development. GeroScience 2021; 43:31-51. [PMID: 33569701 PMCID: PMC7875765 DOI: 10.1007/s11357-021-00323-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
The SARS-CoV-2 pandemic has almost 56 million confirmed cases resulting in over 1.3 million deaths as of November 2020. This infection has proved more deadly to older adults (those >65 years of age) and those with immunocompromising conditions. The worldwide population aged 65 years and older is increasing, and the total number of aged individuals will outnumber those younger than 65 years by the year 2050. Aging is associated with a decline in immune function and chronic activation of inflammation that contributes to enhanced viral susceptibility and reduced responses to vaccination. Here we briefly review the pathogenicity of the virus, epidemiology and clinical response, and the underlying mechanisms of human aging in improving vaccination. We review current methods to improve vaccination in the older adults using novel vaccine platforms and adjuvant systems. We conclude by summarizing the existing clinical trials for a SARS-CoV-2 vaccine and discussing how to address the unique challenges for vaccine development presented with an aging immune system.
Collapse
|
34
|
Cao X, Liu L, Zhang Y, Yang Y. Reduced RING finger protein 10 expression in macrophages is associated with aging-related inflammation. FEBS Open Bio 2021; 11:386-394. [PMID: 33249776 PMCID: PMC7876489 DOI: 10.1002/2211-5463.13049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/13/2020] [Accepted: 10/28/2020] [Indexed: 01/06/2023] Open
Abstract
Age‐associated decline of the immune system is referred to as immunosenescence. The E3 ligase RING finger 10 (RNF10) has long been associated with the innate immune response, although a potential role in immunosenescence has not previously been reported. In the present study, we identified that RNF10 expression is lower in aged mouse macrophages than in young cells. After lipopolysaccharide stimulation, RNF10 expression remained at a basal low level in aged mouse cells, but declined sharply in young mouse cells. Knockdown of RNF10 enhanced both the nuclear factor‐κB and interferon regulatory factor 3 signaling pathways and thus enhanced proinflammatory cytokines and type I interferons in macrophages, promoting clearance of Listeria monocytogenes. These findings indicate that dysregulated expression of RNF10 is associated with age‐associated immune dysfunction, and RNF10 may thus be a potential target for the treatment of age‐related inflammatory diseases.
Collapse
Affiliation(s)
- Xinyuan Cao
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Lidan Liu
- The Southern Medical District of Chinese PLA General Hospital, Beijing, China
| | - Yueyi Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yingyun Yang
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
35
|
Darden DB, Moore FA, Brakenridge SC, Navarro EB, Anton SD, Leeuwenburgh C, Moldawer LL, Mohr AM, Efron PA, Mankowski RT. The Effect of Aging Physiology on Critical Care. Crit Care Clin 2021; 37:135-150. [PMID: 33190766 PMCID: PMC8194285 DOI: 10.1016/j.ccc.2020.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Older patients experience a decline in their physiologic reserves as well as chronic low-grade inflammation named "inflammaging." Both of these contribute significantly to aging-related factors that alter the acute, subacute, and chronic response of these patients to critical illness, such as sepsis. Unfortunately, this altered response to stressors can lead to chronic critical illness followed by dismal outcomes and death. The primary goal of this review is to briefly highlight age-specific changes in physiologic systems majorly affected in critical illness, especially because it pertains to sepsis and trauma, which can lead to chronic critical illness and describe implications in clinical management.
Collapse
Affiliation(s)
- Dijoia B Darden
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Frederick A Moore
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Scott C Brakenridge
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Eduardo B Navarro
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Stephen D Anton
- Department of Aging and Geriatric Research, University of Florida, 2004 Mowry Road, Gainesville, FL 32611, USA
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, University of Florida, 2004 Mowry Road, Gainesville, FL 32611, USA
| | - Lyle L Moldawer
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Alicia M Mohr
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Philip A Efron
- Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Robert T Mankowski
- Department of Aging and Geriatric Research, University of Florida, 2004 Mowry Road, Gainesville, FL 32611, USA.
| |
Collapse
|
36
|
Bacher P, Rosati E, Esser D, Martini GR, Saggau C, Schiminsky E, Dargvainiene J, Schröder I, Wieters I, Khodamoradi Y, Eberhardt F, Vehreschild MJGT, Neb H, Sonntagbauer M, Conrad C, Tran F, Rosenstiel P, Markewitz R, Wandinger KP, Augustin M, Rybniker J, Kochanek M, Leypoldt F, Cornely OA, Koehler P, Franke A, Scheffold A. Low-Avidity CD4 + T Cell Responses to SARS-CoV-2 in Unexposed Individuals and Humans with Severe COVID-19. Immunity 2020; 53:1258-1271.e5. [PMID: 33296686 PMCID: PMC7689350 DOI: 10.1016/j.immuni.2020.11.016] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/08/2020] [Accepted: 11/19/2020] [Indexed: 01/08/2023]
Abstract
CD4+ T cells reactive against SARS-CoV-2 can be found in unexposed individuals, and these are suggested to arise in response to common cold coronavirus (CCCoV) infection. Here, we utilized SARS-CoV-2-reactive CD4+ T cell enrichment to examine the antigen avidity and clonality of these cells, as well as the relative contribution of CCCoV cross-reactivity. SARS-CoV-2-reactive CD4+ memory T cells were present in virtually all unexposed individuals examined, displaying low functional avidity and multiple, highly variable cross-reactivities that were not restricted to CCCoVs. SARS-CoV-2-reactive CD4+ T cells from COVID-19 patients lacked cross-reactivity to CCCoVs, irrespective of strong memory T cell responses against CCCoV in all donors analyzed. In severe but not mild COVID-19, SARS-CoV-2-specific T cells displayed low functional avidity and clonality, despite increased frequencies. Our findings identify low-avidity CD4+ T cell responses as a hallmark of severe COVID-19 and argue against a protective role for CCCoV-reactive T cells in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Petra Bacher
- Institute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Germany; Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany.
| | - Elisa Rosati
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Daniela Esser
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/ Lübeck, Germany
| | - Gabriela Rios Martini
- Institute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Germany; Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Germany
| | - Esther Schiminsky
- Institute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Germany
| | - Justina Dargvainiene
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/ Lübeck, Germany
| | - Ina Schröder
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/ Lübeck, Germany
| | - Imke Wieters
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt & Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Yascha Khodamoradi
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt & Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Fabian Eberhardt
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt & Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maria J G T Vehreschild
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt & Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Holger Neb
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Michael Sonntagbauer
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Claudio Conrad
- Department of Internal Medicine, Hospital of Preetz, Preetz, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany; Department of Internal Medicine I, UKSH Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Robert Markewitz
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/ Lübeck, Germany
| | - Klaus-Peter Wandinger
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/ Lübeck, Germany
| | - Max Augustin
- University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; University of Cologne, Medical Faculty and University Hospital Cologne, German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Jan Rybniker
- University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; University of Cologne, Medical Faculty and University Hospital Cologne, German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Matthias Kochanek
- University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Cologne, Germany
| | - Frank Leypoldt
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/ Lübeck, Germany; Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Oliver A Cornely
- University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; University of Cologne, Medical Faculty and University Hospital Cologne, German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany; Clinical Trials Centre Cologne, ZKS Köln, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Philipp Koehler
- University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
37
|
Bühler S, Jaeger VK, Eperon G, Furrer H, Fux CA, Jansen S, Neumayr A, Rochat L, Schmid S, Schmidt-Chanasit J, Staehelin C, de Visser AW, Visser LG, Niedrig M, Hatz C. Safety and immunogenicity of a primary yellow fever vaccination under low-dose methotrexate therapy-a prospective multi-centre pilot study1. J Travel Med 2020; 27:5878835. [PMID: 32729905 DOI: 10.1093/jtm/taaa126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Accepted: 07/24/2020] [Indexed: 11/14/2022]
Abstract
BACKGROUND More people on immunosuppression live in or wish to travel to yellow fever virus (YFV)-endemic areas. Data on the safety and immunogenicity of yellow fever vaccination (YFVV) during immunosuppression are scarce. The aim of this study was to compare the safety and immunogenicity of a primary YFVV between travellers on methotrexate and controls. METHODS We conducted a prospective multi-centre controlled observational study from 2015 to 2017 in six Swiss travel clinics. 15 adults (nine with rheumatic diseases, five with dermatologic conditions and one with a gastroenterological disease) on low-dose methotrexate (≤20 mg/week) requiring a primary YFVV and 15 age and sex-matched controls received a YFVV. Solicited/unsolicited adverse reactions were recorded, YFV-RNA was measured in serum samples on Days 3, 7, 10, 14, 28 and neutralizing antibodies on Days 0, 7, 10, 14, 28. RESULTS Patients´ and controls' median ages were 53 and 52 years; 9 patients and 10 controls were female. 43% of patients and 33% of controls showed local side effects (P = 0.71); 86% of patients and 66% of controls reported systemic reactions (P = 0.39). YFV-RNA was detected in patients and controls on Day 3-10 post-vaccination and was never of clinical significance. Slightly more patients developed YFV-RNAaemia (Day 3: n = 5 vs n = 2, Day 7: n = 9 vs n = 7, Day 10: n = 3 vs n = 2, all P > 0.39). No serious reactions occurred. On Day 10, a minority of vaccinees was seroprotected (patients: n = 2, controls: n = 6). On Day 28, all vaccinees were seroprotected. CONCLUSIONS First-time YFVV was safe and immunogenic in travellers on low-dose methotrexate. Larger studies are needed to confirm these promising results.
Collapse
Affiliation(s)
- Silja Bühler
- Department of Public Health and Global Health/Division of Infectious Diseases, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Hirschengraben 84, 8001 Zurich, Switzerland.,Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany.,Division of Hygiene and Infectious Diseases, Institute of Hygiene and Environment, Marckmannstrasse 129a, 20539 Hamburg, Germany
| | - Veronika Katharina Jaeger
- Department of Rheumatology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland.,Department of Clinical Epidemiology, Institute of Epidemiology and Social Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Gilles Eperon
- Division of Tropical and Humanitarian Medicine, Department of Primary Care, Geneva University Hospitals (HUG), Rue Gabrielle-Perret-Gentil 6, 1205 Geneva, Switzerland
| | - Hansjakob Furrer
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Christoph A Fux
- Department of Infectious Diseases and Hospital Hygiene, Kantonsspital Aarau, Tellstrasse 25, 5001 Aarau, Switzerland
| | - Stephanie Jansen
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany
| | - Andreas Neumayr
- Department of Medicine, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland.,University of Basel, Socinstrasse 57, 4051 Basel, Switzerland
| | - Laurence Rochat
- Travel Clinic, Department of Ambulatory Care and Community Medicine, University Hospital Lausanne, Rue du Bugnon 21, 1011 Lausanne, Switzerland
| | - Sabine Schmid
- Department of Public Health and Global Health/Division of Infectious Diseases, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Hirschengraben 84, 8001 Zurich, Switzerland
| | - Jonas Schmidt-Chanasit
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany.,Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
| | - Cornelia Staehelin
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Adriëtte W de Visser
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Leonardus G Visser
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Matthias Niedrig
- Robert Koch Institute (RKI), Seestraße 10, 13353 Berlin, Germany
| | - Christoph Hatz
- Department of Public Health and Global Health/Division of Infectious Diseases, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Hirschengraben 84, 8001 Zurich, Switzerland.,Department of Medicine, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland.,University of Basel, Socinstrasse 57, 4051 Basel, Switzerland.,Department of Infectious Diseases and Hospital Hygiene, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, 9007 St. Gallen, Switzerland
| |
Collapse
|
38
|
The conundrum of human immune system "senescence". Mech Ageing Dev 2020; 192:111357. [PMID: 32949594 PMCID: PMC7494491 DOI: 10.1016/j.mad.2020.111357] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022]
Abstract
Biomarkers of human immunosenescence are discussed. Longitudinal studies are essential. Associations of immune markers in older adults with clinical outcome are context-dependent. There are no universal biomarkers of human immunosenescence. There are common age-associated changes to peripheral immune markers in humans.
There is a great deal of debate on the question of whether or not we know what ageing is (Ref. Cohen et al., 2020). Here, we consider what we believe to be the especially confused and confusing case of the ageing of the human immune system, commonly referred to as “immunosenescence”. But what exactly is meant by this term? It has been used loosely in the literature, resulting in a certain degree of confusion as to its definition and implications. Here, we argue that only those differences in immune parameters between younger and older adults that are associated in some definitive manner with detrimental health outcomes and/or impaired survival prospects should be classed as indicators of immunosenescence in the strictest sense of the word, and that in humans we know remarkably little about their identity. Such biomarkers of immunosenescence may nonetheless indicate beneficial effects in other contexts, consistent with the notion of antagonistic pleiotropy. Identifying what could be true immunosenescence in this respect requires examining: (1) what appears to correlate with age, though generality across human populations is not yet confirmed; (2) what clearly is part of a suite of canonical changes in the immune system that happen with age; (3) which subset of those changes accelerates rather than slows aging; and (4) all changes, potentially population-specific, that accelerate agig. This remains an immense challenge. These questions acquire an added urgency in the current SARS-CoV-2 pandemic, given the clearly greater susceptibility of older adults to COVID-19.
Collapse
|
39
|
The Transcription Factor TCF1 in T Cell Differentiation and Aging. Int J Mol Sci 2020; 21:ijms21186497. [PMID: 32899486 PMCID: PMC7554785 DOI: 10.3390/ijms21186497] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
The transcription factor T cell factor 1 (TCF1), a pioneer transcription factor as well as a downstream effector of WNT/β-catenin signaling, is indispensable for T cell development in the thymus. Recent studies have highlighted the additional critical role of TCF1 in peripheral T cell responses to acute and chronic infections as well as cancer. Here, we review the regulatory functions of TCF1 in the differentiation of T follicular helper cells, memory T cells and recently described stem-like exhausted T cells, where TCF1 promotes less differentiated stem-like cell states by controlling common gene-regulatory networks. These studies also provide insights into the mechanisms of defective T cell responses in older individuals. We discuss alterations in TCF1 expression and related regulatory networks with age and their consequences for T cell responses to infections and vaccination. The increasing understanding of the pathways regulating TCF1 expression and function in aged T cells holds the promise of enabling the design of therapeutic interventions aiming at improving T cell responses in older individuals.
Collapse
|
40
|
The human immunosenescence phenotype: does it exist? Semin Immunopathol 2020; 42:537-544. [PMID: 32757035 PMCID: PMC7405710 DOI: 10.1007/s00281-020-00810-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/26/2020] [Indexed: 01/06/2023]
Abstract
“Immunosenescence” has been invoked as the root cause of increased incidence and severity of infectious disease in older adults and their poorer response to vaccination, and is implicated in increased solid cancers and increased autoimmunity with age. But how to define it in the individual and to show that immunosenescence is responsible for these adverse health outcomes? How can we monitor interventions aimed at restoring appropriate immune function to overcome these perceived immune deficits? Hence, the many efforts over the years aimed at establishing biomarkers of immunosenescence which to be useful must exhibit robust correlations with the chosen clinical outcome. Developments in “omics” technologies acquiring unprecedently detailed data on personal trajectories of immunosenescence and taking into account the under-appreciated importance of gender, ethnicity geography, socioeconomic, and multiple other differences will be of pivotal importance to identify biomarkers that are clinically useful at the level of the individual. This contribution addresses the question of whether or not we are currently in possession of any such useful biomarkers.
Collapse
|
41
|
Braun J, Loyal L, Frentsch M, Wendisch D, Georg P, Kurth F, Hippenstiel S, Dingeldey M, Kruse B, Fauchere F, Baysal E, Mangold M, Henze L, Lauster R, Mall MA, Beyer K, Röhmel J, Voigt S, Schmitz J, Miltenyi S, Demuth I, Müller MA, Hocke A, Witzenrath M, Suttorp N, Kern F, Reimer U, Wenschuh H, Drosten C, Corman VM, Giesecke-Thiel C, Sander LE, Thiel A. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature 2020; 587:270-274. [PMID: 32726801 DOI: 10.1038/s41586-020-2598-9] [Citation(s) in RCA: 898] [Impact Index Per Article: 224.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the rapidly unfolding coronavirus disease 2019 (COVID-19) pandemic1,2. Clinical manifestations of COVID-19 vary, ranging from asymptomatic infection to respiratory failure. The mechanisms that determine such variable outcomes remain unresolved. Here we investigated CD4+ T cells that are reactive against the spike glycoprotein of SARS-CoV-2 in the peripheral blood of patients with COVID-19 and SARS-CoV-2-unexposed healthy donors. We detected spike-reactive CD4+ T cells not only in 83% of patients with COVID-19 but also in 35% of healthy donors. Spike-reactive CD4+ T cells in healthy donors were primarily active against C-terminal epitopes in the spike protein, which show a higher homology to spike glycoproteins of human endemic coronaviruses, compared with N-terminal epitopes. Spike-protein-reactive T cell lines generated from SARS-CoV-2-naive healthy donors responded similarly to the C-terminal region of the spike proteins of the human endemic coronaviruses 229E and OC43, as well as that of SARS-CoV-2. This results indicate that spike-protein cross-reactive T cells are present, which were probably generated during previous encounters with endemic coronaviruses. The effect of pre-existing SARS-CoV-2 cross-reactive T cells on clinical outcomes remains to be determined in larger cohorts. However, the presence of spike-protein cross-reactive T cells in a considerable fraction of the general population may affect the dynamics of the current pandemic, and has important implications for the design and analysis of upcoming trials investigating COVID-19 vaccines.
Collapse
Affiliation(s)
- Julian Braun
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lucie Loyal
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marco Frentsch
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Philipp Georg
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Kurth
- Berlin Institute of Health (BIH), Berlin, Germany.,Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Manuela Dingeldey
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Beate Kruse
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Florent Fauchere
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Emre Baysal
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Maike Mangold
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Larissa Henze
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany.,Regenerative Immunology and Aging, BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Roland Lauster
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany.,I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus A Mall
- Medical Biotechnology, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany.,Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kirsten Beyer
- Medical Biotechnology, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Jobst Röhmel
- Medical Biotechnology, Institute for Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Sebastian Voigt
- Department of Infectious Diseases, Robert Koch Institut, Berlin, Germany
| | | | | | - Ilja Demuth
- Interdisciplinary Metabolism Center, Biology of Aging (BoA) group, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marcel A Müller
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | - Florian Kern
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, UK.,JPT Peptide Technologies, Berlin, Germany
| | - Ulf Reimer
- JPT Peptide Technologies, Berlin, Germany
| | | | - Christian Drosten
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Andreas Thiel
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany. .,Regenerative Immunology and Aging, BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
42
|
Gustafson CE, Kim C, Weyand CM, Goronzy JJ. Influence of immune aging on vaccine responses. J Allergy Clin Immunol 2020; 145:1309-1321. [PMID: 32386655 PMCID: PMC7198995 DOI: 10.1016/j.jaci.2020.03.017] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Impaired vaccine responses in older individuals are associated with alterations in both the quantity and quality of the T-cell compartment with age. As reviewed herein, the T-cell response to vaccination requires a fine balance between the generation of inflammatory effector T cells versus follicular helper T (TFH) cells that mediate high-affinity antibody production in tandem with the induction of long-lived memory cells for effective recall immunity. During aging, we find that this balance is tipped where T cells favor short-lived effector but not memory or TFH responses. Consistently, vaccine-induced antibodies commonly display a lower protective capacity. Mechanistically, multiple, potentially targetable, changes in T cells have been identified that contribute to these age-related defects, including posttranscription regulation, T-cell receptor signaling, and metabolic function. Although research into the induction of tissue-specific immunity by vaccines and with age is still limited, current mechanistic insights provide a framework for improved design of age-specific vaccination strategies that require further evaluation in a clinical setting.
Collapse
Affiliation(s)
- Claire E Gustafson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, Calif; Department of Medicine, Veterans Administration Healthcare System, Palo Alto, Calif
| | - Chulwoo Kim
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, Calif; Department of Medicine, Veterans Administration Healthcare System, Palo Alto, Calif
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, Calif; Department of Medicine, Veterans Administration Healthcare System, Palo Alto, Calif
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, Calif; Department of Medicine, Veterans Administration Healthcare System, Palo Alto, Calif.
| |
Collapse
|
43
|
Pawelec G, Weng NP. Can an effective SARS-CoV-2 vaccine be developed for the older population? IMMUNITY & AGEING 2020; 17:8. [PMID: 32300370 PMCID: PMC7148425 DOI: 10.1186/s12979-020-00180-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 01/08/2023]
Abstract
The emergence of SARS-CoV-2 and its inordinately rapid spread is posing severe challenges to the wellbeing of millions of people worldwide, health care systems and the global economy. While many younger people experience no or mild symptoms on infection, older adults are highly susceptible to life-threatening respiratory and systemic conditions which demand a full understanding and leveraging of knowledge of the differences between immunity in young and old people. Consequently, we welcome papers addressing any issues relevant to immunity and ageing in the context of SARS-CoV-2, and will endeavour to fast-track peer-review. We aim to provide a platform exclusively for discussions of individual and age differences in susceptibility and immune responses to COVID caused by SARS-CoV-2 infection and how to prevent or reduce severity of disease in older adults.
Collapse
Affiliation(s)
- Graham Pawelec
- 1Department of Immunology, University of Tübingen, Tübingen, Germany.,2Health Sciences North Research Institute, Sudbury, Ontario Canada
| | | |
Collapse
|
44
|
Wang B, Shi S, Yang X, Wang Y, Qi H, Gao Q, Zhang C. Separation-Free Electrogenerated Chemiluminescence Immunoassay Incorporating Target Assistant Proximity Hybridization and Dynamically Competitive Hybridization of a DNA Signal Probe. Anal Chem 2019; 92:884-891. [DOI: 10.1021/acs.analchem.9b03662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Bing Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| | - Suwen Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| | - Xiaolin Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| | - Yue Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| | - Qiang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, P.R. China
| |
Collapse
|
45
|
Kim C, Jadhav RR, Gustafson CE, Smithey MJ, Hirsch AJ, Uhrlaub JL, Hildebrand WH, Nikolich-Žugich J, Weyand CM, Goronzy JJ. Defects in Antiviral T Cell Responses Inflicted by Aging-Associated miR-181a Deficiency. Cell Rep 2019; 29:2202-2216.e5. [PMID: 31747595 PMCID: PMC6957231 DOI: 10.1016/j.celrep.2019.10.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/15/2019] [Accepted: 10/10/2019] [Indexed: 12/28/2022] Open
Abstract
Generation of protective immunity to infections and vaccinations declines with age. Studies in healthy individuals have implicated reduced miR-181a expression in T cells as contributing to this defect. To understand the impact of miR-181a expression on antiviral responses, we examined LCMV infection in mice with miR-181ab1-deficient T cells. We found that miR-181a deficiency delays viral clearance, thereby biasing the immune response in favor of CD4 over CD8 T cells. Antigen-specific CD4 T cells in mice with miR-181a-deficient T cells expand more and have a broader TCR repertoire with preferential expansion of high-affinity T cells than in wild-type mice. Importantly, generation of antigen-specific miR-181a-deficient CD8 effector T cells is particularly impaired, resulting in lower frequencies of CD8 T cells in the liver even at time points when the infection has been cleared. Consistent with the mouse model, CD4 memory T cells in individuals infected with West Nile virus at older ages tend to be more frequent and of higher affinity.
Collapse
Affiliation(s)
- Chulwoo Kim
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA 94306, USA
| | - Rohit R Jadhav
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA 94306, USA
| | - Claire E Gustafson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA 94306, USA
| | - Megan J Smithey
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA; Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Alec J Hirsch
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Jennifer L Uhrlaub
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA; Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - William H Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Janko Nikolich-Žugich
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA; Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA 94306, USA
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA 94306, USA.
| |
Collapse
|
46
|
Quinn KM, Palchaudhuri R, Palmer CS, La Gruta NL. The clock is ticking: the impact of ageing on T cell metabolism. Clin Transl Immunology 2019; 8:e01091. [PMID: 31832191 PMCID: PMC6859487 DOI: 10.1002/cti2.1091] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 12/13/2022] Open
Abstract
It is now clear that access to specific metabolic programmes controls the survival and function of various immune cell populations, including T cells. Efficient naïve and memory T cell homoeostasis requires the use of specific metabolic pathways and differentiation requires rapid and dramatic metabolic remodelling. While we are beginning to appreciate the crucial role of metabolic programming during normal T cell physiology, many of the potential impacts of ageing on metabolic homoeostasis and remodelling in T cells remain unexplored. This review will outline our current understanding of T cell metabolism and explore age‐related metabolic changes that are postulated or have been demonstrated to impact T cell function.
Collapse
Affiliation(s)
- Kylie M Quinn
- School of Health and Biomedical Sciences RMIT University Bundoora VIC Australia.,Department of Biochemistry Biomedicine Discovery Institute Monash University Clayton VIC Australia
| | - Riya Palchaudhuri
- Life Sciences Macfarlane Burnet Institute for Medical Research and Public Health Melbourne VIC Australia.,Department of Infectious Diseases Monash University Melbourne VIC Australia.,Department of Immunology and Pathology Monash University Melbourne VIC Australia
| | - Clovis S Palmer
- Life Sciences Macfarlane Burnet Institute for Medical Research and Public Health Melbourne VIC Australia.,Department of Infectious Diseases Monash University Melbourne VIC Australia
| | - Nicole L La Gruta
- Department of Biochemistry Biomedicine Discovery Institute Monash University Clayton VIC Australia
| |
Collapse
|
47
|
Cossarizza A, Chang HD, Radbruch A, Acs A, Adam D, Adam-Klages S, Agace WW, Aghaeepour N, Akdis M, Allez M, Almeida LN, Alvisi G, Anderson G, Andrä I, Annunziato F, Anselmo A, Bacher P, Baldari CT, Bari S, Barnaba V, Barros-Martins J, Battistini L, Bauer W, Baumgart S, Baumgarth N, Baumjohann D, Baying B, Bebawy M, Becher B, Beisker W, Benes V, Beyaert R, Blanco A, Boardman DA, Bogdan C, Borger JG, Borsellino G, Boulais PE, Bradford JA, Brenner D, Brinkman RR, Brooks AES, Busch DH, Büscher M, Bushnell TP, Calzetti F, Cameron G, Cammarata I, Cao X, Cardell SL, Casola S, Cassatella MA, Cavani A, Celada A, Chatenoud L, Chattopadhyay PK, Chow S, Christakou E, Čičin-Šain L, Clerici M, Colombo FS, Cook L, Cooke A, Cooper AM, Corbett AJ, Cosma A, Cosmi L, Coulie PG, Cumano A, Cvetkovic L, Dang VD, Dang-Heine C, Davey MS, Davies D, De Biasi S, Del Zotto G, Cruz GVD, Delacher M, Bella SD, Dellabona P, Deniz G, Dessing M, Di Santo JP, Diefenbach A, Dieli F, Dolf A, Dörner T, Dress RJ, Dudziak D, Dustin M, Dutertre CA, Ebner F, Eckle SBG, Edinger M, Eede P, Ehrhardt GR, Eich M, Engel P, Engelhardt B, Erdei A, Esser C, Everts B, Evrard M, Falk CS, Fehniger TA, Felipo-Benavent M, Ferry H, Feuerer M, Filby A, Filkor K, Fillatreau S, Follo M, Förster I, Foster J, Foulds GA, Frehse B, Frenette PS, Frischbutter S, Fritzsche W, Galbraith DW, Gangaev A, Garbi N, Gaudilliere B, Gazzinelli RT, Geginat J, Gerner W, Gherardin NA, Ghoreschi K, Gibellini L, Ginhoux F, Goda K, Godfrey DI, Goettlinger C, González-Navajas JM, Goodyear CS, Gori A, Grogan JL, Grummitt D, Grützkau A, Haftmann C, Hahn J, Hammad H, Hämmerling G, Hansmann L, Hansson G, Harpur CM, Hartmann S, Hauser A, Hauser AE, Haviland DL, Hedley D, Hernández DC, Herrera G, Herrmann M, Hess C, Höfer T, Hoffmann P, Hogquist K, Holland T, Höllt T, Holmdahl R, Hombrink P, Houston JP, Hoyer BF, Huang B, Huang FP, Huber JE, Huehn J, Hundemer M, Hunter CA, Hwang WYK, Iannone A, Ingelfinger F, Ivison SM, Jäck HM, Jani PK, Jávega B, Jonjic S, Kaiser T, Kalina T, Kamradt T, Kaufmann SHE, Keller B, Ketelaars SLC, Khalilnezhad A, Khan S, Kisielow J, Klenerman P, Knopf J, Koay HF, Kobow K, Kolls JK, Kong WT, Kopf M, Korn T, Kriegsmann K, Kristyanto H, Kroneis T, Krueger A, Kühne J, Kukat C, Kunkel D, Kunze-Schumacher H, Kurosaki T, Kurts C, Kvistborg P, Kwok I, Landry J, Lantz O, Lanuti P, LaRosa F, Lehuen A, LeibundGut-Landmann S, Leipold MD, Leung LY, Levings MK, Lino AC, Liotta F, Litwin V, Liu Y, Ljunggren HG, Lohoff M, Lombardi G, Lopez L, López-Botet M, Lovett-Racke AE, Lubberts E, Luche H, Ludewig B, Lugli E, Lunemann S, Maecker HT, Maggi L, Maguire O, Mair F, Mair KH, Mantovani A, Manz RA, Marshall AJ, Martínez-Romero A, Martrus G, Marventano I, Maslinski W, Matarese G, Mattioli AV, Maueröder C, Mazzoni A, McCluskey J, McGrath M, McGuire HM, McInnes IB, Mei HE, Melchers F, Melzer S, Mielenz D, Miller SD, Mills KH, Minderman H, Mjösberg J, Moore J, Moran B, Moretta L, Mosmann TR, Müller S, Multhoff G, Muñoz LE, Münz C, Nakayama T, Nasi M, Neumann K, Ng LG, Niedobitek A, Nourshargh S, Núñez G, O’Connor JE, Ochel A, Oja A, Ordonez D, Orfao A, Orlowski-Oliver E, Ouyang W, Oxenius A, Palankar R, Panse I, Pattanapanyasat K, Paulsen M, Pavlinic D, Penter L, Peterson P, Peth C, Petriz J, Piancone F, Pickl WF, Piconese S, Pinti M, Pockley AG, Podolska MJ, Poon Z, Pracht K, Prinz I, Pucillo CEM, Quataert SA, Quatrini L, Quinn KM, Radbruch H, Radstake TRDJ, Rahmig S, Rahn HP, Rajwa B, Ravichandran G, Raz Y, Rebhahn JA, Recktenwald D, Reimer D, e Sousa CR, Remmerswaal EB, Richter L, Rico LG, Riddell A, Rieger AM, Robinson JP, Romagnani C, Rubartelli A, Ruland J, Saalmüller A, Saeys Y, Saito T, Sakaguchi S, de-Oyanguren FS, Samstag Y, Sanderson S, Sandrock I, Santoni A, Sanz RB, Saresella M, Sautes-Fridman C, Sawitzki B, Schadt L, Scheffold A, Scherer HU, Schiemann M, Schildberg FA, Schimisky E, Schlitzer A, Schlosser J, Schmid S, Schmitt S, Schober K, Schraivogel D, Schuh W, Schüler T, Schulte R, Schulz AR, Schulz SR, Scottá C, Scott-Algara D, Sester DP, Shankey TV, Silva-Santos B, Simon AK, Sitnik KM, Sozzani S, Speiser DE, Spidlen J, Stahlberg A, Stall AM, Stanley N, Stark R, Stehle C, Steinmetz T, Stockinger H, Takahama Y, Takeda K, Tan L, Tárnok A, Tiegs G, Toldi G, Tornack J, Traggiai E, Trebak M, Tree TI, Trotter J, Trowsdale J, Tsoumakidou M, Ulrich H, Urbanczyk S, van de Veen W, van den Broek M, van der Pol E, Van Gassen S, Van Isterdael G, van Lier RA, Veldhoen M, Vento-Asturias S, Vieira P, Voehringer D, Volk HD, von Borstel A, von Volkmann K, Waisman A, Walker RV, Wallace PK, Wang SA, Wang XM, Ward MD, Ward-Hartstonge KA, Warnatz K, Warnes G, Warth S, Waskow C, Watson JV, Watzl C, Wegener L, Weisenburger T, Wiedemann A, Wienands J, Wilharm A, Wilkinson RJ, Willimsky G, Wing JB, Winkelmann R, Winkler TH, Wirz OF, Wong A, Wurst P, Yang JHM, Yang J, Yazdanbakhsh M, Yu L, Yue A, Zhang H, Zhao Y, Ziegler SM, Zielinski C, Zimmermann J, Zychlinsky A. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur J Immunol 2019; 49:1457-1973. [PMID: 31633216 PMCID: PMC7350392 DOI: 10.1002/eji.201970107] [Citation(s) in RCA: 710] [Impact Index Per Article: 142.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, Univ. of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Andreas Acs
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Sabine Adam-Klages
- Institut für Transfusionsmedizin, Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - William W. Agace
- Mucosal Immunology group, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Immunology Section, Lund University, Lund, Sweden
| | - Nima Aghaeepour
- Departments of Anesthesiology, Pain and Perioperative Medicine; Biomedical Data Sciences; and Pediatrics, Stanford University, Stanford, CA, USA
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Matthieu Allez
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U1160, and Gastroenterology Department, Hôpital Saint-Louis – APHP, Paris, France
| | | | - Giorgia Alvisi
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | | | - Immanuel Andrä
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Achille Anselmo
- Flow Cytometry Core, Humanitas Clinical and Research Center, Milan, Italy
| | - Petra Bacher
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Institut für Klinische Molekularbiologie, Christian-Albrechts Universität zu Kiel, Germany
| | | | - Sudipto Bari
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | | | | | - Wolfgang Bauer
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sabine Baumgart
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Nicole Baumgarth
- Center for Comparative Medicine & Dept. Pathology, Microbiology & Immunology, University of California, Davis, CA, USA
| | - Dirk Baumjohann
- Institute for Immunology, Faculty of Medicine, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
| | - Bianka Baying
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Sydney, NSW, Australia
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Switzerland
| | - Wolfgang Beisker
- Flow Cytometry Laboratory, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Center for Inflammation Research, Ghent University - VIB, Ghent, Belgium
| | - Alfonso Blanco
- Flow Cytometry Core Technologies, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Dominic A. Boardman
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Medical Immunology Campus Erlangen, Erlangen, Germany
| | - Jessica G. Borger
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Giovanna Borsellino
- Neuroimmunology and Flow Cytometry Units, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Philip E. Boulais
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, New York, USA
| | | | - Dirk Brenner
- Luxembourg Institute of Health, Department of Infection and Immunity, Experimental and Molecular Immunology, Esch-sur-Alzette, Luxembourg
- Odense University Hospital, Odense Research Center for Anaphylaxis, University of Southern Denmark, Department of Dermatology and Allergy Center, Odense, Denmark
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Ryan R. Brinkman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
| | - Anna E. S. Brooks
- University of Auckland, School of Biological Sciences, Maurice Wilkins Center, Auckland, New Zealand
| | - Dirk H. Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
- Focus Group “Clinical Cell Processing and Purification”, Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Martin Büscher
- Biophysics, R&D Engineering, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Timothy P. Bushnell
- Department of Pediatrics and Shared Resource Laboratories, University of Rochester Medical Center, Rochester, NY, USA
| | - Federica Calzetti
- University of Verona, Department of Medicine, Section of General Pathology, Verona, Italy
| | - Garth Cameron
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Ilenia Cammarata
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology, Nankai University, Tianjin, China
| | - Susanna L. Cardell
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Stefano Casola
- The FIRC Institute of Molecular Oncology (FOM), Milan, Italy
| | - Marco A. Cassatella
- University of Verona, Department of Medicine, Section of General Pathology, Verona, Italy
| | - Andrea Cavani
- National Institute for Health, Migration and Poverty (INMP), Rome, Italy
| | - Antonio Celada
- Macrophage Biology Group, School of Biology, University of Barcelona, Barcelona, Spain
| | - Lucienne Chatenoud
- Université Paris Descartes, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | | | - Sue Chow
- Divsion of Medical Oncology and Hematology, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Eleni Christakou
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institutes of Health Research Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service, Foundation Trust and King’s College London, UK
| | - Luka Čičin-Šain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Department of Physiopathology and Transplants, University of Milan, Milan, Italy
- Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | | | - Laura Cook
- BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Anne Cooke
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Andrea M. Cooper
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Antonio Cosma
- National Cytometry Platform, Luxembourg Institute of Health, Department of Infection and Immunity, Esch-sur-Alzette, Luxembourg
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pierre G. Coulie
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Ana Cumano
- Unit Lymphopoiesis, Department of Immunology, Institut Pasteur, Paris, France
| | - Ljiljana Cvetkovic
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Van Duc Dang
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Chantip Dang-Heine
- Clinical Research Unit, Berlin Institute of Health (BIH), Charite Universitätsmedizin Berlin, Berlin, Germany
| | - Martin S. Davey
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Derek Davies
- Flow Cytometry Scientific Technology Platform, The Francis Crick Institute, London, UK
| | - Sara De Biasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
| | | | - Gelo Victoriano Dela Cruz
- Novo Nordisk Foundation Center for Stem Cell Biology – DanStem, University of Copenhagen, Copenhagen, Denmark
| | - Michael Delacher
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Germany
| | - Silvia Della Bella
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Paolo Dellabona
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Günnur Deniz
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul, Turkey
| | | | - James P. Di Santo
- Innate Immunty Unit, Department of Immunology, Institut Pasteur, Paris, France
- Institut Pasteur, Inserm U1223, Paris, France
| | - Andreas Diefenbach
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Francesco Dieli
- University of Palermo, Central Laboratory of Advanced Diagnosis and Biomedical Research, Department of Biomedicine, Neurosciences and Advanced Diagnostics, Palermo, Italy
| | - Andreas Dolf
- Flow Cytometry Core Facility, Institute of Experimental Immunology, University of Bonn, Bonn, Germany
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Dept. Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Germany
| | - Regine J. Dress
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Michael Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Charles-Antoine Dutertre
- Program in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Friederike Ebner
- Institute of Immunology, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Germany
| | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Matthias Edinger
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Germany
| | - Pascale Eede
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neuropathology, Germany
| | | | - Marcus Eich
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Pablo Engel
- University of Barcelona, Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Barcelona, Spain
| | | | - Anna Erdei
- Department of Immunology, University L. Eotvos, Budapest, Hungary
| | - Charlotte Esser
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, MHH, Hannover, Germany
| | - Todd A. Fehniger
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mar Felipo-Benavent
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Principe Felipe Research Center, Valencia, Spain
| | - Helen Ferry
- Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Markus Feuerer
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Germany
| | - Andrew Filby
- The Flow Cytometry Core Facility, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Simon Fillatreau
- Institut Necker-Enfants Malades, Université Paris Descartes Sorbonne Paris Cité, Faculté de Médecine, AP-HP, Hôpital Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Marie Follo
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Universitaetsklinikum FreiburgLighthouse Core Facility, Zentrum für Translationale Zellforschung, Klinik für Innere Medizin I, Freiburg, Germany
| | - Irmgard Förster
- Immunology and Environment, LIMES Institute, University of Bonn, Bonn, Germany
| | | | - Gemma A. Foulds
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Britta Frehse
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Paul S. Frenette
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Stefan Frischbutter
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venereology and Allergology
| | - Wolfgang Fritzsche
- Nanobiophotonics Department, Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
| | - David W. Galbraith
- School of Plant Sciences and Bio5 Institute, University of Arizona, Tucson, USA
- Honorary Dean of Life Sciences, Henan University, Kaifeng, China
| | - Anastasia Gangaev
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Natalio Garbi
- Institute of Experimental Immunology, University of Bonn, Germany
| | - Brice Gaudilliere
- Stanford Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, CA, USA
| | - Ricardo T. Gazzinelli
- Fundação Oswaldo Cruz - Minas, Laboratory of Immunopatology, Belo Horizonte, MG, Brazil
- Department of Mecicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jens Geginat
- INGM - Fondazione Istituto Nazionale di Genetica Molecolare “Ronmeo ed Enrica Invernizzi”, Milan, Italy
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lara Gibellini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keisuke Goda
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Department of Chemistry, University of Tokyo, Tokyo, Japan
- Institute of Technological Sciences, Wuhan University, Wuhan, China
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | | | - Jose M. González-Navajas
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Carl S. Goodyear
- Institute of Infection Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre, Glasgow, UK
| | - Andrea Gori
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan
| | - Jane L. Grogan
- Cancer Immunology Research, Genentech, South San Francisco, CA, USA
| | | | - Andreas Grützkau
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Claudia Haftmann
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Jonas Hahn
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Hamida Hammad
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Zwijnaarde, Belgium
| | | | - Leo Hansmann
- Berlin Institute of Health (BIH), Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Berlin, Germany
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Goran Hansson
- Department of Medicine and Center for Molecular Medicine at Karolinska University Hospital, Solna, Sweden
| | | | - Susanne Hartmann
- Institute of Immunology, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Germany
| | - Andrea Hauser
- Department of Internal Medicine III, University Hospital Regensburg, Germany
| | - Anja E. Hauser
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin
- Department of Rheumatology and Clinical Immunology, Berlin Institute of Health, Berlin, Germany
| | - David L. Haviland
- Flow Cytometry, Houston Methodist Hospital Research Institute, Houston, TX, USA
| | - David Hedley
- Divsion of Medical Oncology and Hematology, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Daniela C. Hernández
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Medical Department I, Division of Gastroenterology, Infectiology and Rheumatology, Berlin, Germany
| | - Guadalupe Herrera
- Cytometry Service, Incliva Foundation. Clinic Hospital and Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Christoph Hess
- Immunobiology Laboratory, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Thomas Höfer
- German Cancer Research Center (DKFZ), Division of Theoretical Systems Biology, Heidelberg, Germany
| | - Petra Hoffmann
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Germany
| | - Kristin Hogquist
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Tristan Holland
- Institute of Experimental Immunology, University of Bonn, Germany
| | - Thomas Höllt
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
- Computer Graphics and Visualization, Department of Intelligent Systems, TU Delft, Delft, The Netherlands
| | | | - Pleun Hombrink
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jessica P. Houston
- Department of Chemical & Materials Engineering, New Mexico State University, Las Cruces, NM, USA
| | - Bimba F. Hoyer
- Rheumatologie/Klinische Immunologie, Klinik für Innere Medizin I und Exzellenzzentrum Entzündungsmedizin, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Fang-Ping Huang
- Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, China
| | - Johanna E. Huber
- Institute for Immunology, Faculty of Medicine, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William Y. K. Hwang
- Department of Hematology, Singapore General Hospital, Singapore
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore
- Executive Offices, National Cancer Centre Singapore, Singapore
| | - Anna Iannone
- Department of Diagnostic Medicine, Clinical and Public Health, Univ. of Modena and Reggio Emilia, Modena, Italy
| | - Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sabine M Ivison
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Peter K. Jani
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Beatriz Jávega
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Stipan Jonjic
- Department of Histology and Embryology/Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Toralf Kaiser
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Tomas Kalina
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Thomas Kamradt
- Jena University Hospital, Institute of Immunology, Jena, Germany
| | | | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Steven L. C. Ketelaars
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ahad Khalilnezhad
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Srijit Khan
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Jan Kisielow
- Institute of Molecular Health Sciences, ETH Zurich, Zürich, Switzerland
| | - Paul Klenerman
- Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jasmin Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Germany
| | - Jay K. Kolls
- John W Deming Endowed Chair in Internal Medicine, Center for Translational Research in Infection and Inflammation Tulane School of Medicine, New Orleans, LA, USA
| | - Wan Ting Kong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zurich, Zürich, Switzerland
| | - Thomas Korn
- Department of Neurology, Technical University of Munich, Munich, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - Hendy Kristyanto
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Kroneis
- Division of Cell Biology, Histology & Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jenny Kühne
- Institute of Transplant Immunology, Hannover Medical School, MHH, Hannover, Germany
| | - Christian Kukat
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Désirée Kunkel
- Flow & Mass Cytometry Core Facility, Charité - Universitätsmedizin Berlin and Berlin Institute of Health, Berlin, Germany
- BCRT Flow Cytometry Lab, Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Tomohiro Kurosaki
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Christian Kurts
- Institute of Experimental Immunology, University of Bonn, Germany
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jonathan Landry
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Olivier Lantz
- INSERM U932, PSL University, Institut Curie, Paris, France
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, Centre on Aging Sciences and Translational Medicine (Ce.S.I.-Me.T.), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Francesca LaRosa
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Agnès Lehuen
- Institut Cochin, CNRS8104, INSERM1016, Department of Endocrinology, Metabolism and Diabetes, Université de Paris, Paris, France
| | | | - Michael D. Leipold
- The Human Immune Monitoring Center (HIMC), Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, CA, USA
| | - Leslie Y.T. Leung
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Megan K. Levings
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Andreia C. Lino
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Dept. Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Germany
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Yanling Liu
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, ANA Futura, Karolinska Institutet, Stockholm, Sweden
| | - Michael Lohoff
- Inst. f. Med. Mikrobiology and Hospital Hygiene, University of Marburg, Germany
| | - Giovanna Lombardi
- King’s College London, “Peter Gorer” Department of Immunobiology, London, UK
| | | | - Miguel López-Botet
- IMIM(Hospital de Mar Medical Research Institute), University Pompeu Fabra, Barcelona, Spain
| | - Amy E. Lovett-Racke
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Erik Lubberts
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Herve Luche
- Centre d’Immunophénomique - CIPHE (PHENOMIN), Aix Marseille Université (UMS3367), Inserm (US012), CNRS (UMS3367), Marseille, France
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
- Flow Cytometry Core, Humanitas Clinical and Research Center, Milan, Italy
| | - Sebastian Lunemann
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Holden T. Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Orla Maguire
- Flow and Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Florian Mair
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Kerstin H. Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Alberto Mantovani
- Istituto Clinico Humanitas IRCCS and Humanitas University, Pieve Emanuele, Milan, Italy
- William Harvey Research Institute, Queen Mary University, London, United Kingdom
| | - Rudolf A. Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Aaron J. Marshall
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Glòria Martrus
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ivana Marventano
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Wlodzimierz Maslinski
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Department of Pathophysiology and Immunology, Warsaw, Poland
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecologie Mediche, Università di Napoli Federico II and Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy
| | - Anna Vittoria Mattioli
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
- Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Christian Maueröder
- Cell Clearance in Health and Disease Lab, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Mairi McGrath
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Helen M. McGuire
- Ramaciotti Facility for Human Systems Biology, and Discipline of Pathology, The University of Sydney, Camperdown, Australia
| | - Iain B. McInnes
- Institute of Infection Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre, Glasgow, UK
| | - Henrik E. Mei
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Fritz Melchers
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Susanne Melzer
- Clinical Trial Center Leipzig, University Leipzig, Leipzig, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stephen D. Miller
- Interdepartmental Immunobiology Center, Dept. of Microbiology-Immunology, Northwestern Univ. Medical School, Chicago, IL, USA
| | - Kingston H.G. Mills
- Trinity College Dublin, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Hans Minderman
- Flow and Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, ANA Futura, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical and Experimental Medine, Linköping University, Linköping, Sweden
| | - Jonni Moore
- Abramson Cancer Center Flow Cytometry and Cell Sorting Shared Resource, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Barry Moran
- Trinity College Dublin, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesu Children’s Hospital, Rome, Italy
| | - Tim R. Mosmann
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Susann Müller
- Centre for Environmental Research - UFZ, Department Environmental Microbiology, Leipzig, Germany
| | - Gabriele Multhoff
- Institute for Innovative Radiotherapy (iRT), Experimental Immune Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum rechts der Isar, Munich, Germany
| | - Luis Enrique Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Christian Münz
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Switzerland
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba city, Chiba, Japan
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
- Discipline of Dermatology, University of Sydney, Sydney, New South Wales, Australia
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Antonia Niedobitek
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Sussan Nourshargh
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, the University of Michigan, Ann Arbor, Michigan, USA
| | - José-Enrique O’Connor
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Aaron Ochel
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Oja
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Diana Ordonez
- Flow Cytometry Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Alberto Orfao
- Department of Medicine, Cancer Research Centre (IBMCC-CSIC/USAL), Cytometry Service, University of Salamanca, CIBERONC and Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Eva Orlowski-Oliver
- Burnet Institute, AMREP Flow Cytometry Core Facility, Melbourne, Victoria, Australia
| | - Wenjun Ouyang
- Inflammation and Oncology, Research, Amgen Inc, South San Francisco, USA
| | | | - Raghavendra Palankar
- Department of Transfusion Medicine, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Isabel Panse
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Kovit Pattanapanyasat
- Center of Excellence for Flow Cytometry, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Malte Paulsen
- Flow Cytometry Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Dinko Pavlinic
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Livius Penter
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Christian Peth
- Biophysics, R&D Engineering, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Jordi Petriz
- Functional Cytomics Group, Josep Carreras Leukaemia Research Institute, Campus ICO-Germans Trias i Pujol, Universitat Autònoma de Barcelona, UAB, Badalona, Spain
| | - Federica Piancone
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Winfried F. Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Silvia Piconese
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
- Chromocyte Limited, Electric Works, Sheffield, UK
| | - Malgorzata Justyna Podolska
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
- Department for Internal Medicine 3, Institute for Rheumatology and Immunology, AG Munoz, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Zhiyong Poon
- Department of Hematology, Singapore General Hospital, Singapore
| | - Katharina Pracht
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Sally A. Quataert
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesu Children’s Hospital, Rome, Italy
| | - Kylie M. Quinn
- School of Biomedical and Health Sciences, RMIT University, Bundoora, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Helena Radbruch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neuropathology, Germany
| | - Tim R. D. J. Radstake
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Susann Rahmig
- Regeneration in Hematopoiesis, Leibniz-Institute on Aging, Fritz-Lipmann-Institute (FLI), Jena, Germany
| | - Hans-Peter Rahn
- Preparative Flow Cytometry, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Bartek Rajwa
- Bindley Biosciences Center, Purdue University, West Lafayette, IN, USA
| | - Gevitha Ravichandran
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yotam Raz
- Department of Internal Medicine, Groene Hart Hospital, Gouda, The Netherlands
| | - Jonathan A. Rebhahn
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Dorothea Reimer
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Ester B.M. Remmerswaal
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Renal Transplant Unit, Division of Internal Medicine, Academic Medical Centre, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa Richter
- Core Facility Flow Cytometry, Biomedical Center, Ludwig-Maximilians-University Munich, Germany
| | - Laura G. Rico
- Functional Cytomics Group, Josep Carreras Leukaemia Research Institute, Campus ICO-Germans Trias i Pujol, Universitat Autònoma de Barcelona, UAB, Badalona, Spain
| | - Andy Riddell
- Flow Cytometry Scientific Technology Platform, The Francis Crick Institute, London, UK
| | - Aja M. Rieger
- Department of Medical Microbiology and Immunology, University of Alberta, Alberta, Canada
| | - J. Paul Robinson
- Purdue University Cytometry Laboratories, Purdue University, West Lafayette, IN, USA
| | - Chiara Romagnani
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Medical Department I, Division of Gastroenterology, Infectiology and Rheumatology, Berlin, Germany
| | - Anna Rubartelli
- Cell Biology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Jürgen Ruland
- Institut für Klinische Chemie und Pathobiochemie, Fakultät für Medizin, Technische Universität München, München, Germany
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Takashi Saito
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shimon Sakaguchi
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Francisco Sala de-Oyanguren
- Flow Cytometry Facility, Ludwig Cancer Institute, Faculty of Medicine and Biology, University of Lausanne, Epalinges, Switzerland
| | - Yvonne Samstag
- Heidelberg University, Institute of Immunology, Section of Molecular Immunology, Heidelberg, Germany
| | - Sharon Sanderson
- Translational Immunology Laboratory, NIHR BRC, University of Oxford, Kennedy Institute of Rheumatology, Oxford, UK
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, IRCCS, Neuromed, Pozzilli, Italy
| | - Ramon Bellmàs Sanz
- Institute of Transplant Immunology, Hannover Medical School, MHH, Hannover, Germany
| | - Marina Saresella
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | | | - Birgit Sawitzki
- Charité – Universitätsmedizin Berlin, and Berlin Institute of Health, Institute of Medical Immunology, Berlin, Germany
| | - Linda Schadt
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Switzerland
| | - Alexander Scheffold
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Hans U. Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Schiemann
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | | | - Andreas Schlitzer
- Quantitative Systems Biology, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Josephine Schlosser
- Institute of Immunology, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Germany
| | - Stephan Schmid
- Internal Medicine I, University Hospital Regensburg, Germany
| | - Steffen Schmitt
- Flow Cytometry Core Facility, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Kilian Schober
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Daniel Schraivogel
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Reiner Schulte
- University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Axel Ronald Schulz
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Sebastian R. Schulz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Cristiano Scottá
- King’s College London, “Peter Gorer” Department of Immunobiology, London, UK
| | - Daniel Scott-Algara
- Institut Pasteur, Cellular Lymphocytes Biology, Immunology Departement, Paris, France
| | - David P. Sester
- TRI Flow Cytometry Suite (TRI.fcs), Translational Research Institute, Wooloongabba, QLD, Australia
| | | | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | | | - Katarzyna M. Sitnik
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Silvano Sozzani
- Dept. Molecular Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniel E. Speiser
- Department of Oncology, University of Lausanne and CHUV, Epalinges, Switzerland
| | | | - Anders Stahlberg
- Lundberg Laboratory for Cancer, Department of Pathology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | | - Natalie Stanley
- Departments of Anesthesiology, Pain and Perioperative Medicine; Biomedical Data Sciences; and Pediatrics, Stanford University, Stanford, CA, USA
| | - Regina Stark
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Christina Stehle
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Medical Department I, Division of Gastroenterology, Infectiology and Rheumatology, Berlin, Germany
| | - Tobit Steinmetz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Kiyoshi Takeda
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Leonard Tan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Attila Tárnok
- Departement for Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
- Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Julia Tornack
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- BioGenes GmbH, Berlin, Germany
| | - Elisabetta Traggiai
- Novartis Biologics Center, Mechanistic Immunology Unit, Novartis Institute for Biomedical Research, NIBR, Basel, Switzerland
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, PA, United States
| | - Timothy I.M. Tree
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institutes of Health Research Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service, Foundation Trust and King’s College London, UK
| | | | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Sophia Urbanczyk
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Maries van den Broek
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Switzerland
| | - Edwin van der Pol
- Vesicle Observation Center; Biomedical Engineering & Physics; Laboratory Experimental Clinical Chemistry; Amsterdam University Medical Centers, Location AMC, The Netherlands
| | - Sofie Van Gassen
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | | | - René A.W. van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc Veldhoen
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | | | - Paulo Vieira
- Unit Lymphopoiesis, Department of Immunology, Institut Pasteur, Paris, France
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Hans-Dieter Volk
- BIH Center for Regenerative Therapies (BCRT) Charité Universitätsmedizin Berlin and Berlin Institute of Health, Core Unit ImmunoCheck
| | - Anouk von Borstel
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | | | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | | | - Paul K. Wallace
- Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, USA
| | - Sa A. Wang
- Dept of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin M. Wang
- The Scientific Platforms, the Westmead Institute for Medical Research, the Westmead Research Hub, Westmead, New South Wales, Australia
| | | | | | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gary Warnes
- Flow Cytometry Core Facility, Blizard Institute, Queen Mary London University, London, UK
| | - Sarah Warth
- BCRT Flow Cytometry Lab, Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin
| | - Claudia Waskow
- Regeneration in Hematopoiesis, Leibniz-Institute on Aging, Fritz-Lipmann-Institute (FLI), Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | | | - Carsten Watzl
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Leonie Wegener
- Biophysics, R&D Engineering, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Thomas Weisenburger
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Annika Wiedemann
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Dept. Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Germany
| | - Jürgen Wienands
- Institute for Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Robert John Wilkinson
- Department of Infectious Disease, Imperial College London, UK
- Wellcome Centre for Infectious Diseases Research in Africa and Department of Medicine, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa
- Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Gerald Willimsky
- Cooperation Unit for Experimental and Translational Cancer Immunology, Institute of Immunology (Charité - Universitätsmedizin Berlin) and German Cancer Research Center (DKFZ), Berlin, Germany
| | - James B. Wing
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Rieke Winkelmann
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Thomas H. Winkler
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Oliver F. Wirz
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Alicia Wong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Peter Wurst
- University Bonn, Medical Faculty, Bonn, Germany
| | - Jennie H. M. Yang
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institutes of Health Research Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service, Foundation Trust and King’s College London, UK
| | - Juhao Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Alice Yue
- School of Computing Science, Simon Fraser University, Burnaby, Canada
| | - Hanlin Zhang
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Susanne Maria Ziegler
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Christina Zielinski
- German Center for Infection Research (DZIF), Munich, Germany
- Institute of Virology, Technical University of Munich, Munich, Germany
- TranslaTUM, Technical University of Munich, Munich, Germany
| | - Jakob Zimmermann
- Maurice Müller Laboratories (Department of Biomedical Research), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | | |
Collapse
|
48
|
Aiello A, Farzaneh F, Candore G, Caruso C, Davinelli S, Gambino CM, Ligotti ME, Zareian N, Accardi G. Immunosenescence and Its Hallmarks: How to Oppose Aging Strategically? A Review of Potential Options for Therapeutic Intervention. Front Immunol 2019; 10:2247. [PMID: 31608061 PMCID: PMC6773825 DOI: 10.3389/fimmu.2019.02247] [Citation(s) in RCA: 423] [Impact Index Per Article: 84.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
Aging is accompanied by remodeling of the immune system. With time, this leads to a decline in immune efficacy, resulting in increased vulnerability to infectious diseases, diminished responses to vaccination, and a susceptibility to age-related inflammatory diseases. An age-associated immune alteration, extensively reported in previous studies, is the reduction in the number of peripheral blood naïve cells, with a relative increase in the frequency of memory cells. These two alterations, together with inflamm-aging, are considered the hallmarks of immunosenescence. Because aging is a plastic process, it is influenced by both nutritional and pharmacological interventions. Therefore, the role of nutrition and of immunomodulation in immunosenescence is discussed, due to the multifactorial influence on these hallmarks. The close connection between nutrition, intake of bioactive nutrients and supplements, immune function, and inflammation demonstrate the key role of dietary strategies as regulators of immune response and inflammatory status, hence as possible modulators of the rate of immunosenescence. In addition, potential options for therapeutic intervention are clarified. In particular, the use of interleukin-7 as growth factor for naïve T cells, the function of checkpoint inhibitors in improving T cell responses during aging and, the potential of drugs that inhibit mitogen-activated protein kinases and their interaction with nutrient signaling pathways are discussed. Finally, it is suggested that the inclusion of appropriate combinations of toll-like receptor agonists may enhance the efficacy of vaccination in older adults.
Collapse
Affiliation(s)
- Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Farzin Farzaneh
- Molecular Medicine Group, Department of Hematological Medicine, School of Cancer & Pharmaceutical Sciences, The Rayne Institute, King's College London, London, United Kingdom
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Caterina Maria Gambino
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Nahid Zareian
- Molecular Medicine Group, Department of Hematological Medicine, School of Cancer & Pharmaceutical Sciences, The Rayne Institute, King's College London, London, United Kingdom
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
49
|
Affiliation(s)
- Ray Higginson
- Senior Lecturer in Critical Care Physiology, University of South Wales
| |
Collapse
|
50
|
Gustafson CE, Cavanagh MM, Jin J, Weyand CM, Goronzy JJ. Functional pathways regulated by microRNA networks in CD8 T-cell aging. Aging Cell 2019; 18:e12879. [PMID: 30488559 PMCID: PMC6351841 DOI: 10.1111/acel.12879] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/26/2018] [Accepted: 10/21/2018] [Indexed: 12/13/2022] Open
Abstract
One of the most prominent immunological changes during human aging is the alteration in CD8 T-cell subset distribution, predominated by a loss of naïve CD8 T cells. The molecular mechanisms that contribute to the loss of naïve CD8 T-cells during aging remain unclear. Considering that many CD8 T-cell functions are influenced by microRNAs (miRNAs), we explored miRNA expression profiling to identify novel dysfunctions that contribute to naïve CD8 T-cell loss during aging. Here, we describe age-dependent miRNA expression changes in naïve, central memory, and effector memory CD8 T-cell subsets. Changes in old naïve CD8 T-cells partially resembled those driven by an underlying shift in cellular differentiation toward a young central memory phenotype. Pathways enriched for targets of age-dependent miRNAs included FOXO1, NF-κB, and PI3K-AKT signaling. Transcriptome analysis of old naïve CD8 T-cells yielded corresponding patterns that correlated to those seen with reduced FOXO1 or altered NF-κB activities. Of particular interest, IL-7R expression, controlled by FOXO1 signaling, declines on naïve CD8 T cells with age and directly correlates with the frequencies of naïve CD8 T cells. Thus, age-associated changes in miRNA networks may ultimately contribute to the failure in CD8 T-cell homeostasis exemplified by the loss in naïve cells.
Collapse
Affiliation(s)
- Claire E Gustafson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California
| | - Mary M Cavanagh
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California
| | - Jun Jin
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California
| |
Collapse
|