1
|
Govindaraj S, Ibegbu C, Ali SA, Babu H, Shanmugasundaram U, Villinger F, Amara RR, Velu V. IL-15/IL-15Ra Synergies with IL-12 to Induce Functional CD8 T Cells and NK Cells During Chronic SHIV Infection. AIDS Res Hum Retroviruses 2024. [PMID: 39041621 DOI: 10.1089/aid.2024.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Cytokines are key mediators of immune regulation, orchestrate communication between immune cells, and play a pivotal role in shaping the immune landscape during chronic infection and cancer. The therapeutic potential of IL-15/IL-15Rα and IL-12 has been explored individually in various immunotherapeutic strategies, though not as a combination. Therefore, we investigated whether the combination of IL-15/IL-15Rα and IL-12 treatment would enhance the potency and quality of either NK cells, SIV-specific CD8 T cells, or both, compared with single cytokine treatment. Our findings reveal that in vitro IL-15/IL-15Rα and IL-15/IL-15Rα plus IL-12 treatment results in an expansion of functional CD8 T cells and NK cells from uninfected and chronically infected macaques with simian/human immunodeficiency virus. Additionally, the cytokine combination significantly reduced CCR5 expression on total CD4 T cells, limiting the number of viral targets. This study supports the potential utilization of combined IL-15/IL-15Rα plus IL-12 treatment for chronic viral infections and cancer.
Collapse
Affiliation(s)
- Sakthivel Govindaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Chris Ibegbu
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Syed A Ali
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Hemalatha Babu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Uma Shanmugasundaram
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
- Department of Biology, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Rama Rao Amara
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Vijayakumar Velu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Balachandran H, Kroll K, Terry K, Manickam C, Jones R, Woolley G, Hayes T, Martinot AJ, Sharma A, Lewis M, Jost S, Reeves RK. NK cells modulate in vivo control of SARS-CoV-2 replication and suppression of lung damage. PLoS Pathog 2024; 20:e1012439. [PMID: 39133756 PMCID: PMC11341101 DOI: 10.1371/journal.ppat.1012439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/22/2024] [Accepted: 07/22/2024] [Indexed: 08/18/2024] Open
Abstract
Natural killer (NK) cells play a critical role in virus control. However, it has remained largely unclear whether NK cell mobilization in SARS-CoV-2 infections is beneficial or pathologic. To address this deficit, we employed a validated experimental NK cell depletion non-human primate (NHP) model with SARS-CoV-2 Delta variant B.1.617.2 challenge. Viral loads (VL), NK cell numbers, activation, proliferation, and functional measures were evaluated in blood and tissues. In non-depleted (control) animals, infection rapidly induced NK cell expansion, activation, and increased tissue trafficking associated with VL. Strikingly, we report that experimental NK cell depletion leads to higher VL, longer duration of viral shedding, significantly increased levels of pro-inflammatory cytokines in the lungs, and overt lung damage. Overall, we find the first significant and conclusive evidence for NK cell-mediated control of SARS-CoV-2 virus replication and disease pathology. These data indicate that adjunct therapies for infection could largely benefit from NK cell-targeted approaches.
Collapse
Affiliation(s)
- Harikrishnan Balachandran
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Kyle Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Karen Terry
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Cordelia Manickam
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Rhianna Jones
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Tammy Hayes
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | - Amanda J. Martinot
- Department of Infectious Diseases and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | - Ankur Sharma
- BIOQUAL, Inc., Rockville, Maryland, United States of America
| | - Mark Lewis
- BIOQUAL, Inc., Rockville, Maryland, United States of America
| | - Stephanie Jost
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - R. Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
3
|
Simpson J, Starke CE, Ortiz AM, Ransier A, Darko S, Llewellyn-Lacey S, Fennessey CM, Keele BF, Douek DC, Price DA, Brenchley JM. Immunotoxin-mediated depletion of Gag-specific CD8+ T cells undermines natural control of SIV. JCI Insight 2024; 9:e174168. [PMID: 38885329 PMCID: PMC11383179 DOI: 10.1172/jci.insight.174168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
Antibody-mediated depletion studies have demonstrated that CD8+ T cells are required for effective immune control of SIV. However, this approach is potentially confounded by several factors, including reactive CD4+ T cell proliferation, and provides no information on epitope specificity, a likely determinant of CD8+ T cell efficacy. We circumvented these limitations by selectively depleting CD8+ T cells specific for the Gag epitope CTPYDINQM (CM9) via the administration of immunotoxin-conjugated tetrameric complexes of CM9/Mamu-A*01. Immunotoxin administration effectively depleted circulating but not tissue-localized CM9-specific CD8+ T cells, akin to the bulk depletion pattern observed with antibodies directed against CD8. However, we found no evidence to indicate that circulating CM9-specific CD8+ T cells suppressed viral replication in Mamu-A*01+ rhesus macaques during acute or chronic progressive infection with a pathogenic strain of SIV. This observation extended to macaques with established infection during and after continuous antiretroviral therapy. In contrast, natural controller macaques experienced dramatic increases in plasma viremia after immunotoxin administration, highlighting the importance of CD8+ T cell-mediated immunity against CM9. Collectively, these data showed that CM9-specific CD8+ T cells were necessary but not sufficient for robust immune control of SIV in a nonhuman primate model and, more generally, validated an approach that could inform the design of next-generation vaccines against HIV-1.
Collapse
Affiliation(s)
- Jennifer Simpson
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Carly E Starke
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Amy Ransier
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Sam Darko
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, United Kingdom
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Zhu HX, Yang SH, Gao CY, Bian ZH, Chen XM, Huang RR, Meng QL, Li X, Jin H, Tsuneyama K, Han Y, Li L, Zhao ZB, Gershwin ME, Lian ZX. Targeting pathogenic CD8 + tissue-resident T cells with chimeric antigen receptor therapy in murine autoimmune cholangitis. Nat Commun 2024; 15:2936. [PMID: 38580644 PMCID: PMC10997620 DOI: 10.1038/s41467-024-46654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/01/2024] [Indexed: 04/07/2024] Open
Abstract
Primary biliary cholangitis (PBC) is a cholestatic autoimmune liver disease characterized by autoreactive T cell response against intrahepatic small bile ducts. Here, we use Il12b-/-Il2ra-/- mice (DKO mice) as a model of autoimmune cholangitis and demonstrate that Cd8a knockout or treatment with an anti-CD8α antibody prevents/reduces biliary immunopathology. Using single-cell RNA sequencing analysis, we identified CD8+ tissue-resident memory T (Trm) cells in the livers of DKO mice, which highly express activation- and cytotoxicity-associated markers and induce apoptosis of bile duct epithelial cells. Liver CD8+ Trm cells also upregulate the expression of several immune checkpoint molecules, including PD-1. We describe the development of a chimeric antigen receptor to target PD-1-expressing CD8+ Trm cells. Treatment of DKO mice with PD-1-targeting CAR-T cells selectively depleted liver CD8+ Trm cells and alleviated autoimmune cholangitis. Our work highlights the pathogenic role of CD8+ Trm cells and the potential therapeutic usage of PD-1-targeting CAR-T cells.
Collapse
Affiliation(s)
- Hao-Xian Zhu
- Chronic Disease Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shu-Han Yang
- Chronic Disease Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), School of Medicine, South China University of Technology, Guangzhou, China
| | - Cai-Yue Gao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhen-Hua Bian
- Chronic Disease Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiao-Min Chen
- Chronic Disease Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Rong-Rong Huang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qian-Li Meng
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xin Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Haosheng Jin
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ying Han
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Liang Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Zhi-Bin Zhao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, USA.
| | - Zhe-Xiong Lian
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Ji C, Kuang B, Buetow BS, Vitsky A, Xu Y, Huang TH, Chaparro-Riggers J, Kraynov E, Matsumoto D. Pharmacokinetics, pharmacodynamics, and toxicity of a PD-1-targeted IL-15 in cynomolgus monkeys. PLoS One 2024; 19:e0298240. [PMID: 38315680 PMCID: PMC10843171 DOI: 10.1371/journal.pone.0298240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
PF-07209960 is a novel bispecific fusion protein composed of an anti-PD-1 antibody and engineered IL-15 cytokine mutein with reduced binding affinity to its receptors. The pharmacokinetics (PK), pharmacodynamics (PD), and toxicity of PF-07209960 were evaluated following once every other week subcutaneous (SC) or intravenous (IV) administration to cynomolgus monkeys in a repeat-dose PKPD (0.01-0.3 mg/kg/dose) and GLP toxicity study (0.1-3 mg/kg/dose). PF-07209960 showed dose dependent pharmacokinetics with a terminal T1/2 of 8 and 13 hours following IV administration at 0.03 and 0.1 mg/kg, respectively. The clearance is faster than a typical IgG1 antibody. Slightly faster clearance was also observed following the second dose, likely due to increased target pool and formation of anti-drug antibodies (ADA). Despite a high incidence rate of ADA (92%) observed in GLP toxicity study, PD-1 receptor occupancy, IL-15 signaling (STAT5 phosphorylation) and T cell expansion were comparable following the first and second doses. Activation and proliferation of T cells were observed with largest increase in cell numbers found in gamma delta T cells, followed by CD4+ and CD8+ T cells, and then NK cells. Release of cytokines IL-6, IFNγ, and IL-10 were detected, which peaked at 72 hours postdose. There was PF-07209960-related mortality at ≥1 mg/kg. At scheduled necropsy, microscopic findings were generalized mononuclear infiltration in various tissues. Both the no observed adverse effect level (NOAEL) and the highest non severely toxic dose (HNSTD) were determined to be 0.3 mg/kg/dose, which corresponded to mean Cmax and AUC48 values of 1.15 μg/mL and 37.9 μg*h/mL, respectively.
Collapse
Affiliation(s)
- Changhua Ji
- Drug Safety Research and Development, Pfizer Inc, San Diego, California, United States of America
| | - Bing Kuang
- Biomedical Design, Pfizer Inc, San Diego, California, United States of America
| | - Bernard S. Buetow
- Drug Safety Research and Development, Pfizer Inc, San Diego, California, United States of America
| | - Allison Vitsky
- Drug Safety Research and Development, Pfizer Inc, San Diego, California, United States of America
| | - Yuanming Xu
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, United States of America
| | - Tzu-Hsuan Huang
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, United States of America
| | | | - Eugenia Kraynov
- Biomedical Design, Pfizer Inc, San Diego, California, United States of America
| | - Diane Matsumoto
- Drug Safety Research and Development, Pfizer Inc, San Diego, California, United States of America
| |
Collapse
|
6
|
Lee H, Jeon JH, Kim ES. Mitochondrial dysfunctions in T cells: focus on inflammatory bowel disease. Front Immunol 2023; 14:1219422. [PMID: 37809060 PMCID: PMC10556505 DOI: 10.3389/fimmu.2023.1219422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Mitochondria has emerged as a critical ruler of metabolic reprogramming in immune responses and inflammation. In the context of colitogenic T cells and IBD, there has been increasing research interest in the metabolic pathways of glycolysis, pyruvate oxidation, and glutaminolysis. These pathways have been shown to play a crucial role in the metabolic reprogramming of colitogenic T cells, leading to increased inflammatory cytokine production and tissue damage. In addition to metabolic reprogramming, mitochondrial dysfunction has also been implicated in the pathogenesis of IBD. Studies have shown that colitogenic T cells exhibit impaired mitochondrial respiration, elevated levels of mROS, alterations in calcium homeostasis, impaired mitochondrial biogenesis, and aberrant mitochondria-associated membrane formation. Here, we discuss our current knowledge of the metabolic reprogramming and mitochondrial dysfunctions in colitogenic T cells, as well as the potential therapeutic applications for treating IBD with evidence from animal experiments.
Collapse
Affiliation(s)
- Hoyul Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Han Jeon
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Eun Soo Kim
- Division of Gastroenterology, Department of Internal Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
7
|
Picker LJ, Lifson JD, Gale M, Hansen SG, Früh K. Programming cytomegalovirus as an HIV vaccine. Trends Immunol 2023; 44:287-304. [PMID: 36894436 PMCID: PMC10089689 DOI: 10.1016/j.it.2023.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 03/09/2023]
Abstract
The initial development of cytomegalovirus (CMV) as a vaccine vector for HIV/simian immunodeficiency virus (SIV) was predicated on its potential to pre-position high-frequency, effector-differentiated, CD8+ T cells in tissues for immediate immune interception of nascent primary infection. This goal was achieved and also led to the unexpected discoveries that non-human primate (NHP) CMVs can be programmed to differentially elicit CD8+ T cell responses that recognize viral peptides via classical MHC-Ia, and/or MHC-II, and/or MHC-E, and that MHC-E-restricted CD8+ T cell responses can uniquely mediate stringent arrest and subsequent clearance of highly pathogenic SIV, an unprecedented type of vaccine-mediated protection. These discoveries delineate CMV vector-elicited MHC-E-restricted CD8+ T cells as a functionally distinct T cell response with the potential for superior efficacy against HIV-1, and possibly other infectious agents or cancers.
Collapse
Affiliation(s)
- Louis J Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| |
Collapse
|
8
|
Natural Killer Cells Regulate Acute SIV Replication, Dissemination, and Inflammation, but Do Not Impact Independent Transmission Events. J Virol 2023; 97:e0151922. [PMID: 36511699 PMCID: PMC9888193 DOI: 10.1128/jvi.01519-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells are potent effector cells of the innate immune system possessing both cytotoxic and immunoregulatory capabilities, which contribute to their crucial role in controlling human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections. However, despite significant evidence for NK cell modulation of HIV disease, their specific contribution to transmission and control of acute infection remains less clear. To elucidate the contribution of NK cells during acute SIV infection, we performed an acute necropsy study, where rhesus macaques (RM) were subjected to preinfection depletion of systemic NK cells using established methods of IL-15 neutralization, followed by subsequent challenge with barcoded SIVmac239X. Our study showed that depletion was highly effective, resulting in near total ablation of all NK cell subsets in blood, liver, oral, and rectal mucosae, and lymph nodes (LN) that persisted through the duration of the study. Meanwhile, frequencies and phenotypes of T cells remained virtually unchanged, indicating that our method of NK cell depletion had minimal off-target effects. Importantly, NK cell-depleted RM demonstrated an early and sustained 1 to 2 log increase in viremia over controls, but sequence analysis suggested no difference in the number of independent transmission events. Acute bulk, central memory (CM), and CCR5+ CD4+ T cell depletion was similar between experimental and control groups, while CD8+ T cell activation was higher in NK cell-depleted RM as measured by Ki67 and PD-1 expression. Using 27-plex Luminex analyses, we also found modestly increased inflammatory cytokines in NK cell-depleted RM compared to control animals. In the effort to determine the impact of NK cells on HIV/SIV transmission and acute viremia, future studies will be necessary to better harness these cells for future viral therapies. Collectively, these data suggest NK cells are important modulators of lentivirus dissemination and disease but may not have the capacity to independently eliminate individual transmission events. IMPORTANCE Natural killer (NK) cells as major effector cells of the innate immune system can contribute significantly to human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) control. However, a specific role for NK cells in blocking lentivirus transmission remains incompletely clear. In this study, we depleted NK cells prior to challenge with a barcoded SIV. Importantly, our studied showed systemic NK cell depletion was associated with a significant increase in acute viremia, but did not impact the number of independent transmission events. Collectively, these data suggest NK cells are critical modulators of early lentivirus replication but may not regulate individual transmission events at mucosal portals of entry.
Collapse
|
9
|
Baines KJ, Klausner MS, Patterson VS, Renaud SJ. Interleukin-15 deficient rats have reduced osteopontin at the maternal-fetal interface. Front Cell Dev Biol 2023; 11:1079164. [PMID: 37152295 PMCID: PMC10157472 DOI: 10.3389/fcell.2023.1079164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction: Uterine Natural Killer (NK) cells are the predominant immune cells within the decidua during early pregnancy. These cells are thought to regulate aspects of decidualization and placental development, but their functions remain poorly characterized, especially in species with deeply invading trophoblasts such as humans and rats. Interleukin-15 (IL-15) is a cytokine required for NK cell development and survival. IL-15 mutant (IL15Δ/Δ) rats lack NK cells and exhibit altered placental development with precocious trophoblast invasion. In this study, we profiled gene expression differences between wild-type and IL15Δ/Δ implantation sites to reveal candidate factors produced by uterine NK cells that may regulate placentation and trophoblast invasion. Methods: Clariom S gene expression profiling was performed using implantation sites collected from pregnant wild-type and IL15Δ/Δ rats on gestational day 9.5. Levels and localization of perforin and osteopontin in implantation sites from wild-type and IL15Δ/Δ rats were further analyzed. The effect of osteopontin on the invasive capacity of rat trophoblasts was evaluated using Matrigel-based Transwell assays. Results: There were 257 genes differentially expressed between wild-type and IL15Δ/Δ implantation sites on gestational day 9.5, including decreased expression of various NK cell markers in IL15Δ/Δ rats, as well as Spp1, which encodes osteopontin. In wild-type rats, osteopontin was present within the decidua basalis and adjacent to the primitive placenta, and osteopontin colocalized with the NK cell marker perforin. Osteopontin was also detectable in uterine glands. Conversely, in IL15Δ/Δ rats, osteopontin and perforin were not readily detectable in the decidua despite robust osteopontin levels in uterine glands. Neutralization of osteopontin in media conditioned by cells isolated from the decidua decreased invasion of rat trophoblasts, suggesting that reduced levels of osteopontin are unlikely to account for the precocious trophoblast invasion in IL15Δ/Δ rats. Conclusion: Osteopontin is expressed by NK cells at the maternal-fetal interface in rats and may contribute to modulation of trophoblast invasion.
Collapse
Affiliation(s)
- Kelly J. Baines
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Michelle S. Klausner
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Violet S. Patterson
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Stephen J. Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
- Children’s Health Research Institute, Lawson Health Research Institute, London, ON, Canada
- *Correspondence: Stephen J. Renaud,
| |
Collapse
|
10
|
Mortier E, Maillasson M, Quéméner A. Counteracting Interleukin-15 to Elucidate Its Modes of Action in Physiology and Pathology. J Interferon Cytokine Res 2023; 43:2-22. [PMID: 36651845 DOI: 10.1089/jir.2022.0198] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Interleukin (IL)-15 belongs to the common gamma-dependent cytokine family, along with IL-2, IL-4, IL-7, IL-9, and IL-21. IL-15 is crucial for the homeostasis of Natural Killer (NK) and memory CD8 T cells, and to fight against cancer progression. However, dysregulations of IL-15 expression could occur and participate in the emergence of autoimmune inflammatory diseases as well as hematological malignancies. It is therefore important to understand the different modes of action of IL-15 to decrease its harmful action in pathology without affecting its beneficial effects in the immune system. In this review, we present the different approaches used by researchers to inhibit the action of IL-15, from most broad to the most selective. Indeed, it appears that it is important to selectively target the mode of action of the cytokine rather than the cytokine itself as they are involved in numerous biological processes.
Collapse
Affiliation(s)
- Erwan Mortier
- Nantes Université, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Mike Maillasson
- Nantes Université, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Agnès Quéméner
- Nantes Université, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| |
Collapse
|
11
|
Derippe T, Fouliard S, Marchiq I, Dupouy S, Almena-Carrasco M, Geronimi J, Declèves X, Chenel M, Mager DE. Mechanistic Modeling of the Interplay Between Host Immune System, IL-7 and UCART19 Allogeneic CAR-T Cells in Adult B-cell Acute Lymphoblastic Leukemia. CANCER RESEARCH COMMUNICATIONS 2022; 2:1532-1544. [PMID: 36970053 PMCID: PMC10036133 DOI: 10.1158/2767-9764.crc-22-0176] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/06/2022] [Accepted: 11/03/2022] [Indexed: 06/18/2023]
Abstract
UNLABELLED Chimeric antigen receptor (CAR)-T cell therapies have shown tremendous results against various hematologic cancers. Prior to cell infusion, a host preconditioning regimen is required to achieve lymphodepletion and improve CAR-T cell pharmacokinetic exposure, leading to greater chances of therapeutic success. To better understand and quantify the impact of the preconditioning regimen, we built a population-based mechanistic pharmacokinetic-pharmacodynamic model describing the complex interplay between lymphodepletion, host immune system, homeostatic cytokines, and pharmacokinetics of UCART19, an allogeneic product developed against CD19+ B cells. Data were collected from a phase I clinical trial in adult relapsed/refractory B-cell acute lymphoblastic leukemia and revealed three different UCART19 temporal patterns: (i) expansion and persistence, (ii) transient expansion with subsequent rapid decline, and (iii) absence of observed expansion. On the basis of translational assumptions, the final model was able to capture this variability through the incorporation of IL-7 kinetics, which are thought to be increased owing to lymphodepletion, and through an elimination of UCART19 by host T cells, which is specific to the allogeneic context. Simulations from the final model recapitulated UCART19 expansion rates in the clinical trial, confirmed the need for alemtuzumab to observe UCART19 expansion (along with fludarabine cyclophosphamide), quantified the importance of allogeneic elimination, and suggested a high impact of multipotent memory T-cell subpopulations on UCART19 expansion and persistence. In addition to supporting the role of host cytokines and lymphocytes in CAR-T cell therapy, such a model could help optimizing the preconditioning regimens in future clinical trials. SIGNIFICANCE A mathematical mechanistic pharmacokinetic/pharmacodynamic model supports and captures quantitatively the beneficial impact of lymphodepleting patients before the infusion of an allogeneic CAR-T cell product. Mediation through IL-7 increase and host T lymphocytes decrease is underlined, and the model can be further used to optimize CAR-T cell therapies lymphodepletion regimen.
Collapse
Affiliation(s)
- Thibaud Derippe
- Institut de Recherches Internationales Servier, Suresnes, France
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
- Université de Paris, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France
| | - Sylvain Fouliard
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Ibtissam Marchiq
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Sandra Dupouy
- Institut de Recherches Internationales Servier, Suresnes, France
| | | | - Julia Geronimi
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Xavier Declèves
- Université de Paris, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France
| | - Marylore Chenel
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Donald E. Mager
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| |
Collapse
|
12
|
Sidell N, Kane MA. Actions of Retinoic Acid in the Pathophysiology of HIV Infection. Nutrients 2022; 14:nu14081611. [PMID: 35458172 PMCID: PMC9029687 DOI: 10.3390/nu14081611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 02/05/2023] Open
Abstract
The vitamin A metabolite all-trans retinoic acid (RA) plays a key role in tissue homeostasis and mucosal immunity. RA is produced by gut-associated dendritic cells, which are among the first cells encountered by HIV. Acute HIV infection results in rapid reduction of RA levels and dysregulation of immune cell populations whose identities and function are largely controlled by RA. Here, we discuss the potential link between the roles played by RA in shaping intestinal immune responses and the manifestations and pathogenesis of HIV-associated enteropathy and similar conditions observed in SIV-infected non-human primate models. We also present data demonstrating the ability of RA to enhance the activation of replication-competent viral reservoirs from subjects on suppressive anti-retroviral therapy. The data suggest that retinoid supplementation may be a useful adjuvant for countering the pathologic condition of the gastro-intestinal tract associated with HIV infection and as part of a strategy for reactivating viral reservoirs as a means of depleting latent viral infection.
Collapse
Affiliation(s)
- Neil Sidell
- Department of Obstetrics and Gynecology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: (N.S.); (M.A.K.)
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
- Correspondence: (N.S.); (M.A.K.)
| |
Collapse
|
13
|
Okoye AA, Fromentin R, Takata H, Brehm JH, Fukazawa Y, Randall B, Pardons M, Tai V, Tang J, Smedley J, Axthelm M, Lifson JD, Picker LJ, Favre D, Trautmann L, Chomont N. The ingenol-based protein kinase C agonist GSK445A is a potent inducer of HIV and SIV RNA transcription. PLoS Pathog 2022; 18:e1010245. [PMID: 35041707 PMCID: PMC8797195 DOI: 10.1371/journal.ppat.1010245] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/28/2022] [Accepted: 01/03/2022] [Indexed: 01/01/2023] Open
Abstract
Activation of the NF-κB signaling pathway by Protein Kinase C (PKC) agonists is a potent mechanism for human immunodeficiency virus (HIV) latency disruption in vitro. However, significant toxicity risks and the lack of evidence supporting their activity in vivo have limited further evaluation of PKC agonists as HIV latency-reversing agents (LRA) in cure strategies. Here we evaluated whether GSK445A, a stabilized ingenol-B derivative, can induce HIV/simian immunodeficiency virus (SIV) transcription and virus production in vitro and demonstrate pharmacological activity in nonhuman primates (NHP). CD4+ T cells from people living with HIV and from SIV+ rhesus macaques (RM) on antiretroviral therapy (ART) exposed in vitro to 25 nM of GSK445A produced cell-associated viral transcripts as well as viral particles at levels similar to those induced by PMA/Ionomycin, indicating that GSK445A can potently reverse HIV/SIV latency. Importantly, these concentrations of GSK445A did not impair the proliferation or survival of HIV-specific CD8+ T cells, but instead, increased their numbers and enhanced IFN-γ production in response to HIV peptides. In vivo, GSK445A tolerability was established in SIV-naïve RM at 15 μg/kg although tolerability was reduced in SIV-infected RM on ART. Increases in plasma viremia following GSK445A administration were suggestive of increased SIV transcription in vivo. Collectively, these results indicate that GSK445A is a potent HIV/SIV LRA in vitro and has a tolerable safety profile amenable for further evaluation in vivo in NHP models of HIV cure/remission. Antiretroviral therapy (ART) is not a definitive cure for HIV infection, in part, because the virus is able to integrate its genetic material in the host cell and remain in a dormant but fully replication-competent form during ART. These latently-infected cells can persist for long periods of time and remain hidden from the host’s immune system. If ART is stopped, the virus can reactivate from this pool of infected cells and resume HIV replication and disease progression. As such, finding and eliminating cells with latent HIV infection is priority for HIV cure research. One approach is to use compounds referred to as latency-reversing agents, that can induce HIV reactivation during ART. The goal of this approach is to facilitate elimination of infected cells by the virus itself once it reactivates or by the host’s immune system, once virus induction renders the cells detectable by the immune system, while also preventing the virus from infecting new cells due to the continued presence of ART. In this study we report on the activity of a novel latency-reversing agent called GSK445A, a potent activator of the enzyme protein kinase C (PKC). We show that GSK445A can induce HIV and simian immunodeficiency virus (SIV) latency reversal in vitro and has a tolerable saftey profile in nonhuman primates that should permit further testing of this PKC-agonist in strategies to cure HIV.
Collapse
Affiliation(s)
- Afam A Okoye
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America.,Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Rémi Fromentin
- Centre de Recherche du CHUM, Montréal, Québec, Canada.,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Québec, Canada
| | - Hiroshi Takata
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jessica H Brehm
- ViiV Healthcare, Research Triangle Park, North Carolina, United States of America
| | - Yoshinori Fukazawa
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America.,Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Bryan Randall
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America.,Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Marion Pardons
- Centre de Recherche du CHUM, Montréal, Québec, Canada.,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Québec, Canada
| | - Vincent Tai
- ViiV Healthcare, Research Triangle Park, North Carolina, United States of America
| | - Jun Tang
- ViiV Healthcare, Research Triangle Park, North Carolina, United States of America
| | - Jeremy Smedley
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America.,Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Michael Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America.,Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America.,Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - David Favre
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.,HIV Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - Lydie Trautmann
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Nicolas Chomont
- Centre de Recherche du CHUM, Montréal, Québec, Canada.,Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Québec, Canada
| |
Collapse
|
14
|
Harwood O, O’Connor S. Therapeutic Potential of IL-15 and N-803 in HIV/SIV Infection. Viruses 2021; 13:1750. [PMID: 34578331 PMCID: PMC8473246 DOI: 10.3390/v13091750] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/23/2022] Open
Abstract
IL-15, a proinflammatory cytokine critical for the generation, maintenance, and homeostasis of T cell responses, is produced naturally in response to HIV/SIV infection, but has also demonstrated therapeutic potential. IL-15 can boost CD4+ and CD8+ T cell and NK cell proliferation, activation, and function. However, IL-15 treatment may cause aberrant immune activation and accelerated disease progression in certain circumstances. Moreover, the relationship between the timing of IL-15 administration and disease progression remains unclear. The IL-15 superagonist N-803 was developed to expand the therapeutic potential of IL-15 by maximizing its tissue distribution and half-life. N-803 has garnered enthusiasm recently as a way to enhance the innate and cellular immune responses to HIV/SIV by improving CD8+ T cell recognition and killing of virus-infected cells and directing immune cells to mucosal sites and lymph nodes, the primary sites of virus replication. N-803 has also been evaluated in "shock and kill" strategies due to its potential to reverse latency (shock) and enhance antiviral immunity (kill). This review examines the current literature about the effects of IL-15 and N-803 on innate and cellular immunity, viral burden, and latency reversal in the context of HIV/SIV, and their therapeutic potential both alone and combined with additional interventions such as antiretroviral therapy (ART) and vaccination.
Collapse
Affiliation(s)
| | - Shelby O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA;
| |
Collapse
|
15
|
Potential Utility of Natural Killer Cells for Eliminating Cells Harboring Reactivated Latent HIV-1 Following the Removal of CD8 + T Cell-Mediated Pro-Latency Effect(s). Viruses 2021; 13:v13081451. [PMID: 34452317 PMCID: PMC8402732 DOI: 10.3390/v13081451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
An impediment to curing HIV-1 infection is the persistence of latently infected cells in ART-treated people living with HIV (PLWH). A key strategy for curing HIV-1 infection is to activate transcription and translation of latent virus using latency reversing agents (LRAs) and eliminate cells harboring reactivated virus via viral cytopathic effect or immune clearance. In this review, we provide an overview of available LRAs and their use in clinical trials. Furthermore, we describe recent data suggesting that CD8+ T cells promote HIV-1 latency in the context of ART, even in the presence of LRAs, which might at least partially explain the clinical inefficiency of previous “shock and kill” trials. Here, we propose a novel cure strategy called “unlock, shock, disarm, and kill”. The general premise of this strategy is to shut down the pro-latency function(s) of CD8+ T cells, use LRAs to reverse HIV-1 latency, counteract anti-apoptotic molecules, and engage natural killer (NK) cells to mediate the killing of cells harboring reactivated latent HIV-1.
Collapse
|
16
|
Huot N, Rascle P, Planchais C, Contreras V, Passaes C, Le Grand R, Beignon AS, Kornobis E, Legendre R, Varet H, Saez-Cirion A, Mouquet H, Jacquelin B, Müller-Trutwin M. CD32 +CD4 + T Cells Sharing B Cell Properties Increase With Simian Immunodeficiency Virus Replication in Lymphoid Tissues. Front Immunol 2021; 12:695148. [PMID: 34220857 PMCID: PMC8242952 DOI: 10.3389/fimmu.2021.695148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
CD4 T cell responses constitute an important component of adaptive immunity and are critical regulators of anti-microbial protection. CD4+ T cells expressing CD32a have been identified as a target for HIV. CD32a is an Fcγ receptor known to be expressed on myeloid cells, granulocytes, B cells and NK cells. Little is known about the biology of CD32+CD4+ T cells. Our goal was to understand the dynamics of CD32+CD4+ T cells in tissues. We analyzed these cells in the blood, lymph nodes, spleen, ileum, jejunum and liver of two nonhuman primate models frequently used in biomedical research: African green monkeys (AGM) and macaques. We studied them in healthy animals and during viral (SIV) infection. We performed phenotypic and transcriptomic analysis at different stages of infection. In addition, we compared CD32+CD4+ T cells in tissues with well-controlled (spleen) and not efficiently controlled (jejunum) SIV replication in AGM. The CD32+CD4+ T cells more frequently expressed markers associated with T cell activation and HIV infection (CCR5, PD-1, CXCR5, CXCR3) and had higher levels of actively transcribed SIV RNA than CD32-CD4+T cells. Furthermore, CD32+CD4+ T cells from lymphoid tissues strongly expressed B-cell-related transcriptomic signatures, and displayed B cell markers at the cell surface, including immunoglobulins CD32+CD4+ T cells were rare in healthy animals and blood but increased strongly in tissues with ongoing viral replication. CD32+CD4+ T cell levels in tissues correlated with viremia. Our results suggest that the tissue environment induced by SIV replication drives the accumulation of these unusual cells with enhanced susceptibility to viral infection.
Collapse
Affiliation(s)
- Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Cyril Planchais
- Institut Pasteur, INSERM U1222, Laboratoire d'Immunologie Humorale, Paris, France
| | - Vanessa Contreras
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Caroline Passaes
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Roger Le Grand
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Anne-Sophie Beignon
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Etienne Kornobis
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Rachel Legendre
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Hugo Varet
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Asier Saez-Cirion
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Hugo Mouquet
- Institut Pasteur, INSERM U1222, Laboratoire d'Immunologie Humorale, Paris, France
| | | | | |
Collapse
|
17
|
Foltz JA, Hess BT, Bachanova V, Bartlett NL, Berrien-Elliott MM, McClain E, Becker-Hapak M, Foster M, Schappe T, Kahl B, Mehta-Shah N, Cashen AF, Marin ND, McDaniels K, Moreno C, Mosior M, Gao F, Griffith OL, Griffith M, Wagner JA, Epperla N, Rock AD, Lee J, Petti AA, Soon-Shiong P, Fehniger TA. Phase I Trial of N-803, an IL15 Receptor Agonist, with Rituximab in Patients with Indolent Non-Hodgkin Lymphoma. Clin Cancer Res 2021; 27:3339-3350. [PMID: 33832946 DOI: 10.1158/1078-0432.ccr-20-4575] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/25/2021] [Accepted: 04/02/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE N-803 is an IL15 receptor superagonist complex, designed to optimize in vivo persistence and trans-presentation, thereby activating and expanding natural killer (NK) cells and CD8+ T cells. Monoclonal antibodies (mAbs) direct Fc receptor-bearing immune cells, including NK cells, to recognize and eliminate cancer targets. The ability of IL15R agonists to enhance tumor-targeting mAbs in patients has not been reported previously. PATIENTS AND METHODS Relapsed/refractory patients with indolent non-Hodgkin lymphoma were treated with rituximab and intravenous or subcutaneous N-803 on an open-label, dose-escalation phase I study using a 3+3 design (NCT02384954). Primary endpoint was maximum tolerated dose. Immune correlates were performed using multidimensional analysis via mass cytometry and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) which simultaneously measures protein and single-cell RNA expression. RESULTS This immunotherapy combination was safe and well tolerated and resulted in durable clinical responses including in rituximab-refractory patients. Subcutaneous N-803 plus rituximab induced sustained proliferation, expansion, and activation of peripheral blood NK cells and CD8 T cells, with increased NK cell and T cells present 8 weeks following last N-803 treatment. CITE-seq revealed a therapy-altered NK cell molecular program, including enhancement of AP-1 transcription factor. Furthermore, the monocyte transcriptional program was remodeled with enhanced MHC expression and antigen-presentation genes. CONCLUSIONS N-803 combines with mAbs to enhance tumor targeting in patients, and warrants further investigation in combination with immunotherapies.
Collapse
Affiliation(s)
| | - Brian T Hess
- Medical University of South Carolina, Charleston, South Carolina
| | | | | | | | - Ethan McClain
- Washington University School of Medicine, St. Louis, Missouri
| | | | - Mark Foster
- Washington University School of Medicine, St. Louis, Missouri
| | - Timothy Schappe
- Washington University School of Medicine, St. Louis, Missouri
| | - Brad Kahl
- Washington University School of Medicine, St. Louis, Missouri
| | - Neha Mehta-Shah
- Washington University School of Medicine, St. Louis, Missouri
| | - Amanda F Cashen
- Washington University School of Medicine, St. Louis, Missouri
| | - Nancy D Marin
- Washington University School of Medicine, St. Louis, Missouri
| | | | - Chaz Moreno
- Washington University School of Medicine, St. Louis, Missouri
| | - Matthew Mosior
- Washington University School of Medicine, St. Louis, Missouri
| | - Feng Gao
- Washington University School of Medicine, St. Louis, Missouri
| | - Obi L Griffith
- Washington University School of Medicine, St. Louis, Missouri
| | | | - Julia A Wagner
- Washington University School of Medicine, St. Louis, Missouri
| | | | | | - John Lee
- ImmunityBio, Culver City, California
| | - Allegra A Petti
- Washington University School of Medicine, St. Louis, Missouri
| | | | - Todd A Fehniger
- Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
18
|
Gramatica A, Schwarzer R, Brantley W, Varco-Merth B, Sperber HS, Hull PA, Montano M, Migueles SA, Rosenthal D, Hogan LE, Johnson JR, Packard TA, Grimmett ZW, Herzig E, Besnard E, Nekorchuk M, Hsiao F, Deeks SG, Snape M, Kiernan B, Roan NR, Lifson JD, Estes JD, Picker LJ, Verdin E, Krogan NJ, Henrich TJ, Connors M, Ott M, Pillai SK, Okoye AA, Greene WC. Evaluating a New Class of AKT/mTOR Activators for HIV Latency Reversing Activity Ex Vivo and In Vivo. J Virol 2021; 95:JVI.02393-20. [PMID: 33536176 PMCID: PMC8103695 DOI: 10.1128/jvi.02393-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
An ability to activate latent HIV-1 expression could benefit many HIV cure strategies, but the first generation of latency reversing agents (LRAs) has proven disappointing. We evaluated AKT/mTOR activators as a potential new class of LRAs. Two glycogen synthase kinase-3 inhibitors (GSK-3i's), SB-216763 and tideglusib (the latter already in phase II clinical trials) that activate AKT/mTOR signaling were tested. These GSK-3i's reactivated latent HIV-1 present in blood samples from aviremic individuals on antiretroviral therapy (ART) in the absence of T cell activation, release of inflammatory cytokines, cell toxicity, or impaired effector function of cytotoxic T lymphocytes or NK cells. However, when administered in vivo to SIV-infected rhesus macaques on suppressive ART, tideglusib exhibited poor pharmacodynamic properties and resulted in no clear evidence of significant SIV latency reversal. Whether alternative pharmacological formulations or combinations of this drug with other classes of LRAs will lead to an effective in vivo latency-reversing strategy remains to be determined.IMPORTANCE If combined with immune therapeutics, latency reversing agents (LRAs) have the potential to reduce the size of the reservoir sufficiently that an engineered immune response can control the virus in the absence of antiretroviral therapy. We have identified a new class of LRAs that do not induce T-cell activation and that are able to potentiate, rather than inhibit, CD8+ T and NK cell cytotoxic effector functions. This new class of LRAs corresponds to inhibitors of glycogen synthase kinase-3. In this work, we have also studied the effects of one member of this drug class, tideglusib, in SIV-infected rhesus monkeys. When tested in vivo, however, tideglusib showed unfavorable pharmacokinetic properties, which resulted in lack of SIV latency reversal. The disconnect between our ex vivo and in vivo results highlights the importance of developing next generation LRAs with pharmacological properties that allow systemic drug delivery in relevant anatomical compartments harboring latent reservoirs.
Collapse
Affiliation(s)
- Andrea Gramatica
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, USA
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Roland Schwarzer
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, USA
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - William Brantley
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Benjamin Varco-Merth
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Hannah S Sperber
- Vitalant Research Institute, San Francisco, California, USA
- Free University of Berlin, Institute of Biochemistry, Berlin, Germany
| | - Philip A Hull
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, USA
| | - Mauricio Montano
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, USA
| | - Stephen A Migueles
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Danielle Rosenthal
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Louise E Hogan
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Jeffrey R Johnson
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA
| | - Thomas A Packard
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, USA
| | - Zachary W Grimmett
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, USA
| | - Eytan Herzig
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, USA
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Emilie Besnard
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, USA
| | - Michael Nekorchuk
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Feng Hsiao
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
| | - Steven G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | | | | | - Nadia R Roan
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Eric Verdin
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, USA
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Nevan J Krogan
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, USA
| | - Timothy J Henrich
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Mark Connors
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Melanie Ott
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, USA
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Satish K Pillai
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
- Vitalant Research Institute, San Francisco, California, USA
| | - Afam A Okoye
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Warner C Greene
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, USA
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
19
|
Abstract
Immunologic memory is the ability of adaptive immune system to quickly and specifically recognize previously encountered antigens and initiate an effector response. Alloreactive memory cells can mount rapid and robust responses to the transplanted organ resulting in allograft injury. Thus preexisting humoral or cellular memory alloresponses are typically associated with poor graft outcomes in experimental and clinical transplantation. While both B and T lymphocytes exhibit memory responses, this review discusses recent updates on the biology of memory T cells and their relevance to the field of transplantation. Three major areas of focus are the emergence and characterization of tissue resident memory T cells, manipulation of T cell metabolic pathways, and the latest promising approaches to targeting detrimental T cell memory in the settings of organ transplantation.
Collapse
|
20
|
Fusion Cytokines IL-7-Linker-IL-15 Promote Mycobacterium Tuberculosis Subunit Vaccine to Induce Central Memory like T Cell-Mediated Immunity. Vaccines (Basel) 2020; 8:vaccines8040715. [PMID: 33271822 PMCID: PMC7712479 DOI: 10.3390/vaccines8040715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), is among the most serious infectious diseases worldwide. Adjuvanted protein subunit vaccines have been demonstrated as a kind of promising novel vaccine. This study proposed to investigate whether cytokines interliukine-7 (IL-7) and interliukine-15 (IL-15) help TB subunit vaccines induce long-term cell-mediated immune responses, which are required for vaccination against TB. In this study, mice were immunized with the M. tuberculosis protein subunit vaccines combined with adnovirus-mediated cytokines IL-7, IL-15, IL-7-IL-15, and IL-7-Linker-IL-15 at 0, 2, and 4 weeks, respectively. Twenty weeks after the last immunization, the long-term immune responses, especially the central memory-like T cells (TCM like cell)-mediated immune responses, were determined with the methods of cultured IFN-γ-ELISPOT, expanded secondary immune responses, cell proliferation, and protective efficacy against Mycobacterium bovis Bacilli Calmette-Guerin (BCG) challenge, etc. The results showed that the group of vaccine + rAd-IL-7-Linker-IL-15 induced a stronger long-term antigen-specific TCM like cells-mediated immune responses and had higher protective efficacy against BCG challenge than the vaccine + rAd-vector control group, the vaccine + rAd-IL-7 and the vaccine + rAd-IL-15 groups. This study indicated that rAd-IL-7-Linker-IL-15 improved the TB subunit vaccine’s efficacy by augmenting TCM like cells and provided long-term protective efficacy against Mycobacteria.
Collapse
|
21
|
Oftedal BE, Wolff ASB. New era of therapy for endocrine autoimmune disorders. Scand J Immunol 2020; 92:e12961. [PMID: 32853446 DOI: 10.1111/sji.12961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022]
Abstract
The new era of immune and reconstitution therapy of autoimmune disorders is ongoing. However, endocrine autoimmune diseases comprise a group of elaborating pathologies where the development of new treatment strategies remains slow. Substitution of the missing hormones is still standard practice, taking care of the devastating symptoms but not the cause of disease. As our knowledge of the genetic contribution to the aetiology of endocrine disorders increases and early diagnostic tools are available, it is now possible to identify persons at risk before they acquire full-blown disease. This review summarizes current knowledge and treatment of endocrine autoimmune disorders, focusing on type 1 diabetes, Addison's disease, autoimmune thyroid diseases and primary ovarian insufficiency. We explore which new therapies might be used in the different stages of the disease, focus on legalized therapy and elaborate on the ongoing clinical studies for these diseases and the research front, before hypothesizing on the way ahead.
Collapse
Affiliation(s)
- Bergithe E Oftedal
- Department of Clinical Science, University of Bergen, Bergen, Norway.,KG Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
| | - Anette S B Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway.,KG Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
22
|
Cline-Smith A, Axelbaum A, Shashkova E, Chakraborty M, Sanford J, Panesar P, Peterson M, Cox L, Baldan A, Veis D, Aurora R. Ovariectomy Activates Chronic Low-Grade Inflammation Mediated by Memory T Cells, Which Promotes Osteoporosis in Mice. J Bone Miner Res 2020; 35:1174-1187. [PMID: 31995253 PMCID: PMC8061311 DOI: 10.1002/jbmr.3966] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/23/2019] [Accepted: 01/16/2020] [Indexed: 12/27/2022]
Abstract
The loss of estrogen (E2 ) initiates a rapid phase of bone loss leading to osteoporosis in one-half of postmenopausal women, but the mechanism is not fully understood. Here, we show for the first time how loss of E2 activates low-grade inflammation to promote the acute phase of bone catabolic activity in ovariectomized (OVX) mice. E2 regulates the abundance of dendritic cells (DCs) that express IL-7 and IL-15 by inducing the Fas ligand (FasL) and apoptosis of the DC. In the absence of E2 , DCs become long-lived, leading to increased IL-7 and IL-15. We find that IL-7 and IL-15 together, but not alone, induced antigen-independent production of IL-17A and TNFα in a subset of memory T cells (TMEM ). OVX of mice with T-cell-specific ablation of IL15RA showed no IL-17A and TNFα expression, and no increase in bone resorption or bone loss, confirming the role of IL-15 in activating the TMEM and the need for inflammation. Our results provide a new mechanism by which E2 regulates the immune system, and how menopause leads to osteoporosis. The low-grade inflammation is likely to cause or contribute to other comorbidities observed postmenopause. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Anna Cline-Smith
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Ariel Axelbaum
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Elena Shashkova
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Mousumi Chakraborty
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Jessie Sanford
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Prabhjyot Panesar
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Macey Peterson
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Linda Cox
- Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Angel Baldan
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Deborah Veis
- Division of Bone and Mineral Diseases, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Rajeev Aurora
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
23
|
Torres-Hernandez A, Wang W, Nikiforov Y, Tejada K, Torres L, Kalabin A, Adam S, Wu J, Lu L, Chen R, Lemmer A, Camargo J, Hundeyin M, Diskin B, Aykut B, Kurz E, Kochen Rossi JA, Khan M, Liria M, Sanchez G, Wu N, Su W, Adams S, Haq MIU, Farooq MS, Vasudevaraja V, Leinwand J, Miller G. γδ T Cells Promote Steatohepatitis by Orchestrating Innate and Adaptive Immune Programming. Hepatology 2020; 71:477-494. [PMID: 31529720 DOI: 10.1002/hep.30952] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/05/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS The recruitment and activation of inflammatory cells in the liver delineates the transition from hepatic steatosis to steatohepatitis (SH). APPROACH AND RESULTS We found that in SH, γδT cells are recruited to the liver by C-C chemokine receptor (CCR) 2, CCR5, and nucleotide-binding oligomerization domain-containing protein 2 signaling and are skewed toward an interleukin (IL)-17A+ phenotype in an inducible costimulator (ICOS)/ICOS ligand-dependent manner. γδT cells exhibit a distinct Vγ4+ , PD1+ , Ly6C+ CD44+ phenotype in SH. Moreover, γδT cells up-regulate both CD1d, which is necessary for lipid-based antigens presentation, and the free fatty acid receptor, CD36. γδT cells are stimulated to express IL-17A by palmitic acid and CD1d ligation. Deletion, depletion, and targeted interruption of γδT cell recruitment protects against diet-induced SH and accelerates disease resolution. CONCLUSIONS We demonstrate that hepatic γδT cells exacerbate SH, independent of IL-17 expression, by mitigating conventional CD4+ T-cell expansion and modulating their inflammatory program by CD1d-dependent vascular endothelial growth factor expression.
Collapse
Affiliation(s)
| | - Wei Wang
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Yuri Nikiforov
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Karla Tejada
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Luisana Torres
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Aleksandr Kalabin
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Salma Adam
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Jingjing Wu
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Lu Lu
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Ruonan Chen
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Aaron Lemmer
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Jimmy Camargo
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Mautin Hundeyin
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Brian Diskin
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Berk Aykut
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Emma Kurz
- Department of Cell Biology, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Juan A Kochen Rossi
- Department of Cell Biology, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Mohammed Khan
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Miguel Liria
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Gustavo Sanchez
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Nan Wu
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Wenyu Su
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Steven Adams
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Muhammad Israr Ul Haq
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Mohammad Saad Farooq
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Varshini Vasudevaraja
- Department of Pathology, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - Joshua Leinwand
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| | - George Miller
- Department of Surgery, S.A. Localio Laboratory, New York University School of Medicine, New York, NY.,Department of Cell Biology, S.A. Localio Laboratory, New York University School of Medicine, New York, NY
| |
Collapse
|
24
|
Nolz JC, Richer MJ. Control of memory CD8 + T cell longevity and effector functions by IL-15. Mol Immunol 2019; 117:180-188. [PMID: 31816491 DOI: 10.1016/j.molimm.2019.11.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/12/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022]
Abstract
IL-15 is a member of the common gamma chain family of cytokines and plays important roles in regulating several aspects of innate and adaptive immunity. Besides its established role in controlling homeostatic proliferation and survival of memory CD8+ T cells and natural killer cells, recent findings demonstrate that inflammatory IL-15 can also stimulate a variety of effector functions, such as enhanced cytotoxicity, entry into the cell cycle, and trafficking into non-lymphoid tissues. Here, we discuss how IL-15 is critical in regulating many functions of memory CD8+ T cells and how these processes act collectively to ensure optimal protective cellular immunity against re-infections.
Collapse
Affiliation(s)
- Jeffrey C Nolz
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, United States; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, United States; Department of Radiation Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States.
| | - Martin J Richer
- Department of Microbiology & Immunology, McGill University, 712 McIntyre Medical Building, 3655 promenade Sir William Osler, Montreal, Quebec, Canada; Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
25
|
Okoye AA, DeGottardi MQ, Fukazawa Y, Vaidya M, Abana CO, Konfe AL, Fachko DN, Duell DM, Li H, Lum R, Gao L, Park BS, Skalsky RL, Lewis AD, Axthelm MK, Lifson JD, Wong SW, Picker LJ. Role of IL-15 Signaling in the Pathogenesis of Simian Immunodeficiency Virus Infection in Rhesus Macaques. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2928-2943. [PMID: 31653683 PMCID: PMC6864325 DOI: 10.4049/jimmunol.1900792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/30/2019] [Indexed: 01/04/2023]
Abstract
Although IL-15 has been implicated in the pathogenic hyperimmune activation that drives progressive HIV and SIV infection, as well as in the generation of HIV/SIV target cells, it also supports NK and T cell homeostasis and effector activity, potentially benefiting the host. To understand the role of IL-15 in SIV infection and pathogenesis, we treated two cohorts of SIVmac239-infected rhesus macaques (RM; Macaca mulatta), one with chronic infection, the other with primary infection, with a rhesusized, IL-15-neutralizing mAb (versus an IgG isotype control) for up to 10 wk (n = 7-9 RM per group). In both cohorts, anti-IL-15 was highly efficient at blocking IL-15 signaling in vivo, causing 1) profound depletion of NK cells in blood and tissues throughout the treatment period; 2) substantial, albeit transient, depletion of CD8+ effector memory T cells (TEM) (but not the naive and central memory subsets); and 3) CD4+ and CD8+ TEM hyperproliferation. In primary infection, reduced frequencies of SIV-specific effector T cells in an extralymphoid tissue site were also observed. Despite these effects, the kinetics and extent of SIV replication, CD4+ T cell depletion, and the onset of AIDS were comparable between anti-IL-15- and control-treated groups in both cohorts. However, RM treated with anti-IL-15 during primary infection manifested accelerated reactivation of RM rhadinovirus. Thus, IL-15 support of NK cell and TEM homeostasis does not play a demonstrable, nonredundant role in SIV replication or CD4+ T cell deletion dynamics but may contribute to immune control of oncogenic γ-herpesviruses.
Collapse
Affiliation(s)
- Afam A Okoye
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Maren Q DeGottardi
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Yoshinori Fukazawa
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Mukta Vaidya
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Chike O Abana
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Audrie L Konfe
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Devin N Fachko
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Derick M Duell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - He Li
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Richard Lum
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Lina Gao
- Division of Biostatistics, Department of Public Health and Preventative Medicine, Oregon Health & Science University, Portland, OR 97239; and
| | - Byung S Park
- Division of Biostatistics, Department of Public Health and Preventative Medicine, Oregon Health & Science University, Portland, OR 97239; and
| | - Rebecca L Skalsky
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Anne D Lewis
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Michael K Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Scott W Wong
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006;
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| |
Collapse
|
26
|
Fisher L, Zinter M, Stanfield-Oakley S, Carpp LN, Edwards RW, Denny T, Moodie Z, Laher F, Bekker LG, McElrath MJ, Gilbert PB, Corey L, Tomaras G, Pollara J, Ferrari G. Vaccine-Induced Antibodies Mediate Higher Antibody-Dependent Cellular Cytotoxicity After Interleukin-15 Pretreatment of Natural Killer Effector Cells. Front Immunol 2019; 10:2741. [PMID: 31827470 PMCID: PMC6890556 DOI: 10.3389/fimmu.2019.02741] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
The secondary analyses for correlates of risk of infection in the RV144 HIV-1 vaccine trial implicated vaccine-induced antibody-dependent cellular cytotoxicity (ADCC) responses in the observed protection, highlighting the importance of assessing such responses in ongoing and future HIV-1 vaccine trials. However, in vitro assays that detect ADCC activity in plasma from HIV-1 infected seropositive individuals are not always effective at detecting ADCC activity in plasma from HIV-1 vaccine recipients. In vivo, ADCC-mediating antibodies must operate at the site of infection, where effector cells are recruited and activated by a local milieu of chemokines and cytokines. Based on previous findings that interleukin 15 (IL-15) secretion increases during acute HIV-1 infection and enhances NK cell-mediated cytotoxicity, we hypothesized that IL-15 pretreatment of NK effector cells could be used to improve killing of infected cells by vaccine-induced antibodies capable of mediating ADCC. Using the HIV-1 infectious molecular clone (IMC)-infected target cell assay along with plasma samples from HIV-1 vaccine recipients, we found that IL-15 treatment of effector cells improved the ability of the vaccine-induced antibodies to recruit effector cells for ADCC. Through immunophenotyping experiments, we showed that this improved killing was likely due to IL-15 mediated activation of NK effector cells and higher intracellular levels of perforin and granzyme B in the IL-15 pretreated NK cells. We also found that using a 4-fold dilution series of plasma and subtraction of pre-vaccination responses resulted in lowest response rates among placebo recipients and significant separation between treatment groups. This represents the first attempt to utilize IL-15-treated effector cells and optimized analytical approaches to improve the detection of HIV-1 vaccine-induced ADCC responses and will inform analyses of future HIV vaccine clinical trials.
Collapse
Affiliation(s)
- Leigh Fisher
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Melissa Zinter
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | | | - Lindsay N Carpp
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - R Whitney Edwards
- Department of Surgery, Duke University Medical Center, Durham, NC, United States.,Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Thomas Denny
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Fatima Laher
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Soweto, South Africa
| | - Linda-Gail Bekker
- The Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Georgia Tomaras
- Department of Surgery, Duke University Medical Center, Durham, NC, United States.,Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States.,Department of Immunology, Duke University Medical Center, Durham, NC, United States.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Justin Pollara
- Department of Surgery, Duke University Medical Center, Durham, NC, United States.,Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC, United States.,Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
27
|
Richmond JM, Strassner JP, Zapata L, Garg M, Riding RL, Refat MA, Fan X, Azzolino V, Tovar-Garza A, Tsurushita N, Pandya AG, Tso JY, Harris JE. Antibody blockade of IL-15 signaling has the potential to durably reverse vitiligo. Sci Transl Med 2019; 10:10/450/eaam7710. [PMID: 30021889 DOI: 10.1126/scitranslmed.aam7710] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/26/2018] [Accepted: 06/14/2018] [Indexed: 01/18/2023]
Abstract
Vitiligo is an autoimmune disease of the skin mediated by CD8+ T cells that kill melanocytes and create white spots. Skin lesions in vitiligo frequently return after discontinuing conventional treatments, supporting the hypothesis that autoimmune memory is formed at these locations. We found that lesional T cells in mice and humans with vitiligo display a resident memory (TRM) phenotype, similar to those that provide rapid, localized protection against reinfection from skin and mucosal-tropic viruses. Interleukin-15 (IL-15)-deficient mice reportedly have impaired TRM formation, and IL-15 promotes TRM function ex vivo. We found that both human and mouse TRM express the CD122 subunit of the IL-15 receptor and that keratinocytes up-regulate CD215, the subunit required to display the cytokine on their surface to promote activation of T cells. Targeting IL-15 signaling with an anti-CD122 antibody reverses disease in mice with established vitiligo. Short-term treatment with anti-CD122 inhibits TRM production of interferon-γ (IFNγ), and long-term treatment depletes TRM from skin lesions. Short-term treatment with anti-CD122 can provide durable repigmentation when administered either systemically or locally in the skin. On the basis of these data, we propose that targeting CD122 may be a highly effective and even durable treatment strategy for vitiligo and other tissue-specific autoimmune diseases involving TRM.
Collapse
Affiliation(s)
- Jillian M Richmond
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - James P Strassner
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lucio Zapata
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Madhuri Garg
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rebecca L Riding
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Maggi A Refat
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Xueli Fan
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Vincent Azzolino
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | - Amit G Pandya
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - J Yun Tso
- JN Biosciences LLC, Mountain View, CA 94043, USA
| | - John E Harris
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
28
|
Wu C, Espinoza DA, Koelle SJ, Yang D, Truitt L, Schlums H, Lafont BA, Davidson-Moncada JK, Lu R, Kaur A, Hammer Q, Li B, Panch S, Allan DA, Donahue RE, Childs RW, Romagnani C, Bryceson YT, Dunbar CE. Clonal expansion and compartmentalized maintenance of rhesus macaque NK cell subsets. Sci Immunol 2019; 3:3/29/eaat9781. [PMID: 30389798 DOI: 10.1126/sciimmunol.aat9781] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022]
Abstract
Natural killer (NK) cells recognize and eliminate infected and malignant cells. Their life histories are poorly understood, particularly in humans, due to lack of informative models and endogenous clonal markers. Here, we apply transplantation of barcoded rhesus macaque hematopoietic cells to interrogate the landscape of NK cell production, expansion, and life histories at a clonal level long term and after proliferative challenge. We identify oligoclonal populations of rhesus CD56-CD16+ NK cells that are characterized by marked expansions and contractions over time yet remained long-term clonally uncoupled from other hematopoietic lineages, including CD56+CD16- NK cells. Individual or groups of CD56-CD16+ expanded clones segregated with surface expression of specific killer immunoglobulin-like receptors. These clonally distinct NK cell subpopulation patterns persisted for more than 4 years, including after transient in vivo anti-CD16-mediated depletion and subsequent regeneration. Profound and sustained interleukin-15-mediated depletion was required to generate new oligoclonal CD56-CD16+ NK cells. Together, our results indicate that linear NK cell production from multipotent hematopoietic progenitors or less mature CD56+CD16- cells is negligible during homeostasis and moderate proliferative stress. In such settings, peripheral compartmentalized self-renewal can maintain the composition of distinct, differentiated NK cell subpopulations.
Collapse
Affiliation(s)
- Chuanfeng Wu
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Diego A Espinoza
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samson J Koelle
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.,Department of Statistics, University of Washington, Seattle, WA, USA
| | - Di Yang
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.,Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lauren Truitt
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Heinrich Schlums
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Bernard A Lafont
- Viral Immunology Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Jan K Davidson-Moncada
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.,Clinical Development and Translational Research, MacroGenics Inc. Rockville, MD, USA
| | - Rong Lu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Amitinder Kaur
- Tulane National Primate Research Center, Covington, LA, USA
| | - Quirin Hammer
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Stockholm, Sweden.,Deutsches Rheuma-Forschungszentrum-A Leibnitz Institute, Charite Medical University, Berlin, Germany
| | - Brian Li
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.,Department of Medicine, Beth Israel Hospital, Boston, MA, USA
| | - Sandhya Panch
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.,Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, MD, USA
| | - David A Allan
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Robert E Donahue
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Richard W Childs
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Chiara Romagnani
- Deutsches Rheuma-Forschungszentrum-A Leibnitz Institute, Charite Medical University, Berlin, Germany
| | - Yenan T Bryceson
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Stockholm, Sweden. .,Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Cynthia E Dunbar
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
29
|
Manickam C, Shah SV, Nohara J, Ferrari G, Reeves RK. Monkeying Around: Using Non-human Primate Models to Study NK Cell Biology in HIV Infections. Front Immunol 2019; 10:1124. [PMID: 31191520 PMCID: PMC6540610 DOI: 10.3389/fimmu.2019.01124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/03/2019] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells are the major innate effectors primed to eliminate virus-infected and tumor or neoplastic cells. Recent studies also suggest nuances in phenotypic and functional characteristics among NK cell subsets may further permit execution of regulatory and adaptive roles. Animal models, particularly non-human primate (NHP) models, are critical for characterizing NK cell biology in disease and under homeostatic conditions. In HIV infection, NK cells mediate multiple antiviral functions via upregulation of activating receptors, inflammatory cytokine secretion, and antibody dependent cell cytotoxicity through antibody Fc-FcR interaction and others. However, HIV infection can also reciprocally modulate NK cells directly or indirectly, leading to impaired/ineffective NK cell responses. In this review, we will describe multiple aspects of NK cell biology in HIV/SIV infections and their association with viral control and disease progression, and how NHP models were critical in detailing each finding. Further, we will discuss the effect of NK cell depletion in SIV-infected NHP and the characteristics of newly described memory NK cells in NHP models and different mouse strains. Overall, we propose that the role of NK cells in controlling viral infections remains incompletely understood and that NHP models are indispensable in order to efficiently address these deficits.
Collapse
Affiliation(s)
- Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Spandan V. Shah
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Junsuke Nohara
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Guido Ferrari
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - R. Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA, United States
| |
Collapse
|
30
|
|
31
|
Acute Infection and Subsequent Subclinical Reactivation of Herpes Simplex Virus 2 after Vaginal Inoculation of Rhesus Macaques. J Virol 2019; 93:JVI.01574-18. [PMID: 30333177 PMCID: PMC6321901 DOI: 10.1128/jvi.01574-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/25/2018] [Indexed: 01/25/2023] Open
Abstract
Herpes simplex virus 2 (HSV-2) is a common sexually transmitted infection with a highly variable clinical course. Many infections quickly become subclinical, with episodes of spontaneous virus reactivation. To study host-HSV-2 interactions, an animal model of subclinical HSV-2 infection is needed. In an effort to develop a relevant model, rhesus macaques (RM) were inoculated intravaginally with two or three HSV-2 strains (186, 333, and/or G) at a total dose of 1 × 107 PFU of HSV-2 per animal. Infectious HSV-2 and HSV-2 DNA were consistently shed in vaginal swabs for the first 7 to 14 days after each inoculation. Proteins associated with wound healing, innate immunity, and inflammation were significantly increased in cervical secretions immediately after HSV-2 inoculation. There was histologic evidence of acute herpesvirus pathology, including acantholysis in the squamous epithelium and ballooning degeneration of and intranuclear inclusion bodies in epithelial cells, with HSV antigen in mucosal epithelial cells and keratinocytes. Further, an intense inflammatory infiltrate was found in the cervix and vulva. Evidence of latent infection and reactivation was demonstrated by the detection of spontaneous HSV-2 shedding post-acute inoculation (102 to 103 DNA copies/swab) in 80% of RM. Further, HSV-2 DNA was detected in ganglia in most necropsied animals. HSV-2-specifc T-cell responses were detected in all animals, although antibodies to HSV-2 were detected in only 30% of the animals. Thus, HSV-2 infection of RM recapitulates many of the key features of subclinical HSV-2 infection in women but seems to be more limited, as virus shedding was undetectable more than 40 days after the last virus inoculation.IMPORTANCE Herpes simplex virus 2 (HSV-2) infects nearly 500 million persons globally, with an estimated 21 million incident cases each year, making it one of the most common sexually transmitted infections (STIs). HSV-2 is associated with increased human immunodeficiency virus type 1 (HIV-1) acquisition, and this risk does not decline with the use of antiherpes drugs. As initial acquisition of both HIV and HSV-2 infections is subclinical, study of the initial molecular interactions of the two agents requires an animal model. We found that HSV-2 can infect RM after vaginal inoculation, establish latency in the nervous system, and spontaneously reactivate; these features mimic some of the key features of HSV-2 infection in women. RM may provide an animal model to develop strategies to prevent HSV-2 acquisition and reactivation.
Collapse
|
32
|
Manickam C, Shah SV, Lucar O, Ram DR, Reeves RK. Cytokine-Mediated Tissue Injury in Non-human Primate Models of Viral Infections. Front Immunol 2018; 9:2862. [PMID: 30568659 PMCID: PMC6290327 DOI: 10.3389/fimmu.2018.02862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022] Open
Abstract
Viral infections trigger robust secretion of interferons and other antiviral cytokines by infected and bystander cells, which in turn can tune the immune response and may lead to viral clearance or immune suppression. However, aberrant or unrestricted cytokine responses can damage host tissues, leading to organ dysfunction, and even death. To understand the cytokine milieu and immune responses in infected host tissues, non-human primate (NHP) models have emerged as important tools. NHP have been used for decades to study human infections and have played significant roles in the development of vaccines, drug therapies and other immune treatment modalities, aided by an ability to control disease parameters, and unrestricted tissue access. In addition to the genetic and physiological similarities with humans, NHP have conserved immunologic properties with over 90% amino acid similarity for most cytokines. For example, human-like symptomology and acute respiratory syndrome is found in cynomolgus macaques infected with highly pathogenic avian influenza virus, antibody enhanced dengue disease is common in neotropical primates, and in NHP models of viral hepatitis cytokine-induced inflammation induces severe liver damage, fibrosis, and hepatocellular carcinoma recapitulates human disease. To regulate inflammation, anti-cytokine therapy studies in NHP are underway and will provide important insights for future human interventions. This review will provide a comprehensive outline of the cytokine-mediated exacerbation of disease and tissue damage in NHP models of viral infections and therapeutic strategies that can aid in prevention/treatment of the disease syndromes.
Collapse
Affiliation(s)
- Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Spandan V. Shah
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Olivier Lucar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Daniel R. Ram
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - R. Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
33
|
Sestak K, Dufour JP, Liu DX, Rout N, Alvarez X, Blanchard J, Faldas A, Laine DJ, Clarke AW, Doyle AG. Beneficial Effects of Human Anti-Interleukin-15 Antibody in Gluten-Sensitive Rhesus Macaques with Celiac Disease. Front Immunol 2018; 9:1603. [PMID: 30050538 PMCID: PMC6050360 DOI: 10.3389/fimmu.2018.01603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022] Open
Abstract
Overexpression of interleukin-15 (IL-15) is linked with immunopathology of several autoimmune disorders including celiac disease. Here, we utilized an anti-human IL-15 antibody 04H04 (anti-IL-15) to reverse immunopathogenesis of celiac disease. Anti-IL-15 was administered to six gluten-sensitive rhesus macaques with celiac disease characteristics including gluten-sensitive enteropathy (GSE), and the following celiac-related metrics were evaluated: morphology (villous height/crypt depth ratio) of small intestine, counts of intestinal intraepithelial lymphocytes, IFN-γ-producing CD8+ and CD4+ T cells, plasma levels of anti-gliadin and anti-intestinal tissue transglutaminase IgG antibodies, as well as peripheral effector memory (CD3+CD28-CD95+) T cells. Anti-IL-15 treatment reversed the clinically relevant disease endpoints, intraepithelial lymphocyte counts, and villous height/crypt depth ratios within jejunal biopsies to normal levels (P < 0.001). Additionally, intestinal CD8+ and CD4+ T cell IFN-γ production was reduced (P < 0.05). Extra-intestinally, anti-IL-15 treatment reduced peripheral NK cell counts (P < 0.001), but otherwise, non-NK peripheral lymphocytes including effector memory T cells and serum blood chemistry were unaffected. Overall, providing the beneficial disease-modulatory and immunomodulatory effects observed, anti-IL-15 treatment might be considered as a novel therapy to normalize intestinal lymphocyte function in celiac disease patients with GSE.
Collapse
Affiliation(s)
- Karol Sestak
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, United States
- PreCliniTria LLC, Mandeville, LA, United States
| | - Jason P. Dufour
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, United States
| | - David X. Liu
- Division of Clinical Research, Integrated Research Facility, National Institute of Allergy and Infectious Disease, Frederick, MD, United States
| | - Namita Rout
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, United States
| | - Xavier Alvarez
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - James Blanchard
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, United States
| | - Anne Faldas
- Teva Pharmaceuticals, R&D, Biologics, Lead Antibody Discovery, Sydney, NSW, Australia
| | - David J. Laine
- Teva Pharmaceuticals, R&D, Biologics, Lead Antibody Discovery, Sydney, NSW, Australia
| | - Adam W. Clarke
- Teva Pharmaceuticals, R&D, Biologics, Lead Antibody Discovery, Sydney, NSW, Australia
| | - Anthony G. Doyle
- Teva Pharmaceuticals, R&D, Biologics, Lead Antibody Discovery, Sydney, NSW, Australia
| |
Collapse
|
34
|
Targeting the tumor promoting effects of adenosine in chronic lymphocytic leukemia. Crit Rev Oncol Hematol 2018; 126:24-31. [DOI: 10.1016/j.critrevonc.2018.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/27/2018] [Accepted: 03/25/2018] [Indexed: 12/14/2022] Open
|
35
|
Ram DR, Manickam C, Hueber B, Itell HL, Permar SR, Varner V, Reeves RK. Tracking KLRC2 (NKG2C)+ memory-like NK cells in SIV+ and rhCMV+ rhesus macaques. PLoS Pathog 2018; 14:e1007104. [PMID: 29851983 PMCID: PMC5997355 DOI: 10.1371/journal.ppat.1007104] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/12/2018] [Accepted: 05/15/2018] [Indexed: 01/25/2023] Open
Abstract
Natural killer (NK) cells classically typify the nonspecific effector arm of the innate immune system, but have recently been shown to possess memory-like properties against multiple viral infections, most notably CMV. Expression of the activating receptor NKG2C is elevated on human NK cells in response to infection with CMV as well as HIV, and may delineate cells with memory and memory-like functions. A better understanding of how NKG2C+ NK cells specifically respond to these pathogens could be significantly advanced using nonhuman primate (NHP) models but, to date, it has not been possible to distinguish NKG2C from its inhibitory counterpart, NKG2A, in NHP because of unfaithful antibody cross-reactivity. Using novel RNA-based flow cytometry, we identify for the first time true memory NKG2C+ NK cells in NHP by gene expression (KLRC2), and show that these cells have elevated frequencies and diversify their functional repertoire specifically in response to rhCMV and SIV infections.
Collapse
Affiliation(s)
- Daniel R. Ram
- Center for Virology and Vaccine Research (CVVR), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, United States
| | - Cordelia Manickam
- Center for Virology and Vaccine Research (CVVR), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, United States
| | - Brady Hueber
- Center for Virology and Vaccine Research (CVVR), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, United States
| | - Hannah L. Itell
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - Sallie R. Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - Valerie Varner
- Center for Virology and Vaccine Research (CVVR), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, United States
| | - R. Keith Reeves
- Center for Virology and Vaccine Research (CVVR), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, United States
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, Massachusetts, United States
- * E-mail:
| |
Collapse
|
36
|
Watson DC, Moysi E, Valentin A, Bergamaschi C, Devasundaram S, Fortis SP, Bear J, Chertova E, Bess J, Sowder R, Venzon DJ, Deleage C, Estes JD, Lifson JD, Petrovas C, Felber BK, Pavlakis GN. Treatment with native heterodimeric IL-15 increases cytotoxic lymphocytes and reduces SHIV RNA in lymph nodes. PLoS Pathog 2018; 14:e1006902. [PMID: 29474450 PMCID: PMC5825155 DOI: 10.1371/journal.ppat.1006902] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/24/2018] [Indexed: 12/31/2022] Open
Abstract
B cell follicles in secondary lymphoid tissues represent an immune privileged sanctuary for AIDS viruses, in part because cytotoxic CD8+ T cells are mostly excluded from entering the follicles that harbor infected T follicular helper (TFH) cells. We studied the effects of native heterodimeric IL-15 (hetIL-15) treatment on uninfected rhesus macaques and on macaques that had spontaneously controlled SHIV infection to low levels of chronic viremia. hetIL-15 increased effector CD8+ T lymphocytes with high granzyme B content in blood, mucosal sites and lymph nodes, including virus-specific MHC-peptide tetramer+ CD8+ cells in LN. Following hetIL-15 treatment, multiplexed quantitative image analysis (histo-cytometry) of LN revealed increased numbers of granzyme B+ T cells in B cell follicles and SHIV RNA was decreased in plasma and in LN. Based on these properties, hetIL-15 shows promise as a potential component in combination immunotherapy regimens to target AIDS virus sanctuaries and reduce long-term viral reservoirs in HIV-1 infected individuals. TRIAL REGISTRATION ClinicalTrials.gov NCT02452268.
Collapse
Affiliation(s)
- Dionysios C. Watson
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Eirini Moysi
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section; Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Santhi Devasundaram
- Human Retrovirus Pathogenesis Section; Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Sotirios P. Fortis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section; Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Elena Chertova
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Julian Bess
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Ray Sowder
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - David J. Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville, Maryland, United States of America
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Constantinos Petrovas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section; Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| |
Collapse
|
37
|
Nicholson SE, Keating N, Belz GT. Natural killer cells and anti-tumor immunity. Mol Immunol 2017; 110:40-47. [PMID: 29233542 DOI: 10.1016/j.molimm.2017.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/20/2017] [Accepted: 12/01/2017] [Indexed: 01/10/2023]
Abstract
Immune checkpoint inhibitors harness the power of the immune system to fight cancer. The clinical success achieved with antibodies against the inhibitory T cell receptors PD-1 and CTLA4 has focused attention on the possibility of manipulating other immune cells, in particular those involved in innate immunity. Here we review the role of innate lymphoid cells (ILCs) and their contribution to tumor immunity. As the prototypical ILC, the natural killer (NK) cell has an intrinsic ability to detect and kill cancer cells. NK cells are dependent on the cytokine interleukin (IL)-15 for their development and effector activity. We discuss the role of the Suppressor of cytokine (SOCS) proteins in negatively regulating IL-15 and NK cell responses and the potential for targeting these small intracellular regulators as new immune checkpoints.
Collapse
Affiliation(s)
- Sandra E Nicholson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia; and Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia.
| | - Narelle Keating
- Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia; and Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia; and Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia.
| |
Collapse
|
38
|
Natural killer cells migrate into and control simian immunodeficiency virus replication in lymph node follicles in African green monkeys. Nat Med 2017; 23:1277-1286. [PMID: 29035370 DOI: 10.1038/nm.4421] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023]
Abstract
Natural killer (NK) cells play an essential role in antiviral immunity, but knowledge of their function in secondary lymphoid organs is incomplete. Lymph node follicles constitute a major viral reservoir during infections with HIV-1 and simian immunodeficiency virus of macaques (SIVmac). In contrast, during nonpathogenic infection with SIV from African green monkeys (SIVagm), follicles remain generally virus free. We show that NK cells in secondary lymphoid organs from chronically SIVagm-infected African green monkeys (AGMs) were frequently CXCR5+ and entered and persisted in lymph node follicles throughout the follow-up (240 d post-infection). These follicles were strongly positive for IL-15, which was primarily presented in its membrane-bound form by follicular dendritic cells. NK cell depletion through treatment with anti-IL-15 monoclonal antibody during chronic SIVagm infection resulted in high viral replication rates in follicles and the T cell zone and increased viral DNA in lymph nodes. Our data suggest that, in nonpathogenic SIV infection, NK cells migrate into follicles and play a major role in viral reservoir control in lymph nodes.
Collapse
|
39
|
Vicari AP, Schoepfer AM, Meresse B, Goffin L, Léger O, Josserand S, Guégan N, Yousefi S, Straumann A, Cerf-Bensussan N, Simon HU, Chvatchko Y. Discovery and characterization of a novel humanized anti-IL-15 antibody and its relevance for the treatment of refractory celiac disease and eosinophilic esophagitis. MAbs 2017; 9:927-944. [PMID: 28581883 DOI: 10.1080/19420862.2017.1332553] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interleukin-15 (IL-15) is a critical regulator of immune responses, especially at mucosal interfaces within the gastro-intestinal tract. Here, we describe the discovery and characterization of a humanized antibody to IL-15. Data from its epitope and mode of action, cell biology and primate pharmacology, as well as translational studies in human samples and in vivo proof-of-concept experiments in mouse models demonstrate the therapeutic potential of this new antibody targeting IL-15 for refractory celiac disease and eosinophilic esophagitis.
Collapse
Affiliation(s)
| | - Alain M Schoepfer
- b Division of Gastroenterology, Centre Hospitalier Universitaire Vaudois (CHUV) , Lausanne , Switzerland
| | | | | | | | | | | | - Shida Yousefi
- f Institute of Pharmacology, University of Bern, Inselspital , Bern , Switzerland
| | - Alex Straumann
- g Swiss EoE Clinic and EoE Research Network , Olten , Switzerland
| | | | - Hans-Uwe Simon
- f Institute of Pharmacology, University of Bern, Inselspital , Bern , Switzerland
| | | |
Collapse
|