1
|
Grice S, Saide K, Farrell L, Wells G, Betts C, Hammond S, Naisbitt DJ. Immune checkpoint blockade lowers the threshold of naïve T-cell priming to drug-associated antigens in a dose-dependent fashion. Toxicol Sci 2024; 202:13-18. [PMID: 39289883 PMCID: PMC11514829 DOI: 10.1093/toxsci/kfae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
A growing body of clinical and experimental evidence indicates that immune checkpoint blockade enhances patient susceptibility to hypersensitivity reactions to co-administered medications. In this study, we utilized an in vitro T-cell priming assay to demonstrate one of the mechanistic hypotheses on how this occurs; through lowering of the threshold in patients to elicit aberrant T-cell responses. We outline the dependency of de novo T-cell priming responses to drug-associated antigens on dose at initial exposure. Findings support the aforementioned hypothesis and offer an experimental representation of fundamental parameters at play in hypersensitivity reactions to low molecular weight compounds.
Collapse
Affiliation(s)
- Sophie Grice
- Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Katy Saide
- Clinical Pharmacology and Safety Science, AstraZeneca, Cambridge, United Kingdom
| | - Liam Farrell
- Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Georgia Wells
- Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Catherine Betts
- Clinical Pharmacology and Safety Science, AstraZeneca, Cambridge, United Kingdom
| | | | - Dean J Naisbitt
- Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| |
Collapse
|
2
|
Grice S, Olsson-Brown A, Naisbitt DJ, Hammond S. Immunological Drug-Drug Interactions Affect the Efficacy and Safety of Immune Checkpoint Inhibitor Therapies. Chem Res Toxicol 2024; 37:1086-1103. [PMID: 38912648 PMCID: PMC11256900 DOI: 10.1021/acs.chemrestox.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024]
Abstract
With the rapid expansion in the development and clinical utility of immune checkpoint inhibitors (ICIs) for oncology, the continual evaluation of the safety profile of such agents is imperative. The safety profile of ICIs as monotherapy is dominated by immune-related adverse events, which can be considered as an extension of the mechanism of action of these immunomodulatory drugs. Further to this, an emerging theme is that ICI treatment can significantly impact upon the tolerability of coadministered medications. Numerous reports in literature indicate that ICIs may alter the immunological perception of coadministered drugs, resulting in undesirable reactions to a variety of concomitant medications. These reactions can be severe in manifestation, including hepatotoxicity and Stevens-Johnson Syndrome (SJS)/toxic epidermal necrolysis (TEN), but may also have detrimental impact on malignancy control. To minimize the impact of such drug-drug interactions on patients, it is imperative to identify medications that may cause these reactions, understand the underlying mechanisms, consider the timing and dosing of comedication, and explore alternative medications with comparable efficacies. Improving our understanding of how concomitant medications affect the safety and efficacy of ICIs can allow for potential culprit drugs to be identified/removed/desensitized. This approach will allow the continuation of ICI therapy that may have been discontinued otherwise, thereby improving malignant control and patient and drug development outcomes.
Collapse
Affiliation(s)
- Sophie Grice
- Department
of Molecular and Clinical Pharmacology, Institute of Translational
Medicine, University of Liverpool, Liverpool L69 3GE, U.K.
| | - Anna Olsson-Brown
- Department
of Molecular and Clinical Pharmacology, Institute of Translational
Medicine, University of Liverpool, Liverpool L69 3GE, U.K.
- Sussex
Cancer Centre, University Hospitals Sussex, Brighton BN2 5BD, U.K.
| | - Dean J. Naisbitt
- Department
of Molecular and Clinical Pharmacology, Institute of Translational
Medicine, University of Liverpool, Liverpool L69 3GE, U.K.
| | - Sean Hammond
- Department
of Molecular and Clinical Pharmacology, Institute of Translational
Medicine, University of Liverpool, Liverpool L69 3GE, U.K.
- ApconiX, Alderley Edge SK10 4TG, U.K.
| |
Collapse
|
3
|
Pallardy M, Bechara R, Whritenour J, Mitchell-Ryan S, Herzyk D, Lebrec H, Merk H, Gourley I, Komocsar WJ, Piccotti JR, Balazs M, Sharma A, Walker DB, Weinstock D. Drug hypersensitivity reactions: review of the state of the science for prediction and diagnosis. Toxicol Sci 2024; 200:11-30. [PMID: 38588579 PMCID: PMC11199923 DOI: 10.1093/toxsci/kfae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Drug hypersensitivity reactions (DHRs) are a type of adverse drug reaction that can occur with different classes of drugs and affect multiple organ systems and patient populations. DHRs can be classified as allergic or non-allergic based on the cellular mechanisms involved. Whereas nonallergic reactions rely mainly on the innate immune system, allergic reactions involve the generation of an adaptive immune response. Consequently, drug allergies are DHRs for which an immunological mechanism, with antibody and/or T cell, is demonstrated. Despite decades of research, methods to predict the potential for a new chemical entity to cause DHRs or to correctly attribute DHRs to a specific mechanism and a specific molecule are not well-established. This review will focus on allergic reactions induced by systemically administered low-molecular weight drugs with an emphasis on drug- and patient-specific factors that could influence the development of DHRs. Strategies for predicting and diagnosing DHRs, including potential tools based on the current state of the science, will also be discussed.
Collapse
Affiliation(s)
- Marc Pallardy
- Université Paris-Saclay, INSERM, Inflammation Microbiome Immunosurveillance, Orsay, 91400, France
| | - Rami Bechara
- Université Paris-Saclay, INSERM, CEA, Center for Research in Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB), Le Kremlin Bicêtre, 94270, France
| | - Jessica Whritenour
- Pfizer Worldwide Research, Development and Medical, Groton, Connecticut 06340, USA
| | - Shermaine Mitchell-Ryan
- The Health and Environmental Science Institute, Immunosafety Technical Committee, Washington, District of Columbia 20005, USA
| | - Danuta Herzyk
- Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Herve Lebrec
- Amgen Inc., Translational Safety and Bioanalytical Sciences, South San Francisco, California 94080, USA
| | - Hans Merk
- Department of Dermatology and Allergology, RWTH Aachen University, Aachen, 52062, Germany
| | - Ian Gourley
- Janssen Research & Development, LLC, Immunology Clinical Development, Spring House, Pennsylvania 19002, USA
| | - Wendy J Komocsar
- Immunology Business Unit, Eli Lilly and Company, Indianapolis, Indiana 46225, USA
| | | | - Mercedesz Balazs
- Genentech, Biochemical and Cellular Pharmacology, South San Francisco, California 94080, USA
| | - Amy Sharma
- Pfizer, Drug Safety Research & Development, New York 10017, USA
| | - Dana B Walker
- Novartis Institute for Biomedical Research, Preclinical Safety-Translational Immunology and Clinical Pathology, Cambridge, Massachusetts 02139, USA
| | - Daniel Weinstock
- Janssen Research & Development, LLC, Preclinical Sciences Translational Safety, Spring House, Pennsylvania 19002, USA
| |
Collapse
|
4
|
Aleksic M, Meng X. Protein Haptenation and Its Role in Allergy. Chem Res Toxicol 2024; 37:850-872. [PMID: 38834188 PMCID: PMC11187640 DOI: 10.1021/acs.chemrestox.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Humans are exposed to numerous electrophilic chemicals either as medicines, in the workplace, in nature, or through use of many common cosmetic and household products. Covalent modification of human proteins by such chemicals, or protein haptenation, is a common occurrence in cells and may result in generation of antigenic species, leading to development of hypersensitivity reactions. Ranging in severity of symptoms from local cutaneous reactions and rhinitis to potentially life-threatening anaphylaxis and severe hypersensitivity reactions such as Stephen-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN), all these reactions have the same Molecular Initiating Event (MIE), i.e. haptenation. However, not all individuals who are exposed to electrophilic chemicals develop symptoms of hypersensitivity. In the present review, we examine common chemistry behind the haptenation reactions leading to formation of neoantigens. We explore simple reactions involving single molecule additions to a nucleophilic side chain of proteins and complex reactions involving multiple electrophilic centers on a single molecule or involving more than one electrophilic molecule as well as the generation of reactive molecules from the interaction with cellular detoxification mechanisms. Besides generation of antigenic species and enabling activation of the immune system, we explore additional events which result directly from the presence of electrophilic chemicals in cells, including activation of key defense mechanisms and immediate consequences of those reactions, and explore their potential effects. We discuss the factors that work in concert with haptenation leading to the development of hypersensitivity reactions and those that may act to prevent it from developing. We also review the potential harnessing of the specificity of haptenation in the design of potent covalent therapeutic inhibitors.
Collapse
Affiliation(s)
- Maja Aleksic
- Safety
and Environmental Assurance Centre, Unilever,
Colworth Science Park, Sharnbrook, Bedford MK44
1LQ, U.K.
| | - Xiaoli Meng
- MRC
Centre for Drug Safety Science, Department of Molecular and Clinical
Pharmacology, The University of Liverpool, Liverpool L69 3GE, U.K.
| |
Collapse
|
5
|
Ogese MO, Lister A, Farrell L, Gardner J, Kafu L, Ali SE, Gibson A, Hillegas A, Meng X, Pirmohamed M, Williams GS, Sakatis MZ, Naisbitt DJ. A blinded in vitro analysis of the intrinsic immunogenicity of hepatotoxic drugs: implications for preclinical risk assessment. Toxicol Sci 2023; 197:38-52. [PMID: 37788119 PMCID: PMC10734620 DOI: 10.1093/toxsci/kfad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
In vitro preclinical drug-induced liver injury (DILI) risk assessment relies largely on the use of hepatocytes to measure drug-specific changes in cell function or viability. Unfortunately, this does not provide indications toward the immunogenicity of drugs and/or the likelihood of idiosyncratic reactions in the clinic. This is because the molecular initiating event in immune DILI is an interaction of the drug-derived antigen with MHC proteins and the T-cell receptor. This study utilized immune cells from drug-naïve donors, recently established immune cell coculture systems and blinded compounds with and without DILI liabilities to determine whether these new methods offer an improvement over established assessment methods for the prediction of immune-mediated DILI. Ten blinded test compounds (6 with known DILI liabilities; 4 with lower DILI liabilities) and 5 training compounds, with known T-cell-mediated immune reactions in patients, were investigated. Naïve T-cells were activated with 4/5 of the training compounds (nitroso sulfamethoxazole, vancomycin, Bandrowski's base, and carbamazepine) and clones derived from the priming assays were activated with drug in a dose-dependent manner. The test compounds with DILI liabilities did not stimulate T-cell proliferative responses during dendritic cell-T-cell coculture; however, CD4+ clones displaying reactivity were detected toward 2 compounds (ciprofloxacin and erythromycin) with known liabilities. Drug-responsive T-cells were not detected with the compounds with lower DILI liabilities. This study provides compelling evidence that assessment of intrinsic drug immunogenicity, although complex, can provide valuable information regarding immune liabilities of some compounds prior to clinical studies or when immune reactions are observed in patients.
Collapse
Affiliation(s)
- Monday O Ogese
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
- Development Science, UCB Biopharma, Slough, Berkshire SL1 3WE, UK
| | - Adam Lister
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Liam Farrell
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Joshua Gardner
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Laila Kafu
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Serat-E Ali
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Andrew Gibson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Aimee Hillegas
- Immunological Toxicology, In Vitro/In Vivo Translation, GSK, Collegeville, Pennsylvania, USA
| | - Xiaoli Meng
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| | - Geoffrey S Williams
- Immunological Toxicology, In Vitro/In Vivo Translation, GSK, David Jack Centre for R&D, Ware, Hertfordshire SG12 0DP, UK
| | - Melanie Z Sakatis
- Global Investigative Safety, In Vitro/In Vivo Translation, GSK, David Jack Centre for R&D, Ware, Hertfordshire SG12 0DP, UK
| | - Dean J Naisbitt
- Department of Pharmacology and Therapeutic, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L693GE, UK
| |
Collapse
|
6
|
Guven DC, Ozbek DA, Sahin TK, Kavgaci G, Aksun MS, Erul E, Yildirim HC, Chalabiyev E, Cebroyilov C, Yildirim T, Dizdar O, Aksoy S, Yalcin S, Kilickap S, Erman M, Arici M. The incidence and risk factors for acute kidney injury in patients treated with immune checkpoint inhibitors. Anticancer Drugs 2023; 34:783-790. [PMID: 36729111 DOI: 10.1097/cad.0000000000001463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent observational studies reported acute kidney injury (AKI) events in over 10% of the patients treated with immune checkpoint inhibitors (ICIs). However, these studies included patients treated in high-resource settings and earlier lines. Therefore, we aimed to assess the AKI rates and predisposing factors in ICI-treated patients from a limited resource setting. We evaluated 252 patients with advanced cancer for this retrospective cohort study. AKI events were defined by Kidney Disease Improving Global Outcomes criteria. The median age was 59 years. The melanoma (18.3%), non-small cell lung cancer (14.7%) and renal cell carcinoma (22.6%) patients comprised over half of the cohort. During the follow-up, 45 patients (17.9%) had at least one AKI episode. In multivariable analyses, patients with chronic kidney disease (CKD) [odds ratio (OR), 3.385; 95% confidence interval (CI), 1.510-7.588; P = 0.003], hypoalbuminemia (OR, 2.848; 95% CI, 1.225-6.621; P = 0.015) or renin-angiotensin-aldosterone system (RAAS) inhibitor use (OR, 2.236; 95% CI, 1.017-4.919; P = 0.045) had increased AKI risk. There was a trend towards increased AKI risk in patients with diabetes (OR, 2.042; 95% CI, 0.923-4.518; P = 0.78) and regular proton pump inhibitors use (OR, 2.024; 95% CI, 0.947-4.327; P = 0.069). In this study, we observed AKI development under ICIs in almost one in five patients with cancer. The increased AKI rates in CKD, hypoalbuminemia or RAAS inhibitor use pointed out a need for better onco-nephrology collaboration and efforts to improve the nutritional status of ICI-treated patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tolga Yildirim
- Nephrology, Hacettepe University Faculty of Medicine, Ankara
| | | | | | | | - Saadettin Kilickap
- Department of Medical Oncology, Istinye University Faculty of Medicine, Istanbul, Turkey
| | | | - Mustafa Arici
- Nephrology, Hacettepe University Faculty of Medicine, Ankara
| |
Collapse
|
7
|
Gibson A, Deshpande P, Campbell CN, Krantz MS, Mukherjee E, Mockenhaupt M, Pirmohamed M, Palubinsky AM, Phillips EJ. Updates on the immunopathology and genomics of severe cutaneous adverse drug reactions. J Allergy Clin Immunol 2023; 151:289-300.e4. [PMID: 36740326 PMCID: PMC9976545 DOI: 10.1016/j.jaci.2022.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 02/05/2023]
Abstract
Severe cutaneous adverse reactions (SCARs) such as Stevens-Johnson syndrome, toxic epidermal necrolysis (SJS/TEN), and drug reaction with eosinophilia and systemic symptoms (DRESS)/drug-induced hypersensitivity syndrome (DIHS) cause significant morbidity and mortality and impede new drug development. HLA class I associations with SJS/TEN and drug reaction with eosinophilia and systemic symptoms/drug-induced hypersensitivity syndrome have aided preventive efforts and provided insights into immunopathogenesis. In SJS/TEN, HLA class I-restricted oligoclonal CD8+ T-cell responses occur at the tissue level. However, specific HLA risk allele(s) and antigens driving this response have not been identified for most drugs. HLA risk alleles also have incomplete positive and negative predictive values, making truly comprehensive screening currently challenging. Although, there have been key paradigm shifts in knowledge regarding drug hypersensitivity, there are still many open and unanswered questions about SCAR immunopathogenesis, as well as genetic and environmental risk. In addition to understanding the cellular and molecular basis of SCAR at the single-cell level, identification of the MHC-restricted drug-reactive self- or viral peptides driving the hypersensitivity reaction will also be critical to advancing premarketing strategies to predict risk at an individual and drug level. This will also enable identification of biologic markers for earlier diagnosis and accurate prognosis, as well as drug causality and targeted therapeutics.
Collapse
Affiliation(s)
- Andrew Gibson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Pooja Deshpande
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Chelsea N Campbell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Matthew S Krantz
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Eric Mukherjee
- Department of Dermatology, Vanderbilt University Medical Center, Nashville; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Maja Mockenhaupt
- Dokumentationszentrum schwerer Hautreaktionen Department of Dermatologie, Medical Center and Medical Faculty, University of Freiburg, Freiberg, Germany
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Amy M Palubinsky
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Dermatology, Vanderbilt University Medical Center, Nashville; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tenn.
| |
Collapse
|
8
|
Identifying Patients at Risk of Acute Kidney Injury among Patients Receiving Immune Checkpoint Inhibitors: A Machine Learning Approach. Diagnostics (Basel) 2022; 12:diagnostics12123157. [PMID: 36553164 PMCID: PMC9776989 DOI: 10.3390/diagnostics12123157] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background: The benefits of immune checkpoint inhibitors (ICPis) in the treatment of patients with malignancies emerged recently, but immune-related adverse events (IRAEs), including acute kidney injury (AKI), cannot be ignored. The present study established and validated an ICPi-AKI prediction model based on machine learning algorithms to achieve early prediction of AKI events and timely intervention adjustment. Methods: We performed a retrospective study based on data from the First Medical Center of the PLA General Hospital. Patients with malignancy who received at least one dose of ICPi between January 2014 and December 2019 were included in the study. The characteristics of available variables were included after case review, and the baseline characteristics and clinical data of ICPi AKI and non-AKI patients were compared. After variable preprocessing, eight machine learning algorithms were used to construct a full variable availability model. Variable simplification models were constructed after screening important variables using the random forest recursive feature elimination method, and the performance of different machine learning methods and two types of modeling strategies were evaluated using multiple indicators. Results: Among the 1616 patients receiving checkpoint inhibitors, the overall incidence of AKI was 6.9% during the total follow-up time. Sixty-eight patients were associated with ICPi treatment after chart review, primarily in AKI stage 1 (70.5%), with a median time from first ICPi administration to AKI of 12.7 (IQR 2 to 56) weeks. The demographic characteristics, comorbidities, and proportions of malignancy types were similar between the ICPi-AKI and non-AKI groups, but there were significant differences in multiple characteristics, such as concomitant medications and laboratory test indicators. For model performance evaluation and comparison, the AUC values of all 38 variable availability models ranged from 0.7204−0.8241, and the AUC values of the simplicity model constructed using 16 significant variables ranged from 0.7528−0.8315. The neural networks model (NNs) and support vector machine (SVM) model had the best performance in the two types of modeling strategies, respectively; however, there was no significant difference in model performance comparison (p > 0.05). In addition, compared with the full variable availability model, the performance of the variable simplicity model was slightly improved. We also found that concomitant medications contributed more to the model prediction performance by screening the optimal feature combination. Conclusion: We successfully developed a machine learning-based ICPi-AKI prediction model and validated the best prediction performance of each machine model. It is reasonable to believe that clinical decision models driven by artificial intelligence can improve AKI prediction in patients with malignancies treated with ICPi. These models can be used to assist clinicians in the early identification of patients at high risk of AKI, support effective prevention and intervention, and ultimately improve the overall benefit of antitumor therapy in the target population.
Collapse
|
9
|
Thomson P, Hammond S, Naisbitt DJ. Pathology of drug hypersensitivity reactions and mechanisms of immune tolerance. Clin Exp Allergy 2022; 52:1379-1390. [PMID: 36177544 DOI: 10.1111/cea.14235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/08/2022] [Accepted: 09/25/2022] [Indexed: 01/26/2023]
Abstract
Immune-mediated type IV adverse drug reactions are idiosyncratic in nature, generally not related to the primary or secondary pharmacology of the drug. Due to their complex nature and rarity, these iatrogenic reactions are seldom predicted or encountered during preclinical/early clinical development stages, and often precipitate upon exposure to wider populations (i.e. phase III onwards). They confer a burden on the healthcare sector in both a clinical and financial sense presenting a severe impediment to the drug discovery and development process. Research over the past 50 years has improved our understanding of these reactions markedly as both in vitro and in vivo studies have placed the role of the immune system, in particular; drug-responsive T cells, firmly in the spotlight as the mediators of these reactions. Indeed, the role of different populations of T cells in adverse events and the interaction of drug molecules with HLA proteins expressed on the surface of antigen-presenting cells is of considerable interest. Herein, this review examines the pathways of immune-mediated adverse events including the various T cell subtypes implicated and the mechanisms of T cell activation. Additionally, we address the enigma of immunological tolerance and explore the role tolerance plays in determination of susceptibility to such adverse events even in individuals carrying immunogenic liabilities.
Collapse
Affiliation(s)
- Paul Thomson
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| | - Sean Hammond
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK.,ApconiX, Alderley Park, Alderley Edge, UK
| | - Dean J Naisbitt
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
10
|
Line J, Thomson P, Naisbitt DJ. Pathology of T-cell-mediated drug hypersensitivity reactions and impact of tolerance mechanisms on patient susceptibility. Curr Opin Allergy Clin Immunol 2022; 22:226-233. [PMID: 35779063 DOI: 10.1097/aci.0000000000000834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW T-cell-mediated drug hypersensitivity is responsible for significant morbidity and mortality, and represents a substantial clinical concern. The purpose of this article is to focus on T-cell reactions and discuss recent advances in disease pathogenesis by exploring the impact of tolerance mechanisms in determining susceptibility in genetically predisposed patients. RECENT FINDINGS Certain drugs preferentially activate pathogenic T cells that have defined pathways of effector function. Thus, a critical question is what extenuating factors influence the direction of immune activation. A large effort has been given towards identifying phenotypic (e.g., infection) or genotypic (e.g., human leukocyte antigen) associations which predispose individuals to drug hypersensitivity. However, many individuals expressing known risk factors safely tolerate drug administration. Thus, mechanistic insight is needed to determine what confers this tolerance. Herein, we discuss recent clinical/mechanistic findings which indicate that the direction in which the immune system is driven relies upon a complex interplay between co-stimulatory/co-regulatory pathways which themselves depend upon environmental inputs from the innate immune system. SUMMARY It is becoming increasingly apparent that tolerance mechanisms impact on susceptibility to drug hypersensitivity. As the field moves forward it will be interesting to discover whether active tolerance is the primary response to drug exposure, with genetic factors such as HLA acting as a sliding scale, influencing the degree of regulation required to prevent clinical reactions in patients.
Collapse
Affiliation(s)
- James Line
- Department of Pharmacology and Therapeutics, Sherrington Building, Ashton Street, The University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
11
|
Deshpande P, Li Y, Thorne M, Palubinsky AM, Phillips EJ, Gibson A. Practical Implementation of Genetics: New Concepts in Immunogenomics to Predict, Prevent, and Diagnose Drug Hypersensitivity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1689-1700. [PMID: 35526777 PMCID: PMC9948495 DOI: 10.1016/j.jaip.2022.04.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023]
Abstract
Delayed drug hypersensitivities are CD8+ T cell-mediated reactions associated with up to 50% mortality. Human leukocyte antigen (HLA) alleles are known to predispose disease and are specific to drug, reaction, and patient ethnicity. Pretreatment screening is recommended for a handful of the strongest associations to identify and prevent drug use in high-risk patients. However, an incomplete predictive value implicates other HLA-imposed risk factors, and low carriage of many identified HLA-risk alleles combined with the high cost of sequence-based typing has limited economic viability for similar recommendation of screening across drugs and health care systems. For mitigation, an expanding armory of low-cost polymerase chain reaction-based screens is being developed, and HLA-imposed risk factors are being discovered. These include (1) polymorphic variants of metabolic and endoplasmic reticulum aminopeptidase enzymes toward multiallelic screening with increased predictivity; (2) regulation by immune checkpoint inhibitors, enabling detolerized animal models of human disease; and (3) immunodominant T cell receptors (TCR) on clonally expanded CD8+ T cells. For the latter, HLA risk-restricted TCR provides immunogenomic strategies and samples from a single patient to identify novel HLA-risk associations in underserved minority populations, tissue-relevant effector biomarkers toward earlier diagnosis and treatment, and HLA-TCR-presented immunogenic structures to aid future drug development.
Collapse
Affiliation(s)
- Pooja Deshpande
- Institute for Immunology and Infectious Disease (IIID), Murdoch University, Perth, WA, Australia
| | - Yueran Li
- Institute for Immunology and Infectious Disease (IIID), Murdoch University, Perth, WA, Australia
| | - Michael Thorne
- Institute for Immunology and Infectious Disease (IIID), Murdoch University, Perth, WA, Australia
| | | | - Elizabeth J Phillips
- Institute for Immunology and Infectious Disease (IIID), Murdoch University, Perth, WA, Australia,Vanderbilt University Medical Centre (VUMC), Nashville, TN, USA
| | - Andrew Gibson
- Institute for Immunology and Infectious Disease, Murdoch University, Perth, Western Australia, Australia.
| |
Collapse
|
12
|
Hernandez-Jaimes OA, Cazares-Olvera DV, Line J, Moreno-Eutimio MA, Gómez-Castro CZ, Naisbitt DJ, Castrejón-Flores JL. Advances in Our Understanding of the Interaction of Drugs with T-cells: Implications for the Discovery of Biomarkers in Severe Cutaneous Drug Reactions. Chem Res Toxicol 2022; 35:1162-1183. [PMID: 35704769 DOI: 10.1021/acs.chemrestox.1c00434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drugs can activate different cells of the immune system and initiate an immune response that can lead to life-threatening diseases collectively known as severe cutaneous adverse reactions (SCARs). Antibiotics, anticonvulsants, and antiretrovirals are involved in the development of SCARs by the activation of αβ naïve T-cells. However, other subsets of lymphocytes known as nonconventional T-cells with a limited T-cell receptor repertoire and innate and adaptative functions also recognize drugs and drug-like molecules, but their role in the pathogenesis of SCARs has only just begun to be explored. Despite 30 years of advances in our understanding of the mechanisms in which drugs interact with T-cells and the pathways for tissue injury seen during T-cell activation, at present, the development of useful clinical biomarkers for SCARs or predictive preclinical in vitro assays that could identify immunogenic moieties during drug discovery is an unmet goal. Therefore, the present review focuses on (i) advances in the understanding of the pathogenesis of SCARs reactions, (ii) a description of the interaction of drugs with conventional and nonconventional T-cells, and (iii) the current state of soluble blood circulating biomarker candidates for SCARs.
Collapse
Affiliation(s)
| | - Diana Valeria Cazares-Olvera
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, México City 07340, México
| | - James Line
- MRC Centre for Drug Safety Science, Department of Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | | | | | - Dean J Naisbitt
- MRC Centre for Drug Safety Science, Department of Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - José Luis Castrejón-Flores
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, México City 07340, México
| |
Collapse
|
13
|
Qin Z, Liu K, Xu X, Li T, Ge Y, Wu B, Xing C, Mao H. Incidence, predictors and 6-month overall outcome of acute kidney injury in Chinese patients receiving PD-1 inhibitors. Future Oncol 2022; 18:1951-1962. [PMID: 35232231 DOI: 10.2217/fon-2021-1004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aim: To explore the incidence, risk factors and overall outcome of the first episode of immune checkpoint inhibitor-related acute kidney injury (ICI-AKI) in Chinese patients receiving PD-1 inhibitors. Methods: Data for patients receiving PD-1 inhibitors at Jiangsu Province Hospital between December 2017 and January 2020 were retrospectively reviewed. Results: A total of 5.6% of 551 patients receiving PD-1 inhibitors developed ICI-AKI. Concomitant use of nonsteroidal anti-inflammatory drugs, ICI cycles and extrarenal immune-related adverse events may be independently associated with ICI-AKI. ICI-AKI may not be a risk factor for increased mortality or worse progression-free survival. Conclusions: ICI-AKI is relatively rare and its occurrence may not affect the overall six-month outcome of patients receiving PD-1 inhibitors. Further studies are needed to verify these findings.
Collapse
Affiliation(s)
- Zhongke Qin
- Department of Nephrology, Jiangsu Province Hospital (The First Affiliated Hospital of Nanjing Medical University), Nanjing, 210029, China
| | - Kang Liu
- Department of Nephrology, Jiangsu Province Hospital (The First Affiliated Hospital of Nanjing Medical University), Nanjing, 210029, China
| | - Xueqiang Xu
- Department of Nephrology, Jiangsu Province Hospital (The First Affiliated Hospital of Nanjing Medical University), Nanjing, 210029, China
| | - Ting Li
- Department of Nephrology, Jiangsu Province Hospital (The First Affiliated Hospital of Nanjing Medical University), Nanjing, 210029, China
| | - Yifei Ge
- Department of Nephrology, Jiangsu Province Hospital (The First Affiliated Hospital of Nanjing Medical University), Nanjing, 210029, China
| | - Buyun Wu
- Department of Nephrology, Jiangsu Province Hospital (The First Affiliated Hospital of Nanjing Medical University), Nanjing, 210029, China
| | - Changying Xing
- Department of Nephrology, Jiangsu Province Hospital (The First Affiliated Hospital of Nanjing Medical University), Nanjing, 210029, China
| | - Huijuan Mao
- Department of Nephrology, Jiangsu Province Hospital (The First Affiliated Hospital of Nanjing Medical University), Nanjing, 210029, China
| |
Collapse
|
14
|
Aparicio-Soto M, Curato C, Riedel F, Thierse HJ, Luch A, Siewert K. In Vitro Monitoring of Human T Cell Responses to Skin Sensitizing Chemicals-A Systematic Review. Cells 2021; 11:cells11010083. [PMID: 35011644 PMCID: PMC8750770 DOI: 10.3390/cells11010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Chemical allergies are T cell-mediated diseases that often manifest in the skin as allergic contact dermatitis (ACD). To prevent ACD on a public health scale and avoid elicitation reactions at the individual patient level, predictive and diagnostic tests, respectively, are indispensable. Currently, there is no validated in vitro T cell assay available. The main bottlenecks concern the inefficient generation of T cell epitopes and the detection of rare antigen-specific T cells. Methods: Here, we systematically review original experimental research papers describing T cell activation to chemical skin sensitizers. We focus our search on studies published in the PubMed and Scopus databases on non-metallic allergens in the last 20 years. Results: We identified 37 papers, among them 32 (86%) describing antigen-specific human T cell activation to 31 different chemical allergens. The remaining studies measured the general effects of chemical allergens on T cell function (five studies, 14%). Most antigen-specific studies used peripheral blood mononuclear cells (PBMC) as antigen-presenting cells (APC, 75%) and interrogated the blood T cell pool (91%). Depending on the individual chemical properties, T cell epitopes were generated either by direct administration into the culture medium (72%), separate modification of autologous APC (29%) or by use of hapten-modified model proteins (13%). Read-outs were mainly based on proliferation (91%), often combined with cytokine secretion (53%). The analysis of T cell clones offers additional opportunities to elucidate the mechanisms of epitope formation and cross-reactivity (13%). The best researched allergen was p-phenylenediamine (PPD, 12 studies, 38%). For this and some other allergens, stronger immune responses were observed in some allergic patients (15/31 chemicals, 48%), illustrating the in vivo relevance of the identified T cells while detection limits remain challenging in many cases. Interpretation: Our results illustrate current hardships and possible solutions to monitoring T cell responses to individual chemical skin sensitizers. The provided data can guide the further development of T cell assays to unfold their full predictive and diagnostic potential, including cross-reactivity assessments.
Collapse
Affiliation(s)
- Marina Aparicio-Soto
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
| | - Caterina Curato
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
| | - Franziska Riedel
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Hermann-Josef Thierse
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Katherina Siewert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
- Correspondence: ; Tel.: +49-(0)30-18412-57001
| |
Collapse
|
15
|
Hammond S, Olsson-Brown A, Grice S, Gibson A, Gardner J, Castrejón-Flores JL, Jolly C, Fisher BA, Steven N, Betts C, Pirmohamed M, Meng X, Naisbitt DJ. Checkpoint inhibition reduces the threshold for drug-specific T-Cell priming and increases the incidence of sulfasalazine hypersensitivity. Toxicol Sci 2021; 186:58-69. [PMID: 34850240 PMCID: PMC8883351 DOI: 10.1093/toxsci/kfab144] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
An emerging clinical issue associated with immune-oncology agents is the collateral effects on the tolerability of concomitant medications. One report of this phenomenon was the increased incidence of hypersensitivity reactions observed in patients receiving concurrent immune checkpoint inhibitors and sulfasalazine. Thus, the aim of this study was to characterize the T-cells involved in the pathogenesis of such reactions, and recapitulate the effects of inhibitory checkpoint blockade on de-novo priming responses to compounds within in-vitro platforms. A regulatory competent human dendritic cell/T-cell co-culture assay was used to model the effects of immune checkpoint inhibitors on de-novo nitroso sulfamethoxazole- and sulfapyridine (the sulfonamide component of sulfasalazine) hydroxylamine-specific priming responses. The role of T-cells in the pathogenesis of the observed reactions was explored in three patients through phenotypic characterization of sulfapyridine/sulfapyridine hydroxylamine-responsive T-cell clones, and assessment of cross-reactivity and pathways of T-cell activation. Augmentation of the frequency of responding drug-specific T-cells and intensity of the T-cell response was observed with PD-1/PD-L1 blockade. Monoclonal populations of sulfapyridine- and sulfapyridine hydroxylamine-responsive T-cells were isolated from all three patients. A core secretory effector molecule profile (IFN-γ, IL-13, granzyme B and perforin) was identified for sulfapyridine and sulfapyridine hydroxylamine responsive T-cell clones, which proceeded through Pi and hapten mechanisms, respectively. Data presented herein provides evidence that drug-responsive T-cells are effectors of hypersensitivity reactions observed in oncology patients administered immune checkpoint inhibitors and sulfasalazine. Perturbation of drug-specific T-cell priming is a plausible explanation for clinical observations of how an increased incidence of these adverse events is occurring.
Collapse
Affiliation(s)
- Sean Hammond
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK.,ApconiX, Alderley Park, Alderley Edge, SK10 4TG, U.K
| | - Anna Olsson-Brown
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Sophie Grice
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Andrew Gibson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, WA, 6150
| | - Joshua Gardner
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Jose Luis Castrejón-Flores
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, Mexico City, 07340, México
| | - Carol Jolly
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Benjamin Alexis Fisher
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,National Institute of Health Research (NIHR) Birmingham Biomedical Research Centre, and Department of Rheumatology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Neil Steven
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Cancer Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Catherine Betts
- Pathology Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Munir Pirmohamed
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Dean John Naisbitt
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| |
Collapse
|
16
|
Jaruthamsophon K, Thomson PJ, Sukasem C, Naisbitt DJ, Pirmohamed M. HLA Allele-Restricted Immune-Mediated Adverse Drug Reactions: Framework for Genetic Prediction. Annu Rev Pharmacol Toxicol 2021; 62:509-529. [PMID: 34516290 DOI: 10.1146/annurev-pharmtox-052120-014115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human leukocyte antigen (HLA) is a hallmark genetic marker for the prediction of certain immune-mediated adverse drug reactions (ADRs). Numerous basic and clinical research studies have provided the evidence base to push forward the clinical implementation of HLA testing for the prevention of such ADRs in susceptible patients. This review explores current translational progress in using HLA as a key susceptibility factor for immune ADRs and highlights gaps in our knowledge. Furthermore, relevant findings of HLA-mediated drug-specific T cell activation are covered, focusing on cellular approaches to link genetic associations to drug-HLA binding as a complementary approach to understand disease pathogenesis. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kanoot Jaruthamsophon
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, United Kingdom; .,Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Paul J Thomson
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, United Kingdom;
| | - Chonlaphat Sukasem
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, United Kingdom; .,Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine, and Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Dean J Naisbitt
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, United Kingdom;
| | - Munir Pirmohamed
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, United Kingdom;
| |
Collapse
|
17
|
Deshpande P, Hertzman RJ, Palubinsky AM, Giles JB, Karnes JH, Gibson A, Phillips EJ. Immunopharmacogenomics: Mechanisms of HLA-Associated Drug Reactions. Clin Pharmacol Ther 2021; 110:607-615. [PMID: 34143437 DOI: 10.1002/cpt.2343] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022]
Abstract
The human leukocyte antigen (HLA) system is the most polymorphic in the human genome that has been associated with protection and predisposition to a broad array of infectious, autoimmune, and malignant diseases. More recently over the last two decades, HLA class I alleles have been strongly associated with T-cell-mediated drug hypersensitivity reactions. In the case of abacavir hypersensitivity and HLA-B*57:01, the 100% negative predictive value and low number needed to test to prevent a single case has led to a durable and effective global preprescription screening strategy. However, HLA associations are still undefined for most drugs clinically associated with different delayed drug hypersensitivity phenotypes, and an HLA association relevant to one population is not generalizable across ethnicities. Furthermore, while a specific risk HLA allele is necessary for drug-induced T-cell activation, it is not sufficient. The low and incomplete positive predictive value has hindered efforts at clinical implementation for many drugs but has provided the impetus to understand the mechanisms of HLA class I restricted T-cell-mediated drug hypersensitivity reactions. Current research has focused on defining the contribution of additional elements of the adaptive immune response and other genetic and ecologic risk factors that contribute to drug hypersensitivity risk. In this review we focus on new insights into immunological, pharmacological, and genetic mechanisms underpinning HLA-associated drug reactions and the implications for future translation into clinical care.
Collapse
Affiliation(s)
- Pooja Deshpande
- Institute for Immunology and Infectious Diseases (IIID), Murdoch University, Western Australia, Australia
| | - Rebecca J Hertzman
- Institute for Immunology and Infectious Diseases (IIID), Murdoch University, Western Australia, Australia
| | - Amy M Palubinsky
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, Tennessee, USA
| | - Jason B Giles
- Department of Pharmacy Practice & Science, University of Arizona, Tucson, Arizona, USA
| | - Jason H Karnes
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, Tennessee, USA.,Department of Pharmacy Practice & Science, University of Arizona, Tucson, Arizona, USA
| | - Andrew Gibson
- Institute for Immunology and Infectious Diseases (IIID), Murdoch University, Western Australia, Australia
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases (IIID), Murdoch University, Western Australia, Australia.,Department of Medicine, Vanderbilt University Medical Centre, Nashville, Tennessee, USA
| |
Collapse
|
18
|
Bechara R, Feray A, Pallardy M. Drug and Chemical Allergy: A Role for a Specific Naive T-Cell Repertoire? Front Immunol 2021; 12:653102. [PMID: 34267746 PMCID: PMC8276071 DOI: 10.3389/fimmu.2021.653102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023] Open
Abstract
Allergic reactions to drugs and chemicals are mediated by an adaptive immune response involving specific T cells. During thymic selection, T cells that have not yet encountered their cognate antigen are considered naive T cells. Due to the artificial nature of drug/chemical-T-cell epitopes, it is not clear whether thymic selection of drug/chemical-specific T cells is a common phenomenon or remains limited to few donors or simply does not exist, suggesting T-cell receptor (TCR) cross-reactivity with other antigens. Selection of drug/chemical-specific T cells could be a relatively rare event accounting for the low occurrence of drug allergy. On the other hand, a large T-cell repertoire found in multiple donors would underline the potential of a drug/chemical to be recognized by many donors. Recent observations raise the hypothesis that not only the drug/chemical, but also parts of the haptenated protein or peptides may constitute the important structural determinants for antigen recognition by the TCR. These observations may also suggest that in the case of drug/chemical allergy, the T-cell repertoire results from particular properties of certain TCR to recognize hapten-modified peptides without need for previous thymic selection. The aim of this review is to address the existence and the role of a naive T-cell repertoire in drug and chemical allergy. Understanding this role has the potential to reveal efficient strategies not only for allergy diagnosis but also for prediction of the immunogenic potential of new chemicals.
Collapse
Affiliation(s)
- Rami Bechara
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alexia Feray
- Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| | - Marc Pallardy
- Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| |
Collapse
|
19
|
Ogese MO, Watkinson J, Lister A, Faulkner L, Gibson A, Hillegas A, Sakatis MZ, Park BK, Naisbitt DJ. Development of an Improved T-cell Assay to Assess the Intrinsic Immunogenicity of Haptenic Compounds. Toxicol Sci 2021; 175:266-278. [PMID: 32159798 DOI: 10.1093/toxsci/kfaa034] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The prediction of drug hypersensitivity is difficult due to the lack of appropriate models and known risk factors. In vitro naïve T-cell priming assays that assess immunogenicity have been developed. However, their application is limited due requirements for 2 batches of autologous dendritic cells (DC) and inconsistent results; a consequence of single well readouts when exploring reactions where compound-specific T-cell frequency is undefined. Hence, we aimed to develop an improved, but simplified assay, termed the T-cell multiple well assay (T-MWA), that permits assessment of drug-specific activation of naïve T cells, alongside analysis of the strength of the induced response and the number of cultures that respond. DC naïve T-cell coculture, depleted of regulatory T cells (Tregs), was conducted in up to 48 wells for 2 weeks with model haptens (nitroso sulfamethoxazole [SMX-NO], Bandrowski's base [BB], or piperacillin [PIP]). Cultures were rechallenged with hapten and T-cell proliferation was measured using [3H]-thymidine incorporation. Priming of naïve T cells was observed with SMX-NO, with no requirement for DC during restimulation. Greater than 65% of cultures were activated with SMX-NO; with 8.0%, 30.8%, and 27.2% characterized as weak (stimulation index [SI] =1.5-1.9), moderate (SI = 2-3.9), and strong responses (SI > 4), respectively. The number of responding cultures and strength of the response was reproducible when separate blood donations were compared. Coinhibitory checkpoint blockade increased the strength of the proliferative response, but not the number of responding cultures. Moderate to strong priming responses were detected with BB, whereas PIP stimulated only a small number of cultures to proliferate weakly. In drug-responsive cultures inducible CD4+CD25+FoxP3+CD127low Tregs were also identified. To conclude, the T-MWA offers improvements over existing assays and with development it could be used to study multiple HLA-typed donors in a single plate format.
Collapse
Affiliation(s)
- Monday O Ogese
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, LiverpoolL69 3GE, UK
| | - Joel Watkinson
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, LiverpoolL69 3GE, UK
| | - Adam Lister
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, LiverpoolL69 3GE, UK
| | - Lee Faulkner
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, LiverpoolL69 3GE, UK
| | - Andrew Gibson
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, LiverpoolL69 3GE, UK.,Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Aimee Hillegas
- Immunological Toxicology, In Vitro In Vivo Translation, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Melanie Z Sakatis
- Investigative Safety & Drug Metabolism, In Vitro In Vivo Translation, GlaxoSmithKline,HertfordshireSG12 0DP, UK
| | - Brian Kevin Park
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, LiverpoolL69 3GE, UK
| | - Dean J Naisbitt
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, LiverpoolL69 3GE, UK
| |
Collapse
|
20
|
Thomson PJ, Kafu L, Meng X, Snoeys J, De Bondt A, De Maeyer D, Wils H, Leclercq L, Vinken P, Naisbitt DJ. Drug-specific T-cell responses in patients with liver injury following treatment with the BACE inhibitor atabecestat. Allergy 2021; 76:1825-1835. [PMID: 33150583 DOI: 10.1111/all.14652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/01/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Atabecestat is an orally administered BACE inhibitor developed to treat Alzheimer's disease. Elevations in hepatic enzymes were detected in a number of in trial patients, which resulted in termination of the drug development programme. Immunohistochemical characterization of liver tissue from an index case of atabecestat-mediated liver injury revealed an infiltration of T-lymphocytes in areas of hepatocellular damage. This coupled with the fact that liver injury had a delayed onset suggests that the adaptive immune system may be involved in the pathogenesis. The aim of this study was to generate and characterize atabecestat(metabolite)-responsive T-cell clones from patients with liver injury. METHODS Peripheral blood mononuclear cells were cultured with atabecestat and its metabolites (diaminothiazine [DIAT], N-acetyl DIAT & epoxide) and cloning was attempted in a number of patients. Atabecestat(metabolite)-responsive clones were analysed in terms of T-cell phenotype, function, pathways of T-cell activation and cross-reactivity with structurally related compounds. RESULTS CD4+ T-cell clones activated with the DIAT metabolite were detected in 5 out of 8 patients (up to 4.5% cloning efficiency). Lower numbers of CD4+ and CD8+ clones displayed reactivity against atabecestat. Clones proliferated and secreted IFN-γ, IL-13 and cytolytic molecules following atabecestat or DIAT stimulation. Certain atabecestat and DIAT-responsive clones cross-reacted with N-acetyl DIAT; however, no cross-reactivity was observed between atabecestat and DIAT. CD4+ clones were activated through a direct, reversible compound-HLA class II interaction with no requirement for protein processing. CONCLUSION The detection of atabecestat metabolite-responsive T-cell clones activated via a pharmacological interactions pathway in patients with liver injury is indicative of an immune-based mechanism for the observed hepatic enzyme elevations.
Collapse
Affiliation(s)
- Paul J. Thomson
- MRC Centre for Drug Safety Science Department of Molecular and Clinical Pharmacology University of Liverpool Liverpool UK
| | - Laila Kafu
- MRC Centre for Drug Safety Science Department of Molecular and Clinical Pharmacology University of Liverpool Liverpool UK
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science Department of Molecular and Clinical Pharmacology University of Liverpool Liverpool UK
| | - Jan Snoeys
- Drug Metabolism and Pharmacokinetics Janssen R&D Beerse Belgium
| | - An De Bondt
- Discovery Sciences Janssen R&D Beerse Belgium
| | | | - Hans Wils
- Discovery Sciences Janssen R&D Beerse Belgium
| | | | | | - Dean J. Naisbitt
- MRC Centre for Drug Safety Science Department of Molecular and Clinical Pharmacology University of Liverpool Liverpool UK
| |
Collapse
|
21
|
Li Y, Deshpande P, Hertzman RJ, Palubinsky AM, Gibson A, Phillips EJ. Genomic Risk Factors Driving Immune-Mediated Delayed Drug Hypersensitivity Reactions. Front Genet 2021; 12:641905. [PMID: 33936169 PMCID: PMC8085493 DOI: 10.3389/fgene.2021.641905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Adverse drug reactions (ADRs) remain associated with significant mortality. Delayed hypersensitivity reactions (DHRs) that occur greater than 6 h following drug administration are T-cell mediated with many severe DHRs now associated with human leukocyte antigen (HLA) risk alleles, opening pathways for clinical prediction and prevention. However, incomplete negative predictive value (NPV), low positive predictive value (PPV), and a large number needed to test (NNT) to prevent one case have practically prevented large-scale and cost-effective screening implementation. Additional factors outside of HLA contributing to risk of severe T-cell-mediated DHRs include variation in drug metabolism, T-cell receptor (TCR) specificity, and, most recently, HLA-presented immunopeptidome-processing efficiencies via endoplasmic reticulum aminopeptidase (ERAP). Active research continues toward identification of other highly polymorphic factors likely to impose risk. These include those previously associated with T-cell-mediated HLA-associated infectious or auto-immune disease such as Killer cell immunoglobulin-like receptors (KIR), epistatically linked with HLA class I to regulate NK- and T-cell-mediated cytotoxic degranulation, and co-inhibitory signaling pathways for which therapeutic blockade in cancer immunotherapy is now associated with an increased incidence of DHRs. As such, the field now recognizes that susceptibility is not simply a static product of genetics but that individuals may experience dynamic risk, skewed toward immune activation through therapeutic interventions and epigenetic modifications driven by ecological exposures. This review provides an updated overview of current and proposed genetic factors thought to predispose risk for severe T-cell-mediated DHRs.
Collapse
Affiliation(s)
- Yueran Li
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Pooja Deshpande
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Rebecca J. Hertzman
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Amy M. Palubinsky
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, TN, United States
| | - Andrew Gibson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Elizabeth J. Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, TN, United States
| |
Collapse
|
22
|
Hammond S, Thomson P, Meng X, Naisbitt D. In-Vitro Approaches to Predict and Study T-Cell Mediated Hypersensitivity to Drugs. Front Immunol 2021; 12:630530. [PMID: 33927714 PMCID: PMC8076677 DOI: 10.3389/fimmu.2021.630530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/17/2021] [Indexed: 01/11/2023] Open
Abstract
Mitigating the risk of drug hypersensitivity reactions is an important facet of a given pharmaceutical, with poor performance in this area of safety often leading to warnings, restrictions and withdrawals. In the last 50 years, efforts to diagnose, manage, and circumvent these obscure, iatrogenic diseases have resulted in the development of assays at all stages of a drugs lifespan. Indeed, this begins with intelligent lead compound selection/design to minimize the existence of deleterious chemical reactivity through exclusion of ominous structural moieties. Preclinical studies then investigate how compounds interact with biological systems, with emphasis placed on modeling immunological/toxicological liabilities. During clinical use, competent and accurate diagnoses are sought to effectively manage patients with such ailments, and pharmacovigilance datasets can be used for stratification of patient populations in order to optimise safety profiles. Herein, an overview of some of the in-vitro approaches to predict intrinsic immunogenicity of drugs and diagnose culprit drugs in allergic patients after exposure is detailed, with current perspectives and opportunities provided.
Collapse
Affiliation(s)
- Sean Hammond
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
- ApconiX, Alderley Park, Alderley Edge, United Kingdom
| | - Paul Thomson
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| | - Dean Naisbitt
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
23
|
Hsu YSO, Lu KL, Fu Y, Wang CW, Lu CW, Lin YF, Chang WC, Yeh KY, Hung SI, Chung WH, Chen CB. The Roles of Immunoregulatory Networks in Severe Drug Hypersensitivity. Front Immunol 2021; 12:597761. [PMID: 33717075 PMCID: PMC7953830 DOI: 10.3389/fimmu.2021.597761] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
The immunomodulatory effects of regulatory T cells (Tregs) and co-signaling receptors have gained much attention, as they help balance immunogenic and immunotolerant responses that may be disrupted in autoimmune and infectious diseases. Drug hypersensitivity has a myriad of manifestations, which ranges from the mild maculopapular exanthema to the severe Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug reaction with eosinophilia and systemic symptoms/drug-induced hypersensitivity syndrome (DRESS/DIHS). While studies have identified high-risk human leukocyte antigen (HLA) allotypes, the presence of the HLA allotype at risk is not sufficient to elicit drug hypersensitivity. Recent studies have suggested that insufficient regulation by Tregs may play a role in severe hypersensitivity reactions. Furthermore, immune checkpoint inhibitors, such as anti-CTLA-4 or anti-PD-1, in cancer treatment also induce hypersensitivity reactions including SJS/TEN and DRESS/DIHS. Taken together, mechanisms involving both Tregs as well as coinhibitory and costimulatory receptors may be crucial in the pathogenesis of drug hypersensitivity. In this review, we summarize the currently implicated roles of co-signaling receptors and Tregs in delayed-type drug hypersensitivity in the hope of identifying potential pharmacologic targets.
Collapse
Affiliation(s)
- Yun-Shiuan Olivia Hsu
- Department of Medical Education, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kun-Lin Lu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yun Fu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chuang-Wei Wang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Chang Gung Immunology Consortium, Linkou, Taiwan
| | - Chun-Wei Lu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yu-Fen Lin
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Nursing, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Wen-Cheng Chang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Kun-Yun Yeh
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Shuen-Iu Hung
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Chang Gung Immunology Consortium, Linkou, Taiwan
| | - Wen-Hung Chung
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Chang Gung Immunology Consortium, Linkou, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Chang Gung Hospital, Xiamen, China
- Department of Dermatology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chun-Bing Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Chang Gung Immunology Consortium, Linkou, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Dermatology, Chang Gung Hospital, Xiamen, China
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
24
|
Shimamura Y, Watanabe S, Maeda T, Abe K, Ogawa Y, Takizawa H. Incidence and risk factors of acute kidney injury, and its effect on mortality among Japanese patients receiving immune check point inhibitors: a single-center observational study. Clin Exp Nephrol 2021; 25:479-487. [PMID: 33471239 DOI: 10.1007/s10157-020-02008-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICPis) are associated with multi-organ immune-related adverse effects. Here, we examined the incidence rate, recovery rate, and risk factors of acute kidney injury complicated with ICPis (ICPi-AKI) and evaluted the association between ICPi-AKI and mortality in Japanese patients. METHODS We analyzed 152 consecutive patients receiving ICPis between 2015 and 2019. A logistic regression analysis was performed to identify risk factors for ICPi-AKI incidence and Cox regression analysis was performed to evaluate the association between ICPi-AKI and mortality. RESULTS The mean patient age was 67 ± 10 years, with the median baseline serum creatinine level of 0.78 mg/dL. Twenty-seven patients (18%) developed ICPi-AKI, and 19 (73%) of them recovered. Pembrolizumab use and liver diseases were significant risk factors for the ICPi-AKI incidence. During the follow-up, 85 patients (59%) died, 17 patients (63%) with ICPi-AKI and 68 (54%) patients without ICPi-AKI, respectively. The ICPi-AKI incidence was not independently associated with mortality (adjusted hazard ratio, 0.85; 95% confidence intervals, 0.46-1.61). CONCLUSIONS Our finding suggest that pembrolizumab use and liver diseases are associated with a higher risk of ICPi-AKI development, but ICPi-AKI did not affect mortality. Future multi-center studies are needed to develop optimal management and prevention strategies for this complication in patients receiving ICPis.
Collapse
Affiliation(s)
- Yoshinosuke Shimamura
- Department of Nephrology, Teine Keijinkai Medical Center, Sapporo, Hokkaido, 0068555, Japan.
| | - Shota Watanabe
- Department of Nephrology, Teine Keijinkai Medical Center, Sapporo, Hokkaido, 0068555, Japan
| | - Takuto Maeda
- Department of Nephrology, Teine Keijinkai Medical Center, Sapporo, Hokkaido, 0068555, Japan
| | - Koki Abe
- Department of Nephrology, Teine Keijinkai Medical Center, Sapporo, Hokkaido, 0068555, Japan
| | - Yayoi Ogawa
- Hokkaido Renal Pathology Center, Sapporo, Hokkaido, Japan
| | - Hideki Takizawa
- Department of Nephrology, Teine Keijinkai Medical Center, Sapporo, Hokkaido, 0068555, Japan
| |
Collapse
|
25
|
Goh SJR, Tuomisto JEE, Purcell AW, Mifsud NA, Illing PT. The complexity of T cell-mediated penicillin hypersensitivity reactions. Allergy 2021; 76:150-167. [PMID: 32383256 DOI: 10.1111/all.14355] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/16/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022]
Abstract
Penicillin refers to a group of beta-lactam antibiotics that are the first-line treatment for a range of infections. However, they also possess the ability to form novel antigens, or neoantigens, through haptenation of proteins and can stimulate a range of immune-mediated adverse reactions-collectively known as drug hypersensitivity reactions (DHRs). IgE-mediated reactions towards these neoantigens are well studied; however, IgE-independent reactions are less well understood. These reactions usually manifest in a delayed manner as different forms of cutaneous eruptions or liver injury consistent with priming of an immune response. Ex vivo studies have confirmed the infiltration of T cells into the site of inflammation, and the subsets of T cells involved appear dependent on the nature of the reaction. Here, we review the evidence that has led to our current understanding of these immune-mediated reactions, discussing the nature of the lesional T cells, the characterization of drug-responsive T cells isolated from patient blood, and the potential mechanisms by which penicillins enter the antigen processing and presentation pathway to stimulate these deleterious responses. Thus, we highlight the need for a more comprehensive understanding of the underlying genetic and molecular basis of penicillin-induced DHRs.
Collapse
Affiliation(s)
- Shawn J. R. Goh
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton Vic. Australia
| | - Johanna E. E. Tuomisto
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton Vic. Australia
| | - Anthony W. Purcell
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton Vic. Australia
| | - Nicole A. Mifsud
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton Vic. Australia
| | - Patricia T. Illing
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton Vic. Australia
| |
Collapse
|
26
|
Johnson DB, Jakubovic BD, Sibaud V, Sise ME. Balancing Cancer Immunotherapy Efficacy and Toxicity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2020; 8:2898-2906. [PMID: 32599218 PMCID: PMC7318967 DOI: 10.1016/j.jaip.2020.06.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022]
Abstract
Anti-programmed cell death-1 receptor/programmed cell death-1 receptor ligand-directed therapies are transforming cancer care, with durable antitumor responses observed in multiple cancer types. Toxicities arising from therapy are autoimmune in nature and may affect essentially any organ system. The immunologic basis of such toxities is complex, with contributions from T-cell activation and autoantibody generation. Although less recognized, hypersensitivity reactions are also possible. Although most toxicities resolve with systemic corticosteroids, some require second-line immunosuppression. Furthermore, the safety of drug rechallenge is not well characterized, with variable rates of toxicity flares arising with re-exposure. Herein, we review toxicities of immune checkpoint inhibitor therapies, particularly focusing on issues that allergists/immunologists may clinically encounter, including interstitial nephritis, skin toxicity, and risks associated with immunotherapy rechallenge.
Collapse
Affiliation(s)
- Douglas B Johnson
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn.
| | - Baruch D Jakubovic
- Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Vincent Sibaud
- Department of Oncodermatology, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Meghan E Sise
- Renal Division, Department of Internal Medicine, Massachusetts General Hospital, Boston, Mass
| |
Collapse
|
27
|
Mangan BL, McAlister RK, Balko JM, Johnson DB, Moslehi JJ, Gibson A, Phillips EJ. Evolving insights into the mechanisms of toxicity associated with immune checkpoint inhibitor therapy. Br J Clin Pharmacol 2020; 86:1778-1789. [PMID: 32543711 PMCID: PMC7444794 DOI: 10.1111/bcp.14433] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Immune checkpoint inhibitors have emerged as a revolutionary treatment option for patients with various types of malignancy. Although these agents afford a significant improvement in outcomes for melanoma and other previously untreatable malignancies, their novel mechanism of action may predispose patients to immune-related adverse effects (irAEs). In the tumour neoantigen environment, these irAEs are due to the activation of the immune system by the blockade of suppressive checkpoints, leading to increases in T-cell activation and proliferation. IrAEs have been reported in almost any organ and at any point in time, even months to years after discontinuation of therapy. Certain populations with distinct physiological changes, genetic risk factors, and specific antigen exposures may be more highly predisposed to develop irAEs. This review discusses the incidence and mechanisms of irAEs and the relationship between host factors and irAE occurrence.
Collapse
Affiliation(s)
- Brendan L. Mangan
- Department of PharmacyVanderbilt University Medical CenterNashvilleTNUSA
| | - Renee K. McAlister
- Department of PharmacyVanderbilt University Medical CenterNashvilleTNUSA
| | - Justin M. Balko
- Department of Pathology, Microbiology and ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
- Breast Cancer Research ProgramVanderbilt University Medical CenterNashvilleTNUSA
- Cancer Biology ProgramVanderbilt University Medical CenterNashvilleTNUSA
| | - Douglas B. Johnson
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Javid J. Moslehi
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Andrew Gibson
- Institute for Immunology and Infectious DiseasesMurdoch UniversityMurdochWAAustralia
| | - Elizabeth J. Phillips
- Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
- Department of Pathology, Microbiology and ImmunologyVanderbilt University Medical CenterNashvilleTNUSA
- Department of PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
- Institute for Immunology and Infectious DiseasesMurdoch UniversityMurdochWAAustralia
| |
Collapse
|
28
|
Incidence and Clinical Features of Immune-Related Acute Kidney Injury in Patients Receiving Programmed Cell Death Ligand-1 Inhibitors. Kidney Int Rep 2020; 5:1700-1705. [PMID: 33102962 PMCID: PMC7569697 DOI: 10.1016/j.ekir.2020.07.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/21/2020] [Accepted: 07/14/2020] [Indexed: 01/14/2023] Open
Abstract
Background Programmed cell death receptor ligand 1 (PD-L1) inhibitors are immune checkpoint inhibitors (ICIs) with a side effect profile that may differ from other classes of ICIs such as those directed against cytotoxic T-lymphocyte−associated protein 4 (CTLA-4) and programmed cell death 1 receptor (PD-1). Being the more recently approved class of checkpoint inhibitors, there are no studies investigating the frequency, etiology and predictors of acute kidney injury (AKI) in patients receiving PD-L1 inhibitors. Methods This was a retrospective cohort study of patients who received PD-L1 inhibitors during 2017 to 2018 in our healthcare system. AKI was defined by a ≥1.5-fold rise in serum creatinine from baseline. The etiology of all cases of sustained AKI (lasting >48 hours) and clinical course were determined by review of electronic health records. Results The final analysis included 599 patients. Within 12 months of ICI initiation, 104 patients (17%) experienced AKI, and 36 (6%) experienced sustained AKI; however, only 5 (<1%) experienced suspected PD-L1–related AKI. The PD-L1–related AKI occurred a median of 99 days after starting therapy. All patients concurrently received another medication known to cause acute interstitial nephritis (proton pump inhibitors, nonsteroidal anti-inflammatory drugs, or antibiotics) at the time of the suspected PDL1-related AKI. Conclusion Although AKI is common in patients receiving PD-L1 therapy, the incidence of suspected PD-L1–related AKI is low (<1%) and may be less common when compared to other classes of ICIs. This cohort provides further validation that other drugs associated with acute interstitial nephritis may be involved in the pathogenesis of ICI-related AKI.
Collapse
|
29
|
Naisbitt DJ, Olsson‐Brown A, Gibson A, Meng X, Ogese MO, Tailor A, Thomson P. Immune dysregulation increases the incidence of delayed-type drug hypersensitivity reactions. Allergy 2020; 75:781-797. [PMID: 31758810 DOI: 10.1111/all.14127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/05/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022]
Abstract
Delayed-type, T cell-mediated, drug hypersensitivity reactions are a serious unwanted manifestation of drug exposure that develops in a small percentage of the human population. Drugs and drug metabolites are known to interact directly and indirectly (through irreversible protein binding and processing to the derived adducts) with HLA proteins that present the drug-peptide complex to T cells. Multiple forms of drug hypersensitivity are strongly linked to expression of a single HLA allele, and there is increasing evidence that drugs and peptides interact selectively with the protein encoded by the HLA allele. Despite this, many individuals expressing HLA risk alleles do not develop hypersensitivity when exposed to culprit drugs suggesting a nonlinear, multifactorial relationship in which HLA risk alleles are one factor. This has prompted a search for additional susceptibility factors. Herein, we argue that immune regulatory pathways are one key determinant of susceptibility. As expression and activity of these pathways are influenced by disease, environmental and patient factors, it is currently impossible to predict whether drug exposure will result in a health benefit, hypersensitivity or both. Thus, a concerted effort is required to investigate how immune dysregulation influences susceptibility towards drug hypersensitivity.
Collapse
Affiliation(s)
- Dean J. Naisbitt
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Anna Olsson‐Brown
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Andrew Gibson
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Monday O. Ogese
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Arun Tailor
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Paul Thomson
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| |
Collapse
|
30
|
Mayorga C, Fernandez TD, Montañez MI, Moreno E, Torres MJ. Recent developments and highlights in drug hypersensitivity. Allergy 2019; 74:2368-2381. [PMID: 31557314 DOI: 10.1111/all.14061] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022]
Abstract
Drug hypersensitivity reactions (DHRs) are nowadays the third cause of allergy after rhinitis and asthma with a significant increase in prevalence in both adults and paediatric population with new drugs included as culprit. For this, DHRs represent not only a health problem but also a significant financial burden for affected individuals and health systems. Mislabelling DHRs is showing to be a relevant problem for both, false label of drug allergic and false label of nonallergic. All this reinforces the need to improve accurate diagnostic approaches that allow an appropriate management. Moreover, there is a need for training both, nonallergist stakeholders and patients to improve the reaction identification and therefore decrease the mislabelling. The use of allergy cards has shown to be relevant to avoid the induction of DHRs due to the prescription of wrong medication. Recent developments over the last 2 years and highlights about risk factors, diagnostic approaches, mechanisms involved as well as prevention actions, and management have been reviewed. In these papers, it has been outlined the need for correct diagnosis and de-labelling of patients previously false-reported as allergic, which will improve the management and treatment of patients with DHRs.
Collapse
Affiliation(s)
- Cristobalina Mayorga
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga‐ARADyAL Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology‐BIONAND Málaga Spain
| | - Tahia D. Fernandez
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
| | - Maria Isabel Montañez
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology‐BIONAND Málaga Spain
| | - Esther Moreno
- Allergy Unit Hospital Universitario de Salamanca‐ARADyAL IBSAL Salamanca Spain
| | - María José Torres
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA‐ARADyAL Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga‐ARADyAL Málaga Spain
- Andalusian Center for Nanomedicine and Biotechnology‐BIONAND Málaga Spain
- Universidad de Málaga Málaga Spain
| |
Collapse
|
31
|
Hammond S, Thomson PJ, Ogese MO, Naisbitt DJ. T-Cell Activation by Low Molecular Weight Drugs and Factors That Influence Susceptibility to Drug Hypersensitivity. Chem Res Toxicol 2019; 33:77-94. [PMID: 31687800 DOI: 10.1021/acs.chemrestox.9b00327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug hypersensitivity reactions adversely affect treatment outcome, increase the length of patients' hospitalization, and limit the prescription options available to physicians. In addition, late stage drug attrition and the withdrawal of licensed drugs cost the pharmaceutical industry billions of dollars. This significantly increases the overall cost of drug development and by extension the price of licensed drugs. Drug hypersensitivity reactions are characterized by a delayed onset, and reactions tend to be more serious upon re-exposure. The role of drug-specific T-cells in the pathogenesis of drug hypersensitivity reactions and definition of the nature of the binding interaction of drugs with HLA and T-cell receptors continues to be the focus of intensive research, primarily because susceptibility is associated with expression of one or a small number of HLA alleles. This review critically examines the mechanisms of T-cell activation by drugs. Specific examples of drugs that activate T-cells via the hapten, the pharmacological interaction with immune receptors and the altered self-peptide repertoire pathways, are discussed. Furthermore, the impacts of drug metabolism, drug-protein adduct formation, and immune regulation on the development of drug antigen-responsive T-cells are highlighted. The knowledge gained from understanding the pathways of T-cell activation and susceptibility factors for drug hypersensitivity will provide the building blocks for the development of predictive in vitro assays that will prevent or help to minimize the incidence of these reactions in clinic.
Collapse
Affiliation(s)
- Sean Hammond
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , U.K
| | - Paul J Thomson
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , U.K
| | - Monday O Ogese
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , U.K
| | - Dean J Naisbitt
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology , University of Liverpool , Liverpool L69 3GE , U.K
| |
Collapse
|
32
|
Seethapathy H, Zhao S, Chute DF, Zubiri L, Oppong Y, Strohbehn I, Cortazar FB, Leaf DE, Mooradian MJ, Villani AC, Sullivan RJ, Reynolds K, Sise ME. The Incidence, Causes, and Risk Factors of Acute Kidney Injury in Patients Receiving Immune Checkpoint Inhibitors. Clin J Am Soc Nephrol 2019; 14:1692-1700. [PMID: 31672794 PMCID: PMC6895474 DOI: 10.2215/cjn.00990119] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/13/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVES Immune checkpoint inhibitor use in oncology is increasing rapidly. We sought to determine the frequency, severity, cause, and predictors of AKI in a real-world population receiving checkpoint inhibitors. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We included all patients who received checkpoint inhibitor therapy from May 2011 to December 2016 at Massachusetts General Hospital. Baseline serum creatinine, averaged 6 months before checkpoint inhibitor start date, was compared with all subsequent creatinine values within 12 months of starting therapy. AKI was defined by Kidney Disease: Improving Global Outcomes criteria for fold changes in creatinine from baseline. Sustained AKI events lasted at least 3 days and was our primary outcome. The cause of sustained AKI was determined by chart review. Cumulative incidence and subdistribution hazard models were used to assess the relationship between baseline demographics, comorbidities, and medications, and sustained AKI and potential checkpoint inhibitor-related AKI. RESULTS We included 1016 patients in the analysis. Average age was 63 (SD 13) years, 61% were men, and 91% were white. Mean baseline creatinine was 0.9 mg/dl (SD 0.4 mg/dl), and 169 (17%) had CKD (eGFR<60 ml/min per 1.73 m2) at baseline. A total of 169 patients (17%) experienced AKI, defined by an increase in creatinine at least 1.5 times the baseline within 12 months; 82 patients (8%) experienced sustained AKI and 30 patients (3%) had potential checkpoint inhibitor-related AKI. The first episode of sustained AKI occurred, on average, 106 days (SD 85) after checkpoint inhibitor initiation. Sixteen (2%) patients experienced stage 3 sustained AKI and four patients required dialysis. Proton pump inhibitor use at baseline was associated with sustained AKI. CONCLUSIONS AKI is common in patients receiving checkpoint inhibitor therapy. The causes of sustained AKI in this population are heterogenous and merit thorough evaluation. The role of PPI and other nephritis-inducing drugs in the development of sustained AKI needs to be better defined.
Collapse
Affiliation(s)
| | - Sophia Zhao
- Division of Nephrology, Department of Internal Medicine
| | | | - Leyre Zubiri
- Division of Hematology and Oncology, Department of Internal Medicine
| | - Yaa Oppong
- Division of Nephrology, Department of Internal Medicine
| | - Ian Strohbehn
- Division of Nephrology, Department of Internal Medicine
| | | | - David E Leaf
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | | | - Alexandra-Chloé Villani
- Department of Medicine, Center for Immunology and Inflammatory Diseases, and.,Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts; and
| | - Ryan J Sullivan
- Division of Hematology and Oncology, Department of Internal Medicine
| | - Kerry Reynolds
- Division of Hematology and Oncology, Department of Internal Medicine
| | - Meghan E Sise
- Division of Nephrology, Department of Internal Medicine,
| |
Collapse
|
33
|
Tailor A, Waddington JC, Hamlett J, Maggs J, Kafu L, Farrell J, Dear GJ, Whitaker P, Naisbitt DJ, Park K, Meng X. Definition of Haptens Derived from Sulfamethoxazole: In Vitro and in Vivo. Chem Res Toxicol 2019; 32:2095-2106. [DOI: 10.1021/acs.chemrestox.9b00282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arun Tailor
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, U.K
| | - James C. Waddington
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, U.K
| | - Jane Hamlett
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, U.K
| | - James Maggs
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, U.K
| | - Laila Kafu
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, U.K
| | - John Farrell
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, U.K
| | - Gordon J. Dear
- GlaxoSmithKline, Park Road, Ware, Hertfordshire SG12 0DP, U.K
| | - Paul Whitaker
- Regional Adult Cystic Fibrosis Unit, St. James’s University Hospital, Leeds LS9 7TF, U.K
| | - Dean J. Naisbitt
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, U.K
| | - Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, U.K
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science, Department of Molecular & Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, U.K
| |
Collapse
|
34
|
Making a diagnosis in severe cutaneous drug hypersensitivity reactions. Curr Opin Allergy Clin Immunol 2019; 19:283-293. [DOI: 10.1097/aci.0000000000000546] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Pichler WJ. Immune pathomechanism and classification of drug hypersensitivity. Allergy 2019; 74:1457-1471. [PMID: 30843233 DOI: 10.1111/all.13765] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/12/2019] [Accepted: 01/29/2019] [Indexed: 12/17/2022]
Abstract
Drug hypersensitivity reactions (DHR) are based on distinct mechanisms and are clinically heterogeneous. Taking into account that also off-target activities of drugs may lead to stimulations of immune or inflammatory cells, three forms of DHR were discriminated: the allergic-immune mechanism relies on the covalent binding of drugs/chemicals to proteins, which thereby form new antigens, to which a humoural and/or cellular immune response can develop. In IgE-mediated drug allergies, a possible tolerance mechanism to the drug during sensitization and the need of a covalent hapten-carrier link for initiation, but not for elicitation of IgE-mediated reactions is discussed. The p-i ("pharmacological interaction with immune receptor") concept represents an off-target activity of drugs with immune receptors (HLA or TCR), which can result in unorthodox, alloimmune-like stimulations of T cells. Some of these p-i stimulations occur only in carriers of certain HLA alleles and can result in clinically severe reactions. The third form of DHR ("pseudo-allergy") is represented by drug interactions with receptors or enzymes of inflammatory cells, which may lead to their direct activation or enhanced levels of inflammatory products. Specific IgE or T cells are not involved. This classification is based on the action of drugs and is clinically useful, as it can explain differences in sensitizations, unusual clinical symptoms, dependence on drug concentrations, predictability and immunological and pharmacological cross-reactivities in DHR.
Collapse
|
36
|
Williams DP. Application of hepatocyte-like cells to enhance hepatic safety risk assessment in drug discovery. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0228. [PMID: 29786562 DOI: 10.1098/rstb.2017.0228] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2018] [Indexed: 12/21/2022] Open
Abstract
Hepatic stress and injury from drugs continues to be a major concern within the pharmaceutical industry, leading to preclinical and clinical attrition precautionary warnings and post-market withdrawal of drugs. There is a requirement for more predictive and mechanistically accurate models to aid risk assessment. Primary human hepatocytes, subject to isolation stress, cryopreservation, donor-to-donor variation and a relatively short period of functional capability in two-dimensional cultures, are not suitable for high-throughput screening procedures. There are two areas within the drug discovery pipeline that the generation of a stable, metabolically functional hepatocyte-like cell with unlimited supply would have major impact. First, in routine, cell health risk-assessment assays where hepatic cell lines are typically deployed. Second, at later stages of the drug discovery pipeline approaching candidate nomination where bespoke/investigational studies refining and understanding the risk to patients use patient-derived induced pluripotent stem cell (iPSC) hepatocytes retaining characteristics from the patient, e.g. HLA susceptibility alleles, iPSC hepatocytes with defined disease phenotypes or genetic characteristics that have the potential to make the hepatocyte more sensitive to a particular stress mechanism. Functionality of patient-centric hepatocyte-like cells is likely to be enhanced when coupled with emerging culture systems, such as three-dimensional spheroids or microphysiological systems. Ultimately, the aspiration to confidently use human-relevant in vitro models to predict human-specific hepatic toxicity depends on the integration of promising emerging technologies.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- Dominic P Williams
- AstraZeneca, Innovative Medicines and Early Development, Drug Safety and Metabolism, Darwin Building 310, Cambridge Science Park, Milton Road, Cambridge CB4 0FZ, UK
| |
Collapse
|
37
|
Sharma A, Saito Y, Hung SI, Naisbitt D, Uetrecht J, Bussiere J. The skin as a metabolic and immune-competent organ: Implications for drug-induced skin rash. J Immunotoxicol 2018; 16:1-12. [PMID: 30318948 DOI: 10.1080/1547691x.2018.1514444] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Current advances in the study of cutaneous adverse drug reactions can be attributed to the recent understanding that the skin is both a metabolically and immunologically competent organ. The ability of the skin to serve as a protective barrier with limited drug biotransformation ability, yet highly active immune function, has provided insights into its biological capability. While the immune response of the skin to drugs is vastly different from that of the liver due to evolutionary conditioning, it frequently occurs in response to various drug classes and manifests as a spectrum of hypersensitivity reactions. The skin is a common site of adverse and idiosyncratic drug reactions; drug-specific T-cells, as well as involvement of an innate immune response, appear to be key mechanistic drivers in such scenarios. Association of other factors such as human leukocyte antigen (HLA) polymorphisms may play a significant role for particular drugs. This review aims to integrate emerging findings into proposed mechanisms of drug metabolism and immunity in the skin that are likely responsible for rashes and other local allergic responses. These unique biological aspects of the skin, and their translation into implications for drug development and the use of animal models, will be discussed.
Collapse
Affiliation(s)
- Amy Sharma
- Amgen Research, Thousand Oaks, CA, USA.,Genentech Inc., South San Francisco, CA, USA
| | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, Tokyo, Japan
| | - Shuen-Iu Hung
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | - Jack Uetrecht
- Faculty of Pharmacy and Medicine, University of Toronto, Toronto, Canada
| | | |
Collapse
|
38
|
Torres MJ, Fernández TD. Highlights of the 8th Drug Hypersensitivity Meeting: Amsterdam, April 19-21, 2018. Allergy 2018; 73:1941-1943. [PMID: 30043992 DOI: 10.1111/all.13574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Maria J. Torres
- Allergy Unit IBIMA–Hospital Regional Universitario de Malaga–UMA Málaga Spain
- Centro Andaluz de Nanomedicina y Biotecnología – BIONAND Málaga Spain
| | - Tahia D. Fernández
- Research Laboratory–Hospital Regional Universitario de Malaga–UMA Málaga Spain
| |
Collapse
|
39
|
Azoury ME, Filì L, Bechara R, Scornet N, de Chaisemartin L, Weaver RJ, Claude N, Maillere B, Parronchi P, Joseph D, Pallardy M. Identification of T-cell epitopes from benzylpenicillin conjugated to human serum albumin and implication in penicillin allergy. Allergy 2018; 73:1662-1672. [PMID: 29355985 DOI: 10.1111/all.13418] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND There is in vitro evidence that T cells from allergic patients react to benzylpenicillin-human serum albumin (BP-HSA) bioconjugates. Our group has recently shown the existence of naïve CD4+ T cells recognizing BP-HSA in healthy donors. However, BP-haptenated peptides from HSA participating in the immunization of allergic patients have never been identified. The purpose of the present study is to identify immunodominant BP-haptenated peptides from HSA involved in immunization of patients to BP and to refine the frequency calculation of naïve CD4+ T cells recognizing BP. METHODS Co-cultures were established with CD4+ T cells from non-allergic donors and mature autologous dendritic cells (DCs) loaded with BP-HSA or BP-haptenated peptides from HSA. The CD4+ T-cell response specific for BP-HSA or for individual BP-haptenated peptides was measured using an interferon-γ (IFN-γ) ELISpot assay. The frequency of BP-specific CD4+ T cells was then calculated using the Poisson distribution. BP-HSA and BP-haptenated peptides recognition by allergic patients was evaluated on peripheral blood mononuclear cells (PBMCs) using a lymphocyte transformation test (LTT). RESULTS Results showed that BP-HSA and BP-haptenated peptides were recognized by naïve T cells from 15/16 and 13/14 tested healthy donors, respectively. Most donors responded to 3 peptides with BP covalently bound on lysines 159, 212, and 525. Two of these benzylpenicilloylated peptides (lysines 159 and 525) were also found to induce PBMCs proliferation in patients with allergic reaction to penicillins. CONCLUSION This study identifies and characterizes for the first time the BP-haptenated peptides from HSA involved in the immunization of patients to penicillins.
Collapse
Affiliation(s)
- M. E. Azoury
- Inflammation, Chimiokines et Immunopathologie; INSERM; Univ.Paris-Sud; Université Paris-Saclay; Châtenay-Malabry France
| | - L. Filì
- Department of Experimental and Clinical Medicine; University of Florence; Florence Italy
| | - R. Bechara
- Inflammation, Chimiokines et Immunopathologie; INSERM; Univ.Paris-Sud; Université Paris-Saclay; Châtenay-Malabry France
| | - N. Scornet
- BioCIS; Univ Paris-Sud; CNRS; Université Paris-Saclay; Châtenay-Malabry France
| | - L. de Chaisemartin
- Inflammation, Chimiokines et Immunopathologie; INSERM; Univ.Paris-Sud; Université Paris-Saclay; Châtenay-Malabry France
- Hopital Bichat; Laboratoire d'Immunologie; APHP; Paris France
| | - R. J. Weaver
- Institut de Recherches Internationales Servier; Suresnes France
| | - N. Claude
- Institut de Recherches Internationales Servier; Suresnes France
| | | | - P. Parronchi
- Department of Experimental and Clinical Medicine; University of Florence; Florence Italy
| | - D. Joseph
- BioCIS; Univ Paris-Sud; CNRS; Université Paris-Saclay; Châtenay-Malabry France
| | - M. Pallardy
- Inflammation, Chimiokines et Immunopathologie; INSERM; Univ.Paris-Sud; Université Paris-Saclay; Châtenay-Malabry France
| |
Collapse
|
40
|
Genetic and nongenetic factors that may predispose individuals to allergic drug reactions. Curr Opin Allergy Clin Immunol 2018; 18:325-332. [DOI: 10.1097/aci.0000000000000459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Cardone M, Garcia K, Tilahun ME, Boyd LF, Gebreyohannes S, Yano M, Roderiquez G, Akue AD, Juengst L, Mattson E, Ananthula S, Natarajan K, Puig M, Margulies DH, Norcross MA. A transgenic mouse model for HLA-B*57:01-linked abacavir drug tolerance and reactivity. J Clin Invest 2018; 128:2819-2832. [PMID: 29782330 DOI: 10.1172/jci99321] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/20/2018] [Indexed: 01/11/2023] Open
Abstract
Adverse drug reactions (ADRs) are a major obstacle to drug development, and some of these, including hypersensitivity reactions to the HIV reverse transcriptase inhibitor abacavir (ABC), are associated with HLA alleles, particularly HLA-B*57:01. However, not all HLA-B*57:01+ patients develop ADRs, suggesting that in addition to the HLA genetic risk, other factors may influence the outcome of the response to the drug. To study HLA-linked ADRs in vivo, we generated HLA-B*57:01-Tg mice and show that, although ABC activated Tg mouse CD8+ T cells in vitro in a HLA-B*57:01-dependent manner, the drug was tolerated in vivo. In immunocompetent Tg animals, ABC induced CD8+ T cells with an anergy-like phenotype that did not lead to ADRs. In contrast, in vivo depletion of CD4+ T cells prior to ABC administration enhanced DC maturation to induce systemic ABC-reactive CD8+ T cells with an effector-like and skin-homing phenotype along with CD8+ infiltration and inflammation in drug-sensitized skin. B7 costimulatory molecule blockade prevented CD8+ T cell activation. These Tg mice provide a model for ABC tolerance and for the generation of HLA-B*57:01-restricted, ABC-reactive CD8+ T cells dependent on both HLA genetic risk and immunoregulatory host factors.
Collapse
Affiliation(s)
- Marco Cardone
- Laboratory of Immunology, Division of Biotechnology Review and Research III (DBRR III), Office of Biotechnology Products (OBP), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, Maryland, USA
| | - Karla Garcia
- Laboratory of Immunology, Division of Biotechnology Review and Research III (DBRR III), Office of Biotechnology Products (OBP), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, Maryland, USA
| | - Mulualem E Tilahun
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Lisa F Boyd
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Sintayehu Gebreyohannes
- Laboratory of Immunology, Division of Biotechnology Review and Research III (DBRR III), Office of Biotechnology Products (OBP), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, Maryland, USA
| | - Masahide Yano
- Laboratory of Immunology, Division of Biotechnology Review and Research III (DBRR III), Office of Biotechnology Products (OBP), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, Maryland, USA
| | - Gregory Roderiquez
- Laboratory of Immunology, Division of Biotechnology Review and Research III (DBRR III), Office of Biotechnology Products (OBP), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, Maryland, USA
| | - Adovi D Akue
- Division of Bacterial, Parasitic, and Allergenic Products (DBPAP), Office of Vaccines Research and Review (OVRR), Center for Biologics Evaluation and Research (CBER), US FDA, Silver Spring, Maryland, USA
| | - Leslie Juengst
- Laboratory of Immunology, Division of Biotechnology Review and Research III (DBRR III), Office of Biotechnology Products (OBP), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, Maryland, USA
| | - Elliot Mattson
- Laboratory of Immunology, Division of Biotechnology Review and Research III (DBRR III), Office of Biotechnology Products (OBP), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, Maryland, USA
| | - Suryatheja Ananthula
- Laboratory of Immunology, Division of Biotechnology Review and Research III (DBRR III), Office of Biotechnology Products (OBP), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, Maryland, USA
| | - Kannan Natarajan
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Montserrat Puig
- Laboratory of Immunology, Division of Biotechnology Review and Research III (DBRR III), Office of Biotechnology Products (OBP), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, Maryland, USA
| | - David H Margulies
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, USA
| | - Michael A Norcross
- Laboratory of Immunology, Division of Biotechnology Review and Research III (DBRR III), Office of Biotechnology Products (OBP), Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), FDA, Silver Spring, Maryland, USA
| |
Collapse
|
42
|
White KD, Abe R, Ardern-Jones M, Beachkofsky T, Bouchard C, Carleton B, Chodosh J, Cibotti R, Davis R, Denny JC, Dodiuk-Gad RP, Ergen EN, Goldman JL, Holmes JH, Hung SI, Lacouture ME, Lehloenya RJ, Mallal S, Manolio TA, Micheletti RG, Mitchell CM, Mockenhaupt M, Ostrov DA, Pavlos R, Pirmohamed M, Pope E, Redwood A, Rosenbach M, Rosenblum MD, Roujeau JC, Saavedra AP, Saeed HN, Struewing JP, Sueki H, Sukasem C, Sung C, Trubiano JA, Weintraub J, Wheatley LM, Williams KB, Worley B, Chung WH, Shear NH, Phillips EJ. SJS/TEN 2017: Building Multidisciplinary Networks to Drive Science and Translation. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2018; 6:38-69. [PMID: 29310768 PMCID: PMC5857362 DOI: 10.1016/j.jaip.2017.11.023] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022]
Abstract
Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) is a life-threatening, immunologically mediated, and usually drug-induced disease with a high burden to individuals, their families, and society with an annual incidence of 1 to 5 per 1,000,000. To effect significant reduction in short- and long-term morbidity and mortality, and advance clinical care and research, coordination of multiple medical, surgical, behavioral, and basic scientific disciplines is required. On March 2, 2017, an investigator-driven meeting was held immediately before the American Academy of Dermatology Annual meeting for the central purpose of assembling, for the first time in the United States, clinicians and scientists from multiple disciplines involved in SJS/TEN clinical care and basic science research. As a product of this meeting, this article summarizes the current state of knowledge and expert opinion related to SJS/TEN covering a broad spectrum of topics including epidemiology and pharmacogenomic networks; clinical management and complications; special populations such as pediatrics, the elderly, and pregnant women; regulatory issues and the electronic health record; new agents that cause SJS/TEN; pharmacogenomics and immunopathogenesis; and the patient perspective. Goals include the maintenance of a durable and productive multidisciplinary network that will significantly further scientific progress and translation into prevention, early diagnosis, and management of SJS/TEN.
Collapse
Affiliation(s)
- Katie D White
- Vanderbilt University Medical Center, Nashville, Tenn
| | - Riichiro Abe
- Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Thomas Beachkofsky
- Wilford Hall Ambulatory Surgical Center, Lackland Air Force Base, San Antonio, Texas
| | | | - Bruce Carleton
- University of British Columbia, Vancouver, British Columbia, Canada; B.C. Children's Hospital, British Columbia, Vancouver, British Columbia, Canada
| | - James Chodosh
- Massachusetts Eye and Ear, Harvard Medical School, Boston, Mass
| | - Ricardo Cibotti
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Robert Davis
- University of Tennessee Health Sciences, Memphis, Tenn
| | | | - Roni P Dodiuk-Gad
- Emek Medical Center, Technion-Institute of Technology, Afula, Israel; Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | | | | | - James H Holmes
- Wake Forest Baptist Medical Center, Winston-Salem, NC; Wake Forest University School of Medicine, Winston-Salem, NC
| | | | | | | | - Simon Mallal
- Vanderbilt University Medical Center, Nashville, Tenn; Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Teri A Manolio
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Md; F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Md
| | | | | | - Maja Mockenhaupt
- Medical Center and Medical Faculty-University of Freiburg, Freiburg, Germany
| | | | - Rebecca Pavlos
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | | | - Elena Pope
- University of Toronto, Toronto, Ontario, Canada; Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alec Redwood
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | | | | | | | | | - Hajirah N Saeed
- Massachusetts Eye and Ear, Harvard Medical School, Boston, Mass
| | - Jeffery P Struewing
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Md
| | | | | | - Cynthia Sung
- Duke-NUS Medical School, Singapore, Singapore; Health Sciences Authority, Singapore, Singapore
| | - Jason A Trubiano
- Austin Health, Heidelberg, Victoria, Australia; University of Melbourne, Melbourne, Victoria, Australia
| | | | - Lisa M Wheatley
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | | | | | | | - Neil H Shear
- Vanderbilt University Medical Center, Nashville, Tenn
| | - Elizabeth J Phillips
- Vanderbilt University Medical Center, Nashville, Tenn; Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia.
| |
Collapse
|